

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 1

Case Study on Testing of Web-Based Application:
Del’s Students Information System

Arnaldo Marulitua Sinaga
Del Institute of Technology, North Sumatera, Indonesia.

aldo@del.ac.id

Abstract—Software Testing is an important process to assure
the quality of software including web-based application. The
aim of testing is to detect all failures to ensure that the software
is built in accordance with its specifications. There are two
methods of testing, such as the white box and the black box
testing. White box testing is done with the approach to the
program code, while black box testing is done without
referring to the source code, but to the output of the resulting
program. User interface testing is the type of testing that is
usually conducted on a web-based application. In this research,
functional and user interface testing were conducted into Del’s
Student Information System. Testing techniques used in this
research was a Simple Functional Acceptance Test (FAST).
This technique was done by testing each function and checking
each component of the user interface. Selenium IDE was used
to execute test cases resulting in the implementation. From all
steps carried out in this research, it can be concluded that the
functional testing can be carried out in line with the testing of
the user interface. A testing scenario for web-based application
has been proposed and experimentally applied into an
application under testing.

Index Terms—Web Testing; Functional Testing; UI Testing;

Functional Acceptance Simple Test (FAST).

I. INTRODUCTION

Nowadays, the growth of Web-based applications
development is increasing remarkably [1]. Web-based
applications have many advantages compared to desktop-
based applications, such as the accessibility of web-based
applications is broader through the availability of network
connection. This phenomenon has also increased the
complexity of the requirements of web-based applications
[2]. Therefore, a web-based application developer needs to
develop a web-based application using a systematic
approach in order to obtain a good quality web-based
application [1]. A typical operation of a web component
generates HTML pages by writing HTML content in the
tags [3]. These pages are returned to the user and displayed
through a browser [4]. Along with the increase of the use
and development of web-based applications, the need for
quality assurance of web-based applications is also
increasing. Therefore, software testing becomes an
important aspect in the development of an application.

Software testing is an activity that is conducted to ensure
that the software is built in accordance with the
specifications, in which all potential failures have been
detected and the corresponding faults have been fixed [4, 5].
It is intended to detect all failures in the software [6]. Failure
is indicated when the actual output is different from the
expected one. In software testing, test scenario is needed to
identify the flow of test case execution process on the

application. Scenarios are stories that work through complex
problems in testing that is defined hypothetically [7]. One
important activity in a testing process is to design test cases
[8]. Test case consists of the values of the input (test data),
the expected output (produced by the test oracle), and the
purpose of testing [8]. Software testing requires test cases
that can be generated either manually or automatically.

This research was conducted using a case study on web-
based applications testing. The types of testing applied were
functional and user interface testing. The performed testing
method was applied into an application that is still in the
development stage. Applications used as the object under
test are Del’s Dormitory and Student Information System.
This application was used because this application was on
the latest stage of implementation and has never been tested
yet.
The purpose of the implementation of this research is to
propose a test scenario that can be used on a web-based
application testing and the proposed method is
experimentally examined by applying it to the object under
testing. In addition, this research will also prove whether
functional testing and user interface testing can be
performed simultaneously on a web-based application
testing.

II. WEB TESTING

Web testing is a type of software testing that focuses on

web application software specification [2]. Web-based
application is different from other traditional software in the
process of operation because the web application is
heterogeneous and autonomous [1]. Thus, the web server
must have the ability to interact with users and handle
transactions. It can be concluded that the web testing is more
difficult than traditional software testing for web application
with a more sophisticated functionality, in terms of
publications, search and indexing [1]. By executing the test
scenario, the conduct the web testing is to test that the web
application has been run in accordance with the
predetermined specifications.

In the book Testing Applications on the Web [2], it is
explained that there are several types of testing frequently
implemented into the web application [2], as follows:
• User interface testing: testing the web application

interface to ensure that the web interface of the
application is in accordance with predetermined
specifications.

• Functional testing: testing the function that is
executed when the web application operates to ensure
that all functional requirements can be run based on
specifications.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229272422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering	

2 e-ISSN: 2289-8131 Vol. 9 No. 2-4

• Testing Database: testing the validity of data and data
integrity to ensure that data are not corrupted and
implemented as data design.

• Installation Testing: testing installation and
Uninstallation procedures of the program in the
server and client side to ensure that the installation of
the application can be run properly.

• Configuration and compatibility testing: testing on
the configuration of the operating system, web
browser, system hardware and supporting software to
detect functional errors in the application.

• Performance, load and stress testing: testing on the
performance of web applications by measuring how
long the data processing system respond to request
and meet the requirement.

In this research, functional and user interface testing were
carried out on Del’s Dormitory and Student Information
System.

Functional testing technique with simple acceptance test
(FAST) is a technique that runs the smallest function for
every command from a program. This testing technique is
done to ensure that every input and navigation controls web
application can run as had been expected. The following are
the features often tested in testing techniques FAST:
• Links, such as the contents of the selected links,

thumbnail links, link bitmap and image links
• Basic controls, such as forward and backward

navigation, zoom in and zoom out, other UI controls,
and commands such as add, modify, and delete
objects.

• Other important features such as log in, log out, email
notifications, search, and handling forgotten
passwords.

Some errors may be found in the testing process are as
follows:
• The link damage
• The image missing
• The link fault on the link
• The picture error
• Link is true, but the contents of the link has been

expired
• An error in sorting and calculation of the transaction
• Content and writing automated email improper

retaliation
• No response from the server
• Inability to validate a user's email address
The development of Internet technology expands the use

of the web user interface. A Web User Interface (WUI) is a
GUI in a hierarchical structure that contains frames and
pages, with geometric and temporal constraints between
pages [9]. WUI provides a graphical front-end for a software
consisting of multiple programs, the application of different
languages, executed on multiple platforms simultaneously,
and all are connected via the Internet [9].

Just like GUI, input in WUI occurs in the form of events
and graphic. WUI has all the characteristics of the GUI,
which include event driven inputs that change the status of
WUI, graphical output, hierarchical structure and graphic
objects with their property. There are three approaches in
WUI testing: The automated, semi-automated and manual
approach [9].

 Automated approach makes a clone of a web browser to
generate requests. The response of each request is analyzed

and it determines the truth in the context of a single request.
Disadvantage of this approach is the lack of perspective of
the tester of user interaction on a web-based application and
collection of effects that occur in any sequence of events.
Semi-Automated approach tests user interaction that
designer noted in the WUI, edits captured script to generate
a visible difference in test cases and executes automatically
the WUI. But the capture/replay tools have limitations to
examine the output. Overall coverage of test cases depends
on the interaction of the test designer with the WUI.
Manual approach generates more realistic test cases. Human
tester interacts directly with the WUI. In testing the WUI,
human tester tries to find errors.

There are several types of user interface elements on web-
based applications that are often tested in testing the user
interface, as follows [2]:
• Instructional and technical information - the accuracy

of information and instruction.
• Fonts - consistency font style, text legibility, the

resulting visual clutter of font faces in a document as
well as the availability of font faces at the targeted
platform.

• Color - The color of the background, foreground and
font, the improper color can cause negative effects
and confusion.

• Border - a three-dimensional effect in the command
button can be effective visual requirement for the
user.

• Image - suitability background, label legibility, button
legibility, the suitability of the size of the images.

• Frame - some earlier browsers cannot display frames
and settings.

• Table - the nested tables (tables within tables) can
affect the appearance of the browser that depends on
the display settings and browser type.

There are some conventional software testing stages for
the GUI, such as [9]:

1. Determine the object to be tested. In this phase, the
tester uses the coverage criteria to determine the
object to be tested. Coverage criteria is a set of rules
used to determine the object to be tested.

2. Generate test input. In this phase, the tester generates
test inputs for testing. Test input can consist of events
such as mouse clicks, menu selection and input from
the keyboard.

3. Generate expected output. After determining the test
input, test oracle generates expected output. Test
oracle is used to check whether the software runs well
at the time of testing. Test oracle is the mechanism to
determine that the actual output of the software
together with the expected output. In the GUI,
expected outputs include a screen snapshot, the
position and the title of the windows.

4. Execute test cases and verify output. At this stage,
test case execution on the software is being tested.
Then, the actual output is compared with the expected
output that is obtained from a test oracle.

5. Ensure that the GUI is adequately tested. After all the
test cases are executed on the applied software, the
software is analyzed to examine the parts tested. In
the GUI, the analysis is needed to determine the
status of all events that related to that GUI.

Case Study on Testing of Web-Based Application: Del’s Students Information System

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 3

After testing, if there are any failures in the software, it
will be fixed or modified. Modifications to the software
being tested, lead to regression testing. Regression testing is
the re-execution of all or some subsets of test suite [9].

III. METHODOLOGY

A. Case Study
In this research, Del’s Dormitory and Student Information

System were used as the application under test. This system
consisted of 34 web pages for 13 main functions [10]. Each
function had criteria that were used as the basis to generate
test cases. The total amount of criteria for all functions was
71. In order to avoid oracle problem, mutants were manually
generated. Mutants were generated by changing the code in
a file in the application, so that it would change the behavior
of a function in the application. The changed files
(hereinafter referred to mutant files) were stored in the
directory "Mutants", in accordance with the functions and
criteria so that the mutant was only valid for one criteria in 1
function.
	

B. Tools
In this experiment, Selenium IDE was the tool to apply

testing. Selenium IDE is a tool that can be used to test the
functionality and user interface on web-based applications
[11]. In addition to Selenium IDE, this experiment also used
a simple comparison program called FileComparing.java
created in the experiment with the aim to facilitate the tester
in testing a web-based application by comparing the actual
and expected output.

FileComparing.java is the source code that was created
with the Java programming language and served to help the
tester find a failure during testing. This program would
examine 2 pieces of output files in HTML format with the
same functions and criteria. Furthermore, the program
would produce a report if there was a failure on the test or
not. If failure was detected, then there was existing fault that
need to be fixed. Determining the detected failure in more
detail to the level GUI properties, can be seen in Selenium
Log. This program would only stop if the matching process
has been completed and no failure found or when any failure
was detected in the first time. This was in accordance with
the principle of the test itself, which directly fix a fault that
produce detected failure before detecting another failure. It
was possible that a failure was the result of another failure.
Comparisons were made into two types of program output,
namely the expected and the actual output file. For the test
with the mutant, there should be at least one failure detected,
since there was a fault in the mutant. The testing was correct
if the execution of mutant resulting one or more failure/s,
otherwise the testing was not valid. This was also to prove
the quality of generated test cases to "kill" the mutants. The
program was scanned based on the directory of "Output Test
Case", "Oracle Scripts", and "Output Mutants" which have
the same sub-directory hierarchy (Functions and Criteria).
Comparisons would be made starting from the first function
of the directory and the first criterion to all criteria (m) and
function/s (n), where m and n were greater or equal to 1.
The value of m and n were obtained from the argument
when the program was being executed.

C. Experiment Process
The steps of the experiment are as follows:

1. Make the testing criteria for each function tested on
object under test.

2. Create an oracle GUI and scripts using Selenium tool.
3. Create a test case for each criterion by using services

provided by Selenium IDE.
4. Create mutant manually by injecting a fault into the

program.
5. Execute the test cases and mutants that have been

created using Selenium tool.
6. Save the output resulting from the execution of the

test case.
7. Compare the expected and actual result by using a

program FileComparing.java.
8. If a failure is detected, the program checks the

Selenium Log, then go back to step c.
9. If the failure is not found, the test will proceed to

another test case.
The implementation phase of the experiment was divided

into four parts, namely: the creation of criteria for each
function, test case using Selenium, execution of test cases
using Selenium and checking whether the test success or
fail. Examination of testing was performed by the program
FileComparing.java and Selenium tool automatically.

IV. RESULTS AND DISCUSSION

A. Experiment results
The experiment on testing object under test was done by

executing the test cases for functional testing and user
interface simultaneously. In the implementation of this
experiment, there were 11 functions being tested along with
each position type of user interface elements on each of
output pages. There were seven user interface components
involved in this experiment: image, text, link, input text,
input password, input checkbox, and input submit. All
oracles for each of test cases have been generated by using
Selenium IDE. These oracles were used as the expected
output.

Figure 1 shows all the executed commands. Line/s with
green background indicate/s that the output was identical
with the expected output, hence the execution of the
corresponding command has not detected any failures.
Meanwhile, failure detection was indicated by the command
(line) with red background. As shown in Figure 1, all
executed commands produce the same output with the
expected one, hence the executed test case did not detect any
failures.

Figure 1 Execution result without any failure

Journal of Telecommunication, Electronic and Computer Engineering	

4 e-ISSN: 2289-8131 Vol. 9 No. 2-4

 Testing log of the execution of test case in Figure 1 is
shown in Figure 2. It contains detailed information about the
test results.

Figure 2: Testing log without failure

The result of the execution of the same test case with the
one in Figure 1 into a mutant is presented in Figure 3.

Figure 3: Execution result with two failures

The use of mutant contains two faults. The first fault was
injected by changing the source image as indicated in the
second line of Figure 1. The second fault was injected by
deleting the title text as in line eight of Figure 1. These two
faults have been discovered properly:They are indicated by
the red background of line 2 and 8 in Figure 3. Therefore,
test case has successfully detected the failure.

Testing log of the execution of test case in Figure 3 is
shown in Figure 4. It contains detailed information about the
test results. The information regarding line 2 and 8 shows
that the faults on that two lines have been discovered.

Figure 4: Testing log with two failures

B. Discussion
Based on the results of the experiment, it has been found

that the proposed method of web-based application testing
has run as expected. The implementation of WUI/GUI
approach was able to ensure the validity of the property
values of GUI elements on each page. This was indicated by
the execution of test cases, in which the obtained actual
output was in accordance with the expected output that has
been defined in the oracle before the testing execution. The
results that were shown on the Selenium IDE tables indicate
that the testing has been running as expected. The green
highlighted lines on the table indicate the “pass” execution
(no failure detection), whereas red highlighted lines on the
table indicate the “fail” execution (failure detection).

From all the test cases execution into original and mutants
of object under test, it was found that the testing has been
running as expected. All injected faults can be detected
properly. The example of the execution presented in
previous section has indicated this finding.

Through this experiment, it was found that the functional
testing with validation approach along with the user
interface testing run properly. The functional testing is
conducted by using the properties’ value of each element on
the web page. However, in this experiment, the test on
externally generated files cannot be processed yet.

Each of the possibilities criteria established by using
naming specification for each criterion. For example, the
functions of authentication are the criteria
FieldUsernameNPasswordBlank. It indicates criteria for
blank value of field username and password. All criteria
have been implemented in the experiments and they are all
working as expected.

V. CONCLUSION

The defined test scenario in this research has been

implemented into a web-based application, Del’s Dormitory
and Student Information Systems. Functional testing on
web-based applications has been conducted simultaneously
with the testing of the user interface of the web-based
application. The experiment has proved that the proposed
testing has been running properly. All injected faults have
been discovered. The used tools provide information
regarding this result.

However, this research is needed to be extended by
improving test cases generation. Involving criteria and
coverage information may improve the capability of test
suite. This research that applied manually generated mutant,
hence become a threat to the validity of the experiment.
Therefore, it is important to apply real faults. The more
reliable test instrumentation should improve the validity of
the experiment. Applying more objects under test is also
needed in future research.

ACKNOWLEDGEMENT

We are grateful for Del Institute of Technology support to

this research.

REFERENCES

[1] Jiang Jixiang, Xu Baowen, and Xu Lei. 2005. Testing Web

Applications Focusing on Their Specialties
[2] Nguyen, H. Q. 2001. Testing Applications on the Web. Robert Ipsen.

John Wiley & Sons.

Case Study on Testing of Web-Based Application: Del’s Students Information System

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 5

[3] Halfond G.J., William. 2008. Web Application Modeling for Testing
and Analysis.

[4] Pressman, Roger S. 2001. Software Engineering a Practitioner's
Approach.

[5] Gelprin D. and Hetzel B. 1988.The Growth of Software Testing.
Communication ACM. 31(6): 687-695.

[6] Myers G. 1979. The Art of Software Testing 2nd Edition. John Wiley
& Sons

[7] Cem Kaner. An introduction to scenario testing, 2003.
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf .

[8] Lee Copeland. 2003. A Practitioner's Guide to Software Test Design.
Artech House, Inc., Norwood, MA, USA.

[9] Memon, Atif M. 2001. A Comprehensive Framework For Testing
Graphical User Interfaces.

[10] ITD-SDI. 2013. Business Requirement Specification of Del’s
Dormitory and Student Information System

[11] Selenium Documentation, http://docs.seleniumhq.org/docs/, accessed
on 17 December 2013

