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ABSTRACT 

The purpose of this study was to investigate and recommend 

various methods instrumental in finding the roots of a poly­

nomial p{x) = 0. Many different methods are present today, 

and each has its advantages and disadvantages. 

Through thorough investigation, the author has ascertained 

the key methods to be the method of Bisection, the Newton­

Raphson method~ and the Bairstow method. Special support in 

the form of algebraic theorems on the locations and kind of 

roots are extremely helpful. This combination of theorems and 

methods provides assurance, speed, and the ability to obtain 

complex roots. 

The Bisnewbar method developed by this author combines 

the above methods and the algebraic theorems to provide a 

method capable of returning all real and complex roots. 
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INTRODUCTION 

One of the oldest problems plaguing math~maticians and 

scientists today is th~ age-old problem of finding the zeroes 

(roots) of polynomial equations. The fact that there are so 

many methods from which to choose indicates the fact that no 

completely satisfactory method exists. Each person h~s his 

own favorite method, or methods, but nevertheless cases arise 

in which one has to resort to other methods when his fails to 

obtain the desired solution. 

Upon encountering the polynomial root-finding problem, 

mathematicians discovered a need for basic information on 

the properties and locations of the roots. Since many methods 

used today require starting values the above information could 

be quite helpful in obtaining these. Basic algebraic theorems 

were developed- such as Descartes and Sturm which allow the 

analyst information on the number, kind, and location of real 

roots. Using these theorems, one may obtain needed support 

for finding the roots of a polynomial. 

There are three basic problems in which established al­

gebraic theorems have helped to a great extent in polynomial 

solutions. The first concerns the approximation of one root 

and its solution. Here we may use the common method of graph­

ing to approximate the root. Once an approximation is made, 

we may use numerical methods to improve our approximation. 

Secondly, occurs the problem of determining approximatio~ for 

all the roots. This may effectively be accomplished by repeated 
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use of algebraic theorems or by use of graphical methods. 

The first two problems differ in that possibly only one root 

is desired and further computation would lead to a waste of 

valuable computer time. The third problem is one of determin­

ing the number of roots in a certain vicinity. Again we can 

rely on special algebraic theorems to aid in this procedure. 

Direct and iterative methods have been developed to solve 

the problem of polynomial root-finding, but it is generally 

agreed that iterative methods obtain the fastest and best re­

sults. Even so, there exists the problem of convergence. 

Almost every method has certain conditions which, if the poly­

nomial meets these conditions, will cause the process to di­

verge. Hence, the desired root will never be obtained. There­

fore, it is sometimes a painstaking process to check the 

polynomial for convergence conditions, and often times this 

check involves much computation. 

In summary, we conclude that although special theorems 

have helped us in the solution of polynomials, many problems 

are still encountered. Once the initial approximation is 

obtained, a method must be selected which will converge to 

the root or roots desired and will give an accurate solution. 

As mentioned above, these problems are the heart of the so-

1 ution of polynomial equations and must be overcome before 

a true solution may be obtained. 

It is the goal of this author to investigate many 

methods of polynomial root-finding. Books could be written 

solely on all the different methods, therefore, the author 
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has attempted to choose those methods which are either highly 

accepted now or show promise for the future. Some of the 

methods considered will be methods that have been used for a 

number of years, while others may be relatively new to the 

field. 

Special investigations will be made in the area of con­

vergence. Many methods will be compared as to time of con­

vergence, number of iterations, etc. An internal timer 

common to the IBM System/360 will provide great assistance 

in this endeavor. 

Attempts will be made to combine certain methods in 

hopes that a method can be obtained that will converge to 

all the real roots of a polynomial equation. 

The author feels the following two quotes by Hamming [l] 

represent the baiic problems of polynomial root-finding: 

(1) 11 
•••••••••• the fancier the method and the better it is 

supposed to be, the worse it can behave when things go wrong 

for some functions; it may, in fact, be worse, than simpler 

methods and quite likely is more vulnerable to noise. 11 

( 2 } 11 
• • • • • • • • • • i t i s a n a r t t o i s o 1 a t e t h e v a r i o u s z e r o e s.11 
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REVIEW OF LITERATURE 

The area of polynomial root-finding is not only an old 

problem, but is probably the oldest problem still existing in 

the field of mathematics. Much work and research has been 

devoted to the area, but as of this date no "always-best" 

method for solving 

has been discovered. Many methods exist, but each has its 

disadvantages. 

A sufficient study _into the area of polynomial solutions 

would not be complete without a nodding acquaintance with the 

algebraic theorems related to this field. These theorems 

provide the lifeline to the proper analysis of root locations 

and types of roots. A thorough knowledge of the following 

theorems can help us in many ways to obtain valuable infor­

mation on the roots of p{x). 

Theorem 1. If the coefficients in the polynomial equation 
·rzx;--;-Oa re re a 1 , a n d i f a a n d b a r e re a 1 n um be rs s u c h t h a t 
p(a) and p(b) have opposite signs, then the equation has at 
least one real root between a and b. There is, in fact, an 
odd number of roots in the interval (a,b) if a k-fold root 
is counted k times. 

Theorem 2. Let p{x) = 0 be a polynomial equation with real 
coeff1C:1ents which is arranged in descending powers of x. 
The number of positive roots of the equation is either equal 
to the number of variations of sign presented by the coeffic­
ients of p(x) or less than the number of variations by a posi­
tive even integer. Here a root of multiplicity m is to be 
counted as m roots. In particular, there is exactly one posi­
tive root if the coefficients present only one variation of 
sign. 
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Theorem 3. Let p(x) = 0 be an algebraic equation with real 
coefficients and without multiple roots. If a and b are real 
numbers, a<b, and neither a root of the given equation, then 
the number of real roots of p(x) = 0 between a and b is equal 
to V(a) - V(b), where V(a) and V(b) denote variations in sign. 

Almost every method in existence today requires some 

kind of an initial approximation to the root(s). Some methods 

require a quite good initial approximation while in others 
\ 

the matter is not so critical. In some cases, rare but 

possible, the actual data giving rise to an equation will 

serve to fix a root as lying between two fairly narrow limits, 

and this fact may eliminate the necessity of using any special 

device for obtaining an approximation to the root. Generally 

speaking, however, the best method for locating an initial 

approximation to a root is to plot the function y = p(x), 

where p(x) is a polynomial of the form a0 + a1 x + a2 x2 + 

... +a xn~ and determine approximately the point at which 
n 

the piot crosses the x axis. Another method similar to the 

one mentioned above is to write the polynomial in the form 

p1(x) = p2{x), where p(x) = ~ (x) - p2(x) and plot as two 

diff~rent functions y 1 = p1(x) and y2 = p2(x). In plotting 

these functions, it is a good idea to determine as much of 

the following information as possible: (1) the behavior of 

the function as x~- 00 and as x~ro, (2) the value of p(x) for 

those values of x which facilitate a quick determination of 

p(x), (usually x = 0 and x = ± 1 are satisfactory for this 

purpose), (3) the value(s) for which p(x) becomes infinite, 

(4) the intercept of the functions on the x and y axis. 
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Usually enough of the above information is available to sketch 

a rough graph of the function and thereby to determine the 

approximate location of each of the real roots. By this 

method we may in effect isolate the roots by separating them 

into different regions. Accuracy can be increased by evalu­

ating additional points near the roots and may help to iso­

late two or more adjacent roots. 

There are two basic techniques used in the solution of 

polyf;omial equations. The first method is considered the 

direct approach to the solution. An example of a direct 

method would be the solution of a quadratic equation through. 

use of the quadratic formula. A direct method is said to be 

one which will produce an exact answer after a finite number 

of o~erations. For equations of degree two, three, and four 

there are special methods to achieve the roots of a polynomial, 

but for polynomials of degree greater than four; there ex-

ists r.o special (direct) method. Direct methods do possess 

one major disadvantage in that they may not be the most de­

sirable for computer calculations because of round-off and 

propagation errors which often compound themselves. Propaga­

tion errors are those errors resulting from the subsequent 

growth of generated errors. 

The second and most widely used technique is the itera­

tive approach. This method usually consists of making an in­

itial approximation to a root(s) and using one of several 

iterative techniques to converge to the desired root(s). 

Grove [2] feels that a useful iterative technique should 
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possess the following requirements: (1) a means of making a 

satisfactory first guess; (in many applications physical or 

other consideration may provide this gue$S), (2) a means of 

systematically improving on the previous approximation, (3) 

a criterion or choice of several criteria for stopping the 

iteration when sufficient accuracy has been obtained. 
I 
\ Iterative techniques are extremely useful in programm-

ing digital computers for two important reasons: (1) the 

use of the same set of instructions repetitively saves space 

in the computer's memory, (2) the round-off errors made are 

minimized, whereas in direct methods they compound themselves. 

We might summarize the use of the iterative technique 

into two parts, the first being the survey where the general 

characteristics of the system are investigated and approxi­

mate locations of roots are noted, the second part being that 

of refinement; that is, the root(s) is found to the desired 

degree of accuracy. 

It is of general agreement that iterative techniques are 

the best tools for solving polynomial equations. 

It is possible to obtain one root to a desired degree 

of accuracy and factor this known root from the polynomial 

leaving a degree of n - 1. Once the polynomial has been 

reduced to degree four or less, direct methods of solution 

may be utilized. 

A technical definition of an iterative technique given 

by Booth [3] is as follows: If x0 is an approximation to the 

solution of p(x) = 0, the iterative process enables a quantity 
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x1 to be calculated by means of some relation: x1 ~ f(x 0) in 

such a manner that x1 is a closer approximation to the re­

quired solution than was x0 . If x0 differs from the true 

root by a small quantity of order (E), say, then the iterative~ 

process x1 = f(x 0 ) is said to be nth order if the error in x
1 

is of order (En). Primarily, the best iterative processes are 

second order; third and higher order processes exist 'and can 

always be constructed from those of lower order, but often 

they involve greater total computing labor for a given final 

accuracy than those of second order. 

Hartree [4] offers the following ideas on iterative pro-

cedures. In many cases our iteration is accomplished in the 

form x = f(x); where xn+l = f(.xn). If to the degree of 

numerical accuracy to which the work is carried out, x . 1=x , n ·r n 

then this value of xn+l is a solution of the equation to 

that degree of accuracy. Let x = X be a solution of the 

equation and let xn = ! + En so that En is the error in x . n 

An important feature of an iterative method is the way in 

which this error varies with the number n of repetitions of 

the iterative process. This can be eximined by expanding 

the right hand side of xn+l = f(xn) in a Taylor's series. 

Then since x = X satisfies 

where 

n +a En n 

ak = f(k) (x)/k! If a1 + 0 then the errors En of 
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results of successive repetitions of the iterative process 

are ultimately related by £n+l = a1e:n' £n+m = _a 1mEn; in order 

that the process should converge, la 1 I = If' (x) I must be less 

than 1, and the magnitude of the error then decreases expon­

entially with n increa~ing. This means that the number of 

additional correct s~gnificant figures obtained from each 
\ 

repetition of such a process (or, more often, the number of 

repetitions required to obtain each new correct significant 

figure) is the same, however many figures have been obtained. 

Such a process is called "first-order. 11 But if a1 = 0, 

a2 + 0, in xn = X + En' then the successive errors £n are 
2 · 2m 

ultimately related by £n+l = a 2En or a 2En+m = (a 2e:n) , 

h 1/2 f "(x). w ere a2 = The number of correct significant 

figures is approximately doubled for each repetition of the 

iterative process, so that the better the approximation of 

x to X, the easier it is to improve it further. Such a 
n . 

process is called "second-order," and once a fair approxi-

mation to x = X has been attained, a second order process is 

greatly preferred over a first order one; but it must be 

started from an approximation good enough to insure that 

la2E:ol<l. 

If a 1 = 0, a2 = 0, a3 t 0 then the successive errors 
3 ~ 

e:n are ultimately related by cn+l = a2£n or a3 -En+m = 
~ 3m 

(a 3 En) ; such a process is called "third-order." The for-

mula for a third order process is usually more complicated 

than that for a second-order process for the same equation. 
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The convergence for a second-order process is already so fast 

once a good approximation has been obtained that the advant­

age of still quicker convergence obtainable from a third order 

process may be more than offset by the more complicated for­

mulae which have to be evaluated for each repetition of the 

iterative process. Third-order processes are not used much 

in practice. Second-order processes, however, are wi~ely 

used. 

Let us now consider the general problems of convergence 

and divergence. Convergence or divergence usually depends 

upon the particular form in which x = f(x) is expressed. 

In order to see why this is so, Hildebrand [5] suggests 

that, sine~ f(a) =a, zk+l = f(zk) implies the relation 

a-zk+l = f(a) - f(zk) = (a-zk)f(~k)' where ~k lies between 

zk· and a, under the assumption that f(x) possesses a con­

tinuous derivative over that range. If the iteration con-

verges so that zk ~ a as k~ 00 , then, for sufficiently large 

k, we must have f 1 (~k)~f 1 (a), and hence a-zk::A[f'(a)]k, 

where A is a constant, and this deviation tends to zero as k 

increases only if jf'(a)l<l. Thus it appears that, in order 

for the iteration to converge to x = a, it is necessary that 

If 1 (x) I <l in the neighborhood of x = a. 

If we here define the convergence factor pk as the 

ratio of the error in zk+l to the error in_zk, it follows 

that if zk is near a, then pk;:;f'(cd. Unless jf'(a)l:_l, a 

small error in zk is increased in magnitude by the iteration, 
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and we say that the iteration is then asymptotically unstable 

at a. The number f'(a) may be called the asymptotic conver­

gence factor. 

If the initial approximation is sufficiently near a, 

and if the iteration is asymptotically stable at a[so that 

If' (a)l<l], the sequence of.iterates will indeed converge to 
\ 

a in such a way that ultimately the successive approx1mations 

tend toward a from one direction if O<f'(a)<l, and oscillate 

about a with decreasing amplitude if -l<f' (a)<O. 

The next several sections will be detailed discussions 

of many of the methods being used today. A few of the newer 

methods will also be discussed. 

METHOD OF BISECTION 

Pennington [6] presents some of the following ideas on 

the method .of Bisection. This method evolves from the follow-

ing theorem: Suppose a continuous function p(x) is negative 

at x = a and positive at x = b, then there is at least one 

root between a and b. Calculation is initialized by the 

evaluating of p[(a+b)/2], the value of the function halfway 

between a and b. If this is zero, we have the root. If it 

is negative, the root is between that point and a. Thus 

either we have the root or we have it bracketed within an 

interval half as large as the previous one. This process can 

be continued, each time bisecting the interval. It can be 

continued until the root is known ·to the desired accuracy. 
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This method while simple in technique does have ~everal 

virtues. The greatest virtue of the method is the fact that 

it is.virtually assured to converge to a root. It can fail 

to do so under the unusual circumstance that an accumulation 

of errors would cause y at some step to be calculated, say, 

as a small negative value when actually it should have a 

small positive value. The computer could be halving \he 

wrong interval from then on. If proper care has been taken 

concerning accuracy, this should not occur. The greatest 

drawback of the bisection method is the fact that it is slow 

compared to some of the other methods and that it can be 

applied only when the function is negative at one value of x 

and positive at another. 

METHOD OF ITERATION 

This method well presented by Conte [7] requires the 

equation p(x) = 0 to be expressed in the form x = f(x) such 

that any solution of the second equation is also a solution 

of the first. In general, there are many ways in which to 

express x = f(x) not all of which are satisfactory for this 

method. Geometrically a root of x = f(x) is a number x = ~ 

for which the line y = x intersects the curve y = .f(x). It 

may happen that these curves do not intersect, in which case 

there will be no real solution. We shall assume, however, 

that these curves do intersect at least once; that we are 

interested in finding one of these roots, say x = ~; and that 
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f(x), f'(x) are continuous in an interval about this root. 

Theorem 4. Let x = s be a root of p(x) = O; let I be an 
interval containing the point x = s (i.e., I is the set of 
a 11 points x satisfying the in e qua 1 i ty I x - s I < c for a given 
e:). Let g(x), g'(x) be continuous in I. Then if jf 1 (x)l2_k<l 
for all points in I, and if the initial approximation x

0 is chosen in I, the iteration converges to the root~. 

From the above theorem it can be shown through differ­

ential calculus that xi+l - s = f'(ni)(xi-s). If we define 

the error ei as e 1 = x1 - s we have the equation xi+l - t = 

f '(n.)(x. - s) revised as 
1 1 

(2.01) 

When the iteration does converge we see from (2.01) that 

lim 
i -+oo 

e . 
1 

lim f'(ni) = f'(E;). 
i -+oo 

(2.02) 

Since n is between x1 ands, and since f'(x) is continuous 

(2.02) states that for large values of i the error at any 

iteration is proportional to the error at the previous itera­

tion, the proportionality factor being approximately f'(~). 

The iteration of this method is for this reason called a 

linear iteration. (2.02) also shows that the smaller the 

value off'(~) the faster the convergence will be. 

On the other hand, if the slope f'(x)>l in absolute 

value for all x in an interval about the root, the method 
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will diverge. 

Scarborough [8] states that the method of iteration is 

especially useful for finding the real roots of an equation 

given in the form of an infinite series. 

Figure 2. 1 below demonstrates the procedure of conver­

gence for the method of iteration given the starting value x
0

• 

~--..... Pl 

I 
I l 
LL_. ___ _ 
x3 x1 

Figure 2. 1 

Y+X 
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AITKEN'S DELTA SQUARED FROCESS 

Grove [2] discusses the possibility of using more than 

one previous x to obtain an improved root of x = f(x). It 

would seem reasonable that if one were to use more than one 

of a set of successive approximations in an iteration of the 

form x = f(x), one should be able to obtain a better next 

approximation. 

Assume that there are three successive approximations 

xk' xk+l, xk+ 2 obtained using x = f(x). 

x = f(xk) k+l 

-Let x be the required solution. Using the mean value 

theorem f (xk) - f(x) = (xk-x) f' (~ 1 ) where t,; 1 is between xk 

and x. Also 

where ~ 2 is between xk+l and x. If xk+l and xk are both near 

x, ,; 1 and ~ 2 will close together and f'(~ 1 ) and f'(; 2) should 

be near equality. Since f(xk) = xk+l, f(xk+l) = xk+ 2 and 

f(x) = i the above equations become 

(2.03) 

(2.04) 



Dividing (2.03) by (2.04) we get 

- x = (xk - x)f' (~l) 

( X k + l - X) f I ( ~ 2) 
-

xk+2 - x 

assuming f 1 (~ 1 ) = f'(~ 2 ). Solving for the above for x, 

-we obtain x = 

2 
xkxk+2-x k+l 

xk+2- 2xk+l+xk 

16 

I f a s · a s s u m e d f 1 
( E;. 1 ) \t'I e r e e x a c t 1 y e q u a 1 t o f 1 

( ~ 2 ) , t h i s 

would be the required solution x. Since this is not the 

case, we have acquired ~ better approximation of x. Let us 

call it x1 k+ 2 • Now we may use this better approximation to 

continue back through the process until Jx-xkJ < £. 

NEWTON-RAPHSON METHOD 

Scarborough [8] states that when the derivative of p(x) 

is a simple expression and easily found, the real roots of 

p(x) = 0 can be computed rapidly by a process called the 

Newton-Raphson method. The underlying idea of the method is 

due to Newton, but the method as now used is due to Raphson. 

To derive a formula for computing real roots by this 

me t ho d 1 e t ... a 11 d e n o t e a n a p p r o x i ma t e v a 1 u e o f t h e d e s i re d 

root, _and let h denote the correction which must be applied 

to 11 a 11 to give the exact value of roots, so that x = a + h. 



17 

The equation p(x) = 0 then becomes p(a+h) = 0. Expand-

ing this by Taylor's theorem, we have 

p(a+h) = p(a) + hp' (a) + h2/2p 11 (a+he), 0<8<1 • 

h2 
Hence p(a) + hp' (a) + - 2 p 11 (a+eh) = O. Now if h is relatively 

small, we may neglect the term containing h2 and get the 

simple relation 

from which 

p(a) + hp' (a) = 0 

£.{_tl_ 
p I (a) 

The improved value of the root is then 

a -

The succeeding approximations are 

+ h2 
P (a 1 ) 

a2 = al = al -
p'(al) 

a -n-1 

' 

_p_ttl__ 
p I (a) 

a3 = a2 -

I 

' 

p(a2) 

P'~ 

(2.05) 

(2.06) 

Equation (2.06) is the fundamental formula in the Newton­

Raphson process. It is evident from the formula that the 

larger the derivative p' (x) the smaller the correction which 

must be applied to get the correct value of the root. This 

means that when the graph is nearly vertical where it crosses 
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the x-axis the correct value of the root can be found with 

great rapidity and very little labor. If, on the other hand, 

the numerical value of the derivative p'(x) should be small 

in the neighborhood of the root, the values of h given by 

(2.05) would be large and the computation of the root by 

this method would be a slow process or might even fail al­

together. The Newton-Raphson method should never be ~sed 

when the graph of p(x) is nearly horizontal where it crosses 

the x-axis. 

The process will evidently fail if p' (x) = 0 in the 

neigh~orhood of the root. In such cases the method of false 

position should be used. 

Grove [2] states that Newton-Raphson has the character-

istics of second-order convergence for simple roots, but for 

roots of multiplicity greater than one, the method is first 

order. He also warns the user of two difficulties which 

although rare, may occur. The first concerns a change of 

sign in p"(x) in the neighborhood of a root. If this should 

happen, the Newton-Raphson method may not converge. The 

second problem is that the method may converge to a root 

which is not a desired root. 

Hartree [3] gives as a disadvantage the following state­

ment: p(x) and p' (x) must be evaluated at a number of values 

of x which, though systematic in the sense that each is cal­

culated from the previous one by the same formula such as 
p(xn) 

x - x - are irregularly spaced and such a set of 
n+ 1 - n p, ( x ) 

n 
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numbers is difficult to check ~dequately. He further states 

that a great advantage of the method is that a mistake in an 

intermediate value of x
0 

does not affect the final result; it 

is just equivalent to starting a new iteration with the erron-

eous values of xn as x
0

• This does not eliminate the possi­

bility of· a mistake in the last repetition of the iterative 
\ 

process. Tabulat~on of p(x) at equal intervals of x followed 

by a process of inverse interpolation is a procedure which 

provides more, and simpler, checks against occassional mis-

takes. 

Conte [7] formulates the necessary condition of con­

vergence for the Newton-Raphson method as being the following: 

Also given is a good explanation of the effects of a second­

order method on accuracy. In general the number of places 

of accuracy doubles with each iteration. One cannot, however, 

expect this in the early iterations due to asymptotic proper­

ties. From a purely computational point of view accuracy 

attained with the Newton-Raphson method depends upon the 

accuracy to which p(x)/p' (x) can be computed. 

METHOD OF FALSE POS1110N -----
Kunz [9] states that the method of false position is the 
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oldest and most generally applicable method for finding the 

real roots of polynomials. 

Scarborough [8] explains that in this method we find 

two numbers x1 and x2 between which the root lies. These 

numbers should be as close together as possible. Since the 

root lies between x1 ·and x2 the graph of y = p(x) must cross 

t h e x - ax i s b e t we e n x = x 1 a n d x = x 2 , a n d y 1 a n d y 
2 

m
1

~ s t h a v e 

opposite signs. 

Now since any portion of a smooth curve is practically 

straight for a short distance, it is legitimate to assume 

that the change in p(x) is proportional to the change in x 

over a short interval, as in the case of linear interpolation 

from logarithmic and trigonometric tables. The method of 

false position is based on the above principle, for it assumes 

that the graph of y = p(x) is a straight line between the 

points (x 1 , y 1 ) and (x 2 , y 2 } where these points are on oppo­

site sides of the x-axis. 

To derive a formula for computing the root, consider 

figure 2.2, which represents a magnified view of that part 

of the graph between (x 1 ,y 1 ) and (x 2 ,y 2 }. From the 

P(x 1 ,v 1 ) 

M H N 
X Axis 

______________ ....., 
R Figure 2.2 Q (X2,Y2) 



similar triangles PMS and PRQ we have 

MS = .!3_Q_ or 
MP. RP ' = 

\ 

The value of the desired root, under the assumptions made, 

is x = x l + MS = x l + H. 

Hence 
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The value of x is not, however, the true value of the root, 

because the graph of y = p(x) is not a perfectly straight 

line between the points P and Q. It is merely a closer approxi-

mation to the true root. 

Booth [3] notes that convergence may be quite rapid if 

the initial point is well chosen, but one gains only one 

decimal place at each iteration. 

Kunz [9] states that this rule gives best results when 

used to improve accuracy of roots once approximated by some 

other method. It can also be used to help locate a root 

roughly if [a,b] is not too large. 
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Hartree [4] states that this method has the same disad-

vantages and advantages as the Newton method except the False 

Position method does not require evaluation of p'(x). 

SECANT METHOD 

Grove [2] states that the secant method may be regarded 

as a modification of the Newton-Raphson method. In the 

Newton-Raphson method 

replace p'(x ) by the slope of the secant line between two n 
successive approximations, as 

m = 

and now 

m 

Note here that simplification of the equation yields the same 

equation as the rule of False Position. An alternative is 

to use m as a constant. A choice here might be the secant 

line between two guesses x1 and x2 such that p(x 1)·p(x 2 )<0 

and p(x) is continuous in the vicinity of the root. Thus 



pick · 

m = 
p(x 1 ) - p(x 0 ) 

x1 - x0 

and use this in each iteration. Convergence is very slow 

(of order one). 

vJ E G S T E I N M E T H 0 D 

\ 
\ 
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Grove [2] suggests that this method induces cor.vergence 

in some otherwise divergent iterations of the form x = f(x). 

It has been shown that an iteration of the form x = f(x) will 

converge to a root if lf'(x)l<l and diverges otherwise. Let 

us consider the case where x = f(x), -l<f 1 (x)<O as shown in 

figure 2.3. 

y 

xn+l 

Figure 2.3 

Y=F(X) 

x 

-In this figure a better approximation for x than xn+l would 

be a value around 1/4 greater. Let xn+l be a better approxi­

mation than xn+l· 
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Let q be a fractional part of the distance BA measured 

to the better approximation from xn+l - that is.; 

where 

rearranging, we obtain 

. 
Note that BC = CP 

Since q = 

CA then l - q = BA 

BC 
BA 

and ~ BC CP = = CA CA 

BC 
q = BA 

now CP/CA is the negative of the slope of y = f(x) at some 

point between A and P. 

Let ~ = - a 

where a= f'(t;: 1 ) and s1 is between A and P. Solving the 

above for q we obtain 

a 
q = a-1 

The approximation for "a" that Wegstein uses is 

a = 
f(xn) - f(xn_ 1 ) 

xn-xn-1 
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which is valid for all smooth curves. If one is not particu­

larly interested in information gathered from the value of q, 

the formula 

x + x l n n-

may be used. 

- x -x n n 

The method will converge in more cases than the method 

of iteration, but may converge to an undesired root. 

HALLEY'S METHOD 

Grove [2] explains the ideas behind Halley's method. 

Truncating the Taylor's series expansion of p(x) about the 

point xn after 2nd derivatives we obtain 

p 11 (x )(x-x ) 2 
n n 

2 

Now we will substitute x = xn+l and assume xn+l is a good 

approximation to the root so that p(xn+l) is nearly zero. 

In fact, we will call p(xn+l) = 0. 

Now we will solve for xn+l: 

p"(x )(x - x) 
( ) [ , ( ) n n+l n ] = 
xn+l - xn P Xn + 2 



= x -n 

p'{x) + 
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P11 (x )(x - x) n n+ 1 n 

2 

( 2. 7) 

At this point we recall the Newton-Raphson formulation 

x xn 
P ( x-n) 

n+l = - ----
p I ( X n) 

or 

xn+ 1. xn = 
p(xn) 

( 2. 8) - -
p I ( X n) 

Replace xn+l - xn in (2.7) with its equivalent presented 

in (2.8) so that 

= x -· 
p{xn) 
----n p'{xn) - p"(x )·p(x) n n 

This is Halley's formula. 

2p' (x ) 
n 

It appears that. for cubic equations this method could 

be combined with synthetic division to obtain one real root 
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and the reduced quadratic in a very short time. 

MULLER'S METHOD 

Conte [7] explains Muller's method as follows. Given 

an equation p(x) = 0 for which we wish to locate a root, we 

require three starting points. Let us assume the points are 

(xi,pi),(x 1_1 ,pi_ 1 ), and (x 1_2 ,p 1_2). Now pass a parabola 

of the form y = g(x) = a2x2 + a1x + a 0 through these points. 

The following equations must now be solved to determine 

the coefficients of the parabola: 

2 + + a .... x. al xi ao = p . 
(_ 1 1 

2 + + a2xi-l a 1x_i-l ao = P;-1 

2 
a2xi-2 + alxi-2 + ao = P;-2 

As long as x.,x. 1 ,x. 2 are distinct points, these three 
1 , - 1 -

equations can easily be solved for the unknown coefficients 

a2 ,a
1

,a 0 . Once this has been done the quadratic po1ynomial 

is completely determ·ined. 

The parabola formed intersects the x-axis at two points, 

say d and d'. Now we must choose one or the other as our 

next approximation for the root x. From figure (2.4) the 

choice of the next approximation is obvious, but of course 

it is not to the computer. We may evaluate p(x) for d and 

d' and choose whichever causes jp(x) I to be smaller. Now 
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we can use the points b, c, and d or d' (whichever was chosen) 

and iterate the procedure, discarding the "oldest" previous 

point each time. 

Although we have considered this method for real roots, 

it is usually used to calculate complex roots. An advantage 

of this method is that no derivatives of the function p(x) 

need be calculated. For real roots it is not particularly 

better than interval halving. It does converge faster, but 

it ~equires more computations per iteration. 

y 

Y=P(X) 

Y=G(X) 

d 

Figure 2.4 
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LAGRANGE'S METHOD 

Todd [10] states that the Lagrange method is an iterative 

method for determining the zeroes of polynomials. If f(z) = 

pn(z) is a polynomial of the nth degree, the Lagrange method 

is obtained by setting 

g(z) = z - nf(z) 
f '. ( z) ± 1(n-l)[(n-l)f' (z) 2-nf(z)f 11 (z)] 

In its geometrical interpretation, this method amounts to 

approximating the polynomial by parabolas between two zeroes. 

Accordingly, there are two values of g{z), depending on which 

root is to be approximated. For practical purposes, that 

sign is used which makes the denominator largest; that is, 

the root closest to the initial guess is approximated. 

The first derivatives at a root x are 

= ~x) 3 n-2 Ff# 2 g I ( X ) = 0 , g II ( X ) : 0 ' g I ·
1 

I ( X ) [ ] - ) - 4 n-1 

so that in general the third derivative is the first differ-

ent from zero; that is, the method is a third-order iteration 

procedure. 

In comparison with the other methods so far discussed, 

the Lagrange method has the advantage that it converges 

faster and that it works also for the complex roots of poly-

nomials with real coefficients, even if one starts out with 
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a real guess. (The expression under the root in the denomi­

nator may become negative). It has, however, the drawback 

that higher-order derivatives have to be computed. This 

can be done most conveniently by using synthetic division 

(Horner scheme); that is if 

f(z) = 
n j 
l an_J.z 

j=O 

should be evaluated with its derivatives for z = x, then 

this can be done recursively by computing 

a;,o = ai-l,O x+ai, i=l,2,···n 

a .. = a. 1 .x +a .. 1 , i=l,2,···n-j 
lJ 1- ,J l,J-

and then 

f(x) f I ( X) = an-1,l' f .. (x) = 2! a -2 2 
n ' t 

a .. , j = 1,2,···n 
n- J 'J 

NEWTON AND LAGUERRE 

Todd [10] explains that the formulas for the Newton and 

Laguerre methods· can be expressed in terms of the quantities 



Newton: g(z) = z - 1 
s l ( z J 

Laguerre: g(z) = z - n 

Therefore, for these methods the roots which already 

have been computed can be eliminated by subtracting the 

appropriate expressions from s 1 (z) and s 2(z), that is, by 

. substituting in the formulas s 1 (z) and s 2 (z) ·where 

s 1 (z) ~ s 1 (z) - ! 
i=l 

1 
z-x. 

1 

(j being the number of roots computed already). 
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This procedure gives in many cases more accurate results 

than synthetic division. However, it requires appreciably 

more work for finding all the roots, since one works at all 

times with the original polynomials. 

HORNER 1 S METHOD 

Kunz [9] considers the method of Horner. The Horner 
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method was devised to reduce pencil work, however, when used 

with a desk-type calculator it takes a considerable length 

of time. 

The method consists of making a first approximation then 

transforming the equation (synthetic division) by dividing 

through by the approximation which will transform the equa-

tiqn into an equation with a root between 0 and 1. A second 

approximation is made on this interval and the amount .x is 

added to the first approximation, then the equation is trans-

formed into one with roots between 0 and . 1. This procedure 

continues until the desired degree of accuracy is obtained. 

LIN'S METHOD 

Grove [2] states that in order to find the complex roots 

of an equation of the form 

( 2 . 9 ) 

we may be able to find real roots, divide out the correspond-

ing factors, and solve the resultant equation. However, if 

the equation is of even degree there may be no real roots. 

In such cases we would like to be able to find the quadratic 

factors of (2.9). The following is an iterative procedure 

for doing this. 

Complex Roots occur in conjugate pairs, say (a+bi) and 

(a-bi). The associated factors are 



x - (a+bi) and x-(a-bi). 

From these we construct the quadratic factor 

[x-(a+bi)][x-(a-bi)] = (x-a-bi)(x-a+bi) 

or 

[(x-a)-bi][(x-a)+bi] = x2 -2ax + a 2 + b2 . 

Now set x2 + px + q = x2 - 2ax + a2 + b2 . 

Equating coefficients 

and 

p - - 2a 

q = a2 + b2 

Now we can compute p and q; we can find the roots of the 

factor x2 + px + q. 

by x2 + px + q we obtain 
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n + n - l + a 
2 

x n - 2 _._ +· 2 + + a 0x a 1 x ,. · · · an- 2 x an- 1 x an 

x 2 + px + q 

where R 

and 
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bo = ao 

bl = al bop 

b2 = a2 boq blp 

b3 = a3 blq bqp 

b4 = a4 b2q b3p 

Hildebrand [5] states that the method due to Lin con­

sists of applying the method of successive substitutions in 

the form 

. p = 
a n-1 q bn-3 

b n-2 
q = 

b n-2 

In the absence of preliminary information, the iteration may 

be started with arbitrarily chosen values of p and q, in the 

hope that convergence to some root pair (real or complex) 

will ensue. 

BA I RS T 0 vJ ME T H 0 D 

Another iterative method for solving polynomial equations, 

discovered by Bairstow, differs from the Lin method in that 

the equations R(p,q) = 0 and S(p,q) = 0 are solved by the 

Newton-Raphson iteration for two equations, rather than by 
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the method of successive substitutions used by Lin, so that 

it is a second-order process. 

Today Bairstow's method is pro~ably more widely used 

than any other method. Since it is a second-order method, 

convergence is relatively fast. The major advantage is that 

it has the capabilities of returning both real and complex 

r o 0
1 
t s . H am m i n g [ l ] s t a t e s t h a t i t i s n o t i n f a l l i b l e ; o c c a s -

ionally it takes very long to converge on a quadratic factor 

or even fails; but, on the average, it seems to be better 

than any other single method. 

2 n Let the polynomial p(x) = a0 + a1 x + a2 x · · · anx 

and let us assume that we have a guess at a quadratic factor 

x2 + px + q. Initially we can choose p = q = 0 which will 

simplify the first step. Using synthetic division, we divide 

the polynomial by the quadratic factor to get a quotient and 

a remainder, e.g., 

The reason for the peculiar subscripts on the b's wi 11 be-

come apparent as we go on; it makes notation easier. In a 

skeleton synthetic form, we have 

1 p g an an-1 an-2 
. a2 al ao 

qbn . . . qb4 qb3 qb2 

pbn qbn-1 . pb3 pb2 

bn b n-1 b . b2 bl bo n-2 
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If the remainder is b1x + b0 , the algebraic relations be­

tween the coefficients are 

b = an n 

b = a pb n-1 n-1 n 

bn-2 = an-2 pbn-1 - qbn 

(2.10) 

bn-k = an-k - pbn-k+l - qbn-k+2 (k= 2 , 3···n-l) 

We would have the desired quadratic factors if, and only 

if, the remainder were identically zero; that is, if 

Let us consider these coefficients as functions of p and q. 

bl = bl(p,q) 

bo = bo{p,q) 

We now use the two dimensional analog of Newton's method and 

expand b .. , bo in a Taylor's series about the present guess 
t 

(p,q). Writing p* and q* as the desired solution, we have 

bl(p*,q*) 0 b1(p,~) + 
ab 1 6p 

ab 1 6q + ( 2 . 11 ) = = + -- . . . 
ap aq 

bo(p*,q*) 0 bo(p,q) + 
ab 0 6p + 

ab 0 6q + . . . = = ap aq 
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where ~p = p* p 

~q = q* q 

are the errors to be corrected for our next guess. Neglecting 

all but the linear terms in (2.11) we have a pair of linear 

equations for the changes to be made in p and q. 

The problem is how to find the partial derivatives which 

are the coefficients of the unknowns 6p and 6q. We could 

make a small change in p and note the change in b
1 

and b
0 

and do the same using a small change in q. We prefer, in-

stead, to find them in a more analytical fashion. We differ-

entiate (2.10) with respect top. 

= a 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

abn-k 
-- - -ap 

abn-k+l abn-k+2 
bn-k+l - P ap - q ap 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



If we now write = - C* k 

then we have 

C* = 0 n 

C*n-1 = b pC* n n 

C*n-2 = b n-1 PC* - qC* n-1 n 

C*n-k = b - p C*n-k+l - qC*n-k+2 n- k+ 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C* = 

0 
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These equations are of the same form as (2. 10) provided 

that we note that C* = O means the following: C* k is to n n-
be identified with bn-k+l' bk is to be identified with ak-l" 

Also
1 

the last equation is not quite correct. 

These observations suggest repeating the proces~ of 

synthetic division, using the same quadratic factor x2+px+q 

on the b's (instead of the a's) to obtain coefficient of Ck. 

This we now do: 

1 p g bn b b b . . . 
b2 bl bo n-1 n-2 n-3 

qCn qCn-1. . . qC4 qC3 qC2 

pen pCn-1 
. pC3 pC2 

C2 l C 1 . en cn-1 c n-2 
. . . CO 
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Thus we get 

en = b n 

cn-1 = b pCn n-1 

c = b p c - qCn n-2 n-2 n-2 

(2.13) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
c1 = bl - pC 2 qC 3 

co = bo qC2 

T h e p a r t i a 1 d e r i v a t i ve s f o r w h i c h w e a r e 1 o o k i n g i n ( 2 • 1 1 ) 

are 

ab 0 - C* l ; ap 

Comparing (2. 12) and (2. 13) we see that 

Hence 

C*k-l =Ck (k = n,n-1,···3,2) 

C* 0 = c, 

ab 
c . 0 = 
2' ap-

= - C* 
0 

We now examine the process for the partial derivative with 

respect to q. Again differentiate 



abn 
= - p = 0 aq 

We now set 
= - c ** k 

to get C** = O 
n-1 

C** = b - p C** - qC** 
n-2 n n-1 n 

............................... 
C** = b - pC** - q c•* 

n-k n-k+ 2 n-k+l n 

C** = b2 - qC** 
0 2 

Since C** = C** = 0 we see that we need to identify 
n n-1 

- q 
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ab"' 
L 

aq 



C** =Ck; (k = n, n-1,··· ,3) 
k-2 
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if we are to compare (2.14) and-(2.13). The partial deriva­

tives that we want for (2. 11) are 

C** 
1 

= C** 
0 

Thus we have 

The solution of these two equations produces the amounts 

to change our guess of the quadratic factor x2 + px + q. The 

convergence, when it works, is quadratic; that is, the 

errors when small, are approximately squared each step. Now 

we proceed to factor out the quadratic factor and use the 

equation as a new polynomial to be examined by the same pro-

cess. 

Ralston [11] states that when Bairstow's method con-

verges it has the characteristic rapid convergence of the 

Newton-Raphson method. 

Conte [7] notes that the major deficiency lies in the 



42 

fact that it is difficult to select the initial approximation 

(a 0 ,s 0 ) properly so as to assure convergence. 

LEMUR-SCHUR 

Ralston [11] notes that this method may be used to deter-

mine whether any zero of a polynomial lies within the·unit 
I 

circle; this idea will be used as the basis of a method to 

find the roots of p(x) = 0. 

Define 

( ) =Z n p (-z-1) = - n p* z an+ an-l z +···+a z 

where bars denote conjugates. Now define 

T[p{z)] = a0 p{z) - anp*(z) 

is real. Note also that T[p(z)] has no term in zn so that 

if we define 

. . l 
TJ[p(z)J = T{TJ- [p(z)]} 

we get a sequence of polynomials of decreasing degree. Let 

k be the smallest integer for which Tk[p(O)] = 0. The basic 

idea that we can use is the following: Suppose p(O) + 0. 

If for some h such that O<h<k, Th[p(O)]<O, then p(z) has at 

least one zero inside the unit circle. If instead T;[p(O)]>O 
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for l~i<k and Tk-l[p(z)] is a constant, then no zero of p(z) 

lies inside the unit circle. 

The proof of this idea requires various elementary re-

sults from complex-variable theory. To use this theorem in 

determining whether or not p(z) has a zero inside the unit 

circle, we proceed as follows: 

1) Is p{O) = O? If so we have a zero z = O; if not, 

do step 2. 

2) Calculate T[p(z)]. Is T[p(O)] < 0? If so, there 

is a root inside the unit circle; if not, go to 

step 3. 

3) Calculate Tj[p(z)], j = 1 ,2,· ·· until Tj[p(O)] < 0, 

j<k or Tk[p(O)] = O. If the former occurs, there is a root 

inside the unit circle. If the latter occurs and if 

Tk-l[p(z)] is a constant, then there is no root inside the 

unit circle. Note that the theorem does not cover one possi­

bility. If Tk[p(O)] = 0 but Tk-l [p(z)] is not a constant, 

the theorem tells us nothing. We shall close this loop hole 

a little later. 

To apply this theorem to find the roots of 

p(z) = 

we note first that if p ( z) has a zero inside the circle 

I z I = q , then g ( z) = p(qz) has a zero inside the unit circle. 

More generally, if p(z) has a zero inside the circle lz-cl = 

g(z) = p(qz+c) has a zero inside the unit circle. Thus ~1e 

q 
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proceed ·as fol lows, using the theorem at each step: 

1) Does p(z) have a zero inside the unit circle? If 

not consider g(z) = p{2z) and ask whether g(z) has a zero in­

side the unit circle. If not, consider p(2 2z). Continuing 

in this way, sooner or later we find an annulus 

\ 

such that p(z) contains a zero in this annulus and none in­

side the circle lzl = R. [If p(z) does have a zero inside 

the unit circle, we halve the radius until we find a circle 

inside which there is no zero. Again we get an inequality 

for the annulus that contains the zero]. 

~) This annulus can be completely covered by eight over­

lapping circles each of radius 4R/5 with centers at 

3R e2nik/8 k _ O,l,···], i = r-T. 
2 cos (n/8) -

Testing each of these circles in turn using the theorem, 

we shall find at least one containing a root. If the coef­

ficients of the polynomial are real, there must be a root in 

a circle fork= 0, 1, 2, 3, 4. 

3) Calling the center of this circle C, and starting 

with the radius 4/5 R, we proceed as in step 1 except that 

now we have the radius at each stage. Finally we find an 

annulus 
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for some positive integer jl which contains a zero of p(z). 

As in step 2 we cover this annulus with eight circles and re­

peat steps 2 and 3 as long as desired. 

The loophole in the theorem will occur with probability 

zero for a random choice of coefficients but nevertheless, it 

occurs when a0 = an and for certain simple cases of integral 

co~fficients. If for example in performing step 1 for a 

radius R, Tk[g(O)] = 0, but Tk-l[g(z)] is not a constant, the 

simplest thing to do is to choose a new radius SR where 

1/2<8<1, say s = 3/4, and contin~e with this value of the 

radius, choosing as the next radius 2SR. If this case occurs 

in step 3, then we use a value l<B<2 and ctintinue in an 

obvious fashion. This procedure converges inevitably to a 

root of p(x). 

One can make the following points concerning the Lemur-

Schur method: 

1) The speed of the convergence is in no way affected 

by the multiplicity of the roots or by whether the roots are 

clustered in any way. 

2) At any stage we may switch over to a more rapidly 

convergent method. Whether this more rapidly convergent 

method does indeed converge will depend on how close we are 

to the root. If it does not converge, we may switch back to 

the Lemur-Schur method. 

3) Having found one root, we may remove it from p(x) 

by synthetic division and proceed to find the others, remem­

bering to make 2R the starting radius for the next root. 
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BERNOULLtS METHOD 

Ralston [11] suggests .that one consider the difference 

(2.15) 

where the coefficients ai' i = o,~ ··, n are those of p(x). 

If the roots a.i of p(x) are distinct then the solution of 
I 

this equation is given by 

n 

Uk = l 
i=l 

k c . a. . 
1 1 

(2.16) 

where the ci ,
5 

depend on the ,initial conditions used to solve 

(2~15). If the roots are ordered in magnitude as in 

·p 1>p 2>···>pn' then by rewriting (2.16) 

Uk 
lim u = a. 
k-+oo k-1 l 

(2.17) 

The essence of Bernoul 1 i~ method is to use (2.15) to 

compute successive values of uk and then to compute the ratio 

of successive values of uk until these ratios converge to a. 1. 

For this method to work at all, it is necessary that 

The c. 1 depend, as we said, on then initial 
1 s 
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conditions required by (2. 15). If we generate these initial 

values using the equation 

an um + an-1 um-1 + ... + an-m+ l u l + man-m = 0 m = 1 ' ... 'n 

then it can be shown that· all C;•s are unity and thus 

n 

l k 
Cl • 

1 
(2.18) 

i=l 

Therefore (2.17) always holds for this choice of initial con-

ditions. 

The above was predicted on the assumption that a 1 , the 

root of largest magnitude, is real and distinct. Neverthe­

less, the method also holds if a, is multiple but real. When 

the root of largest magnitude is complex or when there is some 

combination of real and complex roots or largest magnitude, 

(2.17) no longer holds. The number of possible special cases 

is, therefore, very large. Each such special case can be 

taken care of by a suitable modification of (2. 17). For ex-

ample, if there is a single pair of complex conjugate roots 

of largest magnitude, then writing 

we may write (2. 18) as 



Using (2. 19) 

and 

n k 

uk = 2S~ cosk~ 1 (1 + l :i kl 
i=3 al+a2 
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(2. 19) 

\ 

Other special cases such as repe~ted complex roots and 

combinations of real and complex roots of equal magnitude 

can also be handled separately but especially for automatic 

computation; it is extremely tedious to have to provide for 

all these cases. 

Moreover, ·if a 2 has nearly the same magnitude as a 1 , 

the convergence of the process is extremely slow. Thus as 

a_ general purpose method, Bernoulli's method is inferior to 

the Lehmer-Schur and root-squaring methods. 

When the root of largest or smallest magnitude is the 

only.one that is desired and is distinct, Bernoulli's method 

can be very useful. When a root has been found and removed 

from p{x) by synthetic division, Bernoulli's method can then 

be used to find an approximation to the root of next greatest 

magnitude. 
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With slowly convergent methods like the Lehmer-Schur or 

Bernoulli methods, it is desirable to use them only to get 

a good approximation to a root. 

Hildebrand [5] states that the calculation is remarkably 

simple (and readily mechanized) when the dominant root is 

real and unequaled in absolute value 

plicated otherwise. 

and is not unduly com­
\ 

GRAEFFE'S ROOT-SQUARING 'METHOD 

Ralston [11] suggests that the essence of Graeffe's 

method is to replace p(x) by an equation, still of degree n, 

whose roots are the squares of the roots of p(x). By iterat­

ing this procedure, roots of p(x) which are unequal in magni­

tude become more widely separated in magnitude. By separat­

ing the roots sufficiently we can, as we shall see, calculate 

the roots directly .from the coefficients. When there are 

roots of equal magnitude, this process runs into difficulties, 

but these can be overcome. 

Let the roots of p(x) be a.i, i = 1, · · · ,n. We assume in 

the remainder of the section that an = 1. Then, writing 

p0 (z) for p(z), we have 

Using this we may write 
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so that the zeroes of p1(w) are the squares of those of p0(z). 

Therefore, the sequence 

pr+ 1 ( w) = ( - 1 ) n pr ( z ) pr ( - z ) , r = O , 1 , · · · 

is such that the zeroes of each polynomial are the squares 

of the zeroes of the previous polynomial. If we denote the 

coefficient of pr(z) by a~r), j = O,·······, n, then we have 

To use the sequence of polynomials {pr(z)}, we need the 

well known relationship between the coefficients of a poly-

nomial and its zeroes. This relationship is expressed by 

the equation 

( ) · 2 2r 2r 
a j r. = ( - 1 ) n - J S n _ j ( a 1 , a · · · , a n ) j = 0 , l , · · · · · · , n - 1 

where Sk(x 1 ,···,xn) is the kth symmetric function of 

x1 , .... ,xn. This function is defined by the equation 
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n 
where the notation I denotes that the sum is over all 

combinations of the digits 1 ton in the subscripts. Thus, 

for example, 

Let 

a(r) 
n-1 

n 

l (2.20) 

k=l 

Suppose first that all the roots are distinct in magni­

tude and ordered so that 

We write (2.20) as a~~i 

r 
(r) 1/2 

Then using (2.21) lim !-a
0

_ 1 ! 
r-+co 

= 

Therefore, for sufficiently large r 

q = 1-a(r) ! 
1 n-1 

Similarly, we have 

> q 
n 

(2.21) 

n 

l 
k=2 

I a 1 I 

1/2r 
(2.22) 



n 
a(r) = " 

n-2 l 

and, therefore, for sufficiently large r 

q2 

Continuing in 

l/2r 
::: 1 la(r) I 

ql n-2 

this way we have 

a{r) 1/2r 
n- k I 
( r) 

an-k+l 

a(r) 112 4 

- I n-21 - a(r) 
n-1 

in general 

k = 3,···,n 
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(2.23) 

(2.24) 

In practice "sufficiently large r 11 means only that we 

must continue the root-squaring process until the approxima­

tions to the magnitudes have stabilized to the number of 

decimal places that we desire. 

Once the roots are separated, and their magnitudes ob-

tained, determining the sign is easily accomplished by insert­

ing the magnitude into p(x). 

The difficulties in using this procedure arise when 

some of the roots have equal magnitudes. These difficulties 

are of two kinds: (1) The relations (2.22), (2.23), (2.24) are no 

longer correct in general. Therefore, determining the magni­

tude of the roots is more difficult. (2) Since some roots 
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may be complex, it is no longer simple to determine the root 

given the magnitude. 

Further transformations may be made to eliminate these 

problems, but as a result the procedure is greatly compli­

cated. 

Large coefficients may cause trouble, particularly if 

a large number of root ~quarings are required. Also how do 

we know when we have performed a sufficient number of root 

squarings to separate adequately the roots of different mag­

nitudes? Although a more complicated program, the root­

squaring method appears to be more efficient than the Lemur­

Schur method. A comparison of the speeds is quite difficult, 

because the Lemur-Schur method would be coupled with a more 

r a p i d 1 y c o n v e r g e n t me t h o d w h i ch w o u 1 d be u s e d w.h e n a g o o d 

approximation to a root has been found. 

Hildebrand [5] explains that the Graeffe method possesses 

the theoretical advantage that the iteration leads to all 

zeroes of p(x) at the same time, and there is no question of 

ultimate convergence if appropriate attention is paid to 

round-off error. However, it is often rather laborious, and 

the extraction of algebraic roots of high order, which is in­

volved in the process, is conveniently effected in machine 

calculation only by an iterative process. 

A serious disadvantage follows from the fact that a 

gross error committed at any stage of the calculation in­

validates all subsequent calculations, whereas the other 

iterative methods considered would suffer only a reduction 
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in the rate of convergence. 

Rather than use this method for the complete determina­

tion of the roots, it is often convenient merely to iterate 

sufficiently to obtain crude approximations, when such 

approximations are not easily obtained by other methods, and 

then to improve these approximations by simpler or more 

r a p, i d l y c o n v e r g e n t m e t h o d s • 

This in effect concludes the detailed look at the review 

of literature on polynomial root-finding. As we mentioned 

before, hundreds of books have been written on the matter, 

and almost every numerical analys.is book in existence today 

has at least one chapter on the subject. For further infor­

mation, one may refer to the bibliography of this paper. 
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DISCUSSION 

The importance of the field under consideration cannot 

be overemphasized. On many occasions, scientists and mathe­

maticians encounter polynomials of which they desire the roots. 

Many methods have been derived to aid them in their endeavors, 

but due to the number of problems existing in the field, no 

one method has proved_ adequate for all occasions. 

It is the purpose of this study to delve into some of 

these methods in order to compare and analyse them. The 

works of many renowned authors as presented in the previous 

section have provided factual information which has aided in 

the study of these methods. 

In drder to effectively discuss the polynomial ·root­

finding problem, it is necessary to know something about 

polynomials in general. ·Several basic algebraic theorems 

allow us invaluable information on the number, kind, and 

location of real and complex roots. The following theorems 

provide ·us with the abcive mentioned information: (1) if 

p(a)·p(b)<O, there exists at least one real root, and in 

fact there are an odd number of real roots in the interval 

[a,b]; (2) if in the synthetic division of p(x) by x-h all the 

coefficients of the reduced polynomial are positive, h is an 

upper bound to the real roots, also if in the synthetic div­

ision of p(-x) by x-h all the new coefficients are positive 

then -h is a lower limit to the real roots, and (3) the 

·number of positive real roots is equal to the number of 
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changes in sign or less than that number by a positive even 

integer. Likewise, the number of changes in sign of p(-i) 

indicates the number of possible negative real roots. In 

particular if p(x) or p(-x) possesses no change in the signs 

of its coefficients, there are no real roots in that form of 

p(x). If exactly one change is incurred only one real root 

exists in that form of p(x). These theorems have provided 

information to previous researchers and are useful tools in 

today~ investigations. 

In researching this particular field several methods were 

chosen to be compared. The primary concern of the first part 

of this study was related to methods instrumental in obtain­

ing a single real root. Of the methods encountered upon re­

viewing the literature, the following were chosen for the 

comparison: (1) the Method of False Position, (2) the Secant 

Method, (3) the Bisection Method, (4) the Wegstein Method, 

(5) the Method of Iteration, (6} the Aitken-Delta Squared 

Method, and the (7) Newton-Raphson Method. The reason for 

choosing only single root methods is that.once one real root 

is acquired, the original polynomial may be reduced by syn­

thetic division leaving a polynomial of degree n-1 to which 

one can again apply a single root method to reduce the poly­

nomial further. Cautions, restrictions, and suggestions on 

doing this type of procedure will be discussed later. 

The above methods were divided into two separate groups. 

As one might notice, the methods of Iteration, Aitken Delta 

Squared, Newton-Raphson and Wegstein all require one starting 
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value while the remaining methods require two starting values. 

Thus the groups were selected based on the number of starting 

values. 

Let us consider the group consisting of the methods of 

Bisection, False Position, and Secant. A program wa~ written 

combining all of these methods so they might be executed in 

on~ run through the computer rather than several single runs. 

Since these methods do require two starting values,·a system­

atic method for providing these starting values had to be 

implemented. An upper and lower bound to the real ·roots of 

the equation under consideration were ascertained. One start-

4ing value was fixed at the upper bound and the other start-

ing value was initialized at the lower bound. Once these 

two values were used in the computation involved in all meth­

ods of that group, the second starting value was incremented. 

This procedure provided new starting values at each step of 

the comparison and allowed for a wide range of situations. 

The comparing of the methods continued until the second start­

ing value approached the first value (upper bound). The type 

of information obtained from this comparison included the 

following: (1) the number of iterations required to converge 

to a root, providing convergence occurred, (2) the computed 

root versus the true root, (3) the actual execution time in-

~ valved in converging to a root. The last piece of informa­

tion is interesting in that it was obtained through the use 

of the special subroutine which enables the user to utilize 

the IBM System/360 internal timer capable of expressing 
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increments of time in one-hundredths of a second. Thus, the 

actual execution time of each method was obtained by calling 

this subroutine at the beginning and end of each method. 

The second group consisting of the methods of Iteration, 

Newton-Raphson, Wegstein, and Aitken Delta Squared was com­

pared in much the same manner as was the previous group. There 

were, however, two main differences between the two groups. 
I 

First, as mentioned before, they had different requirements 

on the number of starting values; secondly,·three of the four 

members cf the second group required iteration in the form 

x = f(x). To facilitate this requirement, several forms of 

x = f{x) were used. After trying several forms of x = f(x), 

the method of iteration was excluded from the comparison due 

to the fact that it was very critical of the form of x = f(x) 

and often times converged in only a few instances. To com-

pare the remaining methods, the lower bound to the real roots 

was used as the first starting value and after each group cow.­

parison, was incremented, thus allowing many different start­

ing values. Exactly the same information was gathered on 

these methods as was described above for the first group. 

A special subroutine was written to form a polynomial 

from a number of real roots. Since some large degree equa-

tions were desired, it was decided to use double precision 

and integer roots. These two endeavors aided in controlling 

the round off error which might be present in the coefficients 

of high degree polynomials. Eighteen different polynomials 

varying in degree from four to fifteen were used in the above 
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comparisons. 

Contained in the following pages are examples of the re-. 

sults obtained in comparing the single root methods. One 

should note the different activities that occur pertaining 

to the starting value(s) involved. 

The letters NC mean that the method failed to converge 

to a root. Also, the increments of time as shown on the ex-, 

amples are measured in seconds, thus .01 would be one-hundredth 

of a second. The expression . lOE-05 means .000001. The signed 

constant following the E indicates the number of places and 

direction to move the decimal point to obtain the actual 

figure. 

The above methods primarily applied to the removal of 

real roots from p(x). Should a need for finding the complex 

roots exist, a special method should be used. Although some 

of the methods above coupled with complex arithmetic could do 

the job, not all computers have complex arithmetic available 

a n d s om e 1 a n g u a g e s h a v e n o p r o v i s i o n s f o r t h i s .. 0 f p r i m e 

concern in finding complex roots are the methods of Lin and 

Bairstow. There is much similarity in these methods in that 

they both factor from the polynomial a second degree poly­

nomial of the form x 2 + px + q and they both require starting 

values for p and q. Several polynomials with complex roots 

were formed and the methods of Lin and Bairstow compared. The 

results of this comparison will be presented in the next sec-

ti on. 



p(x) 10 13x 9 - 98x 8 + 1734x 7 + 825x 6 
= x -

5 118808x 4 + 927316x 3 2175856x 2 -71565x + -
-2671872x + 6773760 

ROOTS ARE: 8' 9 ' 7 ' 5' 3 ' 2 ' -2, -4, - 7' -8 

Starting Method Number of Computed Error Time To 
Values Iterations Root Converge 

-7.95,10.0 B -; section 27 -2.000000 O.OE-05 . 1 6 

-7.95,10.0 False Position NC NC NC NC 

-7.95,10.0 Secant 16 -7.000000 NC .33 

-7.35,10.0 Bisection 27 -2.000000 O.OE-05 . l 5 

-7.35,10.0 False Position 18 -7.000004 0.6E-05 . 53 

-7.35,10.0 Secant 28 -3.999999 0. lE-05 .55 

-2.25,10.0 Bisection 26 -2.000000 O.OE-05 . 1 5 

-2.25,10.0 False Position 8 -2.000000 O.OE-05 . 21 

-2.25,10.0 Secant NC NC NC NC 

°' 0 



Starting 
Values 

3.84,8.0 

3.84,8.0 

3.84,8.0 

-1.25,8.0 

-1.25,8.0 

-1.25,8.0 

-2.15,8.0 

-2.15,8.0 

-2.15,8. 0 

p(x} = x6 - 15x 5 + 49x 4 + 195x 3 
- 1166x 2 

+ 720x + 2016 

ROOTS ARE: 7, 6, 4, 3, -1, -4 

Method Number Of Computed 
Iterations Root 

Bisection 25 3.999999 

False Position 44 3.999999 

Secant 6 4.000000 

Bisection 26 3.999999 

False Position 1 0 -1.000000 

Secant 8 -1.000000 

Bisection 26 - .999999 

False Position 54 3.999999 

Secant 12 3.000000 

Error Time To 
Converge 

0. lE-05 . 11 

0. lE-05 .80 

O.OE-05 .08 

0. lE-05 . l 0 

O.OE-05 . 1 8 

O.OE-05 . 11 

O.lE-05 . 11 

0. lE-05 .98 

O.OE-05 . l 6 



p(x) - xlO _ 23x 9 + 152x 8 + 130x 7 - 4627x 6 

+ 996lx 5 + 32626x 4 - 117780x 3 - 12024x 2 

+ 309312x - 217728 

ROOTS ARE: 9 ' 7 ' 6' 4' 3 ' 2 , 1 ' - 2' - 3' -4 

Starting Method Number Of Computed Error Time To 
Values Iterations Root Converge 

.999,10.0 Bisection 26 8.999999 0. lE-05 . l 6 

.999,10.0 False Position 1 1.000000 O.OE-05 . 0 l 

.999,10.0 Secant l l.000000 O.OE-05 . 0 l 

8.34,10.0 Bisection 23 9.000000 O.OE-05 . 1 3 

8.34,10.0 False Position 54. 9.000000 O.OE-05 1. 51 

8.34,10.0 Secant 21 5.999999 0. lE-05 . 41 

8.94,10.0 Bisection 23 9.000000 O.OE-05 . 1 3 

8.94,10.0 False Position 52 9.000002 0.8E-05 1 . 48 . 

8.94,10.0 Secant 14 9.000000 O.OE-00 28 



Starting 
Value 

3.50 

3.50 

3.50 

2.00 

2.00 

2.00 

1. 25 

1. 25 

1. 25 

p(x) = x5 - 12x 4 - 3x 3 + 358x 2 - 264x - 2880 

ROOTS ARE: 8, 6, 5, -3, -4 

Method Number Of Computed 
Iterations Root 

Newton 6 4.999999 

Aitken 14 5.000000 

Wegstein , 8 5.000001 

Newton 6 4.999999 

Aitken 1 9 8.000000 

Wegstein 14 5.000003 

Newton 6 6.000000 

Aitken NC NC 

Wegstein NC NC 

Error Time To 
Converge 

0. lE-05 .03 

O.OE-00 . l 0 

0. lE-05 . 1 0 

0. lE-05 .03 

O.OE-05 . l 5 

0.3E-05 .08 

O.OE-00 . 01 

NC NC 

NC NC 



Starting 
Value 

-3.95 

-3.95 

-3.95 

-6.80 

-6.80 

-6.80 

-7.70 

- 7. ·70 

- 7. 7 0 

p{x) = x8 + 17x 7 + 44x 6 - 462x 5 - 163lx 4 + 3493x 3 

+ 10226x 2 - 3048x - 8640 ~ 0 

ROOTS ARE: 4, 3, l, -1, -2, -5, -8, -9 

Method Number of Computed 
Iterations Root 

Newton NC NC 

Aitken 6 -5.000000 

Wegstein NC NC 

Newton NC NC 

Aitken NC NC 

Wegstein 9 4.000000 

Newton 4 -8.000000 

Aitken 5 -5.000000 

~Jegstein 5 -5.000000 

Error Time To 
Converge 

NC NC 

O.OE-05 .05 

NC NC 

NC NC 

NC NC 

O.OE-05 .06 

O.OE-05 .03 

O.OE-05 .05 

O.OE-05 .03 



Starting 
Value 

. 0 5 

.05 

.05 

.80 

.80 

.80 

1 • 5 5 

1. 55 

1. 55 

p(x) = x6 - 15x 5 
+ 49x 4 

+ 195x 3 - 1166x 2 + 720x + 2016 

ROOTS ARE: 7, 6, 4, 3,.-~, -4 

Method Number Of Computed Error Iterations Root 

Newton 8 -4.000000 O.OE-05 

Aitken 22 2.999996 0.4E-05 

Wegstein 8 5.999992 0.2E-05 

Newton 6 3.999999 0. lE-05 

Aitken 18 2.999991 0.9E-05 

Wegstein NC NC NC 

Newton 6 3.000000 O.OE-05 

Aitken NC NC NC 

Wegstein 7 2.999973 0.27E-05 

Time To 
Converge 

.05 

.20 

. 0 5 

.03 

• 1 6 

NC 

.03 

NC 

.03 

O'\ 
(J"l 
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Upon examining the results of the above mentioned com­

parisons it was decided to take the "best" method from each 

group and form a combined method which we shall call the Bis­

newbar method. This combined method consisted basically of 

the following four parts: (1) information gathered from cer-

tain algebraic theorems on the number, kind, and location 

of the real roots, (2) the method of Bisection, (3) the method 

of Newton-Raphson, and the (4) method of Bairstow. This com-

bined method is capable of returning all the roots both real 

and complex of a polynomial. One wi.11 note that the Bairstow 

method ~ill do this, but for equations of sufficiently high 

degree some round-off error may be accumulated and convergence 

may be slow. 

The above method (presented in flow chart form in a later 

section) will now be described in detail. First of all, it 

was necessary to determine if the polynomial p(x) possibly 

had real roots. This was done through the use of some of the 

algebraic theorems discussed previously. Secondly, an upper 

and lower limit to the real roots were ascertained also by 

using one of these basic theorems. Third, a systematic pro­

cedure was used to obtained two values such that p(a)·p(b)<O, 

the requirement for using the Bisection method. Fourth, those 

values were used as starting points for the method of Bisec­

tion. The method of Bisection was used until two approxima­

tions met the following criteria: 

where x represents the nth approximation to the root. Fifth, 
n 



o n c e t h i s c r i te r i o n w a s met , x n + 1 w a s u s e d a s th e s ta r t i n g 

value for the Newton-Raphson method. The Newton-Raphson 

method was allowed to continue until 

lxn - xn+l I ~ . lxl0-9. 

67 

The Newton-Raphson method.will converge in all cases except 

possibly when 

lp(x}p"(x)( 
[p' (x)]2 

is greater than one, or p'(x) is equal to zero or very close 

to zero. Sixth, once this final result was obtained, the root 

was factored from the polynomial leaving a polynomial of degree 

~-i. Seventh, the procedure was repeated (third through sixth 

steps) until all accessible real roots were removed from the 

polynomial. Note that roots very close together and multiple 

roots are considered inaccessible at this point. Eighth, once 

all accessible real roots were obtained, the procedure referred 

to the Bairstow method to remove those real and complex roots 

not already obtained. 

Round-off error is the major concern in a method such 

as the one described above. Since this combined method was 

written to decrease the amount of round off error in the roots, 

a special step was implemented in the above procedure to 

accomplish this task. Once the starting values are obtained 
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for the next root, the method of Bisection is used utilizing 

the reduced equation, but once its criterion is satisfied the 

Newton-Raphson method is used utilizing the original poly­

nomial. Through utilization of the original polynomial to 

obtain the final root to be removed from the equation, a more 

accurate final root is obtained a~d the coefficients of the 

reduced polynomial will contain a minimum amount of round-off 

error. It mig~t also be mentioned here that double precision 

was used in all endeavors of this study thus allowing another 

assurance of maximum accuracy. 

Since the Bairstow method is probably the most popular 

method today, the decision was made to form a comparison 

between the Bairstow and Bisnewbar methods. A total of forty­

eight polynomials were used varying in degree from two to 

twenty. Multiple roots, wide-spread roots, and roots very 

close together were used to form polynomials thus allowing 

many different situations. The time of convergence, accuracy 

and dependability were all noted. Contained in the following 

pages are examples of results from this comparison. One will 

note how extremely fast both methods are. Double p~ecision 

has been used on both methods, thus keeping accuracy at a 

maximum. In fact, for the epsilon involved, accuracy for both 

methods was generally the same. 

Again, the letters NC mean the method did not converge. 

The increments of time are, as before, measured in seconds. 

The expression .329003 is equivalent to 329.0. 



COMPARISON EXAMPLES 

I. Roots Are: -2.236, 2.236, -2.236, 2.236, 

-3.0, -6.0, -1+2!, -1-21, -1+21, -1-21 

Bairstow Time: NC 

Bisnewbar Time: 1.58 

II. Roots Are: -2.236, 2.236, -2.236, 2.236, 

9.0, -5.1' -3.2, 4.2 

Bairstow Time: NC 

Bisnewbar Time: 1.91 
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III. Roots Are: -9.2, -8.6, 3.0, 6.0, -1.2-4.61, -1 .2+4.6!, 

8-6.5!, 8+6.5I, -8.3+4.6I, -8.3-4.61 

Bairstow Time: .88 

Bisnewbar Time: 1. 15 

IV. Roots Are: -7.6, -~.o, -4.0, 7. 1, -8.6, 4. 1, -5.2, 

-3.2, 6.1' -8.6, -8+41, -8-41 

Bairstow Time: 3. 15 

Bisnewbar Time: 1.61 

V. Roots Are: -2.0, -4.0, -3.7, -8. 1, -4. 1, -6.2, -3.9+6.2!, 

-3.9-6.2!, -3. 1+8.7I, -3. 1-8.71 

Bairstow Time: .88 

Bisnewbar Time: 1.20 
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COMPARISON EXAMPLES (can't) 

VI. Roots Are: -1.9, -1.9, 4.7, -5.3, -6.0, 7.3, -6. 1, 4. 1 

Bairstow Time: NC 

Bisnewbar Time: .78 

VII. Roots Are: -1.8, 3.2, 4.1, 3.0, -9.0, -5.0, -3.9+6.2!, 

-3.9-6.2!, 2.0-4.7!, 2.0+4.71 

Bairstow Time: .95 

Bisnewbar Time: 1. 15 

VIII.Roots Are: -3.21, -9.11, -6.25, -8.11, -6.12, 1.42, 

7.33, -2. 12, -8. 12, -4.22 

Bairstow Time: 1.21 

Bisnewbar Time: 1. 18 

IX. Roots Are: -3.12, -4.5, 7.45, 3.21, 9.12, 7.86, 2.89, 

-4.85, -7.56, -4.38, -5.46, 8.16, -2.99, 

-5.44 

Bairstow Time: 2.70 

Bisnewbar Time: 2. 11 

X. Roots Are: -1.9, -1.9, 4.7, -5.3, -6.0, 7.3, -6.1, 4.1, 

-6.3-4.21, -6.3+4.21, -l.9+6.21, -1.9-6.21 

Bairstow Time: 1.43 

Bisnewbar Time: 1.38 
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Variations and refinements could be made on the Bisnew­

bar method to assure better convergence under certain situa­

tions, but one must remember the point of this method was to 

produce a relatively fast converging method capable of keeping 

round-off errors to a minimum. Any drastic changes in the 

method could defeat the prime purpose of the method.· 

This ends the discussion of some of the problems and so­

lutions of the polynomial root-finding field. The conclusions 

reached in the study of this field will be presented in the 

next section. 
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CONCLUSIONS 

Choosing a method instrumental in finding the roots 

(zeroes) of p(x) = O is often a very difficult task. Many 

methods exist in this field, but each has its disadvantages. 

Speed, convergence, starting values, desired root, and accur­

acy are all key words relating to problems involved in select­

ing a method. 

This author feels the basis for finding the roots of p(x) 

lies in the ability to locate the roots roughly and supply 

proper starting values. Should we be able to supply the proper 

starting values, fast converging methods may be utilized which 

will keep computation time at a minimum. The question arises 

on how do we obtain this information on the roots. The best 

answer available consists of (1) obtaining information from 

rough graphing of the polynomial and (2) from the algebraic 

theorems mentioned throughout this study. The utilization of 

one or both of the above can allow us much information on the 

locatio~s of the roots thus enhancing the possibility of supply­

ing a good starting value. 

Let us first consider the case of finding a single root 

of p(x) = O. Assume we have obtained a starting value(s) and 

are now proceeding to choose a method for finding the desired 

root. Examining the followi~g chart which the author has com­

piled in regard to his investigation of single root methods, 

we hope to obtain an idea on which method or methods to use 

in finding the root under consideration. Each of the methods 



was 

how 

rated as to the per cent of time it converged, and on 

its speed compared with the other methods. 

METHOD 

Bisection 

Newton-Raphson 

Secant 

Wegstein 

Aitken 

False Position 

~ 
DEPENDABILITY % SPEED 

100 .4 

95 1 

75 5 

40 2 

38 3 

34 6 

* the methods are ranked 
from high to low (1 thru 
6) depending on their 
average speed. 

AVERAGE 
SPEED 

{SECONDS} 

• 1 1 

.03 
\ 
I 

• 18 

.05 

. l 0 

.50 
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While many of these methods could apply in the case under con­

sideration, some of them will under certai·n circumstances 

fail to return the desired root. If one is successful in 

form i n g. an i t er at ion 'of the form x = f ( x) such that I f' ( x) I < 1 

for the starting value involved, convergence to the desired 

root is relatively assured if one uses the method of iteration. 

The main disadvantages here are that it is often hard to find 

the proper form of x = f(x), and convergence is relatively 

slow. 

Based upon the comparison of the eighteen polynomials, 

the author feels the "best" method for finding a single root 

lies in the combining of the Bisection method and the Newton­

Raphson method. The Bisection method allows us dependability, 
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while the Newton-Raphson method allows us speed. If we can 

determine an interval [a,b] (as small as possible) such that 

p(a)·p(b)<O, we can use the Bisection method to obtain 

lxn - xn+l 12 .01, and refer to the Newton-Raphson to converge 

to the root in question. Since the Newton-Raphson method does 

require a good initial approximation, the Bisection method is 

used to provide this. It should be noted, however, that for 
J 

roots of even multiplicity, the method of Bisection does not 

apply. One can, however, use the Newton-Raphson method since 

the complications of repeated roots only affect the.method by 

a decrease in convergence speed. 

Should we wish to find several or all of the real roots 

of p(x), a repetition of the above method may be used. Once 

we have obtained an interval such that p(a)·p(b)<O, we may 

use the methods of Bisection and Newton-Raphson to find a 

root. Once the root is found, it may be removed from the 

polynomial by synthetic division leaving a polynomial of 

degree n-1. This procedure may be continued until all singu-

lar real roots have been removed, at which time we can use 

the Newton-Raphson method to remove multiple roots should 

they exist. 

The two methods most popular for finding the complex 

roots of p(x) are the methods of Lin and Bairstow. The com­

parisons of this author have supported previous authors in 

that the Bairstow method appears to be the better of the two 

methods. The Bairstow method is of second order while the 

Lin method is of order - one, thus affording the Bairstow 
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method superior convergence. The Bairstow method is not as 

critical of the starting values of p and q as is the method 

of Lin. Should the complex roots of p(x) be desired, the 

method due to Bairstow will provide these with good accuracy 

and speed. The initial starting values of p = O and q = O 

are usually sufficient for the Bairstow method to converge. 

Now we come to what the author fe~ls is the most important 

aspect of polynomial root finding. This deals with the ability 

to find all the roots (real and complex) of p(x) = 0. 

This problem can at times be extremely difficult. One 

must note, however, that there are special always-convergent 

methods available such as the Lehmer-Schur, Graeffe, and 

Bernoulli methods that will eventually obtain either all the 

real roots or both real and complex roots. These methods 

are, however, extremely slow and special cases arise in which 

the procedures may have to be altered in such a manner that 

programming becomes extremely complicated. The author sug­

gests that if one of the above methods is used, it should only 

be used to provide approximations to the roots and then the 

use of a method such as the Newton-Raphson method should be 

implemented to converge to the true roots. In reference to 

the previous statement, the Bairstow method may also be used 

to supply rough approximations to the real roots of p(x), and 

again we may use the Newton-Raphson method to converge to 

the true roots. 

The Bisnewbar method, developed by this author, and the 

Bairstow.method were compared as to accuracy, speed and 



76 

dependability. Summarized in the following table are the re­

sults achieved in the comparing of the methods for forty­

eight different polynomials. 

METHOD 

Bai rs tow 

Bisnewbar 

* 

DEPENDABILITY % 

62 

100 

Speed is indicated by 
the per cent of the 
time one method was 
faster than its counter­
part. 

SPEED 

42 

58 

* 

One will notice that the Bisnewbar method converged for 100% 

of the polynomials examined, and 58% of the time was faster 

than the Bairstow method. Since double precision and an 

epsilon (error) of . lD-09 were used on both the Bairstow and 

Bisnewbar methods, the overall accuracy appears to be the· same 

for both methods. 

The Bisnewbar method has proven to be better than the 

Bairstow method in that it conver~es more often, and on the 

average converges faster. The reason fer this appears to be 

in the fact that the Bisnewbar method attempts to remove all 

singular real roots from the polynomial before any attempt 

is made to find the complex roots or roots of multiplicity. 

The Bisnewbar method appears to remove the .influence of these 

roots, thus allowing the Bairstow part of the method to re­

move the remaining roots with some degree of complication 



removed. 

Thus, this author feels that the Bisnewbar method is a 

good candidate for finding the roots of p(x) because it is 

fast, accurate, and dependable. 

77 
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APPENDIX I 

This section contains a flow chart and program for the 

Bisnewbar method. Should the reader desire to use the pro-

gram, certain information is essential. The user m~st supply 

the number of coefficients of the pol~nomial as an integer 

right justified in column four of the first data card. On 
I the same card the actual coefficient should be entered in de-

scending order, right justified in fields of fifteen. These 

coefficients should be in double precision and any coefficient 

non-existent in the polynomial should be represented as zero. 

Consider the following example: 

p(x) = x7 + 13x 6 - 7x 5 + 5x 4 + 3x 2 + 2x - 1 = O. 

The data would appear as: 

Data card #1 --------
COLUMN 4 1 9 34 48 64 

DIGIT 8 1. DO 0 13.000 -7.000 5.000 

COLUMN 15 30 45 60 

DIGIT 0.000 3.000 2.000 -1.000 

Note if more than four coefficients are entailed, the re­

maining coefficient should be put on successive data cards 
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four to a card right justified in fields of fifteen. If the 

previous instructions are followed, the Bisnewbar method 

will return all real and complex roots. 

One should also note that there are several subprograms 

necessary to the Bisnewbar method. The routines are as follows: 

(1) a routine to determine an upper and lower bound to the 

real roots, (2) a routine to evaluate a polynomial (nested 
I 

multiplication), (3) a routine to form the first derivative 

of p(x) and (4) a Bairstow method with double precision 

accuracy. 

All nece$sary parts of the Bisnewbar method are contained 

in this appendix. 
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BISNEWBAR FLOWCHART 

Input J Polynomial 

* NI = 0 

Determine 
an interval 

[a,b] 

isection 
until 

I xn + 1- xn I ~. 01 

Raphson I Newton- ---ij 
lxn+l-xnl 

L-~. lD-09_ 

remove root 

from 

p(x) 

No 

~airs ow 
method for 
remaining 
roots (comple 

~~,& mu 1 ti le) 

*NI represents the 
current number of 
intervals attempted. 

*NMAX represents 
the maximum number 
of intervals the 
user wishes to 
attempt. 
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