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A3STRACT

The time optimal control problem in unforced discrete
systems is studled in this thesis. Comrarison is made between
the discrete and the continuous control systems by means of
minimum time iscchrones. Concerning optimal time, it is shown
that using the discrete control system will take at most one

nore sarpling pericd of time to go to esquilibrium.

in investigation 1s also made for the case when the time
constant of the physical plant, G(s), and the control model
are cifferent. In sucn a case, an oontimal trajectory can notd
be obtained. An adaptive process is procosed to adjust tie

model of the controller toc get an almost optimal control.
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devoted to the

secially for the continuous case. There wersg also soms

and resulted In

respects to unsam

aznlications of
in those cases
system is inker
why sarsling te
the complexity
Jue to the
control swvstems

mal relay servo

ed systems. Yet until now few oractical

sampled-data control systems exist, excert

wrere the inout or error signal of %ie

ently sampled. ZFrobably the major reason
crniques have not been more widely used 1s
and expense of the sampling controller,
increasing use of digital corputers in

» the vroblen which corresponds to the ooti-

of the continuous control system can be

[ -

treated in the discrete systems. The samnled-data type of

control croblenm

contrel siznal

o

is very important oractically, since thre

£(t) is frequently computed by reans of a

%}

R

digital computer. In which case the intrcoduction of sampl-

Tizls study

tert is natural and unavoidable.

will be concerned with a2 second-order satu-

rating samnled-data system, as shown in Fig.l-1, with the

following sequence of components in the forward nath:
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In craoter III, tre minimum time isochrones are construct-
ed both for the discrete and the continuous control systews
Wwith the same ulant transfer function. The t¥ minirwm time
isochrone is defined as the locus of all points in the state-
variaole =lanc with the pronerty that, if a time ontimal
contrel policy is used, then all the poinbts on the t¥ minimunm

s

time isochirone can be forced to the origin in the sarme mini-

B
i

rurt time ©7. In order to compare the results of the optimal

A

Time and the ostimal trajectories between the discrete and

the continuous systems, a specific plant with transfer func-

- 1 . . .
tion ETEITT is used in each case.

In chapter IV, the problem of pararmeter varliations and
their effect on the ovtimal strategy is discussed. If the
clant has the time constant a, while the control model has
the time constant b, for the case a#b, then taoe forcing
function calculated from the controller can not yield an

. - )

optimal control. CJertain calivbrations can be made by the

controller to obtain an almost ovtimal control.

B, Literature Review

In 1957, Kalman3 presented a paper concerned with the

problem of designing an optimal nonlinear controller for a
linear dynamic system where input to the llnear system is
limited by saturation. In contrast to the usual apvroach
to such problems, the output of the controller would be

assumed to change only at periodically repeated instants



of time. This assumotion greatly simplified the analysis of

the problem and the design of the controller.

Desoer and ﬁingq’g, extending some preliminary results
of Kalman, presented an optimal strategy for a saturating
sampled-data system. This optimal strategr was concerned
with a system described by a linear differential equation
with constant coefficients. The control signal of the systen
1s constrainec betwezn the saturation limits +1 and -1. The
preoblem is then to determine the forcing function f{t), such

.
H

that the system is forced to equilibriur in minimur time.

iMe vproblem discussed in tnls thesls is to investigate
the discrete optimal control system in comparison witn the
continuous optimal control system by means of the minimum
time isochrone. aAn investigation is 2iso made for the case
that the parameters of the plant and the controller are

different.
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i. Procosed systen

Consicder a second-order linear servomechanism as shown
in 'iag.2-1. The forward path consists of a sampler with
pericd ¥, a zero-order hold circuit, a linesr saturating

molifier and a olant wiich is described by a second-order

o

transfer function a(s) = K'/s'{st+a'), (a's0). The feedback

loop consists of a computer whose input i1s c(t) and whose

Jute

output is ¥(t). The sampler and the zero-ordsr nold circuit
recuire that f(t) be viecewise constant for any interval

KT&t & (k+1)7, where k¥ is an irteger. The nroblern is the

Assuming that tie input r(t) is zero for all times and

given an arbitrary set of initial conditions ¢(0) and &(0),

find tre forcing function F(t) and the corressonding computer

2

waich will bring the system to ecullibrium in the ninir

number of sarpling oeriods.

x| -ST + ‘_!r_“y'
r(t) = 1-e V £{t) -—-;——L'-——' c(t)
+ sarpler s d/4_1 s'(s'+al)
zero-order saturating plant G{s)
hold ckt amplifier
P{t) comouter

Fig.2~-1. Block diagram of the second-order system.



2. Matrix Formulation

By a suitable time normalization, the constant XK' of 'i(s)
can be made egual to unity. Zxpand the time scale by a facter
k—q, thus s=s!'/k, a=a'/k, and multiply the transfer function
by k. This simultaneous forcing furction and time normaliza-
tion reduces the problen to a two-parameter problem: a, tie

time constant of the plant 3(s), and T, the sampling veriod.

Ifnerefcre, the problem is reduced to that snown in Fig.z2-2.

—~—
ct
—

f{t} 1 c
s{s+a)

computer

Fig.2-2. System under consideration after normalization.

Here f(t) is a zero-order hold function and |f(t)]l£1 at all

times.

Por 0xt<7
c{t} +ac(t) =7° (2-1)

The solution for a set of initial conditions, c{d), c(0), is

1-e"2% e 4 oy - 1
c{t) = c¢(0) + =———¢(0) + £, 2
& (2-2)
-at
$(t) = 72 ¢(0) + £, 122
a

This relation between the initial conditions for the next

samoling period, c(T) and c¢c(T), is of the form



[C(T)J [1 (1-e'aT)/aJ [C(O)J [(e-aT+3T_1 )/ o3y
= o +f I 2"‘3
s(my| lo et s0) Y (1-e”%Yy/a

B (1—e—aT)/a]

-g'f
e

Let

s
|

_Q
-(e-aT + a7 - 1)/a%}
u = -aT

L (1=-e"%")/a

#g.(2-3) can be described by the vector differential equation

cel(T) = 4¢(0) + £, u (2-4)
The vector ¢(T) can be expressed in terms of tie normalized
eigenvectors of A. The eigenvalues of 4 are X1=e-aT and A2=1.
The normalized eigenvectors are
-1 1
e, = ]“*22 e =!: ; } (2-5)
’I+a2
By change of variable, let
o(T) = 2 x(T) (2-6)
where
P = [94 22]’ is a matrix (2-7)

X(T) is a vector on theﬂ(Xﬁ,XZ) plane

The vector on the (c,c) plane can be transformed to the
(£1,K9) plane by use of Bg.(2-6). svbstitute fg.(2-6) into
Eq. (2-L4)

P A(T)=4a2 Z(0) +f, u

== 1
or  x(T) = P AR AO) +r P u
= A £(0) + £,8 (2-8)

where

!'
fia,
e

>
i
u
A
Y
i
—
®
]
)
H
o
| I———
3
i
0



- N 1
4 (1-e"2)(14a%)7/a"
~ -3 |
a==r us= (2-10)
-T/a
For the general interval (& L bekn
LxT) = A4 L0(k=1)0) + £ 4 (2=1,2,3,...) (2-11)
C. Classification of initial states

¢(0) refer to %t-e vector
if

The initial conditions c¢(0),
£.(0)) in the (L1,ﬁ2) plans

(0] at the voint (AT(V)
nat the system can be brought to equilibrium

4(0) is such
in N sawpling periods, the followiny relation nolds:
i -1, 6 A fe ae)
(0) + £.a7 g +ov £ A G Hg (2412

0 = A"

Z(XNT) = A
vhere |f;] 1 (1=1,2,3, 000,11)
Prerultinly Zq.(2-12) by A™", then
£(0) = -£, A4 - £ A28 LT pT e - FoATRd (2-13)
& (EARR ZZA TS A = 44
for ¥* = 1,2,3,..., define
kal, -l 2%, 2
: —e T (1-eT ) (1427) 3 /a1
B = -4 = (2-1L)
T/a
Fix. 2-3.

written as

Zguation (2-13) can be u
i
£(0) = 2_ f,r, (2-153
i=1 -
tation for tie initial
sapling

general represent

the
into eguilibrium in ¥

Eq. (2-15) is

&

states that can be brougn

periods or less.,.

e



fhe region R% is defined as the set of inltial states
i

that can be brougirt to eguilibriun in ¥ sarmpling veriods or

=
T
-

less, The properties of R!:"
i

1. The region of R! is convex. If two initial states reore-

[

sentec by the points P, and P_ can be brouzht to equilibriunm
o

1
in N sampling period or less, the same is true for any ini-

tial state on tlie line seiment P1P2.

2 R% is tiie closed set whose boundary is the convex 00lyson
l‘. - -

vnich has following 2i vertices

0Py OPgy.vvy OP ., OP_,uu., OF .

Wwheres

‘or proof of these properties see reference 1.

¥



R
LA
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OFp = rq + 2 - 23 -... - Iy
OPg =24 # Lp * I3 *v.. v I
OP_4=-r4 +* rp + Iy +... + D

- —— — —
CP_y= ~Pq = Tp - L3 =... - Iy

wiere 0 is the origin of fie (.;";1,;«;2) plane. 'The conv

son has the origin as a center of symwetry.

2t

H Rt - Rt
3o By = Ry - R

al states

e

R the set of all init

where is

brougnt to ti:e origin

(]

he

e

regions -’.1' s

shown exzlicitl

Yeh-n-n

L+ +0 - L

Ry

,

It . i 23
LL}_ . - N2
b
YRt
- i tiirry
] } m .3 ) l 3
Fig.2-t. The regions lzq', ar, A_Lé, At and 4
2 : i

tnat can be

-
1S

with e vertices are

(

jole)

Mo

sampling periods and no less.

10

O

-1

-
by~
=



Je Optimal Lirategies
an ozitimal strategy 1s

"“J

the
2
{1

—

£y 55000, Ty toat brincs the zoint L(0) to trhe orizin in
exactly mpling vsriods.

If L(0) belongs to 2, or RZ’ the optlimal strateny is
unigue. X(0) belongs to R, with K23, there may be more
than one sclution. Ior any (0 tirat is a boundary state of

there ig a unigue optimal stratezy. For ary ((0) that is
a interior state of H,., (no%t on the outer boundary of & _),

iy I
there exists an infinite number of optinal stratezies. In
order to prove tiiis statemens, start from 2g.{2-3)
— - AN A £ -1 5
~(O) = A f:(s.; - .Lz;_/} &
- f N ”
and using So.(F-1h)
Z(0) - f?TT = A L(w) (2-13)
If J(C) is in R, then by the definition of tiw ooiimal
i
strategy, an ontimal value of I, is sucn that g(:) is in

TR |

An egulivalent form of

REN
regions i_ and o ’ is
2. - f.r, = AR
T 11 - =7
Start with H.. 77 deternine
L

..O

Conversely, if »{(0) is in R.., t
such that £(0) - £,r, iz in A7

forcing

in terms of
(2-19



e

any such value of T

ine rezion A f._. can be deftermined by the following

orocess, by using Zg.{2-17), set tie relation

- ; N (-
and it are convex, bence, A il . and A R!
2 - | - L

are convex. To construct the rejions of N ﬁN, only conslder

tiie vertices of A i

Table I zives a complete tabulation of tize vertices. ihe

-1

crosshatchied area in #ig.2-5 R

e
[&]
>
Lo

-

T RT L
BACEn ] RN

Vvertices of Convex Region Ré

- =23 A

r +r. -7 - -3 4T
) ig = 2=
g

3 - -3, =D, -1
4 =23 = 2 =3
s of Conver Rezion Hé
r, -r -7 +r
- =2 = -2
r, +7r -r =T
= = A

- . o o . -1,
Vertices of Convel negion A &

1
3
-t 1P +

r,-Iym REPRERl

LQ _3 ”,

r,_ 4y, T I S S )
=2 =3 2 =3 =
of Convex Reglon Af‘ﬁ;

Vertices

“

-7
+

- +r
L3 o
41 - =1

s )
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38 %
B fn£1
7 £ir]
D
\?\ t15
c
g
T
A
N
0
W\
Y\ §
q
;Xg
\
N\
(]
k 0
Y \ M
N
7
\
vy
)
o
&
¢!
Fig.2~5. The cross-hatched area \

is the set

-1

R

3



To illustrate the faet that at tne boundary states of

R. (23, the optimal stratezy is unigque, while for the

interior states of i ., the ostimal stratezy is not unique,

U
YL
O
3
o
s
®

some exarinles can be considered from Fig., 2-!

4y

ocundary states o ﬁﬁ’ such as polints 4 or €, an owtimal

value of #%the forecing fuanction during the first sampling
interval is +1. Ffor the boundary states such as wnoint B,

the octimal value of the forecing function during tie first
samoling interval is §(]$1<1 ). These foreins functions are
unique. Otrherwise, the initial state can not forcec to tre

nterior state

e
0

after one sampling period. 3But for

3

of Rﬁ’ sucii 28 point D, the ovtimal fercing function during

the first sampling interval can be f', 7 or any f1 in the

range f'ﬁ-f1£ ", nere are an infinite number of optimal

values of f1 whicn force the initial state to the reglon
... Therefore, the optimal stratezy of tne interior state
-~

is not unique.

4. Proposed Optimal Strategy

In order to establish an ovtimal sirategy which is easy
to instrument, two particular curves are defined.

(1) The Critical Curve: which ig obtained by joinin:

e

successively the vertices defined oy

T T
N 1
D I e R Peyoos
. -1 -2 fas PR 1
i=2 i=7

(2) The Polygonal Curve ¥: wnich is cbtained by joining

suceessively the vertices defined by



¥ B
s o0y —. - _I_‘_is-o-’-z_:)‘z‘_fi, —£~]y +£1, £1+£?,.-.,+ ZE’I_""
1=7 - o :

i=]

X,

Sr
-En )
e -E 1 Polygonal Curve, K
3
\ ///////'Critical Curve
3
P 3
=1 -gzr;

Fig, 2-{ The Critical Curve and the Polyponal Curve,X.

If X(0) is in R, it can be exzressed elther as

i

A0) = mptmpbe . Ty FEDy g Dy ypm e "D m Gy (2-20
oY 28

A(0) = ~rg-Pom. . omDy FOE gty ot o FE g TR T (222
where -1£¢ 41, 0<%, <1, 0<£k<N-

The representation in Zg.(2-21) holds for all points Lo the

right of the polygonal curve, %, and 3q.{2-22) hrolds for

those that 1lile to the left of the volysonal curve, I

e
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e proposed optimal strategy follows directly from the

canonical representations Zq.(2-21) or Z¢.(2-22). To

startecd consider tiose initial states for wilich k& = 0

sc.(2-21) and 3q.(2-22), i.e.
A{0) =% —Lo=vemDy 4= 5 L-

—_— - =

or

hﬁ

7 s Ia \ .
L0) = b£1'r£9'*"°+£:~z_1+'5';£7q
Talkke ar alternate form

i{;(o) - %_:E:Jl = -2{;;-3(’——...—r':;_,l-s,iz:.‘:.

zet

The right hand side of Zq.(7-25) and .q.(2-26) represent s

point on the critical curve. Cbserve that
(1) If ¥ >0, the optinal stratesy irplied by Ug.(2-21)
requires f1=x1.{such as point C in Fir. 2-5.)

(2) If ¥=0 and if |§/=1, tren tne ontimal strategy irmp

by #q.{(2-21),(2-22) requires [.=%, i.e. }f1]=1. (su

!

as point ¥ in Pig.2-5.)

lied

(3) If k=0 and if |§[41, then f1=$, vhere % is such that

a1

5(0)—531 be a point on tixe critical curve.(such 5

B in Fis. 2-5.)

Compute { suck that X(0)-5r, be a moinit on tie critlical

curve. If §21, take f1=1, where Iy is the effective forcing

function for the first samoling period. If ¢£-1, take

If -1<§<1, tale f,t:S,

4t each sampling instant § nmust be computed such

i@_(())—érll be a point on the critical curve. e first st

f] ==q.

that

e
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the (¢, ¢) plane. The vectors s

il et
s Ss ey Sn,v,---, o1l fr:.e
=1 -2 i

(c, &) nlane corresponding to the vectors r1, r2,..., T sy
- - '
of tihe (\1,¢2) olane are given by
— £ e’ ~ - \
i{—g& \_L—X,r'_,j,...) (2-27)

wiere P 1Is tne matrix wnich has the eigenvectors e1 and 82
as colurns. The critical curve can be drawn in the (¢, c¢)
plane, This 1s done because ifnie proposed optimal strategy

requires Tne destermination of & sucn that c(O)-ggQ be a

point of the critical curve. rlowever, it is riore convenilent

to rotate the coordinates and use the axes OY& and CY,, shown

~

in #i+. 2-7. w«here 0¥, 1s the supwort of sq. Thus, in tre

(¥4,Y-) coordinates, the determinabtion of & will amount to
o

talting 2 difference of abscissas. the critical curve in the

s 1=

(Yw,Yz) plane is shown in Piz.2-3. #iven an initial state
¥(0), if £2(¥,(0)) is trne abscissa of the critical curve
corresponding to the ordinate ¥,(0) of ¥(0)}, then

r(i,(0)) - ¥,(0)

From %, f, can be determine



C

e
£
Fig.2-7 The new axes 0¥y, O¥p with respect to
the old axes Oc and 0&.
v f 2272578,
-5 =8
. -2 =3
——-T——- —
| |
I |
| /o |
s =2 |
-1 | I ~Y1
7y (0) £(¥5(0))
5o

-+

5,8,

/

/
S +8 _+s
“2 73

Fig,2=8. The critical curve ¥,=f(Y,) in the (¥4,Y,) plane
= 1 z2 ! Past

in terms of the s,

—_

(es]
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CHAPTER TIII
COMPARISON BETwHESHY THE DISCRETE AND THE COHTINUOUS

SYSTAYs BY TUE MINIMUM TIME ISOGHRONES

The comparison of the optimal time in the continuous
control systems and tiie discrete control systems can be

based on comparison of the minimum time isochrones. & %°

rinimum isochrone is defined as the locus of all points in

the (11,X2) plane with the property that, if a time optimal
control policy is used, then all the points on the t¥ mini-
mu: isochrone can be forced to the origin in the same mini-

mur time t°.

A, Construction of the isochrones in the continuous system

1
Consider the plant transfer function G(S)=§T§:TT . The

block diagram of the system is shown in Fig. 3-1.

r{t)=0_ 1 c(t)
T s(s+1)
£(t)
computer

Fig., 3-1. Block diagram of a contlinuous control system.
Fig. 3-1 implies that

c(t) + ¢(t) = ¢ (3-1)

For initial condition expressed as c(0) and c(Q), the

solution of EBg.(3-1) is



no
(&

elt) = e(0) + (1-e77}8(0) + #(e7" + & - 1) } (3-2)

i
o
O-

l.
e}

]
@

&(%)

In order to cormpare with tiie discrete systern, transform
the coordinates in ti:e (¢, ¢) plane to thie coordinates (Aq,j?)
plane by the following relations

T

clt) = 4 (6) g + (%) ey (3-3)

vhere
c{t)
c(t) =
c(t)
1
= -1
_ Iz -
€4 = 1 _‘?:.2 [ 0
Iz
therefore
c{t) = -1/V2 K] ~ (%) (3-L)
¢le) = 1//2 (%) (3-3)
Letting (gq,fq) be the initial condition in th (“,,42)
<

plane, Zg.{3-2) can be transformec to

-
b
4
-
o
(6]
i
t
Cy
t
vty
(%)
i
O~

e ey = l Y o4 (1" V) E, 4
(-Ey-ip) = (~zg-8) +(1-e" )55,
(7£5) = (FE e + £(1-e7") (3-7)

dereafter,

iy = (§1-J§f) e:w;p(..g.._.._.__..»"—)—i2 )+ J2 f (3-10)

For £ = 41, i, = (£-/2) exp(-8+i,) + Je (3-11)
for £ = —'1, :":.1 = (ng +~/—2—} e:x-.k( .52—‘}:2) - '/? (3—12)

i
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If the trajectory goes throuch the orisin, thus §1=O
and E,=0, then from Ic¢.(3-11) and (3-12), the switchinz
curve can be obtained as
8.(f=+1) 4y = [2(1-e ) (3-13)
o1 (.ﬂ_ e — f —‘;2 4 M
5_(f==1) L = -/2(1-e 7%) (3-1L)

2g.(3-13) avslies for Ay 0, and Zg.(3-1l) apvlies for x.< O.

2

‘.
L]
p

3g.{3-11) generates the trajectories in the (ﬁi

plane resulting from f=+1 and starting frowm the 1nitial

)

i
£
rl
(V8]
t
n
o)
Lp]
]
)
O
H

states (%1,53}. ~e trajectories shown i

[¢]

all (§1’g%) to the ri hit-hand side of the switchiny curve.
The trajectories resulting from f=-1 has the sawe shave as

that of the Strajectories of f=+1 except that 1t is invertec.

a
e

The procedure to construct the t" winimum lsochrones 1s

as follows.

ct
lo

(1) Take a finite t7 whnich is to be tie minirum response

i

)

time to forece (84,%) to (0,0).
(2) From 7Pir.3~2, opick the inbtersection point of the trajec-

ct

oin

Cuarv

o

5, such a
-

tories and the switchnin

09

63}
s

(51,&2).
(3) Let t, be the time required to force (f%,g%) to (21,32)

and t- be the time required to force (4q,a0) to (0,0}, then

C e 44 -13)
£ £y + 5, (3-15)

From 3g.{(3-9), using the above relations with f=+1, then

402 — __52 (3—1/0)

N

By apclying the relations in Ig. (3-8} and (3-9)

4 -
g"f: (41::1 "\/?) S ! - fé— (3-—’!:_]‘%



les from fg.(3:11) 1
e (& ,4p) plane. |
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(it} For each trajectory in Fi:.3-2 $ie initial state (§1,§9}
can be deterrined by Zc.{(3-17'} and 3c.{3-18}.
Connecting these initial states, the locus of (Ei,g

gochrone of t7 in continucvs svstem. Datae are listsd in

fte

Appendix 1. e Isccirones for v '= 4.5, 1, 1.5,

are plotted on

B. Construction of the isccirone i tre discrete svster

!
o
fre
¢}
(@]
H
@
ot
0]
Q
o}
]
ot
v
]
b -
(%]

i
9]
i
[

S
o
M
<

M

‘The block diagram of the

49.(3-19) is a zeneral revresentation for tie Initial states

cr less. :zem ]fKI:1 ig anwnlied for every sarcling

valent to an isoec rone for o sarwling periods.
From de.(2-10) m o -

~y

——
;~AA 4
i

I

= . d =
r, = - A"

For control vlant wit roots at (0, -1)



For a sampling period of T=0.7 second,

-0.94 -1.51 -2.018 -l o8

=2 7 53

i

r. =
—i.

The region X', the isochrone for 7 sanmling periods, can be
S ) -

conztructed by the following 21 vertices. These iscchrones

are shown in Fig.3-3a by dashed lines.

(1) R{, the isocrhrone for t. = 0.5 second, is the straight
line seorent in tie {1, ,%,) plane.

| = (O-9h9 '005)

I, = (—0.91‘_@., ’3-5)

iy

B4
A

A

{2) R!', the isochwrone for %

~

l..

= 1.0 second, 18 thwe =arallel:s
[
gran with the following i vertices in the (4;,4,) plane.
+r. = (-0.37, 0)

('2'h53 1)

R
-+~
&
{

+r, -r_ = (+0.57, )
-r, ~r, = (+2.45, -1)

(3) R3, the isoctrone for t7 = 1.5 seconds, is tiie convex
polygon with the following 6 vertices in the (.;,4;)
vlane.

T, T, ng = (-1.93, +1.5)
-z, Iz, tr, = (-3.05, +0.5)
-r, -T +r_ = (~0.03, -0.5)
~L, -, ~L, = (+}..93, -1.5)
T, -I, I, = (+3.05, -0.5)
f£1 +r_ -r_. = (+0,03, +0.5)



\JT

Ny
ny

e

(1) Ri, the Isccirone for t™ = 2.0 seconds, is the convex

)

polyzon with the following 3 vertices in the (51,59

tlane.
ey tr, tr, try o= (-9.01, +2)
-rs o, tpa tr) = (=7.13, +1)
-y -, +rq 4r) = (=11, 0)
-ry ~Ip -k3 vy = (#0.85, -1)
-ry -, ~ry -, = (+9.01, -2)

40y mz, -3 -z, = (+7.13, -1)

+r, 4T, -3y -r) = (+.11, 0)

— Yl
‘ — = \
+r 'r_I_‘_':, +1 - -'EL_ = (—O . 8,‘} , T

—

As another example, talke a sampling period T = 1 second,

5
" - v
i - . 9]

._j - b —-— »

-3

f-da

6]

he region ', the ocrrone for i sarpling periods, can be

- 4
T A

- (R4

constructed by the following 2 vertices. iese 1lsochrones

b
11

,J-
bl

are shown ‘iz,3-3b by dashed lines.

3
< +1.

ochrone for t“ = 1 second, is the straignt

V5]

(1) R;, the 1
line segment in the (Aq,ﬁz) plane.
-rq = (+2.445, ~=1)
(=2.45, +1)

+
3
|

(2) R!', the isochrone for t° = 2 seconds, is the parallelo-
2
grar with the followins L vertices in th (Aq,KQ) plane.
-~y tr, = (+L..11, 0} +rq -, T (=L.11, o)

(+¢.01, -2;

+
Lp]
4
b}
Ny
i
I
0
(‘,\
—
n
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156114 1ines are the
T Tisochrones in the
- _;-:;%‘ggntj_nuous systen b N e N L
iDaghed lines are the

‘iscchrones in the
A qnwete system (T—‘O 5)

FigVB 3a. The isoehrones in the.
‘ A1 Koy ) plane
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screte and Tthne continuous

C. Comparison between the d
systems by minimum re isochrone s
(1) From Fig.3-3a and Fi:.3-3b, the regions for the discrete
nd the continuous isochrones are fairly close.
voly~on, while the con-
portion.;

isocrrones
The discrete isochrone is a convex
lsoctrone has nelther flat t nor corner
T, is set sgriellier and snmaller, then

tne limit as T -0,

tinuous 1
' the sampling pericd,
'111 coincide, in

If

e e

the discrete isochrone

Tith that of tie continuo isocizrone.

m has sraller area
sgme vlant

rete sy
the

(2) The isochrone in the disc
than tie iscchrone in the continuous case wit
Trnis means that for sone initial states,
tle discrete syster takes a long
Fig.3-2a,

transfer function.
sxarecle point 4 1
since point

the optimal control in
time to go to equilibrium. For s
the minimum time is different in the two systems.
is on the continuous isocirone of t*zz.ﬁ,

121 continuous

seconds to go to equilibrium using an o
Since point % is outside tie discrete lsochrone,
to equilibrium in L sampling periods. (In
nd, L sapl-
crete

]

control.
i ot go t©

this example, one sampling period equal 0.5 second

seconds). Point Z 1is inside the dis

and thus it can go to equilivrium in 5 sampl-

ing periods equal 2
screte control system
continuous

i1sockrone, Rg,
ing periocds. Therefore, using a dis
requires one sampling period longer th tis
control to reach equilibrium.
rence 9.

% For proof of these properties see refe
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(3) 4s illustrated on Fiz.3-2, for tie continuous control
system tiie optimal strategy 1s unique. linen the initial state
(?1,52) at the right-iand side of the switchiug curve, takes
the forecing function f=+1 to force the initial state (Eq,gé)
to the switcning curve, then apnliles f=-1, alonz the switch-
ing curve to go to eguilibrium. When the initial state (5,5)
at the left-hand side of the switching curve, tiie ovtimal
strategy is f=-1, tanen f=+1, For tie discrete control systen,
the optimal strategy is not unigue except on the boundary
states of the discrete isochirone. Thils has been shown on

chigpter 11, secilion 2.

(L) In t:e continuvous optimal control svstems, tie optimal
forcing function always hias 1ts absolute value as large as
vossible, say If=+1 or f=-1. But in the discrete case, the
forcing function is not always as larze as possible in ab-
solute value. The effective forcing functlion c¢an be f1=+1,
f,==1 or I,=%, where |§[<1 and & depends on the distance

from the initial state to the critical curve in the 1, ci-
rection. When the maxirmum forcing function applilies, the
initial state moves along the trajectory of the convinuous
contrel plane from tihe region R:'T to the region RE—1 in one
sampling period. This is shown on Fix.3-l from point A to
A', or from point C to C'. ihen the opitimal forecing function
is not the maximum value, such as state 37 or 35 in Fig, -k,
the initial state no longer moves along tne trajectory by
f=+1. 3y using 5q.(3-10) the new trajectory can be construct-

ed for £=§, where |gi<1. The initial state, 34 or S, will



riove along the trajectory for f =§ , such that B' can be

<

rescned in one sampling veriod.

A few exanples of the trajectories of the discrete

optimal control are illustrsted in PFiz.3-L.

(a) from initlal state & to &' to 41" %o 4™ to the origin by

the secuence of tihe forcing functions:+1, +1, -1, -1.
(b) From the initial shate C to C' %o 4" o A™ to t e oriszin

by the secuence of ithe forcins functions: +1, +0.4, -1,

-1.

(c) Prom tne initial state 3, fto B! to A" to A™ to =ie
origin by the secuence of the forcins functions: 0.8,

AR

(&) From tre initial state 32 to 3 Lo 4 o A™ to tie

- s

origin by tie secguence of thie foreing functions: +0.5,

+34

(5) From "The Maxirmal Principle’ of Pontryagin, for nti-

n

order syster, tize optimal continuons control requires o

e

i

fte
ct

ial state to go to

more then (n-1) switeciiingzs fronm an
equilibrium. Thus in the second-order systen, there is at
most one switching for the continuous opftinal control. For

. 4 \

the discrete optimal control syster, there are at nmost (n-1)

s
4

]

V2]

variations in the sequence of the forcinz functions.

This property was expressed in Zo.(2-21) or in se.{2-22).
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in investigation for different paraneters in the plant

. EAr R

N
e

and tie controller

The system under consideration after normalization can

be simplified as in Fig.2-2. The »nlant has transfer function

3(s) = —~l—~v , and the commuter(controller) has a fixed
s{s+a; :

] 11 = . B3 - b} =~

nodel L ____ ., PThe forcins functions are based on tite model
s(s+1) -

of the controller, If the varameter “a” in the »lant 1s equal

sponcing control

to one, the discrete isochrone and tie corresy &
trajectories are shown in Fig.3-li. The case when"a"ig not
i1l be investigated in this section.

equal To one wi

Frovm i.(2-5), the outpus of the system can be exvressed

c(t) = - f%’- X, = i (h-1)
1+a ! <

(-2}

as

. M a
c(t) = > i
1+a
initial condition in {ﬁi,ﬁq) plane,
<

Tet (§1,§E) be the i

(lL=2) intc Ic.{2-2}. (en

substitute 3q.{L-1),{L

4y = Be ™ 4 £, (126770 (14a7) /" (L-3)

- s '

Lo = Bym f1t/a 5 (a-1){1-e at)/a(1+a“;2 (li-ly)
From 2q.(L-3) P |
FRENTINCIIA i

t 1 _ ] .1 ‘ .

= - T (=57

t

|
i
|
E
-
n
»
ué
}
(&)

SJ
]
3
[}
-
1
-
=
+
o
[AN]
{u
~.
A
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i

#liminating © in Zo.{L-3) and (=L}, the trajectory in the

(

iq,xq) plane will be

el 7 slat) & ) X
Fary = - =11l + = - ( —é)
2 2 a2 §1-o a/1+a< ?1—0

Eq.(4~6) gives tre trajectories on the (K1,A?) plane betwesn
each sampling instants. For a gziven initial condition (21,§é)

e are dependent upon the

:3

the trajectories on the (4y,4,) pla
. 2

value of tire parameter g’ #dnen a=1, .g.{l.-6) will be idensi-

cal to zZg.(3-10).

From an arbitrary initial conditicn (?1,§§), calculate
£ .
the distance from (§ §5} to tne ecritical curve in tae r

direction, then tihe forcing functilon can be deternined. If

the time constant, a, of the vlant §(s) and the sampling
veriod T are given, tien by using £-.(L=-3) and (i-bL; sue

saripling Instants.

In order to compare tiie results to ountimsl trajectories
for different values of tlie parameter s}, a nunerical exam:le

is gilven below:

Given an arbitrary initial state (6.000, -0.525} in the
(£454p) plane and a sampling period T=0.5 second. Consider
three cases a=1.05, 1.00 ard 0.95. iepeated use of &qg.(L-3)
and Ig.(h-L) yield the trajectories and are nlotted in
Fig.i-1. B3ince the initial state (6, -0.525) 1s picked from

the region Lu, after L. sampling veriods, the trajectory of

a=1 goes to eguilibrium exactly. But the trajectories of



3k

a=1.05 and a=0.95 can not 7o to equilibrium exactly, ithoush

.

they are very close te the origin.

<

Using the same initial condition (&6, -0.625) and T=0.3

C"}

second, the trajectories are plotted in #ig.Li-2 for a=0.5,
0.7, 1.5, and 2.0. a:unen 3#1, none of %Shese trajectories is
an optimal trajectory. In comparison with tre PFig.li-1, 1t is
shown that for larger value of |a-1l, the trajectory will
take longer time to asoroch the origin. Hurtier rwre, for

a>1, the trajectories approcih tire origin directly, for a<1,

4 corpari-

'—J-
|.-n.
3
Q
jote
|-$
e
¥
ch
Q
o
)
’NJ
>
L)

the trajectories avporoch the or

sor in the time domain is siown in Fi. -3,

B. Calibration of the varameter i tihe controller

The situation investizated in tne last section is that
the olant &(s) has the transfer function ETé?ET , viile the
S+a |

controller{computer) has the fixed model of the transfer

. 1 . . . .
funection anen a=1 the control is optiral, but

when a#1, the control is far frow optimal.

If the time constant of the plant varies from the value

1 to the value a', the model of the controller must be call-

brated from 1 te 1 , Tois
s{s+1) s(s+at )

calculated by measuring the state variables in tiie actual

calibration can be

P g
SVYS8Tel.

Starting from the initial state (%§,,%), after one sarnl-

ing period, it will go to the state (.y,4) Lf a=t. Xow,
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from measurment of the state variavles, su-.ose the state is

(K{,E;). “hils means thnat tie plant has a different parameter,
4

al'. From Hg.(i-5)

1 .’L,i -0 1 f‘—;{ ~-b?
t = - -5 1in -g—-:.B- = - ;}ll’l “§1_91 U—i—“?/
or
al in [(ﬁ'-b’)/(? -bt)]
= 1 , 1 (L-8)
a In ((£-b )/(8 -b)]
where

(=]

o~

b= f1(1+a2)7/ad, bt = f1(1+at2)§/a:?

I

From 3c.(L~8), =2 suitable model for uze in the controller

can be determined te get an optimal control.

b4

To illustrate the difference in critical curves for

various values of "a", two sets of R!' witi 2=1.5 aadé a=0.5

are plotted on the (X{;,45) plane as shown in Fioldu-ly.
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COMCOLT3I0N

N

s thes

=]
j
jte

1 g nas studied the problewn of the tirme ontinal

strategy in tie discrete case for a saturating sampled-data

1

control system which has a linear »lant 3(s)= sTs¥aT
S+

bome
investigation have been macde in thiis study:

(1) Comparison of the minimum ti~e isochrones betwesn the
discrete and the continuous control systems with the sawe
plant transfer funcition. ™ rexions for the discrete isoch-
rons and the contlnuocus isocirone are fairly close. In the
1init as tie sampling period annroches zero, the discrete
isocirone will coincide with that of the continuous case.
(2) The discrete control will talie at most one more sampling
reriod than ti:e continuous syste to go to ecullibriun.

{3} In the continuous control syster:, the optimal strategy
is unigue. But for the discrete conirol systen, the optimal
strategy 1s not unigue except on tie boundary states of the
region R __.
{(lL}) In the continuous case, thie optimal forcing function

always nas its absolube value as large as possible, say

=+1, or f=-1. 3But in the discrete case, the forcing func-

h

tion is not always as large as nossible in absolute value.
The elfective forcing function can be f=+1, f=-1 or f=%,
where -1<§ < +1.

(5) ¥ron Pontryagin's rmaximal principle, in the second-order

system, only one switching is reguired to get optimal control.

o]

There 1s at most one sign variation for the discrete optimal



N

(6) If the plant has the time constant "a", while tie con-
troiier in the Tfeedback loop nas toe control model ~7l~r~ .
s{s+b)
“he optirnal conLLOI can be obtained only when a=b, I there
is some variation of the parameter in the opliant, the corres-
vonding calivrations should be made by the controller to get

the optinal control,.

The study presented in this thesis can be extended in

ct
Py
[v]
)
o
Jod
=
(o]

wing respects:

(1) The systenm under considerat’on of this study is a second-

order swysteri, he plant had a finite pole a2t tThe origin, that

means thie systen contzined an intezrator. IT could be extend-

ed Lo thie case for the pla Has tweo distincet nezative real

voles, or a pair of comglex pcoles.

(2) e computer in the feedbacliz loop was considered as an
ideal case; it didn't take a finite time to calculate the
foreing function. In the practical case, it takes a finite
time for computation at the samnling instant. sh:at is tihe

effect of this time on the system resvonse?

(3) Trhe input to the system was assumed tc be zero at all

time. It could be investigated for the case wWhnen a nonzero

applied to the system.

e
]

o]
jor
ct
[EN
0]
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APPZHDIX I

. i
Data for Construction of Iscochrones for a FPlant, G(s)=gr§:T7.

For t¥ = 1,0

bty 4 Zq P 55 5, 5, g
0 0 0 1.0 +1,0 ~2al15 =160 +2.,15
O.L‘-O -Ooh- O.? 0.6 +O.2 +O-‘}2 —0'2 -0012

0.55  =0.55 1,05 0.45  -0.1  40.85  +0.1 -G.83
0.6l -0.6lL 1.30 0.36 -0.23 +1.25 +0.28 -1.25

0.68 -0.68 1.1 0.32 =0.36 +#1.it +0.36  ~1.041

0.836 -u.86 2.0 0.1 -0.72 +2.09  +0.72 -2.09
1.00 -1.0 2.4l 0 -1.0 +ou 4 #1L0 -2.hk

2 2 1 1 2 : x
0 Q0 0 1.5 +1.5 -.93 -1.5 +1.9
O.L -0 0.70 1.1 +0.7 -0.71 -0.7 +0.71
0.55  =0.55 1.05 0.95  +0.L +00. 07 -0.h ~0.u47
0.68  =1.65 1.0 0.82  +0.1L 410 -0.1L  -1.4

0.86 -0.86 2.00 0.6 =0.,22 +2.533  +0.22 =2.33
1.00  =1.00 2. 0.50  =0.30  +3.05  +0.50 -3.05
1.10 -1.10 2.82 0.40 -0.70  +3.30 +0.70 ~3.580
1.22 =1.22 3.45 0.28  -0.94  +4.15 +0.,0lL . =13

G

!
=
Q

1.33 =1.33 3.95 0.17 =1.16  +i.L0  +1.
1.2 -1.h42 L. hE 0.03  ~1.3L .70 +1.33 =L.70
1.6 =1.16 .70 0.0 -1.h2  +#4.85 +1.03 -L.85
1.50 =1.50 L .81 0 ~1.5 Hi.9 +1.50 -L.93



Data for constructlon of

=0.l

=Ge55
-0,68
-0,36
=100
-1.10
-1.156
-1422
=123
=133
-1.38
-1.412
-1.46

"200

2,00
2uip}
2.82
3.15
3elt5
3,70
3495
Le.20
Lali5
Le70

G e 01

continuous i

0.90

048l
0.73
0.72
0.67
0.62
0.58
0,54

L,

2.'\.

<0

- o
*
o~
- 1=

®
n
(5]

~0.5
+0,3

4'0.5

g
LW

=7 1

+9,01
+1 450
+0410
=1 ei11
=3,25
-l 1
~lt+85
=5.50
~5090
=6610
=5 450
-6.70
~6450
=7.00
-9,01

+0,90
-0.63

"Oag1
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