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Abstract— Volatile metabolites are small molecules, comprise 

a diverse chemical group with various biological activities and 

have high vapor pressures under ambient conditions. It is 

crucial to determine the biological activities of volatile 

metabolites as they play important roles in chemical ecology and 

human healthcare. In this study, we have accumulated 341 

volatiles emitted by biological species associated with 11 types of 

biological activities and deposited the data into our database, 

which is called KNApSAcK Metabolite Ecology Database. Using 

this dataset, we have developed 72 classification models to 

predict biological activities of volatile metabolites by using 

various machine learning methods. Eight types of molecular 

fingerprints were used to represent the molecules, which are 

PubChem (881 bits), CDK (1024 bits), Extended CDK 

(1024bits), MACCS (166 bits), Klekota-Roth (4860 bits), 

Substructure (307 bits), Estate (79 bits), and atom pairs (780 

bits). A new type of fingerprint was also proposed by combining 

all features of these eight fingerprints (Combine, 9121 bits). The 

best classification model was developed by our proposed 

fingerprint (Combine, 9121 bits) trained with gradient boosting 

method algorithm (GBM) with predictive accuracy at 94.43%. 

The results indicated that molecular fingerprints and machine 

learning methods could be useful for predicting biological 

activities of volatile metabolites. 

 

Index Terms—Biological Activities; Fingerprints; Machine 

Learning; Volatile Metabolites. 

 

I. INTRODUCTION 

 

Metabolomics is the scientific study of quantification of low 

mass compounds profiles and analysis of chemical processes 

involving metabolites in a comprehensive fashion. In general, 

metabolites can be divided into two groups: primary and 

secondary metabolites. Primary metabolites are directly 

involved in the normal growth, development and 

reproduction. On the other hand, secondary metabolites are 

not directly involved in these processes, but usually have 

important ecological functions, such as inter- or intra-species 

communication, antifungal, antimicrobial activities and also 

as a defense against pests and pathogens. Small proportions 

produced by these secondary metabolites are volatile 

metabolites or also known as volatile organic compounds 

(VOCs) that play important roles in chemical ecology and 

human healthcare. 

VOCs can be defined as small compounds ranging in 

between C5 to C20 carbon count with a molecular weight in 

the range of 50 to 200 Daltons [1]. They comprise a diverse 

chemical group of organic compounds with various 

biological activities and have high vapor pressures under 

ambient conditions. All living organisms including human, 

animals, plants and microorganisms produce VOCs naturally. 

The naturally produced VOCs play important roles in 

communication between plants and they also serve as 

signaling molecules by passing information between 

organisms [2]. For human and other animals, VOCs are 

important as scents and flavor of food [3]. Recently, an 

increased number of researchers are utilizing VOCs as a 

biomarker to identify various kinds of diseases [4]-[12]. 

Hence, the importance of VOCs for living organisms 

specifically in chemical ecology, agriculture and human 

healthcare need to be further explored.  

Here, we investigate the relationships between chemical 

structures of VOCs and biological activities by applying four 

types of machine learning methods, which are deep neural 

network (DNN), gradient boosting machine (GBM), random 

forest (RF) and generalized linear model (GLM) as 

classification models for predicting the biological activities 

of VOCs based on their chemical structures. 

 

II. MATERIALS AND METHODS 

 

This section discusses the datasets used for this study, 

molecular fingerprints, machine learning methods and 

evaluation of model performance. 

 

A. Datasets 

In this study, we have accumulated 341 volatiles emitted 

by various biological species associated with 11 types of 

biological activities and deposited the data into our database, 

which is called KNApSAcK Metabolite Ecology Database 

[13].This database is available and can be accessed freely at 

http://kanaya.naist.jp/MetaboliteEcology/top.jsp. From our 

accumulated data, 57.3% of the activities belong to chemical 

ecology such as antifungal, antimicrobial, attractant, defense, 

enhance plant growth, inhibit root growth and repellent 

activities. On the other hand, 42.7% of the activities belong 

to human health-related activities such as disease biomarker, 

odor, anticholinesterase and antioxidant as shown in Figure 

1. There are many VOCs, which have several biological 

activities. Figure 2 shows the relative frequencies of VOCs, 

which have several biological activities. There are 239 VOCs 

(about 70%), which have only one specific biological 

activity. 28 VOCs have 2 biological activities, 52 VOCs have 
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3 biological activities, 17 VOCs have 4 biological activities, 

3 VOCs have 5 biological activities and only 2 VOCs have 6 

biological activities. For simplicity, we empirically select the 

most relevant biological activity to each particular 

compound. 

 
 

Figure 1: Pie chart showing the relative frequencies belonging to 11 

biological activities. 

 

 
 

 
Figure 2: The relative frequencies of VOCs, which have several biological 

activities. 

 

B. Molecular Fingerprints 

The fingerprint of a chemical compound is a binary vector 

indicating the substructures it contains. In this study, eight 

types of molecular fingerprints are used to represent the 

molecules, which are PubChem (PubChem, 881 bits), CDK 

(CDK, 1024 bits), Extended CDK (Extended, 1024bits), 

MACCS (MACCS, 166 bits), Klekota-Roth (KR, 4860 bits), 

Substructure (Sub, 307 bits), Estate (Estate, 79 bits), and atom 

pairs (AP, 780 bits). We also proposed a new type of 

fingerprint, by combining all features and substructures 

obtained by these fingerprints (Combine, 9121 bits). The 

reason why we use many types of fingerprints, is that we want 

to investigate which fingerprint method can generate the best 

prediction model. We converted the SDF files of all 341 

VOCs into binary fingerprints using ChemDes software [14]. 

After we obtained the binary matrix of fingerprints, we 

performed the data-processing method by removing all 

columns that contain “0”. This is because it might be not 

relevant for the classification of VOCs based on 

substructures. The features or substructures displayed in a 

binary matrix, was used as input to the classification models. 

There are 11 classes of biological activities, which have been 

used as outputs for the classification model.  

The VOC-Substructure-Biological activities relations can 

be represented as a matrix, shown in Table 1 where rows 

represent VOCs and columns represent substructures of 

molecular fingerprints. We added one additional column to 

represent biological activities for each of VOCs. 

Table 1 
Representation of VOCs, Substructures and Biological Activities as a Two-

Dimensional Matrix. 

 

VOCs 

Substructures 
Biological Activities 

S1 S2 S3 S4 ... SM  

VOC1 1 0 1 1 ... 0 Antimicrobial 

VOC2 1 1 0 0 ... 0 Biomarker 

VOC3 0 1 0 1 ... 0 Defense 
... ... ... ... ... ... ...  
VOCN 1 0 0 0 ... 1 Odor 

 

C. Machine Learning Methods 

Machine learning algorithms are generally developed in 

computer science or adjacent disciplines and find their way 

into chemical modeling by process of diffusion. Recently, 

machine learning methods are popular in chemoinformatics 

and quantitative structure–activity relationships (QSAR), 

which usually predicting the unknown property values of a 

test set of molecules based on the known values for a training 

set [15]-[17]. We implemented four types of supervised 

machine learning methods for predicting biological activities 

of VOCs, which are a deep neural network (DNN), gradient 

boosting machine (GBM), random forest (RF) and 

generalized linear model (GLM) using H2O package in R 

program [18]. DNN was one of the increasingly popular 

methods in the machine learning community in the past years 

and produce a good performance in many applications such 

as machine vision, speech processing, drug discovery and 

other artificial intelligence fields [19]-[23]. One of the main 

differences between DNN and the conventional artificial 

neural networks is that DNN has more than one hidden layer 

and more neurons in each layer, thus making the learning 

process become more “deeper” and “wider” [24]. It is 

difficult and time-consuming to find the best parameters for 

DNN due to a large number of adjustable parameters. Hence 

we took the approach by choosing the best parameter by using 

the multi-dimensional hyper-parameter optimization method. 

We selected the best parameter and then, compared with the 

default parameter. Table 2 shows the DNN parameter used in 

this study. We used the default setting for DNN1; Rectifier 

activation function, 200 neurons in both hidden layer 1 and 

hidden layer 2 and epochs were set to 10. We varied the 

parameter for DNN2 and DNN3 by using the Tanh and 

Maxout activation function. For DNN4, we selected the best 

parameter based on multi-dimensional hyper-parameter 

optimization method; Rectifier activation function with 

dropout, 5 hidden layers, 200 neurons in every hidden layer, 

20% dropout rate in the input layer and each of hidden layer 

and the epoch was set to 10000. For DNN5, we used the 

Maxout activation function, 5 hidden layers, and 200 neurons 

in every hidden layer and the epoch were set to 10000.  

Other than DNN, we also compared the classification 

performance of GBM, RF and GLM methods. GBM is a 

family of powerful machine-learning techniques for 

regression and classification problems, which produce a 

prediction model in the form of an ensemble of weak 

prediction models, typically decision trees [25]. This 

algorithm also produces good performance in many 

applications including cheminformatics [26]-[28].  RF is an 

ensemble method that consists of many decision trees for 

classification and regression tasks. It operates by constructing 

a multitude of decision trees at training time and outputting 

the class that is the mode of the classes output by individual 

Number of biological activities 
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trees [29].  In statistics, the GLM is a flexible generalization 

of ordinary linear regression that allows for response 

variables that have error distribution models other than a 

normal distribution. The GLM generalizes linear regression 

by allowing the linear model to be related to the response 

variable via a link function and by allowing the magnitude of 

the variance of each measurement to be a function of its 

predicted value [30]. 
Table 2 

List of DNN Parameters Used in this Study. 

 

Parameter 
list 

DNN1 
(default) 

DNN2 DNN3 DNN4 DNN5 

Activation 

function 

Rectifier Tanh Maxout Rectifier 

with 

Dropout 

Maxout 

Input 

dropout 
ratio 

   20%  

Hidden 

dropout 
ratio 

   20%, 

20%, 
20%, 

20%, 

20% 

 

Hidden 

layer 1 

200 200 200 200 200 

Hidden 
layer 2 

200 200 200 200 200 

Hidden 

layer 3 

   200 200 

Hidden 

layer 4 

   200 200 

Hidden 
layer 5 

   200 200 

Epoch 10 10 10 10000 10000 

 

D. Evaluation of Model Performance 

The performance of multi-classification models was 

measured by mean squared error (MSE) value and accuracy 

(%). We conducted two sets of experiments: (1) Using all 

datasets as training, and (2) Using 10-fold cross-validation 

technique. In this technique, the compounds were randomly 

divided into ten parts, where nine parts were used for training 

and remaining part was used for testing. This process is 

carried out ten times in such a way that each part was used 

once for testing. 

 

III. RESULTS AND DISCUSSION 

 

In this study, we have developed 72 classification models 

to predict biological activities of VOCs by nine types of 

molecular fingerprints trained with four types of supervised 

machine-learning methods, which are DNN, GBM, RF and 

GLM. We conducted two types of experiments; (1) Using all 

datasets as training, and (2) Using 10-fold cross-validation 

technique. Table 3 shows the list of 72 models and their 

performances for both experiments. Mean squared error 

(MSE) and accuracy (%) was used as the performance 

indicator.  
Table 3 

Performance of 72 Classification Models using Different Fingerprints (FP) 

and Machine Learning (ML) Methods. 

 

Model 
No. 

FP+ML (1) 100% training (2) 10-fold CV 

MSE Accuracy 
(%) 

MSE Accuracy 
(%) 

1 Combine+DNN1  0.1053 87.39 0.4840 48.92 

2 Combine+DNN2 0.1072 87.68 0.4943 46.91 

3 Combine+DNN3 0.2447 74.78 0.5023 47.20 
4 Combine+DNN4 0.5051 91.49 0.5064 44.44 

5 Combine+DNN5 0.1619 83.28 0.4514 53.69 

6 Combine+RF 0.4213 57.77 0.4232 57.95 
7 Combine+GBM 0.3953 94.43 0.3983 57.67 

8 Combine+GLM 0.4319 76.83 0.4323 58.66 

9 KR+DNN1  0.1582 80.65 0.4840 52.46 

10 KR+DNN2 0.1411 81.82 0.4862 47.31 

11 KR+DNN3 0.1656 81.82 0.4679 50.68 

12 KR+DNN4 0.0542 92.08 0.5382 40.42 
13 KR+DNN5 0.0805 91.20 0.5000 48.40 

14 KR+RF 0.4104 54.25 0.4173 56.73 

15 KR+GBM 0.1267 88.56 0.4144 53.76 
16 KR+GLM 0.3484 70.09 0.4397 58.08 

17 PubChem+DNN1  0.1775 80.94 0.4472 51.24 

18 PubChem+DNN2 0.1265 81.82 0.5219 43.82 
19 PubChem+DNN3 0.1768 79.77 0.4604 52.58 

20 PubChem+DNN4 0.0587 91.20 0.5767 35.31 

21 PubChem+DNN5 0.0816 90.33 0.4764 49.68 
22 PubChem+RF 0.4074 55.43 0.4083 57.81 

23 PubChem+GBM 0.1214 88.86 0.3931 55.39 

24 PubChem+GLM 0.3679 65.98 0.4595 56.47 
25 CDK+DNN1  0.2230 74.19 0.4918 46.06 

26 CDK+DNN2 0.2205 71.85 0.5494 40.97 

27 CDK+DNN3 0.2025 76.83 0.4981 46.99 
28 CDK+DNN4 0.1089 85.04 0.5754 35.53 

29 CDK+DNN5 0.1698 90.32 0.5091 44.37 

30 CDK+RF 0.4555 57.77 0.4635 52.28 

31 CDK+GBM  0.1498 83.87 0.4328 51.45 

32 CDK+GLM 0.3724 66.28 0.4731 51.86 
33 Extended+DNN1 0.2230 81.53 0.4707 46.06 

34 Extended+DNN2 0.2205 74.49 0.5169 40.97 

35 Extended+DNN3 0.2025 70.97 0.5196 46.99 
36 Extended+DNN4 0.1089 86.51 0.6431 35.53 

37 Extended+DNN5 0.5051 83.28 0.4914 44.37 

38 Extended+RF 0.4555 52.79 0.4361 52.28 
39 Extended+GBM 0.1498 86.22 0.4171 51.45 

40 Extended+GLM 0.3724 68.62 0.4461 51.86 

41 AP+DNN1  0.4246 52.19 0.5482 39.69 
42 AP+DNN2 0.4150 53.08 0.5460 39.74 

43 AP+DNN3 0.4606 50.15 0.5729 40.61 

44 AP+DNN4 0.3413 59.53 0.5734 41.49 
45 AP+DNN5 0.3742 56.89 0.5278 42.51 

46 AP+RF 0.4948 49.56 0.4963 50.13 

47 AP+GBM 0.3831 59.53 0.4964 49.25 
48 AP+GLM 0.4787 52.79 0.5104 51.68 

49 Sub+DNN1  0.3793 60.12 0.5411 42.45 

50 Sub+DNN2 0.3491 61.58 0.4998 44.33 
51 Sub+DNN3 0.3132 65.39 0.5515 40.49 

52 Sub+DNN4 0.2179 73.90 0.5396 39.71 

53 Sub+DNN5 0.2655 68.33 0.5062 44.51 
54 Sub+RF 0.4480 51.61 0.4541 51.38 

55 Sub+GBM 0.4497 68.33 0.4492 50.69 

56 Sub+GLM 0.4502 58.94 0.4845 55.38 
57 Estate+DNN1  0.3621 58.65 0.5249 43.22 

58 Estate+DNN2 0.3775 58.94 0.4919 47.89 

59 Estate+DNN3 0.4585 46.33 0.5830 37.53 
60 Estate+DNN4 0.2531 68.33 0.5230 42.79 

61 Estate+DNN5 0.3149 65.10 0.4762 48.04 

62 Estate+RF 0.4561 53.08 0.4558 52.78 
63 Estate+GBM 0.2974 66.86 0.4527 51.56 

64 Estate+GLM 0.4667 55.13 0.4956 51.39 

65 MACCS+DNN1 0.2418 71.85 0.5004 46.25 
66 MACCS+DNN2 0.2353 73.31 0.4853 45.32 

67 MACCS+DNN3 0.1849 77.13 0.5010 45.65 

68 MACCS+DNN4 0.0780 88.56 0.5599 41.63 
69 MACCS+DNN5 0.5128 87.39 0.5103 45.14 

70 MACCS+RF 0.4293 53.08 0.4327 52.28 

71 MACCS+GBM 0.3997 87.09 0.3998 56.29 

72 MACCS+GLM 0.3989 60.70 0.4732 55.35 

 

Figure 3 shows the distribution of 72 classification models 

(MSE value) by using all datasets as training and 10-fold 

cross-validation technique. For the first experiment, by using 

all datasets as training, the best classification model was 

developed by Klekota-Roth fingerprint trained with the 

DNN4 method, with MSE value 0.05420784. Second best 

classification model was developed by PubChem fingerprint 

with MSE value 0.05871162, followed by MACCS 

fingerprint with MSE value 0.07807859. Both fingerprints 
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were also trained with DNN4. The best parameter for deep 

learning was obtained by using rectifier activation function 

with dropout rate at 20%. A number of the hidden layers was 

set to 5 and 200 neurons for each of hidden layer. Estate and 

atom pair fingerprint did not perform well in the classification 

model. This is because the length of the Estate fingerprint is 

only 79 bits, which is too short to characterize molecules. Too 

much information loss led to the bad prediction.  

For the second experiment, we adopted the 10-fold cross-

validation technique to evaluate the performance of our 

models. The lowest MSE error was obtained by using 

PubChem fingerprint trained by GBM method at 0.39318013, 

followed by Combine fingerprint also trained by GBM 

method. The obtained MSE error was 0.39837325. MACCS 

fingerprint trained by GBM method also gave good MSE 

value at 0.39979038 compared to other models. The worst 

performance was obtained using Extended fingerprints 

trained with DNN4 and Estate fingerprint trained with DNN3. 

 
Figure 3: Performance of 72 classification models by using all datasets as 

training and 10-fold cross-validation technique (MSE value). 

 

Based on Figure 3, it seems that all data are distributed 

randomly and there is no correlation between the 

performance obtained by using all datasets as training and 10-

fold cross-validation technique. We observed that there are 

two types of models: 1) the left side is affected by over-fitting 

problem, and 2) the right side is not changed for both 

experiments. The left side points, which most of the 

combination of fingerprint types and DNN methods suffered 

from over-fitting problems due to the many parameters of 

DNN. The performance of DNN is good when using all 

datasets as training, however it becomes worst when we used 

10-fold cross-validation technique, such as model No 12 

(Klekota-Roth fingerprint trained with DNN4 method) and 

model No 36 (Extended fingerprint trained with DNN4 

method). The small number of our sample data and many 

parameters of DNN might cause this over-fitting problem. 

DNN always requires a large amount of data to be trained, 

usually more than 50,000 samples. In our study, we only have 

341 VOC data for the classification task. In theory, over-

fitting is a major problem for DNN and we have proved this 

experimentally. Moreover, the Klekota-Roth and Extended 

fingerprints have many substructures or features (more than 

1000), which need to be trained and as a result, they are 

suffering from over-fitting problem too. The right side points 

did not change much for both experiments. For example, the 

classification model No 43 (atom pair fingerprint trained with 

DNN3 method) and model No 59 (Estate fingerprint trained 

with DNN3 method) performed poorly in both experiments. 

From this result, we can understand two things; 1) Atom pair 

and Estate fingerprint did not perform well in model building, 

2) DNN3 is the worst, compared to other DNN models. Atom 

pair fingerprint are a structural descriptor type that is defined 

by the shortest paths among the non-hydrogen atoms in a 

molecule. Each path is described by the types of atoms in a 

pair, the length of their shortest bond path, the number of their 

pi electrons and the non-hydrogen atoms bonded to them. The 

number of atom pairs describing a molecule grows with its 

number of atoms. The fingerprints provided by PubChem are 

a binary representation of the presence and absence of a 

library of 881 substructure features. Compared to atom pairs, 

the PubChem fingerprints are a knowledge-based system that 

stores less information than the much more complex and 

unbiased atom pair concept. PubChem fingerprints are also 

less sensitive than atom pair descriptors. The length of the 

Estate fingerprint is only 79 bits, which is too short to 

characterize molecules and some of the information might be 

loss, which cause the bad prediction. It is also observed that 

hyperparameters of DNN can affect the overall performance. 

The reason why DNN3 performed poorly for both 

experiments, is because the Maxout activation function and a 

small number of epochs. Rectifier activation function is a 

better choice for this classification task.  

Also, based on Figure 3, we can observe that the 

classification model No 23 (PubChem fingerprint trained 

with GBM method) gives good results in both experiments. 

This model obtained MSE value = 0.1214795 when using all 

datasets as training and MSE value = 0.39318013 in case of 

10-fold cross-validation technique. The results show that 

GBM method is good at predicting biological activities of 

VOCs. GBM appears to be a very effective and efficient 

machine-learning method. It is efficient because it achieves 

these results with much less computational effort than either 

of those methods and produces much smaller models. 

Overall, GBM results somehow are contrary with DNN 

results.  

We also evaluated the performance of all 72 models in term 

of classification accuracy. Classification accuracy is the ratio 

of correct predictions to total predictions made and often 

presented as a percentage by multiplying the result by 100. 

Figure 4 shows the performance of 72 classification models 

in term of accuracy value (%) by using all datasets as training 

and 10-fold cross-validation technique. Also, it can be seen 

that all data are distributed randomly and there is no 

correlation between the performance obtained by using all 

datasets as training and 10-fold cross-validation technique. 

Similarly to MSE result, we observed that there are two types 

of models: 1) the right side is affected by the over-fitting 

problem, and 2) the left side is not changed for both 

experiments. The right side models, such as model No 12 

(Klekota-Roth fingerprint trained with DNN4 method), 

model No 20 (PubChem fingerprint trained with DNN4 

method) and model No 36 (Extended fingerprint trained with 

DNN4 method) give good classification result when using all 

datasets as training, however it becomes worst when we used 

10-fold cross-validation technique. The small number of our 

sample data, many parameters of DNN and a large number of 

features need to be trained might cause this problem, which 

we have explained previously.  

Contrarily, there are few models, which performed poorly 

in both experiments. The classification model No 43 (atom 

pair fingerprint trained with the DNN3 method) and model 

No 59 (Estate fingerprint trained with the DNN3 method) 

performed poorly in case of using all datasets as training and 

10-fold cross-validation technique. This is due to the small 

number of substructures for Estate fingerprint, which is too 
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short to characterize molecules. The atom pair fingerprint is 

also known as a very sensitive fingerprint and this is the 

reason why it performed poorly in both experiments. Based 

on Figure 4, we observed that the classification model No 7 

(Combine fingerprint trained with GBM method) gives good 

results in both experiments. This model obtained accuracy 

value of 94.43% when using all datasets as training and 

57.67% in case of 10-fold cross-validation technique. The 

results show that GBM method is good at predicting 

biological activities of VOCs. This result somehow is aligned 

with our previous result shown in Figure 3, where we proved 

that GBM appears to be a very effective and efficient 

algorithm, compared to other machine learning methods. 

 
Figure 4: Performance of 72 classification models by using all datasets as 

training and 10-fold cross-validation technique (accuracy). 

 

IV. CONCLUSIONS 

 

This study is conducted in order to further investigate the 

relationships among organisms, volatile metabolites and their 

corresponding biological activities. We employed supervised 

machine learning methods to predict biological activities of 

VOCs based on chemical structures. We have developed 72 

classification models for the prediction of biological activities 

of VOCs by 9 types of fingerprints and trained by the deep 

neural network (DNN), gradient boosting machine (GBM), 

random forest (RF) and generalized linear model (GLM). 

Based on the computational results, PubChem and Combine 

fingerprints were recommended as the input for the prediction 

model.  Gradient boosting machine (GBM) method can 

outperform deep neural network (DNN) in term of classifying 

VOCs, in our case. GBM method has an advantage in term of 

computational speed and requires less parameter for 

optimization. Hence, we highly recommend using GBM for 

the prediction of biological activities of VOCs based on 

chemical structures. 

In future, more VOCs can be accumulated, and 

comprehensive analysis can be performed in the context of 

human healthcare and chemical ecology. The prediction 

outcome may be useful for the discovery of novel agricultural 

tools and also for the non-invasive identification of 

biomarkers in the medical diagnostic field. 
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