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ABSTRACT 

 A lightweight castable alloy was sought to reduce the MIL-PRF-32269 class II 

cast steel perforated armor’s weight with the requirement that the material had to be 

manufactured utilizing existing foundry technology and without incurring large alloy cost 

increases to meet property requirements.  Literature on wrought age hardenable Fe-Mn-

Al-C alloys suggested this alloy system could achieve weight reduction through high 

aluminum concentrations with the highest reported strengths exceeding 2 GPa for a Fe-

30Mn-9Al-0.9C composition.  Even though ballistic testing had not been conducted on 

this system, high strain rate data of wrought alloys showed excellent work hardenability; 

greater than existing ballistic metals.  Cast material property information was severely 

limited, thus, a systematic approach was employed to develop casting and processing 

techniques and assess related structure property relationships of a nominal silicon 

modified Fe-30Mn-9Al-0.9C-0.5Mo alloy for ballistic use. 

 Castability was addressed first as this information was crucial for making test 

coupons and assisting foundries with production of MIL-PRF-32269 ballistic test plates.  

Four silicon concentrations were investigated for fluidity, microstructure, liquidus, 

solidus and dendrite coherency point.  Silicon was added because it is known to increase 

fluidity of other ferrous alloys and has also been shown to eliminate a brittle β-Mn phase 

in wrought Fe-Mn-Al-C alloys.   

 Of the four silicon modified fluidity compositions, two were selected for heat 

treat property evaluation on the basis of microstructure.  Hardness, strength, and ductility 

were measured (hardness is the only MIL-PRF-32269 measured property).  The alloy 

with the highest ductility was selected for high strain rate evaluation.  The strain rate 

testing results were the final means to lock in the alloy composition and heat treatment 

for solid plate ballistic testing.  

 While conducting V50 ballistic testing, phosphorus content was correlated to 

ballistic impact energy.  Further testing was conducted to examine phosphorus, quench 

sensitivity, and aging Charpy V-Notch effects. 

 The culmination of this thesis work resulted with positive ballistic threat testing 

revealing the alloy investigated here meets the Army’s MIL-PRF-32269 ballistic 

requirements and reduces P900 weight by 13%. 
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1. INTRODUCTION 

1.1. PROJECT PURPOSE AND OBJECTIVE 

The objective of this project was to reduce the weight of class II perforated 

homogenous armor in accordance with the military performance specification MIL-PRF-

322691 design criteria with the objective of maintaining or improving the armor class’ 

ballistic performance.  The goal was to develop an alloy utilizing existing infrastructure 

and manufacturing means so as to minimize potential cost increases over current 

solutions due to alloy selection.  Regarding manufacturing, the perforated armor’s 

complex geometric design preferentially favors a cast manufacturing process over a 

higher cost and greater time consuming wrought alloy machining process.   

Class II cast perforated homogenous armor, or P9002, was historically designed to 

counter Soviet small arms’ threats.  This type of armor has found recent application 

against current threats, and as such, is in demand and under scrutiny for weight reduction 

as the MIL-PRF-32269 requirements dictated steel chemistries only.  Suitable alloy 

replacements (magnesium, aluminum, titanium, or cast iron alloys) required to achieve 

equivalent performance and reduce weight have not been found.  As such, the added 

weight of this and other systems to current platforms has taxed and limited their 

maneuverability, mobility, and lethality. 

 To achieve the objective, research was focused on developing ferrous alloy 

alternatives.   Alloy exploration led to investigation of non-traditional second generation 

Fe-Mn-Al-C wrought alloys3 being examined by the automotive industry that contains 20 

to 30% manganese, 5 to 12% aluminum, and 0.3 to 1.2% carbon.    The weight reduction 

and comparable strengths to cast steel alloys4 held promise, but an extensive literature 



2 
 

review (see Paper 1: A Literature Review of Age Hardening Fe-Mn-Al-C Alloys) showed 

little or no knowledge of cast Fe-Mn-Al-C alloy properties.  Therefore, a set of linearly 

related tests were designed to evaluate the material; the premise being that 

manufacturability (and related alloying during melting and pouring) fixed the heat 

treatment boundaries limiting the usable window of structure property relationships.          

1.2 Fe-Mn-Al-C ALLOY COMPOSITION SELECTION 
 
        Alloy consideration was restricted to systems that could accommodate open air or 

limited atmosphere control induction melting and heat treatment, matching common 

industrial foundry and heat treat capability that would allow rapid technology transition 

upon successful completion of casting alloy development and ballistic testing.   Such 

resourced facilities were deemed the most likely target audience due to existing P900 

production at induction furnace equipped facilities5.   Further restriction was placed to 

obtain a light weight steel as steel has shown to be the only alloy capable of meeting 

quasi-static and ballistic acceptance requirements6.  The only mechanical property of the 

military performance specification MIL-PRF-32269 for perforated homogeneous armor 

was the hardness tolerance range of 302 to 350 BHN for class II cast steel armor1.   

 A 2006 investigation into a wrought Fe-26Mn-11Al-1.15C alloy by Frommeyer 

and Brux showed promising potential to meet both the MIL-PRF-32269 and self imposed 

manufacturing boundary conditions1,3. This nontraditional three phase or TRIPLEX 

ferrous alloy showed outstanding density reduction for increasing aluminum content, was 

produced by induction melting under argon cover, and attained yield and tensile strengths 

greater than 1,000 MPa in an aged condition.  Literature investigations revealed that the 

Fe-Mn-Al-C system is capable of tensile strength exceeding 2,000 MPa7 for an overall 
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nominal chemistry of Fe-30Mn-9Al-0.9C.  High strain rate testing by Frommeyer and 

Brux3 showed that as strength increased with strain rate, ductility exceeded 30% even at 

1000 s-1, indicating that ballistic evaluation may be favorable.  All of the characteristics 

sought to meet the project goals appeared to be contained within the Fe-Mn-Al-C system.  

Replicating the wrought Fe-Mn-Al-C alloy in cast form did present one significant 

restriction; no means other than mechanical processing was known for producing an 

equiaxed grain structure.  The focus, then, was on achieving wrought properties without 

replicating the wrought microstructure for ballistic testing.   

 In addition to its high strength, the Fe-30Mn-9Al-0.9C composition showed that 

the matrix phase constitution could be reduced to a fully austenitic structure when 

solution treated8, maximizing the austenite’s aged strength contribution to mechanical 

properties and confining the microstructure constitution to two phase austenite plus κ-

carbide.  However, aging produced an extremely brittle and deleterious β-manganese 

phase in addition to κ-carbide8.  Silicon additions were shown to prevent β-manganese 

precipitation9.  The last alloy consideration was molybdenum since the effect of 

phosphorus in Fe-Mn-Al-C systems had not been reported and the assumption was that 

phosphorus could be countered with a molybdenum addition to form a stable phase and 

minimize fracture toughness phosphorus effects as has been shown in traditional steel 

alloys10.    Thus the composition for initial investigation was established as a silicon 

modified Fe-30Mn-9Al-XSi-0.9C-0.5Mo alloy. 

1.3 ALLOY DEVELOPMENT METHODOLOGY 

 Executing under the premise that the materials’ aging kinetics and structure property 

relationships are related back to foundry practice, the first experiment began with a 
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fundamental foundry study of the alloy’s castability.    An embedded study examined cast 

and solution treated microstructure; the combination of the two studies isolated alloy and 

solution treatment boundary conditions (see Paper 2: The Effect of Silicon Content on the 

Fluidity and Microstructure of Fe-Mn-Al-C Alloys).  This preceded mold and casting 

production for aging and mechanical test specimens necessary for structure property 

relationship investigation (see Paper 3: Tensile, High Strain Rate Compression and 

Microstructural Evaluation of Lightweight Age Hardenable Cast Fe-30Mn-9Al-XSi-

0.9C-0.5Mo Steel).  The structure property investigation established down-select criteria 

for final ballistic testing and failure examination (see Paper 4: Advancements in Steel for 

Weight Reduction for Weight Reduction of P900 Armor Plate).  Ballistic testing showed 

correlation to phosphorus content and impact energy of aged material forcing a final 

investigation conducted to relate these items and characterize quench sensitivity (see 

Paper 5: Phosphorus and Thermal Processing Effects on Charpy V-Notch Impact 

Toughness of Lightweight Fe-30Mn-9Al-1Si-0.9C-0.5Mo Alloy Steel). 

 1.3.1. Castability Evaluation. Fluidity spirals were produced for evaluation and 

comparison of silicon modified nominal Fe-30Mn-9Al-XSi-0.9C-0.5Mo alloys versus 

low alloy steel, representative of current P900 alloys1.   Thermocouple equipped molds 

provided liquidus and solidus information to normalize all data onto a single superheat 

figure for analysis.  From each of the silicon containing alloy spirals, samples were 

prepared for optical analysis in the as cast condition and solution treated condition. The 

combined fluidity and solution treated analysis drove silicon content restrictions for 

mechanical test specimen production and provided modeling parameters to feed casting 

software for test specimen and P900 mold designs and analysis necessary to transition the 
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technology to production.  Aston Met Services measured chemical content by inductive 

coupled plasma spectrometry and wavelength dispersive spectrometry.  This method was 

employed throughout due to unavailable arc spectrometer standards for this system. 

1.3.2. Aging Kinetics, Quasi-Static and Dynamic Physical Properties. Age 

hardening curves were established for two silicon containing Fe-Mn-Al-C alloys (1% and 

1.4%).  An aging temperature was targeted below 550°C to avoid grain boundary 

precipitation as shown by Acselrad et al.11  Solution treated and two selected age 

hardening conditions (capable of attaining the MIL-PRF-32269 302-350 BHN 

requirement) were selected to measure tensile properties.   

Hardness measurements were conducted according to ASTM E18 by Rockwell B 

and Rockwell C measurements and converted to Brinell 3,000 kg load utilizing ASTM 

E140 conversion Table 1 and Table 2.  This method was employed throughout all 

experiments requiring Rockwell measurements.  Rockwell measurements were 

selectively utilized due to material size constraints preventing multiple Brinell 

indentations on a single specimen for statistical analysis.  An empirical check comparing 

measured Brinell versus converted Rockwell data both measured on a large plate found 

that the converted data was in agreement for this system with an error of ± 4% between 

measured and converted hardness.   

Strength (with a minimum ductility of 10% elongation) and maximum energy 

absorption tensile characteristics were used as the alloy and heat treat down-select criteria 

for high strain rate compression testing.   

Split Hopkinson Bar compression testing provided the final evaluation restrictions 

for material and heat treat criteria prior to ballistic testing.  Two conditions (solution 
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treated and solution treated and aged 1% silicon containing alloy) were tested to 

determine which condition achieved the maximum tensile strength.   It was found the age 

hardened condition attained higher strain rate dependent compressive strength, greater 

than rolled homogeneous armor (a steel used as a class 1 perforated armor). 

1.3.3. Ballistic Property Characterization. Two nominal age hardened 1% 

silicon containing cast alloys were tested with 0.30 caliber armor piercing and 0.50 

caliber fragmentation simulation projectiles.  Brinell hardness was measured by 3,000 kg 

load according to ASTM E10.  The 0.30 caliber projectile test was specified to make an 

equivalent areal density comparison to the acceptance criteria of higher density class II 

steel MIL-PRF-32269 requirements, and the 0.50 caliber test was executed to correlate 

phosphorus effects on ballistic plug formation to non-ballistic dynamic Charpy V-notch 

fracture toughness testing.     

1.3.4. Fracture Toughness Analysis. Fracture toughness and 0.50 caliber V50 

testing showed degraded performance with increased phosphorus content, but 

consideration for initial testing was not given to cooling rate or aging temperature and 

time parameters.  Those additional concerns, along with phosphorus content, were 

addressed in the last experiment and analysis.  Material was provided by multiple sources 

and heat treated with varying cooling rates and aging parameters to quantify the effects of 

the previously mentioned variables and combine the parameters into a single constitutive 

model.  Hardness measurements were conducted according to ASTM E18 utilizing 

Rockwell C and Rockwell B measurements and converted to Brinell 3,000 kg load 

utilizing ASTM E140 Table 1 and Table 2.   
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      This review of Fe-Mn-Al-C alloys reports literature published between 1933 and 

2008 on age hardenable Fe-Mn-Al-C alloys with chemistries in the range of 18-

28wt.%Mn, 9-12wt.%Al, and 0.7-1.2wt.%C.  Fe-Mn-Al-C alloys possess low density 

(6.5 to 7.2 g/cm3), tensile strengths from 600 to 2,000 MPa, elongation to failure as great 

as 70%, and they can exhibit high-energy absorption, e.g. specific energy absorption of 

0.43 J/mm3 at strain rates of 102 s-1.  Solution treatment of FeMnAl alloys above 900°C 

produces either a fully austenitic or a duplex ferrite and austenite microstructure.  Upon 

age hardening a coherent (Fe,Mn)3AlC carbide, known as к-carbide, with a perovskite 

crystal structure precipitates in the austenite and classic age hardening behavior is 

observed.  Phase equilibria are reviewed as a function of alloy composition and 

temperature for solution treated and age hardened alloys.  Fatigue, fracture, and 

environmentally induced embrittlement phenomena are also reviewed.  The combination 

of lower density, extensive formability, the ability to age harden, and to absorb energy in 

a crash makes the Fe-Mn-Al-C alloys a potential advanced high strength steel candidate 

for the transportation industry. These steels may also be applied as a light-weight casting 

alloy for military armor. Lightweight steel alloys are sought to reduce the areal density of 

steel materials utilized for MIL-PRF-32269 perforated homogenous steel armor.  

1. INTRODUCTION 

Age hardening Fe-Mn-Al-C alloys typically contain 20 to 30% manganese, 5 to 

12% aluminum, and 0.3 to 1.2% carbon.  Unless otherwise noted, all compositions are 

reported in weight percent.  The Fe-Mn-Al-C alloys evolved from Robert Hadfield’s 

1882 investigations of an Fe -13Mn -1.2C steel composition that had high toughness and 

excellent wear resistance.1  Aging temperatures and times used in many of the subsequent 
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Fe-Mn-Al-C alloy studies appear to be based upon Hadfield’s tempering work, i.e. 550°C 

for 16 hours. In 1943, Dean and Anderson patented several Fe-Mn-Al-based alloys2 

showing that the addition of manganese (20 to 50 %) to Fe-Al alloys improved the 

ductility and in 19453 the addition of 10% chromium to the FeMnAl alloy was patented 

for improved corrosion resistance.  

Ham and Cairns published their findings on Fe-Mn-Al-C alloys in 19584 in 

response to the US Navy’s request to find alternatives to chromium and nickel containing 

austenitic stainless steels.  The historical driving force for the Fe-Mn-Al-C alloy 

development (up to the 1980’s) was the high cost of chromium and nickel in producing 

stainless steel.5,6   High levels of aluminum in these alloys provided corrosion and 

oxidation resistance.4-9 Ham and Cairns4 reported a maximum tensile strength due to 

strain aging of 730 MPa and elongation to failure of 73% for a Fe-34.4Mn-10.2Al-0.76C 

composition.  The amount of cold working and heat treatments used were not specified.   

At sufficiently high aluminum and carbon concentration it was discovered that the 

Fe-Mn-Al-C alloys age hardened.7  Age hardening studies were conducted by Kayak10 

and James7 in 1969.    Both researchers observed similar age hardening at 550 to 600 °C 

with peak hardness values between 345 and 475 Brinell Hardness. Solution treatment 

above 900°C produced either austenitic or duplex microstructures of austenite and ferrite.  

Fe-Mn-Al-C alloys contain at least four phases (austenite, ferrite, к-carbide, and β-Mn) 

after aging between 400 and 900 °C.  The main age hardening constituent is к –carbide, 

which is an E21 perovskite crystal structure with composition (Fe,Mn)3AlC.11  Over aging 

results in the formation of β-Mn.12  
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Recent research has examined Fe-Mn-Al-C alloys for use in automotive body 

frames to reduce weight, but maintain or improve crash worthiness.11  A combination of 

lower density, extensive formability, the ability to age harden, and to absorb energy in a 

crash has identified Fe-Mn-Al-C alloys as potential advanced high strength steel.  

Furthermore, silicon additions to Fe-Mn-Al-C alloys create a light-weight steel alloy with 

casting characteristics similar to ductile iron13 and with improved age hardening 

characteristics.12,14  

2. PHASE CONSTITUTION 

The Fe-Mn-Al-C compositions that produce γ-austenite as the primary phase and 

compositional boundaries for equilibrium with α-ferrite, к-carbide, and β-Mn are 

reviewed.  Most phase investigations combine manganese, aluminum, or carbon variation 

with isothermal heat treatment between 400°C and 1200°C.  Phase identification within 

the Fe-Mn-Al-C system is derived from the early Fe-Mn-Al ternary investigations.  

Koster and Torn in 1933 published some of the earliest phase equilibria work on the Fe-

Mn-Al ternary system.15  These initial Fe-Mn-Al phase diagrams provided the basis for 

Schmatz’ 1959 phase stability study and lead to the discovery of β-manganese formation 

in manganese-rich Fe-Mn-Al-C alloys.9  Schmatz’ work was continued by Krivonogov et 

al.16, Ishida et al.17, Goretskii et al.18, and Acselrad et al.19  Varying chemistry and 

thermal processing of Fe-Mn-Al-C alloys has produced at least five equilibrium phases: 

γ-austenite, α-ferrite, к-carbide, M3C carbide, and β-Mn.  Austenite is the primary 

constituent and forms the continuous matrix.7,10,11,12,16-18,20-25   Ferrite may be present and 

increases in volume fraction with increasing aluminum concentration from 7 to 12%.17,18  

Isothermal holding between 450 and 900 °C leads to the formation of к-carbide and β-
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Mn.7,10,11,12,16-18,20-25  A eutectoid reaction (austenite → ferrite + к-carbide) was reported 

by James.7   

A study by Prodhan and Chakrabarti reported on phase constitution in the as-cast 

and homogenized condition.26  Upon solidification, the dendritic matrix was primary 

austenite with interdendritic ferrite. The austenite contained a complex carbide phase for 

compositions ranging from 5.5 to 9.8% aluminum, 0.27 to 0.91% carbon, and fixed 

concentrations of 30% manganese and 1.5% silicon.  At a fixed manganese content, the 

austenite volume fraction of the as-cast microstructure increased by either increasing the 

carbon concentration from 0.3 to 0.9% or decreasing the aluminum content from 10 to 

5% (see Figure 1(a)). Phase determination was also performed after homogenization at 

1100°C for two hours followed by water quenching.  After homogenization, the percent 

austenite increased from 50 to 100% at the expense of the ferrite for three carbon levels 

of 0.3, 0.6, and 0.9% (see Figure 1(b)).  The three alloys were nearly 100% austenite at 

5% aluminum and maintained a high percentage of austenite up to 8% aluminum.  

Increasing amounts of ferrite were observed for compositions greater than 8% aluminum.  

Goretskii and Gorev investigated forged alloys with a fixed 10% aluminum 

concentration and four manganese levels of 20, 25, 30, and 35 % and carbon ranging 

from 0.4 to 1.4 %.18  Specimens were isothermally held at temperatures of 627, 752, 877, 

1002, and 1127 °C for time periods of 15, 30, 65, 100, and 250 hours.  Two 

commonalities were observed among all alloys investigated.  First, austenite, ferrite, and 

к-carbide were present in all alloys processed at 627°C.  Second, either a single-phase 

austenite for high carbon concentrations or a duplex microstructure of austenite and 

ferrite for low carbon concentrations existed at 1000°C and above.  With the exception of 
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the 20% manganese alloy, all other compositions produced β-Mn in addition to κ-carbide 

at 627°C. 

 

 

 
          (a)      (b) 
 
Figure 1.  Percent austenite for Fe-30%Mn-1.5%Si as a function of aluminum content 
for three differing carbon containing alloys of 0.3, 0.6, and 0.9% carbon in the (a) as-
cast condition and (b) homogenized at 1100°C for two hours.  Austenite volume 
fraction is the greatest for low aluminum and high carbon amounts.  Homogenized 
specimens are nearly all austenite below 5% aluminum.26   
 
 
 
 

Schmatz was the first to report the existence of a β-manganese phase in the 

manganese-rich corner of the ternary Fe-Mn-Al phase diagram.9  Steels based on Fe-

29Mn-9Al-0.9C contain austenite, ferrite, к-carbide, and β-Mn when equilibrated at 

temperatures below 750°C.20  Increasing the manganese content simultaneously increased 

austenite and β-Mn stability.  Increasing carbon content increased austenite and к-carbide 

stability while reducing β-Mn; and, increasing aluminum increased the ferrite content.17,18 
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Phase diagrams for iron- 20 to 35% manganese are plotted as a function of carbon 

content at various temperatures from 600 to 1200 °C in Figure 2.18  At 20% manganese, 

as shown in Figure 2(a), ferrite is not present at 1000°C for carbon concentrations above 

1% but is present along with austenite and к-carbide at lower temperatures.  A eutectoid 

reaction for austenite decomposition to a lamellar ferrite and к-carbide microstructure 

occurs at approximately 1.1% carbon.  The eutectoid reaction nucleates on ferrite and 

austenite interfaces or at austenite grain boundaries.  β-Mn was not reported.  At 

temperatures below 950°C κ-carbide formation occurs but has decreased stability at 

lower carbon concentrations.  

The 25% manganese phase diagram shown in Figure 2(b) shows an expanded 

austenite single-phase region; the increased manganese content lowered the к-carbide 

solvus line.18  However at 25% manganese, β-Mn was observed.  β-Mn is present up to 

752°C at 0.4% carbon, but the further addition of carbon lowers the β-solvus temperature.  

β-Mn formation was observed in the ferrite and was attributed to the lack of solubility of 

manganese in the body centered cubic structure. β-Mn was present along with austenite, 

ferrite, and к-carbide at 627°C for all carbon concentrations reported.   

Increasing manganese content to 30% (see Figure 2(c)) produced a further 

increase in the stability of the austenite to lower temperatures and lower carbon content.  

The higher manganese content also increased the stability of the β-Mn to higher 

temperatures.  As manganese increased to 35%, there was an increase in austenite 

stability to lower carbon concentrations and lower temperatures while β-Mn stability 

increased at higher temperatures as shown in Figure 2(d).  Ferrite was reported when 

carbon was below 0.7% carbon while к-carbide stability remained relatively unchanged. 
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        (a)        (b) 
 

 
              (c)        (d) 
 
Figure 2. Phase boundaries show γ-austenite, α-ferrite, к-carbide, and β-Mn equilibria (at 
a fixed 10% aluminum concentration) as a function of carbon content at manganese 
concentrations of a) 20%, b) 25%, c) 30%, and d)35% .  Data was generated by 
isothermally holding samples up to 250 hours between the temperatures of 627 °C and 
1127 °C.   Increasing manganese concentrations increase austenite and β-Mn.18 
 

 

 

Ishida et al. examined Fe-Mn-Al-C alloys with a fixed 20% manganese content 

that were equilibrated at 900, 1000, 1100, and 1200 °C with isothermal holds up to 210 

hours.16  The reported isothermal phase diagrams are in agreement with the data reported 
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by Goretskii et al., but the Ishida et al. studies included carbon contents up to 5%C and 

aluminum contents between 0 and 18 %Al.  Figure 3 shows the 900°C isotherm.  For an 

alloy with 10% aluminum, ferrite is stable for carbon concentrations up to 2%.  

Cementite, (Fe,Mn)3C, was observed to be stable at aluminum concentrations less than 

5% and carbon concentrations of 1 to 5%.  Low carbon (0 to 2%) and aluminum (0 to 

10%) produce a fully austenitic microstructure. A single-phase к-carbide was observed at 

higher carbon (3 to 5 %) and higher aluminum (10 to 18%).  

 

 

 

Figure 3.  A 900°C Fe-20Mn-xAl-yC isothermal section is plotted as a function of 
both carbon and aluminum content.  Austenite (γ) is stable for low aluminum and low 
carbon concentrations.  κ-carbide is stable for high carbon and high aluminum 
amounts.  Cementite (M3C) is stable at high carbon, low aluminum levels, and ferrite 
(α) is stable for high aluminum, low carbon alloys.16 
 
 
 
 

Cheng and Lin examined a Fe-23Mn-7.4Al-0.03C alloy homogenized for one 

hour at 1050°C, hot forged, and subsequently cold rolled.27  This low carbon alloy was 
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predominately ferrite (volume fractions were not reported) with equiaxed austenite grains 

dispersed along ferrite grain boundaries in the homogenized condition.  Isothermal aging 

below 700 °C increased the austenite content with decreasing temperature.  

Widmanstätten-austenite was observed for aging temperatures between 430 and 600 °C, 

whereas below 430°C, a DO3 structure was reported to precipitate homogeneously in the 

ferrite followed by Widmanstätten-austenite precipitation.   The Widmanstätten-austenite 

had a Kurdjumov-Sachs orientation relationship with the ferrite.  

 In summary, manganese and carbon have been shown to stabilize an austenitic 

matrix in Fe-Mn-Al-C alloys while aluminum stabilizes ferrite.17,18  For Fe-Mn-Al-C 

alloys with 10% aluminum,  a metastable, fully austenitic microstructure can be obtained 

by solution treatment above 900°C and quenching to room temperature provided the 

manganese is in the range of  25 to 30% and the carbon concentration is between 0.8 and 

1.4%.  

3. TRANSFORMATIONS DURING AGE HARDENING  

The Fe-Mn-Al-C system increases in strength as a result of к-carbide precipitation 

during aging.   The к-carbide forms homogeneously below 650°C, but extended holding 

time below 650°C (or isothermal holding above 650°C) will produce heterogeneous 

nucleation of к-carbide on grain boundaries and interphase boundaries.  These 

heterogeneous к-carbides are often associated with precipitation of ordered B2 or DO3 

and β-Mn phases.   

Prior to aging, specimens are solution treated.  Solution treatment typically is 

performed at temperatures at or above 1000°C.7,10,11,12,16-18,20-25 The quenched 

microstructure is either austenite or a duplex microstructure of austenite and ferrite.  In 
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wrought Fe-Mn-Al-C alloys, the austenite appears as an equiaxed grain structure 

containing annealing twins.11,12  In wrought duplex alloys ferrite stringers are parallel to 

the principal rolling direction. Four phases (austenite, ferrite, к-carbide, and β-Mn) have 

been identified after age hardening for alloys with compositions in the range of 20 to 

35% manganese, 10% aluminum, and 0.4 to 1.4% carbon.18  Age hardening is associated 

with homogeneous precipitation of the к-carbide within the austenite. Increasing 

aluminum or carbon content increases the κ-carbide volume fraction.16 Heterogeneous 

nucleation of κ-carbide is also observed along austenite grain boundaries and in the 

duplex alloys along ferrite and austenite interfaces, as well.  The maximum strength in 

Fe-Mn-Al-C alloys has been reported after aging 16 hours in a temperature range from 

500 to 650 °C.10,11,20,21,28 Prolonged aging leads to β-Mn precipitation and loss of tensile 

ductility. 

The sequence of phase precipitation in austenite was studied by Han and Choo23 

using x-ray diffraction of specimens aged for varying lengths of time and the following 

was the reported sequence: (1) chemical modulation, (2) formation of a metastable 

ordered face centered cubic L12, (3) к-carbide formation, and (4) ferrite growth or 

precipitation followed closely by β-Mn precipitation.  Chemical modulation of the 

austenite with wavelengths between 15 and 30 nm has been shown by x-ray diffraction 

and transmission electron microscopy to be time and temperature dependent, as well as 

dependent upon aluminum and carbon concentrations.24  The modulated structure forms 

along the austenite <100>.  Oshima and Wayman proposed that the modulated structure 

resulted from spinodal decomposition.29  The element responsible for the chemical 

modulation has been reported to be carbon only12,23,30 or aluminum only16 or a 
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combination of aluminum and carbon.24  Sato et al. calculated an average interdiffusion 

activation energy of 180 kJ/mol based on the times required at multiple temperatures for 

the modulation wavelength to reach 20 nm.24,25  The measured activation energy fell 

between values for the diffusion of carbon and aluminum in austenitic iron of 120-150 

kJ/mol and 235 kJ/mol, respectively.  An absence of age hardening was also observed in 

alloys with low aluminum or low carbon contents (see Figure 4).   

 

 

 

 

 

Figure 4.  Hardness curves are shown as a function of aging at 550°C for A- Fe-28.5-
4.9Al-0.98C, B- Fe-33.7-7.1Al-0.5C, C-Fe-30.8Mn-7.8Al-0.88C, and D- Fe-34.3Mn-
11.0Al-0.98C alloy.  The lower containing 4.9 wt.% and 7.1wt.% Al containing 
alloys do not age harden.  The 7.8 wt.% Al modified alloy achieves peak hardness at 
103 minutes.  The original hardness scale24 was converted from Vickers to 3000 kg 
Brinell Hardness. 
 
 
 
 

Two alloys, Fe-33.2Mn-7.1Al-0.50C and Fe-28.5Mn-4.9Al-0.98C did not 

increase in hardness for aging times up through 104 minutes at 550°C.24  Neither a 

chemical modulation nor a κ-carbide precipitation were observed in these alloys.  Thus, 
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Sato et al. proposed that the chemical modulation in Fe-Mn-Al-C alloys required both 

carbon and aluminum diffusion.  Figure 5 shows the modulation wavelength as a function 

of time for a Fe-29.5Mn-9.2Al-0.94C alloy at 500, 520 and 550°C.  Increasing the carbon 

concentration for a fixed time and temperature produced a longer wavelength. 

 

 

Figure 5.  Spinodal wavelength is shown as a function of aging temperature and time 
for a Fe-29.5Mn-9.2Al-0.94C alloy.  The wavelength increases at higher temperatures 
reflecting greater atomic diffusivity at higher temperatures for carbon and aluminum 
segregating into alloy-rich and alloy-lean regions of the austenitic matrix.24  
 
 
 
 

An increase in yield strength has been associated with coherency strains 

produced during the spinodal decomposition and can be correlated to the 

experimentally measured modulation amplitude of carbon concentration and the 

modulation wavelength.22  Figure 6 shows the correlation in the change of yield 

strength to the modulated wavelength and carbon amplitude for aging a Fe-30Mn-

10Al-1C alloy at 550°C.  During initial aging, up to 102 and 103 minutes, the 

wavelength is relatively constant, but strength and hardness increase as a result of an 
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increasing modulation amplitude. As the wavelength increases the diffusion distance 

increases and slows the rate of change in the modulation amplitude and strength.  

Changes in strength with both compositional amplitude and wavelength follow trends 

predicted by Chan’s model for strengthening during spinodal decomposition.31 

 
 
 

 
   (a)      (b) 
 
Figure 6. Fe-30Mn-10Al-1C alloy aged at 550°C. (a) The rate of change in yield 
strength decreases as the wavelength increases.  (b) The change in yield strength 
shows a strong correlation to the calculated carbon composition amplitude of the 
modulated structure.  The slope nears zero at 103 minutes or nearly 16 hours.22 
 
 
 
 

Precipitation of κ-carbide occurs in the carbon and aluminum rich regions of the 

modulated microstructure.  Some researchers report that these aluminum and carbon rich 

regions may first order during aging to form a metastable (Fe,Mn)3Al phase with an L12 

crystal structure, which is similar in fashion to Ni3Al formation in Ni-Al alloy 

systems.22,32  Ordering of carbon to the (½, ½, ½) position produces the к -carbide with 

the E21 perovskite structure and chemical composition [Fe,Mn]3AlC (see Figure 7).   
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In Fe-Mn-Al-C alloys, к-carbide precipitates with a cube on cube orientation 

relationship, <100>g//<100>к and {001}g//{001}к ,and the lattice misfit is less than 3%.  

Initially the к-carbide appears cube-shaped in morphology.14,21,23,24,32,33 The к-carbide’s 

lattice parameter increases with increased aging times reflecting an increasing carbon and 

aluminum content.34  As the к-carbide lattice parameter increases, the parent phase lattice 

parameter decreases and this leads to a loss of coherency and a more plate-like 

morphology. Kalashnikov et al. reported a lattice parameter increase of approximately 

2% from 3.72 to 3.76 Å for the κ-carbide after aging at 700°C for 16 hours.  In contrast 

Kimura et al. showed that the misfit is reduced from 2.7% to 2.2% with increasing 

aluminum concentration.32 

 
 
 

 

Figure 7.  The E21 structure of the (Fe, Mn)3AlC к-carbide orders with aluminum in 
the cubic positions, iron and/or manganese in the face centered octahedral positions 
and carbon in the center octahedral position.14 
 
 
 
 

It was also observed that increasing the aluminum content from 13 at.% to 17 

at.% in the overall alloy chemistry contributed to a simultaneous decrease in the к-
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carbide lattice parameter (3.79 Å to 3.77 Å) while increasing that of the austenite 

(slightly greater than 3.68 Å to ~3.69 Ǻ ).  This result appears counter intuitive since the 

lattice parameter of both austenite and κ-carbide would be expected to increase with 

additional aluminum content since aluminum has a larger atomic radius than either iron 

or manganese.  Kimura et al. also showed that nickel additions up to 2% reduced the 

matrix and κ-carbide lattice parameters equally thus hardly having any measurable effect 

on misfit. 

Hale and Baker24 reported precipitate free zones along grain boundaries and 

related these zones to heterogeneous precipitation of к-carbide at the grain 

boundaries. Heterogeneous nucleation of the к-carbide occurs on grain boundaries 

prior to homogeneous nucleation within austenite for aging temperatures above 

650°C.16  Below 650°C, the order is reversed and homogeneous nucleation occurs 

before grain boundary nucleation occurs. The grain boundary precipitates tend to be 

much larger than the matrix к-carbide precipitates. A lamellar austenite and к-carbide 

microstructure resulting from discontinuous precipitation can also be produced in 

high aluminum and high carbon alloys, e.g. Fe-30Mn-12Al-1.9C, at or above 

1000°C.17,23,32  

In fully austenitic, solution treated microstructures, ferrite precipitates on grain 

boundaries during age hardening with a Kurdjimov-Sachs orientation relationship of 

(111)g//(110)α and αγ ]111//[]110[ .27  The precipitates are initially coherent with one of the 

austenite grains, but will lose coherency upon coarsening.21  In duplex ferrite and 

austenite microstructures the additional ferrite forms preferentially on the existing ferrite.  

Intergranular ferrite has been observed after prolonged isothermal holding below the 
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ferrite solvus temperature.  It has been suggested 16 that carbon depletion of the austenite 

during κ-carbide formation leads to the formation of ferrite and subsequently β-phase 

precipitation.  

β-Mn or complex intermetallic phases form after prolonged aging times and 

generally after ferrite precipitation or cellular (κ-carbide with ferrite) 

decomposition.16,18,23  The ferrite becomes unstable with respect to the high manganese 

and aluminum contents and β-phase precipitates within the ferrite.7,10,12,20  In silicon 

containing Fe-Mn-Al-C alloys a DO3 intermetallic compound precipitates alongside 

ferrite with a reported lattice parameter of 5.86Å, and the β-Mn phase does not form.18,35  

The DO3 phase precipitates on coarse κ-carbide and has a Kurdjimov-Sachs orientation 

relationship with κ-carbide.20 In a silicon containing alloy, the grain boundary 

intermetallic phase was identified as a Mn12Si7Al5 compound.36  It was reported that the 

manganese content in к-carbide is increased by the presence of silicon thereby reducing 

the manganese concentration in the austenite and ferrite and thus silicon inhibits β-phase 

precipitation.35      

In summary, the precipitation sequence can be described as follows.  A spinodal 

reaction causes modulation of carbon and aluminum within the austenite.  The localized 

chemical potential from the modulation may facilitate the formation of metastable L12 

precipitates that then transform to the E21 к-carbide by ordering of the carbon.  However, 

no direct evidence of the L12 precursor reaction is currently provided in the literature.  

Precipitation of к-carbide leads to the destabilization of the remaining austenite and 

ferrite is precipitated.  In alloys without silicon, β-Mn nucleates within the ferrite.  In 

alloys with silicon, a DO3 intermetallic phase precipitates instead of the β-Mn. 
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4.  PHYSICAL AND MECHANICAL PROPERTIES 

Precipitation hardenable Fe-Mn-Al-C alloys produce a wide range of mechanical 

properties that make this system attractive for many different applications.  Ductility at 

77% elongation to failure, tensile strength as high as 2.06 GPa, density reductions up to 

18% over low carbon, low alloy steels, and comparable oxidation resistance to 304 

stainless steel have been reported.  However, the Fe-Mn-Al-C system suffers from poor 

corrosion resistance and stress corrosion cracking.  Most of the reviewed research 

correlates the precipitation of к-carbide to the observed strengthening.12,14,21,32,37  Most 

investigators solution treated their alloys at or above 1000°C, quenched in water, and 

aged between 500 and 650°C prior to testing.   

A more recent investigation examined the reduction in density as a function of 

aluminum and manganese.11 A linear reduction in density based upon either lattice 

dilatation or a combination of dilatation and atomic mass has been mapped out as a 

function of aluminum concentration for a range of manganese from 14 to 28% (see 

Figure 8). Manganese concentration had little impact on density as compared to 

aluminum. The percent density reduction is relative to pure iron at 7.8 g/cm3.  For 

example a 12% aluminum addition will reduce the density by 17% of which lattice 

dilatation contributes 10% and mass reduction contributes an additional 7%. 
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Figure 8.  The density reduction as a function of aluminum content for a Fe, 14-28Mn, 
xAl, 1C is a function of both dilatation and mass reduction.  Dilatation of the lattice 
parameter accounts for as much as a 10% reduction. Increasing the aluminum content 
drives down the density by as much as 16-17% for an aluminum content of 12 wt.%.11  
 
 
 
 
4.1 Solution Treated Condition 

 In the solution treated condition, Fe-Mn-Al-C alloys have moderate yield 

strengths that are comparable to other austenitic alloys and have elongations to failure in 

excess of 40%.11,12,34   For a wrought Fe-32Mn-8.5Al-0.9C alloy in the solution treated 

condition, the yield strength, ultimate tensile strength, and elongation to failure is 358 

MPa, 823 MPa, and 64%, respectively.12  Tjong and Zhu investigated the mechanical 

properties of solution treated Fe-28Mn-9Al-0.4C and Fe-28Mn-9Al-1C alloys tested at 

temperatures from 25 to 800°C.34  The microstructure of the low carbon alloy was duplex 

whereas the high carbon alloy was fully austenitic.  Serrated stress-strain behavior with 

homogeneous slip character was reported between the temperatures of 300 and 600°C; 

and, Tjong and Zhu concluded that the serrated flow resulted from dynamic strain aging.  
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However, this dynamic strain aging behavior exhibited anomalous temperature and strain 

rate behavior, which were related to the precipitation of к-carbide.  Mechanical twinning 

was reported as a deformation mechanism at temperatures below 300°C and grain 

boundary sliding was reported at 800°C.  Figure 9 shows the temperature dependence of 

the mechanical properties.   

 

 

 
    (a)     (b)     (c) 
 
Figure 9.  Yield strength (a), tensile strength (b), and elongation (c) are reported 
against a testing temperature range from room temperature to ~800°C.  Yield and 
tensile strength decrease to ~300°C with a corresponding increase in elongation to its 
maximum point.  Twin formation is cited as the primary deformation mechanism up 
to 300°C.  From 300 to 600 °C, strength values fluctuate as ductility decreases 
resulting from к-carbide formation.  Deformation in this temperature regime occurs as 
homogeneous slip until grain boundary sliding dominates above 600°C.34 
  
 
 

Yield and ultimate tensile strengths decreased as the testing temperature increases; 

however, strain aging reduced the rate of decrease in yield strength for testing 

temperatures above 300°C. Tjong and Zhu also observed that ductility was a maximum at 

a testing temperature of 300°C. 
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4.2 Age Hardening Behavior 

Fe-Mn-Al-C alloys follow classic age hardening trends where the hardness 

increases from 182 Brinell Hardness in the solution treated condition to values greater 

than 342 Brinell Hardness at peak hardness after 2 hours at 600°C.24  Figure 10 shows the 

age hardening response of an Fe-30.4Mn-8Al-1C-0.35Si at various aging temperatures.   

 

 

 

Figure 10.  Aging curves are shown for a Fe-30.4Mn-8Al-1C-0.35Si aged at 450, 500, 
550, and 600 °C.  Classical aging trends are observed.  Peak hardness values increase 
for longer isothermal hold times and lower temperatures.  The original hardness scale 
was converted from Vickers Hardness to 3000 kg load Brinell Hardness.24 
 
 
 
 
Peak hardness increases for longer times at lower aging temperature, e.g. 405 Brinell 

Hardness after 1,000 hrs at 450°C. Similar age hardening behaviors have been reported 

for Fe-32Mn-11.8Al-1C-0.1Si12 and Fe-34.3Mn-11Al-1C.24 Secondary hardening has 
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also been observed for an Fe-29.5Mn-9.2Al-0.94C alloy (see Figure 11).24  The 

additional hardening and loss of ductility was associated with β-manganese formation.  

 

 

 

Figure 11.  A Fe-29.5Mn-9.2Al-0.94C alloy aged at 550°C shows two hardening stages.  
First stage hardening occurs from formation of к-carbides in the austenitic matrix.  
Further decomposition of the austenite during second stage hardening produces grain 
boundary precipitates of coarse к-carbides and β-Mn of which the β-Mn is responsible for 
the second stage hardening.  The original hardness scale was converted from Rockwell A 
to 3000-kg load Brinell Hardness.24 

 
 

 

4.3 Alloy Optimization for Age Hardening 

The aging temperature of 550°C is the most common aging temperature reported 

in this system.10,11,12,16,21,28  Kayak reported strength properties at a fixed aging time at 

temperatures between 450 and 575 °C on a wrought Fe-27.5Mn-9.1Al-0.9C.10  For a 

fixed isothermal hold time of 16 hours, a maximum strength (912 MPa) was achieved at 

an aging temperature of 550°C, but the corresponding reduction in area was a minimum 
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(7%).  Hale and Baker’s investigation of an aged Fe-30.9Mn-8Al-1C alloy affirmed 

Kayak’s trends (see Figure 12); a maximum strength was achieved after aging at 550°C 

for a fixed time of 16 hours.21  However, Hale and Baker reported much greater ductility, 

but lower peak strengths. 

 

 

 

Figure 12.  Strength and ductility are shown as functions of aging temperatures for a 
fixed time of 16 hours for a Fe-30.9Mn-8Al-1C alloy.  Maximum strength is attained at 
550°C.  Below 550°C, strength is reduced but ductility increases.  Above 550°C, 
specimens overage for a hold time of 16 hours and reduce both strength and ductility.21 

 
  

 

Kalashnikov et al. examined effects of chemistry on aged alloys (550°C for 16 

hours) and sought to optimize chemistry composition against this standard aging 

practice.28  Figure 13 shows the effect of 3 to 10% aluminum content on strength, 
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ductility, and impact toughness for two different carbon contents with manganese 

between 28 and 30%. 

 

  

 

Figure 13.  Strength, ductility, and impact toughness are plotted for a Fe-30Mn-xAl-yC 
alloy.  Carbon is fixed at two levels of 0.85 and 0.95%, and aluminum is varied between 
3 and 10%.  The alloys tested were homogenized at 1050°C, water quenched, and then 
aged at 550°C for 16 hours.  Fe-Mn-Al-C alloy with aluminum content below 7% lacks 
sufficient driving force to age harden, thus the lack of strength increase.  Above 7% 
aluminum, the alloy age hardens, increases strength, and decreases ductility and impact 
toughness due to к-carbide formation.  Higher carbon content is good for solid solution 
strengthening and carbide formation but deleterious to impact toughness.28 
 
 
 
 
Strength and ductility remained constant but impact toughness increased as aluminum 

concentration increased from 3 to 6.5%.  Above 6.5% aluminum, strength increased and 

reached a maximum value at 10% aluminum; however, impact toughness decreased.  At 
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10% aluminum, the solution treated microstructure was duplex and a maximum ultimate 

tensile strength value of approximately 1200 MPa was reported with an elongation to 

failure of approximately 35%. 

For alloys with 9% aluminum and 30% manganese, properties were measured 

across a carbon range from 0.4 to 1.3% (see Figure 14).  

 

 

 

Figure 14.  Strength, ductility, and impact toughness are plotted for a Fe-30Mn-9Al-
yC alloy.  Carbon is varied between 0.4 and 1.2%.  The alloys tested were 
homogenized at 1050°C, water quenched, and then aged at 550°C for 16 hours.  
Increase in carbon content increases strength, ductility, and impact toughness up to 
~0.7% in aged and solution treated conditions.  Above 0.7%, strength continues to 
increase as ductility and impact toughness decrease to their respective minimum 
values at 1.2% carbon.28 

 
 

 

The solution treated microstructure was duplex for a carbon content below 0.7%.  

After aging, both yield and ultimate strengths increased steadily at a rate of 

approximately 30 to 40 MPa per 0.1% carbon. This increase in strength was related to an 
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increasing volume fraction of κ-carbide.   Impact toughness was a maximum 

(approximately 125 J/cm2) at approximately 0.7% carbon and then steadily decreased as 

carbon increased.  Above 1% carbon it was noted that к-carbide precipitated along the 

austenite grain boundaries and reduced the impact toughness to approximately 40 J/cm2. 

The elongation to failure followed a similar trend as the impact toughness.  Ductility was 

a maximum at 0.8% carbon as shown in Figure 14.  Sato et al. showed similar results for 

two Fe-30Mn-9.5Al alloys with different carbon levels (0.91 and 1.03%) when aged at 

550°C.25   Figure 15 shows Brinell hardness and yield strength for both carbon levels, and 

greater hardness and strength were obtained with the higher carbon alloy at all aging 

times. 

The effect of manganese content was examined by Kalashnikov et al. using a 

fixed aluminum and carbon concentration of 9% and 0.9%, respectively.  Figure 16 

shows the mechanical properties for a range of manganese from 24 to 34%.28  Yield and 

ultimate strengths reach a maximum at 26% manganese.  Ductility and impact toughness 

peak at 31% manganese.  Kalashnikov et al. concluded that the optimum alloy to achieve 

the best balance of strength, ductility, and impact toughness requires 25 to 31% 

manganese, 6.2 to 9.7% aluminum, and 0.7 to 1.0% carbon.  This chemistry range has 

been common to many investigations of the Fe-Mn-Al-C system.3-30,32-39     
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Figure 15.  A Fe-Mn-Al-C alloy aged at 550°C with two differing carbon levels of 
0.91 and 1.03 wt.% showing (a) hardness and (b) strength.  Higher carbon content 
increases hardness and strength. Hardness was converted to 3000 kg load Brinell 
Hardness from Vickers Hardness.25  
 
 
 
 

 

Figure 16.  Strength, ductility, and impact toughness are plotted for a Fe-xMn-9Al-0.9C 
alloy.  Manganese is varied between 22 and 34%.  The alloys tested were homogenized at 
1050°C, water quenched, and then aged at 550°C for 16 hours.  Strength increases to a 
maximum at ~25% manganese.  Ductility and impact toughness remain fairly constant 
until their peak value is attained at 31% manganese.  Above 31% manganese, β-Mn 
precipitates decreasing strength, ductility, and impact toughness.28 
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A recent investigation by Howell et al. reported engineering yield and tensile 

strength in a cast Fe-30Mn-9Al-1.4Si-0.9C-0.5Mo alloy (aged 10 hours at 530°C) at 

1,016 MPa and 1,085 MPa, respectively.38  Young’s modulus for the cast material was 

188 GPa.  The highest reported ultimate strength of 2.06 GPa was reported in the ASM 

Metals handbook for a Fe-30Mn- 9Al-1C-1Si alloy; however, the processing of the alloy 

was not reported.38 

Alloys of high carbon (>1%) and aluminum content from 7 to 11% have also been 

produced with lamellar austenite and к-carbide microstructures by solution treating at 

1100°C and furnace cooling.34 Room temperature properties were poor in comparison to 

alloys of similar composition that were solution treated and age hardened, and an ultimate 

strength of approximately 900 MPa with little or no ductility was reported for the 

lamellar structure.  

4.4 Work hardening and deformation mechanisms 

Fe-Mn-Al-C alloys work harden at rates comparable to that of austenitic stainless 

steels.11,12  Frommeyer and Brux calculated a strain hardening exponent equal to 0.83 

(true strain values less than 0.1) for a Fe-28Mn-12Al-1C alloy aged at 550°C for 16 

hours.11  By comparison, 304 stainless has a value of 0.8 whereas a deep drawing steel 

will have values between 0.18 and 0.23.  At higher true strains the strain hardening 

exponent decreased to 0.58, and by comparison a 304 stainless steel has an exponent in 

the range of 0.33 to 0.45.  Han et al. observed that the work hardening exponent changes 

little between the solution treated and aged alloys (25 hrs. at 550°C); and thus, concluded 

that the presence of κ-carbide and the induced coherency strain, does not affect work 

hardening.12  The work hardening rate and deformation character of the Fe-Mn-Al-C 
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alloys appears to be a strong function of the aluminum content in the range 0.5 to 5%.41  

At the lowest aluminum concentrations, there is a strong contribution from 

transformation induced plasticity via either martensitic transformation or mechanical 

twinning induced plasticity, which increases the strain hardening at low strains, but 

decreases the work hardening at high strains.   

Lai and Wan observed a high mechanical twin density in a deformed Fe-29.2Mn-

0.81C alloy.42 A lower twin density was observed in a similarly deformed Fe-30.1Mn-

7.02Al-0.95C alloy leading to the conclusion that aluminum increased the stacking fault 

energy and suppressed twin formation. Aluminum concentration has been reported to 

have the most effect upon the stacking fault energy.11,42  Yang and Wan calculated 

stacking fault values for an Fe-30Mn-.9C-xAl alloy43 using the thermodynamic model 

proposed by Olson and Cohen.44  A stacking fault energy of 27.3 mJ/m2 was calculated 

for the 0% aluminum alloy and at 8.5% aluminum, the stacking fault energy increased to 

99.6 mJ/m2.43  Frommeyer and Brux concluded that for stacking fault values greater than 

20 mJ/m2, the martensitic γFCC→εHCP transformation is suppressed and mechanical twin 

formation is favored. For an age hardened Fe-28Mn-12Al-1C (550°C for 16 hours) the 

calculated stacking fault energy value is 110 mJ/m2 and shear band formation rather than 

twinning is observed.11   

4.5 Fracture Behavior 

Fracture of FeMnAl alloys is a strong function of age hardening.45,46  Acselrad et 

al. studied cleavage fracture of various aging practices on a Fe-29.4Mn-8.8Al-1C alloy 

with 1.33% silicon.  Crack arrest fracture toughness values (KA) were calculated from 

instrumented Charpy impact tests.47  Table 1 shows three sets of mechanical properties 
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determined for a solution treated specimen, one aged at 550̊ C for 15 hours, and a sample 

quenched into a salt bath at 700̊C, held for 4 seconds, and subsequently cooled to room 

temperature at a rate of 0.05 °C/s.45   

 

 

Table 1. Mechanical Properties of a Fe-29.4Mn-8.8Al-1.33Si-1C Alloy for Three 
Different Processing Techniques 

 

Processing 
Condition 

σ0.2 
(MPa) 

UTS 
(MPa) 

Elongation 
(%) 

Brinell Hardness 
(converted from 

Rc) 

Charpy 
Energy 
(J/cm2) 

Fracture 
Toughness KA 

(MPa√m) 
Sol. Tr. 620 871 77 272 51 330 
Aged 16 

hr @ 
550˚C 

884 1210 15 434 1.4 84 

Controlled 
Quench 705 1100 32 392 1.2 104 

 
 
 
 

The solution treated specimen (1050°C for 5 minutes and water quenched) 

yielded the lowest strength but highest elongation, greater Charpy impact energy, and 

higher fracture toughness.  The fully aged specimen (solution treated and aged 15 hours 

at 550°C) had the highest strength and hardness but lowest ductility and toughness 

values.  A balance in mechanical properties was obtained by controlled cooling from 

solution treating temperatures. Microvoid coalescence was observed for fracture of the 

solution treated specimen, and the aged microstructure produced brittle grain boundary or 

cleavage fracture. Formation and ordering of the к-carbide was primarily responsible for 

the simultaneous increase in strength and reduction in impact toughness.  Cleavage 

fracture was not observed in the specimen that had been controlled cooled.  The 
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investigators concluded that the controlled cooling suppressed the degree of ordering to 

produce both an increase in strength and improved ductility. 

4.6 Fatigue Behavior 

Chang et al. conducted fatigue testing on three Fe-29Mn-9Al-xC alloys with 

carbon contents of 1.1, 0.6 and 0.3%.48 Solution treatment was performed at 1050 °C for 

1.5 hours.  All three alloys exhibited a similar cyclic life response (see Figure 17) despite 

differences in microstructure and strength.   

 

 

 

Figure 17.  Three Fe-29Mn-9Al-xC alloys with 1.1, 0.6 and 0.3 wt.% C demonstrated 
nearly identical fatigue cycles to failure and thus is plotted as a single narrow banded 
region.48 

 

 

The 1.1% carbon alloy was fully austenitic and had the highest strength, which 

was attributed to solid solution strengthening by carbon.  The 0.6% carbon alloy 

contained 10% ferrite and possessed the lowest yield strength while the 0.3% carbon 

alloy contained equal volumes of ferrite and austenite.  Fatigue crack nucleation occurred 
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along slip bands in the austenite for the 1.1 and 0.6% carbon alloys.  The small amount of 

ferrite in the 0.6% carbon alloy functioned as crack arresters, thus, despite a lower 

strength, the 0.6% carbon containing alloy achieved a fatigue life equivalent to the 1.1% 

carbon containing alloy. In the 0.3% carbon alloy crack initiation occurred in ferrite 

grains at the specimen surface.   

Ho, Wu, and Tjong conducted strain controlled fatigue tests (Figure 18) on a 

solution treated Fe-30Mn-10Al-0.4 C alloy with duplex microstructure of austenite and 

ferrite.49   

 

 

 

Figure 18.  The cyclic response of a  Fe-30Mn-10Al-0.4C alloy shows the cyclic 
hardening above a strain amplitude of 0.6% before a critical stress amplitude was 
achieved followed by cyclically softening.  Only the 2.0% test specimen did not 
cyclically soften prior to failure. 49  
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Strain amplitudes ranged from 0.25% to 2.0%.   Below strain amplitudes of 0.6%, the 

formation of persistent slip bands produced cyclic softening in the austenite and the 

applied strain was accommodated by these slip bands. At strain amplitudes above 0.6%, 

fatigue crack initiation occurred in ferrite.  Cyclic softening was not observed at strain 

amplitudes greater than 2.0%. 

Fatigue behavior of an aged Fe-Mn-Al-C alloy was also reported by Tjong and 

Ho.50  Controlled strain amplitude testing was conducted on a Fe-29.7Mn-8.7Al-1C alloy.  

Specimens were solution treated at 1100°C and aged at either 550°C for 2 hours, 550°C 

for 24 hours, or 710°C for 2 hours.  Cyclic softening was observed during fatigue for all 

three aging practices as shown in Figure 19.  Cyclic softening was associated with planar 

slip, shearing of к-carbide, mechanical dissolution of the precipitates, and formation of 

persistent slip bands.  Tjong and Ho postulated for the 710°C aged alloy that the 

formation of precipitate free zones was responsible for the cyclic softening, which 

facilitated slip band formation.  The precipitates in the 550°C aged alloy sheared early in 

the test due to their small size; thus, producing persistent slip bands and cyclic softening 

behavior similar to solid solution alloys.  The 24 hour aged specimen endured higher 

stress amplitudes (from ~1000 MPa to ~750 MPa) and cyclically softened because of 

planar slip, dissolution of the precipitates, and formation of persistent slip bands.   



40 
 

 

Figure 19.  Cyclic responses of a Fe-29.7Mn-9Al-1C alloy after three heat treatments: 
a) 550°C for two hours, b) 550°C for 24 hours, and c) 710°C for 2 hours.  Strain 
amplitude was constant at 0.8% for each treated specimen.  All three exhibit cyclic 
softening.50 

 
 
 
 

Kalashnikov et al. investigated fatigue at a constant strain amplitude on a wrought 

Fe-28Mn-9Al-0.86C-0.7W-0.43Mo-0.49Nb alloy and on a martensitic stainless steel of 

composition Fe-12Cr-1.25Ni-0.2V-1.8W-0.5Mo-0.15C.51  Three tests were conducted at 

different temperature conditions: one test at 400°C, a second at 20°C , and a third test that 

included cycling the temperature between 400 and 20 °C.  In each case, the stainless steel 

failed at half the cycles of the Fe-Mn-Al-C alloy.  Tempering of the martensite and loss 

of strength was used to explain the lower cyclic life of the stainless steel at elevated 

temperatures.  Within the Fe-Mn-Al-C alloy, deformation twinning was cited as an 

obstacle to further plastic deformation. Also, specimen aging occurred at 400°C causing 

increased fatigue strength and grain boundary precipitation of к-carbide.  Figure 20 

shows the cyclical stress response of the Fe-Mn-Al-C alloy for the three thermal tests.  
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Figure 20.  Cyclic responses of a  Fe-28Mn-9Al-0.86C-0.7W-0.43Mo-0.49Nb alloy 
tested in three different temperature regimes: a) 20°C, b) 20 to 400 °C, and c) 400°C. 
Dynamic strain aging at higher temperatures is responsible for higher stress amplitudes.51 

 
 

 

4.7 Hydrogen Embrittlement   

Pierpoint et al. investigated hydrogen embrittlement of a Fe-30.1Mn-8.3Al-1.07C-

0.12Si alloy.52  Specimens were charged in a sulfuric acid solution with a current density 

of 4.6 mA/cm2 for 16 and 24 hours.  At either time interval, strength and ductility 

decreased compared to non-charged specimens.  The fracture mode changed from 

microvoid coalescence to intergranular fracture after hydrogen charging.  Sudrshan et al. 

examined the effect of hydrogen on Charpy impact energy at room temperature.53  Fe-

29.4Mn-7.8Al-0.99C-1.45Si samples were charged in a hydrogen atmosphere at 150°C 

and 10.53 MPa of air pressure for 56 days.  Data was collected using an instrumented 

Charpy impact test machine at room temperature.  A reduction in energy from 16.3 J/cm2 
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to 8.1 J/cm2 was observed with a corresponding decrease in the peak load during impact 

from 16.9 kN to 12.9 kN for the hydrogen treated material.  Sudrshan et al. concluded 

that the hydrogen embrittlement of the Fe-Mn-Al-Si-C alloy was similar to 304L stainless 

steel.   

4.8 Stress Corrosion Cracking Behavior 

 Stress corrosion cracking experiments on Fe-30Mn-9Al-1Si-xC alloys were 

performed in 4% sodium chloride solution at room temperature to examine the effect of 

ferrite volume fraction.54  Tensile strength losses from 10% to 20% were reported for 

each alloy subjected to an aqueous 3.5% sodium chloride solution.  Intergranular stress 

corrosion cracking was observed in solution treated fully austenitic specimens.  

Transgranular failure of the ferrite in duplex microstructures was observed for specimens 

aged at 550 and 700 °C.  In the aged duplex samples, crack blunting was observed as the 

crack transitioned from the ferrite to the austenite.  The authors concluded that stress 

corrosion cracking resistance increased for decreasing ferrite content.  For example, a 

fully austenitic solution treated Fe-31.2Mn-8.9Al-0.9Si-0.5C alloy loaded to 60% of its 

tensile strength did not fail during a 2000 hour test, but after aging at 550°C for 4 hours, 

the specimen failed at approximately 300 hours due to ferrite precipitation.    

Chang et al. investigated stress corrosion cracking of Fe-32Mn-9Al-1C-X alloys 

solution treated alloys in a 3.5% sodium chloride solution with an imposed electric 

potential.55  The base alloy was modified with either 1.23% molybdenum, 2.8% 

chromium, or 1.27% silicon.  The base alloy and alloys with molybdenum or silicon 

additions stress corrosion cracked in a transgranular fashion at room temperature and at 

160°C.  An increased susceptibility was observed for the silicon containing alloy.  Crack 
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initiation within the Cr modified alloy occurred at casting defects, thus little could be 

concluded from this portion of the experiment due to the poor quality of the material. 

4.9  Oxidation and General Corrosion Behavior 

 Oxidation resistance was reported by Garcia et al.56 and compared six Fe-Mn-Al 

chemistries (see Table 2) against 304 stainless steel and 1010 carbon steel.  Two solution 

treated wrought samples were produced of each chemistry.  One set was exposed to 1 atm 

flowing oxygen at 700°C and one set was exposed at 500°C for 24 hours and each set 

monitored for changes in weight.  Figure 21 shows the weight gain versus (time)1/2  and 

the linear trends indicate a diffusion controlled oxidation process.   

 
 
 

Table 2.  Fe-Mn-Al-C Alloy Composition for Oxidation Investigation 

Alloy Al Mn Si C Cu P S Fe 
A 10.84 31.92 3.01 0.74 ------- 0.05 0.02 Bal 
B 9.05 33.3 1.41 0.88 ----- 0.02 0.02 Bal 
C 8.63 28.6 2.68 0.69 ----- 0.05 0.02 Bal 
D 7.25 24.04 2.06 1.01 ----- 0.05 0.02 Bal 
E 12.4 4.13 2.12 0.03 0.91 0.02 0.01 Bal 
F 12.05 4.2 1.93 0.03 8.9 0.02 0.01 Bal 

 
 
 
 
Chemical analysis of the surface revealed an aluminum rich oxide scale.  At 700°C, 304 

stainless steel resists oxidation better than the Fe-Mn-Al-C alloys.  However, at 500°C 

the Fe-Mn-Al-C specimens had improved oxidation resistance over the 304 stainless 

steel.  This is in agreement with Gau and Wu’s57 study of similar Fe-Mn-Al-C 

chemistries versus 304 stainless steel exposed to oxygen at 600°C for 300 hours.  Their 
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study also found a parabolic time dependence for the oxidation of the Fe-Mn-Al-C alloys 

and that the 304 stainless steel rate constant was at least twice as great (see Table 3). 

 
 
 

  
           (a)         (b) 
 
Figure 21.  Weight gain is shown for six Fe-Mn-Al-C alloys (compositions A through F 
in Table 2), 1010 carbon steel and 304 stainless steel as functions of exposure time in 1 
atm flowing oxygen at 700°C (a) and 500°C (b).56 

 
 
 
 

Gau and Wu57 investigated Fe-Mn-Al-C alloy corrosion behavior in 3.5% sodium 

chloride, acetic acid, ammonia, and sodium sulphide solutions of the same alloy 

compositions listed in Table 3.  In every environment, Gau and Wu observed higher 

corrosion rates (up to two orders of magnitude higher) for the Fe-Mn-Al-C alloys versus 

304 stainless (see Table 4).  The addition of 5.9% chromium was beneficial in reducing 

the Fe-Mn-Al-C corrosion rate, but Gau and Wu concluded that further corrosion rate 

reductions were necessary to consider Fe-Mn-Al-C alloys suitable replacements for 304 

stainless steel.  
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Table 3.  Fe-Mn-Al-C Chemical Compositions and Oxidation Parabolic Rate Constants 

Alloy C Si Mn P S Al Ni Cr Mo Fe 
Parabolic Rate 

Constant 
(mg/(cm2√hr)) 

A 0.94 0.10 29.80 0.03 0.02 7.6 - - - Bal 0.0109 
B 1.7 0.50 36.00 0.03 0.03 7.60 - - 1.50 Bal 0.0085 
C 0.40 0.14 24.4 0.04 0.02 9.20 - - - Bal 0.00522 
D 0.43 0.15 26.6 0.03 0.01 9.29 - 3.10 0 Bal 0.00289 
E 0.42 0.15 27.7 0.03 0.01 8.9 - 5.9 - Bal 0.0024 

304 SS 0.04 0.67 1.23 0.02 0.14 - 8.20 19.00 0.10 Bal 0.0207 
1010 
Carbon 
steel 

0.05 0.67 0.23 0.01 0.01 - 0.03 0.06 - Bal - 

 
 
 
 

Table 4.  Fe-Mn-Al-C Corrosion Potential  (CP) vs Saturated Calomel Electrode (SCE) 
and Corrosion Rate (CR) Versus 304 Stainless Steel and Mild Steel. 

 

Alloy 
3.5% NaCl 1N CH3CooH 1N NH4(OH) 1N Na2S 

CP vs 
SCE 

CR 
(mpy) 

CP vs 
SCE 

CR 
(mpy) 

CP vs 
SCE 

CR 
(mpy) 

CP vs 
SCE 

CR 
(mpy) 

Mild 
Steel -0.74 7.30 -0.55 13.70 -0.34 2.44 -0.70 7.00 

304 
SS -0.25 0.15 -1.00 0.18 -.20 0.37 -1.50 0.74 

A -0.53 3.80 -0.62 140.00 -0.18 2.10 -1.02 13.00 
B -0.49 3.00 -0.50 71.70 -0.17 1.10 -1.10 5.12 
C -0.61 4.75 -0.61 380.00 -0.18 2.19 -1.02 6.01 
D -0.56 4.00 -0.71 595.00 -0.23 1.10 -1.12 5.12 
E -0.40 2.40 -0.63 439.00 -0.20 1.00 -1.08 4.60 

 
 

 

4.10 High strain rate behavior 

 High strain rate behavior of Fe-Mn-Al-C alloys has been investigated for solution 

treated39,58  and age hardened11,39 conditions.  Chiou et al. investigated a solution treated 

Fe-32Mn-10Al-1.07C-0.36Mo alloy utilizing a split Hopkinson bar compression test for 

strain rates from 103 s-1 to 104 s-1.58  Yield strength, as shown in Figure 22, increased 
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exponentially from 1450 MPa at 103 s-1 to 1800 MPa at 104 s-1 whereas the fracture strain 

decreased in a linear fashion from approximately 0.55 to 0.38.   

 
 
 

    

Figure 22.  The yield stress and fracture strain is plotted as a function of compressive 
strain rate for a Fe-32Mn-10Al-1.1C-0.4Mo alloy in the solution treated condition.  
At the maximum strain rate approaching 104 s-1, the alloy yielded at 1800 MPa with 
~0.38 strain to failure.58 

 
 
 

At higher strain rates the work hardening exponent increased from 0.3 to 0.66, the 

activation volume for dislocation mobility decreased, and the degree of dislocation 

entanglement increased. 

 Howell et al. investigated cast materials (Fe-30Mn-9Al-1Si-0.9C-0.5Mo ) in the 

solution treated and aged condition using high strain rate compression specimens by split 

Hopkinson bar technique and compared those values to rolled homogeneous armor 

(RHA) of equivalent hardness at a strain rate of 3000 s-1.39  Fe-Mn-Al-C specimens were 

solution treated at 1050°C.  The aged specimen set was isothermally held for 10 hours at 
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530°C.  The solution treated material yielded at 950 MPa and work hardened to 1,552 

MP and the fracture strain was 0.50 (see Figure 23).   

 
 
 

 
      (a)                           (b) 
 

Figure 23.  The Fe-30Mn-9Al-1Si-0.9C-0.5Mo alloy designated in the figure as 1%Si (a) 
shows work hardening in the solution treated and 10 hour 530°C aged condition at a 
strain rate of 3000 s-1.   Aged hardened material does not work harden as greatly as 
solution treated material, but age hardened specimens had greater yield and ultimate 
strength and slightly lower fracture strain. Rolled homogeneous armor (b) does not strain 
harden to failure.  Ultimate strength occurs between 0.1 and 0.2 strain followed by 
decreasing stress to fracture beyond 0.6 strain.  
 

 

The 10 hour aged specimen yielded at 1,334 MPa and work hardened to 1,651 MPa and 

the fracture strain was 0.45.  Howell et al. observed that fracture was initiated by shear 

bands; however, both conditions exhibited work hardening.  In contrast, only the RHA 

(224 BHN) material strain hardened (at less than 0.2 strain) prior to the ultimate stress.  

More importantly, the ultimate strengths (see Table 5) and specific ultimate strengths (see 

Table 6) of the Fe-Mn-Al-C are greater than RHA. 
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Table 5.  Comparison of compressive strengths of two heat treated conditions between a 

1% silicon containing Fe-Mn-Al-C alloy and RHA tested at 3000 s-1 strain rate. 
 

Alloy 

Low Hardness Heat Treat Condition 
1% Si –  224 BHN 
RHA –  224 BHN 

High  Hardness Heat Treat Condition 
1% Si – 343 BHN 
RHA –  352 BHN 

Yield Strength Ultimate Strength Yield Strength Ultimate Strength 
1% Si 950 MPa 1,552 MPa 1,334 MPa 1,651 MPa 
RHA 1,100 MPa 1,349 MPa 1,500 MPa 1,500 MPa 

 
 
 
 

Table 6.  Comparison of specific compressive ultimate strengths of two heat treated    
conditions between a 1% silicon containing Fe-Mn-Al-C alloy and RHA tested at      

3000 s-1 strain rate. 
 

Alloy Density 
Specific Strength  
1% Si – BHN 224  
RHA – BHN 224 

Specific Strength  
1% Si – BHN 343  
RHA – BHN 352 

1% Si 6.7 g/cm3  231 MPa/ρ  246 MPa/ρ  
RHA 7.8 g/cm3  173 MPa/ρ  192 MPa/ρ  

 
 
 
 
Frommeyer and Brux conducted a split Hopkinson bar investigation of a Fe-

26Mn-11Al-1.1C alloy aged at 550°C for 16 hours.11  As shown in Figure 24, the age 

hardened alloy also showed an increasing yield strength and decreasing failure strain with 

increasing deformation rate similar in fashion to that observed for the solution treated 

material studied by Chiou et al.58    
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Figure 24.  Strain rate dependency of strength and ductility is shown for a Fe-26Mn-
11Al-1.1C alloy aged at 550°C for 16 hours.  Tensile stress, yield stress, total elongation, 
and uniform elongation were plotted against strain rates from 10-4 s-1 to 103 s-1.  The alloy 
strengthens with a corresponding strain loss for increasing strain rates.  At the highest 
measured strain rate ~103 s-1, tensile stress reaches a maximum value ~1100 MPa and 
uniformly elongates to ~38%.11 

 

 

 

In the aged condition, Frommeyer and Brux reported a yield strength, tensile 

strength and a uniform strain of 950 MPa, 1100 MPa and 37% at a strain rate of 103 s-1 

which was the maximum strain rate tested.  The strain rate sensitivity was higher for this 

Fe-Mn-Al-C alloy than for conventional deep drawing steels within the strain rate range 

of 10-1 to 101 s-1. Additionally, the authors reported a specific energy absorption of 0.43 

J/mm3.  By comparison, conventional deep drawing steels have an energy absorption 

range between 0.16 and 0.23 J/mm3. 
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4.11 Electrical Resistivity and Thermal Conductivity 

 Manganese and aluminum additions increase the electrical resistivity of Fe-Mn-

Al-C alloys.59  Charles and Issi59  measured electrical resistivity as a function of 

manganese content and aluminum content.  Eight Fe-Mn-Al-C compositions (Table 7 

were tested in the temperature regime -204°C > T > 27° C (see Figure 25).     

 
 
 

Table 7.  Fe-Mn- Al-C Chemical Compositions for Electrical Resistivity Investigation. 

Alloy Fe Mn Al C 
A Bal 29 - - 
B Bal 39 - - 
C Bal 44 - - 
D Bal 32 2.5 - 
E Bal 29 5 - 
F Bal 34 5 - 
G Bal 40 5 - 
H Bal 30 6 0.3 
I Bal 30 8 1 

 
 
 
 

Manganese increases resistivity by 1.5 x 10-6 Ω per wt.% added.  Binary Fe-Mn alloys 

were more conductive than ternary Fe-Mn-Al or quaternary Fe-Mn-Al-C compositions.  

The resistivity is nearly constant for alloys with 5% aluminum, but resistivity decreases 

with increasing temperature for alloys containing carbon and with aluminum contents 

greater than 5%. 
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Figure 25.  Resistivity is plotted for nine Fe-Mn-Al-C compositions (Table 6) as a 
function of temperature.  Increased amounts of manganese and aluminum increases the 
electrical resistivity of Fe-Mn-Al-C alloys.  Binary Fe-Mn compositions show a linear 
resistance increase with temperature versus aluminum containing specimens that show a 
decrease in electrical resistance for increasing temperatures.59 

 
 
 
 
 Thermal conductivity measurements59  show binary Fe-Mn alloys possess greater 

thermal conductivity than ternary Fe-Mn-Al compositions (see Figure 26).  Charles and 

Issi determined that aluminum substitutions into the matrix contribute lattice 

imperfections responsible for phonon scattering resulting in lower thermal conductivity.   
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Figure 26.  Thermal conductivity is shown for Fe-32Mn (A), Fe-36Mn (B), Fe-32Mn-
2.5Al (C), and Fe-29Mn-5Al (D).  Thermal conductivity increases with reductions of 
aluminum and manganese, and all compositions showed a parabolic increase for 
increasing temperature.59 

 
 
 
 
5.  Fe-Mn-Al-C-X ALLOYS 

Research to improve the mechanical properties and microstructure of Fe-Mn-Al-C 

by alloy addition has been conducted by numerous investigators.  The most common 

addition studied has been silicon45,46,55,60-63, but boron12, vanadium12,13,64, niobium13,64, 

molybdenum12,54,64, chromium55, nickel32, and zirconium12 have also been investigated.  

Chromium and nickel additions were covered in previous sections of this paper. 

Silicon has shown the greatest influence and benefit to microstructural 

development and mechanical properties of the Fe-Mn-Al-C alloys studied thus far.  In the 

age hardened condition, silicon reduces the matrix lattice parameter and has been shown 

to eliminate β-Mn formation even after isothermal times at temperatures up to 900 

°C.35,61  In place of β-Mn, silicon promotes the formation of B2 and/or DO3 precipitates 
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in conjunction with κ-carbide that precipitates along austenite grain boundaries.35  The 

nucleation sequence of B2 and DO3 was not stated.  A Kurdjimov-Sachs relationship 

between the к-carbide and the DO3 has been reported.60-63  Figure 27 is the time 

temperature transformation diagram for a 1.25% silicon containing alloy.61  The regions 

on the diagram are divided to include a mapping of the grain structure morphology. 

Chemical modulation occurs in area 1 followed by homogeneous к-carbide precipitation 

in Area 2.  Area 3 corresponds to both grain boundary formation of к-carbide and a DO3 

or B2 precipitate.  Area 4 represents a discontinuous reaction product of grain boundary 

к-carbide, DO3 and/or B2 precipitates.  All equilibrium phases are present in Area 5; and 

for alloys without silicon, precipitation of β-Mn is included as Area 6.  As expected, 

higher temperatures result in faster kinetics.  Aging at 500°C and below greatly extends 

the time until grain boundary precipitation occurs.  Prodhan and Chakrabarti36 identified 

a grain boundary precipitate as a Mn12Si7Al5 compound. 

Acselrad et al. studied the mechanical properties of a Fe-29.4Mn-8.8Al-1.33Si-1C 

alloy.65  After solution treating at 1050°C and water quenching the yield strength, tensile 

strength, and elongation to failure were 620 MPa, 871 MPa, and 77%.  Upon aging at 

550°C for 15 hours the yield strength, tensile strength and elongation to failure were 884 

MPa, 1210 MPa and 15%.  In contrast, a similar alloy without silicon (Fe-31.9Mn-8.5Al-

0.9C-0.2Mo) was studied in the solution treated state.12  The non-silicon alloy had a yield 

strength, tensile strength and elongation of 360 MPa, 820 MPa and 64%; and, after aging 

for 16 hours at 550°C the tensile strength was 1000 MPa with 40% elongation.  

Addition of silicon has also been investigated in the development of Fe-Mn-Al-C 

alloys for lightweight steel castings. Recent work by Howell et al. found that silicon 
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additions up to 2.25 wt.% in Fe-30Mn-9Al-1C alloys lower the melting temperature from 

1390°C to 1325°C.67  At equivalent pouring temperatures, silicon additions increase the 

fluidity greatly, but on a superheat basis silicon has no effect on fluidity (see Figure 28).  

The Fe-Mn-Al-C alloys are comparable to ductile irons with respect to fluidity and 

melting temperature.  The increased fluidity may be a result of the high manganese 

content and the addition of silicon reduces the melting temperature.  

 
 
 

 

Figure 27. Time temperature transformation for a 1.25 wt.% Si modified Fe-Mn-Al-C 
alloy is subdivided as follows: 1) chemical segregation and zone formation, 2) matrix к-
carbide nucleation and growth, 3) heterogeneous matrix к-carbide formation and grain 
boundary к-carbide and DO3 or B2 precipitation, 4) continued growth and decomposition 
forming discontinuous segmented phases of к-carbide, DO3, and B2, 5) final equilibrium 
phases, and 6) β-manganese for non-silicon containing alloys.65 

 
 
 
 

Molybdenum additions to Fe-Mn-Al-C alloys have been investigated for carbide 

formation and strength contributions.  For a Fe-24.6Mn-6.6Al-3.1Mo-1.0C alloy, Peng et 

al. observed precipitation of complex carbonitrides of the M6C or M23C6 type within the 
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austenite grain upon aging at 700°C.65  M6C or M23C6  type carbides are aligned 

crystallographically with close packed planes parallel to {111} of the austenite.  Liu et al. 

reported M2C type carbide precipitation within the austenite matrix after aging an 

identical Fe-24.6Mn-6.6Al-3.1Mo-1.0C alloy at 550°C for 36 hours.68  Neither Peng et 

al. nor Liu et al. reported precipitation of κ-carbide during aging.  Kalashnikov et al. 

reported tensile strengths greater than 1150 MPa on a 0.6% molybdenum containing Fe-

29Mn-9Al-0.9C  alloy.13  The alloy was rolled, solution treated at 1050°C, and aged at 

550°C for 16 hours.  When alloyed with 0.4% molybdenum and 0.6% tungsten (and after 

aging for 16 hours 550°C) tensile strength increased slightly to values above 1160 MPa.  

 
 
 

 

Figure 28.  Fluidity spiral lengths for Fe-Mn-Al-C-XSi alloys and low alloy steel versus 
(a) pouring temperature and (b) superheat.  Melting temperatures for each alloy are 
shown in (a) at zero spiral length. 
 
 
 
 

Vanadium and niobium are effective grain refiners in Fe-Mn-Al-C alloys.13,64  

Vanadium  concentrations above 0.75% in a Fe-29Mn-9Al-0.9C alloy proved to be an 
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effective grain pinning agent up to 1180°C.13  Niobium carbide was less effective as a 

grain refining agent since these carbides could not be precipitated to affect 

recrystallization during hot working.  Kim et al. measured mechanical properties of a hot 

rolled Fe-30Mn-5Al-0.3C alloy modified with either 0.1% vanadium or 0.1% niobium.64  

The niobium modified alloy produced higher strength and ductility than either the 

vanadium modified alloy or the base material.  The niobium containing alloy 

demonstrated greater impact toughness than the vanadium containing alloy or a 9% 

nickel steel at testing temperatures from 0 to -200°C.  However, the unmodified Fe-Mn-

Al-C base alloy had the highest impact energy in the same temperature range.  Strength 

and ductility of the niobium containing Fe-Mn-Al-C alloy increased with decreasing 

testing temperature (see Figure 29).  For example, yield strength was 944 MPa and 

elongation to failure was 57% at a temperature of -196° versus room temperature tested 

values of 600 MPa and 29%. 

 
 
 

 

Figure 29.  A homogenized and cold rolled Fe-30Mn-5Al-0.3C-0.1Nb alloy’s nominal 
stress strain data is shown for testing at various temperatures.  The alloy exhibited higher 
strength and ductility corresponding to decreasing testing temperatures.  Maximum 
tensile strength of 1100 MPa and failure strain of 57% was achieved at -196°C.64 
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  Zirconium and boron additions were investigated by Han et al.12  In a Fe-33.5Mn-

8.24Al-0.9C alloy, the addition of 0.27% zirconium proved to be an effective grain 

refining agent up to a processing temperature of 980°C.  However, in the solution treated 

state, the zirconium addition reduced ductility.  The addition of 0.007% boron promoted 

β-Mn precipitation at the grain boundary resulting in a decrease in peak aging time and 

ductility.  The investigators concluded that neither of these alloy additions contributed 

significant benefits to the base alloy composition.  

6.  CONCLUSION 

 The Fe-Mn-Al-C system comprises a very property-flexible family of alloys.  

Typical compositions are in the range of 18 to 30 wt.% Mn, 5 to 12 wt.% Al, and 0.7 to 

1.2 wt.% C, with the balance being Fe.  Solution treated alloys with sufficient C and Mn 

have a fully austenitic microstructure.  Aging produces equilibrium phase constituents of 

austenite, ferrite, κ-carbide, and β-Mn.  κ-carbide, an E21 perovskite precipitate, is 

responsible for strength increases during aging.  Aging below 650°C precipitates κ-

carbide in a homogeneous fashion throughout austenite and over aging produces 

heterogeneous grain boundary phases deleterious to mechanical properties.  Mechanical 

properties range from a solution treated 350 MPa yield stress with elongation to failure as 

high as 77% to alloys with tensile strengths greater than 2 GPa.  Fe-Mn-Al-C alloys can 

also be engineered to have a higher work hardening rate than AISI 304 stainless steel.  

The Fe-Mn-Al-C alloys are susceptible to stress corrosion cracking and hydrogen 

embrittlement. Alloy additions of silicon and refractory elements are beneficial to both 

tensile and fatigue performance.  The addition of silicon has been shown to prevent the 
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formation of β-Mn during age hardening, improving age hardening behavior and strength, 

and increased castability over non silicon alloyed Fe-Mn-Al-C steels.     

This material review is part of an ongoing investigation focused on evaluating Fe-

Mn-Al-C alloys to replace traditional quench and tempered AISI 4130 cast steels.  

Density reduction up to 17% and excellent high strain rate deformation behavior make 

this alloy family an interesting candidate for select cast steel armor components. 
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ABSTRACT 
 

Fe-Mn-Al-C steels show promise as lightweight steel for thin-walled casting 

production.  A nominal Fe -30wt.%Mn -9wt.%Al -0.9wt.%C alloy was modified with 

0.3, 0.82, 1.36 and 2.24 wt.% Si.  Standard fluidity spirals were cast and compared with a 

low alloy steel. Silicon increased the cast spiral length for equivalent pouring 

temperatures, and all Fe-Mn-Al-C-Si alloys had longer spiral lengths than the low alloyed 

steel.  Thermal analysis was used to determine that silicon additions lowered liquidus, 

dendrite coherency point (DCP), and solidus temperatures by approximately 30°C per 

wt.% Si.  Spiral lengths were 70% longer for the Fe-Mn-Al-C-Si alloys than for low 

alloyed steel at 150°C superheat.  Cast Fe-Mn-Al-C-Si alloys had duplex microstructures 

of austenite and up to 16 vol.% ferrite.  At 0.82 wt.% Si, the as-cast microstructure was 

nearly all austenite and a fully austenitic microstructure was obtained when solution 

treated above 950°C.      

INTRODUCTION 

High manganese steels such as Hadfield’s steel have a long history of successful 

application where high wear resistance and impact toughness is required1,2.  In the last 

fifty years it was discovered that predominately austenitic steels could be produced with 

additions of manganese and aluminum; and, that these steels were age hardenable when 

the aluminum and carbon contents were greater than 5% and 0.3%, respectively3,4.  All 

compositions are reported in weight percent (wt.%).  These Fe-Mn-Al-C based steels 

show excellent ductility with greater than 80% strain to fracture when solution treated to 

produce either a fully austenitic or duplex (austenite and ferrite) microstructure. In the 

age-hardened condition, these same steels have yield strengths greater than 1,000 MPa 
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and ductility in excess of 10%.  Elastic properties, however, have not been reported5,6.  In 

addition, the Fe-Mn-Al-C steels have low density (6.5 to 7.2 g/cm3) and good corrosion 

resistance5.   It is for these reasons during the late 1970s that extensive research was 

conducted to investigate austenitic Fe-Mn-Al-C alloys for potential replacement of higher 

cost Cr-Ni stainless steels3,7.  Most of the early research conducted on the Fe-Mn-Al-C 

steels focused on wrought products for the transportation industry.  Fe-Mn-Al-C alloys 

are designated as second generation advanced high strength steels.  Alloys with a 

chemistry of 30% Mn, 9% Al, and 1% C are often referred to as TRIPLEX alloys, since 

they have a three phase microstructure of austenite, ferrite and κ-carbide when age 

hardened5.  

TRIPLEX steel forms a duplex microstructure of primary austenite with 10-15 

vol.% ferrite upon solidification.  The final ferrite content is controlled by the 

homogenization or solution treatment temperature with less ferrite appearing as the 

solution temperature is increased.  The most common temperature for either 

homogenization or solution treatment is at or above 1050°C for periods in excess of 2 

hours.  The wrought product will have an austenitic grain structure that contains 

annealing twins and islands of ferrite that form bands parallel to the principal rolling 

direction.  Upon aging, κ-carbides form homogenously throughout the austenitic phase.  

The κ-carbide has a perovskite E21 structure of the form (Fe,Mn)3AlC, which is coherent 

with the austenite matrix5,8,9,10.  The homogeneous distribution of κ-carbide is believed to 

result from a spinodal decomposition related to carbon and aluminum15 and the most 

common aging treatment reported is 16 hours at 550° C1-3,5,6,11-14.  Aging beyond 16 

hours at 550°C produces embrittlement resulting from κ-carbides forming continuous 
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films on grain boundaries and from the formation of β-Mn.  Addition of 1.36% Si has 

been shown to be beneficial in preventing β-Mn formation; however, silicon promotes 

the formation of B2 and/or DO3 compounds16.  The effect of silicon upon the mechanical 

behavior has not been reported.  However, for a wrought TRIPLEX steel that has been 

aged 16 hrs at 550°C, the tensile strength exceeds 1,100 MPa, the elongation to failure is 

40%, and the Charpy impact energy is as high as 100 J/cm2 in a U-notch specimen11.  As 

strain rates increase to 103 s-1, these TRIPLEX steels increase in yield strength and 

ductility decreases.  Solution treated materials will exhibit dynamic yield strengths 

greater than 1,000 MPa and still show significant ductility with elongation to failure up to 

40%17.  The enhanced plasticity has been related to adiabatic shear-band induced 

plasticity5.  The light-weight and high energy absorbing characteristics make these 

materials interesting candidates for military castings.   

 Significantly less work has been performed on cast Fe-Mn-Al-C alloys.   Prodham 

and Chakrabarti investigated cast Fe-Mn-Al-C-Si alloys4 and their work looked at mold-

metal interactions for sodium silicate and resin bonded sand, phase composition and 

hardness of cast, homogenized, and aged microstructures.  They concluded for cast Fe -

30%Mn -x%Al -y%C -1.36%Si that low aluminum (5%) and low carbon (<1%) contents 

produced moderate aging, but higher aluminum contents of 7.5 to 10% produced rapid 

age hardening in the temperature range of 500 to 800° C.  After long aging times of 30 

hrs at 500°C, an Mn12Si7Al5 intermetallic phase was reported in addition to the austenite, 

ferrite, and κ-carbide phases. The Mn12Si7Al5 intermetallic phase was observed to 

precipitate at ferrite/austenite boundaries and followed precipitation of the κ-carbide.  

Formation of β-Mn was not reported.  Prodham and Chakrabarti reported that the as-cast 
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and homogenized microstructures of Fe -30.5%Mn -9.8%Al -0.91%C -1.47%Si were 

predominately austenite with minor volume fractions of ferrite.  

Research reported in this paper is part of an ongoing investigation of silicon 

containing TRIPLEX alloys for steel castings.  A Fe -30%Mn -9%Al -0.9%C 

composition was chosen based upon the TRIPLEX alloy optimization studies of 

Kalashnikov et al.11.  The current research was aimed at studying the effect of silicon on 

castability and phase composition for the cast, homogenized, and solution treated 

conditions.  As a part of the castability studies the liquidus and solidus temperatures for 

silicon contents of 0.30%, 0.82%, 1.36% and 2.24% were determined by thermal analysis 

using a single thermocouple and differential thermal analysis (DTA).  Thermal analysis 

was used to determine the liquidus and solidus temperature, solidification kinetics, and 

the dendrite coherency point (DCP) for the silicon modified Fe-Mn-Al-C alloys.  The 

DCP was calculated from the thermal analysis data using the methodology of Stefanescu 

et al.18-22 and Jiang et al.23  The DCP is a useful parameter in computational solidification 

modeling and designing patterns for casting.  Its importance has been widely recognized 

because DCP marks the transition from mass flow to interdendritic feeding and when 

mold filling stops.  Standard fluidity spirals were poured for a lower alloy steel and 

silicon modified TRIPLEX compositions.  Fluidity data on the low alloy steel provides a 

baseline of comparison for steel foundries trying to cast the TRIPLEX alloys.  Austenite 

phase composition of cast, homogenized, and solution treated materials was determined 

for subsequent alloy optimization and mechanical testing that will be reported in a future 

paper. 

 



69 
 

EXPERIMENTAL PROCEDURE 

Alloys were prepared in a 100 lb induction furnace under argon gas cover.  High 

purity induction iron, Al, and C were used in conjunction with additions of 

ferromanganese, ferrosilicon, and ferromolybdenum.  A recovery rate of 95% was 

utilized for the manganese and aluminum based on previous results.  The furnace was 

initially charged with Al, C, ferrosilicon, ferromolybdenum, and 30% of the induction 

iron.  After the initial charge liquefied, the remainder of the induction iron was added to 

the melt.  Ferromanganese was added in the furnace last to ensure maximum solubility in 

the alloy melt and minimize losses by vaporization and slag formation.  A solid 

electrolyte sensor was used to measure the active oxygen contents, which were all less 

than 2 ppm due to the high Al content for the TRIPLEX alloys.  Thus, no additional 

deoxidation practice was required at tapping.  Melt stirring was limited to that provided 

by induction heating, natural convection, and by pouring from the furnace to the ladle and 

casting.  Deslagging occurred through application of a low density granular coagulant. 

Each heat was poured into a series of five fluidity spiral molds, a rectangular 

block mold, and a thermal analysis cup.  These molds were made using phenolic urethane 

no-bake (PUNB) silica sand and subsequently coated with a zircon wash.  Cope and drag 

sections were glued together and weighted during pouring to prevent cross filling 

between spiral rings.  A constant head height of 15 cm was maintained for all fluidity 

spiral tests.  The spiral mold was 160 cm in length with a cross sectional area of 1.1 cm2.  

S-type (Pt-Pt/Rd) thermocouples were used for temperature measurement in the ladle just 

before pouring. 
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The heat chemistries are listed in Table 1 as determined by inductive coupled 

plasma mass spectrometry backed up with wavelength dispersive spectrometry for the 

Fe-Mn-Al-C-Si alloys and by arc spectrometry for the low alloy steel.  The target 

chemistry of the low alloy steel was AISI 4130 but higher levels of Mn, Al and Si were 

obtained because this heat was produced between heats of Fe-Mn-Al-C-Si using the same 

furnace lining. 

Two types of thermal analysis were performed. The first one included thermal 

analysis of casting solidification.  Open type thermal analysis cups (5 cm in diameter 5 

cm in depth) made from PUNB silica sand had an exposed Pt-Pt/Rd thermocouple in the 

cavity bottom.  Temperature and time data were recorded using a digital acquisition 

system.  This data was used to compute solidus and liquidus temperatures plus the 

dendrite coherency point.  The second method used a standard DTA system; the purpose 

of which was to verify data obtained from the open thermal analysis for liquidus and 

solidus temperatures.  DTA samples were prepared from machining chips and melted in 

alumina crucibles under a flowing argon gas environment.  DTA measurements were 

conducted at a heating and cooling rate of 10°C/minute and a sample size of 200 mg.  

The reported liquidus and solidus temperatures from DTA represent the average obtained 

from the heating and cooling curves and are in reasonable agreement with the thermal 

analysis data.  Differences in the reported temperatures may be related to the small 

sample used in DTA and variations in the casting chemistry where the DTA sample 

material was taken.  Both methods were calibrated by using the solidification point of 

copper. 
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The volume fraction of non-austenitic phases was determined using optical 

microscopy and computer image analysis software.  All heat treatments were performed 

using chemically coated stainless steel bags to prevent decarburization and oxidation.  

Homogenization was performed on each alloy at 1050°C for two hours with subsequent 

water quenching.  Solution treatment was performed at 900, 950, 1000 and 1050 °C for 

an additional two hours with subsequent water quenching.  Metallographic specimens 

were etched with 2% Nital, and optical images were recorded using a differential 

interference contrast technique.  

 
 
 

Table 1.  Chemical Composition of Cast Steels (weight percent) 
Fe-Mn-Al-C-Si Alloys 

 
Si Mn Al C Mo Fe 

0.30 27.3 8.36 0.65 0.42 Bal 
0.82 29.87 8.81 0.97 0.44 Bal 
1.36 27.96 8.7 0.85 0.43 Bal 
2.24 29.3 9.06 0.87 0.45 Bal 

 
Low Alloy Steel 

 
Mn Cr Si C Al Mo Fe 
2.52 1.02 0.86 0.45 0.99 0.22 Bal 

 
 
 
 

RESULTS 
 
THERMAL ANALYSIS 
 

Thermal analysis data for the Fe-Mn-Al-C-Si alloys are shown in Figure 1 after 

being temperature corrected using the copper standard.  Liquidus and solidus 
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temperatures were determined by examining the cooling curves together with the first 

derivative of temperature with respect to time.  With the exception of the 2.24% Si 

containing alloy, the cooling curves all reflect a definitive solidus temperature as 

observed by the final thermal arrest in the cooling curves.  The 2.24% Si containing alloy 

exhibited considerable undercooling to 1240°C, which was followed by recalescence to 

1275°C.  The base Fe-Mn-Al-C alloy (0.3% Si) exhibited liquidus and solidus 

temperatures of 1395 and 1333 °C.  Increasing concentrations of Si from 0.3% to 2.24% 

depressed both the liquidus and solidus temperatures at a rate of 30°C /% Si.  Liquidus 

and solidus temperatures determined from thermal analysis and DTA are given in Table 2 

and each thermal technique shows that silicon lowers the liquidus and solidus 

temperatures.  The cooling curves obtained from thermal analysis were used to determine 

solidification kinetics and DCP.     

 
 
 

Table 2.  Liquidus and Solidus Temperatures as Determined by Thermal Analysis and 
Differential Thermal Analysis  

 
Si Content 

(weight 
%) 

Thermocouple Data (°C) Differential Thermal Analysis (°C) 

Liquidus Solidus ΔT Liquidus Solidus ΔT 

0.3 1395 1333 58 1376 1309 67 
0.82 1353 1309 50 1365 1312 53 
1.36 1343 1247 96 1326 1268 58 
2.24 1317 1275 42 1306 1242 64 

   
 



73 
 

 
 (a) (b) 

  
 (c) (d) 

 
Figure 1. Cooling curves for Si modified Fe-Mn-Al-C alloys highlighting liquidus (TL), 

solidus (TS), and undercooling (TU) temperatures for (a) 0.3 % Si (b) 0.82 % Si 
(c) 1.36 % Si and (d) 2.24 % Si alloys. 

 
 
 
 
ALLOY FLUIDITY   

Liquidus temperatures and calculated superheats were based upon the thermal 

analysis data, since pouring temperatures were measured in a similar fashion using the 

same thermocouple type.  Figure 2 shows the spiral lengths cast as a function of pouring 

temperature and superheat for the Fe-Mn-Al-C-Si alloys and the low alloy steel.  Data 

was collected starting at the highest pour temperature and allowing the melt in the ladle 
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to cool.  The first and second spirals cast were in general shorter in length than 

subsequent spirals cast at lower pouring temperatures and were not included in 

establishing the trend lines shown in Figure 2.   

 
 
 

 
 (a)                                                                                   (b) 
 
Figure 2. Fluidity spiral lengths for Fe-Mn-Al-C-Si alloys and low alloy steel versus (a) 

pouring temperature and (b) superheat.  Melting temperatures for each alloy are 
shown in (a) at zero spiral length. 

 
 
 
 
These short fill lengths at the beginning of each heat were believed to result from 

excessive heat loss to the ladle pouring lip; and thus, the actual superheat was less than 

that determined based upon the measured liquid temperature inside the ladle.  In general, 

the Fe-Mn-Al-C-Si alloys exhibited greater fluidity than the low alloy steel.  However, 

the 0.99% aluminum content of the low alloy steel may have adversely affected the 

fluidity24,25.  The 2.24% Si alloy exhibited the highest fluidity at an equivalent pouring 
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temperature, but silicon had little effect on the fluidity spiral length when the Fe-Mn-Al-

C-Si alloys were compared on the basis of superheat. 

CAST AND SOLUTION TREATED TRIPLEX MICROSTRUCTURES 

Cast microstructures were primarily a mixture of austenite and ferrite (see Figure 

3).  Addition of silicon had three major effects upon the cast microstructure.  First, the 

addition of silicon reduced the secondary dendrite arm spacing (as measured by the mean 

distance between the ferrite) from approximately 80 µm in the 0.3% Si alloy to 40 µm in 

the 2.24% Si alloy.  Second, the volume fraction of ferrite was reduced in all of the Si 

containing alloys with a minimum in the ferrite content observed for the 0.82% Si alloy.  

And third, the 0.82%, 1.36%, and 2.24% Si bearing alloys exhibited a forth phase that 

appeared within the ferrite or at the ferrite and austenite interface and was most evident in 

the 1.36% and 2.24% Si containing alloys.  The 2.24% Si cast alloy also exhibited a 

darker etching contrast typical of age hardened Fe-Mn-Al-C alloys6. 

Each Fe-Mn-Al-C-Si alloy was homogenized for 2 hours at 1050°C and 

subsequently water quenched.  Homogenized alloys were solution treated at 900, 950, 

1000 and 1050 °C for two additional hours and again quenched in water.  The austenite 

content after solution treatment was determined for each alloy, and these results are 

reported in Figure 4.  Solution treating the Fe-Mn-Al-C-Si alloys at 1000°C and 1050° C 

produced the highest volume fractions of austenite.  There was no evidence of either 

intermetallic or carbide phases in these high temperature solution treated microstructures.  

The large decrease of austenite in the 2.24% Si alloy at 900 and 950° C was caused by a 

combination of increasing ferrite content and the precipitation of an intermetallic phase.   
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  (a) (b) 
 

      
 (c)  (d) 
 
Figure 3. As-cast Fe-Mn-Al-C-Si alloy microstructures of (a) 0.3 % Si (b) 0.82 % Si c) 

1.36 % Si d) 2.24 % Si containing alloys.  The 0.3% Si alloy contains primary 
austenite (γ) and interdendritic ferrite (F).  Nonmetallic inclusions polish in 
relief and appear as raised portions. The 0.82% Si reveals a finer interdendritic 
structure with smaller islands of ferrite.  A very fine intermetallic phase is 
located along the austenite and ferrite interfaces.  The 1.36% Si alloy has as fine 
a dendritic structure as the 0.82% Si alloy, but contains more ferrite and 
intermetallic phase.  The intermetallic phase is best observed in the 2.24% Si 
which also shows the к-carbide as the central, darker etching region in the 
austenite.  Secondary dendrite arm spacing (SDAS) decreased as determined 
from spacing of interdendritic ferrite from 80 µm for 0.3 % Si containing alloy 
to 40 µm in the 2.24 % Si alloyed steel. 
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Figure 4. Austenite volume fraction as a function of solution treating temperature for Fe-
Mn-Al-C alloys containing 0.3 %, 0.82 %, 1.36 %, and 2.24 % Si. 

 
 
 
 
Microstructural comparisons of the solution treated alloys that are deemed significant are 

reported in Figures 5, 6 and 7.  In Figure 5, the low silicon containing alloy (0.3% Si) is 

compared with an alloy containing 1.36 % Si to show that the amount of ferrite is 

drastically reduced after solution treatment at 1050° C.  These microstructures would also 

be typical of those observed after homogenization.  A detailed study of the low-silicon 

containing alloy shows that the ferrite is being dissolved into the austenite at 1050°C as 

evidenced by the concavity (center of curvature in the austenite) of the ferrite and 

austenite interface. 
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 (a) (b) 
 
Figure 5. Microstructure of Fe-Mn-Al-C steels with (a) 0.3 % Si and (b) 1.36% Si, 

homogenized and solution treated at 1050°C.  The concave shape of the 
austenite and ferrite interface reflects austenitic growth at 1050°C in 0.3 % Si 
alloy.  Ferrite (F) is isolated as small islands throughout the austenitic matrix for 
the 1.36 % Si alloy.  

 
 
 
 

The 0.82% Si containing alloy had small islands of ferrite at 900°C (see Figure 6(a)) 

whereas this same alloy was fully austenitic at 1000°C (see Figure 6(b)). Alloys with 

higher silicon content, 1.36% and 2.24%, had nearly identical volume fractions of 

austenite and ferrite at the higher solution temperatures of 1000 and 1050 °C, but 

deviated greatly from each other at the lower temperatures of 900 and 950 °C.  Figure 7 

compares the 2.24% Si alloy at 950°C and 1000°C.  At 950°C the growth of ferrite and 

the precipitation of an intermetallic phase is apparent whereas the alloy remains 

predominately austenite with 2 vol.% ferrite at 1000°C.  The intermetallic phase appears 

as prism-rods precipitated along austenite and ferrite boundaries, grain boundaries, and 

throughout the austenite phase (see Figure 7(a)).  No evidence of the intermetallic phase 

was observed after solution treatment at 1000°C as shown in Figure 7(b), where the 

microstructure consisted of austenite, small islands of ferrite, and nonmetallic inclusions.  

pinning 
agent 

F 
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 (a)  (b) 
 
Figure 6.  Microstructure of Fe-Mn-Al-C steels with 0.82 % Si solution treated at (a) 

900°C showing the formation of  small ferrite (F) islands and (b) at 1000°C that 
produced a fully austenitic structure upon quenching.  

 
 
 
 

      
 (a) (b) 
 
Figure 7. Microstructure of Fe-Mn-Al-C steels with 2.24% Si solution treated at (a) 

950°C and (b) 1000°C.  Intermetallic phase(s) are shown in (a) as prism-rod 
features precipitated along austenite and ferrite boundaries, grain boundaries, 
and throughout the austenite phase.  (b) At 1000°C only small islands of ferrite 
(F) and nonmetallic inclusions are observed.   
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DISCUSSION 

The most significant effect of adding silicon to the Fe -30%Mn -9%Al -0.9%C 

composition was the depression of the liquidus and solidus temperatures, which was 

corroborated by both thermal analysis of castings and DTA methods.  Both liquidus and 

solidus temperatures decreased at a rate of approximately 30°C per wt.% of silicon 

added.  The solidification range (ΔT) for each alloy remained constant at approximately 

60 ± 5°C.  It should be noted that the large solidification range (96°C) determined by 

thermal analysis of the 1.36% Si casting was the result of a casting void around the 

embedded thermocouple. At the highest silicon content of 2.24%, the thermal analysis 

data exhibited significant undercooling reminiscent of eutectic solidification in graphitic 

irons.  However, no eutectic-like structures were observed in the Fe-Mn-Al-C-Si alloys. 

In an effort to better understand the fluidity behavior of the Fe-Mn-Al-C-Si 

alloys, the fraction of solid formed as a function of temperature was derived from the 

thermal analysis data using a Newtonian heat-flow analysis proposed by Stefanescu et 

al.16-20.  This method first determines a baseline for the specimen and its surroundings 

prior to the start of solidification and after solidification is complete.  This baseline is 

referred to as the zero line for the Newtonian heat transfer analysis using 

( ) 





=−

τ
ρ

d
dTCVTThA p0               Equation 1 

 
where h is the overall heat transfer coefficient, A is surface area of heat transfer, T is the 

instantaneous temperature of the specimen, T0 is the ambient temperature, V is the 

volume of specimen, ρ is density, Cp is specific heat, and dT/dτ is the cooling rate.  For 

this analysis,  the heat transfer coefficient, area, volume, density, and heat transfer 
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coefficient are assumed constant.  The zero line (Z) equation is an exponential function 

and can be fit to the first derivative (dT/dτ) of the thermal analysis data before and after 

solidification by a least squares method. The rate of latent heat liberation is proportional 

to the difference of the first derivative during solidification (dT/dτ) and the calculated 

value of the zero line (Z) using 







 −= Z

d
dTC

d
dQ

p ττ
              Equation 2 

 
To improve the precision of the solidification analysis, the equation of the zero line was 

also fitted to the first and second derivatives of the cooling curve after solidification 

(coefficients A3, A4) using the following 

4
4

3
321 )()()exp( startstart AAAAT τττττ −+−+=                    Equation 3 

 
The coefficients A3 and A4 account for different specific heat values for the liquid (CL) 

and solid (CS).  However the Newtonian heat analysis does not take into account the 

internal thermal gradient of the specimen and is limited to Biot numbers smaller than 0.1.  

The best results are achieved when the thermocouple is installed near the thermal center 

of a small sample and the minimum sample size is limited by the thermal inertia of the 

thermocouple.  From the Newtonian analysis, the fraction solid as a function of 

temperature was calculated for each alloy (see Figure 8).   
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Figure 8. Fraction of solid as a function of solidification temperature in Fe-Mn-Al-C steel 
with different Si contents.  

 
 
 
 

All four alloys show a sharp increase in initial solid fraction reflecting a rapid increase in 

solid content for a minimal change in temperature below the liquidus.  A delay in the 

final solidification is observed for the alloys containing the highest two Si contents, but 

only the 2.24% Si alloy exhibited undercooling and recalescence. The DCP for each alloy 

was calculated using a modified procedure originally developed by Jiang et. al.23 for 

thermal analysis using a single thermocouple.  The DCP is defined as the temperature at 

which an impinging dendrite network is formed.  This transition point marks the change 

from mass feeding to interdendritic feeding and establishes the onset of such phenomena 

as porosity formation, macrosegregation, and hot tearing.  Jiang et al. calculated the DCP 

as the minimum point of the second derivative of the cooling curve that occurs between 

the liquidus and solidus temperatures.  For the study presented here, the solid fraction 
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data and the second derivate were plotted as functions of time and temperature.  Figure 9 

is an example of this procedure for the 0.30% Si alloy.   

 
 
 

  
    (a)      (b) 
 
Figure 9. The fraction of solid as a function of (a) time and (b) temperature for the Fe-

Mn-Al-C steel with 0.30 % Si. The second derivative of the thermal analysis 
curve is shown in each figure.  The solid fraction is first determined in (a) as the 
fraction solid at the minimum in the second derivative.  The solid fraction from 
(a) is then used to determine the corresponding temperature in (b), which 
becomes the dendrite coherency point temperature.  

 
 
 
 
The solid fraction corresponding to the DCP was first determined from the time function 

using the minimum point on the second derivative curve (see Figure 9(a)).  The solid 

fraction was then used to determine the dendrite coherency temperature from the 

temperature plot (see Figure 9(b)). Table 3 and Figure 10 summarize the DCP 

temperature and solid fraction results for the Si modified Fe-Mn-Al-C alloys.  The overall 

trends show that increasing Si content decreases the DCP temperature with negligible 

change to the solid fraction at each alloy’s respective DCP.  Dendrite coherency 
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temperatures were subtracted from the liquidus temperatures and listed in Table 4 for 

each alloy.   

 
 
 

Table 3. Dendrite Coherency Point Temperature and Solid Fraction in Fe-Mn-Al-C-Si 
Steels 

 

Si (weight %) 
Dendrite Coherency 
Point Temperature (° 

C) 
Solid Fraction 

0.3 1395 0.38 
0.82  1351 0.33 
1.36  1341 0.34 
2.24  1316 0.32 

 
 
 

 
 

Figure 10. Dendrite coherency point temperature and solid fraction versus Si content.  
 
 
 
 



85 
 

Table 4.  Dendrite Coherency Point and Liquidus Temperatures in Fe-Mn-Al-C Steels 
with Different Si Content   

 

Si (weight %) 
Liquidus 

Temperature 
(° C) 

Dendrite 
Coherency 

Point 
Temperature 

(° C) 

ΔT (° C) 

0.3 1396 1395 1-2 
0. 82 1353 1351 2-3  
1.36  1343 1341 2-3  
2.24  1317 1316 1-2  

 
 
 
 
The results show that the DCP temperature is close to the liquidus temperature, but a 

significant time offset was observed as the latent heat was transferred from casting to 

mold before the dendrite network was established (see Figure 9(a)).  For Fe-Mn-Al-C-Si 

alloys, the DCP is less than the liquidus temperature by 1-3° C, which is 2-5% of the 

temperature range between the liquidus and solidus.  However, the time delay to establish 

the DCP is 30-40% of the total solidification time.  This may help explain why the 

fluidity spiral lengths were the same for all Fe-Mn-Al-C-Si alloys when measured against 

superheat, since each reached the DCP at roughly the same solid fraction and the same 

temperature below the liquidus.  A similar analysis for the low alloy steel is being 

pursued to help explain the increased fluidity of the Fe-Mn-Al-C-Si alloys.  Failure of the 

data acquisition system during the low alloy steel pour prevented the analysis for this 

paper.   

The solid fraction at DCP and the temperature difference between liquidus and 

DCP temperatures are consistent with values reported for Al alloys.  It should be noted 
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here that the solid fraction at DCP for aluminum alloys differ widely and can range from 

0.18 to 0.5626.  Emadi et al. reported  liquidus and DCP temperature differences of 1.4 °C 

to 1.8° C for Al-Si alloys and this difference decreased with increasing silicon content27.  

Fe-Mn-Al-C-Si alloys have two significant advantages relative to casting low 

alloy steel.  First, for an equivalent pouring temperature, a greater superheat is realized 

for the Fe-Mn-Al-C-Si alloys; and, second the Fe-Mn-Al-C-Si alloys have a nearly 70% 

increase in spiral length fill for an equivalent superheat and head height as compared to 

the low alloyed steel. Silicon addition would also be beneficial with respect to lower 

pouring temperatures, which would reduce mold-metal interactions and refine the cast 

microstructure.  Furthermore, small additions (~1%) of silicon will form a fully austenitic 

microstructure at lower solution treatment temperatures.  It is important to note here that 

the baseline TRIPLEX alloy was low in carbon content and this increased the proportion 

of ferrite during solidification.  Upon solution treatment, this low carbon composition 

also had more ferrite in the microstructure than would be observed for an alloy containing 

0.9% C.   However, the silicon alloys can be compared to the microstructures of 

TRIPLEX alloys previously reported4,5,8 and it may be concluded that the addition of 

silicon up to 1.5% has the beneficial effect of reducing the ferrite content in the solution 

treated condition.  At higher levels, such as the 2.24% Si alloy investigated, a decrease of 

austenite is observed at the lower solution temperatures of 900 and 950° C, which was 

related to the formation of additional α-ferrite and the precipitation of an intermetallic 

phase.  The effect of silicon on the stability of the austenitic structure is in agreement 

with previous cast microstructures and the intermetallic phase observed in this study may 

be the same phase reported as Mn12Si7Al54.  The studies presented in this paper provide 
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further guidance to selecting an optimum composition of silicon that should be between 

0.8 to 1.2 % Si.  Future microstructural and mechanical behavior studies should focus on 

a Fe-30Mn-9Al-1Si-0.9C composition. 

CONCLUSIONS 

Silicon additions to Fe-Mn-Al-C steels affects liquidus and solidus temperatures, 

fluidity, solidification, microstructural evolution of cast and solution treated alloys.  

Liquidus and solidus temperatures decrease for increasing amounts of Si by 30°C per 

wt.% Si.  All Si containing Fe-Mn-Al-C steels have increased fluidity over low alloyed 

steel; a 70% greater fill length is obtained at a superheat of 150°C.  At a fixed pouring 

temperature, the cast spiral length increased with increasing addition of silicon, but when 

compared on the basis of superheat, all of the Fe-Mn-Al-C-Si alloys produced equivalent 

spiral fill lengths.   The fluidity results appear to be related to the dendrite coherency 

point (DCP) temperature, which is within 3°C of the liquidus temperature for each of the 

Fe-Mn-Al-C-Si alloys. DCP temperatures dropped from 1395°C for 0.3% Si to 1315°C 

for 2.24% Si, but the DCP solid fraction is relatively constant between 30-40%.  

Increasing Si also reduces the secondary dendrite arm spacing with SDAS decreasing 

from 80 μm to 40 μm in the Si range investigated.  

Based upon the results reported here, the 0.82% Si alloy demonstrates the best 

balance of fluidity, phase composition, and microstructure.  Therefore, future studies will 

narrow the Si content between 0.82% and 1.36% for optimization of castability, strength, 

ductility, impact toughness, and age hardening. 
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ABSTRACT 

Age hardenable, castable, and lightweight Fe-Mn-Al-C steels are currently being 

developed and evaluated for substitution of high strength low alloy steel and to meet 

MIL-PRF-32269 criteria.  Two nominal Fe-30Mn-9Al-0.9C-0.5Mo steels were cast and 

modified with 1 and 1.4 wt.% silicon.  Aging, tensile, and high strain rate compression 

testing were performed on solution treated and aged samples of both chemistries.  Each 

alloy was solution treated at 1050°C for 2 hours.  Microstructures of the solution treated 

and aged alloys show primary austenite with less than 8 volume % ferrite.  The solution 

treated hardness of the low silicon steel was 230 BHN and the high silicon alloy was 225 

BHN.  Specimens were aged at 530° C for up to 60 hours.  Peak aging occurs after 30 

hours with a peak hardness of 371 BHN for the 1% silicon containing alloy and 377 BHN 

for the high silicon alloy.  Tensile strengths of the 30 hour aged specimens were 1065 

MPa (154 ksi) and 1080 MPa (156 ksi) for the low and high silicon alloys.  High strain 

rate compression testing was conducted on solution treated and 10 hour aged 1% Si 

containing alloy.  Compressive strength of the 1 wt.% Si alloy exceeded 1,500 MPa (217 

ksi) at a strain rate of 3000 s-1. 

INTRODUCTION 

Fe-Mn-Al-C alloys were developed as a substitute for austenitic nickel-chrome 

stainless steels by the U.S. Navy1.  Ham and Cairns designed the alloy with the intent of 

utilizing high aluminum content to provide corrosion resistance in an austenitic steel 

stabilized by manganese and carbon2.  These alloys contain 20-30% Mn, 7-12% Al, and 

0.7-1.2% C.  All chemistries are in weight percent.  The Fe-Mn-Al-C steels have been 

proven to show excellent ductility with greater than 80% fracture strain in the solution 
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treated condition2.  It was later shown that for aluminum content greater than 5% and 

carbon content greater than 0.3%, the Fe-Mn-Al-C alloys age harden by precipitation of 

the κ-carbide (see Figure 1).   Strengths in excess of 2,000 MPa (290 ksi) and Charpy 

impact toughness greater than 221 J (300 ft-lbs) have also been reported3,4.  Fe-Mn-Al-C 

alloys are 12-18% lighter than high strength low alloy steel8.  The high strength 

properties and low density combine for high specific strength.  It is for these reasons that 

recent studies have been conducted on wrought Fe-Mn-Al-C steels for automotive use as 

a high energy absorbing material in critical structural components due to their exceptional 

high strain-rate, work hardening behavior8.  

 
 
 

 

Figure 1.  Age hardened strength in Fe-Mn-Al-C alloys results from homogenous 
precipitation of the κ-carbide.  The к-carbide crystal structure is E21 and consists of 
aluminum atoms occupying corners of the unit cell, iron and manganese occupying the 
face centered positions, and carbon at the body center, i.e. { ½, ½, ½}.  
 
 
 
 

As-cast microstructures consist of primary austenite with 10 to 15 volume % δ-

ferrite.  Solution treatment can partially or completely dissolve the ferrite.  Solution 

treatment is typically performed at 1050°C for 2 hours5,6,7.  Wrought microstructures 

contain equiaxed austenite grains with annealing twins and bands of ferrite parallel to the 
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rolling direction.  When age hardened, κ-carbide precipitates homogeneously in the 

austenite to produce a three phase, or TRIPLEX microstructure8.  The κ-carbide is an E21 

perovskite crystal structure with chemical composition (Fe,Mn)3AlC where aluminum 

atoms occupy the lattice corner positions, iron and manganese at the face positions, and 

carbon at the octahedral {½, ½, ½} interstitial position.  The homogeneous precipitation 

of κ-carbide is believed to result from an initial spinodal decomposition involving 

aluminum and carbon9.  Most studies have used a 550°C aging temperature with an aging 

time of 16 hours10,11.  Aging beyond 16 hours embrittles the material by growth of κ-

carbide along grain boundaries and formation of β-manganese12.  The addition of silicon 

has been shown to prevent β-manganese by displacing manganese from the austenite to 

the κ-carbide13. 

In cast form, Howell et al. showed that Fe-Mn-Al-C alloys with up to 2.24% Si 

are primarily austenitic with less than 20% ferrite in the solution treated condition14.  

Thermal analysis was used to show that silicon additions lower the liquidus, dendrite 

coherency point, and solidus temperatures by 30°C per weight percent of silicon added, 

and that silicon additions increased fluidity as shown by the 70% increase in spiral length 

versus a low alloy steel at 150°C superheat.  In previous studies using silicon additions, 

Prodham and Chakrabarti reported rapid age hardening in a Fe-30Mn-XAl-YC-1.36Si 

with aluminum content between 7.5 and 10% and carbon less than 1%.  Precipitation of 

an Mn12Si7Al5 intermetallic was also observed at aging times longer than 30 hours at 

500°C. 

High strain rate compression testing has not been reported on cast Fe-Mn-Al-C 

alloys.  Wrought alloys in solution treated condition15 and aged condition8 have shown 
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compressive true strengths greater than 1,500 MPa (217 ksi) and true fracture strains 

exceeding 40% at strain rates between 103 s-1 and 104 s-1.  Fracture in this loading regime 

occurs by highly localized deformation bands or shear bands8.   The high deformation 

rate causes momentary localized high temperatures to occur within these bands16.  Low 

thermal conducting materials cannot dissipate the heat causing lower stress within the 

band.  This phenomenon has therefore been designated as adiabatic shear band (ASB) 

formation.  Solution treated Fe-Mn-Al-C alloys have demonstrated a resistance to 

fracture by adiabatic shear bands as work hardening occurs prior to shear localization15. 

The current investigation of silicon additions to Fe-Mn-Al-C alloys is part of an 

evaluation of these age hardenable, high strength, lightweight steel alloys for cast, 

perforated armor per MIL-PRF-3226917.  A nominal Fe-30-Mn-9Al-0.9C was chosen 

based on historic Fe-Mn-Al-C steel research showing high strength3 and a wrought 

mechanical property optimization study conducted by Kalashnikov et al.18  An aging 

curve was constructed for both alloys at 530°C, a temperature that constrains 

heterogeneous grain boundary precipitation of κ-carbide from occurring19.  From the 

530°C aging study, times were selected to produce a hardness within the prescribed MIL-

PRF-32269 acceptance range.  The dynamic properties of the cast Fe-Mn-Al-C-Si alloys 

were compared to those of rolled homogeneous armor on a specific strength basis.  The 

resultant tensile and dynamic properties are also a useful contribution to determining 

Johnson-Cook parameters for finite element analysis models. 

EXPERIMENTAL PROCEDURE 

Two heats with differing silicon contents were produced.  Specimen bars were 

cast into phenolic no-bake silica sand molds.  The molds were coated with a zircon wash 
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to prevent reaction between the manganese and the silica sand.  Cast bars measured 3 cm 

in diameter and 20 cm in length (see Figure 2).  A large center riser with 15 cm of head 

height over the mid section of the horizontal bar was also utilized as the down sprue.  No 

filter was used.  High purity induction iron, aluminum, carbon, ferromanganese, 

ferrosilicon, and ferromolybdenum were melted in a 45 kg (100 lb) induction furnace 

under argon cover.  A recovery rate of 95% was utilized for the manganese and 

aluminum.  The furnace was charged with aluminum, carbon, ferrosilicon, 

ferromolybdenum, and 30% by weight of the required induction iron.  After the charge 

liquefied, the remaining induction iron was added followed by the addition of the 

required ferromanganese.  A solid electrolyte sensor measured active oxygen contents.  

Both heats contained 2 ppm active oxygen.  No additional deoxidation practice was 

conducted.  Melt stirring was limited to the induction heating, natural convection, and 

pouring from the furnace to the ladle and casting.  Deslagging was conducted with a low-

density granular coagulant. 

Castings were solution treated in atmosphere at 1050°C for 2 hours, air-cooled, 

and then the gating was removed.  Round bars were machined in preparation for 

sectioning hardness specimens, coupons for chemical analysis, machining of tensile bars, 

and compression specimens.  Chemical analysis was conducted by inductive coupled 

plasma mass spectrometry verified with wavelength dispersive chemistry after sample 

dissolution in perchloric acid.  Aluminum and silicon contents were verified with x-ray 

fluorescence by single element wavelength dispersive spectrometry.  Chemical coupons 

were taken from end cuts; one from each heat.  Nitrogen content was measured by inert 

gas fusion or thermal evolution method per ASTM E1019.  Seven round specimens 
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measuring 2.5 cm in diameter by 1.25 cm thick were machined and ground parallel per 

ASTM E18.  Measurements were recorded using Rockwell C and Rockwell B hardness 

scales and converted to Brinell hardness for common reference.   Aging curves for 530 

°C were constructed from hardness measurements for each alloy.  One specimen was 

retained after initial machining and sectioning to record solution treated hardness.  

Specimens were aged at 530°C for 1, 3, 6, 10, 30, and 60 hours in atmosphere and 

subsequently air-cooled to room temperature. The reported hardness is an average of ten 

measurements and the uncertainty is based upon a sample standard deviation.  Tensile 

specimens were machined per ASTM E8.  The gage section measured 2.54 cm in length 

with a 0.635 cm gage diameter (see Figure 2).  One tensile specimen from each heat was 

retained in the solution treated condition, one was aged at 530°C for 10 hours, and one at 

30 hours.  The aged conditions were selected to measure and bracket tensile properties 

corresponding to lower and upper MIL-PRF-32269 hardness requirements.    Two sets of 

cylindrical compression specimens were electrical discharge machined from the low 

silicon steel for Split Hopkinson Bar (SHB) testing (see Figure 2).  The Split Hopkinson 

Bar principle and testing apparatus are described in detail in Volume 8 of the ASM 

Handbook20.  The first set of SHB specimens were machined and tested in the solution 

treated condition.  The second set was machined from material solution treated and aged 

at 530°C for 10 hours.  SHB specimens were lapped to a thickness of 0.3175 cm and 

measured 0.635 cm in diameter.  Testing occurred at a strain rate of 3000 s-1.  Specimen 

load was incrementally increased from 270 Pa (40 psi) to 448 Pa (65 psi) in 34 Pa (5 psi) 

increments until specimen failure to evaluate shear band evolution.  
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Post compressive and tensile testing analysis was conducted by optical 

microscopy and scanning electron microscope (SEM) with energy dispersive x-ray 

spectrometer (EDS).  SEM accelerating voltage was 15 keV with 18 mm of working 

distance at 0° rotation.  Metallographic specimens were etched with 2% Nital and images 

were recorded using a differential interference contrast technique. 

 
 
 

  

                             (a)     (b)                                               (c) 

Figure 2.  Fe-Mn-Al-C alloys were cast into a risered bar to produce mechanical test bars 
and metallographic specimens.  The casting (a), tensile (b), and compression specimen 
(c) drawings are shown with dimensions to illustrate the shape and size of the materials 
utilized for this investigation. 

 
 
 
RESULTS 

CHEMICAL ANALYSIS 

The chemical analyses of both silicon steels are reported in Table 1.  Chemical 

analysis showed elevated levels of phosphorus whereas sulfur was low; phosphorus and 

sulfur measured 0.06 and 0.005 % in the low silicon alloy and 0.06 and 0.006 % in the 

1.4% silicon modified alloy.  Manganese, carbon, and molybdenum contents were equal 
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in both alloys, but aluminum concentrations varied.  Aluminum contents were 8.3 and 7.9 

in the low and high silicon alloys, respectively. 

 
 

Table 1.  Chemical Composition of Cast Steels (weight percent) 

Si Mn Al C Mo  P S N Fe 
1.0 28.8 8.3 0.9 0.5 0.06 0.005 0.005 Bal 
1.4 28.8 7.9 0.9 0.5 0.06 0.006 0.004 Bal 

 
 
 
 
AGE HARDNEING 
 

Figure 3 shows the age hardening curves for the 1 and 1.4 % silicon containing 

alloys.  The 1 and 1.4 % silicon solution treated conditions had hardness ~225 BHN and 

~220 BHN.   

 
 
 

 

Figure 3.  The age hardening curves for 1 and 1.4 % silicon containing Fe-Mn-Al-C 
alloys show a rapid increase in hardening through the first 6 hours.  At times greater than 
six hours, hardness increases, but the hardening rate decreases.  Maximum hardness is 
achieved after 30 hours for both alloys.  The 1% silicon alloy hardens to 372 BHN, and 
the 1.4% alloy age hardens to 384 BHN. 
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The Fe-Mn-Al-C alloys increased in hardness to 270 BHN (1% silicon) and 252 

BHN (1.4% silicon) after aging 1 hour.  Hardness of both alloys increased steadily from 1 

hour to 10 hours aging time.  After 10 hours, the hardness measurements for each alloy 

were 343 BHN (1% silicon) and 353 BHN (1.4% silicon).  From 10 hours to the peak 

aged condition at 30 hours, the hardness increased, but hardening rate decreased.  Peak 

aged hardness at 30 hours measured 372 BHN (1% silicon) and 384 BHN (1.4% silicon).   

Ferrite volume fraction increased during aging but the observed increase occurred 

after peak aging.  Figure 4 shows solution treated, 10 hour, and 60 hour aged 

microstructures of both alloys.  The 1% silicon solution treated alloy was primarily 

austenite with less than 1 % ferrite and less than 3% ferrite in the 60 hour aged condition.  

Dendrite arm spacing measured 53 μm.  The 1.4% silicon modified alloy contained 6% 

ferrite in the solution treated condition and 8% in the 60 hour aged condition.  Dendrite 

arm spacing for the 1.4% silicon alloy measured 48 μm.  Figure 4 clearly shows the 

dendritic microstructure observed for both silicon containing alloys. 

Quantitative inclusion measurement and chemical analysis was conducted using 

an automated scanning electron microscope utilizing energy dispersive chemical analysis.  

Nitrides, oxides and sulfides are comprised principally of manganese and silicon with a 

greater number of sulfides and nitrides than oxides as shown by the density of data 

plotted in Figure 5.  Figure 6 shows a histogram of inclusion radii for the combined 

nitride, sulfide and oxide counts.  Ninety-five percent of all inclusions were less than 1.3 

μm in radius for each steel.  
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      (a)           (b) 

  

       (c)          (d) 

Figure 4.  The 1% silicon modified Fe-Mn-Al-C alloy contains less than 1% ferrite (by 
volume) in the solution treated condition (a) and 3% in the solution treated plus aged at 
530°C for 60 hour condition (b).  The 1.4% silicon containing alloy contained 6% in the 
solution treated condition (c) and 8% in the 60 hour aged condition (d). 
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       (a)                  (b)               (c) 

   

       (d)               (e)                (f) 

Figure 5.  Chemical mapping of non-metallic inclusions for 1 and 1.4% silicon modified 
Fe-Mn-Al-C alloys.  The 1% silicon modified alloy ternaries show nitrides (a) oxides (b) 
and sulfides (c) are primarily manganese and silicon based.  The 1.4% silicon alloy also 
shows that nitrides (d) oxides (e) and sulfides (f) are also predominantly manganese and 
silicon rich.  Visual inspection and comparison reveals fewer oxides than nitrides or 
sulfides. 
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Figure 6.  A combined non-metallic inclusion count for the 1 and 1.4% silicon containing 
alloys as a function of particle radius.  The 1.4% silicon alloy inclusion count exceeds the 
1% silicon Fe-Mn-Al-C alloy for all radii.  Non-metallic inclusion radii greater than 2.5 
μm were not detected. 
 
 
 
 
TENSILE STRENGTH 
 

Tensile stress versus strain data is shown in Figure 7 for the two alloys in both the 

solution treated and aged conditions.  In general, the yield and tensile strengths increase 

and the elongation to fracture decreases with increasing time of age hardening.  Greater 

strengths and lower elongations to failure are observed with the 1.4% silicon alloy.  

Tensile test results are summarized in Table 2.  Young’s Modulus was constant for all 

alloys and measured 188 GPa.  A strong work hardening behavior was observed for the 

solution treated materials with a work hardening exponent of 0.32 and 0.23 for the 1.0% 

Si and 1.4% Si alloys.  The age hardened materials had work hardening exponents that 

were an order of magnitude lower (see Table 2).   
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Figure 7.  Tensile curves show low strength, high ductility for solution treated 1 and 1.4% 
silicon containing steels.  Aged material showed significant increased strength, but also 
showed an equally significant reduction in ductility.   
 
 
 
 

Table 2.  Tensile properties of 1 and 1.4% silicon containing Fe-Mn-Al-C alloys 

Alloy 
Heat 
Treat 

Condition 
BHN 

Yield 
Strength 

(MPa/ksi) 

Tensile 
Strength 

(MPa/ksi) 

Engineering 
Strain 

Work 
Hardening 
Exponent 

1% 
Si 

Sol’n 
Treat 224 458 / 66 687 / 100 0.44 0.32 

 10hr 
530°C 343 891 / 129 940 / 136 0.18 0.08 

 30hr 
530°C 372 1,005 / 145 1,065 / 154 0.08 0.06 

1.4% 
Si 

Sol’n 
Treat 219 549 / 79 766 / 111 0.36 0.23 

 10hr 
530°C 353 922 / 138 995 / 144 0.14 0.07 

 30hr 
530°C 384 1,016 / 147 1,085 / 157 0.05 0.05 

 
 
 

Optical microscopy was performed on the gage sections of each tensile bar to judge the 

deformation character.  Deformation twinning was not apparent and slip bands were 



105 
 

predominately planar in nature.  Figure 8 shows slip in the 1 and 1.4% steels aged for 10 

hours.  The slip is easily seen at the grain boundaries. 

   
 
 

  

           (a)               (b) 

Figure 8.  Deformed gage sections of 1(a) and 1.4(b) % silicon containing Fe-Mn-Al-C 
alloy showing planar slip.  Planar slip is most visible at grain boundaries. 

 
 
 

Fracture surfaces were examined using a scanning electron microscope.  The 

solution treated material failed by transgranular microvoid coalescence.  Upon aging, the 

fracture transitioned to transgranular cleavage and followed the dendritic structure. 

Figures 9(a) and 9(b) shows transgranular dimple rupture of both solution treated 

materials.  Figure 9(c) and 9(d) shows transgranular cleavage.   
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          (a)          (b) 
 

 
             (c)             (d) 
 
Figure 9.  Failure occurs in a ductile fashion in the solution treated low silicon alloy (a) 
and high silicon alloy(b).  Age hardening transitions the failure mode toward 
transgranular cleavage conforming to the dendrite structures for 1% silicon modified 
alloy (c) and 1.4% silicon modified alloy (d).  The dendrite structure is also revealed by 
porosity in the 1% silicon alloy (c).  
 
 
 
 
HIGH STRAIN RATE COMPRESSION TESTING 
 

Compression Split Hopkinson Bar specimens of the 1% silicon alloy were tested 

at a strain rate of 3000 s-1.  Figure 10 shows the solution treated and 10 hour 530°C aged 

specimens’ true stress vs. strain responses.  MIL-A-1256021 rolled homogeneous armor 

compression results22 are included for comparison.  The solution treated specimen 

yielded at 950 MPa (137 ksi) and work hardened to 1,552 MP (225 ksi) and the fracture 
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strain was 0.50.  The 10 hour aged specimen yielded at 1,334 MPa (193 ksi) and work 

hardened to 1,651 MPa (239 ksi) and the fracture strain was 0.45.   

 
 
 

            
        (a)          (b) 
 
Figure 10.  The low silicon Fe-Mn-Al-C alloy (a) shows work hardening in the solution 
treated and 10 hour 530°C aged condition at a strain rate of 3000 s-1.   Aged hardened 
material does not work harden as greatly as solution treated material, but age hardened 
specimens had greater yield and ultimate strength and slightly lower fracture strain. 
Rolled homogeneous armor (b) does not strain harden to failure.  Ultimate strength 
occurs between 0.1 and 0.2 strain followed by decreasing stress to fracture beyond 0.6 
strain.  
 
 
 
 

Fracture was observed to occur in locations of prior formed shear bands.  Figure 

11 shows fracture through a 10 hour aged specimen.  Fracture occurred at maximum 

shear, 45° to the uniaxial loading direction, along the path of prior shear band formation.  

Specimen failure from through cracking was not observed to preferentially align with 

inclusions, microporosity, dendrite orientation, or ferrite.   
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Figure 11.  A 10 hour aged 1% silicon specimen was tested to fracture by loading at 448 
kPa (65 psi).  Crack formation through the thickness is 45° to the loading direction (LD); 
load direction is indicated in the lower left hand corner.  The edges of the specimen and 
inclusions are indicated. 
 
 
 
 

Crack initiation was observed with different microstructural features.  Figure 12 

shows a shear band (in an aged alloy) followed by a crack tip that initiated from the outer 

specimen edge that followed an interdendritic boundary.  Edge crack penetration was not 

observed to be continuous through the specimen.  Figure 13 shows shear band formation 

adjacent to porosity in the solution treated material.  The shear bands extend outward in a 

radial like fashion with nucleated cracks visible in the lower right hand region of the 

porosity.  The crack follows the trace of a shear band. 

Nucleation of a shear band occurs in polycrystalline material by the local 

reorientation of slip planes within individual grains that aligns each with the macroscopic 

plane of maximum shear. Whenever another slip plane’s resolved shear stress exceeds the 

critical shear stress in that plane, slip will shift to that plane propagating the shear band16.  

Macroscopically, the slip orientation averages out and shear bands form in the plane 45° 

to the loading direction.   

45° 

Specimen Edges 

Inclusions 

LD 
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Figure 12.  Crack formation is observed following a shear band pathway at a dendrite 
boundary.  Planar slip is observed in the region next to the crack.  Failure of this 
compression specimen originated at internal sites rather than at specimen edges.  The 
loading direction (LD) is indicated in the upper left hand corner. 

 
 
 

 

Figure 13.  Adiabatic shear bands observed in a solution treated compression specimen 
extend outward in a radial pattern from the lower right hand region of the porosity.  
Crack nucleation is seen in the encircled region following the formation of adiabatic 
shear bands.   The loading direction (LD) is marked in the upper left hand corner. 
 
 

LD 

LD 

Crack Tip 

Shear Band 
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Shear band nucleation at 45° to the loading direction of a 1% silicon, solution treated 

specimen is visible in Figure 14.  The solution treated specimen was loaded at 275 kPa 

(40 psi); the pressure was insufficient for failure.  The 1% silicon alloy shows a resistance 

to shear localization as evident by the work hardening achieved.  A deformed region is 

highlighted showing the nucleation region of an adiabatic shear band and the rotated 

crystal structure of adjacent material conforming to the 45° shear band. 

 
 
 

 

Figure 14.  A high strain rate solution treated 1% silicon containing alloy compression 
sample was not loaded to failure in order to study the adiabatic shear band and crack 
formation.  The encircled and highlighted central region shows the nucleation of an 
adiabatic shear band rotated 45° to the loading direction (LD).   Material adjacent to the 
nucleation site is deformed and the crystal structure is rotated to conform to the sheared 
material.  
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LD 
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Figure 15 is an image of a shear band in a 1% silicon, 10 hour aged specimen, loaded at 

310 kPa (45 psi), which did not fail.  The shear band extends nearly the entire specimen.  

Intense slip and grain rotation is observed adjacent to the shear band.  The loading 

direction (LD) is indicated in the figure’s upper right hand corner. 

 
 
 

 

Figure 15.  An adiabatic shear band propagated through a 10 hour aged specimen.  Shear 
formation appears independent of inclusion content and ferrite. The loading direction 
(LD) is indicated in the upper right hand corner. 

 
 
 
Figure 16 is an image showing the early stage of shear band formation in the solution 

treated specimen that was loaded to 345 kPa (50 psi).  This specimen did not fracture.  

Inspection of the deformed microstructure shows multiple shear bands.  Planar slip is 

LD 
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visible between the shear bands and the planar slip accommodates deformation not 

associated with adiabatic shear.   

 
 
 

 

Figure 16.  Multiple shear bands are shown in a 1% silicon modified alloy in the solution 
treated condition after high strain rate testing.  Planar slip is visible between shear bands.  
The loading direction is indicated in the upper right hand corner. 

 
 
 
DISCUSSION 

The 530°C age hardening behavior follows closely with work by Hale and 

Baker23 of a similar composition, i.e. Fe-30.4Mn-7.6Al-0.81C-0.35Si.  The Acselrad et 

al.19 investigation of time temperature transformation behavior suggested a temperature 

less than 550°C to reduce heterogeneous precipitation of к-carbide at grain boundaries 

and formation of B2 or DO3 intermetallic compounds. Further reductions in aging 

temperature (below 530°C) would decrease the nucleation and growth of these 

Adiabatic Shear Bands 
LD 
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deleterious phases, but the corresponding time necessary to attain MIL-PRF-32269 

hardness requirements were deemed unrealistic for production foundries.   

For both alloys, the higher number density of sulfides and nitrides is consistent 

with overall chemistry of the alloy, i.e. oxygen was less than 2 ppm.  The 1.4% alloy had 

a higher number of non-metallic inclusions as can be seen in Figures 4 and 5, but the 

chemistries of the inclusions in both alloys are similar and are manganese rich.   Howell 

et al. 24 has previously shown that calcium treated alloys have a greatly reduced sulfide 

content, and has reported an increase in Charpy toughness for a reduction in phosphorus 

and sulfur content in a similar Fe-Mn-Al-C alloy.  The high phosphorus content in the 

alloys investigated here (0.06 wt.%P) appears to be due to phosphorus in the 

ferromanganese.  However, at 100% recovery, phosphorus contribution from 

ferromanganese would only account for 0.018%P. Other potential sources include 

furnace and ladle refractory materials, and residual metal from prior heats.  Phosphorus 

reduction is possible by changing to low phosphorus electrolytic manganese.  Improved 

foundry practice investigations to further reduce phosphorus, sulfur, and inclusion 

content are ongoing.  

Tensile strength, ductility, and work hardening followed classic trends for age 

hardening materials.  Except for the solution treated condition, the 1.4% silicon alloy had 

a higher strength and hardness, but lower ductility for equivalent aging treatment.  The 

lower ductility may result from an increase in the volume fraction of ferrite and the 

number density of non-metallic inclusions.  Pickering25 has reported a decrease in 

ductility for steel for an increase in volume fraction of second phase particles and the 

same trend is observed for the alloys studied here.  
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 Microstructure of aged and deformed materials were similar between the two 

silicon levels.  Ferrite content followed a trend previously reported14 where a minimum of 

ferrite occurs at approximately 1% Si and increases with greater silicon content.  It 

should be noted that the high phosphorus content in the alloys studied here may promote 

higher volume fractions of ferrite in both the solution treated and aged microstructures.  

In the previous study, a fully austenitic microstructure was obtained for a 0.82% Si alloy 

after solution treatment.  The tensile deformed microstructure shows evidence of planar 

slip in both alloys (see Figure 8).  Planar slip was also observed in the high strain rate 

compression samples (see Figure 12).  Both solution treated alloys failed by transgranular 

microvoid coalescence during tensile testing as seen in Figure 9.  Aging resulted in a 

transition to a transgranular cleavage failure that appears to follow the crystallography of 

the dendrites as shown in Figure 9 (d).     

High strain rate compression samples failed by adiabatic shear band formation, 

which preceded crack nucleation and growth.  Three specific examples show this 

phenomenon.  First, the through crack in Figure 11 that occurred at 45° to the loading 

direction is associated with adiabatic shear band formation.  Examples of shear bands that 

lead to through cracking are shown in Figures 14, 15, and 16, and were observed along a 

macroscopic plane of  maximum shear, i.e. 45° to the loading direction.  These shear 

bands measured between tens of microns to several hundred microns in length.  Shear 

band nucleation and crack formation appears to be promoted by porosity in preference to 

any other microstructural feature.  When nucleated at the specimen edge, shear band and 

subsequent crack formation followed an interdendritic path for about 50 µm before 

merging with the macroscopic 45° band (see Figure 12).  
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Thermodynamic calculations for the stacking fault energy (gSFE) based on 

Olsen’s26 model have been used to predict the deformation mechanism in Fe-Mn-Al-C 

steels.  Frommeyer and Brux8 stated that twinning is suppressed in systems with gSFE 

greater than 50 mJ/mm2.  Aluminum additions greater than 3 wt.% suppress twinning.  

Frommeyer and Brux have shown that a Fe-28Mn-12Al-1C alloy with a gSFE of 110 

mJ/mm2 deformed by plastic flow in quasistatic testing and by adiabatic shear under high 

strain rates.  The calculated gSFE for the 1 and 1.4% silicon containing alloys are 100 

mJ/mm2.  The silicon difference did not have any significant impact on a change in the 

calculated gSFE.  The calculated gSFE energy and observations showing planar slip are in 

agreement with the observations by Frommeyer and Brux8. 

An interesting comparison can be made between the cast Fe-Mn-Al-C alloys 

studied here and the wrought alloy typically used to benchmark steel armor, i.e. rolled 

homogeneous armor.  The specific compressive strength of the 1% silicon containing 

alloy is greater than rolled homogenous armor (RHA); both steels were tested at 3000 s-1 

strain rate.  Figure 10 shows excellent work hardening prior to fracture for the silicon 

containing Fe-Mn-Al-C steels with higher ultimate strength than RHA.  Factoring in the 

13% density reduction for the Fe-Mn-Al-C alloy and the specific strengths are greater 

still.  Table 3 compares specific high strain rate compression strengths of the solution 

treated and aged 1% silicon modified alloy to that of RHA, which has been quenched and 

tempered to similar hardness values.  The 1% alloy exceeded the specific compressive 

ultimate strength of RHA by 58 MPa/ρ (287 ksi/ρ) in the solution treated condition and 

54 MPa/ρ (220 ksi/ρ) for the aged condition.  
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Table 3.  Comparison of specific compressive strengths of two heat treated conditions 
between the 1% silicon containing Fe-Mn-Al-C alloy and RHA tested at 3000 s-1 strain 

rate. 

Alloy Density 
Specific Strength  
1% Si – BHN 224  
RHA – BHN 224 

Specific Strength  
1% Si – BHN 343  
RHA – BHN 352 

1% Si 6.7 g/cm3  (0.24 
lbs/in3) 

231 MPa/ρ (933 
ksi/ρ) 246 MPa/ρ (995 ksi/ρ) 

RHA 7.8 g/cm3 (0.28 
lbs/in3) 

173 MPa/ρ (646 
ksi/ρ) 192 MPa/ρ (775 ksi/ρ) 

 
 
 
 

Observation of work hardening at high strain rates, in both the solution treated 

and aged Fe-Mn-Al-C-Si alloys, indicates an inherent resistance to the formation of 

adiabatic shear bands.  However, the final failure was still by shear band formation, but at 

higher stresses than RHA.  Casting porosity appears to be the main microstructural 

feature that nucleates the shear band.  

Investigations are ongoing to increase Fe-Mn-Al-C alloy strength and notch 

toughness through improved foundry practices and a physics based, first principles 

modeling of alloy additions.  Foundry practice studies are focused on grain refinement, 

porosity minimization, mold design and fluid modeling, reduction of phosphorus, and 

improving the cleanliness by reducing the number of nonmetallic inclusions.   

  CONCLUSIONS 

Lightweight Fe-Mn-Al-C steels can be solution treated and aged 10 hours at 

530°C to meet hardness requirements specified in MIL-PRF-32269.  When tested at high 

strain rates, a combination of lower weight and higher compressive strength for the Fe-

30Mn-9Al-1Si-0.5Mo alloy results in a specific strength that is 28% greater than rolled 

homogeneous armor with equivalent hardness of 352 BHN.  More importantly, the Fe-
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30Mn-9Al-1Si-0.5Mo alloy exhibits work hardening during high strain rate testing, 

which indicates an inherent resistance to the formation of adiabatic shear bands.  

However, casting porosity was observed to promote adiabatic shear bands and crack 

formation.   

 Increasing silicon content from 1 to 1.4% in a Fe-30Mn-9Al-XSi-0.9C-0.5Mo 

alloy increased tensile strength and hardness, but reduced ductility and the work 

hardening exponent in aged materials.  The decrease in tensile ductility appears to be 

related to an increase in non-metallic inclusions for the 1.4% Si alloy since the additional 

silicon did not appear to change the tensile fracture or microstructural deformation 

mechanisms.  Improved properties are expected by reducing the phosphorus content.  

This will require a steelmaking process using charge materials and furnace refractories 

that are low in phosphorus.  The high phosphorus content of the alloys.  Lower 

phosphorus content should also lower the amount of ferrite in the solution treated and 

aged conditions.  
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ABSTRACT 

 Ballistic tests were conducted on a high manganese and high aluminum austenitic 

steel that is age hardenable.  These lightweight steels (12 to 18% lower in density) were 

investigated as alternatives to MIL-PRF-32269 steel alloys for application in P900 

perforated armor currently used for Army ground combat systems.  Two steel plates with 

nominal composition in weight percent of Fe-30Mn-9Al-1Si-0.9C-0.5Mo were evaluated 

for V50 against 0.30 caliber armor piercing and 0.50 caliber fragmentation simulation 

projectiles.  At equivalent areal densities to current steels, both plates surpassed the 

required 0.30 caliber acceptance criteria by 188 and 151 ft/s.  Against the 0.50 caliber 

fragmentation projectile, the calcium treated plate exceeded the MIL-A-46100 V50 by 225 

ft/s, but the non calcium treated plate underperformed by 39 ft/s.    

INTRODUCTION 

P900 was originally designed in the late 1980’s as appliqué armor to counter 

Soviet small-arms threats (Gooch, 1991).  The thin-ribbed section design (see Figure 1) 

localizes deformation, which allows for multi-hit capability.  The original P900 was cast 

from low alloy steels using the lost foam process without regard to material properties. 

Computer modeling in conjunction with a re-evaluation of material property requirements 

and validation by ballistic testing has led to the adaptation of P900 as an armor 

enhancement in current armor systems.  A quenched and tempered martensitic steel (in 

accordance with alloy tolerances of MIL-A-46100) met the required hardness and 

ballistic standards.  Expanded metal processes and offset punched plates offer alternative 

designs to P900, but these solutions do not achieve P900’s performance and higher 

ballistic success rate as measured by MIL-PRF-32269.   



122 
 

 

 

Figure 1.  Shown above is the 2-D dimensional specification drawing and image of cast 
P900 armor plate. 

 
 
 
 
Second generation advanced high strength steels that are being developed 

(Frommeyer, 2006) as lightweight steels for the automotive industry are potential 

candidates for the P900 armor application.  These steels contain high levels of aluminum, 

which can lower the density by 12 to 18% relative to mild steel.  These steels, which are 

referred to as FeMnAlC, are austenitic and age hardenable by the precipitation of κ-

carbide.  Tensile strengths greater than 140 ksi with an elongation to fracture that is 

greater than 15%, are comparable to quench and tempered low alloy steels currently used.    

These lightweight steels also have good casting characteristics (high fluidity and low 

melting temperature) that are comparable to ductile iron (Howell et al., 2008). FeMnAlC 

alloys do not require high cost alloys, such as nickel, cobalt, or chromium and are less 

costly than titanium alloys.  Tailorable properties via age hardening coupled with reduced 

density offer a higher specific strength over quench and tempered steel. Challenges still 
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lie in developing these FeMnAlC alloys to reduce weight without sacrificing P900 armor 

performance. 

EXPERIMENTAL PROCEDURE 

Two ballistic test plates were cast in a nominal Fe-30Mn-9Al-1Si-0.9C-0.5Mo 

chemistry.  All chemistries are in weight percent.  Foundry grade alloys were melted in 

an induction furnace under argon cover.  Active oxygen content measured 2 ppm in the 

furnace.  Horizontal plate molds were prepared using phenolic no-bake bonded olivine 

sand in lieu of silica sand to prevent reaction of the manganese with silica sand.  One 

plate measured 12 inches by 18 inches by 0.6 inches, was calcium treated (followed by 

immediate slag removal), and utilized electrolytic manganese in the steelmaking process.  

The second plate measured 12 inches by 12 inches by 0.72 inches, was not calcium 

treated, and employed ferromanganese.  The cast plates were vacuum solution treated at 

1050°C, nitrogen gas quenched, and aged for 15 hours at 530°C.  The non-calcium 

treated plate was cast at 0.72 inch thickness and subsequently machined to 0.625 inch 

thickness after solution treatment.  The calcium treated plate was shot peened after heat 

treatment.  Brinell hardness of both plates was measured by a 3,000 kg load in 

accordance with ASTM E10.  

Ballistic testing was performed for V50 evaluation of 0.30 caliber armor piercing 

(AP) and 0.50 caliber fragmentation simulation projectiles (FSP) at 0° obliquity.  The 

FeMnAlC ballistic results were compared on an areal density equivalency to the MIL-

PRF-32269 acceptance criteria for the 0.30 caliber AP and to MIL-A-46100 steel for the 

0.50 caliber FSP requirements.  FSP testing is not called for in the MIL-PRF-32269, but 

there is no historical FSP data on FeMnAlC alloys.  FSP test data was compared to MIL-
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A-46100 (high hard steel) due to its use in MIL-PRF-32269 as a class 1 material and 

because of a large historical performance database against the 0.50 caliber FSP.   

Chemical analysis was performed on each cast alloy plate using inductive coupled 

plasma spectrometry and wavelength dispersive spectrometry after dissolving the steel in 

perchloric acid.  Charpy impact specimens were machined from each FeMnAlC alloy 

plate, and tests were performed at room temperature and -40°F.  Post fracture analysis of 

ballistic and Charpy impact tests were performed using optical microscopy and scanning 

electron microscopy (SEM). The metallographic specimens were prepared using standard 

metallographic practices and etched with 2% Nital. An ASPEX-PICA 1020 analytical 

SEM was used to qualitatively compare material cleanliness and perform a standardless 

chemical analysis by energy dispersive x-ray spectrometry (EDS) on both fracture 

surfaces and metallographically prepared specimens. Computer aided analytic software 

quantified primary phase constitution, inclusion chemical content, and inclusion size 

distribution.  An Hitachi S-4700 Field Emission SEM was used for the inclusion images.  

RESULTS 

The MIL-PRF-32269 cast armor material is designated class 2 and has an 

acceptance range of 302-352 Brinell hardness number (HB).  The calcium treated plate’s 

hardness measured 351 HB, and the non-calcium treated plate exceeded the hardness 

range at 364 HB.  Chemical analysis of each plate is shown in Table 1.  Areal density of 

each plate was measured to be 35.5 pounds per square foot per inch of thickness (PSF), 

which is 13% less than rolled homogenous armor (40.8 PSF).  The equivalent areal 

density thickness was 0.525 inch for the calcium treated plate and 0.544 inch for the non 

calcium treated plate.   
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TABLE 1. Chemical Content of Tested Alloys 
 

Plate Fe Mn Al Si C Mo S P 
Calcium Treated Bal 30.21 8.85 1.01 0.89 0.31 0.0008 0.006 

Non-calcium 
Treated 

Bal 29.07 8.28 0.92 0.94 0.33 0.006 0.043 

 
 
 
 
The 0.30 caliber AP V50 of the calcium treated plate exceeded the acceptance criteria by 

188 ft/s, and the non treated plate exceeded its equivalent thickness value by 151 ft/s.  

The 0.50 caliber FSP V50 for of the calcium treated plate exceeded MIL-A-46100 by 172 

ft/s, but the non calcium treated plate was lower by 39 ft/s.    

Figure 2 shows the impact and exit sides of both plates for the 0.30 caliber AP 

testing.  The region of deformation on the impact face is more visible on the non calcium 

treated specimen that was machined.  Visible deformation extends 0.5 inch from the 

center of impact on both plates. Cracking and petal formation are observed on the exit 

side of each plate.   

 
 
 

    
 (a)           (b)       (c)      (d) 

 
Figure 2.  The calcium treated plate shown with 0.30 caliber AP projectile lodged in the 
plate (a) and resulting combination of ductile deformation and cracking on the exit face 
(b).  The non calcium treated plate shown with dimensional marker illustrating the 
deformation region on the strike face (c), and the exit side shows ductile petal 
deformation and cracking (d). 
 

1 in 
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Figure 3 shows the impact and exit sides for the 0.50 caliber FSP testing.  The 

visible deformation on the impact side of the non calcium treated plate measured 

approximately 1.25 inch across the surface.  Ductile deformation and cracking are 

observed on the exit side of both plates.  Failure occurred by plugging. 

 
 
 

      
                    (a)      (b)     (c)             (d) 
 
Figure 3.  The calcium treated plate is shown with an impact crater from 0.50 caliber FSP 
(a) and resulting ductile deformation and cracking on the exit face (b).  The untreated 
plate is shown with dimensional marker illustrating the visible deformation on the strike 
face (c) and the exit side showing ductile deformation and cracking (d). 
 
 
 
 

Plug formation occurred by adiabatic shear band formation and subsequent 

cracking.  Metallographic examination of the plug formation is shown in Figure 4.  Both 

plates had an austenitic microstructure with 5 volume % ferrite in the interdendritic 

regions. Figure 4(b) shows clearly the dendritic microstructure and the formation of 

adiabatic shear bands and crack nucleation between the porosity near the exit side of the 

calcium treated plate. Cracks were also observed to nucleate at nonmetallic inclusions.  A 

crack tip is seen in Figure 4(c) nucleated from a concentration of nonmetallic inclusions.  

Figure 5 is a pair of ASPEX-PICA 1020 generated ternary chemical maps of this field 

showing a high manganese oxide concentratinductive coupled with minor amounts of 

manganese sulfides and aluminum nitrides.   

1.25 in 



127 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 4.  Adiabatic shear band and crack formation is highlighted in (a).  Adiabatic shear 
bands and crack formation occurred between a larger crack tip and porosity near the exit 
face shown in (b).  A large region of defects is observed next to a crack tip in (c). 
 

 

Crack tip 

Shear 
band 

Crack 
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Crack tip 
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Charpy impact energy for the calcium treated plate was 54 ft-lbs at room 

temperature and 10 ft-lbs at   -40°F.  The impact energy of the non calcium treated plate 

was much lower at values of 10 ft-lbs at room temperature and 7 ft-lbs at -40°F.   

Varying combinations of ductile and cleavage fracture were observed for both 

materials (see Figure 6).  The proportion of each fracture mode is best illustrated by low 

magnification images of the fracture surfaces for each casting.  Only small areas of 

dendritic structure are observed in the calcium treated material (Figure 6a) and the 

majority of the fracture is microvoid coalescence.   

 
 
 

      

      (a)               (b)        (c) 
 

 Figure 5.  Chemical mapping of nonmetallic inclusions on Gibb’s triangle were made by 
an EDS mapping of the defect field shown in Figure 4(c).  Manganese oxide inclusions 
dominated the field (a) but also include minor amounts of manganese sulfide (b) and 
aluminum nitrides (c).  
 
 
 
 
In contrast, the non-calcium treated alloy reveals a dendritic structure dominated by 

cleavage fracture showing both the main dendrite trunk and secondary arms on both sides 

of the main trunk (see Figure 6b).  This suggests a {001} fracture plane.    Selected areas 
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were imaged to show the combination of fracture modes within the calcium treated alloy 

(Figure 6c) and the non-treated alloy (Figure 6d). 

 
 
 

      
(a)      (b) 

 

      
(c)      (d) 
 

Figure 6.  Low and high magnification secondary electron images of Charpy V-notch 
fracture surfaces from the calcium treated low phosphorus alloy (54 ft-lbs; a and c 
respectively) and non calcium treated high phosphorus alloy (10 ft-lbs; b and d 
respectively).  Both alloys contain transgranular cleavage and microvoid coalescence as 
shown in the high magnification images, but the proportion of each mode is made evident 
by the low magnification images.  Microvoid coalescence dominates the fracture of the 
low phosphorus alloy, whereas the high phosphorus alloy is dominated by cleavage 
fracture revealing a dendritic structure. 
 

An EDS scan of the Charpy impact specimen fracture surfaces (see Figure 7) 

shows higher amounts of sulfur and phosphorus on the non-calcium treated alloy fracture 
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surface.  The elemental sulfur map shows regions of high concentration on the non 

calcium treated material.  The higher levels of phosphorus and sulfur are corroborated by 

the wet chemical analysis shown in Table 1.  The non calcium treated plate has a sulfur 

content at 0.06 % and phosphorus content at 0.043 %.  The calcium treated plate was 

lower in both phosphorus and sulfur with levels of 0.006% and 0.0008%, respectively.   

 
 
 

   
    (a)      (b) 
 

    
     (c)              (d) 
 
 
Figure 7.  Elemental (EDS) mapping of the fracture surface scans show lower 
concentrations of sulfur (a) and phosphorus (b) on the calcium treated material as 
compared to the non calcium treated alloy’s sulfur (c) and phosphorus (d) surface 
content.  
 
 
 
 

A side-by-side comparison of metallographic specimens from the Charpy bars is 

shown in Figure 8.  Both microstructures are primary austenite with less than 5% by 
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volume ferrite.  The dendrite arm spacing in the calcium treated plate measured 81 μm 

and 42 μm in the non calcium treated plate.     

The ASPEX-PICA 1020 inclusion chemical mapping results are shown in Figure 

9 and a histogram of inclusion size comparison is shown in Figure 10.   Manganese 

sulfides and aluminum nitrides were observed as a multiphase combined inclusion of the 

Type-D globular form (ASTM E 45).  Manganese sulfides formed an outer rim covering 

aluminum nitrides (see Figure 11). Overall inclusion chemistry for each steel are 

comparable; however, the calcium treated steel is much cleaner, i.e. a lower total 

inclusion count.   

 
 
 

   
(a)                   (b) 
 

Figure 8.  Optical micrographs of polished Charpy specimens show a dendritic structure 
with primary austenite and less than 5% by volume ferrite.  The calcium treated plate (a) 
has a secondary dendrite arm spacing of 80 μm and the non calcium treated plate (b) has 
a secondary dendrite arm spacing of 40 μm.  Inclusion content is less visible in the 
calcium treated plate. 
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              (a)               (b)               (c) 
 

   
           (d)            (e)               (f) 

 
Figure 9.  Chemical mapping of non metallic inclusions for both calcium treated, (a, b, 
and c) and untreated, (d, e, and f) FeMnAlC alloys. Inclusion chemistries are similar for 
both steels, but the calcium treated steel has fewer inclusions.   
 
 
 
 

 

Figure 10.  Inclusion areal density is plotted by size range as measured using the ASPEX-
PICA 1020 inclusion analysis software.  The calcium treated plate has less than half the 
number of inclusions of the non calcium treated plate in every size category. 
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Figure 11. Secondary electron image of a complex multiphase inclusion.  A manganese 
sulfide phase surrounds multiple aluminum nitrides.  Sample was etched with 2% Nital. 
 
 
 
 
DISCUSSION 

 The Fe-30Mn-9Al-1Si-0.9C-0.5Mo alloys meet MIL-PRF-322269 0.30 caliber 

AP acceptance criteria on an equivalent areal density basis.  As measured against high 

hard steel, only the calcium treated steel met expectations with respect to the 0.50 caliber 

FSP threat.  The 0.50 caliber FSP test shows a greater V50 separation between the two 

cast materials.  Even though the calcium treated plate was thinner by 0.020 inches, its 

FSP V50 exceeded that of the untreated plate by 211 ft/s.   The FSP V50 differences 

correlated to both differences in inclusion content and differences in notch toughness as 

measured by Charpy impact energy. Sulfur (Leslie, 1981), phosphorus (Song et al., 

2007), and oxide (Wilson, 1981) content has been shown to decrease Charpy impact 

energy.  However, the ductile failure observed in the ballistic plates suggests that the 

difference in V50 is best related to the difference in the size and density of nonmetallic 

inclusions.  It should also be noted that fracture initiation in the ballistic plates was not 

limited to nonmetallic inclusions.  Shear band and crack formation were also observed in 

MnS 

AlN 
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association with porosity.  Thus, proper casting design is also a critical consideration in 

the ballistic performance of these cast steels. 

The inclusion content differed principally by size and count between the two test 

articles.  The inclusion concentration shown in Figure 4(c) had chemistries (see Figure 5) 

that matched those of the Charpy bars (see Figure 9).  However, inclusion size and 

quantity comparison of the Charpy bars (see Figure 10) showed that the non calcium 

treated alloy has a larger number of inclusions by a ratio exceeding 2:1. The defect 

content is directly related to the foundry practice in formulating the steel chemistry.  

Calcium treatment directly impacts the sulfur content.  For steels with low active oxygen 

levels (2 ppm in both alloys) calcium is a late addition that reacts in the melt to form low 

density sulfides that float out of the melt.  However, the resulting surface slag must be 

immediately removed to prevent reoxidation of the calcium products and subsequent 

reintroduction of the sulfur.   

The high aluminum concentration in these lightweight steels reacts readily with 

nitrogen and based upon the angular shape and size of the AlN inclusions these nitrides 

most likely formed in the liquid state.  The harmful aspects of these nitrides to fracture 

may partially be negated by encapsulation with manganese sulfide as shown in Figure 11. 

The composite structure of MnS and AlN makes the inclusion more spherical and 

provides a more compliant interface than what might be expected from just the AlN.  

These complex multiphase inclusions were difficult to separate and classify using the 

automated software; and as result, the nitrogen chemistry maps show a manganese 

contribution from the MnS rim and the sulfur chemistry maps show an aluminum 
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contribution from the AlN core.  Thus, the chemical analyses of the inclusions shown in 

Figures 5 and 9 must be interpreted with this in mind. 

Inclusion content alone does not explain the drastic change in fracture 

morphology observed on the Charpy V-notch specimens.  The high phosphorus alloy was 

more prone to cleavage fracture.  Phosphorus has significant toughness effects in 

manganese steels.  Russian researchers (Schul’te, 1964) studied phosphorus’ deleterious 

effects in Hadfield steels, and Howell et al. (Howell, 2009) showed that phosphorus 

degrades Charpy V-notch toughness in FeMnAlC alloys.  Therefore, phosphorus is 

regarded as the primary culprit responsible for the differences in Charpy V-notch energy 

and that a higher phosphorus content promotes cleavage in the aged microstructure.  

Ongoing research Missouri S&T is looking at the effect of phosphorus and aging on the 

cleavage behavior of κ-carbide. 

Regarding the source of phosphorus in these steels, the selection of manganese 

used during steelmaking may account for some of these differences.   The calcium treated 

alloy was formulated using low phosphorus, electrolytic manganese whereas the non 

calcium treated alloy was formulated with ferromanganese having a phosphorus content 

of 0.026%.  The use of high phosphorus ferromanganese is not a problem in formulating 

a typical steel, which will have less than 1.5 weight percent manganese.  However, these 

FeMnAlC based materials will contain as much as 30 weight percent manganese and thus 

high phosphorus manganese sources should be avoided.  Phosphorus bonded refractory 

materials should also be avoided.  
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CONCLUSIONS 

 At equivalent areal densities, FeMnAlC alloys can exceed acceptance criteria of 

MIL-PRF-32269, and these lightweight steels can achieve greater resistance to the 0.50 

caliber FSP than MIL-A-46100 alloys.  Oxides, sulfides, phosphorus, and porosity are 

deleterious to both ballistic and Charpy notch toughness of FeMnAlC alloys.   Calcium 

treating the alloy appears to reduce the total inclusion content and produced a cleaner 

steel.  The reduction in the number of inclusions may account for the observed increases 

in V50 for 0.30 caliber AP and 0.50 caliber FSP.  Phosphorus appears to be directly 

related with the reduced notch toughness and cleavage fracture of these aged materials. 

Future studies are focused on improving foundry practices to further reduce defect 

concentrations in cast FeMnAlC alloys and understand the role of phosphorus in 

producing cleavage fracture. 
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A constitutive model has been established to predict impact toughness of a cast 

and age hardenable Fe-30Mn-9Al-1Si-0.9C-0.5Mo steel with varying phosphorus 

content.  Five different phosphorus containing Fe-Mn-Al-C alloys were tested in 

accordance with ASTM E 23 Type-A (Charpy V-notch) to assess quench sensitivity in 

two heat treated conditions: (1) solution treated and quenched and (2) solution treated, 

quenched, and aged.  Increased cooling rates (determined at 650°C which corresponds to 

the κ-carbide transformation nose) and the minimization of phosphorus increased notch 

toughness, decreased ferrite content, and minimized heterogeneous nucleation of κ-

carbide on austenite grain boundaries. Room temperature impact energy varied between 

115 J/cm2 for the alloy containing 0.001 wt.% phosphorus  (aged 10 hours at 530°C after 

solution treatment) and 5.4 J/cm2 for the 0.07 wt.% phosphorus containing alloy in the 

solution treated condition.  Quench rates after solution treatment were 337°C and 0.4°C/s, 

respectively. A eutectic structure containing a phosphide was observed in the 0.07 wt.% 

phosphorus containing alloy.  Ab initio density functional theory was used to calculate the 

cleavage stress of κ-carbide in an effort to explain the fracture behavior dependence upon 

quench rate and phosphorus content. Two key discoveries were made: (1) phosphorus 

will partition to κ-carbide and substitutes for aluminum in the Fe3AlC structure and (2) 

phosphorus reduces the {001} cleavage stress.  

INTRODUCTION 

Lightweight Fe-30Mn-9Al-1Si-0.9C-0.5Mo steel (all chemistries are in weight 

percent) is under investigation as a replacement to traditional steel chemistries for use in 

perforated armor1-3.  These Fe-Mn-Al-C alloys are either fully austenitic or are duplex 

(austenite and ferrite) after solution treatment, which is usually accomplished at 1000°C4.  
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Lowering phosphorus content5, increasing the solution treatment temperature from 900 to 

1050 °C 4, and keeping a nominal 1% silicon content4 will minimize the ferrite content.  

Age hardening by spinodal decomposition6 and precipitation of κ-carbide is observed 

when aluminum and carbon concentrations exceed 5% and 0.3%, respectively7. The к-

carbide is an ordered E21 crystal structure where aluminum atoms occupy 1,0,0 positions, 

iron and manganese occupy the ½ , ½, 0 face positions, and carbon is located at the 

central octahedral position (see Figure 1) producing aged microstructures similar to γ-γ’ 

nickel based superalloys8,9. The κ-carbide is coherent with the austenite matrix, but little 

is known of its physical properties6,7,10.  Addition of aluminum and silicon has the added 

benefit of lowering the density and the Fe-30Mn-9Al-1Si-0.9C-0.5Mo alloy has a density 

of 6.7 g/cm3, which is 12-14% lower than quench and tempered steel.  For a more 

complete review of these age hardening Fe-Mn-Al-C alloys see Howell and Van Aken11.  

 
 
 

 

Figure 1. κ-carbide or (Fe,Mn)3AlC is a cubic perovskite crystal structure (E21) where 
aluminum atoms occupying corners of the unit cell, iron and manganese occupy the face 
centered positions, and carbon sits at the body center, i.e.  ½, ½, ½ 9. 
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High strain rate (3,000 s-1) 12 and ballistic testing (MIL-PRF-32269)13 of cast Fe-

30Mn-9Al-1Si-0.9C-0.5Mo alloys have been reported.  The high strain rate testing was 

performed in compression using a split Hopkinson bar technique and a specific 

compressive strength that was 28% greater than traditional wrought, quench and 

tempered, armor steel was reported12.  Furthermore, ballistic tests against 0.30 caliber 

armor piercing (AP) projectiles and 0.50 caliber fragmentation simulation projectiles 

(FSP) revealed differences between two alloys of differing cleanliness and phosphorus 

content.  As expected, the cleaner steel with low phosphorus (0.006% phosphorus) 

performed the best and exceeded V50 ballistic requirements for both MIL-PRF-32269 

(AP) and MIL-A-46100 (FSP).  In contrast, the 0.043%P alloy failed the MIL-A-46100 

(FSP) test and exhibited an 80% reduction in the room temperature notch toughness 

(Charpy V-notch impact) from 73 J/cm2 to 13.6 J/cm2 with a concurrent change in 

fracture mode from microvoid coalescence to cleavage fracture.  Quench sensitivity and 

phosphorus content has been related to the loss of notch toughness11.  The study reported 

here expands upon the quench sensitivity observations and further quantifies the 

combined effects of phosphorus and cooling rate on Charpy V-notch impact energy. 

Analyses here correlate the notch toughness with the quench rate after solution treatment, 

phosphorus content, and the time and temperature used for age hardening. A Jaffe-

Hollomon parameter (JH) is now incorporated in predicting room temperature notch 

toughness in order to account for aging temperature T(K) and aging time t (hours).  The 

Jaffe-Hollomon parameter is given as 

JH=T(log(t)+C)           (Equation 1) 

where C is 20 when time is given in hours14. 
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EXPERIMENTAL PROCEDURE 

Cast specimens were produced by multiple entities from high purity induction 

iron, aluminum, ferrosilicon, ferromolybdenum and either electrolytic manganese or 

ferromanganese in induction furnaces under argon cover.  Alloys were cast into olivine or 

zircon washed silica sand, phenolic no-bake molds and poured without filtering at 100 to 

200°C superheat.  Solid oxide probes were used to measure dissolved oxygen content 

after tapping the furnace into the ladle.  Heats contained near 2 ppm dissolved oxygen 

and did not require an additional deoxidation step.   A low density coagulant was utilized 

for deslagging.  Chemical analysis after dissolution in perchloric acid was conducted 

using inductive coupled plasma spectrometry and wavelength dispersive spectrometry 

and these results are shown in Table 1.   All alloying element variations were less than 1 

wt.%, but the changes in phosphorus were more than 2 orders of magnitude and ranged 

from 0.001 to 0.07wt.%.  Alloys will be identified by phosphorus content. 

 
 
 

Table 1. Chemical Content of Tested Alloys 

Fe Mn Al Si C Mo P Ni Cr Cu 
Bal 30.42 8.83 1.07 0.90 0.53 0.001 0.05 0.05 <0.05 
Bal 30.21 8.85 1.01 0.89 0.31 0.006 <0.05 <0.05 <0.05 
Bal 28.22 6.64 1.16 0.94 0.34 0.018 <0.05 <0.05 <0.05 
Bal 29.40 7.94 2.02 0.87 0.46 0.030 0.05 0.05 0.08 
Bal 29.93 8.24 0.94 0.96 0.36 0.043 0.05 0.06 0.08 
Bal 29.11 9.25 1.07 0.90 0.37 0.070 0.09 0.24 0.10 

 
 
 
 
Charpy specimen coupons (nominal size 12.5 mm x 12.5 mm x 55 mm) were cut 

and solution treated at temperatures from 950°C to 1050°C and cooled to achieve a range 
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of cooling rates5. Cooling rates and aging temperatures were measured directly using 

embedded or surface welded K-type thermocouples.  Cooling rates were calculated at 

650°C, which is the nose of the κ-carbide time-temperature-transformation curve.  Aged 

specimens were aged at times greater than 1 hour in furnaces preset to 530°C5.  After heat 

treatment, coupons were machined to ASTM E 23 Type-A V-notch Charpy specimens 

and tested at room temperature in an instrumented Tinius Olsen model 84 Charpy 

pendulum impact machine with model 892 controller.   Hardness was measured by 

Rockwell C and Vickers Hardness techniques and converted to Brinell hardness for 

reporting. 

Microstructural investigations were carried out by optical microscopy using a 

differential interference contrast technique and scanning electron microscope (SEM) 

equipped with an energy dispersive spectrometer (EDS).   Fracture surfaces and polished 

specimens were examined on a Hitachi-S570 SEM at 15 keV and 15 mm working 

distance.  Optical and SEM polished specimens were etched with 2% Nital.  Image 

analysis was conducted using Image-J© computer software.  FactSage© thermodynamic 

software was used for computational phase prediction and predicting segregation during 

solidification. 

RESULTS 

In the solution treated condition the room temperature notch toughness ranged 

from 220 J/cm2 for the ultra low, 0.001% phosphorus alloy quenched in water at a rate of 

337°C/s to a minimum of 5 J/cm2 for the high 0.07% phosphorus alloy cooled at 0.4°C/s. 

Charpy V-notch impact energy had a log dependence on cooling rate as shown in Figure 

2 for solution treated and quenched 0.006% phosphorus and 0.07% phosphorus alloys.  
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For a fixed chemistry, the room temperature impact energy is reduced between 30 and 50 

J/cm2 as the cooling rate is decreased by three orders of magnitude.  At a fixed cooling 

rate, the decrease in impact energy is at least 130 J/cm2 for an order of magnitude 

increase in phosphorus content, i.e. 0.006% to 0.07% phosphorus.  The general trend of 

decreasing notch toughness with decreasing cooling rate or an increase in phosphorus 

content was observed for each alloy listed in Table 1.     

 
 
 

 

Figure 2.  Charpy V-notch impact energy as a function of cooling rate after solution heat 
treatment.  A semi-log plot gives a linear trend where the impact energy increases as the 
logarithm of cooling rate increases for the 0.006% and 0.07% phosphorus containing 
alloys. 
 
 
 
 

Age hardening produced an additional loss in notch toughness as shown in Figure 

3 for solution treated and oil quenched (58.8°C/s at 650°C) 0.001% and 0.043% 

phosphorus alloys. Impact energy decreased in a linear fashion with increasing Jaffe-

Hollomon parameter (Equation 1); and in general, the notch toughness of 0.043%P alloy 

was 80 to 90 J/cm2 lower than the 0.001wt.% phosphorus alloy.  Figure 4 shows that 
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phosphorus decreases Charpy V-notch energy at room temperature and increases 

hardness for a fixed aging condition of 10 hours at 530°C. 

 
 
 

 

Figure 3.  Charpy V-notch impact energy for age hardened 0.001% and 0.043% 
phosphorus containing alloys that were solution treated and oil quenched (58.8°C/s at 
650°C).  The Jaffe-Hollomon Parameter was calculated as T(log10t+20)/1000 where the 
temperature, T, is in K and the aging time, t, is in hours.   

 
 
 
The 0.006% phosphorus alloy was used to examine a range of quenching rates and aging 

conditions.  Here the aging temperature was 530±10°C and the aging time ranged from 1 

to 25 hours.  The measured Charpy V-notch energies at room temperature are plotted in 

Figure 5 where the impact energy is graphed against both cooling rate and the Jaffe-

Hollomon parameter.  Increasing quench rate or decreasing the Jaffe-Hollomon 

parameter produced an increase in the notch toughness.  A noticeable change in fracture 

mode from ductile to brittle cleavage was observed as the phosphorus increased above 

0.043%.  Cleavage was also observed in the 0.07% phosphorus alloy when in the solution 

treated condition and water quenched.   
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Figure 4.  Charpy V-notch impact energy and hardness versus phosphorus content in the 
solution treated, water quenched, and age hardened (10 hours at 530°C) condition. The 
figure shows a decrease in impact energy and increased aged hardness with increasing 
phosphorus content. 
 
 
 
 

 
 

Figure 5.  3-D mapping of impact energy versus Jaffe-Hollomon parameter and cooling 
rate for 0.006% phosphorus alloy after solution treatment, quenching, and aging. 
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This behavior was next investigated by examining the temperature dependence of the 

Charpy V-notch energy for the 0.006% phosphorus alloy (see Figure 6).  The test 

material was solution treated, water quenched, and aged 10 hours at 530°C to produce a 

Brinell hardness of 307.  Impact tests were performed in a temperature range from -40°C 

to room temperature. The maximum Charpy V-notch impact energy was 115 J/cm2 at 

room temperature.  As temperature was lowered the material appears to go through a 

ductile to brittle transition with a lower shelf energy of 39 J/cm2.  

 
 
 

 

Figure 6.  Charpy V-notch impact energy for the 0.006% phosphorus alloy plotted as a 
function of test temperature showing a ductile to brittle transition. The alloy was solution 
treated, water quenched (337°C/s cooling rate), and aged 10 hours at 530°C.   

 
 
 
In general, the fracture mode at room temperature transitioned from ductile microvoid 

coalescence to brittle transgranular cleavage with increasing phosphorus content, 

decreasing quench rate, and increased aging time.     
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               (a)                           (b)  

 
 Figure 7. (a) Ductile fracture of solution treated and cooled at 337°C/s alloy containing 
0.006% phosphorus (similar fracture was observed when quenched in oil at 58.8°C/s) and 
(b) instrumented impact test showing force and energy absorbed with tup displacement.  
 
 
 
 

Ductile fracture was observed for the 0.006% and 0.001% phosphorus containing 

alloys in the solution treated condition for cooling rates at or above 58.8°C/s. Figure 7(a) 

shows ductile fracture of a 337°C/s cooled 0.006% phosphorus alloy.  A type III ductile 

failure15 is shown in Figure 7(b) and is characterized by yield point load behavior, work 

hardening to a maximum load and followed by a steady and continuous negative slope in 

the force versus tup displacement curve (or force time curve), which is indicative of void 

growth during fracture15.  

Transgranular cleavage was the dominant fracture mode in high phosphorus 

alloys and this was true for solution treated material that was quenched at the highest rate 

(337°C/s).  Figure 8 shows a cleavage fracture mode observed for the 0.07% phosphorus 

alloy in the solution treated and water quenched condition.  One of the striking features of 

this fracture is a dendritic looking pattern where the cleavage fracture appears to follow 

the main trunk and secondary arms of the dendrite.    
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Figure 8.  The fracture surface of a 0.07% phosphorus containing alloy solution treated 
and water quenched (337°C/s) is dominated by cleavage fracture.  The cleavage fracture 
appears to follow the dendrites and in some cases both the main dendrite trunk and 
secondary arms can be distinguished. The direction of the tup travel is from the bottom to 
the top of the image. 
 
 
 
 

A combination of ductile and transgranular quasi-cleavage fracture was observed 

for the 0.006% phosphorus containing alloy in both the solution treated condition 

(0.9°C/s < �̇�𝑇 < 58.8°C/s) and after age hardening 10 hours at 530°C (see Figure 9).  

Ductile and transgranular cleavage was also observed for higher phosphorus containing 

alloys in the solution treated condition for cooling rates greater than 58.8°C/s.  Brittle 

cleavage fracture dominated all other conditions, principally for material cooled at or less 

than 2°C/s after solution treatment.  The 0.07% P alloy, in particular, showed some 

evidence of intergranular fracture for materials quenched at slower rates after solution 

treatment, e.g. 0.9°C/s (see Figure 10).   
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Figure 9.  An example of quasi-cleavage fracture where cracks have nucleated at non-
metallic inclusions and propagated through the grain structure in a transgranular fashion.  
This fracture was from the 0.006% phosphorus alloy that was solution treated, water 
quenched, and aged 10 hours at 530°C. The impact test was performed at 25°C and the 
direction of the tup travel was from bottom to the top of the image. 
 
 
 

Intergranular cracking had not been observed nor reported from previous Charpy 

V-notch impact data collected from cast materials,14 since the testing until now had been 

conducted on water quenched (�̇�𝑇 > 58.8°C/s) and aged material with phosphorus contents 

less than 0.07% .  Confirmation of the intergranular cracking was conducted by polishing 

into the fracture face and obtaining a grain orientation mapping using an electron 

backscatter detector (EBSD). Approximately 500µm was removed from the surface 

during polishing, which left the cracks in question still visible (see Figure 11). A 

comparison between the EBSD grain map and the cracking shows that indeed the cracks 

were intergranular.  Voids shown in the micrographs are really portions of the original 

fracture surface that were not removed by polishing and these areas contain Bakelite 

mounting material.   
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Figure 10.  Room temperature fractures from a 0.07% phosphorus alloy that was slow 
cooled after solution treatment at a rate of 0.9°C/s. Cracks shown in (a) appear 
intergranular.  Transgranular fracture features range from (b) quasi-cleavage to (c) 
cleavage.  Images are again arranged where the tup travel is from bottom to top of the 
images.  
 

 

Attempts to determine the cleavage plane normal using EBSD grain orientation 

mapping were unsuccessful.  However, a {100} cleavage plane can be inferred from the 

dendritic patterns produced by the fracture path.   

In many cases the cleavage fracture followed the main branch and secondary 

dendrite arms to produce an orthogonal pattern, which would be observed by sectioning 

the main dendrite trunk along <100> and parallel to {010}. Secondary cracks were also 

observed, which followed the main dendrite trunk parallel to <100>.  Figure 12 shows an 
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example of <100> secondary cracks from a 0.043% phosphorus alloy that was water 

quenched after solution treatment and aged 10 hours at 530°C. 

 
 
 

  
(a)           (b) 

 
Figure 11.  A secondary electron image of a polished plane (a) from a Charpy V-notch 
specimen where approximately 500 µm of the fracture surface was removed.  Arrows in 
(a) locate suspected intergranular cracks.  Incomplete polishing left areas of the fracture 
that were filled with bakelite mounting material.  Orientation mapping of the grains is 
shown in (b) and clearly shows that the suspect cracks are intergranular.  
 
 
 

A transition from microvoid coalescence to cleavage fracture as being indicative 

of a ductile to brittle transition was verified in the 0.001% phosphorus alloy, which had 

been solution treated, water quenched, and aged 10 hours at 530°C.  Fracture specimens 

were obtained from samples that were used to produce the temperature dependent impact 

energy data shown in Figure 6.  Fractography of these specimens show that microvoid 

coalescence dominates at room temperature (see Figure 13).  At -10°C, a mixed mode of 

ductile and quasi-cleavage fracture is observed, and at -40°C, cleavage is the dominant 

fracture mode. 

 

Cracks 
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(a)              (b) 

 
Figure 12.  Low magnification of transgranular cleavage fracture (a) of a solution treated, 
water quenched and aged high 0.043% phosphorus alloy reveals the alloy’s dendritic 
microstructure.  A crack is shown (b) oblique to the fracture surface in the <100> 
direction of the dendrite.  The tup direction was from the left to the right side of the 
images.  White rectangular box depicts location of the higher magnified image. 
 
 
 
 

Metallographic analysis of the various alloys indicated that phosphorus 

concentration also affected the amount of ferrite and intergranular precipitation during 

quenching. Minimal ferrite content was observed in the 0.001% and 0.006% phosphorus 

alloys after water quenching from the solution treatment temperature.  Isolated islands of 

ferrite were observed in the 0.006% phosphorus alloy, but the overall ferrite content was 

small and on the order of 1%.  Decreasing the quench rate below 59°C/s produced a 

delineation of the austenite grain boundaries as shown in Figure 14(b).  At a cooling rate 

of 2°C/s the austenite grain boundaries polished in relief indicating a greater hardness 

than the grain interior; however, no evidence of a precipitate was visible using the 

differential interference contrast technique.  Discrete grain boundary precipitation 

became apparent after age hardening as shown in Figure 14(c).   
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           (a)        (b) 
 

  
   (c)            (d) 
 

  
   (e)             (f) 
 
Figure 13.  Low and high magnification images illustrate the temperature dependent 
transition from ductile to brittle fracture (by transgranular cleavage) of the solution 
treated, water quenched and aged 0.001% phosphorus containing alloy.  Ductile failure (a 
and b) dominate room temperature failure.  Mixed mode ductile and cleavage fracture (b 
and c) are observed at -10°C.  Cleavage fracture dominates at -40°C (e and f). The tup 
direction of travel was from the left to the right side of the images.  White rectangular 
boxes depict location of the higher magnified images. 
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               (a)            (b) 

 

 
(c) 

 
Figure 14.  Optical images of a 0.006% phosphorus alloy using differential interference 
contrast for three different heat treat conditions: (a) solution treated and water quenched 
at 337°C/s showing an austenitic structure with small islands of ferrite, (b) solution 
treated and air cooled at 0.9°C/s showing primary austenite, ferrite, and polishing relief of 
both austenite grain boundaries and possibly subgrain boundaries, and (c) solution 
treated, water quenched (337°C/s), and aged for 10 hours 530°C with precipitates on 
dendrite boundaries. 
 

 

By contrast, the 0.07% phosphorus alloy cooled at 337°C/s contained 7% ferrite 

(see Figure 15). Decreasing the cooling rate to 0.4°C/s produced visible precipitation in 

both the matrix and along dendrite boundaries.  Precipitate free zones were also observed 

along the austenite grain boundaries where large precipitates formed as shown in Figure 

15(b).  

Austenite 

Ferrite 

Ferrite 

Continuous 
Boundary 
Precipitation 

Austenite 

Precipitates 
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      (a)                (b) 
 
Figure 15.  Differential interference contrast images for the 0.07% phosphorus alloy. 
Microstructures are shown in two heat treat conditions: (a) water quenched after solution 
treatment showing a volume increase in ferrite content, and (b) solution treated and slow 
cooled at a rate of 0.4°C/s to produce precipitation along prior austenite grain boundaries 
and within the matrix.  Precipitate contrast in the matrix also reveals precipitate free 
zones.  
 
 
 
 
A phosphide containing eutectic structure was also observed in the 0.07% phosphorus 

alloy and this structure is shown in Figure 16.  An EDS scan revealed the structure to be 

rich in sulfur, silicon, and manganese, but deficient in iron and aluminum.  A phosphorus 

map of the eutectic is shown in Figure 16(b).  The phosphide containing eutectic formed 

interdendritically.  Microhardness measurements of the eutectic were 520 BHN while the 

surrounding matrix was 294 BHN for the water quenched, solution treated material.  

These eutectic structures are brittle as shown in Figure 17, which was found in close to 

the fracture surface in a metallographically prepared Charpy V-notch bar.  The image 

plane was polished parallel within 500 µm of the fracture surface.  

 

 

Ferrite 
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           (a)      (b) 
 
Figure 16.  A phosphide eutectic (a) was observed in an interdendritic region of the 
0.07% phosphorus containing alloy’s microstructure and (b) EDS mapping reveals the 
phosphorus rich phases contained within the structure. 
 
 
 
 

 
          
Figure 17.  Charpy V-notch impact testing caused crack formation through the hard 
phosphide phase of a 0.07% phosphorus containing alloy.  The polish plane is parallel to 
and within 500 µm of the fracture surface.  The motion of the tup was from the bottom to 
the top of the image. 

 

  

Phosphorus segregation was modeled using a thermodynamic free energy 

minimization software package (FactSage©) for the nominal Fe-30Mn-9Al-1Si-0.9C-

0.5Mo composition for three phosphorus levels.  The process used involves incremental 
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decreases in temperature where the solid phase chemistry is removed and the 

solidification of the remaining liquid is then modeled until the chemistry of the remaining 

liquid is computed.  Figure 18 shows the results of this study, which is similar to that 

obtained using the Scheil equation16. These computations predict a large phosphorus 

concentration in the interdendritic liquid for phosphorus contents greater than 0.01%. 

Upon solidification, thermodynamic modeling predicts that the remaining composition 

will favor the Fe2P crystal structure. 

 
 

 

Figure 18.  Scheil modeling of the remaining liquid after the start of solidification for 
three different phosphorus containing alloys (0.006%, 0.01%, and 0.06%) shows 
phosphorus content rise in the remaining liquid.   
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DISCUSSION 

Phosphorus content had the single greatest degrading effect on notch toughness; however 

there also appears to be a quench rate sensitivity and an influence of age hardening.  A 

constitutive model was constructed using impact data from end quenched plates produced 

from the 0.006% and 0.043% phosphorus cast alloys. An empirical fit of the data shows 

that Charpy impact energy (ST, J/cm2) in solution treated and cooled specimens follows 

the general equation: 

21 )( FCRLnFST +×=                      (Equation 2) 

where: CR (°C/s) is the cooling rate, F1 (J·s/°C) and F2 (J) are the functions of phosphorus 

content given by the equations: 

4954.8).%(23.641 +×−= PwtF                     (Equation 3) 

5.156).%(21432 +×−= PwtF                     (Equation 4) 

The phosphorus embrittlement effects given by equations for F1 and F2 show that 

at a given cooling rate, impact energy decreases 13% per 0.01 wt.% increase in the 

phosphorus content.  The ST value calculated from Equation 2 defines a starting 

condition, which will then be used to model the effect of precipitation hardening.  The 

final aged toughness, AT, will link age hardening kinetics via the Jaffe-Hollomon 

parameter (Equation 1), the phosphorus content, and the cooling rate after age hardening.  

The differences observed due to phosphorus content and cooling rates were accounted for 

by making the Jaffe-Hollomon equation (JH) constants functions of phosphorus and 

cooling rate: 

 

AT = F3 ⋅ Log(JH) + F4                    (Equation 5) 
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where F3 and F4 are functions of the initial condition ST determined by Equation 2, so 

that F3 (J) and F4 (J) become: 

4.823,7)(96.7723 −×= STLnF                     (Equation 6) 

380,32)(8.126,34 +×−= STLnF                     (Equation 7) 

Figure 19 shows a plot of all of the measured room temperature Charpy V-notch 

impact energies versus Equation 5.  The predicted energy value from Equation 5 was 

found to be within the standard deviation of the mean values for each condition plotted.  

Thus it is possible to show that the notch toughness of the Fe-30Mn-9Al-1Si-0.9C-0.5Mo 

alloy is quench sensitive, adversely affected by phosphorus, and decreases with age 

hardening, which suggests that phosphorus may be influencing the fracture behavior of κ-

carbide.   

 
 
 

  

Figure 19.  Measured Charpy V-Notch impact energy is plotted against Equation 5.  The 
asterisked (*) phosphorus containing alloys were used to generate the model.  All other 
compositional data was plotted afterword to confirm the model. 

 
 
 

* 
* 
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Phosphorus embrittlement in low alloy steel17 and manganese steels18,19 is well 

known, but had not been previously reported for age hardenable Fe-Mn-Al-C steels.  To 

help explain the phenomenon, a first principles modeling was performed in two steps.  

Step one modeled solution enthalpy energies of bulk crystalline and carbide stability of 

pure and phosphorus doped crystals.  This was done in order to determine preferred 

phosphorus location within the austenite and κ-carbide microstructure.  Solution 

enthalpies were modeled using the projector-augmented waves method as implemented in 

the Vienna ab initio simulation package20,21 with the generalized gradient approximation 

(GGA) for the exchange-correlation energy22.  To find the preferable site for phosphorus 

in bulk κ-carbide (simulated as stoichiometric Fe3AlC), solution enthalpies for the 

substitutional phosphorus at iron, aluminum, or carbon sites were compared using a 40-

atom (2x2x2) supercell.  The solution enthalpy was estimated as a total energy difference 

between supercell with phosphorus (Fe23Al8C8P, Fe24Al7C8P and Fe24Al8C7P for the iron, 

aluminum, and carbon substitutions, respectively) and the ideal supercell (Fe24Al8C8).  

Calculations were performed for metals in their ground states to determine the total 

energy. 

Energetically preferable sites for phosphorus in α-Fe an d γ-Fe showed 

substitutional solution enthalpies of 1.65 eV and 2.43 eV, respectively and are in 

agreement with previous calculations23.  Interstitial phosphorus solution enthalpy within 

the α-Fe and γ-Fe were 3 eV greater for both phases.  The calculated ground state of 

Fe3AlC was ferromagnetic with an equilibrium lattice parameter of 3.753 Å, which is in 

agreement with experimental data23 and previous theoretical results25,26.   Solution 

enthalpies are positive for all Fe3AlC substitutions at 2.40, 0.67, and 1.22 eV for 
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phosphorus in iron, aluminum and carbon sites, respectively. Therefore phosphorus 

substitution for aluminum is favored in Fe3AlC over less stable substitution for carbon 

and iron in the Fe3AlC structure or even matrix iron atoms, which should result in a (001) 

Fe3AlC cleavage plane. 

Step two modeled cleavage fracture based on phosphorus location, assuming that 

crack nucleation occurred in plane with the phosphorus defect.  Ideal cleavage 

characteristics were simulated by the density functional theory27.  This approach is based 

on the Griffith model in that intrinsic cleavage fracture occurs when the applied stress 

exceeds the ideal cleavage energy (Gc), defined as the energy necessary to separate the 

crystal into two semi-infinite parts. The ideal cleavage energy is dependent on the 

separation distance between the two crystal slabs and modeled using the universal 

binding energy relation (UBER) 28, 29: 

 GC (x)  =  GC [1-(1+x) exp(-x)],  x=u/λ                                       (Equation  8) 

where u is the length and λ defines the separation distance.  The separation distance 

pertains to the two newly created fracture surfaces such that surface energy (γS) is equal 

to one half of the cleavage energy (GC = 2  γS) due to the applied stress. The ideal 

cleavage stress (σ) may be calculated as σ(x) = dGC(x)/dx so that the parameter λ 

corresponds to the maximum stress σmax.  To model the cleavage, two slabs each 

consisting of twelve layers (1x1x6 supercells) and varied in their separation distance 

obtained by a translation along the z-direction.  No relaxation was allowed for the atomic 

positions in order to obtain ideal brittle cleavage. 

The UBER fit results for pure Fe3AlC gave a cleavage energy of GC=5.04 J/m2 

and an ideal stress σmax=40 GPa with the maximum stress and separation distance λ at 
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0.46 Å, which corresponds to an ideal strain of 12.3%.  The UBER fit results for a 

phosphorus doped Fe3AlC supercell showed that the ideal cleavage energy (2.76 J/m2) 

and ideal cleavage stress (22 GPa) were less than half the values of pure Fe3AlC.  

Cleavage energies (GC(x)) and stress (σ(x)) as a function cleavage separation between the 

(001) layers in Fe3AlC are shown in Figure 20, where x=0 corresponds to the equilibrium 

interlayer distance in bulk.  The phosphorus substitution of carbon was included with the 

ideal Fe3AlC and phosphorus substitution of aluminum modeling data even though it is 

energetically less favorable.  Thus, the modeling shows that the presence of phosphorus 

in bulk Fe3AlC favors brittle cleavage along the (001) plane.  

 
 
 

 
Figure 20.  Cleavage energy and tensile strength ab initio calculations as a function of 
separation distance for κ-carbide with and without phosphorus substitution for aluminum. 

 
 

 

The role of phosphorus and its relationship to quench sensitivity can now be 

clearly defined.  The lower solution enthalpy of phosphorus when substituted in κ-
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carbide would enhance the precipitation kinetics of κ-carbide.  At sufficiently low quench 

rates after solution treatment and when combined with segregation, κ-carbide 

precipitation along prior austenite grain boundaries would be expected; and, is clearly 

shown in Figure 14(b).  The intergranular fracture in the 0.07% phosphorus alloy may be 

related to a combination of κ-carbide precipitation, the interdendritic phosphide 

containing eutectic or simply the segregation of the phosphorus to the grain interface with 

subsequent lowering of the cohesive strength. The exact cause of the intergranular 

fracture was not the primary focus of this study.  

As the amount and size of κ-carbide increases the propensity of cleavage fracture 

increased and there is sufficient evidence that the fracture plane is {100} as shown by 

first principle calculation and experimentally in Figure 12.  Literature has also shown that 

there is a relationship between κ-carbide coarsening and transgranular cleavage30 or 

heterogeneous precipitation (B2, DO3, or κ-carbide) along austenite grain boundaries31.  

What is yet unclear is the role of high manganese and aluminum in the cleavage fracture 

of austenite and this will be the subject of a future investigation.  

CONCLUSIONS 

Impact toughness of nominal Fe-30Mn-9Al-1Si-0.9C-0.5Mo alloys has been 

modeled as a function of phosphorus content, cooling rate, and precipitation hardening. 

Phosphorus contributes a 13% drop in toughness for a 0.01 wt.% increase in phosphorus.  

First principle calculations show that phosphorus substitutes directly for aluminum in the 

κ-carbide structure and lowers the cleavage stress by 50%.  However, Charpy V-notch 

impact energies greater than 100 J/cm2 can be obtained for age hardened, low phosphorus 

alloys (<0.02% phosphorus) when quenched at or greater than 58.8°C/s.  The highest 
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aged impact toughness was obtained in the ultra low 0.001% phosphorus containing alloy 

that was solution treated and water quenched at 337°C/s prior to aging.  Large 

interdendritic phosphides were also discovered in alloys with phosphorus content greater 

than 0.03% and these eutectic structures show a brittle fracture character and may 

contribute to lower notch toughness. 
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2. CONCLUSIONS 

 The mission to select and develop a lighter and castable alloy for MIL-PRF-32269 

class II homogeneous perforated armor was successful.  The greatest impact from this 

work is that the cast Fe-30Mn-9Al-1Si-0.9C-0.5Mo alloy attained comparable ballistic 

performance as Rolled Homogenous Armor (RHA) without the need for a grain refined 

wrought microstructure (mass efficiency (EM) comparable to RHA against 0.30 caliber 

armor piercing projectile).  This dispels the myths and perception that all castings are 

inferior to wrought material for armor and that a worked and refined microstructure is a 

requirement for an armor alloy.  The process set forth tying processing to quasi-static and 

dynamic properties in this thesis to guide alloy design and to achieve the ballistic 

objective (by investigating castability, thermal processing techniques and assessing 

related structure properties) was validated.  The documentation contained herein provides 

potential manufacturers the critical information needed to produce this alloy.  Related to 

the research is the advancement towards the Fe-Mn-Al-C composition’s recognition as a 

feasible, if not suitable, casting alloy.  Receiving such designation is important in 

communicating to foundries, fabrication facilities, and end users for a broad range of 

structural and armor applications.  The technical highlights from the work presented are 

as follows: 

1. Silicon does not increase fluidity as a function of superheat, but it lowers liquidus and 

solidus temperatures. At approximately 1% silicon content, ferrite is minimized, and the 

addition of silicon prevents β-Mn.  This established a range of Si content to control ferrite 

content for targeted properties. 
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2.  Solution treating at 1050°C and aging at 530°C was sufficient to produce the 

appropriate range of hardness values to evaluate the system and refine the heat treatment 

of the ballistic samples. 

3. Yield and tensile strengths in excess of 1,000 MPa in the aged condition are possible 

with a cast dendritic microstructure without the need of replicating the wrought 

microstructure. 

4.  Specific high-strain-rate compressive strengths are greater than wrought MIL-A-

12560 rolled homogeneous armor (RHA).  Post analysis showed internal voids as crack 

initiation sites implicating higher strengths are possible via subsequent thermomechanical 

treatment.   

5. The alloy system work hardens thus has the propensity to resist adiabatic shear failure, 

a typical pre-mature failure mode observed during high-strain-rate and ballistic loading. 

6. The alloy passes MIL-PRF-32269 ballistic and final threat testing. 

7.  Presence of phosphorus in the alloy is deleterious to Charpy impact toughness.  Ab 

initio calculation showed substitution of aluminum by phosphorus in κ-carbide is the 

primary candidate for this embrittlement.  In addition to phosphorus content, low critical 

cooling rates and high aging temperature-time parameters also contribute to lower 

Charpy impact toughness.  The reduction in impact toughness was shown to correlate 

well to decrease ballistic performance against fragmentation simulation projectile (FSP). 

  

Since the work on this system did not include ballistic optimization, areas of 

recommended future research include (but are not limited to) carbide strengthening, 

increasing aluminum content for further weight reduction, grain refinement, heat 
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treatment and phosphorus mitigation.  Other areas of recommended research include 

structure and property effects of aluminum and manganese additions, studies to refine 

existing thermodynamic databases reflecting known phase constitution, carbide additives 

(e.g. niobium carbide) for further strengthening, wear characterization, machinability 

studies, mold-molten metal interactions and compatibilities, shell mold and pouring 

temperature relations, continuous casting and thermomechanical processing.   

Lastly, discussion items and recommendations during the oral defense were as 

follows: 

1.  Chemical Analysis Technique 

Concerns: All chemical analysis for this thesis was conducted by inductively coupled 

plasma verified with wavelength dispersive spectrometer analysis and not arc 

spectrometer. 

Discussion

2.  Hardness Measurements 

: Arc spectrometers are representative of what is typically used at foundries 

due to lower system cost, processing time per sample and ease of operator usage.  

Accuracy of arc spectrometers for chemical analysis is acceptable.  Arc spectrometer 

standards are not readily available and prevented their usage for this alloy system during 

thesis research.  To control chemistry in future production, collaborative effort with 

NIST, SFS and other appropriate agencies will be established to develop commercial 

production standards .   

Concern: The Fe-Mn-Al-C system has not been investigated for hardness conversion 

appropriate for ASTM E140. 
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Discussion

3.  High Strain Rate Reporting 

: Rockwell B and Rockwell C techniques were converted to Brinell hardness.  

The quenched and tempered low carbon steel Tables 1 and 2, ASTM E140, were found to 

be functional, but this practice is not recommended by ASTM.   Minimizing utility and 

table conversion of different hardness measurement scales whenever possible is the 

recommended practice.  Since hardness measurement scale conversion for comparative 

purposes was unavoidable during this research (and assumed to be unavoidable in the 

future), hardness technique and conversion process in experimental procedures should 

always be clearly specified and its uncertainties noted.  As the alloy system gains formal 

recognition and nomenclature, alloy specific hardness conversion tables should be 

established and incorporated into ASTM E140. 

Concern:  Reported true stress and true strain for Split Hopkinson Kolsky Bar 

compressive data was normalized to non-equilibrium conditions during testing but did 

not reflect the actual true strain measured during testing. 

Discussion

4.  Phosphide Analysis 

:  During testing, recorded strain was higher than reported strain because the 

strain data was normalized to account for non-equilibrium stress conditions.  This 

technique failed to report an additional 10% elongation to failure.  Additionally, Split 

Hopkinson Kolsky Bar testing does not have a national or international standard for 

reporting.  Normalized true strain reporting should be avoided.  Data can be reported to 

reflect actual strain to failure and the strain at which steady state was achieved. This is 

particularly important if the data is to be used by modelers to predict and establish failure 

criteria. 
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Concern:  The phosphide formation is unexplained in the Fe-Mn-Al-C system. 

Discussion

 

:  Phosphorus eutectic formations are not new to ferrous based metals.  Cast 

iron also shows similar structures as do Hadfield manganese steels.  A more thorough 

literature review of cast iron and Hadfield systems should assist in understanding the 

phosphorus formation observed and means to mitigate it for improved mechanical 

properties.  However, under certain ballistic conditions, the phosphorus phase could 

prove beneficial (i.e. similar to metal matrix composites). 

Additional Comments: 

Though the present research is focused on a ferrous alloy, the insights gained from 

understanding property-microstructure-processing-ballistic performance relationships are 

applicable to other materials systems.  The hardening carbide phase can be representative 

of ceramic particulates in light non-ferrous alloys.  The austenite-ferrite relationship can 

be representative of any dual phase materials.  The concept of phase manipulation within 

casting parameters to achieve wrought material performance creates an enormous 

opportunity to consider low cost-complex shape materials for ballistic applications.  But 

at the heart of the matter is that the successful results from this effort were due to a threat 

based material’s need providing the driving force for expedient research and determining 

which attributes within the property-microstructure-processing relationship took priority.  

In this case, the MIL-PRF-32269 provided a specific problem definition facilitating 

successful alloy ballistic application development in two years.



 
 

 

 

 

 

 

 

 

APPENDIX A. 

PAPER - Quench Sensitivity of Cast Fe-30Mn-9Al-1Si-0.9C-0.50Mo Lightweight Steel  
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ABSTRACT 

Quench sensitivity of Fe-30wt.%Mn-9wt.%Al-1wt.%Si-0.9wt.%C alloys were 

investigated.  Two alloys were examined: a calcium treated low phosphorus alloy 

(0.006wt.% P) and a non-calcium treated high phosphorus alloy (0.07wt.% P).  Samples 

were solution treated and subjected to differing cooling media to produce various  

cooling rates.  In addition, low phosphorus alloy samples were tested after solution 

treating and aging.  Maximum impact toughness (190 ± 11 J) and lowest hardness (211 ± 

11 BHN) was measured in the solution treated low phosphorus specimens for a 337°C/s  

cooling rate.   Minimum impact toughness (5.4 ± 0.3 J) and maximum hardnesses (366 ± 

5 BHN) was measured in the untreated high phosphorus alloy specimens for a low 

0.4°C/s  cooling rate.  Reducing the  cooling rate increased heterogeneous precipitation in 

both alloys.  The general equations describing the complex effect of phosphorus, cooling 

rate, and parameters of aging kinetics were developed and could be used for process 

design and alloy properties prediction. 

INTRODUCTION 

Lightweight castable steel alloys containing aluminum concentrations greater than 

7% (all chemistries are in weight percent) are under current investigation as alternatives 

to traditional MIL-A-125601 and MIL-A-461002 armor steel chemistries for application 

in MIL-PRF-322693 perforated homogeneous steel armor.  Fe-Mn-Al-C alloys contain 

20-30% Mn, 7-12% Al, and 0.7-1.2% C4.  The Fe-Mn-Al-C family of alloys has shown 

great potential as their specific strength under quasi-static tensile and high strain rate 

compression testing exceeded rolled homogeneous armor by 13% and 28% respectively 

for the two test techniques5.    The excellent specific properties benefit from weight 
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reduction of aluminum content.  Aluminum concentrations between 7 and 12% reduce 

density by as much as 18% over conventional steels4.   

Fe-Mn-Al-C alloys age harden by precipitation of the к-carbide when aluminum 

concentrations exceed 5% and carbon content is greater than 0.3%7.  The к-carbide 

formation is preceded by spinodal decomposition facilitating homogenous precipitation 

of the к-carbide8.   Th e к-carbide is an ordered E21 crystal structure: aluminum atoms 

occupy {1,0,0} positions, iron or manganese the {½ , ½, 0} positions, and carbon is 

located at the center octahedral position4.   

Howell et al. investigated silicon additions to evaluate fluidity, solution treated 

microstructures6, and age hardened properties5.  Thermal analysis from the fluidity study 

showed that silicon additions lower liquidus, solidus, and dendrite coherency point by 

30°C per weight percent increase6.  The silicon containing alloys’ fluidity spirals were 

70% greater in length versus a low alloy steel at 150°C superheat6.  Silicon containing 

solution treated material is primary austenite and less than 10 volume percent ferrite6.  

Peak hardness during aging at 530°C occurs at 30 hours for 1% silicon containing Fe-

30Mn-9Al-0.9C-0.5Mo alloy solution treated at 1050°C (see Figure 1)5.  Hardness 

increased from a solution treated 224 ± 2 BHN to peak aged 372 ± 8 BHN6.  Tensile 

strength increased from 687 MPa to 1,065 MPa, and ductility decreased as elongation to 

failure declined from 44 to 8 %5.    

Howell et al. correlated Charpy impact and cast defect content to 0.50 caliber 

fragmentation simulation ballistic results of two solution treated and aged nominal cast 

Fe-30Mn-9Al-0.9C-0.5Mo alloy9.  A calcium treated alloy (with half the defect content 
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and less then 20% of the phosphorus content of the non-calcium treated alloy) exceeded 

the non-treated material’s V50 by 64 m/s and its Charpy impact toughness by 60 J9.  

 
 
 

 

Figure 1.  The age hardening curves for 1 and 1.4 % silicon containing Fe-Mn-Al-C 
alloys show a rapid increase in hardening through the first 6 hours.  At times greater than 
six hours, hardness increases, but the hardening rate decreases.  Maximum hardness is 
achieved at 30 hours for both alloys.  The 1% silicon alloy hardens to 372 ± 8 BHN, and 
the 1.4% alloy age hardens to 384 ± 10  BHN. 

 

 

The current study is part of an investigation to quantify quench rate and impurity 

effects of two commercially cast nominal Fe-30Mn-9Al-1Si-0.9C-0.5Mo alloy steels in 

order to improve fracture toughness and ballistic performance for MIL-PRF-32269.  

Specimens were solution treated and cooled in various media to achieve multiple cooing 

rates.  Charpy bars were tested in this condition and an additional set of specimens were 

solution treated, aged and then tested.  Impact data was then correlated to phosphorus 

content,  cooling rate, microstructural and fracture surface observances. 
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EXPERIMENTAL PROCEDURE 

Two alloys were commercially produced as cast plates from high purity induction 

iron, aluminum, ferrosilicon and ferromolybdenum in 225 kg induction furnaces under 

argon cover.  One alloy utilized electrolytic manganese and was calcium treated.  The 

other alloy was manufactured with ferromanganese and not calcium treated.    Both alloys 

were cast into olivine phenolic no-bake sand molds and poured without filtering at 100°C 

superheat.  A solid oxide probe measured oxygen content.  Both heats contained 2 ppm 

oxygen and did not require an additional deoxidation step.   Low density coagulant was 

utilized for deslagging. 

 Two experimental trials were executed.  The first trial consisted of specimen 

blocks measuring 12.5 mm x 12.5 mm x 60 mm.  Blocks were heated to 1000°C and 

cooled by water quenching, oil agitation, placed on a brick in open air, or insulated by an 

alumina fiber blanket.  Four alloy blocks were produced per each cooling media with 

additional sets of the treated alloy cooled in the four media and then aged at 530°C for 10 

hours (Table 1).   

 
 
   

Table 1.  Trial 1 Test Matrix for Charpy Impact Data Collection 

Alloy / Heat Treat Test Condition Water 
Quench 

Oil 
Quench 

Air 
Quench 

Alumina 
Fiber 

Calcium Treated / Cooled 4 bars 4 bars 4 bars 4 bars 
Non-Calcium Treated / Cooled 4 bars 4 bars 4 bars 4 bars 
Calcium Treated / Cooled and 

Aged 4 bars 4 bars 4 bars 4 bars 
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A K-type thermocouple was embedded into one of the blocks for cooling rate data 

collection.  Temperature and time data collection occurred at 4 Hz. Blocks were 

machined to ASTM E 23 Type-A V-notch Charpy specimens and tested at room 

temperature in a Tinius Olsen Charpy model 84 pendulum impact machine with model 

892 controller. 

The second trial consisted of specimens machined from a water end quenched 

plate that measured 127 mm x 177.8 mm x 15.25 mm (Figure 2).  The quenched end 

measured 15.25 mm x 177.8 mm.  K-type thermocouples were welded onto the plate at 

25, 50, 75, and 100 mm from the quenched end.   

 
 
 

 

                   (a)               (b) 

Figure 2. The quench plate schematic form (a) shows plate dimensions and thermocouple 
contact spacing distances every 25 mm.  The actual plate form (b) is shown at the 
completion of testing in the quench fixture without its alumina fiber insulation wrap with 
the water pump engaged.  
 

 

A stainless steel round bar and a low carbon steel thin plate were welded to the specimen 

plate to facilitate placement in the quench tank fixture.  The plate assembly was wrapped 

in alumina fiber, less the quenched end.  The entire assembly was heated to 950°C and 

Thermocouples 

Water nozzles 
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placed into the quench fixture.  Temperature and time data collection occurred at 4 Hz.  

The plate was then aged at 520°C for 10 hours.  ASTM E 23 Type-A V-notch Charpy 

blocks were cut vertically from the plate to correspond to thermocouple locations (Figure 

3).  Room temperature instrumented Charpy testing of these specimens also occurred on 

the Tinius Olsen model 84 machine but with an MPM Impact v5.1 instrumented tup and 

data acquisition system. 

 
 
 

 

Figure 3.  Schematic shows Charpy specimen locations selected to minimize differences 
in notch toughness and hardness data sensitivity as a function of plate location. 
 
 
 
 

Two Fluent® simulations were conducted to compensate the experimental results 

because thermocouple data acquisition occurred below 680°C during solid plate end 

quenching.  The first simulation was model verification conducted against available 

experimental data.  The second simulation was end quench modeling for the 950°C 

solution treatment temperature.  Briefly, energy transport within the solid enmeshments is 

governed by the equation: 
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where:  t (s) is time, r is the solid plate’s density (6.7 g/cm3),  λ (W/m·K) is thermal 

conductivity, T (K) is temperature, xi is a coordinate parameter, and h (J) is sensible 

enthalpy calculated from:   
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dTch             (Equation 2) 

Heat capacity (cp, J/(kg·K)) was assumed that of steel and its relationship is linear with 

temperature and followed that: 

332)(25.0 += Tcp            (Equation 3) 

The convective heat flux (q, w/m2) for the end quenched plate boundary condition is: 

)( extplateext TThq −=                                  (Equation 4) 

where: the heat transfer coefficient hext = 5,000 W/K*m2 was used.  

The boundary condition for side walls included an additional layer of low thermal 

conductivity (0.1 W/m·K) alumina fiber with 5 mm thickness. The fiber/air heat transfer 

coefficient for was 10 W/m2·K. Fluent simulations were executed for 0.1 second time 

step increments over a 30,000 elements enmeshment.   

Model inputs required thermal conductivity data. Thermal conductivity of a Fe-

28.8Mn-8.3Al-1.0Si-0.9C-0.5Mo alloy was executed to ASTM E 1225-04 standards.  

This test measures an unknown material’s coefficient of thermal conductivity (λS, 

W/m·K) by averaging the heat flow (q, W/m2) between two known upper (q1) and lower 

(q2) conductive samples, accounting for differences of temperature (ΔT, K) and distance 

(ΔZ, m) across the two thermocouples of the known thermal conductivity (λM, W/m·K): 
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A testing apparatus consisted of a water cooled bronze heat sink, three 3 inch 

diameter machined steel tube sections, two 304 stainless steel standards, one test 

specimen,  two K-type thermocouples welded directly to each specimen, a silicon carbide 

heating element, and alumina fiber insulation (Figure 4).  The 304 stainless steel was 

selected because of its known thermal conductivity and austenitic crystal structure.  The 

heating element’s power was increased incrementally to allow the column temperature 

gradient to achieve steady state.  Calibration also occurred with a 304 stainless steel 

sample, and calibration error was less than 1%. 

Tested Charpy specimens were sectioned for optical and scanning electron 

microscopy (SEM) with electron dispersive spectrometer (EDS) for chemical mapping.  

Hardness was measured with Rockwell B and Rockwell C scales and converted to Brinell 

hardness number (BHN).  SEM charging voltage was 15 keV with 18 mm of working 

distance at 0° rotation, and EDS mapping occurred at 15 keV, 22 mm of working 

distance, and 15° rotation.  Oxide and sulfide inclusion content were measured using an 

ASPEX-PICA 1020 analytical SEM on metallographically prepared specimens.  

Inductive coupled plasma spectrometry x-ray fluorescence by single element wavelength 

dispersive spectrometry were employed for chemical identification.   
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    (a) 
 

     
                (b) 
 
Figure 4.  Thermal conductivity apparatus schematic (a) shows the test samples between 
two austenitic stainless steel standards inside an insulated steel pipe.  The thermocouples 
are labeled Z1 to Z6.  The heat sink is shown schematically as a flat plate, but consisted 
of a solid silicon carbide heating element inside an insulated steel box tube (b). 
 
 
Metallographic specimens were etched with 2% Nital and images were recorded using a 

differential interference contrast technique.  Image-J ® analytical computer software was 

used to determine ferrite volume fraction and dendrite arm spacing. 

Z1 

Z2 

Z3 

Z4 

Z5 

Z6 

Heating filament stand 

Test apparatus stand 

Heating filament  

Heating filament end 
support 

Thermocouple reader 

Cooling water tube 
attached to faucet 

Thermocouple wire leads 
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 Charpy impact toughness and hardness for all material were plotted as functions 

of the  cooling rate.  The  cooling rate for this system was calculated at 650°C; the к-

carbide time temperature transformation curve’s nose.  A Larson-Miller10 analysis of 

aging kinetics occurred by comparison of a historic 0.043% phosphorus containing Fe-

Mn-Al-C alloy11.  The Larson-Miller approach is only applicable up to the peak aged 

condition. Charpy impact energy data, hardness, and dendrite arm spacing experimental 

measurement errors are reported as the standard deviation with the mean test value12. 

RESULTS 

CHEMICAL ANALYSIS 

Chemical identification of the two alloys is listed in Table 2.  Sulfur and 

phosphorus levels are dramatically different between the two alloys.  Sulfur increased 

from 0.0008% in the treated alloy to 0.005% in the untreated material.  Phosphorus 

increased from 0.006% in the treated alloy to 0.07% in the untreated materials. 

 
 
 

Table 2.  Chemical compositions of cast steel (weight percent) 

Alloy Fe Mn Al Si C Mo S P 
Calcium Treated Bal 30.21 8.85 1.01 0.89 0.31 0.0008 0.006 

Non-calcium 
Treated 

Bal 29.11 9.25 1.07 0.90 0.37 0.005 0.07 
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THERMAL CONDUCTIVITY 

Coefficient of thermal conductivity (λ, W/(m·K)) increased linearly with 

temperature (T, K).  At 59°C, the coefficient of thermal conductivity measured 10.4 

W/(m·K) and increased to a value of 20.1 W/(m·K) at 516°C (Figure 5).   

 
 
 

 

Figure 5.  Thermal conductivity of a Fe-28.8Mn-8.3Al-1.0Si-0.9C-0.5Mo alloy. 

 
 
 

The linear change increase was expressed as a function of temperature: 

41.3021.0 +⋅= Tλ                       (Equation 8) 

COOLING RATES 

Two cooling procedures were applied. In the first one, different cooling media 

(water, oil, air, and alumina fiber) were at room temperature (21°C) for the start of each 

test. Figure 6 shows experimentally measured cooling curves and cooling rates in each 

cooling media. Cooling rates (at 650°C) were determined from the first derivative (dT/dt) 

of the cooling curve.  In all test conditions, cooling rate in the specimens’ center 
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increases to a maximum value within the first 4 seconds of immersion into each media.  

Water quenching produced the maximum cooling rate of 341°C/s while a  cooling rate 

was 337°C/s.  Oil quenching, air cooling, and alumina fiber cooling showed cooling rates 

of 86°C/s,  2°C/s, and 0.4°C/s accordingly.   

 
 
 

     
     (a)            (b) 
 

 
                  (c)                         (d) 
 
Figure 6.  Cooling curves for water (a), oil (b), air (c), and alumina fiber (d) are shown 
with their first derivative (dT/dt) cooling rate.  The  cooling rates were 337°C/s (water), 
86.1°C/s (oil), 2°C/s (air), and 0.4°C/s (fiber). 
 
 
 
 
The second cooling procedure used a water end quenched plate. The verification step of 

the Fluent modeled data (used measured coefficient of thermal conductivity from 
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Equation 8) is shown in Figure 7 alongside the experimental data.  The calculated and 

experimental data for different thermocouple locations were in acceptable agreement and 

allowed execution of the next iteration for the real quenching temperature (950°C). The 

predicted cooling profile for 25, 50, 75, and 100 mm from quenched end are shown in 

Figure 8. Two screen shots illustrating the temperature profile at 50 seconds (0.014 

hours) and 300 seconds (0.083 hours) are also shown.  Modeled cooling rates for the 

thermocouple positions are in Table 3.  The comparison of these two procedures showed 

the range of end quenched  cooling rate values (58.8°C/s to 0.9°C/s) fell in between the 

small specimen measured values for oil quenching (86.1°C/s) and alumina fiber cooling 

(0.4°C/s). 

 
 
 

 

Figure 7.  Modeled and experimental end quench cooling curves are shown for three 
thermocouple positions on a 177.8 mm x 127 mm x 15.25 mm plate.  The error in 
modeled temperature prediction varies up to a maximum difference of 40°C for the 
thermocouple location 100 mm from the quenched end. 
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Figure 8.  Modeled cooling curves are shown for four thermocouple positions on a 177.8 
mm x 127 mm x 15.25 mm solid plate undergoing end quenching from 950°C.   The  
cooling rate (dT/dt) at each location was determined at 650°C, indicated by the horizontal 
dashed line. 

 
 
 
 

Table 3.   Cooling rates from modeled thermocouple locations indicated by their distance 
from the quenched end 

 
Position 25 mm 50 mm 75 mm 100 mm 

 Cooling Rate (°C/s) 58.8 26.2 17.3 16.6 
 
 
 
 
CHARPY IMPACT ENERGY AND HARDNESS 

Impact energy and hardness values are shown in Figure 9 as a function of  cooling 

rate.  Two trends were observed.  First, impact energy of both alloys attained maximum 

toughness in the water quenched condition or maximum  cooling rate (337°C/s) and 

minimum toughness from cooling in alumina fiber (0.4°C/s).  Second, minimum hardness 

corresponded to maximum  cooling rate and maximum hardness from the minimum rate.  

Specific values for both alloys for the four cooling media are reported in Table 4.  The 

0.006% phosphorus containing alloy attained higher impact energies and lower 

hardnesses at all  cooling rates. 

dT/dt 
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Table 4.  Average values of impact energy and hardness of each specimen condition, 
aligned by cooling rate. 

 

Alloy 
Water 

(337°C/s) Oil (86.1°C/s) Air (2°C/s) Fiber  
(0.4°C/s) 

Joules BHN Joules BHN Joules BHN Joules BHN 
Solution 
Treated 

0.006% P 

190 ± 
11 

211 
± 10 

182 ± 
37 

232 
± 7 

150 ± 
40 

256 ± 
8 

137 ± 
15 

271 
± 6 

Solution 
Treated 
0.07% P 

32 ± 5 246 
± 9 23 ± 2 265 

± 12 7 ± 1 348 ± 
10 

5 ± 
0.3 

366 
± 5 

Solution 
Treated and 

Aged 
0.006% P 

103 ± 
7 

294 
± 6 

105 ± 
2 

289 
± 5 

79 ± 
24 

289 ± 
4 71 ± 6 300 

± 5 

 
 
 
 
Both observed Charpy impact and hardness trends for the aged small individual 

specimens were also observed in the end quenched and aged plate.  Hardness values 

increased slightly from 261± 4 BHN to 288 ± 5 BHN for a reduction in Charpy impact 

toughness from 144 ± 12 J to 100 ± 17 J for decreasing  cooling rates from 58.8°C/s to 

0.9°C/s; corresponding to increasing separation distance from 25 mm to 100 mm away 

from the quenched end (Figure 10).  

The instrumented test procedure collected impact force versus displacement curve 

information. The integral from this curve presents an overall impact energy.  

Instrumented yield impact force load results measured between 24 kN and maximum 

force loads up to 27 kN for all four end quenched specimen sets.  Figure 11 shows test 

outputs for 58.8°C/s and 0.9°C/s cooled end quenched specimens.  Impact energy 

differences correlated to ductility.   
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In Figure 11a, the 58.8°C/s cooled specimen displaced 3.6 mm at maximum load.  

By contrast, the 0.9°C/s cooled specimen (Figure 11b) only displaced 1.8 mm at 

maximum force load.  Total ductility also reduced from the 15.5 mm for 58.8°C/s 14 mm 

for the 0.9°C/s. 

 
 
 

 
          (a)                                 (b) 

 
          (c) 

Figure 9.  Charpy impact and hardness measurements of the three specimen sets are 
plotted as a function of  cooling rates for the four cooling media.  The 0.006% 
phosphorus alloy (a) had the lowest hardness (211 ± 10 BHN) and highest impact energy 
(190 ± 11 J).  The 0.07% phosphorus alloy (b) had the highest hardness (366 ± 5 BHN) 
and lowest impact energy (5 ± 0.3 J).  The aged (530°C for 10 hours) 0.006% phosphorus 
alloy showed little change in hardness (294 ± 6 BHN to 300 ± 5 BHN) correlated to 
broader change in impact energy (103 ± 7 J to 71 ± 6 J).  
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       (a)              (b) 

Figure 10.  The end quenched and aged plate’s Charpy impact and hardness 
measurements are shown as a function of quench rate (a) and distance from quenched end 
(b).  The highest Charpy impact energy (144 ± 12 J) and lowest hardness (261 ± 4 BHN) 
were measured for the highest  cooling rate (58.8°C/s) at the 25 mm location.  Increasing 
the separation distanced decreased the  cooling rate to a minimum of 0.9°C/s,   reduced 
Charpy impact toughness to 100 ±17 J and increased hardness to 288 ± 5 BHN . 
 
 
 
 

  
                    (a)             (b) 
 

Figure 11.  Impact force/energy curves are shown for specimens cooled at 58.8°C/s (a) 
and 0.9°C/s (b).  Yield force and maximum force load values are similar for both 
specimens, but ductility is distinctly higher for the 58.8°C/s cooled specimen thus it 
produced the highest measured impact energy. 
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FRACTURE SURFACE 

Both ductile and cleavage fracture modes were observed.  The 0.006% 

phosphorus containing alloy failed in a ductile fashion for the 337°C/s cooling rate (see 

Figure 12a).  But cleavage along the dendritic structure was observed for the 0.07% 

phosphorus containing alloy cooled at 337°C/s (Figure 12c).  A combination of ductile 

and transgranular fracture was observed for the cooled (337°C/s) and aged 0.006% 

phosphorus alloy specimen and for end quenched and aged plate specimens cooled at 

58.8°C/s and 6.5°C/s (Figure 12e).  A combination of transgranular and intergranular 

cleavage fracture occurred for all other tested specimens (see Figures 12b, 12d, 12f).  

Fracture surface chemical mapping by EDS (see Figure 13) of the two alloys revealed 

higher concentrations of phosphorus and sulfur in the 0.07% phosphorus alloy; 

confirming wet chemical analysis. 
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(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

Figure 12.  Failure occurs in a ductile fashion for the 337°C/s cooled 0.006% phosphorus 
alloy (a), but transgranular cleavage for the 337°C/s cooled 0.07% phosphorus alloy (c).  
A combination of ductile and transgranular fracture was observed for the 337°C/s cooled 
and aged 0.006% phosphorus alloy and all end quench plate specimens(e).  A 
combination of transgranular and intergranular cleavage was observed on fracture 
surfaces cooled 0.4°C/s of 0.006% phosphorus (b), 0.07% phosphorus (d), and the 
0.006% phosphorus aged material (f). 
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          (a)                  (b) 

   
           (c)      (d) 

Figure 13.  The fracture surface EDS chemical mapping confirms chemical analysis that 
the treated alloy produced with electrolytic manganese has less phosphorus (a) and sulfur 
(b) than the phosphorus (c) and sulfur (d) content of the untreated alloy produced with 
ferromanganese.  
 
 
 
 
MICROSTRUCTURE 

Quench rate and phosphorus content affects microstructural features in three 

ways: ferrite content, dendrite arm spacing, and precipitation of additional phases.  

Austenite content in the 0.006% phosphorus alloy is 99% by volume with isolated islands 

of ferrite (Figure 14a) and dendrite arm spacing is 59 ± 2 μm for all evaluated conditions.  

However, the 0.4°C/s cooled microstructure shows dendrite boundary precipitation 
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(Figure 14b).  The 0.07% phosphorus alloy cooled at 337°C/s contained 7% ferrite 

(Figure 14c).  Dendrite arm spacing measured 31 ± 3 μm. Decreasing the 0.07% 

phosphorus alloy’s cooling rate to 0.4°C/s produced matrix and discrete dendrite 

boundary precipitation with precipitate free zones adjacent to austenite-austenite 

boundaries (Figure 14d).   Discrete dendrite boundary precipitation is also visible in the 

solution treated and aged condition of the 0.006% phosphorus alloy (Figure 14e).  End 

quenched plate specimens (Figure 14f) revealed a continuous boundary precipitation 

amid a primarily austenitic matrix with isolated islands of ferrite.  Matrix and discrete 

precipitates were not observed.   

No distinguishable microstructural differences were visible in all end quenched 

plate specimens.   The 58.8°C/s  cooling rate specimen (Figure 15a) and the 0.9°C/s  

cooling rate specimen (Figure 15b) contain austenite, ferrite, and show dendrite boundary 

and sub grain precipitation.  Austenite content was constant and measured the same as the 

fully immersed specimens at 99%.  Grain boundary precipitation is continuous and lacks 

visible discrete precipitates such as those contained within the fully water quenched and 

aged microstructure.  

Figure 16 shows sulfide and oxide chemical ternary diagrams of both alloys, and a 

non-metallic inclusion size histogram is shown in Figure 17.  The inclusion chemistries 

of both alloys are equivalent, but the 0.07% phosphorus containing alloy’s showed an 

inclusion count increase by a ratio greater than 5:1.   
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         (a)            (b) 
 

   
      (c)             (d) 
 

   
      (e)            (f) 
 

Figure 14.  The 337°C/s cooled 0.006% phosphorus containing alloy (a) is composed of 
primary austenite and small islands of ferrite.  Cooling the 0.006% alloy at 0.4°C/s (b) 
produces austenite to austenite dendrite boundary precipitation.  The 0.07% phosphorus 
alloy shows increased ferrite content (c) and a combination of dendrite boundary and 
matrix precipitation (d).  Precipitate free zones also accompany the precipitation.  Small 
islands of ferrite and dendrite boundary precipitation are visible within the 337°C/s 
cooled and aged 0.006% phosphorus alloy’s  microstructure (e).  Increased dendrite 
boundary and matrix precipitation is observed within the 0.4°C/s  cooled and aged 
0.006% phosphorus microstructure (f). 
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                           (a)             (b) 
 
Figure 15.  Microstructures of the 58.8°C/s and 0.9°C/s cooled end quenched specimens 
shows primary austenite, ferrite and continuous dendrite and sub-grain precipitation.  
Visual inspection did not reveal distinctive features that differentiate the two cooing 
conditions. 
 
 
 
 
 

 

                 (a)     (b)         (c)            (d) 

Figure 16.  Sulfide (a) and oxide (b) content of the 0.006% phosphorus containing alloy 
are shown with the same chemical composition, but in lower quantity, as sulfides (c) and 
oxides (d) of the 0.07% high phosphorus alloy. 
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Figure 17.  Inclusion content of the untreated high phosphorus alloy is five times greater 
than that of the calcium treated low phosphorus alloys.  Inclusion radius size 0.002 mm 
and less accounted for the highest inclusion quantity size category for both alloys. 
 
 
 
 
DISCUSSION 

IMPACT ENERGY, PHOSPHORUS, AND COOLING RATE 

Decreasing quench rate and chemistry defect content had detrimental effects on 

Charpy impact energy, but phosphorus content had the single greatest degrading effect.  

Comparison of the two alloys’ impact energies as functions of cooling rate in Figure 18, 

taking into account differences in phosphorus content, reveal the large effect phosphorus 

plays in toughness of Fe-Mn-Al-C alloys.   Similar deleterious impact toughness 

phosphorus effects have been observed in high manganese steels13, but exact nature of the 

Fe-Mn-Al-C phosphorus embrittlement is under investigation. 
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Figure 18.  Impact energy is plotted as a function of  cooling rate for the 0.006% and 
0.07% phosphorus containing alloys.  Impact energy reductions of 30 to 50 J occurred 
within each fixed chemistry for decreasing  cooling rates, but the phosphorus content 
increase from 0.006% to 0.07% decreased toughness by at least 130 J for any equivalent  
cooling rate. 
 
 
 
 
 

COOLING RATE EFFECTS ON INSTRUMENTED CHARPY V-NOTCH RESULTS 

Type II and Type III failure14,15,16 characterization of end quenched and aged 

specimens was observed in all instrumented Charpy tests with Type III failure 

dominating the majority of the 0.006% phosphorus alloy’s tested specimens.  A 

conservative lower bound for dynamic fracture toughness (KID, MPa√m) was estimated 

assuming Type II failure and multiplying the KID value by 0.65 as prescribed by 

Sreenivasan et al. to account for statistical error15,16.  The equation for determining KID 

vaules15,16 is: 

IDID JEK ⋅=         (Equation 16) 
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where E is young’s modulus taken at 188 GPa5 multiplied by the elastic plastic fracture 

toughness (JID, MPa·m).  For Type II fracture loading curves, JID is estimated by the 

equation15,16: 

0

)(
bB
AmMPaJ ID ⋅

⋅
=⋅

η        (Equation 17) 

η is a fixed constant of 1.384 for Charpy V-notch specimens17, A is the area under the 

load displacement curve up to crack initiation, B is the specimen thickness (10 mm) and 

the initial ligament depth below the notch is bo (8 mm).   Sreenivasan et al.16 defined 

crack load initiation as the value corresponding to the average of the yield force load or 

general yield load (Pgy) and the maximum force load (Pm) such that A→(P m+Pgy)/2.  The 

lower bound KID is shown in Figure 19 and decreases with the reductions in the  cooling 

rate. 

 
 
 

 

 

Figure 19.  The lower bound KID is shown to decrease with reductions in  cooling rate for 
end quenched and 10 hour 520°C aged 0.006% phosphorus containing specimens. 
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MICROSTRUCTURE 

Decreasing the cooling rate increased matrix and dendrite boundary precipitation 

which accounts for the change in hardness within a fixed alloy chemistry.  Plotting the 

small specimen continuous cooling curves over the isothermal time temperature 

transformation diagram of a 1.25% silicon containing alloy by Acselrad et al.18 (see 

Figure 20) approximates that the 0.4°C/s  cooling curve that was generated by alumina 

fiber cooling passes through the transformation curves of homogenous matrix к-carbide 

and dendrite boundary к-carbide , B2 and DO3 phases.     

 
 
 

 

Figure 20. Time temperature transformation for a 1.25% silicon modified FeMnAlC alloy 
is subdivided as follows: 1) chemical segregation and zone formation, 2) matrix к-carbide 
nucleation and growth, 3) heterogeneous matrix к-carbide formation and grain boundary 
к-carbide and DO3 or B2 precipitation, 4) continued growth and decomposition forming 
discontinuous segmented phases of к-carbide, DO3, and B2, 5) final equilibrium phases, 
and 6) β-manganese for non-silicon containing alloys.  Continuous cooling curves of 1% 
silicon containing FeMnAlC alloy cooled in water, oil, air, and fiber are plotted as red 
lines.   
 
 
 
 

fiber 

air 

water & 
oil 



202 
 

 

Even though the 2°C/s  cooling rate curve (air cooling) is not shown to intercept the к-

carbide transformation curve, the observed microstructure and hardness increase is 

expected to result from precipitation and coherency strain due to spinodal decomposition 

during the early stages of к-carbide formation19.  Hardness differences between dissimilar 

alloys, subjected to equal cooled rates, is associated with phosphorus content since 

phosphorus is a known solid solution hardener20. 

Phosphorus21, sulfides22, and oxides23 are known steel containments, responsible 

for decreasing impact energy.    The 0.07% phosphorus alloy and its sulfur content 

exceeded the 0.006% alloy’s by 0.0042%.   Figure 16 and Figure 17 show sulfide and 

oxide chemical ternary diagrams of both alloys, and an inclusion size histogram. The 

0.006% phosphorus alloy benefitted from high purity charge materials and late calcium 

additions to the melt.  Calcium additions react with sulfur, forming a buoyant sulfide that 

floats out of the melt20,23.   Electrolytic manganese was used in the calcium treated low 

phosphorus alloy and ferromanganese was utilized for the non-calcium treated high 

phosphorus alloy. Manganese charge chemistries were not available from the 

manufacturers; however, Howell et al.9 suggested possible phosphorus sources included 

ferromanganese, furnace refractory, and priory heat residual material in the furnace. 

Phosphorus content affected ferrite volume fraction and dendrite arm spacing.  

Phosphorus is a ferrite stabilizer in steel24 and was shown to stabilize ferrite in FeMnAlC 

alloys.  Ferrite volume fraction increases 1% for a 0.01 wt.% increase in phosphorus.   

The high phosphorus alloy also reduced dendrite arm spacing by 4 μm for a 0.01% 

increase in phosphorus.   
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CONCLUSIONS 

Phosphorus was shown to have the single greatest detrimental effect on impact 

toughness.  Charpy V-Notch impact energy reductions as great as 95% were observed for 

an increase in phosphorus from 0.006% to 0.07%.  Cooling rate reductions are also 

responsible for decreasing toughness and increased hardness but not to the extent that 

phosphorus impacts these properties as shown by Equations 9 and 13 relating both  

cooling rate and phosphorus content to  impact toughness.    The exact nature of why 

phosphorus is so detrimental in Fe-Mn-Al alloys is under current investigation.  

Phosphorus increases ferrite content 1% for a 0.01% increase, and phosphorus reduces 

dendrite arm spacing by an amount of 4 μm per 0.01% increase.  Reducing  cooling rate 

increases matrix and dendrite boundary precipitation and correlates to increased 

embrittlement and hardness.  Therefore, under the best of conditions, ultra-low 

phosphorus with the highest possible quench rate from solution treating temperatures 

gives the best impact toughness possible in nominal Fe-30Mn-9Al-1Si-0.9C-0.5Mo 

alloys. 
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The calculations for solid fraction for determination of the dendrite coherency 

point in Paper 2: The Effect of Silicon Content on the Fluidity and Microstructure of Fe-

Mn-Al-C Alloys are derived from Newtonian heat-flow analysis.  Current solid fraction 

modeling is based upon the assumption that Newtonian cooling occurs (i.e. internal 

temperature gradients are small and neglibilge).  From this assumption, the heat balance 

equation is the phase transformation heat generation minus metal heat loss equal to the 

heat transferred to the mold: 

𝑑𝑑𝑄𝑄𝐿𝐿
𝑑𝑑𝑑𝑑

− 𝑉𝑉𝜌𝜌𝐶𝐶𝑝𝑝
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= ℎ𝐴𝐴(𝑇𝑇 − 𝑇𝑇𝑜𝑜)                 (Equation 1) 

 V – sample volume 
 ρ – metal density 
 Cp – specific heat of metal 
 T – temperature 
 t – time 
 h – heat transfer coefficient 
 A – surface area 
 To – ambient temperature 
 QL – latent heat of solidification 

 
Rearranging the terms gives the equation representing the cooling curve captured by the 

thermocouple: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 1
𝑉𝑉𝜌𝜌𝐶𝐶𝑝𝑝

[𝑑𝑑𝑄𝑄𝐿𝐿
𝑑𝑑𝑑𝑑

− ℎ𝐴𝐴(𝑇𝑇 − 𝑇𝑇𝑜𝑜)]                       (Equation 2) 

Assuming no phase transformation occurs (𝑑𝑑𝑄𝑄𝐿𝐿
𝑑𝑑𝑑𝑑

= 0), Equation 2 becomes: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= −ℎ𝐴𝐴(𝑇𝑇−𝑇𝑇𝑜𝑜)
𝑉𝑉𝜌𝜌𝐶𝐶𝑝𝑝

                     (Equation 3) 

Equation 3 represents the cooling curve without phase transformation otherwise known as the 

zero curve, Z-curve, or baseline curve.  The heat release rate during solidification phase 

transformation is taken as the difference between the cooling curve (cc) and the zero curve (zc): 
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𝑑𝑑𝑄𝑄𝐿𝐿
𝑑𝑑𝑑𝑑

=  𝑉𝑉𝜌𝜌𝐶𝐶𝑝𝑝[�𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑
�
𝐶𝐶𝐶𝐶
− �𝑑𝑑𝑇𝑇

𝑑𝑑𝑑𝑑
�
𝑍𝑍𝐶𝐶

]                   (Equation 4) 

Integrating over time gives the latent heat of solidification: 

𝑄𝑄𝐿𝐿 = 𝑉𝑉𝜌𝜌𝐶𝐶𝑝𝑝 ∫ [�𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑
�
𝐶𝐶𝐶𝐶
− �𝑑𝑑𝑇𝑇

𝑑𝑑𝑑𝑑
�
𝑍𝑍𝐶𝐶

]𝑑𝑑𝑠𝑠
0 𝑑𝑑𝑑𝑑                        (Equation 5) 

Rearranging these terms gives the latent heat formulation: 

𝐿𝐿 =  𝑄𝑄𝑝𝑝
𝑉𝑉𝜌𝜌

=

𝐶𝐶𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑑𝑑𝑎𝑎𝑎𝑎 𝑑𝑑ℎ𝑎𝑎 𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑎𝑎𝑠𝑠𝑑𝑑 𝑑𝑑𝑎𝑎𝑎𝑎𝑓𝑓𝑑𝑑𝑎𝑎𝑑𝑑𝑓𝑓𝑑𝑑𝑎𝑎 𝑐𝑐𝑢𝑢𝑎𝑎𝑑𝑑𝑎𝑎 −
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑑𝑑𝑎𝑎𝑎𝑎 𝑑𝑑ℎ𝑎𝑎 𝑧𝑧𝑐𝑐 𝑓𝑓𝑓𝑓𝑎𝑎𝑠𝑠𝑑𝑑 𝑑𝑑𝑎𝑎𝑎𝑎𝑓𝑓𝑑𝑑𝑎𝑎𝑑𝑑𝑓𝑓𝑑𝑑𝑎𝑎 𝑐𝑐𝑢𝑢𝑎𝑎𝑑𝑑𝑎𝑎)                  (Equation 6) 

 
The fraction solid is then determined from ratio of evolved latent heat at time t over the total 

latent heat during solidification: 

𝐹𝐹𝑆𝑆 =
∫ [�𝑑𝑑𝑇𝑇𝑑𝑑𝑑𝑑 �𝐶𝐶𝐶𝐶

−�𝑑𝑑𝑇𝑇𝑑𝑑𝑑𝑑 �𝑍𝑍𝐶𝐶
]𝑑𝑑𝑑𝑑𝑑𝑑

0

∫ [�𝑑𝑑𝑇𝑇𝑑𝑑𝑑𝑑 �𝐶𝐶𝐶𝐶
−�𝑑𝑑𝑇𝑇𝑑𝑑𝑑𝑑 �𝑍𝑍𝐶𝐶

]𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠
0

                    (Equation 7)           

or 

𝐹𝐹𝑆𝑆 = 𝐶𝐶𝑝𝑝
𝐿𝐿 ∫ [�𝑑𝑑𝑇𝑇

𝑑𝑑𝑑𝑑
�
𝐶𝐶𝐶𝐶
− �𝑑𝑑𝑇𝑇

𝑑𝑑𝑑𝑑
�
𝑍𝑍𝐶𝐶

]𝑑𝑑𝑑𝑑𝑑𝑑
0                (Equation 8) 

The zero curve was derived from Newton’s law of cooling (𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑑𝑑) solving for T such that 

(𝑇𝑇 = 𝐶𝐶𝑎𝑎𝐶𝐶𝑝𝑝(𝑘𝑘𝑑𝑑))  and then accounting for heat evolution differences before and after 

solidification assuming equal heat transfer rate using least squares fit techniques: 

𝑇𝑇𝑍𝑍𝐶𝐶 = 𝐴𝐴1 𝑎𝑎𝐶𝐶𝑝𝑝(𝐴𝐴2𝑑𝑑) +  𝐴𝐴3(𝑑𝑑 − 𝑑𝑑𝑜𝑜)3 +  𝐴𝐴4(𝑑𝑑 − 𝑑𝑑𝑜𝑜)4                (Equation 9) 

 to – start time 
 A1 – Newtonian temperature initial condition prior to solidification 
 A2 – Newtonian cooling curve proportionality constant prior to 

solidification 
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  A3 and A4 – least squares fit constants taking into account 
temperature initial condition and proportionality constant based on 
post solidification cooling curve section 

 
A graphical depiction of the mathematical model shows the sequence of the base-line temperature 

and z-curve plots through to solid fraction calculation.  Figure 1 shows the cooling curve 

collected from a thermocouple experiment (shown as a solid line) and the two z-curves 

accounting for liquid phase cooling and solid phase cooling.  Combining the two z-curves into a 

singular plot (using Equation 9) is also shown. 

 
 
 

 

 

Figure 1. A representative cooling curve is marked with liquidus (TL) and solidus (TS) 
temperatures.  The Z-curves are present to show the differences before liquidus and after 
solidus.  

 
 
 
Plotting the first derivative of the temperature and z-curves is shown in Figure 2. 
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Figure 2. First derivative curves show the differences between the actual cooling curve 
and the Z-curves.  The difference in integral areas between the first derivative fitted Z-
curve and cooling curve account for the total latent heat used to calculate the fraction 
solid. 

 
 
 
Lastly, the shaded area shown is the solid fraction computed as difference between the 

area under the cooling curve first derivative and the area under the zero curve first 

derivative at time (t) and temperature (T) all over the total difference between the cooling 

and zero curves. 
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Figure 3.  The cooling curve, Z-curve and their first derivatives are shown.  The solid 
fraction is shaded in and taken as a ratio to the total area between the two first derivative 
curves. 
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APPENDIX C. 

SPLIT HOPKINSON-KOLSKY BAR PRINCIPLE 
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High strain rate (𝜀𝜀̇ = 3000 𝑠𝑠−1) material strength and ductility can be measured by 

compression testing specimens in a split Hopkinson-Kolsky bar. The underlying premise 

for the split Hopkinson-Kolsky bar (or commonly referred to as the split Hopkinson bar -

SHB) is the one dimensional wave theory. 

ONE DIMENSIONAL WAVE THEORY (LONGITUDINAL) 

The SHB is based on one dimensional wave theory in that all the forces generated to 

induce a stress strain specimen relation are brought about by a single wave.  The wave is 

produced by a striker bar triggered from a simple valve mechanism and powered by a 

pneumatic pressure system.  The following portion is of wave theory from Weinberger’s 

text explains how a pressure wave can produce stress and strain in a semi-infinite bar. 

Infinite bar of constant cross sectional area and dimensioned with respect to position x and 

annotated by a positive direction (+x) and negative direction (-x) and the region of interest (Δx).  

Incident wave of an arbitrary function propagates through the bar from the +x to the –x direction 

and exerts a force (F) over the cross sectional area (A) producing stress (σx). 

 
  

 

-x      x       +x  

The bar has a density (ρ), modulus (E), and speed of transmitted wave through the bar is (Co) 

where:  

𝐶𝐶𝑜𝑜 = �𝐸𝐸
𝜌𝜌
                      (Equation 1) 

Δx 

Incident Wave of 
Arbitrary Wave 
Function 

σx 
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The force exerted on the bar by the incident wave causes a displacement (u) and follows 

Newton’s 2nd Law.  Let the displacement in the -x direction be a function of the initial condition 

(x) minus the amount it displaced (Cot) due to the incident wave: 

u=f(x-Cot)                     (Equation 2) 

The first derivative of Equation 2 with respect to time (t) gives the velocity due to the incident 

wave: 

𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

= −𝐶𝐶𝑜𝑜𝑓𝑓′(𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑)                    (Equation 3) 

The second derivative of Equation 2 with respect to time (t) gives the acceleration due to the 

incident wave: 

𝑑𝑑2𝑢𝑢
𝑑𝑑𝑢𝑢2 = 𝐶𝐶𝑜𝑜2𝑓𝑓′′ (𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑)                    (Equation 4) 

The first derivative of Equation 2 with respect to position (x) gives the strain from displacement: 

 𝑑𝑑𝑢𝑢
𝑑𝑑𝐶𝐶

= 𝑓𝑓′(𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑)                      (Equation 5) 

But this is also related to the material modulus: 

 

 

σx 

 

       e  (𝑑𝑑𝑢𝑢
𝑑𝑑𝐶𝐶

) 

 

 

E= 𝜎𝜎𝐶𝐶
(𝑑𝑑𝑢𝑢𝑑𝑑𝐶𝐶 )

   or   𝑑𝑑𝑢𝑢
𝑑𝑑𝐶𝐶

= 𝜎𝜎𝐶𝐶
𝐸𝐸

  (Equation 6) 
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The second derivative of Equation 2 with respect to position (x) is: 

𝑑𝑑2𝑢𝑢
𝑑𝑑𝐶𝐶2 = 𝑓𝑓′′ (𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑)                    (Equation 7) 

By taking the second derivative of Equation 6, Equation 7 is shown to be a function of the 

modulus  and change in stress (σx) with respect to position (x): 

𝑑𝑑2𝑢𝑢
𝑑𝑑𝐶𝐶2 = 1

𝐸𝐸
(𝑑𝑑𝜎𝜎𝐶𝐶
𝑑𝑑𝐶𝐶

)                     (Equation 8) 

And Equations 7 and 8 relate by: 

𝑓𝑓′′ (𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑) = 1
𝐸𝐸

(𝑑𝑑𝜎𝜎𝐶𝐶
𝑑𝑑𝐶𝐶

)                    (Equation 9) 

Substituting Equation 9 into Equation 4 yields: 

𝑑𝑑2𝑢𝑢
𝑑𝑑𝑑𝑑2 = 𝐶𝐶𝑜𝑜2(1

𝐸𝐸
)(𝑑𝑑𝜎𝜎𝐶𝐶

𝑑𝑑𝐶𝐶
)                (Equation 10) 

Substituting Equation 1 into Equation 10 and multiplying both sides by ρAΔx: 

𝜌𝜌𝐴𝐴𝜌𝜌𝐶𝐶 𝑑𝑑
2𝑢𝑢
𝑑𝑑𝑑𝑑2 = 𝐴𝐴𝜌𝜌𝐶𝐶(𝑑𝑑𝜎𝜎𝐶𝐶

𝑑𝑑𝐶𝐶
)                 (Equation 11) 

And rearranging the terms so that: 

𝐴𝐴𝜌𝜌𝐶𝐶 �𝑑𝑑𝜎𝜎𝐶𝐶
𝑑𝑑𝐶𝐶
� = 𝜌𝜌𝐴𝐴𝜌𝜌𝐶𝐶 𝑑𝑑

2𝑢𝑢
𝑑𝑑𝑑𝑑2                  (Equation 12) 

or 

𝐹𝐹𝑜𝑜𝑎𝑎𝑐𝑐𝑎𝑎 =  𝐴𝐴𝜌𝜌𝐶𝐶 �𝑑𝑑𝜎𝜎𝐶𝐶
𝑑𝑑𝐶𝐶
�                (Equation 13) 

Mass = 𝜌𝜌𝐴𝐴𝜌𝜌𝐶𝐶                 (Equation 14) 

Acceleration = 𝑑𝑑
2𝑢𝑢
𝑑𝑑𝑑𝑑2                 (Equation 15) 
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History of the split bar as introduced by Kolsky dates back to 1914 in that 

Hopkinson recognized an elastic pressure bar relates the stresses and length of the wave.  

The premise is that energy not transmitted or reflected was absorbed by the test 

specimen.  To assist with measurements during experimentation, strain gages were added 

in the 1960s to measure incident wave, reflected wave, and transmitted wave: 

SPLIT HOPKINSON BAR (COMPRESSION) 

 

 

 

 

 

 

 

Strain and Velocity in the Incident Bar 

Let f be an arbitrary wave function in the -x-direction and let g be an arbitrary wave 

function in the +x-direction so that displacement (u) in the incident bar is u1 and it is a function of 

the incident wave (ui) and reflected wave (ur): 

u = u1 =  ui + ur                 (Equation 16) 

ui = f(x-Cot)                 (Equation 17) 

ur = g(x+Cot)                 (Equation 18) 
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The total strain is then: 

Ɛ = Ɛi + Ɛr                 (Equation 19) 

or 

𝑑𝑑𝑢𝑢 𝑓𝑓
𝑑𝑑𝐶𝐶

= Ɛ𝑓𝑓 = 𝑓𝑓′(𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑)                  (Equation 20) 

𝑑𝑑𝑢𝑢 𝑎𝑎
𝑑𝑑𝐶𝐶

= Ɛ𝑎𝑎 = 𝑔𝑔′(𝐶𝐶 + 𝐶𝐶𝑜𝑜𝑑𝑑)                  (Equation 21) 

Velocity at any point in the incident bar is: 

𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

= 𝑢𝑢′ = 𝑢𝑢′𝑓𝑓 + 𝑢𝑢′𝑎𝑎                 (Equation 22) 

𝑑𝑑𝑢𝑢 𝑓𝑓
𝑑𝑑𝑑𝑑

= −𝐶𝐶𝑜𝑜𝑓𝑓′(𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑) = −𝐶𝐶𝑜𝑜Ɛ𝑓𝑓                 (Equation 23) 

𝑑𝑑𝑢𝑢 𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝑜𝑜𝑔𝑔′(𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑) = 𝐶𝐶𝑜𝑜Ɛ𝑎𝑎                   (Equation 24) 

Let u’ for the incident bar be u1’ such that the velocity in the incident bar is then: 

 
𝑢𝑢′1 = 𝐶𝐶𝑜𝑜(−Ɛ𝑓𝑓 + Ɛ𝑎𝑎)                (Equation 26) 

Strain and Velocity in the Transmitted or Output Bar 

Let u2 be the displacement of the output bar from the transmitted wave and h be the transmitted 

wave function in the -x-direction such that: 

ut = f(x-Cot)                 (Equation 27) 

𝑑𝑑𝑢𝑢 𝑑𝑑
𝑑𝑑𝐶𝐶

= Ɛ𝑑𝑑 = 𝑓𝑓′(𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑)                (Equation 28) 

𝑢𝑢′2 = 𝑑𝑑𝑢𝑢 𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐶𝐶𝑜𝑜𝑓𝑓′(𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑑𝑑) = −𝐶𝐶𝑜𝑜Ɛ𝑑𝑑               (Equation 29) 

Ɛ𝑑𝑑 = Ɛ𝑓𝑓+Ɛ𝑎𝑎                  (Equation 30) 
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Equation 30 assumes uniform deformation. 

NOTE: the wave reflected from the fixed end of the output (transmitted) bar is ignored 

because it passes after the time of interest. 

Strain Rate of Tested Specimen 

The strain rate is a function of the difference in bar velocities (u’1 – u’2) divided by the 

specimen’s instantaneous length (ls): 

Ɛ′𝑠𝑠 = 𝑢𝑢′1−𝑢𝑢′2
𝑙𝑙𝑠𝑠

                 (Equation 31) 

Ɛ′𝑠𝑠 = 𝐶𝐶𝑜𝑜
𝑙𝑙𝑠𝑠

(−Ɛ𝑓𝑓 + Ɛ𝑎𝑎 + Ɛ𝑑𝑑) = 2𝐶𝐶𝑜𝑜Ɛ𝑎𝑎
𝑙𝑙𝑠𝑠

              (Equation 32) 

Stress in Specimen 

Force in the incident bar (F1) is a function of the cross sectional area of the incident bar 

(A1) the incident bar modulus (E1) multiplied by the strain (Ɛi + Ɛr): 

𝐹𝐹1 = 𝐴𝐴1𝐸𝐸1(Ɛ𝑓𝑓 + Ɛ𝑎𝑎)                 (Equation 33) 

Force in the output bar (F2) is then: 

𝐹𝐹2 = 𝐴𝐴2𝐸𝐸2Ɛ𝑑𝑑                   (Equation 34) 

F1 = F2 for uniform deformation, therefore: 

𝜎𝜎𝑠𝑠 = 𝐹𝐹2
𝐴𝐴𝑠𝑠

= 𝐴𝐴2𝐸𝐸2Ɛ𝑑𝑑
𝐴𝐴𝑠𝑠

                 (Equation 35) 

Where As is the instantaneous cross sectional area.  Therefore stress and strain given as True 

Stress and True Strain to account for specimen geometry change 
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Experimental Calculations 

Experimentally derived stress, strain and strain rate data is computed from a strain gauge 

output voltage which is converted to strain data by accounting for a strain gauge calibration factor 

and an initial offset value.  Strain gauge voltage (v) output is a function of the stain gauge’s gauge 

factor (GF) times the bridge excitation voltage or bridge factor (BF) times the strain (Ɛ) divided 

by a constant (k) usually a value of 4: 

𝑑𝑑 = 𝐺𝐺𝐹𝐹∙𝐵𝐵𝐹𝐹∙𝜀𝜀
4

≈ 𝐺𝐺𝐹𝐹∙𝐵𝐵𝐹𝐹∙𝜀𝜀
𝑘𝑘

                    (Equation 36) 

 
The strain (measured in micro strain (µƐ)) requires that the strain gauge output voltage be 

multiplied by a strain gauge calibration (SG CAL) value defined as the strain gauge constant (k) 

divided by the gauge factor (GF– provided by the manufacturer at 2.05) and Bridge Factor (BF– 

determined experimentally at 30 volts):  

𝑆𝑆𝐺𝐺 𝐶𝐶𝐴𝐴𝐿𝐿 = Ɛ
𝑑𝑑

= 𝑘𝑘
𝐺𝐺𝐹𝐹∙𝐵𝐵𝐹𝐹

               (Equation 37) 

NOTE: SG1 CAL (Incident Strain Gauge Calibration) and SG2 CAL (Output Strain 

Gauge Calibration) were equal for the data presented in this thesis. 

The strain value of the pressure bar (equal to the value produced by multiplying together 

equations 36 and 37) in the initial rest condition prior to the start of testing does not equal zero.  

This prior test strain value is defined as the strain gauge offset (SG OFFSET) and is subtracted to 

account for the initial condition.  Thus, the corrected micro strain (µƐ) for each gauge is: 

𝑆𝑆𝐺𝐺1 ∙ (𝑆𝑆𝐺𝐺 𝐶𝐶𝐴𝐴𝐿𝐿) − (𝑆𝑆𝐺𝐺1 𝑂𝑂𝐹𝐹𝐹𝐹𝑆𝑆𝐸𝐸𝑇𝑇) = 𝜇𝜇Ɛ              (Equation 38) 

𝑆𝑆𝐺𝐺2 ∙ (𝑆𝑆𝐺𝐺 𝐶𝐶𝐴𝐴𝐿𝐿) − (𝑆𝑆𝐺𝐺2 𝑂𝑂𝐹𝐹𝐹𝐹𝑆𝑆𝐸𝐸𝑇𝑇) = 𝜇𝜇Ɛ              (Equation 39) 
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For the experiment conducted here, SG CAL = 32,520.3 𝜇𝜇Ɛ
𝑑𝑑

, and the SG1 OFFSET = 47.425 µƐ 

and SG2 OFFSET = 8.384 µƐ.  Appling equations 36 through 39 to the strain gauge output 

voltage yields an unshifted set of pulses that look as follows: 

 
 

 

Figure 1.  Micro strain data per unit time is collected from two strain gauges (one on the 
incident bar and one on the output or transmitted bar) showing the incident pulse wave as 
it is reflected and transmitted through the system. The noise or “ringing” of the pressure 
bar visible and most apparent at the start of each pulse. 
 
 
 
Pulses must be shifted to the same time in order to calculate stress, strain, and strain rate in the 

test specimen.  Since location of the strain gauges is known (xi – incident bar location or xtr – 

transmitted or output bar) and the speed of sound through the each bar is known (Co – both bars 

composed of the same material), the time shift can be calculated by: 

 
𝑑𝑑 = 𝑑𝑑𝑓𝑓𝑡𝑡𝑎𝑎 𝑓𝑓𝑢𝑢𝑐𝑐𝑓𝑓𝑑𝑑𝑎𝑎𝑢𝑢𝑑𝑑 𝑤𝑤𝑎𝑎𝑑𝑑𝑎𝑎 𝑓𝑓𝑠𝑠 𝑎𝑎𝑑𝑑 𝑑𝑑ℎ𝑎𝑎 𝑠𝑠𝑝𝑝𝑎𝑎𝑐𝑐𝑓𝑓𝑡𝑡𝑎𝑎𝑢𝑢 =  𝐶𝐶𝑢𝑢

𝐶𝐶𝑜𝑜
             (Equation 40) 
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Figure 2.  Applying Equation 40 shifts the pulses to the same relative time necessary to 
compute specimen stress, strain and strain rate.   
 
 
 
 
The incident bar velocity (vi) is: 

𝜇𝜇Ɛ𝑓𝑓−𝜇𝜇Ɛ𝑎𝑎
1𝐸𝐸6

𝐶𝐶𝑜𝑜 = 𝑑𝑑𝑓𝑓               (Equation 41) 

The output (transmitted) bar velocity (vtr) is: 

𝜇𝜇Ɛ𝑑𝑑𝑎𝑎
1𝐸𝐸6

𝐶𝐶𝑜𝑜 = 𝑑𝑑𝑑𝑑𝑎𝑎                (Equation 42) 

The engineering strain rate (e’) is: 

𝑑𝑑𝑓𝑓−𝑑𝑑𝑑𝑑𝑎𝑎
𝐿𝐿

= 𝑎𝑎′               (Equation 43) 

where L is the initial length of the specimen.  Engineering strain (e) was engineering strain rate 

(e’) multiplied by time (t).   
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𝑎𝑎 = 𝑎𝑎′𝑑𝑑               (Equation 44) 

In Microsoft Excel, Equation 44 translates to: 

𝑎𝑎𝑢𝑢 = 𝑎𝑎𝑢𝑢−1 + 1
2

(𝑎𝑎′ 𝑢𝑢 + 𝑎𝑎′ 𝑢𝑢−1) ∙ [𝑑𝑑𝑓𝑓𝑡𝑡𝑎𝑎 𝑠𝑠𝑑𝑑𝑎𝑎𝑝𝑝 (𝑓𝑓𝑜𝑜𝑎𝑎 𝒏𝒏 𝑑𝑑𝑜𝑜 𝒏𝒏 − 𝟏𝟏)] 

True strain (Ɛ) was calculated as: 

Ɛ = −ln(1 − 𝑎𝑎)            (Equation 45) 

NOTE: the negative value is applied since the test is in compression. 

Engineering Stress (S) is then the microstrain (µƐ) divided by 1,000,000 to convert back to strain, 

times the specimen modulus (E) and times the ratio of the cross sectional areas of the bar (both 

incident and output bar are the same diameter) and specimen ( 𝐴𝐴𝐵𝐵𝑎𝑎𝑎𝑎
𝐴𝐴𝑆𝑆𝑝𝑝𝑎𝑎𝑐𝑐𝑓𝑓𝑡𝑡𝑎𝑎𝑢𝑢

) to account for the delta: 

𝜇𝜇Ɛ𝑑𝑑𝑎𝑎
1𝐸𝐸6

𝐸𝐸 𝐴𝐴𝐵𝐵𝑎𝑎𝑎𝑎
𝐴𝐴𝑆𝑆𝑝𝑝𝑎𝑎𝑐𝑐𝑓𝑓𝑡𝑡𝑎𝑎𝑢𝑢

= 𝑆𝑆             (Equation 46) 

True stress (σ) is: 

𝜎𝜎 = 𝑆𝑆(1 − 𝑎𝑎)              (Equation 47) 

NOTE: as with the true strain, the true stress is also negative in order to plot the 

data on a positive binary coordinate axis (see Figure 3). 
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Figure 3.  The final plot from equations 45 and 47 shows the noise at the start of the test.  
Steady state is approximated through the initial period shown by the dotted line.  
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