Library and
Learning Resources

A study of radiation heat transfer in rectangular ducts and enclosures

Jenn-Wuu Ou

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Mechanical Engineering Commons

Department:

Recommended Citation

Ou, Jenn-Wuu, "A study of radiation heat transfer in rectangular ducts and enclosures" (1965). Masters Theses. 6987.
https://scholarsmine.mst.edu/masters_theses/6987

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

in partial fulfillment of the work required for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Rolla, Missouri

1965

ABSTRACT

The purpose of this study is to determine the radiant heat transfer in rectangular configurations ard construct a gereral computer program. Two specific cases are studied in this work.

The first case is a rectangular duct with openings at each end. The duct is separated into two sections which are called the source and the sink respectively. A linear temperature profile is imposed on the source section. The energy loss of both the source and the sink is investigated.

The second case is a complete rectangular enclosure. The two end plates are called the source and the sink respectively. A linear temperature profile is imposed on the duct like section between the two plates. The energy loss of both the source and the sink is investigated.

The method of analysis is Gebhart's unified method. The computer programs are as generalized as possible. Each program contains two main parts: (A) The evaluation of the configuration factors between any two surfaces in the enclosure. (B) The evaluation of the radiant energy loss of the source and the sink.

TABLE CF CONTENTS

Pa氏e
ABSTEACT ii
LIST CF FIGURES iv
IIST OF TABLES vii
IIST OF PLATES viii
ACKNOWI:EDGENENT ix
INTRODUCTION AND REVIEW OF IITERATURE 1
DISCUSSION 3
PART I: GENERAL CONCEPTION 3
Assumptions 3
Fundamentals of thermal radiation 4
The radiation shape factor 5
Radiation heat transfer calculations 13
PART II: RADIATICN HEAT TRANSFER ANALYSIS IN THE
RECTANGULAR CONFIGURATIONS 16
CASE A: Radiation heat transfer analysis in the rectangular duct 17
Computer program I 21
Detailed description of the progrem 28
CASE B: Radiation heat transfer analysis in the
rectangular enclosure 52
Computer program II 55
Detailed description of Program II 61
COÑCLUSICN 78
BIBLIOGRAPHY 80
VITA 82

IIST OF FIGURES

Figure Fģुe
I－l Corfiguration factor notation in perpenaicular rectengles 7
1－2 Configuration factor notation in parallel rectangles 8
1－3 Pcrpendicular shape factor Eeometry 11
I－4 Perpendicular shape factor geometry 11
ユーら Perpendicular shape factor geometry 12
1－6 Perpendicular shape factor feometry 12
2－1 Dimensions of the rectangular duct 17
2－2 Temperature profile down the wall of the duct 18
2－3 Geometric factor notation 28
2－4 Geometric factor notation 28
2－5 Geometric factor notation 28
2－6 Geometric factor notation 28
2－7 Geometric factor notation 29
2－ 8 Geometric factor rotation 29
2－9 Geometric factor notation 29
2－10 Geometric factor notation 29
2－11 Geometric factor notation 30
2－12 Geometric factor notation 30
2－13 Geometric factor notation 30
2－14 Geometric factor notation 30
2－15 Geometric factor notation 31
2－16 Geometric factor notation 31
Figure Page
2-17 Geometric factor notation 31
2-18 Geometric factor notation 32
2-19 Geometric factor notation 32
2-20 Geometric factor notation 32
2-21 Geometric factor notation 33
2-22 Geometric factor notation 33
2-23 (eoretric factor notation 34
2-24 Geometric factor notation 34
2-25 Geometric factor notation 34
2-26 Geometric factor notatior 35
2-27 Geometric factor notation 35
2-28 Geometric factor notation 35
2-29 Geonetric factor notation 36
2-30 Geometric factor notation 36
2-31 Geometric factor notation 38
2-32 The dimensions of the rectangular box. 52
2-33 The temperature profile of the wall of the box along $X X$ 52
2-34 Geometric factor notation 61
2-35 Geometric factor notation 61
2-36 Geometric factor notation 61
2-37 Geometric factor notation 62
2-38 Geometric factor notation 62
2-39 Geometric factor notation 62
2-40 Geometric factor notation 63
2-41 Geometric factor notation 63
Figure Page
2-42 Geometric factor notation 64
2-43 Geometric factor notation 64
2-44 Geometric factor notation 65
2-45 (ieometric factor notation 65

IIST OF TABIES

Table Pa氏eI The energy loss of the source and the sink ofCase A .. 42
II The energy loss of the source and the sink of Case B ... 68

LIST OF PLATES

Plate
Page
I-A Energy loss of the source section of the duct 44
1-B Energy loss of the source section of the duct 45
I-C Energy loss of the source section of the duct 46
1-D Energy loss of the source section of the duct 47
2-A Energy loss of the sink section of the duct 48
2-B Energy loss of the sink section of the duct 49
2-C Energy loss of the sink section of the duct 50
2-D Energy loss of the sink section of the duct 51
3-A Energy loss of the source section of the box 70
$3-B$ Energy loss of the source section of the box 71
3-C Enerey loss of the source section of the box 72
3-D Energy loss of the source section of the box 73
4-A Energy loss of the sink section of the box 74
4-B Energy loss of the sink section of the box 75
4-C Energy loss of the sink section of the box 76
4-D Energy loss of the sink section of the box 77

ACKIOWLEDG EPE ENT

The author wishes to express special acknowledgement to his professor, Dr. John E. Francis, for his guidance and suggestions which made this investigation possible. The author also wishes to thank the members of the Computer Science Center for their assistance.

IIFTRODUCTION AND REVIEW OF LITERATURE

Much work has been done in the field of thermal radiation. Hamilton and Norgan (1)* first developea the confiGuration factors for many cases and stated the configuration factor algebra. The analysis of radiant heat transfer has been preserted using approaches, such as: (A) Hottel (2) introduced a method, by which the equivalent shape factor can be solved and the radiant heat transfer then determined. (B) The method originally proposed by Poljak and later refired by Oppenheim (3) is called "Radiation Analysis by Network". This method makes use of the analogy between radiation interchange and electrical circuits. (C) Ishimoto and Bevans (4) preseited a method using the "Script F" in their paper. This method states that the net exchange between two surfaces in an enclosure must be of the form $a\left(T_{1}^{4}-T_{2}^{4}\right)$ multiplied by a factor F_{12} (called script F) which is solved by a matrix solution. (D) The method developed by Gebhart (5) makes use of determinants and introduces the so termed absorption factors and uses certain relations to reduce the amount of labor required in obtaining a numerical solution for the rate of heat trarsfer to or from a given surface.

This study is concerned with the radiart heat transfer in both a rectangular duct and a rectangular enclosure. The
open rectangular duct is separated into two sections, the source and the sink. The temperature of the source is changing from T_{1} to T_{2} in a linear fashion and the temperature of the sink is a uniform value given by T_{3}. The complete rectangular enclosure or box has temperatures of T_{1} and T_{2} at either end. The duct like section between these ends has a linear temperature profile varying from the end temperatures.

Since the radiation properties are dependent upon the temperature distribution and the temperature along a wall may not be uniform, the method of numerical analysis must be used to approximate the radiant heat transfer. That is, the wall with varying temperature must be divided into several sections, the solution is then based on Gebhart's unified method for radiation-exchange calculations. In solving the simultaneous equations, the Gauss-Jordan reduction method is used.

The configuration factors between any two surfaces are evaluated by means of "configuration factor algebra". The two special classes of configuration factors used are: (A) The configuration factors for finite, perpendicular rectangles having a common edge. (B) The configuration factors for finite parallel, opposed rectangles.

The emissivities corresponding to the temperatures are approximated by using the Lagrange interpolation formula. All of the calculations were performed with the aid of an IBM 1620 rodel II Digital Computer.

PART I: GENERAL CONCEPTION

1. ASSUMPTIONS:

In this analysis the following assumptions are made for convenience in solving the problem:
(A) The condition of steady state has been assumed, i.e., all conditions are independent of time.
(B) Conduction along the wall of the duct and convection in the duct are neglected, only radiation is considered.
(C) The temperature profile down the wall of the duct is assumed to be a straight line. The temperatures of both ends of the duct are equal to the values of the ends of the temperature profile, respectively.
(D) In the calculations the mean temperature is used and is based on the assumption that the temperature is uniform over the entire section concerned.
(E) The emissivity and reflectivity depend upon the mean temperature.

Other assumptions. will be made in the following discussion.
2. FUN:DAFENTALS OF THERNAL RADIATION

Stefan-Boltzmann established a law that the energy density of the radiation is proportional to absolute temperature to the fourth power:

$$
\begin{equation*}
E_{b}=a T^{4} \tag{1-1}
\end{equation*}
$$

where E_{b} is the erergy radiated per unit time and per unit area by an ideal radiator, i.e., a black body. a is the Stefan-Boltzmann constant. The value of a is 0.1714×10^{-8} Btu/hr-ft ${ }^{2}-{ }^{\circ} R^{4}$, when E_{b} is in Btu per hour per square foot, and T is in degrees Rankine. For a gray body the emissive power is:

$$
\begin{equation*}
E=\epsilon a T^{4}, \tag{1-2}
\end{equation*}
$$

where ϵ is the emissivity.
When radiant energy strikes the surface of a material, part of the radiation is reflected, part is absorbed, and part is transmitted, then

$$
q_{i}=q_{r}+q_{a}+q_{\tau}
$$

or $\quad 1=q_{r} / q_{i}+q_{a} / q_{i}+q_{\tau} / q_{i}=r+q_{i}+\tau$
where the fraction r is reflectivity, a is absorptivity, and τ is transmissivity. Many solid materials do not transmit thermal radiation, for the case

$$
\begin{equation*}
r+\lambda=1 \tag{1-3}
\end{equation*}
$$

Another useful tool was developed by Kirchhoff. His idertity shows that

$$
\begin{equation*}
\epsilon=a, \tag{1-4}
\end{equation*}
$$

when the system is in thermodynamic equilibrium.

3. THE RADIATION SHAPE FACTOR

Consider two finite black surfaces A_{1} and A_{2} which are in view of each other. The energy exchange between these surfaces, when they are maintained at different temperatures, deperids on the spatial arrangement of the surfaces. Hence the shape or configuration factor is instrumental in the analysis.

The configuration factor from A_{1} to A_{2}, written F_{12}, may be defined as the fraction of the total radiant energy leaving surface A_{1} which is incident upon surface A_{2}. The general expression, $F_{m n}$ is defined as the fraction of enerey leavirce surface A_{m} that is incident upon surface A_{n}. The limitire values are then zero and unity.

The configuration factor is a function of the geometry of the two surfaces A_{1} and A_{2} and depends on the directional distribution of the radiant emission. The emission has been assumed to follow Lambert's cosine law. This law states that the intensity, the radiant energy emitted per unit time per vrit solid angle subtended at emitting element, is a constant throughout the half-space above the emitting element. This law implies that the radiant heat flux in the space varies inversely as the square of the distance from the emitting surface and directly with the cosine of the ancle made with the normal to the surface. Experiments indicate that most engineering materials do not exactly follow Lambert's cosine principle. The error introduced by using Lamoert's law in the calculation of radiant heat
transfer has been assumed to be too small, in comparison with other calculation errors tolerated in practice, to warrant the complication introduced by the use of a more accurate form of the directional distribution function. The configuration factor is denoted as

$$
\begin{equation*}
F_{12}=\frac{1}{\pi A_{1}} \int_{A_{2}} \int_{A_{1}} \cos \phi_{1} \cos \phi_{2} \frac{d A_{1} d A_{2}}{r^{2}}, \tag{1-5}
\end{equation*}
$$

where ϕ_{1} and ϕ_{2} are the acute angles measured between a normal to the surface and the connecting line r between the area elements.

The total heat transfer per unit time leaving A_{1} which reaches A_{2} is

$$
\begin{equation*}
q_{12}=\frac{E_{b 1}}{\pi} \int_{A_{2}} \int_{A_{1}} \cos \phi_{1} \cos \phi_{2} \frac{d A_{1} d A_{2}}{r^{2}} . \tag{1-6}
\end{equation*}
$$

It now becomes desirable to develop two special configuration factors in a general form.
(A) The configuration factor for finite, perpendicular rectancles with a common edge:

Fig. l-l indicates a rectangle, which will be called A_{1}, of the dimensions X by Y located normal to rectangle A_{2} with the dimensiors X by Z. The line X is then the common edge.

Fig. 1-1 Configuration factor notation in perpendicular rectangles

The quantities needed to evaluate F_{12} are given below:

$$
\begin{aligned}
& d A_{1}=d x d y \\
& d A_{2}=d x^{\prime} d z \\
& r^{2}=\left(x^{\prime}-x\right)^{2}+y^{2}+z^{2}
\end{aligned}
$$

$$
\cos \phi_{1}=z / r
$$

$$
\cos \phi_{2}=\mathrm{y} / \mathrm{r}
$$

The configuration factor is expressed as

$$
F_{12}=\frac{1}{\pi x y} \int_{0}^{y} \int_{0}^{x} \int_{0}^{x} \int_{0}^{z} \frac{y z d z d x^{\prime} d x d y}{\left[\left(x^{\prime}-x\right)^{2}+y^{2}+z^{2}\right]^{2}} .
$$

Integration of the above equation yields

$$
\begin{aligned}
F_{12}=\frac{1}{\pi} & {\left[\tan ^{-1}(x / Y)+(Z / Y) \tan ^{-1}(x / Z)\right.} \\
& -\left(\sqrt{Y^{2}+Z^{2}} / Y\right) \tan ^{-1}\left(x / \sqrt{Y^{2}+Z^{2}}\right)-(x / 4 Y) \ln \frac{\left(x^{2}+Y^{2}+Z^{2}\right) x^{2}}{\left(x^{2}+Y^{2}\right)\left(x^{2}+Z^{2}\right)}(1-7) \\
& \left.+(Y / 4 X) \ln \frac{\left(x^{2}+Y^{2}+Z^{2}\right) Y^{2}}{\left(x^{2}+Y^{2}\right)\left(Y^{2}+Z^{2}\right)}+\left(Z^{2} / 4 x Y\right) \ln \frac{\left(x^{2}+Y^{2}+Z^{2}\right) Z^{2}}{\left(x^{2}+Z^{2}\right)\left(Y^{2}+Z^{2}\right)}\right] .
\end{aligned}
$$

(B) The configuration factor for finite, parallel, opnosed rectangles:

Fig. l-2 shows two rectangles X by Y in size and separated by a distarice D.

Fig. 1-2 Configuration factor notation in parallel rectangles

The quantities needed to evaluate $F_{1.2}$ are given below:
$d A_{1}=d x d y$
$d A_{2}=d x^{\prime} d y^{\prime}$
$r^{2}=D^{2}+\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}$
$\cos \phi_{1}=\cos \phi_{2}=\mathrm{D} / \mathrm{r}$.
Therefore,

$$
F_{12}=\frac{D^{2}}{\pi X Y} \int_{0}^{x} \int_{0}^{Y} \int_{0}^{x} \int_{0}^{Y} \frac{d x d y d x^{\prime} d y^{\prime}}{\left[D^{2}+\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}\right]}
$$

The result of the above equation, in terms of the dimensionless ratios X / D and Y / D is

$$
\begin{align*}
F_{12}=\frac{1}{\pi} & {\left[\frac{1}{R_{1} R_{2}} \ln \frac{\left(1+R_{1}^{2}\right)\left(1+R_{2}^{2}\right)}{\left(1+R_{1}^{2}+R_{2}^{2}\right)}-\frac{2}{R_{1}} \tan ^{-1} R_{2}\right.} \\
& -\frac{2}{R_{2}} \tan ^{-1} R_{1}+2 \sqrt{1+\left(1 / R_{1}^{2}\right)} \tan ^{-1}\left(R_{2} / \sqrt{1+R^{2}}\right) \tag{1-8}\\
& \left.+2 \sqrt{1+\left(1 / R_{2}^{2}\right)}+\tan ^{-1}\left(R_{1} / \sqrt{1+R_{2}^{2}}\right)\right],
\end{align*}
$$

where $R_{1}=X / D, R_{2}=Y / D$.
In some cases, the evaluation of the configuration factor of a particular configuration by means of the Eq. (1-5) is difficult or even impossible. Sometimes it may be possible, however, to evaluate the required configuration factor by means of "configuration factor algebra". This method makes use of four principles which are summarized here for convenience.
(A) Basic reciprocity law:

The product of an area A_{1} and the configuration foctor of A_{1} relative to another area A_{2}; i.e., F_{12}, is related to the product of A_{2} and F_{21} by the relation $A_{1} F_{12}=A_{2} F_{21}$.
To simplify this relation the geometric factor G_{12}, numerically equal to the product of $A_{1} F_{12}$, is introduced, hence

$$
\begin{equation*}
G_{12}=G_{21} . \tag{1-10}
\end{equation*}
$$

(B) Summation law:

If the interior surface of a completely enclosed space is subdivided into parts having area $A_{1}, A_{2}, \ldots, A_{n}$ and each area is irradiated, then the following relationship holds:

$$
\begin{array}{ll}
\sum_{i=1}^{n} F_{i j}=1 & \text { where } i=1,2, \ldots, n \tag{1-11}\\
\text { and } & j=1,2, \ldots, n
\end{array}
$$

(C) Decomposition law:

Given two surfaces A_{1} and A_{2}, if surface A_{1} is subdivided into A_{3} and A_{4}, then the total configuration factor F_{12} is related to the two subsidiary configuration factors F_{32} and F_{42} by the relation

$$
\begin{equation*}
\mathrm{A}_{1} \mathrm{~F}_{12}=\mathrm{A}_{3} \mathrm{~F}_{32}+\mathrm{A}_{4} \mathrm{~F}_{42} \tag{1-12}
\end{equation*}
$$

$$
\text { or } \quad G_{12}=G_{32}+G_{42}
$$

(D) Modified reciprocity law:

For rectangular geometric systems, if two planes
intersect, the product of a corner area in plane A and its configuration factor with respect to the opposite corner area in plane B is equal to the product of the other corner area ir plane A and its configuration factor with respect to the other corner area in plane B, irrespective of the angle between planes. This law plays an important role in this study, the illustrations are as follows:
From Fig. $1-3$ the quantities of Eq. (1-5) in terms of x, x^{\prime}, y, z are developed as

$$
\begin{aligned}
& d A_{1}=d x d y \\
& d A_{2}=d x^{\prime} d z
\end{aligned}
$$

$$
r^{2}=\left(x^{\prime}-x\right)^{2}+y^{2}+z^{2}
$$

$$
\cos \phi_{1}=z / r
$$

$$
\cos \phi_{2}=y / r
$$

Hence, Eq. (1-5) yields

$$
G_{12}=F_{12} A_{1}=\frac{1}{\pi} \int_{0}^{z} \int_{0}^{x} \int_{0}^{Y} \int_{0}^{a} \frac{y z d x d y d x^{\prime} d z}{\left[(x-x)^{2}+y^{2}+z^{2}\right]^{2}},
$$

 shape factor geometry
 shape factor geometry
and from Fig. I-4
$d A_{3}=d x d y$
$\mathrm{dA}_{4}=\mathrm{dx} \mathrm{x}^{\prime} \mathrm{dz}$
$r^{2}=\left(x^{\prime}-x\right)^{2}+y^{2}+z^{2}$
$\cos \phi_{1}=z / r$
$\cos \phi_{2}=y / r$.
Therefore, $\quad G_{34}=F_{34} A_{3}=\frac{1}{\pi} \int_{0}^{z} \int_{0}^{a} \int_{0}^{r} \int_{0}^{x} \frac{y z d x d y d x d z}{\left[\left(x^{\prime}-x\right)^{2}+y^{2}+z^{2}\right]^{2}}$
The two integrals are of identical form except for the order of integration. Since the nature of the integrand permits the interchange of the order of the integration, the reciprocity formula is obtained

$$
\begin{equation*}
G_{12}=G_{34} \tag{1-14}
\end{equation*}
$$

For parallel rectangles, the reciprocity formula also nolds.

Applying the previous laws the following useful relations for determining the configuration factors are developed.

Fig. 1-5 Perpendicular shape factor geometry

Fig. l-6 Perpendicular shape factor geometry

Denoting $G_{m n}=A_{m} F_{m n}$ and $G_{m^{2}}=A_{m} F_{m m}$, one can develop

$$
\begin{equation*}
\left.G_{12}=1 / 2\left[G_{(1+3)(2+4}\right)^{-G_{14}}-G_{32}\right] \tag{1-15}
\end{equation*}
$$

corresponding to Fig. 1-5, and

$$
\begin{align*}
G_{13}, & =1 / 2\left\{\left[G_{\left.(1+2+3)^{2}-G_{1^{2}}-G_{(2+3)^{2}}\right]-\left[G_{\left.\left.(1+2)^{2}-G_{1}-G_{2}{ }^{2}\right]\right\}}\right.}=1 / 2\left[G_{\left.(1+2+3)^{2}+G_{2^{2}}-G_{(2+3)^{2}}-G_{(1+2)^{2}}\right]}\right.\right.\right.
\end{align*}
$$

corresponding to Fig. l-6. The above formulas are also applicable for parallel rectangles.

4. Radiation heat transfer calaulations

There are many methods to determine the radiation heat exchange among the surfaces. In this analysis, the unified method for radiation exchange calculations developed by Gebhart is used. This method treats all diffuse-radiation configurations, including those which involve special features such as windows, openings, and surfaces in radient balance. The symbol q_{j} denotes the rate of energy transfer from an arbitrary surface A_{j} participating in the radiative exchange process, while the rate of emission from area A_{j} is equal to $E_{j} A_{j}$.

Consider an enclosure which contains no emitting or absorbing medium, and is formed of areas $A_{1}, A_{2}, \ldots, A_{n}$ having emissivities $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ ard emissive powers $E_{1}, E_{2}, \ldots, E_{n}$. The radiant energy absorbed by A_{j}. per unit time from each area is then given by $B_{1 j} E_{1} A_{1}, B_{2 j} E_{2} A_{2}, \ldots$, $B_{j j} E_{j} A_{j}, \ldots, B_{n j} E_{n} A_{n}$. Where $B_{i j}$ is the absorption factor, defined as that fraction of the radiant energy emitted by surface A_{i} which is absorbed by surface A_{j}. This fraction is to include radiation along all paths by which portions of $E_{i} A_{i}$ reaches A_{j} and is absorbed by A_{j}. In general, $B_{j j}$ is not zero because some of the energy emitted by A_{j} may be reabsorbed by A_{j}. The rate of energy loss from A_{j} is ecual to the rate of emission minus the total amount of radient
energy absorbed by A_{j} per unit time. Hence,

$$
\begin{equation*}
g_{j}=E_{i} A_{j}-B_{1 j} E_{1} A_{1}-B_{2 j} E_{2} A_{2}-\cdots-B_{j i} E_{j} A_{i}-\cdots-B_{n j} E_{n} A_{n}=E_{j} A_{j}-\sum_{i=1}^{n} B_{i j} E_{i} A_{i}, \tag{1-17}
\end{equation*}
$$

or $\quad q_{j}=\epsilon_{j} a T_{j}{ }^{4} A_{j}-\sum_{i=1}^{n} a B_{i j} \epsilon_{j} T_{i}^{4} A_{i}$.
The n values of $B_{i j}$ necessary to compute q_{j} may be detcrmined by summing absorption rates at j due to the emission rates of $A_{1}, A_{2}, \ldots, A_{n}$. For example, $E_{1} A_{1}$ is emitted at A_{1} and reaches the n surfaces in fractions given by the configuration factors $F_{11}, F_{12}, \ldots, F_{1 n}$. The fraction of energy emitted by area A_{1} and absorbed by A_{j} is $F_{l j} \epsilon_{j}$, while $F_{l j} r_{j}$ is reflected. In general, $F_{1 i} r_{i}$ is reflected by the ith surface. The fraction of $F_{1 i} r_{i}$ which is absorbed at A_{j} is the same as the fraction of $E_{i} A_{i}$ which is absorbed at A_{j} if the incident energy $F_{1 i} E_{1} A_{1}$ is uniformly distributed over A_{i} and is diffusely reflected. Assuming uniform distribution, the fraction of $E_{1} A_{1}$ absorbed at A_{j} because of reflection off A_{i} is then $B_{i j} F_{1 i} r_{i}$. So the total fraction of $E_{1} A_{1}$ absorbed at A_{j}, that is, that is, $B_{1 j}$, is

$$
B_{1 j}=F_{1 j} \epsilon_{j}+F_{11} r_{1} B_{1 j}+F_{12} r_{2} B_{2 j}+F_{13} r_{3} B_{3 j}+\cdots+F_{1 n} r_{n} B_{n j} .
$$

Similarly, the absorption factors for each of the other surfaces $A_{2}, A_{3}, \ldots, A_{n}$ are

$$
\begin{aligned}
& B_{2 j}=F_{2 j} \epsilon_{j}+F_{21} r_{1} B_{1 j}+F_{22} r_{2} B_{2 j}+F_{23} r_{3} B_{3 j}+\cdots+F_{2 n} r_{n} B_{n j} \\
& B_{3 j}=F_{3 j} \epsilon_{j}+F_{31} r_{1} B_{1 j}+F_{32} r_{2} B_{2 j}+F_{33} r_{3} B_{3 j}+\cdots+F_{3 n} r_{n} B_{n j} \\
& \vdots \\
& B_{n j}=F_{n j} \epsilon_{j}+F_{n 1} r_{1} B_{1 j}+F_{n 2} r_{2} B_{2 j}+F_{n 3} r_{3} B_{3 j}+\cdots+F_{n n} r_{n} B_{n j} .
\end{aligned}
$$

This set of n equations with the n unkown values $B_{1 j}$, $B_{2 j}, \ldots, B_{n j}$ are rearranged as the set of following equations

$$
\begin{align*}
& \quad\left(F_{11} r_{1}-1\right) B_{1 j}+F_{12} r_{2} B_{2 j}+F_{13} r_{3} B_{3 j}+\cdots+F_{1 n} r_{n} B_{n j}=-F_{1 j} \epsilon_{j} \\
& F_{21} r_{1} B_{1 j}+\left(F_{22} r_{2}-1\right) B_{2 j}+F_{23} r_{3} B_{3 j}+\cdots+F_{2 n} r_{n} B_{n j}=-F_{2 j} \epsilon_{j} \\
& F_{31} r_{1} B_{1 j}+F_{32} r_{2} B_{2 j}+\left(F_{33} r_{3}-1\right) B_{3 j}+\cdots+F_{3 n} r_{n} B_{n j}=-F_{3 j} \epsilon_{j} \quad \text { (I-19) } \tag{1-19}\\
& \vdots \\
& \quad \\
& F_{n 1} r_{1} B_{1 j}+F_{n 2} r_{2} B_{2 j}+F_{n 3} r_{3} B_{3 j}+\cdots+\left(F_{n n} r_{n}-1\right) B_{n j}=-F_{n j} \epsilon_{j} \\
& \text { The absorption factor } B_{i j} \text { for the jth surface can } \\
& \text { be solved by determinants, i.e., Cramer's rule. When the } \\
& \text { number of equations is large, Cramer's rule is irefficient, } \\
& \text { since it requires evaluating determinants of high order. } \\
& \text { For this reason and because of the convenience in using } \\
& \text { the subroutine on IBM l620 Digital Computer, the method of } \\
& \text { Gauss-Jordan reduction is used. }
\end{align*}
$$

PAKT II: RADIATICN HEAT TRAISFER ANAIYSIS IN THE RECTANGULAR CONFIGURATIONS

In this section two cases are discussed and the programs used on IBM 1620 Model II Digital Computer are included. The programs are constructed to be as gereral as possible. Here the method of solution to the problem is by means of finite differences. For corvenience, equal intervals will be used in the solution, i.e., the wall will be divided into equal finite sections. The more subdivisions used the greater the accuracy obtained. The thermal properties of each subdivided section of the wall are assumed to be uniform and to satisfy all the conditions and results of PART I. The mean temperature of each subdivided section is determined and made uniform over the section.

CASE A: RADIATION HEAT TRANSFER ANALYSIS IN RECTANGULAR DUCT

Assume a rectangular duct with the dimensions of ($X X+W$) by $Y Y$ by $Z Z$ and open at each end of the dimension $(X X+W)$. The portion of the duct $X X$ by $Y Y$ by $Z Z$ is denoted as the source and has the temperature range T_{1} to T_{2} at either end. The temperature profile of the wall of this duct from T_{1} to T_{2} is assumed to be a straight line along the dimension $X X$ (for convenience only). The temperature of the portion other than the source, here denoted as the sink, is T_{3} and uniform over that section. The construction is shown in the following. The rate of energy loss from both the source and the sink is determined and that of each subdivided section is also investigated.

Fig. 2-1 Dimensions of the rectangular duct.

Fig. 2-2 Temperature profile down the wall of the duct. The source section $X X$ is divided equally into N parts, the mean temperatures of the subdivisions, say t_{1}, t_{2}, \ldots, t_{n} are determined as follows,
$t_{1}=T_{1}-\left(T_{1}-T_{2}\right) / 2 N$
and $t_{i}=t_{(i-1)}-\left(T_{1}-T_{2}\right) / N$,
where $i=2,3, \ldots, N$.
The emissivity and reflectivity are dependent on the temperature distribution. From Fig. 13-10, P.375, "Heat and Mass Transfer" by E. R. Eckert, the total reflectivity and absorptivity of different materials for incident black radiation at the indicated temperature are obtained. (The emissivities are obtained by means of Kirchhoff's identity $\epsilon=a$.)

Since the number of subdivisions are uncertain in the solution, an approximate numerical method for evaluating the required emissivities and reflectivities is introduced. The method used is the Lagrange interpolation formula, given by:

$$
\begin{equation*}
y=f(x)=\sum_{i=1}^{n} l_{i}(x) f\left(x_{i}\right) \tag{2-3}
\end{equation*}
$$

where

$$
l_{i}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{1}\right)\left(x_{i}-x_{2}\right) \cdots\left(x_{i}-x_{n}\right)}
$$

and the terms $\left(x-x_{i}\right)$ and $\left(x_{i}-x_{i}\right)$ are omitted. To use this formula, one first reads several sets of data, say 5 , for the emissivities corresponding to the different temperatures as

$$
\epsilon_{i} \quad \text { where } i=1,2, \ldots, 5
$$

and T_{i} where $i=1,2, \ldots, 5$,
then $\epsilon=\sum_{i=1}^{5} l_{i}(T) \epsilon_{i}$,
where

$$
\begin{equation*}
l_{i}(T)=\frac{\left(T-T_{1}\right)\left(T-T_{2}\right) \cdots\left(T-T_{5}\right)}{\left(T_{i}-T_{1}\right)\left(T_{i}-T_{2}\right) \cdots\left(T_{i}-T_{5}\right)} \tag{2-4}
\end{equation*}
$$

Again, the terms of $\left(T-T_{i}\right)$ and $\left(T_{i}-T_{i}\right)$ are omitted, and the identity $r=1-\epsilon$ is used for evaluating the reflectivities.

Applying the formula derived in PART I the desired quantities are calculated. The two openings absorb energy and reradiate none, so the reflectivity of both openings is zero. The procedure used to develop these quantities is as follows: First evaluate the geometric factors, letting $G_{i j}$ denote the geometric factors, where

$$
i=1,2, \ldots, N+1,
$$

and

$$
j=1,2, \ldots, N+1 .
$$

The number $N+1$ denotes the sink section. Next the configuration factors are evaluated, letting $F_{i j}$ denote
the configuration factors, where

$$
i=1,2, \ldots, N+
$$

and $j=1,2, \ldots, N+1$.
Following the configuration factors the absorption factors are determined by means of the Gauss-Jordan reduction method for solving a set of simultanious equations, letting $B_{i j}$ denote the absorption factors, where

$$
i=1,2, \ldots, N+1,
$$

and $\quad j=1,2, \ldots, N+1$ 。
With the aid of Eq. (I-2), the energy loss of each section is obtained. Denote the radiant flux of each section by Q_{j}, where

$$
j=1,2, \ldots, N+1,
$$

and the total energy loss of the sink section is Q_{N+1}. The total energy loss of the source section is then

$$
\begin{equation*}
Q=\sum_{j=1}^{N} Q_{j} . \tag{2-5}
\end{equation*}
$$

The procedures are clearly seen from the computer program, and the descriptions are made in detail following the program.

COMPUTER PROGRAM I

1.
$73 G(i, k)=G(K i-1, K-1)$
$K=K-1$
IF $(K-1) 74,74,73$
74 CONTINUE
$F(L, L)=1 \cdot 0-(G A N 1+G A N 2+G B N 1) / A N L$
DO 75 I $=1, \mathrm{~N}$
$75 \mathrm{GC}(\mathrm{L}, \mathrm{I})=\mathrm{GA}(L, I)+G B(L, I)$
$K=N$
DO 76 I $=1, N$
$G(I, L)=G C(L, K)$
$76 K=K-1$
DO $77 \mathrm{I}=1, \mathrm{~N}$
$77 G(L, I)=G(I, L)$
DO $78 \quad \mathrm{I}=1, \mathrm{~N}$
DO $78 \quad \mathrm{~J}=1, \mathrm{~L}$
$78 F(I, J)=G(I, J) / A N$
$0080 \quad J=1, N$
$80 F(L, J)=G(L, J) / A N L$
PRINT 102
PRINT $100,((F(I, J), J=1, L), I=1, L)$
C EVALUATION OF THE HEAN TEMPERATURES OF THE SUBUIVISIUNS
$T(1)=T 1-(T 1-T 2) /(2.0 \div R)$
DO $81 \mathrm{I}=1, \mathrm{~L} 2$
$8 I T(I+I)=T(I)-(T I-T 2) / R$
$T(L)=T 3$
PRINT 103
PRINT IOO, (TT), I=I,L)
C EVALUATION OF THE MEAN EMISSIVITIES OF THE SUBDISIONS BY i:EANS OF
C LAGRANGIAN INTERPOLATION FORMULA
DO $86 \mathrm{~J}=1, \mathrm{~L}$
$F E M=0.0$
DO $85 \mathrm{~K}=1$, NN
FNU $=1.0$
$\mathrm{FNO}=1.0$
DO $84 \mathrm{I}=1$, NN
$83 \mathrm{FNU}=\mathrm{FNU} *(\mathrm{~T}(\mathrm{~J})-\mathrm{TT}(\mathrm{I}))$
$F N O=F N O *(T T(K)-T T(I))$
84 CONTINUE
$85 F E M=F E M+F N U / F N O * E E(K)$
86 EMI $(J)=F E M$
PRINT 104
PRINT 100, (EHI (J), J=1,L)
C EVALUATION OF THE MEAN REFLECTIVITIES OF THE SUBDIVISICHS GY IVEANS
〒 KIRCHAOF'S IDENTITY
DO $87 \mathrm{I}=1, \mathrm{~L}$

$87 \operatorname{REF}(I)=1.0-E \mathrm{EiI}(\mathrm{I})$	
	PRINT 100, (REF (I), $\mathrm{I}=1, \mathrm{~L}$)
	DO $98 \mathrm{~J}=1, \mathrm{~L}$
	PRINT 106, J
$\overline{\text { c }}$	SOLUTION OF THE ABSORPTION FACTORS BY MEANS OF GAUSS-JURDAN
C	REDUCTION METHOD
	DO $89 \mathrm{I}=1, \mathrm{~L}$
89	$\mathrm{D}(\mathrm{I}, \mathrm{I})=F(\mathrm{I}, \mathrm{I}) * \mathrm{REF}(\mathrm{I})-1.0$
	DO $92 \mathrm{I}=1, \mathrm{~L}$
	DO $91 \mathrm{~N}=1, \mathrm{~L}$
90	IF (I-ii) $90,91,90$
	$D(I, M)=F(I, M) * R E F(M)$
91	continue
92	CONT INUE
	DO $93 \mathrm{I}=1, \mathrm{~L}$
93	D(I,L+1) $=-(F(I, J) * E M I(J))$
	CALL GAUJOR ($\mathrm{D}, \mathrm{L}, \mathrm{L} 1,12,14$)
	PRINT 107
	PRINT 100, ($\mathrm{D}(\mathrm{I}, \mathrm{Ll}$), $\mathrm{I}=1, \mathrm{~L}$)
94	EVALUATION OF THE ABSORPTION ENERGY FROA SURFACE I TU SURFACE J DO $94 \mathrm{I}=1, \mathrm{~N}$
	OASUB(I) $=\mathrm{D}(\mathrm{I}, \mathrm{LI}) *$ STBOC**T(I)**4*EMI(I)*AN
94	
	PRINT 108
	PRINT 100, (QASUB(I), $\mathrm{I}=1, \mathrm{~L}$)
$\bar{¢}$	EVALUATION OF THE TOTAL ABSORPTION ENERGY OF SURFACE
	$Q A B S O=0.0$
	DO $95 \mathrm{I}=1, \mathrm{~L}$
95	$Q A B S O=Q A B S O+Q A S U B(I)$
	PRINT 109
	PRIMT 100, QABSO
96	EVALUATION OF THE RADIANT HEAT TRANSFER FROM SURFACE
	IF (J-N) 96,96,97
	$Q(J)=S T B O C * T(J) * * 4 * E M I(J) * A N-Q A B S O$
96	G0 TO 98
$\begin{aligned} & 97 \\ & 98 \end{aligned}$	Q(J) $=S T B O C * T(J) * * 4 * E M I(J) * A N L-Q A B S O$
	continue
	PRINT 110
	PRINT 100, (Q (J), J=l, L)
c	evaluation of the total heat transfer of the source
	OLOSS $=0.0$
	Do $99 \mathrm{I}=1, \mathrm{~N}$
99	QLOSS $=$ QLOSS + Q(I)
	PRINT 111
	PRINT 100, QLOSS

```
        PRINT 112
        PRINT 100, Q(L)
        GO TO l
    100 FORMAT (4F18.8)
    l01 FORMAT (4I18)
102 FOR:AAT (10N44HCONFIGURATION FACTORS ((F (I,J),J=I,L),I=I,L))
    103 FOPMAT (10X41HMEAN TEMPERATURES (T(I),I=l,L) IN RANKINE)
104 FORMAT (10X28HMEAN EHISSIVITY OF EACH PART)
105 FORNAT (10X25HREFLECTIVITY OF EACH PART)
106 FORMAT (10\times2HJ=,I 2)
107 FORMAT (10\times33HABSORPTION FACTORS (B(I,J),I=I,L))
108 FORMAT (10X39HABSORPTION ENERGY FROM EACH PART BTU/HR)
109 FORMAT (10X41HTOTAL ENERGY ABSORRED BY EACH PART BTU/HR)
110 FORMAT ( }10\times45HENERGY LOSS OF EACH PART (O(J),J=1,N2 BTU/HR))
111 FORHAT (1OX38HTOTAL ENERGY LOSS OF THE SOURCE BTU/HR)
112 FORMAT (10X37H TOTAL ENERGY LOSS OF THE SINK BTU/HR)
END
```


DETAILED DESCRIPTION OF THE PROGRAM

Geometric factors in perpendicular form:
Statement 11 to line $11+3$, is the evaluation of the geometric factor from 1 to 2 as shown. This is obtained by using Eq.(1-7), where $F A(1)$ is the program variable.

Fig. 2-3 Geometric factor notation.

Fig. 2-4 Geometric factor notation.

Fig. 2-6 Geometric factor notation.
the program.
Statement 15 to line $15+3$, is the evaluation of the geometric factor from 1 to 2 as shown. This value is given by $\mathrm{FA}(5)$ in the program.

Statement 16 to line $16+3$, is the evaluation of the geometric factor from 1 to 2 as shown. This value is given by $F A(6)$ in the program.

Statement 17 to line
$17+3$, is the evaluation of the geometric factor from 1 to 2 as shown. This value is given by $F A(7)$ in the program.

Statement 18 to line $18+3$, is the evaluation of the geometric factor from 1 to 2 as shown. This value is given by $\mathrm{FA}(8)$ in the program.

Fig. 2-7 Geometric factor notation.

Fig. 2-8 Geometric factor notation.

Fig. 2-9 Geometric factor notation.

Fig. 2-10 Geometric factor notation.

Statement 19 to line $19+3$, is the evaluation of the geometric factor from 1 to 2 as shown. This value is given by FA(9) in the program.

Fig. 2-ll Geometric factor notation.

Fig. 2-12 Geometric factor notation.

Statement $30+1$ line
is the evaluation of the geometric factor from 1 to 2 as shown. Where surface 1 is the ring of width H and surface 2 is the two end plates. This value is given by GAl in the program.

Statement $30+2$ lines is the evaluation of the geometric factor from 1 to 2 as shown. Where surface I is a ring of width W and surface 2 is the two end plates. This value is given by GANI in the program.

Statement $30+3$ lines to statement 40 is the evaluation of the geometric factors from 1 to 2 and ${ }^{\prime \prime}$ to $2^{\prime \prime}$ as shown. Where the quantity x in Eq. (I-7) is changing from H to $X X$ with the increment H. The same procedure is then followed from W to ($X X+W$) with the increment H. These values are given by ($F A B(K)$, $K=1, N$) and ($\operatorname{FAAL}(I), I=1, N+1$) respectively in the program. Statement $40+1$ line is the evaluation of the geometric factor from 1 to 2 as shown. Where surface 1 is a ring of width H and surface 2 is a ring of width ($\mathrm{XX}+\mathrm{W}-\mathrm{H}$). This value is given

Fig. 2-17 Geometric factor notation. by GA2 in the program. It should be noted that this is only in the perpendicular form, the complete geometric factor for the ring 1 to the ring 2 would include the factor for parallel geometry.

Statement $40+2$ lines
is the evaluation of the geometric factor from 1 to 2 as shown. Where surface 1 is a ring of width W and surface 2 is a ring of width XX. This value is given by

Fig. 2-18 Geometric factor notation.

GAN2 in the program. Again, it should be noted that this is only in the perpendicular form.

Statement $40+3$ lines
is the evaluation of the geometric factor from ring 1 to ring 2 as shown. Where 1 and 2 are both of width H. This value is given by $G A(1,2)$ in the program.

Fig. 2-19 Geometric factor notation. Again, it should be noted that this is only in the perpendicular form.

Statement 42 to statement 43 is the evaluation of the geometric factor from ring I to ring I as show. Where I and I are both of width H. I denotes the ring number 3, 4, N. These values are given by ($G A(I, I), I=3, N$) in the program. Again, it should be noted that this is only in the perpendicular
form.
Statement 44 is the evaluation of the geometric factor from ring L to ring 1 as shown. Where ring I is of width W and ring I is of width H. This value is given by $G A(L, I)$ in the

Fig. 2-21 Geometric factor notation. program. It should be noted that this is only in the perpendicular form.

Statement $44+1$ line
to statement 45 is the evaluation of the geometric factors from I to I as shown. Where surface L is
a ring of width W and surface
I is a ring of width H. These values are given by ($G A(I, I), I=2, N$) in the program. Again, it should be noted that this is only in the perpendicular form.

Geometric factors in parallel form:

Statement 55+1 line to statement 60 is the evaluation of the geometric factors from 1 to 2 as shown by means of Eq. (1-8). Where surface 1 is the half of a ring having a width that varies from H to $X X$ with the increment H, and surface 2 is the other half of the ring. The procedure is then reversed, where surface 1 and surface 2 are of width varing from W to

Fig. 2-23 Geometric factor notation.

Fig. 2-24 Geometric factor notation. $(X X+W)$, with the increment H. These values are given by $(F B(K), K=1, N)$ and (FBBL(J), $J=1, I$) in the program. It should be noted that this is only in the parallel form.

Statement $60+1$ line
is the evaluation of the geometric factor from 1 to 2 as shown. Where surface
l is a ring of width H and surface 2 is a ring of width $(X X+W-H)$. This value is given by GBI in the program. It should be noted that
this is only in the parallel form, the complete geometric factor for ring 1 to the ring 2 would include the factor for perpendicular form. Statement $60+2$ lines
is the evaluation of the geometric factor from 1 to 2 as shown. Where surface 1 is a ring of width W and surface 2 is a ring of width XX. This value is given by

Fig. 2-26 Geometric factor notation. GBNI in the program. Again, it should be noted that this only is the parallel form. Statement $60+3$ lines is the evaluation of the geometric factor from 1 to 2 as shown. Where surface 1 and surface 2 are the ring of width H. This value is given by $G A(1,2)$ in the

Fig. 2-27 Geometric factor notation. program, and is only for the parallel form.

Statement 62 to state-
ment 63 is the evaluation of the geometric factor from 1 to I as shown. Where surface I and surface I are rings of width H. These values are given by ($G B(1, I)$,

Fig. 2-28 Geometric factor notation.
$\mathrm{I}=3$, N) in the procram. It should be noted that this is only in the parallel form.

Statement 64 is the eveluation of the geometric factor from L to I as shown. Where surface L is a rine of width W and surface 1 is a ring of width

Fig. 2-29 Geometric factor notation. H. This value is only of the parallel form, given by $G B(I, 1)$ in the program.

$$
\text { Statement } 64+1 \text { line }
$$

to statement 65 is the evaluation of the geometric factors from L to I as shown. Where surface L is a ring of width W and surface I is a ring of width

Fig. 2-30 Geometric factor notation.
H. These values are given by ($G B(I, I), I=2, N$) in the program. Again, it should be noted that this is only in the parallel form, the complete geometric factor would include the factor for perpendicular form.

Statement $65+1$ line and statement $65+2$ lines are the evaluation of the surface area of both the ring of width H and W, respectively. These values are given by AN and ANL, respectively, in the program.

Complete geometric factors and configuration factors:
In the following, $1,2, \ldots, N$, I will denote the subdivided sections as shown in Fig.(2-1) unless otherwise specified.

Statement $65+3$ lines and statement $65+4$ lines are the evaluation of the complete configuration factor F_{11} and the complete geometric factor G_{11}, respectively, where surface l is a ring of width H. These values are given by $F(1,1)$ and $G(1,1)$, respectively, in the program.

Statement $65+5$ lines to statement 71 is the evaluation of the complete geometric factors $G_{1 i}$. Where surface I and surface i are rings of width H. These vilues are given by ($G(1, I), I 2, N$) in the program.

Statement $71+1$ line to statement 74 is the evaluation of the complete geometric factors $G_{i j}$, where surface i and surface j are rings of width H, i denotes $1,2, \ldots, N$ and j denotes $1,2, \ldots, N$. These values are evaluated by means of the following relations, since the source section is divided equally. The values of each column are the same and the values of each row are symetrical to $G_{i i}$, that is, $G_{i(i+N)}=G_{i(i-N)}$ for $N \leq i$. These values are given by $(G(L, I), I=I, N)$ and $G(M, K)$, where $M=2,3, \ldots, N$ and $K=N, N-1, \ldots, 2$ in the program.

$$
\begin{aligned}
& G_{11} G_{12}{ }^{G} 13 \ldots \ldots G_{1(N-1)}{ }^{G}{ }_{1 N} \\
& G_{21} G_{22} G_{23}{ }^{G}{ }_{24} \ldots \ldots . G_{2 N} \\
& G_{31} G_{32} G_{33} G_{34} G_{35} \ldots G_{3 N} \\
& \text { : } \\
& \bullet \\
& G_{N 1} G_{N 2} \ldots \ldots . G_{N N}
\end{aligned}
$$

Statement $74+1$ line is the evaluation of the complete configuration factor $F_{I L}$, where surface L is a ring of width W, i.e., the ring of the sink. This value is given by $F(L, L)$ in the program.

Statement 74+2 lines to statement 75 is the evaluation of the complete Eeometric factors from L to I as shown. Where surface I is a ring of width W and surface I is a ring of width

Fig. 2-31 Geometric factor notation.
H. These values are given by (GC(I,I), $I=1, N$) in the program. It should be noted that I denotes the ring numiver 1, 2, N which is specified from the right hand side to the left hand side.

Statement $75+1$ line to statement 76 is the evaluation of the complete geometric factors $G_{i L}$. Where surface i is a ring of widh H and surface L is a ring of width W. These values are given by ($G(I, I), I=1, N$) in the program.

Statement $76+1$ line to statement 77 is the evalualion of the complete geometric factors $G_{I_{i}}$. Where surface L is a ring of width W and i is a ring of width H. These values are given by ($G(L, I), I=1, N$) in the program.

Statement 77+1 line to statement 80 is the evaluation of the complete configuration factors $F_{i j}$, where $i=1$, $2, \ldots, N+1$ and $j=1,2, \ldots, N+1$. These values are given by $((F(I, J), J=I, I), I=I, L)$ in the program.

The completion of the program requires the use of Eq.(2-1), Eq.(2-2), Eq.(2-4) and Eq.(2-5).

The other symools used in the program are defined as follows:

ANL Surface area of the sink section.
$\operatorname{EMI}(I), \operatorname{REF}(I)$.
Enissivities and reflectivities corresponding to $T(I)$.
$D(I, J)$ Matrix of the coefficients of Eq.(I-9).
QASUB(I)
Energy absorbed by subdivided surface J from surface I.

QABSO Total energy absorbed by subdivided surface J. Q(J) The energy loss of subdivided surface J.

QLOSS The total energy loss of the source section.

All other symbols have the same meanings as defined previously.

An example is given in the following.
Material: Al, $X X=10$ ft., $Y Y=2 Z=W=1$ ft.,
(A) $T_{I}=560^{\circ}{ }_{R}$,
$\mathrm{T}_{2}=540^{\circ} \mathrm{R}$,
$\mathrm{T}_{3}=530^{\circ} \mathrm{R}$.
(B) $T_{1}=800{ }^{\circ}{ }^{R}$,
$\mathrm{T}_{2}=600{ }^{\circ} \mathrm{R}$,
$\mathrm{T}_{3}=570^{\circ} \mathrm{R}$.
(C) $T_{1}=1000^{\circ} \mathrm{R}, \quad \mathrm{T}_{2}=650^{\circ} \mathrm{R}, \quad \mathrm{T}_{3}=600^{\circ} \mathrm{R}$ 。
(D) $\mathrm{T}_{1}=2000^{\circ} \mathrm{R}, \quad \mathrm{T}_{2}=1000^{\circ} \mathrm{R}, \quad \mathrm{T}_{3}=800^{\circ} \mathrm{R}$ 。

The emissivities corresponding to the temperatures are given by,

TT(I)	600	800	1000	1500	$2000{ }^{\circ} \mathrm{R}$
$\mathrm{EE}(\mathrm{I})$.08	.095	0.10	0.12	0.16

The results are tabulated and the curves are plotted in the following pages.

TABLE I
The energy loss of the source and sink of Case A

TABLE I (Continued)

(D) $\quad T_{1}=2000^{\circ} \mathrm{R}, \quad \mathrm{T}_{2}=1000^{\circ} \mathrm{R}, \quad \mathrm{T}_{3}=800^{\circ} \mathrm{R}$.

N	$Q_{\text {source }} B t u / h r$	$Q_{\text {sink }} B t u / h r$
2	14365.57	-628.64
3	15105.72	-469.36
4	15213.27	-374.27
5	15134.14	-313.86
6	15004.90	-273.54
7	14872.59	-245.54
8	14752.72	-225.46
9	14649.05	-210.63
10	14561.37	-199.43

PLATE I-A

Energy loss of the source section of the duct

$$
\begin{aligned}
& \mathrm{T}_{1}=560^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=540^{\circ}{ }^{\circ} \mathrm{R} \\
& \mathrm{~T}_{3}=530^{\circ} \mathrm{R}
\end{aligned}
$$

PLATE l-B
Energy loss of the source section of the duct

$$
\begin{aligned}
& \mathrm{T}_{1}=800^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=600{ }^{\circ} \mathrm{R} \\
& \mathrm{~T}_{3}=5.70^{\circ} \mathrm{R}
\end{aligned}
$$

PLATE I-C

Energy loss of the source section of the duct

$$
\begin{aligned}
& \mathrm{T}_{1}=1000^{\circ}{ }_{\mathrm{R}} \\
& \mathrm{~T}_{2}=650^{\circ}{ }^{\circ} \mathrm{R} \\
& \mathrm{~T}_{3}=600^{o_{\mathrm{R}}}
\end{aligned}
$$

PLATE I-D

Energy loss of the source section of the duct

$$
\begin{aligned}
& \mathrm{T}_{1}=2000^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=1000^{\circ}{ }^{\circ} \mathrm{R} \\
& \mathrm{~T}_{3}=800^{\circ}{ }^{\mathrm{R}}
\end{aligned}
$$

Number of subdivisions-N

PLATE 2-A

Energy loss of the sink section of the duct

$$
\begin{aligned}
& \mathrm{T}_{1}=560^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=540^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=530^{\circ} \mathrm{R}
\end{aligned}
$$

Number of subdivisions - N

PLATE 2-B
Energy loss of the sink section of the duct

$$
\begin{aligned}
& \mathrm{T}_{1}=800^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=600^{\circ} \mathrm{R} \\
& \mathrm{~T}_{3}=570^{\circ} \mathrm{R}
\end{aligned}
$$

Number of subdivisions $-N$

PLATE 2-C

Energy loss of the sink section of the duct

$$
\begin{aligned}
& \mathrm{T}_{1}=1000^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=650^{\circ}{ }_{\mathrm{R}} \\
& \mathrm{~T}_{3}=600^{\circ}{ }_{\mathrm{R}}
\end{aligned}
$$

Number of subdivisions $-N$

PLATE2-D

Energy loss of the sink section of the duct

$$
\begin{aligned}
& \mathrm{T}_{1}=2000^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=1000^{\circ}{ }^{\circ} \mathrm{R} \\
& \mathrm{~T}_{3}=800^{\circ}{ }^{\circ}
\end{aligned}
$$

CASE B: THE RADIATION HEAT TRANSFER ANAIYSIS IN RECTANGUIAR ENCLOSURE

Assume a box with the dimensions $X X$ by $Y Y$ by $Z Z$ and with temperatures T_{1} and T_{2} at the surfaces at the ends of $X X$. Denote these surfaces as the source and the sink, respectively. The temperature profile along the wall in the dimension $X X$ is assumed to be a straight line (for convenience only). The radiant heat transfer of both end plates is investigated. The diagram of the dimensions of the box and of temperature profile are constructed as shown below.

Fig. 2-32 The dimensions of the rectangular box.

Fig. 2-33 The temperature profile of the wall of the box along $X X$.

The procedures of solution are similar to that of CASE A. Divide the box along the dimension $X X$ into N equal sections, say $A_{1}, A_{2}, \ldots, A_{N}$. The surfaces at both ends of $X X$ are denoted as A_{N+1}, the source, and A_{N+2}, the sink. The mean temperatures of the subdivided sections, denoted $t_{1}, t_{2}, \ldots, t_{N}$, are determined by Eq. (2-1) and Eq. (2-2). The temperatures of both end plates are assumed to be uniform and equal to T_{1} and T_{2}, respectively, i.e., $T_{N+1}=T_{1}$ and $T_{N+2}=T_{2}$. Then by the Lagrange interpolation formula, Eq.(2-4), tre emissivity and the reflectivity of each section corresponding to its temperature may be approximated. These are given by:
ϵ_{i} where $i=1,2, \ldots, N+2$
and r_{i} where $i=1,2, \ldots, N+2$.
By applying the formulas derived in PART I, the required quantities can be obtained. First evaluate the geometric factors. The symbol $G_{i j}$ denotes the geometric factors, where $i=1,2, \ldots, N+2$
and $\quad j=1,2, \ldots, N+2$.
After determining geometric factors, the configuration factors are determined. The symbol $F_{i j}$ denotes the configuration factors, where

$$
i=1,2, \ldots, N+2
$$

and

$$
j=1,2, \ldots, N+2 .
$$

The absorption factors are evaluated by the Gauss-Jordan reduction method. This method allows the set of equations developed by Gebhart to be solved and the values of $B_{i j}$ to
be obtained, where

$$
i=1,2, \ldots, N+2
$$

and

$$
\mathrm{j}=1, \quad 2, \ldots, N+2
$$

The heat loss of section j is obtained from Eq. (I-I8), $Q_{j}=\epsilon_{j} a T_{j}^{4} A_{j}-\sum_{i=1}^{N+2} \epsilon_{j} a T_{i}^{4} B_{i j} A_{i}$
where $j=1,2, \ldots, N 2$.
The total heat loss of the box is then given by, $Q=\sum_{j=1}^{N+2} Q_{j}=0$
since the complete enclosure is involved.
The procedures may be more clearly seen from the computer program following. The descriptions are given in detail following the computer program.

CONPUTER PRCGRAN II

	$\begin{aligned} & C C 2=\operatorname{SORTF}(C 3) \\ & C C 3=\operatorname{SQRTF}(C 4) \end{aligned}$		
	FDI=CC1/(R1*R2)		
	FD $2=-(2.0 * A T A N F(R 2)) / R 1$		
	FD3 $=-(2.0 * \operatorname{TANF}(\mathrm{R} 1)) / \mathrm{R} 2$		
	FD4 $=(2.0 \% C C 2 * \triangle T A N F(R 2 / C C 2)) / R 1$		
	FD5 $=(2.0 * C C 3 * A T A N F(R 1 / C C 3)) / R 2$		
	$F B C L(K)=(F D 1+F D 2+F D 3+F D 4+F D 5) * X * Y / P I$		
50	$\mathrm{Y}=\mathrm{Z} \mathrm{Z}$		
	$Z=Y Y$		
	$F C C L(I)=F B C L(1)+F B C L(2)$		
60	$\mathrm{X}=\mathrm{X}+\mathrm{H}$		
	$\mathrm{GB}(1,2)=\mathrm{FCCL}(2)-2.0 * F C C L(1)$		
	IF ($N-2$) 66,66,64		
64	DO $65 \mathrm{I}=3, \mathrm{~N}$		
65	$\mathrm{GB}(1, \mathrm{I})=\mathrm{FCCL}(\mathrm{I})-2.0 * F C C L(I-1)+F C C L(I-2)$		
C	EVALUATION OF THE GEOMETRIC FACTORS AND	THE CONFIGURATION	FACTORS
C	BETWEEN ANY TWO SUBDIVISIONS		
66 X	$X=Z Z$		
	$Y=Y Y$		
	$\mathrm{Z}=\mathrm{XX}$		
	R1 $=\mathrm{X} / \mathrm{Z}$		
	R2 $2=Y / Z$		
	C $1=$ R $1 \times \cdots 2$		
	C $2=$ R $2 * * 2$		
	C3 $=1.0+\mathrm{Cl}$		
	C4 $=1.0+\mathrm{C} 2$		
	CCI=LOGF ((C3*C4)/(C2+C3))		
	$C C 2=S Q R T F(C 3)$		
	CC3 $=$ SQRTF (C4)		
	FD1 $=C C 1 /(R 1 * R 2)$		
	FD3 $=-(2.0 * A T A N F(R 1)) / R 2$		
	FD4 $=(2.0 * C C 2 * A T A N F(R 2 / C C 2)) / R 1$		
	FD5 $=(2.0 * C C 3 * A T A N F(R 1 / C C 3)) / R 2$		
	$G(N 1, N 2)=(F D 1+F D 2+F D 3+F D 4+F D 5) * X * Y / P I$		
	$\begin{aligned} & \triangle R E A=2.0 * H *(Y Y+Z Z) \\ & \text { GPERP }=4.0 *(F A A L(N)-F A A L(N-1)-F A A L(1)) \end{aligned}$		
	GPARA $=$ FCCL(N)-FCCL($N-1)-\mathrm{FCCL}(1)$		
	GPEND $=$ GAAL ($1, N 1)+G A A L(N, N 1)$		
	$F(1,1)=1.0-(G P E R P+G P A R A+G P E N D) / A R E A ~$		
	$G(1,1)=F(1,1) * A R E A$		
	END $A R=Y Y * Z Z$		
	DO $70 \mathrm{I}=2, \mathrm{~N}$		
70	$G(1, I)=G A(1, I)+G B(1, I)$		
	DO $75 \mathrm{I}=1, \mathrm{~N}$		

164	$\begin{aligned} & \text { FNO }=\text { FNO } *(T T(L)-T T(I)) \\ & \text { CONTINUE } \end{aligned}$
165170	FEM=FEM+FNU/FNO*EE(L)
	EMI $(J)=F E M$
	PRINT 104
C c	PRINT 100, (EMI (J), $\mathrm{J}=1, \mathrm{~N} 2$)
	evaluation of the mean reflectivities of the subdivisions by means
	KIRCHHOF S IDENTITY
175	DO $175 \mathrm{I}=1, \mathrm{~N} 2$
	$\operatorname{REF}(\mathrm{I})=1.0-\operatorname{LMI}$ (I)
	PRINT 105
	PRINT 100, ($\mathrm{REF}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N} 2$)
	$00199 \mathrm{~J}=1, \mathrm{~N} 2$
	PRINT 106, J
C	SOLUTION OF THE ABSORPTION FACTORS BY MEANS OF GAUSS-JORDAN
C	REDUCTION METHOD
	DO $180 \mathrm{I}=1, \mathrm{~N} 2$
180	$D(I, I)=F(I, I) * R E F(I)-1.0$
	DO $182 \mathrm{I}=1, \mathrm{~N} 2$
	DO $182 \mathrm{M}=1, \mathrm{~N} 2$
	IF (I-M) 181, 182,181
181	$D(I, M)=F(I, M) * \operatorname{REF}(M)$
182	CONTINUE
183	DO $183 \mathrm{I}=1, \mathrm{~N} 2$
	$D(I, N 3)=-(F(I, J)) * E M E(J)$
	CALL GAUJOR ($\mathrm{D}, \mathrm{N} 2, \mathrm{~N} 3,14,16$)
C	PRINT 107
	PRINT 100, ($\mathrm{D}(\mathrm{I}, \mathrm{N} 3), \mathrm{I}=1, \mathrm{~N} 2)$
	EVALUATION OF THE ABSORPTION ENERGY FROM SURFACE I TO SURFACE J
185	DO $185 \mathrm{~K}=1, \mathrm{~N}$
	QASUB $(K)=D(K, N 3) * S T B O C * T(K) * * 4 * \operatorname{CMI}(K) * \operatorname{AREA}$
	DO $186 \mathrm{~K}=\mathrm{N} 1, \mathrm{~N} 2$
186	QASUB $(K)=D(K, N 3) * S T B O C * T(K) * * 4 * E M I(K) * E N D A R ~$
	PRINT 108
	PRINT 100, (QASUB(I), $\mathrm{I}=1, \mathrm{~N} 2)$
\bar{C}	EVALUATION OF THE TOTAL ABSORPTION ENERGY OF SURFACE J
	$Q A B S O=0.0$
	DO $187 \mathrm{I}=1, \mathrm{~N} 2$
187	$Q A B S O=Q A B S O+Q A S U B(I)$
	PRINT 109
	PRINT 100, QABSO
τ	EVALUATION OF THE RADIANT HEAT TRANSFER FROM SURFACE J
	IF (J-N1) 191,192,192
191	$Q(J)=S T B O C * T(J) * * 4 * A R E A * E M I(J)-Q A B S O$
	GO TO 199
192 Q	$Q(J)=S T B O C * T(J) * * 4 * E N D A R * E M I(J)-Q A B S O$

199 CONTINUE	
	PRINT 100, (Q (J), $\mathrm{J}=1, \mathrm{~N} 2)$
C	evaluation of the total heat transfer of the source
	QLOSS $=0.0$
200	DO 200 I JK=1,N2
	QLOSS $=$ QLOSS + Q (IJK)
	PRINT 111
	PRINT 100, QLOSS
	PRINT 112
	PRINT 100, Q(N1),Q(N2)
	GO TO 1
100	FORMAT (4F18.8)
101	FORMAT (4118)
102	FORMAT (10X46HCONFIGURATION FACTORS ($\mathrm{F}(\mathrm{I}, \mathrm{J}$) , J $=1, N 2), \mathrm{I}=1, \mathrm{~N} 2)$)
103	FORMAT ($10 \times 42 \mathrm{HMEAN}$ TEMPERATURES ($T(I), \mathrm{I}=1$, N2) IN RANKINE)
104	FORMAT (10X28HMEAN EMISSIVITY OF EACH PART)
105	FORMAT (10×25 HREFLECTIVITY OF EACH PART)
106	FORMAT (10×2HJ=, I2)
107	FORMAT ($10 \times 34 \mathrm{HABSORPTION}$ FACTORS ($\mathrm{B}(\mathrm{I}, \mathrm{J}$), $\mathrm{I}=1, \mathrm{~N} 2)$)
108	FORMAT (10×39 HABSORPTION ENERGY FROM EACH PART BTU/HR)
109	
110	FORMAT (10×45 HENERGY LOSS OF EACH PART (Q $~ J ~, ~ J ~ J=1, N 2 ~ B T U / H R)) ~$
111	FORMAT (10×24 HTOTAL ENERGY LOSS BTU/HR)
112	(10RMAT (10X45HENERGY LOSS OF THE SOURCE AND THE SINK BTU/HR)

DETAILED DESCRIPTION OF PROGRAM II

Geometric factors in perpendicular form:

Statement $1+10$ Iines to statement 20 is the evaluation of the geometric factors from 1 to 2 as shown. These values are obtained by using Eq. (1-7) with the increment H, and (FAAL(I),

Fig. 2-34 Geometric factor notation. $I=1, N)$ is the program variable.

Statement $20+1$ line is the evaluation of the geometric factor from 1 to 2 as shown. Here surface 1 and surface 2 are the rings of width H. This value is given by $G A(-1,2)$ in the
 program. It should be noted that. this is only in the perpendicular form, the complete geometric factor for ring 1 to ring 2 would include the factor for parallel geometry.

Statement 24 to statement 25 is the evaluation of the geometric factors from I to I as shown. Here surface 1 and surface I are the rings of width H,

Fig. 2-36 Geometric factor notation.

I denotes the ring number as $3,4, \ldots, N$. These values nre given by ($G(I, I), I=3, N$) in the program. Again, it should be noted that these values are only for the perpendicular form.

Statement 26 to statement 40 is the evaluation of the geometric factors from 1 to 2 as shown. Surface 2 is the end plate A_{N+1} and surface l is the half ring of changing width from H in

Fig. 2-37 Geometric factor notation. increments of H to $X X$. These values are given by ($\mathrm{FBBI}(\mathrm{I}), \mathrm{I}=\mathrm{I}, \mathrm{N})$ in the program.

Statement 40+1 line is the evaluation of the geometric factor from 1 to Nil as shown. Surface 1 is the ring of width H and surface NI is the end plate A_{N+1}. This value is given by $\operatorname{GAAL}(I, N I)$ in the program.

Statement $40+2$ lines to statement 45 is the evaluation of the geometric factors from I to N1 as shown. Here surface NI is the end plate $\mathrm{A}_{\mathrm{N}+1}$ and

Fig. 2-38 Geometric factor notation.

Fig. 2-39 Geometric factor notation.
surface I is the ring of width H, I denotes the ring number as 2, 3, ..., N. These values are eiven by (GAAL(I,NI), $I=2, N$) in the program.

Geometric factors ir parallel form:

$$
\text { Statement } 45+1 \text { line }
$$ to statement 60 is the eveluation of the geometric factors from 1 to 2 as show. This is evaluated by using Eq. (1-8). Here surface 1 is the half ring of changing

Fig. 2-40 Geometric factor notation. width from H to $X X$ with the increment H and surface 2 is the other half ring corresponding to surface 1. These values are given by ($\mathrm{FCCL}(I), I=1, N$) in the procram. It should we noted that these values are only for the parallel form, the complete geometric factor for surface 1 to surface 2 would include the factor for the perpendicular geometry.

Statement 60+1 line is the evaluation of the geometric factor from 1 to 2 as shown. Where surface 1 and surface 2 are rings of width H. It, also, should be noted that this is only in

Fig. 2-41 Geometric factor notation.
the parallel form. This value is given by $G B(1,2)$ in the proerram.

Statement 64 to statement 65 is the evaluation of the geometric factor from 1 to I as shown. Where surface 1 and surface I are rings of width H, and I denotes the ring number as $3, \ldots, N$.

Fig. 2-42 Geometric factor notation. These values are given by ($G B(I, I), I=3, N)$ in the program. Acain, it should be noted that these values are only for the parallel form.

Statement 66 to state-
ment $66+17$ lines is the evaluation of the geometric factor from $N 1$ to $N 2$ as shown. Where surface 1.1 and surface $N 2$, are the end plates
$A_{N 1}$ and $A_{N 2}$, respectively.

This value is given by $G(N 1, N 2)$ in the program.
Statement $66+18$ lines is the evaluation of the surface area of each subdivision, i.e., the area of the ring of wiath H. This value is given by AREA in the program. Statement $66+19$ lines is the evaluation of the efometric factor from 1 to 2 as shown.in Fig.(2-44). Where surface 1 is the ring of width H and surface 2 is the ring of width $(X X-H)$. This value is given by

GPEFP in the program. It should be noted that this is only in the pergendicular form.

Statement $6 \epsilon+20$ lines
is the evaluation of the geometric factor from 1 to 2 as shown. However, this is only in the parallel form.
This value is given by 'GPARA in the program.

Fig. 2-44 Geometric factor notation.

Complete geometric factors and configuration factors:

In the following, $1,2, \ldots, N, N I, N 2$ will denote the subdivisions as shown in Fic. 2-32 unless otherwise specified.

Statement $66+21$ lines is the evaluation of the geometric factor from ring l to both end plates. This value is given by GPEND in the program.

Statement $66+22$ lines to statement $66+23$ lines is the evaluation of the complete configuration factor F_{11} and the complete seometric factor G Il of the ring of width H. These values are Eiven by $F(I, I)$ and $G(I, I)$, respectively.

Statement $66+25$ lines to statement 70 is the evaluation of the geometric factors from I to I as shown. Here surface I and surface I are rings of width

Fig. 2-45 Geometric factor notation.

H, and I derotes the ring number as 2, 3, ..., N. These velues are for complete geometry and given by ($G(I, I), I=2, N$) in the proeram.

Statement $70+1$ line to statement 90 is the evaluation of the complete geometric factors $G_{i j}$ where $i=1,2$, \ldots, F and $\mathrm{j}=1,2, \ldots, \mathrm{~N}$ by using Eq. (2-6). These velues are fiven by $(G(I, I), I=I, N)$ and $G(N, K)$ where $\mathrm{N}=2,3, \ldots, \mathrm{~N}$ and $\mathrm{K}=\mathrm{N}, \mathrm{N}-1, \ldots, 2$ in the program. Statement $90+1$ line to statement 99 is the evaluation of the complete corfiguration factors $F_{i j}$, where $i=1$, $2, \ldots, N+2$ and $j=1,2, \ldots, N+2$. These values are given by $((F(I, J), J=1, N 2), I=1, \mathbb{N} 2)$ in the program.

The program is completed by the use of Eq. (2-1), Eq. (22), Eq. (2-4) and Eq. (2-5).

The other symbols used in the program are defined as follows:

NI, N2, N3, NMI.
Fixed point variaioles defined in the profram.
FABL(K) The geometric factor for the perpendicular form from any subdivided section of the wall of the box in $X X$ direction to the end plate.

FBCL(K) The geometric factors for the two sets of the opposed, parallel rectangles.

All other symbols involved have the same meanings as defined previously.

An example is given in the following.
Faterial: Al, $X X=10$ ft., $Y Y=Z Z=1 \mathrm{ft} .$,
(A) $T_{1}=560^{\circ} \mathrm{R}$,
$\mathrm{T}_{2}=530^{\circ}{ }^{\mathrm{R}}$.
(B) $T_{1}=800^{\circ} \mathrm{R}$, $\mathrm{T}_{2}=570^{\circ}{ }^{\mathrm{R}}$.
(C) $T_{1}=1000^{\circ} \mathrm{R}, \quad \mathrm{T}_{2}=600^{\circ} \mathrm{R}$.
(D) $\mathrm{T}_{1}=2000^{\circ} \mathrm{R}, \quad \mathrm{T}_{2}=1000^{{ }^{\circ} \mathrm{R} \text { 。 }}$

The emissivities correspording to the temperatures are given in CASE A. The results are tabulated ard the curves are plotted on the following pages.

TABIE II

The enerey loss of the source and sirk of Case B

(A)		$60^{\circ} \mathrm{R}$,	$\mathrm{T}_{2}=530$	${ }^{\circ} \mathrm{R}$	
	Γ	Qsource	$Q_{\text {sink }}$	Qtotal	(Btu/hr)
	2	0.99	-0.87	. 00027	
	3	0.84	-0.74	-. 00085	
	4	0.75	-0.66	.00001	
	5	0.69	-0.61	. 00039	
	6	0.65	-0.57	. 00141	
	7	0.62	-0.55	-. 00084	
	8	0.60	-0.53	.00013	
	9	0.59	-0.52	. 00079	
	10	0.58	-0.51	-. 00054	
(B)		$0^{\circ} \mathrm{R}$,	$\mathrm{T}_{2}=570$		
	N	Q source	Q sink	$Q_{\text {total }}$	(Btu/hr)
	2	22.56	-11.71	.00029	
	3	18.90	- 9.72	-. 00183	
	4	16.79	-8.52	.00072	
	5	15.45	- 7.77	. 00037	
	6	14.55	- 7.26	.00391	
	7	13.92	- 6.91	-. 00201	
	8	13.47	- 6.66	.00065	
	9	13.13	- 6.48	. 00212	
	10	12.88	-6.34	-. 00131	

TABIE II (Continued)

PLATE 3-A

Energy loss of the source section of the box

$$
\begin{aligned}
& \mathrm{T}_{1}=560^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=530^{\circ}{ }_{\mathrm{R}}
\end{aligned}
$$

PLATE 3-B

Energy loss of the source section of the box

$$
\begin{aligned}
& \mathrm{T}_{1}=800^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=570^{\circ} \mathrm{R}
\end{aligned}
$$

PLATE 3-C

Energy loss of the source section of the box

$$
\begin{aligned}
& \mathrm{T}_{1}=1000^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=600 \circ_{\mathrm{R}}
\end{aligned}
$$

Number of subdivisions $-N$

PLATE 3-D

Energy loss of the source section of the box

$$
\begin{aligned}
& \mathrm{T}_{1}=2000^{\circ} \mathrm{o}_{\mathrm{R}} \\
& \mathrm{~T}_{2}=1000^{\circ}{ }_{\mathrm{R}}
\end{aligned}
$$

Number of subdivisions - N

PLATE 4-A

Energy loss of the sink section of the box

$$
\begin{aligned}
& \mathrm{I}_{1}=5600_{\mathrm{R}} . \\
& \mathrm{I}_{2}=5300^{\circ} \mathrm{R}
\end{aligned}
$$

PLATE 4-B

Energy loss of the sink section of the box

$$
\begin{aligned}
& \mathrm{T}_{1}=800^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=570^{\circ} \mathrm{R}
\end{aligned}
$$

PIATE 4-C

Enerey loss of the sink section of the box

$$
\begin{aligned}
& \mathrm{T}_{1}=1000^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=600^{\circ} \mathrm{R}
\end{aligned}
$$

PIATE 4-D

Eneryy loss of the sink section of the box

$$
\begin{aligned}
& T_{1}=2000^{\circ} \mathrm{R} \\
& T_{2}=10000^{\circ}
\end{aligned}
$$

Number of subdivisions $-N$

CCN:CIUSICN

The plot of the results of the source section in the first case for high temperatures shows that the slope increeses and then decreases to become rearly horizontal as the number of subdivisions increases. This is a result of the summation of the product of the mean temperature to the fourth power and the subdivided section area, since the summation of mean temperature to the fourth power increases with the number of subdivisions, while the area of each subdivision decreases. If the number of the subdivisions is large enough, the results approach a constant value.

The results of the sink section in the first case and the results of the source and the sink in the second case indicate that those both approach a constant value as the number of subdivisions increases. The curves keep on increasing or decreasing because the areas and the temperatures are kept constant at these sections.

The computer programs were checked to be correct by putting $X X=Y Y=2 Z=10$ ft., $W=1$ ft. and $T_{1}=T_{2}=T_{3}=1000^{\circ} \mathrm{R}$, for the first program. The results show that $C_{i}=Q_{\text {sink }}$, $Q_{2}=Q_{10}, \ldots, Q_{i}=Q_{(N-i+2)}$, where $2 \leq i \leq 10$ and $2 \leq M \leq 10$. For the second program, $X X=11$ ft., $Y Y=Z Z=10$ ft., $T_{1}=T_{2}$ $1000^{\circ} \mathrm{R}$ and $r_{\mathrm{N}+1}=r_{\mathrm{r}+2}=0$. The results show that the ererey loss of the duct like section of the box is approximately ecual to the energy loss of the duct, Quact like $(I I)=$ $64448 \mathrm{Btu} / \mathrm{hr}, Q_{\text {duct }}=64446 \mathrm{Btu} / \mathrm{hr}$, for $\mathrm{N}=10$.

The irirst program was run for a constant temperature, $6 C O^{\circ} R$, in the source section and the sink section. The aincrsions of the cuct vere $X X=Y Y=Z Z=10$ ft., $W=1$ ft.. Ohe refults for the energy loss of the source and the sink Uure 624E.4 Btu/hr and 643.7 Btu/hr for $N=2$, ©237.9 シtu/rr anc 643.7 Btu/hr for $N=10$ respectively. The maximum errors were $.17 \%$ and $.003 \%$ respectively. The results for $T_{1}=T_{2}=2000^{\circ} \mathrm{R}, \quad T_{3}=600^{\circ} \mathrm{R}$ were $1398337.2 \mathrm{Btu} / \mathrm{hr}$ anci -ll $682.5 \mathrm{Btu} / \mathrm{hr}$ for $N=2$, and $1394496.3 \mathrm{Btu} / \mathrm{hr}$ and -11634.0 Btu/hr with the maximum errors . 28% and . 41% respectively.

The program is limited for N varying from $N=2$ to $\hat{r}=10$ because of the programring and the capacity of the computer. If a larger number of the subdivisions is required, the program can be used by separating it into several parts and rearranging the DIM:ENSION statement and the INFUT àata.

BIDIICGFAPHY

1. Familton, D. C. \& Norgan, U. R.,
"Rediatior-Interchange Configuration Factors".
1ACA, TN 2836, 1952.
2. Hottel, H.,
"Radiant Heat Transmission", in McAdams, W. B. "Heat Transmission". McGraw-Hill Co. Inc., New York, 1954.
3. Oppenheim, A. K.,
"Radiation Analysis by Network Nethod". Trans. ASPE 78, 725, 1956.
4. Ishimoto, T. \& Bevans.,
"Method of Evaluatirg Script F for Radiant Exchange
within an enclosure". AIAA, Vol. I, No.6, P.1428, 1963.
5. Geohart, B.,
"Unified Treatment for Thermal Radiation Transfer
Process". Pener 57-A-34, ASME, 1957.
6. Geohart, B.,
"Hee.t Transfer". McGraw-Hill Co. Inc., New. York, 1961.
7. Chapman, A. J.,
"Heat Transfer", Macmillan Co., New York, 1960.
8. Eckert, E. R. G. \& Drake, R. K.,
"Heat and Hass Transfer". McGraw-Hill Co. Inc., New York, 1959.
9. Holman, J. P.,
"Heat Transfer". McGraw-Hill Co. Inc., New York, 1963.

"Heat Trensfer", Vol. II. John Wiley \& Sons, Inc., New York,1957.
10. Kreith, F.,
"Radiation Heat Transfer for Spacecraft and Solar Power
Plart Design". Interrational Textbook Co., Scranton, Perinsylvania, 1962.
11. Yoon, P.,
"The Scientific Basis of Illuminating Engineering". Dover Publications, Inc., New York, 1963.

The author was born on Docember 10, 1938 to Vr. \& Nrs. Y. T. Cu in Tainar, Tarwar, China.

He received his primary and secondary education in Gainar. Toiwn. He has received his college education in Nation I Taiwan University, Taipei, Taiwan and received a Bachelor of Science Degree in Mechenical Engineering in September, 1961. He came to the United States in September, 1963 ard enrolled in the Graduate School of the University of Rissouri School of Mines and Metallurgy.

