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ABSTRACT

The purpose of this study is to determine the radiant
heat transfer in réctangﬁlar configurations and construct
a gereral computer program. Two specific cases are studied
in this work.

The first case is a rectangular duct with openings at
each end. The duct is separated into two sections which are
called the source and the sink respectively. A linear
temperature profile is imposed on the source section., The
energy loss of both the source and the sink is investigated.

The second case is a complete rectangular enclosure.
The two end plates are called the source and the sink re-
spectively. A linear temperature profile is imposéa on the
duct like section between the two plates. The energy loss
of both the source and the sink is investigated.

The method of analysis is Gebhart's unified method.

The computer programs are as generalized as possible., Iach
program contains two ﬁain parts: (A) The evaluation of
the configuration factors between any two surfaces in the
enclosure. (B) The evaiuation of the radiant energy loss

of the source and the sink.
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INTRODUCTION AND REVIEW OF LITERATURE

Much work has been done in the field of thermal radia-
tion. Hamilton and Forgan (1)* first developed the confi-
guration factors for many cases and stated the configuration
factor algebra. The analysis of radiant heat transfer has
been presernted using approaches, such as: (A) Hottel (2)
introduced 2 method, by which the equivalent shape factor
can ve solved and the radiant heat transfer then determined.
(B) The method originally proposed by Poljak and later
refired by Cppenheim (3) is cailed "Radiation Analysis by
Network". This method makgs use of the analogy between
radiation interchange and electrical circuits. (C) ishi-
moto and Bevans (4) preseited a method using the "Script F"
in their paper. This method states that the net exchange
between two surfaces in an enclosure must be of the form
o\(Ti—Tg) multiplied by-'a factor %, (called script F) which
is solved by a matrix solution. (D) The method developed
by Gebhart (5) makes use of determinants and introduces the
so termed absorption factors and uses certain relations to
reduce the amount of labor required in obtaining a numerical
solution for the rate of heat transfer to or from a given
surface.

This study is concerned with the radiant heat transfer

in both a rectangular duct and a rectangular enclosure; The

* Numbers in parentheses refer to Bibliography.



open rectangvlar duct is separated into two sections, the
source and the sirk. The temperature of the source is chang-
ing from T, to T, in a linear fashion and the temperature
of the sink is a uniform value given by T3. The complete rec-
tangular enclosure or box has temperatures of Tl and T2
at either end. The duct like section between these ends has
a linear temperature profile varying from the end temperatures.
Since the radiation properties\are dependent upon the
temperature distribution and the temperature along a wall
may not be uniform,.thé method of numerical analysis must be
uséd to approximate the radiant heat transfer. That is,:the
wall with varying temperature must be divided into several
sections, the solution is then based on Gebhart's unified
method for radiation-excharge calculations. In solving the
simultaneous equations, the Gauss-Jordan reduction method
is used.
The configuration factors between any two surfaces
are evaluated by means of "configuration factor algebra".
The two special classes of configuration factors used are:
(A) The configuration factors for finite, perpendicular
rectangles having a common edge. (B) The configuration
factors for finite parallel, opvosed rectangles.
The emissivities corresponding to the temperatures are
approximated by using the Lagraenge interpolation formula.
All of the calculations were performed with the aid of
an IBM 1620 l'odel II Digital Computer.



DISCUSSICKN
PART I: GENERAL CONCEPTION
1. ASSUMPTIONS:

In this analysis the following assumptions are made for
convenience in solving the problem:‘

(A) The condition of steady state has been assumed,
i.e., 211 conditions are independént of time.

(B) Conduction along the wall of the duct and convec-
tion in the duct are neglected, only radiation is considered,

(C) The temperature profile down the wall of the duct
is assumed to be a straight line. The temperatures of both
ends of the duct are equal to the values of the ends of the
temperaturé profile, respectively.

(D) In the calculations the mean temperature is used
and is based on the assumption that the temperature is uniform
over the entire section concerned.

(E) The emissivity and reflectivity depend upon the
mean temperature. a

Other assumptions.will be made in the following

‘discussion.



2. FUNDANMENTALS OF THERMNAL RADIATICN

Stefan-Boltzmannr established a law that the energy
density of the radiation is proportional to absolute
temperature to the fourth power:

E,=oT% - (1-1)
where Eg is the energy radiated per unit time and per unit
area by an ideal radiator, i.e., a black body. o.is the
Stefan-Boltzmann constant. The value of o.is 0.1714 X 10~C
Btu/hr—ft2-°R4,'when E, is in Btu per hour per équare foot,
and T is in degrees Rankine. For a gray body the emissive
power is:

E=eaTs (1-2)
where € is the emissivitye.

When radiant energy strikes the surface of‘a material,
part of the radiation is reflected, part is absorbed, and
part is transmitted, then

Qi=949r% 9,+ 4,
or 1=9./9\+ %/4+ /=TT
where the fraction r is reflectivity, = is absorptivity,
and T is transmissivity. Many solid materials do not trans-
mit thermal radiation, for the case

r+a=1, : ' ‘ (1-3)
Another useful tool was developed by Kirchhoff. His
identity shows that

€=2, . ‘ | (1-4)

when the system is in thermodynamic equilibrium.



3. THE RADIATION SEAPE FACTOR

Consider two finite black surfaces Al and A2 which
are in view of each other. The energy exchange between
these surfaces, when they are maintained at different tenrpera-
tures, deperids on the spatial arrangement of the surfaces.
Hence the shape or configuration factor is instrumental in
the analysis.

The configuration factor from A1 to A2, written F12,
may be defined as the fraction of the total radiant energy
leaving surface Al which is iﬁéident ufon surface A2. The
general expression, an is defined as the fraction of energy
leavirg surface Am that is incident upon surface An‘ The
liritirg values are tben zero and unity.

The configura%ion factor is a function of the geometry
of<the two surfaces Al and A2 and depends on the directional
distribution of the rediant emission. The emission has
been assumed to follow Lambert's cosine law. This law states
that the intensity, the radiant energy emitted per unit time
per viiit s0lid angle subtended at emitting glement, is a
constant throughout the half-space above the emitting
element. This law implies that the radiant heat flux in
the space varies inversely as the square of the distance
from the emitting surface and directly with the cosine of
the angle made with the normal to the surface. Experimentsg
indicate that most engineering materials do not exactly
follow Lambert's cosine principle. The error infroduced by

using Lambert's law in the calculation of radiant heat



transfer has been assumed to be too small, in comparison
with other calculation errors tolerated in practice, to
warrant the complication introduced by the use of a more
accurate form of the directional distribution function.

The configuration factor is denoted as

1 dA  d
R R (1-5)

where ¢, and ¢, are the acute angles measured between =2
norm~l *o the surface and the connecting line r Dbetween
the area elements,

The total hest transfer per unit time leaving A1

which reaches A2 is

_ Ebq dAdA, »
te= KA; gAi CosdyCosdy T (1-6)

It now becomes desirable to develop two special
configuration factors in a general form.

(A) The configuration factor for finite, perpendicul~ar
rectangles with a common edge:

FPig. 1-1 indicates a rectangle, which will be called
Al, of the dimensions X by Y located normmsl to rectangle
A? with the dimensions X Dby 2. The line X 1is then the

common edge.



b
z
2
dh;
'} b e . ‘_w/
x X KX, %K

Fig. 1-1 Configuration factor notation
in perperidicular rectangles

The quantities needed to evaluate F12 are given

below:

dA, = dxdy

dA, = dx'dz '

ré = (x'-x)2+ y2+ 22

cos¢, = z/r
cosd, = y/r.

The configuration factor is expressed as

= ! Y[" xf"‘g;d}dx’do\'d‘j .
XY JoJo Jo Je (xmxit g3t )R

Integration of the above equation yields

Fa= L [\LM-'(x/Y )~(ZA ) tan (%/2 )

([ - =) _(x L O3 yare) x* _
(722 / 7 Dot CAT2) = Crar) I o s (1=T)

Oz Y : (x*+y*+22) 22
+(Vfax) In —— ~(z In .
</"f) (x= 7 (v 2°) /axv) (x‘*z’)(}dz')]



(B) The configuration factor for finite, parallel,
oprnosed rectangles:
Fig., 1-2 shows two rectangles X by Y 1in size

-~

and separated by a distarnce D.

3
oT = —’
’ I s 2 o
j -t - KdAg ;
| A D
ﬂ R |
. L x ! !
\j : Z ’.¢"/ ’ | X T
T
v A

Fig. 1-2 Configuration factor notation
in parallel rectangles

The quantities needed to evaluate FIZ are given
below:
dA1==dxdy
dA,= dx'dy'
r?=p%+ (x'-x)%+ (y'-y)?
cos ¢, = cos ¢,=D/r .

Therefore,
oD "SY(" Y __dxdydady”
12 71‘)(\( o ° [D;-\-(’X’-’X)a"'C‘j’—‘j)‘J
The result of the above equation, in terms of the dimen-

o o

sionless ratios X/D and Y/D is



= | e QrRDUR) 2 4,0
F1a= 5 {F\"I?z C+R =+ R R, Ra

— 2 4o R+ 2V 1+ O7RD ta' (Ra/V+RE)

Ra (1-8)
+ 2 [T=Ci/) *Ha (R/T7R)] »

where R1=X/D, R2=Y/D.,

In some cases, the evaluation of the configuration
factor of a particular configuration by means of the Eq.
(1-5) is difficult or even impossible. Sometimes it may be
possible, however, to evaluate the required configuration fac-
tor by means of "configuration féctor algebra"., This method
ma2kes use of four principles which are summarized here
for convenience.

(A) Basic reciprocity law:

The product of an area A1 and the configuration
factor of Al relafive to another area A2; i.e., F12, is
related to the product of A, and F, Dby the relation
AyF1o=H8oF5 - (1-9)
To simplify this relation the geometric factor G12,
numerically equal to the product of A1F12’ is introduced,
hence |

G (1-10)

12=0857

(B) Summation law:

If the interior surface of a completely enclosed
space is subdivided into parts having area Al' A2, ceey An

and each area is irradiated, then the following relationship

holds:
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ZF---’-‘—‘I Where i=l’ 2’ eeo ey n (1-11)
and j=1, 2’ seeoy n.
(C) Decomposition law:

Given two surfaces Al and A2, if surface A is

1
3 and A,, then the total configuration

subdivided into A
factor F12 is related to the two subsidiary configuration
factors F32 and F42. by the relation

A1F12==A3F32+.A4F42, (1-12)
OT  Gy,= Gyot Gype ‘ (1-13)

(D) Modified reciprocity law:

For rectangular geometric systems, if two planes
intersect, the product.of a corner area in plane A and iﬁs
configuration factor with respect to the opposite corner
area in plane B 1is equal to the product of the other corner
area in plane A and its configuration factor with respect
to the other corner area in plene B, irrespective of the
angle between planes. This law plays an important role in
this study, the illustrations are as follows:

From Fig. 1-3 the quantities of Eq. (1-5) in terms of x,
x', ¥y, 2 are developed as |

dA, = dxdy |

dA2==dx'dz

r2==(x'-x)2+ y2+ 22

cos ¢, = z/r

cos¢,= y/r.

HEence, Zq. (1=5) yields
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L (F(X(Y (% Y2 dxdydnxd
G12=H2A1s7£ So 50 Ku . {('X-’-?()a'*:jl*-b‘})i

z Zz
2 4
dA)"_B | __dA, L3
e .
N
o . & o o
P a x ’
s y _
A
o Y
H// 4
fig. 1-3 Perpendicular Fig. 1-4 Perpendicular
shape factor geometry shape factor geometry

and from Fig. 1-4
dA3 = dxdy
dA

4
r2=_- (x'-x)2+ y2+ 22

=dx'dz

cosd = z/r
cosd,= y/r.

Z(a(Y (X% dx dydax’d
Therefore, G, =To A= (""" (] Coimr g 37

The two integrals are of identical form except for the order
of integration. Since the nature of the integrand permits
the interchange of the order of the integration, the

reciprocity formula is obtained

For parallel rectangles, the reciprocity formula also

holds.
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Applying the previous laws the following useful rela-

tions for cdetermining the configuration factors are develorped.

7 ——
4 2 17| 27 £33~ .
- // -]
=73 1 2 /3
Fig. 1-5 Perpendicular Fig. 1-6 Perpendicular
shape factor geometry shape factor geometry
Denoting Gmn:= Aman and sz== Amme’ one can develop
G12=1/2 (G(143)(204)"G147%32] (1-15)

corresponding to Fig. 1-5, and
6,5=1/2 [[G(Hzﬁ)z_e,z-e(zﬂy]_ [G(\-’_z)a-.G,z—Gzz}?
=1/2(G(q4 2437+ 622~ (2432 = G(142)]. (1-16)

corresponding to Fig. 1-6. The above formulas are also

applicable for parallel rectangles.
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4. RADIATICN HEAT TRANSFER CALAULATIONS

There are many ﬁethodsto determine the radiation heat
exchange among the surfaces. In this analysis; the unified
method for radiation exchange calculations developed by
Gebhart is used.  This method treats all diffuse-radiation
configurations, including those which involve special features
such as windows, openings, ahd surfaces in radizant balance.
The symbol q:j denotes the rate of energy transfer from an
arbitrary surface Aj participating in the radiative exchange
process, while the rate of emission from area Aj is equal
to EJA:J

Consider an enclosure which contains no emitting or

absorbing medium, and is formed of areas Al, Ay eeey An

having emissivities el. €sy ceey €, ar.d emissive powers

E{»E5, «.., E . The radiant energy absorbed by Aj‘ per unit

n

time from each area is then given by BlJ 1A1’ B23E2A2, ceey
BJJEJAJ casy BnJEnAn Where Bij is the absorption factor,
defined as that fraction of the radiant energy emitted by
surface Ai which is absorbed by surface Aj‘ This fraction
is to include radiatién along 2ll paths by which portions of
EiAi reaches Aj and is absorbed by Aj' In general, Bjj
is not zero because some of the energy emi?ted by Aj may be
reabsorbed by Aj' The rate of energy loss from Aj is ecual
to the rate of emission minus the total amount of radiant

energy ébsorbed by Aj per unit time. Hence,

SngiAi"BﬁEIAI'B‘:JELAz‘" "'Bﬁ'EjA,""" _B"‘)‘E"A":E‘i'% 2 |3 E:A; (1-17)
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OT  =€jOTH 0BG TAL (1-18)

The n values of Bij necessary to compute qj may be

detcrmined by summing absorption rates at J due to the

emission rates of Al' A2, co ey An. For example, ElAl is

emitted at A1 end reaches the n surfaces in fractions

given by the configuration factors F F F

11’ “12* ***’ "1n°

The fraction of energy emitted by area'A1 and absorbed by

Aj is Fljej’ while Fljrj is reflected. In general, F

is reflected by the ith surface. The fraction of Fliri
which is absorbed at Aj is the same as the fraction of

1iT4

EiAi which is absorved at Aj if the incident energy

FliElA1 is uniformly distributed over Ai end is diffusely
reflected. Assuming uniform distribution, the fraction of

ElAl absorbed at Aj because of reflection off Ai is

then BijFliri' So the total fractlog of ElAl absorbed at

Aj’ that is, that is, Blj' is
Bi‘]zr\j €T R B 2 Bay + FaBBsj+ * FinrnBaj
Similarly, the absorption factors for each of the_other

surfaces A2, A3, ceey An‘ are

&fﬂﬁﬂ*$iﬂB@*FunBﬁ+FhGBq+-~+Rmn5q

Bs{ = F;jC'i +Fan B-j “+Fa F;I’Sz.)' +E B;:’ 4. +Fnr, 13.'1'

an-_— FW}Q1 +F,”r||%|,}‘ +Fan B,,]-Q- Fmn Bji *+ 0o P Y;\Bh»i .

This set of n equations with the n unkown values Blj’

sz, ceey an are rearrangeﬁ as the set of following

equaetions
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(51?‘1—1)545*“'—12_'} sz""FﬁGB_gj‘*’ "‘*'Fmrneni= "F'”‘Gj
Fan B1j+(an-1) 51]' +Fan Bsj+ - FhRanm Pry= 'Fz,‘e,‘

Faan Byj+Faa ra Bay + (Fa —1)Bsjm  Thanh Bri= Ty § , )
. 1-19

Fugry By +Fnafa s + Pl By *(Fanrp— 1 ny=-Funj €

The absorption factor Bij for the Jth surface can
be‘solved by determinants, i.e., Cramer's rule., When the
number of eduations is large, Cramer's rule is irefficiernt,
since it requires evaluating determinants of high order.
For this reason and because of the convenience in using
the subroutine on IBM 1620 Digifal'Computer, the method of

Gauss-Jordan feduction is used.
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PAKT II: RADIATICK HFAT TRAISFER ANALYSIS IN THE
RECTAKGULAR CONFIGURATICNS

In this section two cases are discussed and the programs
used on IBM 1620 Model 11 Digital Computer are included.
The programs are constructed to be as ger.eral as possible.
Here the method of solution to the problem is by means of
finite differenées. For corvenience, equal intervals will
be used in the solution, i.e., the wall will be divided
into equal finite sections. The more subdivisions used
the greater the accuracy obtained. The thermal properties
of each subdivided section of the wall are assumed to be
uniform and to satisfy 2all the conditions and results of
PART I. The mean temperzature of each subdivided section

is determined and made uniform over the section,
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CASE A: RADIATION HEAT TRANSFER ANALYSIS IN RECTANGULAR
DUCT

Assume a rectangular duct with the dimensions of
(XX+W) by YY Dy 22 and open at each end of the dimension
(XX+W).. The portion of the duct XX by YY by 2Z Iis
denoted as the source and has the temperature range Tl to

T at either end. The temperature profile of the wall of

2
this duct from Tl to T2 is assumed to be a straight line
along the dimension XX (for convenience only). The
temperature of the portion other than the source, here denoted
as the sink, is T3 and uniform over that section. The
construction is shown in the following. The rate of energy

loss from both the source and the sink is determined and

that of each subdivided section is also investigated.

3
XZ
]
|
\y L2 : N | L
| y | oy 73
| ) LI |
i i I i
O)———-———— e | e . cm— }-—Q—-b—-—————— — o femn — L_D'
s ;* ; XX (xx+v0*
/ // // //
// s / Ve

4

Fig, 2-1 Dimensions of the rectangular duct.
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1
|
|

o - L

o , xXx (XX W)

Fig. 2-2 Temperature profile down the wall of the duct.
The source section XX is divided equally into N
parts, the mean temperatures of the subdivisions, say tl,

t2,..., t are determined as follows,

n

=T —(T-Ta)/2N (2-1)

and =ty = (Ti-T)/N » (2-2)

where i=2, 3, <.y N.

The emissivity and reflectivity are dependent on the
temperature distribution. From Fig. 13-10, P.375, "Heat
and Mass Transfer" by E. R. Eckert, the total reflectivity
and absorptivity of different materials for incident black
radiation at the indicated temperature are obtained. (The
~emissivities are obtained by means of Kirchhoff's identity
€e=a2a,) |

Since the number of subdivisions afe uncertain in the
solution, an approximate numerical method for evaluating
the required emigsgsivities and réflectivities is introduced.

The method used is the Lagrange interpolation formula, given
by:



‘j=+("<)=i L (%) £C%;), (2-3)

i=1

— (X=X (K —=K32) =+ o (X="%Xn)
.('x)._.
ki (% =) (Xi=%2) - = «(xg=x%,)

and the terms (x—xi) and (xi-xi) are omitted.

where

To use this formula, one first reads several sets of data,
say Y, for the emissivities corresponding to the different
temperatures as |

€ where i=1, 2, ;.., 5

acd T, where i=1, 2, ..., 5,

then e
€ = E L(—T)é )]
=1 - : (2-4)

where _ _ e e o (T=-Ts)
kT (M=) (T -T) - - (T-Ts)

Again, the terms of (T-Ti) and (Ti—Ti) are omitted,
and the identity r=1-e€ is used for evaluating the reflec-
tivities. | '

Applying the formulae derived in PART I the desired
quantities are calculated. The two openings absorb energy
and reradiate none, so the reflectivity of both openings is
zero. The procedure used to develop these quantities is as
follows: First evaluate the geometric factors, letting Gij
denote the geometric factors, where

i=1, 2, ..., N+1,
and J=1, 2, eeoy N+1.
The number NKN+1 denotes the sink section. Next the

configuration factors are evaluated, letting Fij denote
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the configuration factors, where

i=1, 2, oo, 1,
end J=1, 2, eeey N+1l.
Following the configuration factors the absorption factors
ere determined by means of the Gauss-Jordan reduction method
for solving a set of simultanious equations, letting Bij
denote the absorption factors, where

i=1, 2, ..., N+1, .
and J=1, 2y eee, N¥1l.
With the aid of Eq.(1-2), the energy loss of each section
is obtained. Denote the radiant flux of each section by
Qj’ where

j=1, 2, eo.y N*l, ‘
and fhe total energy loss of the sink section is QN+1‘
The total energy loss of the source section is then

C§==f§: Cl}‘ (2-5)

i=1 :
The procedures are clearly seen from the computer

program, and the descriptions are made in detail following

the program.
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COMPUTER PROGRAM I

PROGRAIM I RADIATIOM HEAT TRAMSFER ANALYSIS 1IN
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THE RECTAMGULAR DUC

212),REF(12),TT(10),EE(10),QASUB(12),0(12)

DIMEMSTION FA(iO),FAB(IOT,FAAL(IZ),GA(IZ,lZ),FBD(Z),FB(lO),FDDL(Z;
1FBBL(12),6B(12512)43G(12,12)3F(124,12)4D(12414),GC(12,12),T(12),EMI

T
’
(

P1=3.14615926
STBOC=.1714E-8
READ 101, NN

READ 100, (TT(I),I=1,NN), (EE(T), =1, NN)

PRINT 101, NN
PRINT 100, (TT(I)sI=14NN)y(EE(I),I=14NN)

READ 100, XX 3 YY L ZZ W T1L,T2,713
PRINT 100y XXoaYY9ZZyWeTlyT2,T3
READ 101, N

PRINT 101, N
L=N+1
L1=N+2

CZ=N=1
EVALUATION OF THE GEOMETRIC FACTORS
FOR THE PERPENDICULAR FORM |

R=N
H=XX/R
DO 30 M=1,10

11

GO TO (11,12,134145159164,17918919520),M
X=YY
Y=H

12

L=1L
GO TO 25
X=YY

Y=XX+U
7=717
GO TO 25

13

K=YV
Y=XX~H+W
Z=11

14

GO TO 25
X=1Z
Y=H

15

=YY
GO TO 25
X=717

Y=XXFW
Z=YY
GO TO 25

16

X=LL
Y=XX~H+W



Z=YY
GO TO 25

22

17

X=YY
Y =t
=117

18

GO TO 25
X=YY
Y=XX

19

=717
GO TO 25
X=11

Y=
Z=YY
GO TO 25

20

X=LL
Y=XX
Z=YY

25

EOQUATION OF THE GEOMETRIC FACTOR FOR THE PERPENDICULAR RECTANGLES

WITH A COMMON EDGE

C3=7x:2
CC1=C1+C2+C3

CC2=C1+C2
CC3=C2+C(C3
CC4=C1+C3

CSR=SQRTF(CC3)
FC1=X*Y=ATANF (X/Y)
FC2=X%Z*ATANF(X/Z)

FC3==({X=*CSR*ATANF (X/CSR))
FC4==(C1*LOGF(CC1*C1l/(CC2%CC4))) /4.0
FC5=(C2%LOGF(CC1*C2/(CC2%CC3))) /4.0

30

FC6={C3*LOGF(CCL*C3/7(CL3>CL4))) /4.0
FA(M)=(FC1+FC2+FC3+FC4+FC5+FC6)/PI

CONTINUE

GAI=Z2.0%{FATI)+FAT2)-FA(3)+FA(4)+FA(L)~-FA(6))
GAN1=2.,0%(FA(T7T)+FA(2)-FA(8)+FA(9)+FA(5)~FA(10))

X=0.0

M=N+L
DO 40 K=1,sM
IF (K=N) 31,31,32

31

AX=X+H
Y=YY
=112

32

GO TO 35
IF (K=L) 33433,34
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34

X =
Y=YY
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35

=11
I=K-=N

Cl=Xo%2

CC1=C1+C2+C3

CCZ2=C1+C2
CC3=C2+C3
CC4=C1+C3

CSR=SQRTF(CC3)
FCLl=XaY=xATANF (X/Y)
FC2=X=ZxATANF(X/Z)

FC3==(X*CSR*ATANF{(X/CSR))
FC4=—=(C1%LOGF(CC1*C1/(CC2%CC4))) /4.0
FC5=(C2%LOGF(CC1xC2/(CC2xCC3))) /4.0

36

FC6=(C3==LOGF(CC1*C3/(CC3%CC4))) /4.0
IF (K=N) 364936437
FAB(K)=(FCl+FC2+FC3+FC4+FC5+FC6) /P11

37

GO TO 40
FAAL(I)=(FCLl+FC2+FC3+FC4+FC5+FC6)/PI
X=X+H .

40

CONTINUE
GA2=4,0%(FAAL{L)-FAAL(L-1)=-FAB(1))
GANZ2=4 403 (FAAL(L)=FAB(L=1)=FAAL(1))

42

GATIL,Z21=TFABT2)=2.0*FAB(1))*4.0
IF (N=2) 444944442
DO 43 I=34N

44

GATIL, I )=(FABTIT-2.0%FFAB{I-11+FAB(I-2)1}%4,0
GA(Ly1)=(FAAL(2)-FAAL(1)=FAB(1l))*4.0
DO 45 I=24N

Z5

GATL,T)=TFAAL({I+1)+FABUI-1)-FABU1)=-FAAL(1))*4.0

FOR THE PARALLEL FORM
X=H

MT=N+L
DO 60 K=1,M
Y=YY

50

=77
IF (K=N) 53,453,50
IF (K~L) 51451452

51
52
53

=W
J=K-N
DO 57 I=1,2 :

od

cQUATION UF THE GEUMETRIC FACTOR FUR THE PARALLEL AND GPPOSED

RECTANGLES
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R1=X/2
R2=Y/1

Cl=R1l==2
C2=R 232
C3=1.0+C1

C4=1.0+C2
CC1=LOGF((C3=*C4)/(C2+C3))
CC2=SQRTF(C3)

CC3=5URTF(C4)
FD1=CC1l/(R1%R2)
FD2==(2.0%ATANF(R2))/R1

FD3==(2.0%ATANF(R1))/R2
FD&=(2.0:2CC2*ATANF(R2/CC2)) /R1
FD5=(240%CC3*ATANF(R1/CC3) ) /R2

54

IF (K=N) 544954455
FBD(I)=(FD1+FD2+FD3+FD4+FD5)*X*Y/PI
GO TO 56

55
56
57

FODL{I)=(FD1+FD2+FD3+FD4+FD5)*XxY/PI
Y=21
Z=YY

58

IF (K=M) 58458459
FB(K)=FBD(1)+FBD(2)
GO TO 60

59
60

FBBL(J)=FDDL(1)+FDDL(2)
X=X+H
EVALUATION OF THE GEOMETRIC FACTORS AND THE CONFIGURATION

FACTORS

BETWEEN ANY TWO SUBDIVISIONS
GB1l=FBBL(L)-FB(1)=FBBL(N)
GBN1=FBBL(L)=FB(N)=FBBL(1)

GB(1,2)1=(FB({2)-2.0=xFB(1}]
IF (N=2) 64464462

62 DO 63 I=3,4N
63 GB(1L, 1 J=(FBllI)-Z.0xFBlI=1)+FB(1=2)]
64 GB(L,1)=(FBBL(2)-FB(1)-FBBL(1))

DO 65 I=24N

65

GE{L, I J=TFEBLUI+1)+FBUI-1J—-FB{I)J-FBBL{IJ)
AN=2 4 0H*(YY+ZZ)
ANL=2,0%U=(YY+ZZ)

F{L,:1)=1.0-(GAL+GAZ+GB1) /AN
G(ly1l)=F(1lyl)*AN
DO 71 I=2,4N

71

72

G(1,1)=(GA(1,1)+GB(1s1))
DO 72 I=14N
G(Iq41)=G(1l,e1)

DO 74 M=2,4N
K=N
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G(itgK)=G(li=14K~-1)

K=K-1

74

IF (K=1) 74,74,73
CONTIMUE
F(LsL)=1.0-(GAN1+GAM2+GBN1) /ANL

75

DO 75 I=1,HN
GC(L,yI)=GA(L,I)+GB(LyI)
K=N

DO 76 I=1,4N
G(IsL)=GC(L+K)

76 K=K-1
DO 77 I=1,N
77 G(L,I)=G(I,4L)

DO 78 I=1,N

78

DG 786 J=11L
F(I4J)=G(I,4J)/AN
DO 80 J=14N

80

F(L,J)=G(LyJ)/ANL
PRINT 102
PRINT 1004 ((F(I9Jd)eJd=1leL)yI=1,L)

EVALUATION OF THE MEAN TEMPERATURES OF THE SUBDIVISTUNS
T(L)=T1-(T1-T2)/(2.0%R)
DO 81 I=1,L2

81

T{I+I7=T{I)-0TI-TZ2}/R
T(L)=T3
PRINT 103

PRINT 100, (T{Il,I=1,L1)
EVALUATION OF THE MEAN EMISSIVITIES OF THE SUBDISIONS BY {iEANS OF
LAGRANGIAN INTERPOLATION FORMULA

DU 86 J=1,L
FEM=0.0
DO 85 K=1,NN

FNU=1.0
FNO=1.0
DO 84 I=1,sNN

83

IF (I-K) 83,844,853
FNU=FNU*(T(J)=TT(I))
FNO=FMO3(TT(K)=TT(I))

84
85
86

CONTINUE
FEM=FEM+FNU/FNO*EE(K)
EMI(J)=FEM

PRINT 104
PRINT 100, (EMI(J)sJd=1,L)
EVALUATION OF THE MEAN REFLECTIVITIES OF THE SUBDIVISICMNS BY HEANS

Ao

RIRCHROF’S TDENTITY
DO 87 I=1,L
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REF(I)=1.0~-

PRINT 105

ENT(T)

26

PRINT 100,
DO 98 J=1yL
PRINT 106,

(REF(I)qs1=1,L)

J

SOLUTION OF
REDUCTION M
DO 89 I=1,L

THE ABSORPTION FACTORS BY MEANS OF GAUSS-JGRDAN

ETHOD

89

D(I,1)=F(1I,
DO 92 I=1,L
DO 91 M=1l,L

I)*#REF(1)=1.0

30
21

IF (I-#) 90
D(I4i1)=F (I,
CONTINUE

191,90
M)*REF (M)

92

93

CONTINUE
DO 93 I=1,L
D(I,L+1)==—(

F(I4J)HEMI(J))

CALL GAUJOR
PRINT 107
PRINT 100,

(DyLsL1ly12,14)

(D(I,Ll)71=lyL)

94

EVALUATION OF THE ABSORPTION ENERGY FROiM SURFACE I TO SURFACE J

DO 94 I=1,4N
OASUB(I)=D(

I,L1)*STBOC*TI(I

FE4HEMT (1) *AN

OASUB(L)=D(LyLI)*STBOC*T(L)*%*4%xEMI(L)>*ANL

PRINT 108
PRINT 100,

(QASUB(I)yI=1,sL)

EVALUATION
QABSO=0.0
DO 95 I=1,L

OF THE TOTAL ABSORPTION ENERGY OF SURFACE J

95

QABSO0=QABSO
PRINT 109
PRIMNT 100,

+0OASUB(I)

QABSO

96

EVALUATION OF THE RADIANT HEAT TRANSFER FROM

IF (J=N) 96

196,97

Q(J)=STBOCHT(J) **x4xEMI(J)*AN-QABSO

SURFACE J

97
98

GO TO 98

Q(J)=STBOCHT(J)*%4%EMI (J)*ANL-QABSO

CONTINUE

PRINT 110

PRINT 1004(Q(J)yd=1,4L)
EVALUATION OF THE TOTAL HEAT TRANSFER OF THE SOURCE

99

QLOSS=0.0
DO 99 I=1,4N
QLOSS=QLOSS

+Q (1)

PRINT 111
PRINT 100,

QLOSS



27

PRIMT 112
PRINT 100, Q(L)

GO 70 1
100 FORMAT (4F18.8)
101 FORMAT (4118)

102 FORMAT (10X44HCONFIGURATION FACTORS ((F(TI,J)yJd=1,L),1=1,L))
103 FORMAT (1O0X41HMEAN TEMPERATURES (T(I),I=1,L) IN RANKIME)
104 FORMAT (10X28HMEAN EMISSIVITY OF EACH PART)

105 FORMAT (10X25HREFLECTIVITY OF EACH PART)
106 FORMAT (10X2HJ=,12)
107 FORMAT (10X33HABSORPTION FACTORS (B(I,J),I=1,L))

108 FORMAT (10X39HABRBSORPTION ENERGY FROM EACH PART BTU/HR)
109 FORMAT (10X41HTOTAL ENERGY ABSORBED BY EACH PART B8TU/HR)
110 FORMAT (10X45HENERGY LOSS OF EACH PART (0Q(J)y,J=14,N2 BTU/HR))

TI1 FORMAT (I0X38HTOTAL ENERGY LOSS OF THE SOURCE BTU/FR)
112 FORMAT (10X37H TOTAL ENERGY LOSS OF THE SINK BTU/HR)
END

- - et e e — . = T o t . o e bt e e + o s — e
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DETAILED DESCRIPTION OF THE PROGRAM

Geometric factors in perpendicular form:

Statement 11 to line
11 +3, is the evaluation of
the geometric factor from

1 to 2 as shown, This

is obtained by using Eq.(1-7),

where FA(l) 1is the program

variable.

Statement 12 +to line
12+ 3, is the evaluation of
the geometric factor from
1 to 2 as shown. This
value is given by FA(2) in
the progran,

Statement 13 to line
13+ 3, is the evaluation of
the geometric factor from
1 to 2 as shown., This
value is given by TFA(3) in
the program, '

Statement 14 to line
14+ 3, is the evaluation of
the geometric factor from

1 to 2 as shown. This

value is given by FA(4) in

Fig, 2=3 Geometric
factor notation,

- Fig. 2-4 Geometric
factor notation.

-

—
é//ﬁ T
e / -~

]

Fig. 2-5 Geometric
factor notation.

7

i
7

Fig. 2-6 Geometric
factor notation.

o o



the progrem,

Statement 15 +to0 line
15+ 3, is the evaluation of
the geometric factor from
1 to 2 as shown. This
value is given by FA(S5) 1in
the program.

Statement 716 to 1line
1€+ 3, is the evaluation of
the geometric factor from
1 %o 2 as shown. This
value is given by FA(6) 1in
the program,

Statement 17 +to line
17+ 3, is the evaluation of
the geometric factor from
1 to 2 as shown. This
value is given by FA(7) in
the program. | '

Statement 18 to lihe
18+ 3, is the evaluation of
the geometric factor from
1 to 2 as shown, This
value is given by FA(8) 1in

the program.

29

Fig.. 2=7 Geometric
factor notation.

- H

Fig.. 2-8 Geometric
factor notation.

4 A1

Fig. 2-9 Geometric
factor notation.

Fig. 2-10 Geometric
factor notation.



Statement
19 + 3,

the geometric factor from

19 to line
is the evaluation of
1 to 2 as shown. This
value is given by FA(9) in
the program.

Statement~ 20 to state-
ment 30 1is the evaluation
of the geometric factor from
1 to 2 as shown. This
value is given by FA(10) in
the program.

Statement 30+ 1 1line
is the evaluation of the geo-
metric factor from 1 +to 2
as shown. VWhere surface 1
is the ring of width H and
surface 2 1is the two end
plates. This value is given
by GAl in the program.

Statement 30+ 2 1lines
is the evaluation of the geoﬁ'
metric factor from 1 to 2
as shown., Where surface 1
is a ring of width W and
surface 2 1is the two end

plates, This value is given by

30

T T /
/}{ //’/‘j L/ /
Fig. 2-11 Geometric

factor notation.

2
- Fig. 2-12 Geometric
factor notation.
i .{/— A
41§ -
'{ZMH‘ 12
Iﬂ“)— __________ ,__u,_".’
I 5 e !
Fig. 2-13 Geometric
factor notation.
H" //7‘/
\!l! T .
7 = |
P ey
Fig. 2-14 Geometric
factor notation.
GAN1l  1in the program.
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Statement 30+ 3 1lines

to statement 40 1is the

evaluation of the geometric

factors from 1 +to 2 and

1' to 2! es shown., Where
the gquantity X in Eq.(1-7) Fig. 2-15 Geometric
is changing from H +to XX factor notation.

with the increment H. The

same procedure is then follow- tf??}«~¥v

ed from W to (XX+ W) with i;

the increment H.. These A #/éfﬁﬁzk’f;w’

values are given by (FAB(X), LW
X=1,N) eand (FAAL(I),I=1,N+1) Fig. 2-16 Geometric

respectively in the program. factor notation.

Statement 40+ 1 1line

is the evaluation of the geo- }//7{”/;;;::§ié?§?iﬁf?},“
A Ee - R

metric factor from 1 +to 2 f
as shown. Where surface 1 |

is a ring of width H and
surface 2 1is a ring of width Fig. 2-17 Geometric
(XX+W-H). This value is given factor notation.
by GA2 in the program. It
should be noted that this is only in the perpendicular form,
the complete geometric factor for the ring 1 +to the ring

2 would include the factor for parallel geometry.
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Statement 40+ 2 1lines

is the evaluation of the geo=- 9]j ",2 ' 7
metric factor from 1 +to 2 s
(e
as shown. Where surface 1 {;/>/'/”//j oo %
4(/ ///ﬁ2<///4X' i

is a2 ring of width W and
surface 2 is a ring of width Fig. 2-18 Geometric
XX. This value is given by factor notation.
GAN2 in the pfogfam. Again, it should.be noted that this
is only in the perpendicular form,

Statement 40+ 3 1l1lines

is the evaluation of the geo-

metric factor from ring 1 ,;7A w?
to ring 2 as shown. VWhere A;/j —
1 and 2 are both of width L

H.. This value is given b& Fig. 2-19 Geometric

GA(1,2) in the program. factor notation.

Again, it should be noted that this is only in the per-
pendicular form.

Statement 42 +to state-

[ .- —

ment 43 is the evaluation o [ r //’

' . |

a 0/ L
ring 1 %o ring 1 as shown. fg

t

|

'gi ;f/f | _l;;7

width H. I denotes the ring ~ Fig., 2-20 Geometric

of the geometric factor from

Where 1 and I are both of
number 3, 4, ..., No These | factor notation.
values are given by (GA(1,I),I=3,N) in the program. Again,
it should be noted that this is only in the pefpendicular



form.
Statement 44 is the

evaluation of the geometric

33

—_

factor from ring 1L +to ring

1l as shown. Where ring 1L

e

/
!y /
S,

. /

is of width W and ring 1
is of width H. This value
is given by GA(L,1) in the

Fig. 2-21 Geometric
factor notation.

program., It should be noted that this is dnly in the

perpendicular form.
Statement 44 +1 1line
to statement 45 1is the

evaluation of the geometric

factors from L to I as

shown. Where surface L is
a ring of width W and surface

I is a ring of width H.

Fig. 2-22 Geometric
factor notation.,

These values are given by (GA(L,I),I=2,N) in the program.

Again, it should be noted that this is only in the per-

pendicular form.
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Geometric factors in parallel form:

Statement 55+ 1 1line

to statement 60 1is the

evaluation of the geometric

factors from 1 +to0 2 as

shown by means of Eq.(1-8).

Where surface 1 1s the Fig. 2-23 Geometric

half of a ring having a width Tactor notation,

that varies from H +to XX

with the increment H, and

surface 2 1is the other half

of the ring. The procedure

is then reversed, where surface

Fig. 2-24 Geometric
factor notation.

1 and surface 2 are of
width varing from W to
(XX+W), with the increment H.
These values are given by (FB(K).K:l,N) and (FBBL(J),
J=1,1) in the program. It should be noted that this is
only in the parallel form. |

Statement 60+1 1line

is the evaluation of the /7f;;/2<>//'?;;g£ﬁf:;; 
geometric factor from 1 to ﬁif?;é%;//fgi)j? - :/f
2 as shown. Where surface i;éééi%?;?;i ;f ) ??
1 is a ring of width H

and surface 2 is a ring of ' "Fig. 2-25 Geometric

width (XX+W-H). This value factor notation.

is given by GBl 1in the program. It should be noted that

-



this is only in the parallel form, the complete geometric

factor for ring 1 +to the ring

factor for perpendicular form.
Statement 60+ 2 1lines
is the evaluation of the geo-
metric factor from 1 to 2
as shown. Where surface 1
is a ring of width W and
surface 2 is a ring of width
XX. This value is given by
GBN1 in the program, Again,

2 would include the

S
L;//éé%//}/ijg

Fig. 2-26 Geometric
factor notation.

it should be noted that this only is the parallel form,

Statement 60+ 73 1lines
is the evaluation of the geo-
metric factor from 1 to»,2
as shown. “here surface 1
and surface <2 are the ring
of width H. This value is.
given by GA(1,2) in the

Fig. 2=27 Geometric
factor notation.

program, and is only.for the parallel form.

Statement 62 to state-
ment 63 is the evaluation
of the geometric factor from
1 to I as shown.. Where
surface 1 and surface 1
are rings of width H. These
values are given by (éB(l,I),

/|

1y ST

g |
_] !

I

1

! ;

i

e
d
/
1

Fig. 2-28 Geometric
factor notation.
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I=3,K) 1in the program. It should be noted that this is

only in the parallel form.

Vutétement 64 1is th? //4;?/€L -;7]
evaluation of the geometric |
factor from L to 1 as }f"i: ‘_~_i
shown, Where surface 1L 1is f ;i-n %i//)
a ring of width W and Fig. 2-29 Geometric

surface 1 1is a ring of width factor notation.

H. This value is only of the parallel form, given by
GB(L,1) in the program.
Statement 64+ 1 1line

to statement €5 1is the }[ﬁ/

evaluation of the geometric |

factors from L to I as . L

shown. VWhere surface 1L  1is
a ring of width W and Fig. 2-30 Geometric
surface I 1is a ring of width factor notation.
H.. These values are given by (GB(L,I1),I=2,N) in the
program. Again, it should be noted that this is only in
the parallel form, the complete geometric factor would |
include the factor for perpendicular form.

Statement 65+ 1 1line and statement 654+ 2 1lines are
the evaluation of the surface area of both the ring of width

H and W, respectively. These values are given by AN

and ANL, respectively, in the program.
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Complete geometric factors and configuration factors:

In the followirg, 1, 2, .¢.y, N, I will denote the
subdivided sections as shown in Fig.(2-1) unless otherwise
specified.

Statement 65+ 3 1lines and statement 6544 1lines
are the evaluation of the complete configuration factor F11
and the complete geometric factor Gll’ respectively, where
surface 1 1is a ring of width H. These values are given
by F(1,1) eand G(1,1), respectively, in the program.

Statement 654—5 lines to statement 71 1is the
evaluation of the complete geometric factors Gli‘ Where
surface 1 and surface 1i are rings of width H. These
vnlues are given by (G(1,I),I 2,N) in the program.

Statement 71+ 1 1line to statement 74 1is the

evaluation of the complete geometric factors Gi where

j?
surface 1 and surface J are rings of width H, i
denotes 1, 2, ..oy N. and j denotes 1, 2, ..., N.
Phese values are evaluated by means of the following rela-
tions, since the source section is divided equally. The
values of each column are the same and the values of each
row are symetrical to G, that is, Gi(i+N)=:Gi(i—Ni for
N<i. These values are given by (G(L,1),I=1,N) and
G(M,K), where M=2, 3, ..., N and X=N, N-1, ..., 2 in
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Statement 7441 1line is the evaluation of the complete
configuration factor FLL' where surface L 1is a ring of
width W, i.e., the ring of the sink. This value is given
by F(L,L) in the progran..

Statement 74+ 2 1lines

L
s

to statement 75 is the S
evaluation of the complete | 55!%?5;22
geometric factors from L to ' ;i%;;/?;

I as shown. Where surface L 0

is a ring of width W and Fig. 2-31 Geometric

surface I is a ring of width factor notation.

E. These values are given by (GC(L,I),I=1,N) in the
program, It should be noted that I denotes the ring numver
1, 2, «eey N which is specified from the right hand side to
the left hand side. '

Statement 75+ 1 1line to statement 76 4is the evalua-
tion of the complete geometric factors GiL" Where surface
i is a ring of width H and surface 1 1is a ring of width
W. These values are given by (G(I,L),I=1,N) in the

progrem,
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Statement 76+1 1line to statement 77 1is the evalua-
tion of the complete geometric factors GLi' Where surface
L 1is a ring of width W and i 1is a ring of width H.
These values are given by (G(L,I),I=1,N) in the program.

Statement 77+ 1 1line to statement 80 1is the evalua-
tion of the complete configuration factors Fij’ where 1i=1,
2, eeey NM+1 2and Jj=1, 2, ee., N+l. These values are given
vy ((¥(1,J),J=1,1L),I=1,L) in the program,

The completion of the program requires the use of

Eq.(2-1), Eq.(2-2), Eq.(2-4) and Eq.(2-5).
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The other symbols used in the program are defined as

follows:
PI Tc.
STBOC  Stefan-Boltzmann constant o, Btu/hr-ft°-C°R.
"N Number of subdivided sections along XX.
KN Numoer of sets of emissivities and temperatures.
TT(I) Temperatures corresponding to NN.
EE(I) Emissivities corresponding to TT(I).
T1, T2, T3. : -
Temperatures corresponding to the two ends of the
source and the sink, respectively, as defined
previously.
T(I) lean temperatures of subdivisions corresponding to
N.
L Denotes the sink section.
Ll, L2. Variables as defined.
R The value of N 1in the floating point.
X, Y, Z. :
Variables defined in Eq.(1-7) and Eq.(1-8).
H Subdivided interval width in the XX direction.

ci, c2, ¢3, C4: CSR; FCl1, FC2, ..., FC6; R1l, R2, CCl, CC2,

cc3; F¥pl, FD2, ..., FD5; FNQ, FNU and FEN,

Variables as defined in the program.

FBD(I), FDDL(I).

The geometric factors for the two sets of opposed
rectangles defined in the program.

Surface area of each subdivision.
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ANL Surface area of the sink section.

EMI(I), REF(I).
Emissivities and reflectivities corresponding to
T(I).

D(I,J) Matrix of the coefficients of Eq.(1-9).

QASUB(I)
Energy absorbed by subdivided surface J from

surface 1I.
QABSO Total energy absorbed by subdivided surface J.
Q(J) The energy loss of subdivided surface J.

QLOSS The total energy loss of the source section.

All other symbols have the same meanings as defined

previously.

An example is given in the following.

Material: Al, XX=10 ft., YY=2ZZ=W=1 ft.,

(A) T,=560 °R, T,= 540 °R, T,= 530 °R.
(8) 1T,=800 °R, T, =600 °R, T5=570 °R.
(c) T,= 1000 °R, T, =650 °R, T = 600 °R.
(D) T, = 2000 R, T,=1000 °R, T =800 °R.

The emissivities corresponding to the temperatures are given

by, o)
- PT(I) 600 800 1000 1500 2000 "R

EE(I) .08 095 0.10 0.12 0.16
The results are tabulated and the curves are plotted in the

following pages.



TABLE I

The energy loss of the source and sink of Case A

(A) T,=560 °R, T,=540 °R, T,= 530 °R.
N Qource Btu/hr Quink Btu/hr
2 158.65 20.28
3 152.23 20.49
4 146.13 ~ 20.80
5 141.15 B 21.09
6 137.23 21.34
7 134.19 21.54
8 131.81 21.69
9 129.95  21.82
10 128.47 21.92

(B) T,=800 °R, T ,= 600 °R, T5=570 °R.
N Qsource Btu/hr Qsink Btu/hr
2 490.28 | 13.30
3 480.16 . 16.18
4 465.72 18.25
5 452,62 19.75
6 441.82 20.85
7 433,18 | 21.67
8 426,33 22.29
9 420.88 22.76
10

416.53 23.12



TABLE I (Continued)

(c) T, =1000 °R, T,=650 °R, T 5= 600 °R.
K Qource Btu/br Qgink Btu/br
2 1027.71 -5.88
3 1022.57 2.02
4 999.96 7.24
5 976.70 10.83
6 956.56 13.37
7 940.02 15.21
8 926.69 16.57
9 915.96 17.60
10 907.32 18.37

(D) T, = 2000 °R, T,= 1000 °R, T5= 800 °R.
N Qource Btu/hr Quink Btu/hr
2 14365.57 -628.64
3 15105.72 -469.36
4 15213.27 -374.27
5 15134.14 -313.86
6 15004 .90 -273.54
7 14872.59 -245.54
8 14752.72 -225.46
9 14649.05 -210.63
10 14561.37 -199.43



PLATE 1-A

Energy loss of the source section of the duct
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Energy loss of the source section of the duct

Energy loss — Btu/h,-
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PLATE 1-C

Energy loss of the source section of the duct

T.= 1000 °R
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PLATE 1-D

Energy loss of the source section of the duct

T, = 2000 °R
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PLATE 2-A

Energy loss of the sink section of the duct
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PLATE 2-B

Energy loss of the sink section of the duct
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PLATE 2-C

Energy loss of the sink section of the duct

T,= 1000 °r
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Energy loss of the sink section of the duct

Energy loss — Btu/he

PLATE2-D
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CASE B: THE RADIATICN HEAT
ENCLCSURE

Assume a box with the

n

“1
Denote these

and with temperatures
ends of XX,
sink, respectively.
in the dimension XX
convenience only).

plates is investigated.

52

TrANSFER AFALYSIS IN RECTANGULAR

dimensions XX by YY by 22

and T at the surfaces at the

2
surfaces as the source and the

The temperature profile along the wall
is ascumed to be a straight line (for
The radiant heat transfer of both end

The diagram of the dimensions of

the box and of temperature profile are constructed as shown

below.
3
tz
!//2/ N
| ] :
1
b P ! 1y
A ! b I
TR i R e ity Bl voo
! S/ | / N XX
X b, L N
(4 I/
vy K L
Y _
Fig. 2-32 The dimensions of the rectangular box.
= _
F 3
T

°o

Fig. 2-33 The temperature profile of the wall of

the box along XX.
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The procedures of solution are similar to that of CASE
A. Divide the box along the dimension XX into N ecunl
sections, say Al, AQ, coey AN. The surfaces at both ends
of XX are denoted as AN+1' the source, and AN+2’ the sink.
The mean temperatures of the subdivided sections, denoted

1’
The temperatures of both end plates are assumed to be uniform
and equal to Tl and T2, respectively, i.e., TN+1=:T1

and T Then by the Lagrange interpolation formula,

ne2 = To-
Eqg.(2-4), tte emissivity and the reflectivity of each section
corresponding to its temperature may be approximated. These
are given by:
€; where 1i=1, 2, ..., N+2
and r where 1i=1, 2, ..., N+2,
By applying the formulas derived in PART I, the required

quantities can be obtained. First evaluate the geometric

factors. The symbol Gi denotes the geometric factors,

J
where i=1l, 2, ..., Nt2
and j=1, 2, cee, N*2,

After determining geometric factors, the configuration factors
are determined. The symbol Fij denotes the configuration
factors, where

i=1, 2, e, N*+2
and =1, 2, ..y NT2.
The absorption factors are evaluated by the Causs-Jordan
reductioé method. This method gllows the set of equations

developed by Gebhart to be solved and the values of Bij to



te obtained, where
i=1, 2, ee ey I\T*Z
and j=1, 2, & o 0 9y N+20
The heat loss of section j is obtained from Eq.(1-18),
N+2
NP A, . -4 ..
Q=S A T Z O By A

where i=1l, 2, eeey N 2.

The total heat loss of the box is then given by,
N+2 A

A=2=,q;=0 | (2-7)
since the complete enclosure is involved.
The procedures may be more clearly seen from the
computer program following. The descriptions are given in

detail following the computer program.



CONPUTER PRCGRAM II

C PROGRAM TI1 RADIATION HEAT TRANSFER ANALYSIS IN THE RECTAMNGUL AR

C ENCLOSURE
DIMENSION FAAL(12)yGA(12,12),FABL(2)3FBBL(12),GAAL(12,12),FBCL(2),
1FCCL(12)46GB(12y12)yF(14,14)9G(1%914)9T(14),0(14,16),Q(14),EMI(12),

2REF(12),TT(10),EE(10),QASUB(I2)
STBOC=.1714E~-8
PI=3,1415926

READ 101, NN
READ 100,y (TT(I)yI=19NN)y(EE(I),I=14NN)
PRINT 101, NN

PRINT 100, (TT(I)yI=14NN)y (EE(I)yI=1,yNN)
READ 100, XX,YY,ZZ,T1,72
PRINT 100, XX,YY,2Z2,T1,72

1 READ 101, N

PRINT 101y N

N1=N+1

N2=N+2

N3=N+3

NM1l=N-1 .
o EVALUATIQON OF THE GEOMETRIC FACTORS
o FOR THE PERPENDICULAR FORM

R =N

H=XX/R

X=0.0

Y=YY

L=11

DO 20 I=1,4N

X=X+H
C EQUATION OF THE GEOMETRIC FACTOR FOR THE PERPENDICULAR RECTANGLES
C _ WITH A COMMON EDGE

Cl=Xxx2

C3=Z%%2

CC1l=C1+C2+C3

CC2=C1l+C2

CC3=C2+C3

CC4=C1+C3

CSR=SQRTF(CC3)

FC1l=X=YxATANF(X/Y)

FC2=X*Z*ATANF(X/Z)

FC3==(X*CSR*ATANF (X/CSR))

FC4==(C1*LOGF(CC1*C1/(CC2:*%CC4))) /4.0

FC5=(C2%LOGF(CC1*C2/(CC2*%CC3))) /4.0

FC6=(C3*%LOGF(CC1*C3/(CC3%CC4)))/4.0
20 FAAL(I)=(FC1l+FC2+FC3+FC4+FC5+FC6)/PI1
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GA(142)=(FAAL(2)-2.0%FAAL(1))*4.,0
IF (N=2) 26426424

24
25
26

DO 25 I=3,N
GA(1,I1)=(FAAL(I)=2.0%FAAL(I-1)+FAAL(I=2))%4.0
Y=H

DO 40 I=1,4N
X=YY
1=717

DO 30 K=1,2
Cl=Xx2

CC1l=C1+C2+C3
CC2=C1+C2

CC3=C2+C3
CC4=C1+C3
CSR=SQRTF (CC3)

FC1l=X=Yx=ATANF(X/Y)
FC2=X=Z=ATANF (X /Z)
FC3=—(X*CSR*=ATANF (X/CSR))

FC4=-=(C1l*LOGF(CC1*C1/(CC2%CC4))) /4.0
FC5=(C2*LOGF(CC1*C2/(CC2%CC3))) /4.0
FC6=(C3*LOGF(CC1x*C3/(CC3*%CC4)))/4.0

30

FABL(K)=(FCL+FC2+FC3+FC4+FC5+FC6)/PI
X=7Z1
Z=YY

40

FBBL(I)=FABL(1)+FABL(2)
Y=Y+H
GAAL(14N1)=FBBL(1)*2.,0

DO 45 I=2,4N

45 GAAL(IsN1)=(FBBL(I)-FBBL(I-1))%*2.0
FOR THE PARALLEL FORM
X=H
DO 60 I=14N
Y=YY
1=21

DO 50 K=1,2
EQUATION OF THE GEOMETRIC FACTOR FOR THE PARALLEL AND OPPOSED

RECTANGLES
R1=X/1Z
R2=Y/Z

Cl=R1%x2
C2=R2%%*2
C3=1.0+C1

C4=1.0+C2
CC1=LOGF ((C3%C4)/(C2+C3))
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CC2=SQRTF(C3)
CC3=SQURTF(C4)

FD1=CC1l/(R1*R2)
FD2=—(2.0%ATANF(R2))/R1
FD3==(2.0%ATANF(R1))/R2

FD4=(2.0%CC2%ATANF(R2/CC2)) /R1
FD5=(2.0%CC3*ATANF(R1/CC3))/R2
FBCL(K)=(FD1+FD2+FD3+FD4+FDS)*X*Y/P1

Y=21
50 Z=YY
FCCL(I)=FBCL(1)+FBCL(2)

60 X=X+H
GB(1y2)=FCCL(2)=-2.0%FCCL(1)
IF (N=2) 66,66464%

64 DO 65 I=3,4N
65 GB(1l,I1)=FCCL(I)=2.0%FCCL(I-1)+FCCL(I=-2)
C EVALUATION OF THE GEOMETRIC FACTORS AND THE CONFIGURATION FACTORS

C BETWEEN ANY TWO SUBDIVISIONS
66 X=11
Y=YY

Z=XX
Rl1=X/L
R2=Y/Z

C2=R2%%2
C3=1.0+C1l

C4=1.0+C2
CC1l=LOGF ((C3%C4)/(C2+C3))

CC2=SQRTF(C3)

CC3=SQRTF(C4)

FD1=CC1/(R1%R2)

FD2==(2. O%ATANF (R2)) /R1

FD3=—-(2.0%ATANF(R1))/R2

FD&=(2.0%CC2%ATANF(R2/CC2)) /R1

ED5=(2.0%CC3*%ATANF (R1/CC3)) /R2

GCINLsN2)=(FDL+FD2+FD3+FD4+FD5)%X*Y/PI

AREA=2.0%H*(YY+ZZ) .

GPERP=4.0% (FAAL(N)—FAAL(N 1)=FAAL(1)) '

GPARA=FCCL(N)-FCCLIN-1)=-FCCL(1)

GPEND=GAAL(1,N1)+GAAL(N,yN1)

F(1ly1)=1.0-(GPERP+GPARA+GPEND) /AREA
—(1,1)=F (1, 1)*AREA

ENDAR=YY*ZZ

DO 70 I=2,N

70 G(1+1)=GA(1,1)+GB(I,1)
DO 75 I=1,N




75 G(I,1)=G(1,
DO 90 M=2,4N
K=N

80 G(MyK)=G(M=1yK=1)
K=K=1

IF (K-l) 90190180
90 CONTINUE
DO 95 I=1,4N

DO 95 J=1,N
95 F(I,J)=G(I,J)/AREA
FIN1,N1)=0.0

FIN2,N2)=0.0
FIN1,N2)=G(N1,N2)/ENDAR
FIN2,N1)=F(N1,N2)

DO 96 I=1,4N
96 F(N1l,I)=GAAL(I4N1)/ENDAR
K=N

DO 97 I=1,N
FIN2,K)=F(N1,yI)
97 K=K=-1

DO 98 I=14N
98 F(IyN1)=GAAL(I,N1)/AREA
K=N

DO 99 I=1,4N
F(IsN2)=F({KgN1)
99 K=K-1

PRINT 102
PRINT 100, ((F(I,J)1J=17N2)7I=17N2) .
EVALUATION OF THE MEAN TEMPERATURES -OF THE SUBDIVISIONS

T(L)=T1=(T1-T2)/(2.0%R)
DO 150 I=1,NM1
150 T(I+1)=T(I)=(T1-T2)/R

T(NL)=T1
TIN2)=T2
PRINT 103

PRINT 100, (T(I),I=1,N2)
EVALUATION OF THE MEAN EMISSIVITIES OF THE SUBDISIONS BY MEANS OF
LAGRANGIAN INTERPOLATION FORMULA

DO 170 J=14N2
FEM=0.0
DO. 165 L=14NN

FNU=1.0
FNO=1.0
DO 164 I=1,NN

IF (I-L) 161,164,161
161 FNU=FNU*(T(J)=TT(I))
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FNO=FNO=(TT(L)=TT(I))
164 CONTINUE

165 FEM=FEM+FNU/FNOx*EE(L)
170 EMI(J)=FEM
PRINT 104

PRINT 100, (EMI(J)sJ=14N2)
EVALUATION OF THE MEAN REFLECTIVITIES OF THE SUBDIVISIONS BY MEANS
KIRCHHOF S TDENTITY

DO 175 I=1,N2 .
175 REF(I)=1.0-EMI(I)
PRINT 105

PRINT 100, (REF(I)sI=14N2)
DO 199 J=1,N2
PRINT 106, J

SOLUTION QF THE ABSORPTION FACTORS BY MEANS OF GAUSS-JORDAN
REDUCTION METHGD
DO 180 I=1,N2

180 D(I,I)=F(I,I)*REF(I)=1.0 . .
DO 182 I=1,4N2 ‘
DO 182 M=1,N2

IF (I-M) 181,182,181
181 D(I M)=F(I,M)*REF(M)
182 CONTINUE

DO 183 I=1,N2
183 D(IyN3)==(F(I4J))%EMI(J)
CALL GAUJOR (DyN2yN3,14,16)

PRINT 107
PRINT 100y (D(IsN3),I=1,4N2)
EVALUATION OF THE ABSORPTION ENERGY FROM SURFACE I TO SURFACE J

DO 185 K=1,4N
185 QASUB(K)=D(KyN3)*STBOC*T(K) %3 4+EMI(K)“AREA

DO 186 K=N1,N2

186 QASUB(K)=D(K,N3)*STBOCHT(K)*#4*EMI(K)*ENDAR

PRINT 108
PRINT 100, (QASUB(I),I=1,N2)

EVALUATION OF THE TOTAL ABSORPTION ENERGY OF SURFACE J

QABS0O=0.0
DO 187 I=1,N2

187 QABSO=QABSO+QASUB(T)
PRINT 109
PRINT 100, QABSO
ACUATION OF THE REDTANT FEAT TRANSFER FROM SURFACE J
IF (J-N1) 191,192,192
191 Q(J)=STBOCHT (J) #%4%AREA%EMI (J) —QABSO

GO 10 199
192 Q(J)=STBOC*T(J)**x4*xENDAR*EMI (J)—-QABSO



199 CONTINUE
PRIMT 110
PRINT 100, (Q(J)sJd=1yN2)
EVALUATION OF THE TOTAL HEAT TRANSFER OF THE SOURCE
QLOSS=0.0
DO 200 IJK=1,N2 R
200 QLOSS=QLOSS+Q(IJK)
PRINT 111
PRINT 100, QLOSS
PRINT 112
PRINT 100, Q(N1),Q(N2)
GO TO 1
100 FORMAT (4F18.8)
101 FORMAT (4I118)
102 FORMAT (10X46HCONFIGURATION FACTORS ((F(I4J)yJ=14N2)yI=1,N2))
103 FORMAT (10X42HMEAN TEMPERATURES (T(I),I=1,N2) IN RANKINE)
104 FORMAT (10X28HMEAN EMISSIVITY OF EACH PART)
105 FORMAT (10X25HREFLECTIVITY OF EACH PART)
106 FORMAT (10X2HJ=,12)
107 FORMAT (10X34HABSORPTION FACTORS (B{(I,J),I=1,N2))
108 FORMAT (10X39HABSORPTION ENERGY FROM EACH PART BTU/HR)
109 FORMAT (10X41HTOTAL ENERGY ABSORBED BY EACH PART BTU/HR)
110 FORMAT (10X45HENERGY LOSS OF EACH PART (Q(J),J=1,N2 BTU/HR))
111 FORMAT (10X24HTOTAL ENERGY LOSS BTU/HR)
112 FORMAT (10X45HENERGY LOSS OF THE SOURCE AND THE SINK BTU/HR)

END
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DETAILED DESCRIPTICN CF PROGRAN II

Geometric factors in perpendicular form:

Statement 1410 1lines zZ

to statement 20 is the ﬁ‘jw

. 3 )
evaluation of the geometric ?f'f

xX
factors from 1 to 2 as

N

shown. These values are
obtained by using Ec.(1-7) with Fig. 2-34 Geometric
the increment H, and (FAAL(I), factor notation.
I=1,N) 1is the program variable.

Statement 20+1 1line

is the evaluation of the geo-

metric factor from 1 <to 2

as shown. Here surface 1

rf
—_— ]
N\

and surface 2 are the rings

of width H. This value is Fig. 2-35 Geometric
given by GAEL,2) in the factor notation.
program. It should be noted that this is only in the
perpendicular form, the complete geometric factor for ring

1 +to ring 2 would include the factor for parallel geomelry,

Statement 24 to state-

ment 25 1is the evaluation sy

of the geometric factors E%i% —

from 1 to I as shown. {§=§ E

Here surface 1 and surface : Fig. 2-36 Geometric

I are the rings of width H, ‘factor notation.



I denotes the ring nurber as

nre given oy (G(l,I)’I=3rN)

4,

€2

eeey No. These values

in the program. Again, it

cshould be noted that these values are only for the

perpendicular form,

Statement 26 +to state-

rient 40 1is the evaluation of

the georetric factors from 1
to 2 as shown. Surfazce 2
is the end plate AN+1 and

surface 1 1is the half ring

of changing width from H 1in

increments of H to XX. These

(FBBL(I),I=1,N) 1in the program.

Statement 40+1 1line

is the evaluation of the geo-

metric factor from 1 +to N1

as shown. Surface 1 1is the
ring of width H and surface
N1 1is the end plate -AN+1°
This value is given by
GAAL(1,N1) in the program,
Statement 40+ 2 1lines
to statement 45 1is the
evaluation of the geometric
factors from I to N1 as
shown, Here surface N1 1is

the end plate AN+1 and

Fig. 2-37 Geometric
factor notation.

values are given by

~NiH
BunsP%s Sl s By
T
Fig. 2-38 Geometric
factor notation.
B 17/ /! 5
S ey
1,&1 [ —

Pig. 2-39 Geometric
factor notation.
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curface I 1is the ring of width ¥, I denotes the ring
number 2s 2, 3, ..., N. These values are given by
(GAAL(I,N1),I=2,N) in the progran.

Geometric factors in parallel form:

Statement 4541 1line

e 3 /'//’E.%: v}‘
to statement 60 is the T !
) ) e B p—
evaluation of the geometric A |
g'A'_— i o — o — . — - -
it N
feetors from 1 to 2 as ;;3 il
"X -

shovwn. This is evaluated by

using Eq.(1-8). Here surface . Tig. 2-40 Georetric

1 1is the half ring of changing factor notation.

width from H to XX with the increment H and surface

2 1is thé other half ring corresponding to surface 1.

These values are given by (FCCL(I),I=1,N) in the program.
It should be noted that these values are only for the '
parallel form, the complete geometric factor for surface 1
to surface 2 would include the factor for the perpendicular
geonetry.

Statement 60+ 1 1line .

is the evaluation of the geo-

metric factor from 1 to 2 ﬁ:;-mwi g

as shown. Where surface 1 IS it

and surface 2 are rings of

width H. It, also, should FPig. 2-41 Geometric

ve noted that this is only in factor notation.
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the parallel form. This value is given by GB(1,2) in the
Program.

Statement 64 to state-

ment €5 1is the evaluation of

the geometric factor from 1 f“

to I as shown. VWhere surface ij;‘

1 and surface I are rings L —

of width H, and I denotes Fig. 2-42 Geometric
the ring number as 3, ..., N. factor notation.

These valuec are given by (GB(1,I),I=3,K) in the program.
Azain, it should be noted that these values are only for the
varallel form.

Statement 66 to state-
ment 66+ 17 1lines is the A /’

evaluation of the geometric EQQ
i
f
)

factor from N1 to N2 as i

shown. Where surface N1 =and

curface N2 . are the end plates Tig. 2-43 Geometric

factor notation.

A and AN2’ respectively.

.
Tiis value is given by G(¥1,K2) in the program.

Statement €6+ 18 1lines is the evaluation of the
surface area of each subdivision, i.e., the area of the ring
of width H. This value is given by AREA 1in the program.

Statement €6+ 19 1lines is the evaluation of the
geometric factor from 1 to 2 as shown.in Fig.(2-44).

Where surface 1 1is the ring of width H and surface 2

is the ring of width (XX—H). This value is given by
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GPEEP in the program. It chould be noted that this is only
in the perrendicular form.

Stetement 6€ +20 1lines

is the evaluation of the geo-

retric factor from 1 +to 2 Ry

as shown. However, this is fiJ

only in the parallel forn.
This value is given by 'GPARA Fig. 2-44 Geometric

in the program. factor notation.

Complete geometric factors and configuration factors:

In the following, 1, 2, ..., &, N1, N2 will denote
the subdivisions as shown in Fig.2-32 unless otherwise
specified.

Statement 66421 1lines is the evaluation of the gco-
metric factor from ring 1 +to both end plates. This value
is given by GPEKD in the program. .

Statement 66+22 lines to statément. 66+23 lines is
the evaluation of the complete configuration facvor F11 and
the complete gfeometric factor G11 of the ring of width H.

These values are given by F(1,1) and ¢(1,1), respectively.

Statement 66+ 25 1lines

to statement 70 is the

i
|
l
]

evaluation of the geometric -
,,,,, *’_'f,} /

factors from 1 to I =as S

shown. Here surface 1 and " Fig. 2-45 Geometric

o ' . . factor notetiorn.
surface 1 are rings of width
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H, and I derotes the ring number as 2, 3, ..., N. These
values are for complete geometry and given by (G(1,I),I=2,N)
in the program.
Statement 70+ 1 1line to statement 90 1is the evalua-
tion of the complete geometric factors Gij where 1i=1, 2,
eeey ¥ and j=1, 2, ..., N Dby using Eq.(2-6). These
va2lues are given by (G(I,l),I:l,N)' and G(M,K) where
M=2, 3, eeey, I and X=N, N1, ..., 2 1in the program.
Statement 90+1 1line to statement 99 1s the evalua-
tion of the complete configuration factors F.

ij’
2, e o oy N+2 and j==l, 2, e e oy N+2. These values are given

where 1=1,

vy ((F(1,J),J=1,K2),I=1,N2) in the program.
The program is completed by the use of Eg.(2-1), Eq.(2-
2)' qu(2—4) and qu(2-5)o.
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The other symbols used in the program are defined as

followe:

N1, X2, N3, NF1.
Fixed point variavles defined in the program.

FABL(KX) The geometric factor for the perpendicular form
from any subdivided section of the wall of the box
in XX directior to the 'end plate.

FECL(K) The geometric factors for the two sets of the
opposed, parallel rectangles.

411 other symbols involved have the same meanings as

defined previously..

An example is given in the following.

lnterial: Al, XX=10 ft., YY=12z=1 ft.,
(a) Ty= 560 °R, ,= 530 °R.
(3) 17,=800 °R, T =570 °R.
(c) 1T,=1000 °R, T,= 600 °R.
(p) T, =2000 °R, T,=1000 °R.

The emissivities correspording to the temperatures are given
in CASE A. The results are tabulated aund the curves are

plotted on the following pages.



(4)

(B)

TABLE II

The energy loss of the source and sirk of Case B

N

O 0 I o U & W

source
0.99
0.84
0.75
0.69
0.65
0.62
0.60
0.59
0.58

7. =800 °R,

1

L
-4

W O X3 o0 U1 H W N

[
(@]

QSOUTCQ

22.56
18.90
16.79
15.45
14.55
13.92
13.47
13.13
12.88

T,= 530 °R.
Qsink Uotal
-0.87 .00027
~0.74 -.0COE5
~0.66 .00001
~0.61 .00039
-0.57 .00141
-0.55 -.00084
~0.53 .00013
-0.52 .00079
~0.51 —~.00054
T,=570 °R.
Qsink Uotal
-11.71 .00029
- 9.72 ~.00183
- 8.52 .00072
= T.77 . 00037
- 7.26 .00391
- 6.91 -.00201
- 6.66 .00065
- 6.48 .00212

- 6.%4 -.00131

(Btu/hr)

(Btu/nhr)



(C)

(D)

TABLE II (Continued)

T, = 1000 °R,

b N

N

&~ WV

N

O O N o

Ty

S G\ I N

O OO I o U

Q

source
73.87
61.93
55.07
50.72
47.779
45.75
44.27
43.17
42.33

= 2000 °R,

Q

source
2089.06
1695.51
1476.91
1341.74
1252.43
1180.62
1146.33
1113.67
1088.99

T,= 600 °r.

Q

source
-30.11
-24 .64
-21.39
-19.35
-18.00
-17.08
-16.42
-15.95
-15.59

T2=IOOO

Q

sink

-546.32
-427.58
-360.92

Qtotal
.0C0e4
-.00470
.00076
.00325
. 00706
-.00453
. 00060
003251
-.00198

Uiotal

.01845
-.06282
.01346
.04292
.08579
-.04197
-.00102
.04862
-.02725

(Btu/hr)

(Btu/hr)
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PLATE 3-A

Energy loss of the source section of the box

T.= 560 °R
1
T.= 530 °R
2
= S |
~ 1.2 i ; .
£ | z |
& | i S
| ‘ ]
M | 3
=2 L
g’\ ' \lt 3‘.,

0‘22345678910

Number of subdivisions =N
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PLATE 3-B

Energy loss of the source section of the box

m — o
Ty 800 "R

T.,= 570 °R

24
-
S 22
A
\ 20
"

o]
- 18
=N
e
Jd 16
=
(9]
14
12

Noumber of subdivisions—AN



PLATE 3-C

Energy loss of the source section of the box

1000 °r

I

600 °R

T2—‘=

R e T S

L;\D*.ﬂ — ﬂm0~ ﬁmL@Cm

Nuomber of subdivisions— N



PLATE 3-D

Energy loss of the source section of the box

— o
Tl—-ZOOO R

— o
T2—-lOOO R

2Goo

2200

{800

l400

Energy loss — Bty

fooo

Nomber of subdivisions —N
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Energy losc of the sink
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Il

2
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w

m.

|
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M | | _
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L
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PLATE 4-B

Energy loss of the sink section of the box

mno o
= g00 "R

570 °R

Mg — 59| Tmbcm

N

visions —

\

Numbevr of subd



Inergy loss of the sink section of the box

— o
Tl— 100C "R

— o
T2- 600 "R

BN
0

Ener% loss -FB+UA],~

Nombar of sobdivisions— N



PLATE 4-D

Energy loss of the sink section of the box

T.= 2000 °R

T~ 1000 °R

L —loco ! i ; J T I I
= i : . | j i
> * ! : | i 5 5
_ e T el e B
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Number of subdivisions—N
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CCIrCLUSICK

The plot of the results of the source section in the
first case for high temperatures shows that the slope
increoses end then decreases to become rearly horizontal
s the number of subdivisions increases. This is a result
of the sumnmation of the procduct of the mean temperature to
the fourth power and the subdivided section area, since the
surmetion of mean temperature to the fourth power ircreases
with the ruxber of subdivisions, while the area of each
subdivision decreases. If the number of the subdivisions
is large enough, the results approach a constant value.

The results of the sink section in the first case and
the results of the source and the sink in the second case
indicate that these both approach a constant value as the
number of subdivisions increases. The curves keep on
increasing or decreasing because the areas and the tempera-
tures are kept constant at these sections.

The computer programs were checked to be correct by
putting XX =YY=22=10 ft., ¥W=1 ft. and Ty= T,= T,=1000°R,
for the first program. The results show that Q1= Qsink’
Q2: QlO’ cee Qi= Q(I\I—i+2)’ whgre 2<i<£10 and 2<N=10.
For the second program, XX=11 ft., YY=12Z=10 ft., T1=='l‘2

)

(o] _ — m o PRy . oy
1000"R and Iy = T p” O. The results show that the erergy
loss of the duct like cection of the box is aprroximately
ecual to the energy loss of the duct, Qduct like (II)=

64448 Btu/hr, Qayet™ €4446 Btu/hr, for N=10.
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“he Tirst program was run for a constant temmerature,
(COOR, in the source section and the sink section. The
Gimercions of the cuct were ZX=YY=ZZ=10 ft., W=1 ft..
“he recults Tfor thre erergy loss of the source and the sink
were  624€.4  Btu/nr and  643.7 Btu/hr for K =2,
€227.9 .*tu/nr and 643.7 Btu/hr for N=10 respectively.
Trhe moeximum errors were .17% and .003% respectively. The
resulte for T,= T,= 2000°R, T;= 600°R were 1398%37.2 Btu/hr
ané -11682.5 Btu/hr for X=2, and 1394496.3 Btu/hr and
-116%4.0 =2Rtu/hr with the maximum errors .28% and
.419 respectively.

The program is limited for N varying from N=2 +to
y::io because of the programring and the capacity of the
computer. If a larger number of the subdivisions is
required, the program can be used by separating it into
several parts and rearranging the DIMENSION statement and

the INFUT data.
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