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ABSTRACT 

The purpose of this study is to deterrr.ine the radiant 

heat transfer in rectangular configurations and construct 

a ger.eral computer program. Two specific cases are studied 

in this work. 

The first case is a rectangular duct with openings at 

ea.ch end. The duct is separated into two sect ions which are 

called the source and the sink respectively. A linear 

temperature profile is imposed on the source section. The 

energy loss of both the source and the sink is investigated. 

The second case is a complete rectangular enclosure. 

The t\vO end plates are called the source and the sink re

spectively. A 1 in ear t err:pera.ture profile is imposed on the 

duct like section between the two plates. The energy loss 

of both the source and the sink is investieated. 

The method of analysis is Gebhart's unified method. 

The computer programs are as generalized as possible. Each 

program contains two main parts: (A) The evaluation of 

the configuration factors between any two surfaces in the 

enclosure. (B) The evaluation of the radiant energy loss 

of the source and the sink. 
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Il'TTRODUCTION AND REVIE"'l OF LITERATt:RE 

Much work has been done in the field of thermal radia

tion. Hamil ton and r.~organ ( 1 )* first developed the confi-

b~ration factors for many cases and stated the configuration 

factor algebra. The analysis of radiant heat transfer has 

been presented using approaches, such as: (A) Hottel (2) 

introduced a method, by vthich. the equivalent shape factor 

can be solved and the radiant heat transfer then determined. 

(B) The method originally proposed·by Poljak and later 

refir•ed by Oppenheim ( 3) is called "Radiation Analysis by 

Network". This method makes use of the analogy between 

radiation interchange and electrical circuits. (C) Ishi

moto and Bevans (4) preseLted a method using the "Script F" 

in their paper. This .method states that the net exchange 

between two surfaces in an enclosure must be of the form 

o...(Ti-T~) multiplied by ·a factor !f."~ (called script F) which 

is solved by a matrix solution. (D) The m~thod developed 

by Gebhart (5) makes use of determinants and introduces the 

so termed absorption factors and uses certain relations to 

reduce the amount of labor required in obtaining a numerical 
. 

solution for the rate of heat trar;sfer to or from a given 

surface. 

This study is co.ncerned with the rad iar;t heat trnnsfer 

in both a rectangular duct and a rectangular enclosure. The 

* Numbers in parentheses refer to Bibliography. 



open rect?..ngular duct is separated into t'\vO sections, the 

source and the sir~. The terr.perature of the source is cnang

ing from T1 to T2 in a linear fashion and the temperature 

of the sink is a uniform value given by T3 • The complete rec-

tangular enclosure or box has temperatures of T1 and T 2 

at either end. The duct like section·between these ends has 

a linear temperature profile varying from the end temperatures. 

Since the radiation properties are dependent upon the 

teniperature distribution and the ternpel;'ature along a wall 

may not be uniform, the method of numerical analysis must be 

used to approximate the radiant heat transfer. That is,,the 

wall with varying temperature must be divided into several 

sections, the solution is then based on Gebhart's unified 

method for radiation-exchange calculations. In solving the 

simultaneous equations, the Gauss-Jordan reduction method 

is used. 

The configuration factors between any two surfaces 

are evaluated by meAns of "configuration :factor algebra". 

The two special classes of configuration :factors used are: 

(A) The configuration factors for finite, perpendicular 

rectangles having a common edge. (B) The configuration 

factors for finite parallel, opposed rectangles. 

The eroissivities corresponding to the temper~tures are 

aP.proximated by using the Lagrc~ge interpolation formula. 

All of the calculations were performed with the aid of 

an IBM 1620 Vodel II Digital Computer. 
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DISCUSSIOK 

PART I: G~\ERAL CONCEPTION 

1. ASSUMPTIONS: 

In this analysis the following assumptions are made for 

convenience in solving the problem: 

(A) The condition of steady state has been assumed, 

i.e., all conditions are independent of time. 

(B) Conduction along the wall of the duct and convec

tion in the duct are neglected, only radiation is considered. 

(C) The temperature profile down the wall of the duct 

is assumed to be a straight line. The temperatures of both 

ends of the duct are equal to the values of the ends of the 

temperature profile, respectively. 

(D) In the calculations the mean temperature is used· 

and is based on the assumption that the temperature is uniform 

over the entire section concerned. 

(E) The emissivity and reflectivity depend upon the 

mean temperature. 

Other assumptions.will be made in the following 

discussion. 



2. Fill: DAI.:EKT AL S 0 F THERV. AL RAD I AT I CN 

Stefan..;Bol tzmann established a law that the energy 

density of the radiation is proportional to absolute 

temperature to the fourth power: 

E =ex T 4 
b J (1-1) 

4 

where Eb is the er.ergy radiated per unit time ar1d per unit 

area by an ideal radiator, i.e., a black body. ~is the 

Stefan-Boltzn:ann constant. The value of o....is 0.1714X 10-8 

Btu/hr-ft2- 0 R4 , ·when Eb is in Btu per hour per square foot, 

and T is in degrees Rankine. Fo~ a gray body the emissive 

power is: 

E = E C>.. T4, (1-2) 

where E is the emissivity. 

When radiant energy strikes the surface of a material, 

part of the radiation is reflected, part is absorbed, and 

part is transmitted, then 

q t = Clr+ ql.:l + q't 

or 1 = '3. rl q l + s~ I g i + 1 rl ~ t = r- + 'Z:\ .... 7 

where the fraction r is reflectivity, ~is absorptivity, 

and 't" is transmissivity. Many solid materials do not tra.ns

mit thermal radiation, for the case 

r+ a= 1 1 ( 1-3) 

Another useful tool was developed by Kirchhoff. His 

identity shows that 

€ =-"a, 

when the system is in thermodynamic equilibrium. 

(1-4) 



3. THE RADIATION SHAPE FACTOR 

Consider two finite black surfaces A1 and A2 which 

are in view of each other. The energy exchange between 

5 

these surfaces, when they are maint1=l.ined at different ter:1pera

tures, depends on the·spatial arrangement of' the surfaces. 

Hence the shape or configuration factor is instrumental in 

the analysis. 

The configuration factor from A1 to A2 , written F12 , 

may be defined as the fraction of the total radiant energy 
-

leaving sur :face A 1 which is incident upon surface A2. The 

general expression, Fmn is defined as the fraction of energy 

lcnvir"g S\.1 rface Am that is incident upon surface An. The 

limitiLg values are then zero and unity • 
. 

The configuration factor is a function of the geometry 

of the two surfaces A1 and A2 and depends on the directional 

distribution of the radiant emission. The emission has 

been assumed to follow Lambert's cosine law. This law states 

that the intensity, the radiar.t energy emitted per unit time 

per VLit solid angle subtended at emitting element, is a 

constant throughout the hnlf-space above ~he emitting 

element. This law implies that the radiant heat flux in 

the space varies inversely as the square of the distance 

from the emitting surface and directly with the cosine of 

the angle made with the normal to the surface. Experimentc 

indicate that most engineerir1g materials do not exactly 

follow Lambert's cosine principle. The error introduced by 

using Lambert's law in the calculation of radiant heat 



transfer h~s been assumed to be too small, in comparison 

with other ca1cul~tion errors tolerated in practice, to 
' 

warrant the complication introduced by the use of R- more 

accurate form of the directional distribution function. 

The configuration factor is denoted as 

where <?1 and 4>2. are the acute angles measured between a 

norm~=~l +o the surface and the connecting line r between 

the area elements. 

The total heA.t trR-nsfer per unit time leaving A1 

which reaches A2 is 

6 

~1.2. = ~1 SAJ. fAs cos<f>1 Co.s 1J. dA1:~2 • (1-6) 

It now becomes desirAble to develop two speci~l 

confie;uration factors in a generB.l. form. 

(A) The configuration factor for finite, perpendiculnr 

rectangles with n. common edge: 

Fig. 1-1 indicates a rectangle, which will be called 

A1 , of the dimenRions X by Y located normAl to rectangle 

A 2 with the dimensions X by z. The line X is then the 

common edge. 



Fig. 1-l Configuration factor notation 

in perpendicular rectangles 

The quantities needed to evaluate F12 are given 

belO\'J: 

dA1 = dxdy 

dA 2 = dx' dz 

r2 = (:x'-x)2+ Y2+ z2 

cos cf'i = z/r 

cosc:f>,. = y /r. 

The configuration factor is expressed as 

~ = _f _ (Y ()( (><('i'. ')~ ciJ.:::.lx"~'Xc:\cj • 

1~ nxy )o Jo ). )o t<-x!-?<)+'j-1• ~;t.12. 

Integration of the above equation yields 

7 



(B) The configuration :factor :for i'iili te, parallel, 

opposed rectangles: 

Fig. 1-2 shows two rectangles X by Y in size 

and separated by a distance D. 

~ 
Fig. 1-2 Configuration :fa~tor notation 
in parallel rectangles 

The quantities needed to evaluate F~2 are given 

below: 

dA1 = dxdy 

dA2 = dx' dy' 

r2= D2-+ (x'-x)2-+ (y'-y)2 

cos cflf = cos cf>.z.== f!/r • 

Therefore, 

_ DOl Jx )'f()(Jy a"' d~ d.')c"oj" 
F1 ::3. 7t X v -(----'--..J---f-J 

• 0 o o o o~-+(1)(-:_"")~~c~"-'j 

The result o:f the above equation, in terms o:f the dimen

sionless ratios X/D and Y/D is. 

8 
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(1-P.) 

where R1 =X/D, R2 =Y/D •. 

In some cases, the evaluation ~f the configuration 

~actor of a particular configuration by means of the Eq. 

(1-5) is difficult or.even impossible. Sometimes it may be 

possible, however, to evaluate ~he required configuration fac-
·, 

tor by means of "configuration factor algebra". This method 

makes use o:f :four principles which are summarized here 

:for convenience. 

(A) Basic reciprocity law: 

The product of an area A1 and the con:figur~tion 

:fqctor of A1 relati~e to another area A2 ; i.e., F12 , is 

related to the product of A2 and F 21 by the relation 

Al Fl2= A2F21• (1--9) 

To simplify this relation the georr.etric _factor G12 , 

numerically equal to the product of A1F12 , is introduced, 

hence 

G12=G21• (1-10) 

(B) Summation law: 

I:f the interior surface of ~ completely enclosed 

space is subdivided into parts having area A1 , A2 , ••• , An 

and each area is irradiated, then the following relationship 

holds: 
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"' 2:F .. = 1 
i=l l.J 

where i = 1, 2, ... , n (1-11) 

and j =1, 2, • • • • n. 

(C) Decomposition law: 

Given two surfaces Al and A2 , if surface Al is 

subdivided into A3 and A4 , then the total configurati~n 

factor F12 is related to the two subsidiary configuration 

factors F32 and F42 by the relation 

Al F12= A3F32+ A4 F 42' 

or Gl2= G32+ G42• 

(D) Modified reciprocity law: 

(1-12) 

(1-13) 

For rectangular geometric systems, if two planes 

intersect, the product of a corner area in plane A and its 

configuration factor with respect to the opposite corner 

area in plane B is equal to the product of the other corner 

area in plane A and its configuration factor with respect 

to the other corner area in plane B, irrespective of the 

an6le between planes. This law plays an important role in 

this study, the illustrations are as follows: 

From Fig. 1-3 the quantities of Eq. (1-5) in terms of x, 

x', y, z are developed as 

dA1 = dxdy 

dA 2 = dx' dz 

r2= (x'-x)2-+ y2+ z2 

cos 4,= z/r 

cos <t>:l. == y I r. 

Hence, Eq. (1-5) yields 
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' 

f 
z 1------,----~ 

6 4 

'j 'j 
'J""-----L.-.:~ 

Fig. 1-3 Perpendicular Fig. 1-4 Perpendic~lar 

shape factor geometry shape factor geometry 

and from Fig. 1-4 

dA3 = dxdy 

dA4 = dx' dz 

r2= (x'-x)2-t- y2+ z2 

cos~t= z/r 
_j 

cos G>.2:= y /r. 

Therefore, • 

The two integrals are of identical form except for the order 

of inteeration. Since the nature of the integrand permits 

the interchange of the order of the integration, the 

reciprocity formula is obtained 

For parallel rectangles, the reciprocity formula also 

holds. 

(1-14) 
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Applying the previous laws t'be following useful rela

tions for determining the configuration factors are developed. 

Fig. 1-5 Perpendicular 
shape factor geometry 

corresponding to Fig. 1-5, and 

Fig. 1-6 Perpendicular 
shape factor geometry 

(1-15) 

(1-16) 

corresponding to Fig. 1-6. The above formulas are also 

applicable for parallel rectangles. 
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4. RADIATION HEAT TRANSFER CALAULATIONS 

There are many methods to determine the radiation heat 

exchange among the surfaces. In this analysis, the unified 

method for radiation exchange calculations developed by 

Gebhart is used. This method treats all diffuse~radiation 

configurations, including those which involve special features 

such as windows, openings, and surfaces in radi~nt balance. 

The symbol qj denotes the rate of energy transfer from nn 

arbitrary surface Aj participating in the radiative exchanee 

process, while the rate of emission from area Aj is equal 

to EjAj. 

Consider an enclosure which contains no emitting or 

absorbing medium, and is formed of areas A1 , A2 , ••• , An 

having emissivities E 1 , E- 2 , ••• ,En ar.d emissive powers 

E1 ,E2 , ••• , En• The radiant energy absorbed by Aj. per unit 

time from each area is then given by B1 jE1A1 , B2jE2A2 , ••• , 

BjjEjAj' ••• , BnjEnAn. Where Bij is the absorption factor, 

defined as that fraction of the radiant energy emitted by 

surface Ai which is absorbed by sur:face Aj. This fr2.ction 

is to include radiation along all paths by which portions or 

In e;eneral, B .. 
JJ 

is not zero because some of the energy emitted by Aj ma:y be 

reabsorbed by Aj. The rate of energy loss from Aj 

to the rf:lte of emission minus the total amount of rad i~"tnt 

energy absorbed by Aj per unit time. Hence, 
,. 

:i;==Ej.Aj-B1jErA 1-B~jEJu.- • · · -~jEjA;- · · · -S;·E .. A.,= E1Aj <'ji 1 13•j EiA.;. , (1-17) 
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or -..4 n . • 
~r=E1 o..:,1 'Ai -?:., o..e_.,1 ~·'i A._. (1--18) 

The n values of Bij necessary·to compute may be 

determined by summing absorption rates at j due to the 

emission rates of A1 , A2 , ••• , An. For example, E1A1 is 

emitted at A1 and reaches the n surfaces in fractions 

given by the configuration factors F11 , F12 , ••• , F1n. 

The fraction of energy emitted by area·A1 and absorbed by 

Aj is F1 j€j, while F1 jrj is reflected. In general, F1 iri 

is reflected by the ith surface. The fraction of F1 iri 

which is absorbed at Aj is the same as the fraction of 

EiAi which is absorbed at Aj if the incident energy 

F1 iE1A1 is uniformly distributed over Ai and is diffusely 

reflected. Assuming uniform distribution, the fraction of 

E1A1 absorbed at Aj because of reflection off Ai is 

then B1 jFliri. So the total fraction of ~A1 absorbed at 

Aj, that is, that is, Blj' is 

e,1 =Fij €1-1- F'11"' ~1 •Ft:.t~ e~ ..... f1~r; B"j ........... Fi, r, el'l; . 
Similarly, the absorption factors for each of the other 

surfaces A2 , A3 , ••• , An are 

BJ1=~ €1 ~fi1 r, 8,1+ l="ur~B~'+h11j Bsj + · · ·+Fa.nrt. t~nJ 

~1· = F;j<=; •F" r. ~~j ...... F, ... ra.~:~j + Fn fJ 13~ • .. · ~ F~.., r" 13,j 

Bnj= Fi €i +F" .. ,r, P.>,j + Ftn. ra. Blj + F"1 ~ ~i.,. · · · .... F"" ~ 13"1 • 
This set of n equations with the n unkown values Blj' 

' 
B2 j' ••• , Bnj are rearranged as the set of following 

equations 



( Fj1 r;-1) B-tj..,.. Ft.:z._~ B.zj ...,..F13 r; B,i + • • · +F1n rn 8"1 == - F1i ~j 

F~, r, B1f+ (FJ.,.ti -1) B~j +F.&} rl l33j+ .•. +F ... n r;.. en;=-Ej E; 

F5n·; B1i +F3~ Y'.1. ~.21+(f)3 r;-t )63j.,.. ··-+F3nr,Bni=-F,i E; 

Fn1 r; 6,j +Ft1::tr1 b:a1..,. ~~t513ij..,. · · · -+ (F~n tn- J )Bi=-F»jE1 
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(1-19) 

The absorption factor Bij for the jth surface can 

be solved by determinants, i.e., Cramer's rule. When the 

number of equations is large, Cramer's rule is irefficier.t, 

since it requ~res evaluating determinants of high order. 

For this reason and because of the convenience in using 

the subroutine on IBM 1620 Digital Computer, the method of 

Gauss-Jordan reduction is used. 



PAHT II: RADIATION HEAT TRAI~SFER ANALYSIS Il\ THE 

RECTANGULAR CONFIGURATIONS 

16 

In this section two cases are discussed and the programs 

used on IBN 1620 f.lodel II Digital Computer are itJcluded. 

The programs are constructed to be as geLeral as possible. 

Here the method of solution to the problem is by means of 

finite differences. For co~venience, equal intervals will 

be used in the solution, i.e., the wall will be divided 

into equal finite sections. The more subdivisions used 

the greater the accuracy obtained. The thermal properties 

of each subdivided section of the wall are assumed to be 

uni:form and to satisfy all the conditions and results of 

PART I. The mean temperature of each subdivided section 

is determined and made uniform over the section. 



CASE A: RADIATION HEAT TRANSFER ANALYSIS IN RECTAKGULAR 

DUCT 

Assume a rectangular duct with the dimensions of 

17 

(XX+W) by YY by ZZ and open at each end of the dimension 

(XX+W) •. The portion of the duct XX by YY by ZZ is 

denoted as the source and has the temperature range 'l' 
1 to 

T 2 at either end. The temperature profile of the wall of 

this duct from T1 to T2 is assumed to be a straight line 

along the dimension XX (for convenience only).. The 

temperature of the portion other than the source, here denoted 

as the sink, is T3 and uniform over that section. The 

construction is shown in the following. The rate of energy 

loss from both the source and the sink is determined and 

that of each subdivided section is also investigated. 

/ 

I 
0)

/ 

I 
I t· 

- - -f - --- )-.-
/ / 

/ / 
/ / 

/ / 

I 

--~-
/XX 

/ 
/ 

Fig. 2-1 Dimensions of the rectangular duct. 
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T 

1 ,.r t ,-----, I 
'---:--.- :::--. "t 1 

I I 

Iii-'--~~---~-------~--- -:----!------,--- :~----..., 
1 1 I 

0 L----'!.----..!..' _____ ._....;. __ ~,~------:~ -----1,)( 
0 ~){ (XX......W) 

Fig. 2-2 Temperature profile down the wall of the duct. 

The source section XX is divided equally into N 

parts, the mean temperatures of the subdivisions, say t 1 , 

t 2 , ••• , tn are determined as follows, 

and 

where 

-t,-T. -(T,-Ta)/2N 

tt-'t(i-1)-(Ti-h)/1\l ~ 

i=2, 3, ••• , N. 

( 2-1) 

( 2-2) 

The emissivity and reflectivity are dependent on the 

temperature distribution. From Fig. 13-10, P.375, "Heat 

and f.1ass Transfer" by E. R. Eckert, the total reflectivity 

and absorptivity of different· materials for incident black 

radiation at the indicated temperature are obtained. (The 

emissivities are obtained by means of Kirchhoff's identity 

E-a.) 

Since the number of subdivisions are uncertain in the 

solution, an approximate numerical method for evaluating 

the required emiss~vities and reflectivities is introduced. 

The method used is the Lagrange interpolation formula, given 

by: 



'j=f(-x)=:t li(?<)f(?<i), 
i=f 

where 
t-<-x)= (?<'-"X1)('X-'X.a.) ••• ('X-?<,..) 

'" ("Xl-Xt} ('Xi-~~) • • •( ?<i-'Xn) 

and the terms and ( x. -x.) 
l. l. 
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( 2-3) 

are omitted. 

To use this formula, one first reads several sets of data, 

say 5, for the emissivities corresponding to the different 

temperatures as 

e:-. where i==l,·2, ••• , 5 
l. 

ar-. d T i where i = 1, 2, ••• , 5 , 
5 

th.en E = ~ ti. ("T) ~\., 
L-==-1 ( 2-4) 

where ~.(\)= (l-\1 )(T-T:a.) •.. (T-Ts) 
l ( Tz - ""ti) ( T.: -1;.) · · - ( Ti - Ts-) 

Again, the terms of (T-Ti) and (Ti-Ti) are omitted, 

and the identity r = 1- e; is used for evaluating the reflec

tivities. 

Applying the formula derived in PART I the desired 

quanti ties are calculatede The two openings absorb energy 

and reradiate none, so the reflectivity of both openings is 

zero. The procedure used to develop these quantities is as 

follows: First evaluate the geometric factors, letting Gij 

denote the geometric factors, where 

. . . , N+l, 

and . . .. , N+l. 

The number N+l denotes the sink section. Next the 

con:figuration :factors are eval.uated, letting Fij denote 
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the configuration factors, where 

i=l, 2, ... , N+l, 

and j=l, 2, ... , N+l. 

Following the configuration factors the absorption factors 

are deterrr.ined by means of the Gauss-Jordan reduction method 

for solving a set of simultanious equations, letting Bij 

denote the absorption factors, where 

i=l, 2, 

and j=l, 2, 

... ' 

. . . , 
N+l, 

N+l. 

With the aid of Eq.{l-2), the energy loss of each section 

is obtained. Denote the radiant flux of each section by 

Qj, where 

j=l, 2, ••• ,N-i-l, 

and the total energy loss of the sink section is QN+l• 

The total energy loss of the source section is then 

N 

Q=~ G.}· 
J-1 

( 2-5) 

The procedures are clearly seen from the computer 

program, and the descriptions are made in detail following 

the program. 
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COMPUTER PROGRAM I 

c·---- P~OGRAt-'i I RADIATIDt··! HEAT TRAf'ISFER ANALYSIS II'! THE RECT1-\: 1GULt-\R DUCT 
D I f.\ H! S I 0 H F A ( I 0 ) , F A B ( 1 0 ) , FA A L ( 1 2 ) , G A ( 12 ,1 2 ) , F B D ( 2 ) , F B ( 1 0 ) , F D D L ( 2 ) , 

1 F B P, L ( 12 ) , G B ( 12, 12 ) , G ( 12, 12 ) , F ( 12, 12 ) , 0 ( 12 , 14 ) , GC ( 12 , 12 ) , T ( 1 2 ) , E l'i I ( 
2 1 2) , REF ( 12) , T T ( 10 ) , E E ( 10 ) , QA SUB ( 12) , Q ( 12) 

PI=3.1415926 
STBOC=.1714E-8 
RF.:t\D 101, NN 
READ 100 , ( T T ( I ) , I= l, NN) t< E E ( I ) , I= 1, f\!N) 
PR II"IT· 101, NN 
PRINT 100, (TT( I), I=1, NN), C EEC I), I=1,NN) 
READ· roo, xx,vv,zz,w,rr,rz,r3 
PRINT 100, XX,YY,ZZ,W,T1,T2,T3 

1 READ 101, N 

L=N+l 
L1=N+2 

=l-
c EVALUATION OF THE GEOMETRIC FACTORS 
C FOR THE PERPENDICULAR FORM 

R=N 
H=XX/R 
DO 30 f'-i=1, 10 
GO TO (11,12,13,14,15,16,17,18,19,20),M 

11 X=YY 
Y=H 

GO TO 25 
12 X=YY 

+ 
Z=ZZ 
GO TO 25 

Y=XX-H+~-l 
Z=ZZ 

14 X=ZZ 
Y=H 

GO TO 25 
15 X=ZZ 

Z=YY 
GO TO 25 

Y=XX-H+W 



Z=YY 
GO TO 25 

1 X=YY 
Y=t-1 
Z=ZZ 
GO TO 25 

18 X=YY 
Y=XX 
Z-ZZ 
GO TO 25 

19 X=ZZ 
Y=~·l 

Z=YY 
GO TO 25 
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C EOUATION OF THE GEOMETRIC FACTOR FOR THE PERPENDICULAR RECTANGLES 
C WITH A COMMON EDGE 

25 C 1=X>:<>:<2 
C2=Y>:•*2 
C3=Z>:o:<2 
CC1=C1+C2+C3 
CC 2=C l+C2 
CC3=C2+C3 
CC4=C l+C3 
CSR-SC-.lR TF ( CC3} 
FCl=X*Y*ATANF(X/Y) 
FC2=X*Z*ATANF(X/Z) 
FC3=-(X*CSR*ATANF(X/CSR)) 
FC4=-(Cl*LOGF(CC1*Cl/(CC2*CC4)))/4.0 
FC5=(C2*LOGF(CC1*C2/(CC2*CC3)))/4.0 
FC6-(C3*L0GF(CC1*C3/(CC3*CC4JJJ74.o 
FA(M)=(FC1+FC2+FC3+FC4+FC5+FC6)/PI 

30 CONTINUE 
GA1=2.0*(FA(l)+FA(2)-FA(3)+FA(4)+FA(5)-FA(6)) 
GAN1=2.0*(FA(7)+FA(2)-FA(8)+FA(9)+FA(5)-FA(10)) 
X=O.O 
.,_ + 
DO 40 K= 1, f-1 
IF (K-N) 31,31,32 

31 X=X+H 
Y=YY 
Z=ZZ 
GO TO 35 

32 IF (K-L) 33,33,34 



33 
34 

35 

X=H 
Y=YY 
Z-ZZ 
I=K-N 
c l=X =~~:·z 
C Z=Y ;:•=:• 2 
C3=Z~•=:<Z 

CCl=Cl+C2+C3 
CCZ=Cl+ 2 
CC3=C2+C3 
CC4=Cl+C3 
CSR-SQRTF(CC3) 
FCl=X*Y*ATANF(X/Y) 
FC2=X*Z*ATANF(X/Z) 

I 

FC3= (X*CSR*ATANF(X/CSR)) 
FC4=-CCl*LOGF(CCl*Cl/(CC2*CC4)))/4.0 
FC5=(C2*LOGF(CCl*C2/(CC2*CC3)))/4.0 
FC6-(C3*LOGF(CCl*C3/(CC3*CC4)))/4.0 
IF (K-N) 36,36,37 

36 FAB(K)=(FCl+FCZ+FC3+FC4+FC5+FC6)/PI 
GO TO -'1-0 

37 FAALCI)=(FCl+FC2+FC3+FC4+FC5+FC6)/PI 
X=X+H 

40 CONTHJUE 
GA2=4.0*CFAAL(L)-FAAL(L-l)-FAB(l)) 
GAN2=4.0*(FAAL(L)-FAB(L-l)-FAAL(l)) 
GA(1,2)-(FAB(2)-2.0*FAB(1))*4.o 
IF {N-2) 44,44,42 

42 DO 43 I=3,N 
zt:3 GA(l,l)=(FAB(!J z.O>::FAB(l U+FAB(l-2)):!:4.0 
44 GA(L,l)={FAAL(2)-FAAL(l)-FAB(l))*4•0 

DO 45 I=2,N 
45 GA(L,IJ-(FAA[(I+l>+FAB(I-1>-FAB(l)-FAAL(IJH•4.o 

C FOR THE PARALLEL FORM 
X=H 
,_ + 
DO 60 K=ltM 
Y=YY 

IF {K-N) 53,53,50 
50 IF (K-L) 51,51,52 

52 J=K-N 
53 DO 57 1=1,2 
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C E<-!OAIIDN 01- IRE CEdMEIRIC FACidR FOR IRE PARAllEL AND Lt5H1st:o 
C RECTANGLES 



Rl=X/Z 
R 2=Y /Z 
C 1-R 1::D:~2 
C2=R2=:•::•z 
C3=l.O+Cl 

CCl=LOGF((C3*C4)/(C2+C3)) 
CC 2= SQR TF ( C3) 
Cc3-suR1F{c4) 
FDl=CC1/(Rl::•R2) 
FD2=-( 2.o::<ATAI,JF (R2)) /R1 
FD3--(2.0*ATANF(Rl))/R2 
FD4=(2.0*CC2*ATANF(R2/CC2))/R1 
FD5=(2.0*CC3*ATANF(Rl/CC3))/R2 
IF (K N) 54,54,55 

54 FBD(I)=(FD1+FD2+FD3+FD4+FD5)*X*Y/PI 
GO TO 56 

55 FDDL(I)-(FDl+FD2+FD3+FD4+FD5)*X*Y/PI 
56 Y=ZZ 
57 Z=YY 

IF (K-N) 58,58,59 
58 FB(K)=FBD(l)+FBD(2) 

GO TO 60 
59 FBBL(J)=FDDL(1)+FDDL(2) 
60 ,X=X+H 
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C EVALUATION OF THE GEOiVIETRIC FACTORS AND THE CONFIGURATIOi'l Ft\CTORS 
C BETWEEN ANY THO sUBDIVISIONS 

GBl=FBBL(Ll-FB(l)-FBBL(N) 
GBN1=FBBL(L)-FB(N)-FBBL(1) 

i_. 

G8(1,2)-(FB(Z) z.O*FB(l)J 
IF (N-2) 64,64,62 

62 DO 63 I=3,N 
63 GBti,IJ tFB(!) 2.U:!cFBti-IJ+FB(!-2Jl 
64 GB(L,l)=(FBBL(2)-F8(1)-FBBL(l)) 

DO 65 I=Z,N 
65 GB(L,!)-(F88[(1+U+FBtl-l) FB(!J-FBBL(IJ) 

Al'l=2 .o::<H::: ( YY+ZZ) 
ANL=2.0*W*(YY+ZZ) 
F(1,1)-l.o-(GAI+GA2+GB1)/AN 
G ( 1 , 1 ) = F ( 1 t 1 ) * AN 
DO 71 I=ZtN 

71 G(l,I)=(GA(1,!)+GB(l,I)) 
DO 72 I=l ,N 

72 G(I,U=G(l,I) 
DO 74 M=2 7 N 
K=N 



73 G(~,K)=G(H-1 7 K-1) 
I<.=K-1 
IF (K-1) 74,74,73 

74 CONT HJUE 
F(L,L)=l.O-(GANl+GAN2+GBNl)/ANL 

7 5 G C ( L , I ) = G A ( L , I ) +G B ( L , I ) 
K=N 
DO 6 = , N 
GCI,L)=GCCL,K) 

76 I<.=K-1 

77 G ( L, I ) =G ( I , L) 
DO 78 I=l,N 

0 8 - ' 
78 FCI,J)=GCI,J)/AN 

DO 80 J=l,N 
80 F(L,J)-G(L,J)/ANL 

PRINT 102 
PRINT 100,((F(I,JJ,J=1,L),I=l,L) 

c EVALUAfioH OF THE 1:\EAN TE/v\PERATDRES OF THt: SUBOIVISiur~S 
TC1l=T1-(T1-T2)/(2.0*R) 
DO 81 I=l,L2 

81 l(l+ll=l(IJ-(11-12)/R 
T(L)=T3 
PRINT 103 
PRINI 100, ( i(l),l=l,L} 
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C EVALUATION OF THE MEAN EMISSIVITIES OF THE SUBDISIONS BY ~:EANS OF 
C LAGRANGIAN INTERPOLATION FORMULA 

= ' F Efv1=0. 0 
DO 85 K=1,NN 

FN0=1.0 
DO 84 I=1,NN 
IF (I 10 83,84,83 

83 FNU=FNu~:qT(J)-TT(I)) 
FNO=FNO*(TT(K)-TT(I)) 

85 FEM=FEM+FNU/FNO*EE(K) 
8 6 E i"i I ( J ) = F E 1'-1 

PRINT 100, CEMI(J),J=1,L) 
C EVALUATION OF THE i"1EAN REFLECTIVITIES OF THE SUBDIVISIOI,!S 5Y i·iEANS 
c kiRCHHOF 1 s IDENTITY 

DO 87 I=1,L 
• .... 



87 REF(I)=1.0-Eiil(I) 
PRIHT 105 
PRhii ioo, (REF(I),I=l,L) 
DO 98 J=1,L 
PRINT 106, J 
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C SOLUTION OF THE ABSORPTION FACTORS BY MEANS OF GAUSS-JORDAN 
C REDUCTION METHOD 

DO 89 I=1,L 
89 D(I,I)-F(I,t)~~R~F(I)-1.0 

DO 92 I=l,L 
DO 91 H=1,L 
IF ( I i·"t ) 9 0 , 9 1, 9 0 

90 D(I,M)=F(I,M)*REF(M) 
91 CONTINUE 
92 CONTINUE 

DO 93 I=1,L 
93 D(I,L+l)=-(F(l,J)*EMI(J)) 

CALL GAUJOR CD,L,Ll,l2,14) 
PR Il'lT 107 
PRINT 100, (0(I,Ll),I=1,L) 

C EVALUATION OF THE ABSORPTION ENERGY FROM SURFACE I TU SURFACE J 
DO 94 I=l,N 

94 ()A SUb (I) =D (I, Ll) ~:~sTBOC*T (I >·**4*H1 I (I) *AN 
QASUB(L)-D(L,Ll)*STBOC*T<Ll**4*EMI(L)*ANL 
PRINT 108 
PRINT 100, CQASUB( I) ,I=l, L) 

C EVALUATION OF THE TOTAL ABSORPTION ENERGY OF SURFACE J 
QABSO=O.O 
DO 95 I=1,L 

95 QABSO=QABSO+QASUB(I) 
PRINT 109 
PRII'lT 100, QABSO 

C EVALUATION OF THE RADIANT HEAT TRANSFER FROM SURFACE J 
IF (J-N) 96,96,97 

96 Q{J)=STBOC*T{Jl**4*EMI(J)*AN-QABSO 
GO TO 98 

97 Q(J)=STBOC*T(J)**4*EMI(j)*ANL-QABSO 
98 CONTINUE 

PRINT 110 
PRINT 100,(Q(J),J=1,L) 

C EVALUATION OF THE TOTAL HEAT TRANSFER OF THE SOURCE 
QLOSS=O.O 
DO 99 I=1,N 

99 QLOSS=QLOSS+Q{I) 
PR NT 111 
PRINT 100, QLOSS 



----
PRH!T 
PRHlT 
GO TO 

100 FORr·1J\ T 
101 FORr·1 AT 
102 FOR:·1AT 
103 FORI-1AT 
104 FORt-i AT 
105 FORf·iAT 
106 FORt-'1AT 
107 FORI·'! AT 
108 FORMAT 
109 FORf•lAT 
110 FORf•iAT 
111 FORHAT 
112 FORMAT 

E.ND -- .. -- . -·-
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112 
100, Q(L) 
1 

(4F18.8) 
( ld 18) 
(10X44HCONFIGURATION FACTORS ((F(I,J),J=1 7 Ll,I-1 7 L)) 
(10X41HMEAN TEMPERATURES (T(l),I=l,l) IN RANKINE) 
(10X28HMEAN E~ISSIVITY OF EACH PART) 
(10X25HREFLECTIVITY OF EACH PART) 
( lOX2HJ=,I2) 
(10X33HABSORPTION FACTORS (B(I,J),I=l,L)) 
(10X39HABSORPTION ENERGY FROM EACH PART BTU/Hk) 
(10X41HTOTAL ENERGY ABSORRED BY EACH PART BTU/HR) 
(10X45HENERGY LOSS OF EACH PART (Q(J),J=l,N2 BTU/HR)) 
(10X38HTOTAL ENERGY LOSS OF THE SOURCE BTU/HR) 
(10X37H TOTAL ENERGY LOSS OF THE SINK BTU/HR) 

-- ·-·'- ·-·-···· --·-;··-----------... ----~--- ·--- --·-·--·--·-·-·~---- _____ __.; 



DETAILED DESCRIPTION OF THE PROGRAM 

Geometric factors in perpendicular form: 

Statement 11 to line 

11 + 3, is the evaluation of 

the geometric factor from 

1 to 2 as shown. This 

is obtained by using Eq.(l-7), 

where FA(l) is the program 

variable. 

Statement 12 to line 

12 + 3, is the evaluation of 

the geometric factor from 

1 to 2 as shown. This 

value is given by FA(2) in 

the program. 

Statement 13 to line 

13 -t- 3, is the evaluation of 

the geometric factor from 

1 to 2 as shown. This 

value is given by FA(3) in 

the program. 

Statement 14 to line 

14 + 3,· is the evaluation o:f 

the geometric factor from 

1 to 2 as shown. This 

value is given by FA(4) in 

Fig. 2-3 Geometric 
factor notation. 

· Fig. 2-4 Geometric 
factor notation. 

Fig. 2-5 Geometric 
factor notation. 

Fig. 2-6 Geometric 
factor notation. 
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the program. 

Statement 15 to line 

1? + 3, is the evaluation of 

the geometric factor from 

1 to 2 as shown. This 

value is given by FA(5) in 

the program. 

Statement 16 to line 

16 + 3, is the evaluation of 

the geometric factor from 

1 to 2 as shown. This 

value is given by FA(6) in 

the program. 

Statement 17 to line 

17+3, is the evaluation of 

the geometric factor from 

1 to 2 as shown. This 

value is given by_ FA( 7) in 

the program. 

Statement 18 to line 

18 + 3, is the evaluation of 

the geometric factor from 

1 to 2 as shown. This 

value is given by FA(8) in 

the program. 

1 

Fig •. 2-7 Geometric 
factor notation. 

Fig •. 2-8 Geometric 
factor notation. 

Fig. 2-9 Geometric 
factor notation. 

Fig. 2-10 Geometric 
factor notation. 
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Statement 19 to line 

19 + 3, is the evaluation of 

the geometric factor from 

1 to 2 as shown. This 

VA~Ue is given by FA(9) in 

the program. 

Statement 20 to state-

ment 30 is the evaluation 

of the geometric factor from 

1 to 2 as shown. This 

value is given by FA(lO) in 

the program. 

Statement 30+ 1 line 

is the evaluation of the geo

metric factor from 1 to 2 

as shown. Where surface 1 

is the ring of width H and 

surface 2 is the two end 

plates. This value is given 

by GAl in the program. 

Statement 30+ 2 lines 

is the evaluation of the geo~ 

metric factor from 1 to 2. 

as shown. Whe·re surface 1 

is a ring of width W and 

surface 2 is the two end 

Fig. 2-11 Geometric 
factor notation. 

Fig. 2-12 Geometric 
factor not at ion. 

30 

w 'P 
--------t--

___ j__ 

Fig. 2-13 Geometric 
factor notation. 

Fig. 2-14 Geometric 
factor notation. 

plates. This value is given by GANl in the program. 



Statement 30 -t- 3 lines 

to statement 40 is the 

evaluation of the geometric 

factors from 1 to 2 and 

1' to 2' as shown. Where 

the qu~ntity X in Eq.~l-7) 

is changing from H to XX 

with the increment H. The 

same procedure is then follow-

ed from W to (XX-+ W) with 

the increment ·H.. These 

values are given by (FAB(K), 

K=l,N) and (FAAL(I),I=l,N+l) 

respectively in the program. 

Statement 40 + 1 line 

is the evaluation of the geo

metric factor from 1 to 2 

as shown. Where surface 1 

is a ring of width H and 

surface 2 is a ring of width 

(XX+W-H). This value is given 

by GA2 in the program~ It 

Fig. 2-15 Geometric 
factor notation. 

Fig. 2-16 Geometric 
factor notation. 

Fig. 2-17 Geometric 
factor notation. 
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should be noted that this is only in the perpendicular form, 

the complete geometric factor for the ring 1 to the ring 

2 would include the factor for parallel geometry. 



Statement 40 + 2 lines 

is the evaluation of the geo

metric factor from 1 to 2 

as shown. Where surface 1 

is a ring of width W and 

surface 2 is a ring of width 

XX. This value is given by 
. 

Fig. 2-18 Geometric 
factor notation. 
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GAN2 in the program. Again, it should be noted that this 

is only in the perpendicular form. 

Statement 40+ 3 lines 

is the evaluation of the geo-

metric factor from ring 1 

to ring 2 as shown. Where 

1 and 2 are both of width 

H •. This value is given by 

GA(l,2) in the program. 

Fig. 2-19 Geometric 
factor not at ion. 

Again, it should be noted that this is only in the per

pendicular form. 

Statement 42 to state-

ment 43 is the evaluation 

of the geometric factor from 

ring 1 to ring I as shown. 

Where 1 and I are both of 

width H. I denotes the ring 

number 3, 4, ••• , N. These 

I , 

i i I : 
I ' I i I;. 
I I I 

Fig. 2-20 Geometric 
factor notation. 

values are given by (GA(l,I),I=3,N) in the program. Again, 

it should be. noted that this is only in the perpendicular 



:form. 

Statement 44 is the 

evaluation of the geometric 

factor from ring L to ring 

1 as shown. Where ring L 

is of width W and ring 1 

is of width H. This value 

is given by GA(L,l) in the 

Fig. 2-21 Geometric 
:factor notation. 

program. It should be noted that this is only in the 

perpendicular form. 

Statement 44 + 1 line 

to statement 45 is the 

evaluation of the geometric 

factors from L to I as 

shown. Where surface L is 

a ring of width W and surface 

I is a ring of width H. 

Fig. 2-22 Geometric 
factor notation .. 
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These values are given by (GA(L,I),I=2,N) in the program. 

Again, it should be noted that this is only in the per

pendicular form. 



Geometric :factors in parallel :form: 

Statement 55+ 1 line 

to statement 60 is the 

evaluation of the geometric 

factors from 1 to 2 as 

shown by means of Eq.(l-8). 

Where surface 1 is the 

half of a ring having a width 

that varies from H to XX 

with the increment H, and 

surface 2 is the other half 

o:f the ring. The procedure 

is then reversed, where surface 

1 and surface 2 are of 

width varing from W to 

(XX+W), with the increment H. 

2-23 Geometric 
notation. 

Lw~~:j 
Fig. 2-24 Geometric 
factor notation. 

These values are given by (FB(K),K~l,N) and (FBBL(J), 

J=l,L) in the program. It should be noted that this is 

only in the parallel form. 

StatE-'ment 60 -t-1 line 

is the evaluation of the 

eeometric factor from 1 .to 

2 as shown. Where surface 

1 is a ring o:f width H 

and surface 2 is a ring of 

width (XX+W-H) •. This value 

Fig. 2-25 Geometric 
factor notation. 
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is given by GBl in the program. It should be noted that 



this is only in the parallel form, the complete geometric 

fP.ctor for ring 1 to the ring 2 would include the 

factor for perpendicular form. 

Statement 60 + 2 lines 

is the evaluation of the geo

metric factor from l to 2 

as shown. Where surface 1 

is a ring of width W and 

surface 2 is a ring of width 

XX. This value is given by 

GBNl in the program. Again, 

Fig. 2-26 Geometric 
factor notation. 

it should be noted that this only is the parallel form. 

Statement · 60 + 3 lines 

is the evaluation of the geo

metric factor from l to .2 

as shown. '·~ere surface 1 

and surface 2 are the ring 

of width H. This vAlue is 

given by GA(l,2) in the 

Fig. 2-27 Geometric 
factor notation. 

program, and is only for the parallel form. 

Statement 62 to state-

ment 63 is the evaluation 

of the geometric factor from 

1 to I as shown.. Where 

surface 1 and surface I 

are rings of width H. These 

values are given by (GB{l,I), 

: I I 

I I 

Fig. 2-28 Geometric 
factor notation. 
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_j 
/ 



I==3,N) in the pro~ram. It should be noted that this is 

only in the parallel form. 

Statement 64 is the 

ev2~uation of the geometric 

factor from L to 1 as 

shown. \olhere surface L is 

a ring of width W and 

surface 1 is a ring of width 

Fig. 2-29 Geometric 

factor notation. 

H. This value is only of the parallel form, given by 

GB(L,l) in the program. 

Statement 64+ 1 line 

to statement 65 is the 

evaluation of the geometric 

factors from L to I as 

shown. rlhere surface L · is 

a ring of width W and 

surface I is a ring of width 

Fig. 2-30 Geometric 

factor notation. 

H.. These values are given by (GB(L, I.), I=2,N) in the 

program. Again, it should be noted that this is only in 

the parallel form, the complete geometric factor would 

include the factor for perpendicular form. 
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Statement 65 + 1 line and statement 65 + 2 lines are 

the evaluation of the surface area of both the ring of width 

H and W, respectively. These values are given by AN 

and ANL, respectively, in the program. 
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Complete geometric factors and configuration factors: 

In the following, 1, 2, ••• , N, L will denote the 

subdivided sections as shown in Fig.(2-l) unless otherwise 

specified. 

Statement 65+3 lines and statement 65+4 lines 

are the evaluation of the complete configuration factor F11 

and the complete geometric factor G11 , respectively, where 

surface 1 is a ring of width H. These values are given 

by F(l,l) and G(l;l), respectively, in the program. 

Statement 65+ 5 lines to statement 71 is the 

evaluation of the complete geometric :factors Gli. Where 

surface 1 and surface i are rings of width H. These 

vn.lues are given by (G{l,I),I 2,N) in the program •. 

Statement 71 + 1 line to statement 74 is the 

evaluation of the compl.ete geometric factors Gij' where 

surface i and surface j are rings of width H, i 

denotes 1, 2, ... ' N· and j denotes 1, 2, . . . ' N. 
-

These values are evaluated by means of the following rela-

tions, since the source section is divided. equally. The 

values of each column are the same and the values of each 

row are symetrical to Gii' that is, Gi(i+in==Gi(i-N) for 

N ~ 1. These values are given by {G(L,l) ,I=l,N) and 

G{M,K), where M= 2, 3, ••• , N and K= N, N-1, ••• , 2 in 

the program. 



Gll Gl2 Gl3 ••••••• Gl(N-1) GlN 

G2l G22 G23 G24 • • • •···· • G2N 
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G31 G32 G33 G34 G35 ~·· G3N ( 2-6) 

• 
• 
• 

Statement 74+1 line is the evaluation of the complete 

configuration factor FLL' where surface L is a ring of 

wi~th W, i.e., the ring of the sink. This value is given 

by F(L,L) in the program •. 

Statement 74 + 2 lines 

to statement 75 is the 

evaluation of the complete 

eeometric factors from L to 

I as shown. Where surface L 

is a ring of width W and 

surface I is a ring of width 

Fig. 2-31 Geometric 
factor not at ion. 

H. These values are given by (GC(L,I),I=l,N) in the 

program. It should be noted that I denotes the ring number 

1, 2, ••• , N which is specified from the right hand side to 

the left hand side. 

Statement 75+1 line to statement 76 is the evalua-

tion of the complete geometric factors GiL•· Where surface 

i is a ring of width H and surface L is a ring of width 

w. These val.ues are given by (G(,I,L),I=l,N) in the 

program. 



Statement 76 + 1 line to statement 77 is the evalua-

tion of the complete geometric factors GLi• Where surface 

L is a ring of width W and i is a ring of width H. 

These values are given by (G(L,I),I=l,N) in the program. 

Statement 77+ 1 line to statement 80 is the evalua-

tion of the complete configuration factors Fij' where i=l, 

2, ••• , N~l and j=l, 2, ••• , N+l. These values are given 

by ((F(I,J),J=l,L),I=l,L) in the program. 

?he completion of the program requires the use of 

Eq.(2-l), Eq.(2-2), Eq.(2-4) and Eq.(2-5). 



The other symbols used in the program are defined as 

follows: 

PI 'Tt. 

STBOC 

N 

Stefan-Boltzmann constant ~. Btu/hr-ft2- 0 R. 

Number of subdivided sections along XX. 
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h~ Numoer of sets of emissivities and temperatures. 

TT(I) 

EE(I) 

Temperatures corresponding to NN. 

Emissivi ties .corresponding to TT( I). 

Tl, T2, T3. 
Temperatures corresponding to the two ends of the 

source and the sink, respectively, as defined 

previously. 

T(I) Mean temperatures of subdivisions corresponding to 

N. 

L Denotes the sink section. 

Ll, L2. Variables as defined. 

R The value of N in the floating point. 

X, Y, Z. 
Variables defined in Eq.(l-7) and Eq.(l-8). 

H Subdivided interval width in the XX direction. 

Cl, C2, C3, C4: CSR; FCl, FC2, ••• , FC6; Rl, R2, CCl, CC2, 

CC3; FDl, FD2, ••• , FD5; FNO, FNU and F~. 

Variables as defined in the program. 

FBD(I), FDDL(I). 

The geometric factors for the two sets of opposed 

rectangles defined in the program. 

AN Surface area of each subdivision. 
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Al~L Surface area of the sink section. 

D1I ( I ) , REF ( I ) • 

E:r:issivities and reflectivities corresponding to 

T(I). 

D(I,J) Matrix of the coefficients of Eq.(l-9). 

QASUB(I) 
Energy absorbed by subdivided surface J from 

surface I. 

QABSO Total energy absorbed by subdivided surface J. 

Q(J) The energy loss of subdivided surface J. 

QLOSS The total energy loss of the source section. 

All other symbols have the same meanings as defined 

previously. 

An example is given in the following. 

f,1 at erial: Al, XX ==10 ft. t yy = zz == w == 1 ft.' 

(A) T = 560 oR, T2 = 540 OR T3- 530 oR. 
1 

, 

(B) T -800 1-
oR, T2 = 600 OR , T3 = 570 oR. 

(C) T1 = 1000 oR, T2 = 650 OR 
' 

T3 =- 600 oR. 

(D) T1 = 2000 oR, T2 = 1000 °R, T3 =800 oR. 

The emissivities corresponding to the temperatures are given 

by, 
TT(I) 600 800 1000 1500 2000 OR 

EE(I) .08 .095 0.10 0.12 0.16 

The results are tabulated and the curves are plotted in the 

following pages. 
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TABLE I 

The energy loss of the source and sink of Case A 

(A) T1 = 560 OR , T2= 540 °R, T3= 530 °R. 

N Qsource Btu/hr Qsink Btu/hr 

2 158.65 20.28 

3 152.23 20.49 

4 146.13 20.80 

5 141.15 21.09 

6 137.23 21.34 

7 134.19 21.54 

8 131.81 21.69 

9 129.95 21.82 

10 128.47 21.92 

{B) T =800 1 
oR, T2=600 °R, T3= 57~ 0 R. 

N Qsource Btu/hr Q . k Btu/hr s1n 

2 490.28 13.30 

3 480.16 16.18 

4 465.72 18.25 

5 452.62 19.75 

6 441.82 20.85 

7 433.18 21.67 

8 426.33 . 22.29 

9 420.88 22.76 

10 416.53 23.12 
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TABLE I {Continued) 

(C) T1 = 1000 oR, T2 = 650 °R, T3= 600 °R. 

N Qsource Btu/hr Qsink Btu/hr 

2 1027.71 -5.88 

3 1022.57 2.02 

4 999.96 7.24 

5 976.70 10.83 

6 956.56 -13.37 

7 940.02 15.21 

8 926.69 16.57 

9 915.96 17.60 

10 907.32 18.37 

(D) T1 = ~000 °R, T2= 1000 °R, T3= 800 oR. 

N Qsource Btu/hr Qsink Btu/hr 

2 14365.57 -628.64 

3 15105.72 -469.36 

4 15213·. 27 -374.27 

5 15134.14 -313.86 

6 15004.90 -273.54 

7 14872 .• 59 -245.54 

8 14752.72 -225.46 

9 14649.05 -210.63 

10 14561.37 -199.43 



PLATE 1-A 

Energy loss of the source section of the duct 
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PLATE 1-B 

Energy loss of the source section of the duct 
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PLATE 1-C 

Energy loss of the source section of the duct 
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PLATE 1-D 

~nergy loss of the source section of the duct 
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PLATE 2-A 

Energy loss of the sink section of the duct 
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PLATE 2-B 

Energy loss of the sink section of the duct 
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PLATE 2-C 

Energy loss of the sink section of the duct 
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PLATE2-D 

Energy loss of the sink section of the duct 
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CASE B: THE RADIATION HEAT TEA.tSFER ANALYSIS IN RECTAFGUI.AR 

ENCLOSURE 

Assume a box with the dimensions XX by YY by ZZ 

and with temperatures T 1 at the surfaces at the 

ends of XX. Denote these surfaces as the source and the 

sink, respectively. The temperature profile along the w~ll 

in the dimension XX is as~umed to be a straight line (for 

convenience only). The radiant heat transfer of both end 

plates is investigated. The diagram of the dimensions of 

the box and of temperature profile·are constructed as sho\m 

below. 

I I 
I 1 I I · 
L---j--t- ---1-------- - --
1 I' I / 
I I' / 

/ I I' 
I I' I I' 

1 
Fig. 2-32 The dimensions of the rectangular box. 

T 

L----L----..l-.---------------'-······ ...... 'X 00 

Fig •. 2-33 The temperature profile of the wall of 
the box along XX. 
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The procedures of solution are similar to thnt of CASE 

A. Divide the box alone the dimension XX into N equal 

sections, say A1 , A2 , ••• ,AN. The surfaces at both ends 

of XX are denoted as AN+l' the source, and AN+ 2 , the sink. 

The mean temperatures of the subdivided sections, denoted 

t 2' ••• ' t'!\-, 
!• 

are determined by Eq.{2-l) and Eq.{2-2). 

The temperatures of both end plates are assumed to be uniform 

and equal to T1 and T2 , respectively, i.e., TN+l = T1 

and TN+- 2 = T2 • Then by the Lagrange interpolation formula, 

Eq.{2-4), tr~e emissivity and the reflectivity of each section 

corresponding to its temperature may be approximated. These 

are given by: 

and r.· 
' 

where 

where 

i=l, 2, . . . ' N+2 

i:::l, 2, •••• N+2. 

By applying the formulas derived in PART I, the required 

quantities can be obtained. First evaluate the geometric 

factors. The symbol Gij denotes the geometric factors, 

where i =1, 2, ... ' N+2 

and j=l, 2, . . . , 
After determining geometric factors, the .configuration factors 

are determined. The symbol Fij denotes the config~ration 

factors'· where 

i-1, 2, . . . , N+2 

and j•l, 2, .• .. , 
The absorption factors are evaluated by the Gauss-Jordan 

reduction method. This method allows the set of equations 

developed by Gebhart to be solved and the values of Bij to 
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be obtained, where 

i=l, 2, ... , 
and j=l, 2, . . . , N+2 • 

The heat loss of section j is obtained from Eq.(l-18), 
N -+-.2 

G.j = "=j ~ 1.(4Aj - 7§'. ~iO...Ii 4 Bi1' At 
\'lhere j =1, 2, ••• , N 2. 

The total heat loss of the box is then given by, 

( 2-7) 

since the complete enclosure 'is involved. 

The procedures may be more clearly seen from the 

computer program following. The descriptions are given in 

detail following the computer program. 
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COIW:PUTER PROGR1~ II 

·C PROGRAM II RADI.ATION HEAT TRANSFER ANALYSIS IN THE RECTANGULAR 
C ENCLOSURE 

DIMENSION FAAL(l2),GA(l2,12),FABL(2),FBBL(l2) 7 GAAL(l2 7 12) 7 FBCLC2), 
------~l~CC~1J2),GB(l2,12),F(l4,~4),G(l4,14)tTC14) 7 DCl4tl6) 1 Q(l4),EM!Cl2), 

2REFll2) 7 TTll0) 7 EE(l0) 7 QASUBC12) 
STBOC=.l714E-8 
PI=3.1415926 
READ 101 7 NN 
READ 100 7 (TT(!),I=ltNN) 7 (EECI),I=l 7 NN) 
PRINT 101 7 NN 
PRINT 100, (TT(l) 7 1=1,NN),(EE(l),I=l,NN) 
READ 100, xx,vv,zz,T1,T2 
PRINT 100, XX,YY,ZZ,T1,T2 

1 READ 101, N 
PRINT 101 7 N 
Nl=N+1 
N2=N+2 
N3=N+3 
NMl=N-1 

C EVALUATION OF THE GEOMETRIC FACTORS 
C FOR THE PERPENDICULAR FORM 

R=N 
H=XX/R 
X=O.O 
Y=YY 
Z=ZZ 
DO 20 I=l,N 
X=X+H 

C EQUATION OF THE GEOMETRIC FACTOR FOR THE PERPENDICULAR RECTANGLES 
C WITH A COMMON EDGE 

Cl-X**2 
C2=Y,_-..:;;z 
C3=Z::<>:C2 
CC1=Cl+C2+C3 
CC2=Cl+C2 
CC3=C2+C3 
CC4=Cl+C3 
CSR-SQRTF(CC3) 
FCl=X*Y*ATANFCX/Y) 
FC2=X*Z*ATANF(X/Z) 
FC3=-(X*CSR*ATANFCX7CSR)) 
FC4=-CC1*LOGFCCCl*Cl/CCC2*CC4)))/4.0 
FC5=CC2*LOGFCCCl*C2/(CC2*CC3)))/4.0 
FC6-CC3*LOGFCCCl*C3/(CC3*CC4)))/4.0 

20 FAALCl)=CFCl+FC2+FC3+FC4+FC5+FC6)/PI 



GA(1,2)=(FAAL(2)-2.0*FAAL(l))*4.0 
IF CN-2) 26,26,24 

24 DO 25 I=3,N 
25 GA ( 1 ,I)= ( FAAL( I )-2.0*FAAL ( I-1) +FAAL ( I-2)) *4.0 
26 Y=H 

DO 40 I-l,N 
X=YY 
Z=ZZ 
DO 30 K-1,2 
C 1 =X,;,,;, 2 
C2=Y':":'2 
C3-Z>:<>:'2 
CC1=Cl+C2+C3 
CC2=Cl+C2 
CC3-C2+C3 
CC4=C 1.+ C3 
CSR=SQRTF(CC3) 
FCl=X*Y*ATANF(X/Y) 
FC2=X*Z*ATANF(X/Z) 
FC3=-(X*CSR*ATANF(X/CSRJ) 
FC4=-(C1*LOGF(CC1*C1/(CC2*CC4)))/4.0 
FC5=(C2*LOGF(CC1*C2/(CC2*CC3)))/4.0 
FC6=CC3*LOGFCCCl*C3/(CC3*CC4)))/4.0 
FABL(K)-(FCl+FC2+FC3+FC4+FC5+FC6)/PI 
X=ZZ 

30 Z=YY 
FBBL(I )=FABL( l}+FABL(2) 

40 Y=Y+H 
GAAL(1,N1J=FBBL(l)*2.0 
DO 45 I=2,N 

45 GAAL(l,Nl)=(FBBL(I)-FBBL(l-,1))*2•0 
C FOR THE PARALLEL FORM 

X=H 
DO 60 I=1,N 
Y=YY 
Z-ZZ 
DO 50 K=l 7 2 
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C EQUATION OF THE GEOMETRIC FACTOR FOR THE PARALLEL AND OPPOSED 
C RECTANGLES 

R l=X/Z 
R2=Y/Z 
C l=R 1>:<>:<2 
C2=R2*"'"'2 
C3=l.O+Cl 
C4=l.O+C2 
CCl=LOGF((C3*C4)/(C2+C3)) 



CC2=SQRTF(C3) 
CC3=SQRTF(C4) 
F D 1 =CC 1 I ( R 1 >:•R 2) 
FD2=-C2.0*ATANFCR2))/Rl 
FD3=-(2.0*ATANFCR1))/R2 

----F'[f4= ( 2 .o:o:•CC2*ATANF ( R2/CC2)) /R l 
FD5=C2.0*CC3*ATANF(R1/CC3))/R2 
FBCLCK)=(FD1+FD2+FD3+FD4+FD5l*X*Y/PI 
Y=ZZ 

50 Z=YY 
FCCLCI>=FBCLC1)+FBCLC2) 

60 X=X+H 
GB(1 7 2)=FCCL(2)-2.0*FCCL(l) 
IF CN-2) 66 7 66 7 64 

64 DO 65 l-3,N 
65 GBC1 7 Il=FCCLC1)-2.0*FCCLCI-l)+FCCLCI-2) 
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C EVALUATION OF THE GEOMETRIC FACTORS AND THE CONFIGURATION FACTORS 
C BETWEEN ANY TWO SUBDIVISIONS 

66 X=ZZ 
Y=YY 
Z=XX 
R1=X/Z 
R2=Y /Z 
C1=R1**2 
C2=R2*>:•2 
C3=1.0+Cl 
C4=l.O+C2 
CCl=LOGF((C3*C4)/(C2+C3)) 
CC2=SQRTF(C3) 
CC3=SQRTF(C4) 
FD1=CC1/(R1>:<R2) 
FD2=-(2.0*ATANFCR2))/R1 
FD3=-(2.0*ATANFCR1))/R2 
FD4={2.0*CC2*ATANFCR2/CC2))/Rl 
FD5=(2.0*CC3*ATANFCR1/CC3))/R2 
GCN1 7 N2)=CFDl+FD2+FD3+FD4+FD5l*X*Y/PI 
AREA=2.0*H*(YY+ZZ) 
GPERP=4.0*CFAAL(Nl-FAAL(N-l)-FAAL(1)) 
GPARA=FCCL(N)-FCCLCN-ll-FCCL(1) 
GPEND=GAAL(l,N1l+GAAL(N,Nl) 
F(1 7 ll=1.0-CGPERP+GPARA+GPEND)/AREA 
G ( 1 , 1) = F ( 1 , l) * AR E A 
ENDAR=YY*ZZ 
DO 70 I=2,N 

7 6 G ( 1 ,I l-G A ( 1 , I ) +G B ( 1 , I ) 
DO 75 I=l 7 N 



75 G (I, 1) =G ( 1, I) 
D 0 9 0 f·i = 2 , N 
K=N 

80 G(M 7 K)=G(M-1 7 K-1) 
K=K-1 
IF (K-1) 90,90 7 80 

90 CONTINUE 
DO 95 I=1 7 N 
DO 95 J-1 7 N 

95 F(l 7 J)=G(I,J)/AREA 
F(Nl,NU=O.O 
F(N2 7 N2)-0.0 
F(N1,N2l=G(N1,N2)/ENDAR 
F(N2 7 Nll=F(N1 7 N2) 
DO 96 I-1 7 N 

96 F(Nl,l)=GAAL(!,N1)/ENDAR 
K=N 
DO 97 1-1,N 
F (N2 7 K)=F (N1,I) 

97 I<.=K-1 
DO 98 1-1 7 N 

98 F(I,N1l=GAAL(!,N1)/AREA 
K=N 
DO 99 I=1 7 N 
F(I 7 N2)=F(K,Nl) 

99 K=K-1 
PRINT 102 
PRINT 100, ((F(l,J),J=1 7 N2) 7 I=1,N2) 

C EVALUATION OF THE MEAN TEMPERATURES ·OF THE SUBDIVISIONS 
T(1)=Tl-CT1-T2)/(2.0*R) 
DO 150 I=1 7 NM1 

150 T(I+1)=T(I)-(T1-T2)/R 
T(Nl)-T1 
T(N2)=T2 
PRINT 103 
PRINT 100, (T(I),l-1 7 N2) 
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C EVALUATION OF THE MEAN EMISSIVITIES OF THE SUBDISIONS BY MEANS OF 
C LAGRANGIAN INTERPOLATION FORMULA 

DO 170 J=1,N2 
FEM=O.O 
DO. 165 L=1,NN 
FNU=1.0 
FN0=1.0 
DO 164 I =l. NN 
IF (1-L) 161 7 164,161 

161 FNU=FNU*(T(J)-TT(I)) 



FNO=FNO*CTT(L)-TT(I)) 
164 CONTINUE 
165 FEM=FEM+FNU/FNO*EE(L) 
170 H~l(J)=FEM 

___ -'oP. R I NT ~ 0,_'--'-t ---
p R I N T 1 0 0 , ( E fvl I ( J ) , J - 1 , N 2 ) 

C EVALUATION OF THE MEAN REFLECTIVITIES OF THE SUBDIVISIONS BY MEANS 
C KIRCHHOF S IDENTITY 

DO 175 I-1 7 N2 
1 7 5 REF ( I ) = 1 • 0 -E tvl I ( I ) 

PRINT 105 
PRINT 100 7 (REF(I),I=1,N2) 
DO 199 J=l 7 N2 
PRINT 106, J 

C SOLUTION OF THE ABSORPTION FACTORS BY MEANS OF GAUSS-JORDAN 
C REDUCTION METHOD 

DO 180 I=1,N2 
180 D(I,I)-F(l,l)*REF(l)-1.0 

DO 182 I=l,N2 
DO 182 1'1=1 7 N2 
IF (1-M) 181,182,181 

181 D(I,M)=F(I,M)*REF(M) 
182 CONTINUE 

DO 153 I-1,N2 
183 D(I-,N3)=-(F(I,J))>:<Efv!I(J) 

CALL GAUJOR (D,N2,N3,14,16) 
PRINT 107 
PRINT 100, (D(l,N3),1=1,N2) 

C EVALUATION OF THE ABSORPTION ENERGY FROM SURFACE I TO SURFACE J 
DO 185 K-1,N 

185 QASUB(K)=D(K,N3)*STBOC*T(K)**4*EMI(K)*AREA 
DO 186 K=Nl,N2 . 

186 QASUB(K)=D(K,N3)*STBOC*T(K)**4*EMI(K)*ENDAR 
PRINT 108 
PRINT 100, (QASUB( I), I=1 7 N2) 

C EVALUATION OF THE TOTAL ABSORPTION ENERGY OF SURFACE J 
QABSO=O.O 
DO 187 I=1,N2 . 

187 QABSO-QABSO+QASUB(I) 
PRINT 109 
PRINT 100, QABSO 

c EVALUATION oF THE RADIANT HEAT TRANSFER FROM sURFACE J 
IF (J-Nll 191,192,192 

191 Q(J)=STBOC*T(J)**4*AREA*EMI(J)-QABSO 
GO 0 99 

192 Q(J)=STBOC*T(J)**4*ENDAR*EMI(J)-QABSO 
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·- ---- ·----------

199 CONTINUE 
PR HJT 110 
PRINT 100, (Q(J),J-1 7 N2) 

C EVALUATION OF THE TOTAL HEAT TRANSFER OF THE SOURCE 
QLOSS=O.O 
DO 200 IJK-1,N2 

200 QLOSS=QLOSS+Q(IJK) 
PRINT 111 
PRINT 100, QLOSS 
PRINT 112. 
PRINT 100, Q(N1),Q(N2) 
GO TO 1 

100 FORMAT (4F18.8) 
101 FORMAT (4118) 
102 FORMAT (10X46HCONFIGURATION FACTORS ((F(l,J),J=1 7 N2),I=1,N2)) 
103 FORMAT (10X42HMEAN TEMPERATURES (T(l),I=1,N2) IN RANKINE) 
104 FORMAT (10X28HMEAN EMISSIVITY OF EACH PART) 
105 FORMAT C10X25HREFLECTIVITY OF EACH PART) 
106 FORMAT (10X2HJ= 7 I2) 
107 FORMAT (10X34HABSORPTION FACTORS (B(J,J),I=l,N2)) 
lOB FORMAT (l0X39HABSORPTION ENERGY FROM EACH PART BTU/HR) 
109 FORMAT ClOX4lHTOTAL ENERGY ABSORBED BY EACH PART BTU/HR) 
110 FORMAT (10X45HENERGY LOSS OF EACH PART (Q(J),J=1,N2 BTU/HR)) 
111 FORMAT (10X24HTOTAL ENERGY LOSS BTU/HR) 
112 FORMAT (10X45HENERGY LOSS OF THE SOURCE AND THE SINK BTU/HR) 

END 
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DETAILED DESCRIPTION OF PROGRAl\: II 

Geometric factors in perpendicular form: 

Statement 1 + 10 lines 

to ct~tement 20 is the 

ev2luation of the geometric 

factors from 1 to 2 as 

sho~n. These values are 

obtained by using Eq.(l-7) with 

the increment H, and (FAAL(I), 

I=~N) is the program variable. 

Statement 20 ;-1 line 

is the evaluation of the geo

metric factor from 1 to 2 

as shown. Here surface 1 

and surface 2 are the rings 

of width H. This value is 

eiven by GA(~,2) in the 

Fig. 2-34 Geometric 
:factor notation. 

Fig. 2-35 Geometric 
factor notation. 

program. It should be noted that.this is only in the 

perpendicular form, the complete geometric factor for ring 

1 to rine 2 would include the :factor for parallel geometry. 

Statement 24 to state-

ment 25 is the ev~luation 

of the geometric :factors 

from 1 to I as shown. 

Here surface 1 and surface 

I are the rings of width H, 

i' ' 

Fig. 2-36 Geometric 
·factor notation. 



6? 

I denotes the ring nu~ber as 3, 4, ••• , N. These values 

r:.re eiven by (G(l,I),I==3,N) in the proeram. Azain, it 

chould be noted that these values are only for the 

perpendicular form. 

Statement 26 to state-

mcnt 40 is the evaluation of 

the geometric factors from 1 

to 2 as shown. Surface 2 

is the end plate AN+l and 

surface 1 is the half ring 

of changing width from H in 

Fig. 2-37 Geometric 
factor notation. 

increments of H to XX. These values are given by 

( FB:BI. (I) , I=l, N) in the program. 

Statement 40 + 1 line 

is the evaluation of the geo

metric factor from 1 to Nl 

as shown. Surface 1 is the 

ring of width H and surface 

Nl is the end plate AN+l. 

This value is given by 

GAAL( 1 ,Nl) in the program. 

Statement 40 + 2 lines 

to statement 45 is the 

evaluation of the geometric 

factors from I to Nl as 

shown. Here surface Nl is 

the end plate AN~l and 

Fig. 2-38 Geometric 

fqctor notation. 

I 
-- _J 

2-39 Geometric 
factor notation. 



surface I is the ring of width I d€notes the ring 

nurr.ber as 2, 3, ••• , N. These values are 6iven by 

(GAAL(I,Nl),I::::2,N) in the program. 

Geometric fnctors i~ parallel form: 

Statement 45+ 1 line 

to statement 60 is the 

ev~luation of the geometric 

f8ctors from 1 to 2 as 

shO'Irm. This is evaluated by 

using Eq.(l-8). Here surface 

1 is the half ring of changing 

Fig. 2-40 Geo~etric 

factor notation. 

width from H to XX with the increment H and surface 

2 is the other half ring corresponding to surface 1. 
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These values are given by ( FCCL( I), T==l ,N) in the program. 

It should be noted that these values are only for the 

parallel form, the complete geometric factor for surface 1 

to surface 2 would include the factor for the perpendicu~ar 

geometry. 

Statement 60 + 1 line 

is the evaluation of the geo

metric factor from 1 to 2 

as shown. Where surface 1 

and surface 2 are rings of 

width H. It, also, should 

be noted that this is only in 

: ! . : E--~--~--.. : 
' ' ; : -··--
!:1; -· .,, __ 
I' 0 

Fig. 2-41 Geooetric 
factor notation. 



the parallel £orm. This value is given by GB(l,2) in tte 

procram. 

Staterr:ent 64 to state-

rr.ent 65 is the evaluation of 

the eeometric factor from 1 

to I as shovm. 'Where surface 

1 and surface I are rings 

of width H, and I denotes 

the rine nu~ber as 3, ••• , N. 

Fig. 2-42 Geometric 
factor notation. 

These v,qlues are eiven by (GB(l,I),I=3,1n in the program. 

Aeain, it should be noted that these values are only for the 

parallel form. 

Statement 66 to state-

ment 66 + 17 lines is the 

evaluation of the geometric 

factor from Nl to N2 as 

sho-w·n. \·/here surface 1\1 and 

I, 
1 1 I 

I 1:: I 
t ~i\ I 

\i!U- ----- _ l I:.-·/ 
'i) 

/ 

surface N2 are the end plates ·Fig. 2-43 Geometric 

ANl and AN 2 ' respectively. 
factor notation. 

. . b G ( 1\Til , 'l\T 2) . t h This value 1s g1ven Y • J.'; 1n e program. 

Statement 66 + 18 lines is the evaluation of the 

surface area of each subdivision, i.e., the area of the ring 

of width H. This value is given by AREA in the program. 

Statement 66 + 19 lines is the evaluation of the 

geometric factor from 1 to 2 as shown.in Fig.(2-44). 

\·/here surface 1 is the ring of \oiidth H and surface 2 

is the ring of width (XX- H). This value is given by 
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GPERP in the proar~rr· .. It h 1" · t d th t t · _ ~ - s ou a oe no · c a· h1. s is only 

in the perpendicular form. 

Str::.tement 6E +20 lines 

is the evaluation of the geo-

metric factor from 1 to 2 

as shovm. However, this is 

only in the parallel form. 

~his value is given by 'GPARA 

in the program. 

Fig. 2-44 Geometric 
factor notation. 

Complete geo~etric factors and configuration factors: 

In the following, 1, 2, ••• , K, Nl, N2 will denote 

the subdivisions as shown in Fig. 2-32 unless other\vi se 
.. 

specified. 

Statement 66 + 21 lines is the evaluation of the gco-

metric factor from ring 1 to both end plates. This value 

is given by GPID\D ·in the program. 

st~tement 66+22 lines to statement 66+23 lines is 

the evaluation of the complete configuration factor F11 and 

the complete geometric factor G11 of the ring of width H. 

These values are given by F(l,l) and G(l,l), respectively. 

Statement 66 + 25 lines 

to statement 70 is the 

evaluation of the geometric 

factors from 1 to I as 

shown. Here surface 1 and 

surface I are rings of width 

Fig •. 2-45 Geometric 
factor notation. 
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E, and I der.otes the ring number as 2, 3, ••• , N. These 

Vc~.lues Rre for complete geometry and given by (G(l,I),I=2,K) 

in the proc;rrun. 

Statement 70 +-1 line to statement 90 is the evaluo.-

tion of the complete geometric :factors Gij where i = 1, 2, 

... ' N and j = 1' 2, . . . , N by using Eq.(2-6) .. These 

V8lues are given by (G(I,l),I~l,N) and G ( rv: ,K) where 

r.: = 2, 3, ••• , N and K:::::::: N, 11-1, ••• , 2 in the program. 

Statement 90-t-1 line to statement 99 is the evaluR-

tion of the complete corJ:figuration factors F .. , vrhere 
l.J 

i = 1, 

2, ••• , 1'~+2 and j=l, 2, ••• , N+2. Thesevalues are given 

by ((F(I,J),J=l,N2),I=l,N2) in the program. 

The program is completed by the use of Eq.(2-l), Eq.(2-

2), Eq.(2-4) and Eq.(2-5). 
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The other symbols used in the program are defined as 

:follov:s: 

Nl , l~ 2, !\3, Nlf:l. 

F·ixed point variables defined in the program. 

PABL(K) The geometric factor :for the perpendicular :form 

from any subdivided section of the wall o:f the box 

in XX directior: to the·cnd plate. 

FECL(K) The geometric :factors for the two sets of the 

opposed, parallel rectangles. 

All other symbols involved have the same meanings as 

defined previously •. 

An example is given in the following. 

Fat erial: Al, XX=lO ft.' YY= ZZ =1 ft.' 

T1 == 560 oR T2= 530 0 
(A) '· 

R. 

oR, T.-.= 570 0 
(B) T1 == 800 R •. 

c. 

(C) T1 ~ 1000 oR, T2 := 600 oR. 

(D) T1 = 2000 oR, T 2 =1000 0 R. 

The emissivities corrcspoLding to the temperatures are given 

in CASE A. The results are tabulated ru•d the curves are 

plotted on the following pa{.,;es. 



6 ,:; 
"--· 

1:·AEI.E II 

The enerey loss of the source and sink of Case B 

(A) T1 = ~60 °R, T2= 530 oR. 

r: 0 source 0 sink 0total (Btu/hr) 

2 0.99 -0.87 .00027 

3 0.84 -0.74 -.00085 

4 0.75 -0.66 .00001 

5 0.69 -0.61 .00039 

6 0.65 -0.57 .00141 

7 0.62 -0.55 -.00084 

8 0.60 -0.53 .00013 

9 0.59 -0.52 .00079 

10 0.58 -0.51 -.00054 

(B) 
0 T1 = 800 R, T2= 570 oR. 

:r 0 source Qsink QtotFt1 (Btu/hr) 

2 22.56 -11.71 .00029 

3 18.90 - 9.72 -.00183 

4 16.79 - 8.52 .00072 

5 15.45 - 7.77 .00037 

6 14.55 - 7.26 .00391 

7 13.92 - 6.91 -.00201 

8 13.47 - 6.66 .00065 

9 13.13 - 6.48 .00212 

10 12.88 - 6. 34 -.00131 
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TABLE II (Continued) 

(c) T = 1000 OR T - 600 0 
1 , 2- R. 

}~ Qsource Qcource Qtota1 (Btu/hr) 

2 73.87 -30.11 .00084 

3 61.93 -24.64 -.00470 

4 55.07 -21.39 .00076 

1,::-
.) 50.72 -19.35 .00325 

6 47.79 -18.00 .00706 

7 45.75 -17.08 -.00453 

8 44.27 -16.42 .00060 

9 43.17 -15.95 .00351 

10 42.33 -15.59 -.00198 

(D) T1 = 2000 °R, 0 T2 = 1000 R. · 

N Qsource 0 sink 0tota1 (Btu/hr) 

2 2089.06 -546.32 .01845 

3 1695.51 - 4 27.58 -.06282 

4 1476.91 -360.92 .01346 

5 1341.74 -320.84 .04292 

6 1252.43 -295.25 .08579 

7 1190.62 -278.09 -.04197 

8 1146.33 -266.11 -.00102 

9 1113.67 -257.49 .04862 

10 1088.99 -251.07 -.02725 



PLATE 3-A 

Energy loss of the source section of the box 
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PLATE 3-B 

Energy loss of the source section of the box 
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PLATE 3-C 

Energy loss of the source section of the box 
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PLATE 3-D 

Energy loss of the source section of the box 
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PLATE 4-A 

Energy loss o:f the sink section o:f the box 
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PL.:.TE 4-B 

Energy loss of the sink section of the box 
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Energy loss of the sink section of the box 
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PLA'IE 4-D 

Enercy loss of the sin}~ section o:f the box 
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The plot of the results of the source section in the 

first case for high temperatures shows that the elope 

incre8~Sef3 2.nd then decreases to be_come r:early horizontal 

as the number of subdivisions increases. This is a result 

of the sumcation of the product of the mean temperature to 

the fourth power and the subdivided' section area, since the 

surr:mation o:f mean terr.perature to the fourth power ir.creases 

with the r..urr.oer of subdivisions, '1.-Jhile the are?. of each 

subdivision decreases. If the number of the subdivisions 

is large enough, the results approach a constfu~t value. 

The results of the sink section in the first case and 

the results of the source s.nd the sink in the second case 

indicate that these both approach a constant value as the 

number of subdivisions increases. The curves keep on 

increasing or decreasing because the areas and the tempera

tures are kept constant at these sections. 

The computer programs were ched::ed to be correct by 

p-vtting XX= YY = ZZ = 10 ft., T,!/= 1 ft. and T1 = T 2= T 3=1000°R, 

for the first program. The results show that c~1 == Q . k' sl.n 

Q2 = QlO, • • ·, Qi = Q(!,-i+2 ), '~·here 2 ~ i::. 10 and 2 < r[ ~ 10. 

For the second program, XX= 11 ft., YY= ZZ =10 ft., T1 = T 2 

1000°R and rl·T+l = r1~-r 2 == 0. The results show that the er;ergy 

loss of the duct like section of the box is ap~roxi~ately 

eo .. ual to the energy loss of the duct, Q ( ) cvct like II == 

64448 Btu/hr, Qduct= 64446 :Btu/hr, for N = 10. 
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·:'he ~irst proer:::.rn w1?.s run for a cor .. stant terr!)erature, 

(C0°R, in ttc source section and the sink section. The 

d.i:~.cr.sim:s of the ct~ct -v;ere XX= YY= ZZ =10 ft., i'l =-1 ft •• 

~tc rrsults for tte energy loss of the source nnd the sink 

·,·:t:.:re G24E.4 Btu/hr Q..nd 643.7 Btu/hr for K = 2, 

(237 .9 ~~tu/r.r o..nC. 643.7 Btu/hr for N ==10 respectively. 

Tr.c r..:::::.xil.;t:r:: errors v:ere .17% and .003% respectively. The 

results for T1 = T~= 2000°R, T3 = 600°R were 1398337.2 Btu/hr 

nnd -11682.5 Btu/hr for I\= 2, and 1394496.3 Btu/hr and 

-11634.0 J3tu/hr \dth the maximum errors .28% and 

.417 respectively. 

The program is limited for N varying from N == 2 to 

;-: = 10 because of the programr.ing and the capacity of the 

com~uter. If a larger number of the subdivisions is 

required, the program can be used by separating it into 

several parts .and rearranging the DIIV:ENSION statement and 

the INPUT data. 
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