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I. INTRODUCTION 

Heat capacity arises because the individual particles compris-

ing a substance are able to move and thus take up kinetic energy and 

usually also potential energy as the temperature rises. In many 

substances electrons do not absorb energy until very high temperatures 

are reached. Thus most heat capacity effects are interpreted in 

terms of the motion of the atoms neglecting electronic transitions. 

The total internal energy of a material is, therefore, equal 

to the sum of the energies due to translational and rotational motion 

of the molecules and to the vibrational motion of the atoms making 

up the molecules. 

The equipartition principle states that each translational and 

rotational degree of freedom contributes R/2 cal/ (g-mole) (°C) to 

the heat capacity at constant volume, while the maximum vibrational 

0 
contribution for each degree of freedom is R cal/ (g-mole) ( C). The 

translational and rotational contributions are fully effective at all 

except very low temperatures, while the extent of the vibrational 

contribution depends upon the temperature even to rather high values. 

Since there is a total of 3N degrees of freedom, the molal heat 

capacity for non-linear molecules is given by: 

3R + (3N-6 )RF ( 1) 



or at low pressures by: 

4R + {3N-6)RF 

where N = the number of atoms in the molecule 

R = gas constant 

F = the fraction of the maximum vibrational contribution 
that is effective 

{2) 

In this equation the only term which varies with temperature 

is F. Since it is the effective vibrational factor, it may be related 

2 

with the nature of chemical bonds of the molecules. Similar molecules 

might be expected to have similar F factors. 

The objective of this investigation is to search for the relation-

ship among the F factors of hydrocarbons, and use this relationship 

to develop a graphical method of determining heat capacities of the 

hydrocarbons. 
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II. LITERATURE REVIEW 

A. Approximation Methods of Estimating Heat Capacity 

Although direct experimental measurement is the 

primary source of heat capacity values, theoretical calcu-

lations based upon the detailed properties of atoms, molecules, 

or crystals contribute reliable heat capacity values in favor-

able cases. 

1. Dulong and Petit's Rule 

In 1819 Dulong and Petit announced the empirical 

rule that the heat capacity per gram atom is the same 

1 
for all solid elements. Boltzmann had shown that the 

rule of Dulong and Petit could be directly deduced from 

the classical kinetic theory 1 and that the constant of 

Dulong and Petit should be equal to 3R or approximately 

5. 96 cal/ degree. 

Later measurements showed that the Dulong and 

Petit's constant was merely a high temperature limiting 

value, approached by different elements at different 

temperatures. It fails for all solids if the temperature 

is sufficiently low. 

2. Einstein's Theory of Heat Capacities of Solids 
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An important advance in heat capacity theory was 

made in 19 07, when Einstein applied quantum theory to 

atomic vibrations. Einstein's basic assumption was 

that the atoms of a solid vibrate individually and harmon-

ically about their equilibrium positions with a single 

frequency v, which is characteristic of the solid. 2 His 

heat capacity equation 1s 

where 
X 

h v ' = kT 

k = Boltzmann's constant, 

T = absolute temperature, 

h = Planck's constant and, 

R = gas constant. 

(3) 

This equation shows Cv to be a function of tempera-

ture, and it can readily be shown that (a) Cv approaches 

zero when T approaches zero, and (b) Cv approaches 

the classical value of 3R when T becomes large compared 

to hv /k T. For intermediate temperatures, Einstein's 

equation predicts approximately the correct variation of 

atomic heat, but at low temperatures it yields values 

that are too low. 
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3. Debye' s Theory of Heat Capacities of Solids 

A further advance in theory was made by Debye 

in 1912. He proposed that a crystal be treated like a 

giant molecule possessing many different vibrational 

frequencies ranging almost continuously from zero up 

to a maximum value, He further assumed that 

the velocity of the different frequencies of vibrations 

were equal (no dispersion), and were not affected by 

temperature. In reality, the velocity is dependent on 

the frequency and some dispersion inevitably results. 

Debye also assumed that the maximum frequency of the 

transverse vibrations is equal to the maximum frequency 

of the longitudinal vibrations, which again is not true. 

In spite of these assumptions, the Debye theory approxi-

mates the experimental data for all solids with remark-

able accuracy. De bye 1 s equation is 

where e 
T 

= 
hvm 

kT 

5~ 
0 

, and 

Vm maximum frequency possible. 

Other variables are the same as those defined in 

Einstein's equation. 

(4) 
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In this equation, as T - oo, the heat capacity 

approaches 3R as predicted from the Einstein theory. 

But as T - 0 the Debye expression for Cv approaches 

zero much less rapidly than does the Einstein prediction. 

It is in this respect that De bye's theory is superior for 

describing heat capacity for actual crystals. 

4. Heat Capacities of Monatomic Ideal Gases 

In 1867 Naumann predicted that a monatomic ideal 

gas would po·ssess no thermal energy except that of 

translation. From elementary kinetic theory, the heat 

capacity at constant volume will be 3R/2 cal/mole·deg. 1 

This prediction has been abundantly verified by measure­

ments on various monatomic gases over wide temperature 

ranges. 

B. The Principle of the Equipartition of Energy 

For polyatomic molecules, the energy is not only 

associated with translational, but also with rotational and 

vibrational motions. It has been shown that the kinetic energy 

and the potential energy residing in any degree of freedom is 

RT/2. This is called the principle of equipartition of energy 

as developed from classical statistical mechanics by Maxwell 

and Boltzmann. 4 For vibration the total energy per degree of 
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freedom is RT, RT/2 for the kinetic energy and RT/2 for 

potential energy. Since translation and rotation involve no 

potential energy. they contribute R T I 2 to the internal energy 

for each degree of freedom. 

C. Boltzmann Distribution Law 

For a discussion of the properties of substances it is 

necessary to know the distribution of molecules among their 

various quantum states. 

The number of molecules in a given quantum state equals 

the probability that a molecule is there multiplied by the total 

number of molecules of the system. The probability that a 

molecule has energy E i is proportional to e-E i/ kT. Thus, at 

equilibrium: 

N· ~ 

N· J 

- E i/kT 
e (5) 

In the case where the energy levels are degenerate, this 

equation becomes: 

N· 
~ 

N· 
J 

the total number of molecules with energy 

Ei andEj respectively, 

(6) 
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= degeneracies of i th and j th energy 
levels, 

k = Boltzmann's constant and, 

T = absolute temperature. 

The expression for Ni/Nj is called the Boltzmann distribution 

law 5 in honor of Boltzmann, who was a pioneer investigator of 

such relationships. 

With this law, the thermodynamic properties of any 

system can be calculated as long as its molecular parameters 

are known. 

D. Partition Function 

The Boltzmann distribution law can take another form 

as follows: 

N· ~ (7) 
= 

N 

where N :::!:: the total number of molecules in the system. 

_E 1/ k T 
The expression r g i e is very important in statistical 

mechanics. It is called the partition function and usually 

denoted by the symbol Q, ie., 

_E 1/k T 
Q ~ ~ gl e . 

1 

The terms in the summation for Q indicate how the molecules 

are partitioned among the various energy states. 
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The relationship between the internal energy and the 

partition function for one mole of gas is given by the expression!> 

E ::: 2 ( alnQ ) • 
RT aT v 

(8) 

The heat capacity contribution follows. directly by differentiation: 

C = ( aE) ::: R (Tz 
v , aT v + 2T 

alnQ) 
aT 

(9) 

E. Contribution of Three Kinds of Motions of Molecules to Heat 

Capacity 

For polyatomic molecules there are three kinds of motion 

possessed by a molecule, translational, rotational and vibrational. 

Each kind of motion has its independent contribution to heat 

capacity, each of which can be calculated from its partition 

function. 

1. Translational Contribution to Heat Capacity 

The translational energy levels for a molecule in 

a three-dimensional box are given by:3 

n2h2 
E ::: 

n 8mV2/3 

where n = the translational quantum number, 

m ::: the mass of a molecule, 

V :::: the volume of the box and, 

h ::: Planck's constant. 

( 10) 

The degeneracy of each level is unity, gn ::: 1; therefore 
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the translational partition function Q becomes: 

= k exp (11) 

The energy levels are so closely packed together that 

they can be taken to be continuous and the summation 

can be replaced by an integration. The result is: 

3/2 
{21Tmk.T) v 

h 

From the translational partition function, the trans-

lational contributions to· internal energy and heat 

{12) 

capacity of one mole of gas can be obtained as follows: 

c -(~) ::: v- aT v 

3 R. 
2 

3 RT 
2 

2. Rotational Contribution to Heat Capacity 

For linear molecules, the allowable rotational 

(13) 

(14) 

energy levels are given by an expression of the form: 

J (J + 1 )h2 • 
81T 2I 

In this equation J is known as the rotational quantum 

( 15) 

number and I is the moment of inertia of the molecule 

about its center of gravity. The degeneracy of the 

rotational energy levels is equal to 2J + 1. Hence the 

rotational partition function for a linear molecule will be: 
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= 8 'IT 2 IkT 

o-h2 
(16) 

where o- = symmetry number of the molecule. 

By a similar procedure, the rotational partition 

function of non-linear polyatomic molecules can be 

obtained. 4 It is: 

= 
1/2 3/2 

(8rr3 ABC) (kT) { 17) 

where A, B and C are the three principal moments of 

inertia of the molecule. Then the internal energy and 

heat capacity due to rotation will be 3RT /2 and 3R/2 

respectively for non-linear molecules, RT and R for 

linear molecules. 

3. Vibrational Contribution to Heat Capacity 

In general, the vibrational energy of a molecule 

lies in several modes of vibration each of which con-

stitutes a single degree of freedom. Since the energy 

levels of the harmonic oscillator (one degree of freedom) 

are: 

ev = (v+ l/2)hv 

the partition function for each vibrational degree of 

freedom will be:6 

-x/2 
e av = ------1 - e-x 

{18) 

(19) 
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where hv , and 
X - KT 

v ::: the fundamental frequency of the vibration. 

For one mole of gas, the internal energy and heat 

capacity contributed by the vibration of one degree of 

freedom are as follows: 

E 

c = v 

The value of the expression x 2 ex is, in general, 
(eX-1 )2 

{20) 

( 21) 

less thanone. It approachesone when the temperature is 

sufficiently high. 4 To simplify the form of the equation 

of heat capacity, replace the expression x2ex by F, 
(eX-1 }2 

so that the heat capacity becomes: 

C = RF v (22} 

As there are (3N- 5) vibrations for a linear molecule 

and (3N-6} for a non-linear molecule, the heat capacities 

for these two kinds of gases are given by the following 

expressions: 

For linear molecules: 

C = {3N-5}RF. 
v 

For non-linear molecules: 

Cv = (3N-6) RF 

(23) 

(24} 
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F. Heat Capacities of Gases 

Translational and rotational contributions are fully 

effective at all except very low temperatures. The extent 

of the vibrational contribution depends upon the temperature 

even to rather high values. However the electronic contri-

bution is negligible even at high temperatures. Hence the 

total heat capacity of a gas is given by the sum of the con-

tributions due to translation, rotation, and vibration. 

For non-linear molecules: 

Cv = 3 R + 3 R + (3N -6) R · F (25) 
2 2 

At low pressure the gases act as ideal gases. Thus the heat 

capacity at constant pre~sure will be: 

cP = cv + R 

or Cp = 4R + (3N-6) R· F. 

Similarly for linear molecules: 

c = p 7 R + 
2 

(3N-5)R·F. 

(26) 

(2 ) 

(2 7) 
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III. EXPERIMENTAL 

In the review of the literature on heat capacities of gases, it is 

found that the heat capacity at constant pressure for linear molecules 

can be expressed as: 

= -~ _ R + ( 3 N- 5) R • F {2 7) 

while for non-linear molecules: 

Cp = 4R + {3N-6) R· F { 2 ) 

On the other hand, for most substances, the heat capacities due to 

direct measurements can be formulated as: 

{28) 

The terms, a, b and c, are constants which can be found in literature 

7 f . reports or var1ous gases. By comparing equation {2 7 ), {2) and 

{28 ), it is readily found that: 

F = 

and 

F = 

(a+ bT + cT2) - .; R 

{3N-5)R 

(a+ bT + cT 2 )- 4R 
{3N-6)R 

for linear and non-linear molecules respectively. 

The temperature range over which data for equation (2) 

{29) 

{30) 

were valid was approximately 300°-1500°K. This range was used 

in this investigation and is a range of temperature often encountered 

in industry. The calculated values of the vibrational 
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factors, F, for all hydrocarbons studied, were obtained at increments 

of 50°K using an IBM 1620 computer (Appendix 1 ). The data are 

graphically illustrated h1. Figures 1-3 for three kinds of hydrocarbons. 

It is apparent that F increases as T increases and that the slope of 

the curve in the low temperature range is greater than that in high 

temperature range. 

If the curve of methane is used as a standard, it is found that 

all other curves will approximately coincide with this standard by 

an appropriate shifting of the temperature axis. The values of the 

temperature shifts for all hydrocarbons are shown in Table I. 

Plots of A T8 , the temperature shifts, against N, the number 

of atoms in a molecule, produced three curves, each of which 

represents a family of hydrocarbons. In the alkyne family, acetylene 

is far off the curve. It is the only exception in this study. 

It is also found that in plots of ATsagainst the molecular 

weights of the hydrocarbons, the alkanes and alkenes can be repre-

sented by a single curve. That is, the curves for these two families 

of hydrocarbons become the same. Since the curve for alkynes is 

still far removed, this correlation is not of much greater value 

than AT versus number of atoms. s 

For convenience, the standard Vibrational Factor-Temperature 

curve and three Temperature Shift-Atom Number curves were 
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TABLE I 

Temperature Shifts For Hydrocarbons 

Substance Temperature Shift (°K) 

CH4 0 
C2H6 155 
C3Hs 225 
n-C4H10 265 
n-C5H12 290 
n-C6H14 304 
n-C7H16 315 
n-CsH18 327 

C2H4 155 
C3H6 220 
1-C4H8 265 
1-C5Hl 0 295 
1-C6H12 312 

1-C7H14 322 
1-CsH16 330 

c2H2 308 
C3H4 290 
1-C4H6 315 
1-C5 Hs 335 

1-C6H10 350 

1-C7H12 360 

1-CsH14 367 
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placed on the same diagram (Figure 4 ). These four curves can be 

represented by equations which were found by the least square 

method (Appendix 2) as follows: 

1. Standard Vibrational Factor - Temperature Curve 

F = 

where 

ao = 

al = 

a2 = 

a3 = 

a + 
0 

-0.24954394 

a T 2 + 2 

0. 9 6 24 50 8 X } 0- 3 

-0. 16980579 X 10- 6 

-0.27122797 X 1 o-lo 

(31) 

2. Temperature Shift-Atom Number curve for Alkanes: 

A Ts = b 0 + b 1N 

+ b N 6 
6 

+ b N 2 + b N 3 + b N 4 + b N 5 
2 3 4 5 

where 

bo = -537.9203 

bl = 152.53113 

b2 = -9.585085 

b3 = . 327194 X 10-l 

b4 = • 23516294 X 10- 1 

b5 = o. 10194573 x Io- 2 

b6 = . 13497531 x Io- 4 

(32) 
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3. Temperature Shift-Atom Number Curve for Alkenes: 

~T -s -

where 

co :::: 

cl = 

c2 = 

c3 :::: 

c4 :::: 

c.4~ 

-44.781258 

41.959716 

-1. 526562 

• 12638149 X 10-l 

.2179645x1o- 3 

4. Temperature Shift-Atom Number curve for Alkyne s: 

~ Ts = d 0 + d 1 N + d 2 N 2 

where 

d 0 = 215.47516 

:::: 12.45551 

d 2 = -. 25298128 

(33) 

(34) 

Use of the chart to find the heat capacity of a gas at a specified 

temperature is very simple. First, determine the temperature 

shift for the gas from the Temperature Shift-Atom Number curve 

and then add it to the temperature for which the heat capacity is 

desired. Second, read off the value of the vibrational factor from 

the Vibrational Factor-Temperature curve. Finally substitute the 

F value into the heat capacity equation 

Cp = 4R + (3N-6)R • F (2) 
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The heat capacities of all hydrocarbons have been checked 

0 0 ( from 300 K through 1500 K by a computer program. Appendix 3) 

It is found that the deviations in the temperature range over 400°K 

are less than 2% of the values obtained from the empirical equation, 

= a + bT + cT 2 ,. In the range of 3 00° -400°K, some are 

greater than 5% but the average in this range of temperature is 

less than 4%. Therefore the method developed in this research 

is a good approximation method of estimating heat capacities of 

hydrocarbons. 
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IV. DISCUSSION 

As mentioned in the Experimental Section, for each gas 

the slope of the vibrational factor -temperature curve in the tem­

perature range of 300° -400°K is much greater than that in the 

high temperature range. For this reason it is found, after 

shifting, that the vibrational factor-temperature curve in the 

range of 3 00° -400°K is not close to the standard as is the part in 

the high temperature range. Since the F factor in equation (2) is 

obtained from the standard curve, the deviation of heat capacity 

in the range of 3 00° -400°K is· greater than that in the higher tem-

perature range. 

In this investigation the only linear molecule is acetylene. 

The temperature shift for this molecule is found to be much higher 

than that for propyne, the next hydrocarbon in the family of alkynes. 

This causes the data point for acetylene to be far removed from 

the ..6.. Ts-N curve for alkynes (Fig. 4 ). A quantitative interpre­

tation would be possible if the frequency for each mode of vibration 

was known. In general, for complex organic compounds this is 

impossible. But for the present case some characteristic stretch­

ing and bending frequencies of particular bonds or groups have 

been obtained through the analysis of molecular spectra 8 



TABLE II 

Characteristic Frequencies of Chemical Bonds and Groups 

Bond 

C-H 

C-C 

C:C 

Group 

H-C-H 

C-C-H 

C-C-C 

Stretching Frequency 
(em -l) 

2800-3300 

800-1200 

2100 

Characteristic 
Bending Frequency 

(em -l) 

1300-1400 

800-1200 

300-400 

The data in Table II show that the frequencies of bending 

vibrations are much less than those for stretching vibrations of 

25 

C-H and C;;C. The high value of the temperature shift for acety-

lene might be due to the lesser modes (reduced degrees of freedom) 

of bending vibrations. 

Alkanes and alkenes having the same number of carbon 

atoms have very similar values of~ T s whereas alkynes possess-

ing the same number of carbon atoms have a much higher value. 

This can not be interpreted quantitatively either, because only a 

few frequencies for the vibrations are known. However, plots of 
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the free energy of formation of the hydrocarbons against the 

number of atoms seem to reflect a similar phenomenon (Fig. 5 ). 

The curve for the alkyne s is further removed from that of the 

alkenes than the curve of alkenes is removed from the alkanes. 

Although these plots show a similar displacement to these of 

~ T s -N, there is no apparent interpretation or correlation. 

In the empirical equation of heat capacity Cp = a + bT + cT 2 , 

all the constants a, b and c are characteristic of each gas. In 

calculating the heat capacity of a mixture of gases the three con­

stants for each component of the :mixture are required. However 

1n the method developed in this thesis, the heat capacity of a gas 

is a function of two terms only, the number of atoms in a molecule 

and the temperature shift of the gas, both of which are easy to 

find. The number of atoms is obtained directly from the molec­

ular formula and the temperature shift comes from a graph sup­

plied from this work. 

The temperature shift for a hydrocarbon series can also 

be calculated from the empirical equation that is supplied. The 

lesser amount of required data and its reduction to equation form 

is the major advantage of this method in determining the heat 

capacities of gases. It can also be extended to gaseous mixtures. 

in a similar fashion. 
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V. RECOMMENDATIONS 

In this investigation only three series of hydrocarbons 

were studied. The results are very satisfactory. It might be 

possible to extend this approach to other series of substances, 

such as alcohols, aldehydes and ketones. Perhaps it would be 

necessary to find another parameter to relate the temperature 

shifts of a new series of gases, although the vibrational factor­

temperature curves found by this method might be adequate. 
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Since alcohols, aldehydes and ketones are also the main 

organic compounds used in industry, the extension of this method 

to these new organic gases could prove valuable. 
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VI. CONCLUSIONS AND SUMMARY 

Twenty two gases of three hydrocarbon series were studied 

in this investigation. All the hydrocarbons were similar to some 

degree. It is found that the vibrational factor-temperature curves 

for each of these gases approximately coincide if appropriate 

shifts are made on the temperature axis. If the methane curve 

is used as a standard, eac.h of the other hydrocarbons has a posi-

tive temperature shift for coincidence. Plots of the temperature 

shifts .of the hydrocarbons against the number of atoms in a 

molecule produce three curves, each representing a family of 

hydrocarbons. From these curves the required temperature 

shift can be found; then the vibrational factor can be obtained 

from the standard vibrational factor -temperature curve. Sub-

stituting the vibrational factor and the number of atoms into 

equation (2 ), the heat capacity of a gas at the specified tempera-

ture can be readily calculated. 

The values of heat capacities of these hydrocarbons, 

excepting acetylene, were checked from 300° through 1500°K. 

The deviation from the values calculated from the empirical 

equation Cp ::: a + bT + cT2 for all gases is found to be less than 

2o/o at temperatures over 400°K. 
0 0 

In the range 3 00 -4 00 K, the 

average of the deviations for each gas is less than 4o/o. There-

fore the method developed in this study is a good approximation 
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method of estimating heat capacities of hydrocarbons. As mentioned 

in the discus sian, the method is particularly convenient for calcu­

lations involving a large number of gases as the amount of heat cap­

acity data is significantly reduced. 
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VIII. APPENDICES 



APPENDIX 1 

Program For the Calculation of Vibrational 
Factors of Hydrocarbons 

DIMENSION A(22), B(22), C(22), P(22) 
READ 15, {A(I), B(I), C(I), P(I), I=l, 22), R 
DO 121 I=1, 22 
PUNCH 32, A(I), B(I), C(I}, P(I), R 
PUNCH 21 
T=300.0 
DO 22 K=1, 25 
CP=A(I) +B (I)~:~T+C(I }'!~T >!~T 
F=(CP-4. *R)/((3. ~:~P(I}-6. )>!~R} 
PUNCH 23, T, CP, F 

22 T=T+5o. o 
121 CONTINUE 

15 FORMAT(4E18. 8) 
21 FORMAT(/ lOX, 1HT, 9X, 2HCP, 1 OX, 1HF} 
32 FORMAT(/3E15. 5) 
23 FORMAT (F 13. 1, F 11. 3, F 12. 6) 

STOP 
END 
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APPENDIX 2 

Program 1. Fitting Equations for Temperature Shift­
Atom Number Curves of Hydrocarbons 

DIMENSION X{8 ), Y{8 ), S{ 17 ), B (9 ), A(9, 10) 
DO 88 LL=1, 3 
READ 100, G, P 
MN=P 
READ 100, {X(I), Y(I), I= 1, MN) 
S(l )=P 
E=O. 0 
DO 66 I=1, MN 

66 E=E+Y(I) 
B(1 )=E 
DO 105 M::::l, 16 
R=o.o 
DO 11 0 I= 1, MN 

110 R=R+X(I)~:~~:~M 
105 S(M+ 1 )=R 

DO 115 N=1, 8 
c=o.o 
DO 120 I=1, MN 

120 C=C+Y(I)~:~x(I)~:c:.:~N 

115 B(N+1 )=C 
NN=3 
MM=4 
DO 155 L=1, 7 
DO 19 9 I= 1 , NN 
DO 199 J=1, NN 
M=I+J -1 

199 A(I, J )=S(M) 
DO 188 I=l, NN 

188 A(I, MM)=B(I) 
DO 30 I=l, NN 
TEMP= 1. 0/ A(I, I) 
NI=I+1 
DO 10 J=NI,MM 

10 A(I, J )=A(I, J )~:~TEMP 
DO 30 K=l, NN 
IF (I-K)25, 3 0, 25 

25 DO 20 J=NI, MM 
20 A(K, J)=A(K, J)-A(K, I):l.~A(I, J) 

30 CONTINUE 
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DO 40 I=l, NN 
40 PUNCH IOO,A(I,MM) 

PUNCH 22 
W=G 
DO 33 I= I, MN 
K=MM-2 
U=O. 0 
DO 222 N=l, K 

222 U=U+A(N+I,MM):::~w~:o:~N 
V=U+A(l, MM) 
PUNCH 44, W, V, Y(I) 

33 W=W+3. 0 
NN=NN+I 

155 MM=MM+I 
88 CONTINUE 

100 FORMAT(4El8. 8) 
200 FORMAT(2IIO) 
44 FORMAT (F 13. 1 , F 1 7. 1 , F 1 7. 1 ) 
22 FORMAT(/ lOX, IHN, 12X, 9HDT(CALC;-~), 8X, 9HDT(CURVE)) 

STOP 
END 

Program 2. Fitting Equation For Standard Vibrational 
Factor- Temperature Curve 

DIMENSION X( 17 ), Y( 17 ), S(l1 ), B (6 ), A(6. 7) 
READ 100, (X(I), Y(I),I=l, 17) 
E=o. o 
D066I=1,17 

66 E=E+Y(I) 
B(l )=E 
S(l )= 17. 0 
DO 105 M=1, 10 
R=o. o 
DO 11 0 I= 1 , 1 7 

110 R=R+X(I)~:o:~M 
105 S(M+ 1 )=R 

DO 115 N= 1, 5 
c=o. o 
DO 12 0 I= 1 , 1 7 

120 C=C+Y(I):::cX(I)~:c:::cN 

115 B(N+1)=C 
DO 155 L=1, 5 
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READ 200 NN~MM 
DO I 9 9 I= I , NN 
DO 199 J== I, NN 
M=I+J-:- I 

199 A{I, J )=S{M) 
DO 188 I=I, NN 

188 A{I, MM)=B{I) 
DO 30 1=1, NN 
TEMP=l. 0/A{I~ I) 
NI=I+ 1 
DO 10 J=NI, MM 

1 0 A{I, J )==A{I, J )~:!TEMP 
DO 30 K=I, NN 
IF(I-K)25, 3 0, 25 

25 DO 20 J=NI, MM 
20 A{K, J )=A(K~ J )-A(K, I)~!!A{I, J) 
30 CONTINUE 

DO 40 I=1, NN 
40 PUNCH 100,A{I~MM) 

PUNCH 22 
DO 33 I= 1, 17 
K=MM-2 
U=O.O 
DO 222 N=1, K 

222 U=U+A(N+ 1~ MM)~:!X(I)>:o:!N 
V==U+A(1, MM) 

33 PUNCH 44, X{I), V~ Y{I) 
155 CONTINUE 

22 FORMAT(/I1X, 1HT, 11X,8HF{CALC. ),9X,8HF{CURVE)) 
1 0 0 FORMAT { 4 E 18. 8 ) 
200 FORMAT(2I10) 

44 FORMAT{FI4.I,F14.3,FI8.3) 
STOP 
END 
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APPENDIX 3 

Program For the Calculation Of Deviations of Heat 
Capacities 

37 

DIMENSION A(21 ), B(21 ), C(21 ), PN(21 ), A1 (7 ), B 1 (5 ), C 1 (6 ), E(5} 
READ 1000, (A(I), B(I), C(I), PN(I),I=1, 21 ),(A1(I), I=1, 7), (B1(I), 

I= 1, 5 }, (C 1 (I}, I= 1, 6 }, (E(I}, I= 1, 5 ), R 
DO 123 I= 1, 21 
PUNCH 99 
T=300 
DO 223 N= 1, 25 
CP1=A(I)+B(I}~:eT+C(I}*T)leT 

IF(I-8}1, 1, 5 
5 IF(I-15}2,2,3 
1 U=O. 0 

DO 1234 M=1, 6 
1234 U=U+A1(M+ 1 )>lePN(I}:>!ol~M 

DT=A1(1)+U 
GO TO 4 

2 U=O. 0 
DO 3 2 3 L= 1 , 4 

323 U=U+B 1 (L+ 1 }):ePN(I}~:~*L 
DT:::B1(1 )+U 
GO T04 

3 U=O. 0 
DO 2234 J=1, 5 

2234 U=U+C1(J+1)>le PN(I)):o:~J 
DT=C1(1 )+U 

4 TDT=T+DT 
s=o.o 
DO 3234 K= 1, 4 

3234 S=S+E(K+ 1 ))~TDT):o:~K 
F=S+E(l) 
CP2=4. ):eR+(3. ):epN(I)-6. )*R>leF 
DCP:o;CP2-CP1 
DEV=DCP*100. 0 I CP1 
PUNCH 423, T, CP1, CP2, DCP, DEV 

223 T=T+5o. o 
123 CONTINUE 

1000 FORMAT(4E18. 8) 
4 2 3 FORMAT (F 24. 1 , F 9 • 2, F 1 2. 2, F 13. 3 , F 1 0. 2 ) 

99 FORMAT( I /22X, 45HT CP1(EQU.} CP2{CURVE} CP2-CP1 DEV.) 

STOP 
END 
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