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l1BSTRACT 

Synthesis a:nd design techniqcles :t'"or multiport, rr:ultil.;.yet .. cd, dis-

trib1ted para.r..etor RC networks arc investi£ated in thia dissertation. 

'I:1e bc:.sic l:u:ildir;g block is a nettmrk section of ur.ifonn v.'iclth con-

sisting of .9.lternate layers of resj_stive a.nd c3.ielectric rr:atElrials on 

top of a perfectly cor-d-...:cting plane. The resulting ndb-Jo!"k is com-

posed of a casl~-:lde of these sections 't·nth all 8.~e·.?ss ter~1Jinc1ls at one 

end o:f +.>.e Ct.lse.:;.ded Y<eb·:ork. The termin.:-l.ls at t~1e .::.:Lhe:c en:l &l'e ci ther 

o~)e:n circui too or short circuited. A ln.e:;thod is disc,'l.::;soo for sy:r.the-

····1· ~-~·n•1·~,.,. ,...:'l·l·1·J· ~-- "'"O''l B-~·C1 A r:] ot:"' or"" -:·.l.•.e ~1.·.-o·.t·•+ ,·~ .. J·. ·.t·<~1~--· •. t ,"'rl ... -.·~·,·.·1.· +.t. .. ".~"·~e t:l .I..- \-l•,..'.·.i. > ...... ~ ._:_-:;:._ •..; .... ~ .l. &. \.. H '_.. ~_, .;.:' .. J•:J • - ......- v ,... -• .....,. ,,:;o. • ."l_ 

1.~ p:t·.n.ct:tcal d.o.sig~• cf ncb-:orks. D-::sign sug;;estions -?.re 6,-:i·.ren for 

···('t··h "'L,.,.1 .,...1'l"'""' ";'cl l1i r:rl1 ,....,,,.,..,. '""t-r.1 orJ·~ J ,! wJ <..;.,. t • \- ~ j: •.' ,.J '-•)' • -:...~- .J. "' ·-• G• J_- .,;1,. -! -...J .£, i _., I • • ·- •..J • 
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1.0 INTRODUCTION TO DISTRIBUTED RC NETwORKS 

1.1 Purpose or Distributed RC Networks 

vli th the advent o:f rnicroelectronic technology, devices 1vhich ca.n 

be constructed using thin rilm or monolithic techniques are much in 

demand. A.~ong these devices, distributed parameter RC netl-:rorks are 

becoming popular as a means o:f overcomi~~ the difriculty o1 construct­

i:ng microndniature inductors (Ref". 3. 23) because they ean be. usf":d to 

construct low pass, high pass, and notch networks. .A notch netHork 

pl~.ced in the feedback loop o:f an active deYice can produce a bandpa:::.s 

netvrork. (Rer. 31). 

1 

A distl .. ibuted parar2eter RC nebo~ork is an electrical ne-bv-nrk co:mpos0d. 

of" alte~nate layers o1 .. resistive and dielectric 1i]_rns. F'igure 1.1 shows 

an example of' a distributed RC network. In this dissert.ation it will 

be ass'll..Yiled. that these layers are deposited on a perfectly conducting 

f'ilm or ground plane a11d that the dielectric layers are non-conductive. 

Further it will be assumed that each layer is elec·trically homogeneous·· 

and of" uniform thickness. Thus the resistivity p and permittivity ~ 

or Jt'igure 1-1 are not functions of' the spacial coordinates. and. since 

the width o:f the net"JOrk varies. the resistance and cap<l.cit.a.nce per 

unit length are functions o:f x only. A convention used in this 

disser+.!i.tion is to call a circuit an n-layered device i1 the number of 

resistive layer~ pJ.us t,he nt1.n:ber of: capacitive layers equa.ls n. The 

pr~l .. t"ectly conducting layer :i.s not counted. By this convention the device 

o:f Figure 1.1 has t1-10 layers. If' in discribing a. net~.;ork a bar appears 



2 

perrect conductor 

(a). 

I(x) r(x)6x I(x+6x) 
;,. 

'VV\1\. 
....sa; 

t ... I t+ 
V(x) V(x+6x) 

l- c(x+6x)~ ~-

(b). 

F'igure 1-1. (a). -~ 
T-.. m-l'a.yered distributed f'j8.ram.etor RC net1..rork. 

(b). An incremental model. 
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a. distributed 

net-v;ork i.s ·to be •.1:nderstocd. 

1. J Review of Previous {!ork 

The an::.lysis of distributed F.C nebv-orks is 1::.:tsed on transin5_sslon 

line theory. The net-vmrk Gifferential equations 1n the s dclT",ain. 

sometimes called the te:_egrapher' s equa. tions • can be -v:rri tt . .en as t11e 

l'la trix equ:3. tion (Ref. 1) 

~x [:~:::J = - [:~(x) r(:J [

V(x,s)l 

I(x,s)J (1.1) 

in i.Jhi.ch r a!"ld c are respectively the resistance and c~p:lcit...-3.nce ~r unit 

J.•:;ngth of the n~t.,;ork. Elimil'la tion of ei. ther V or I fror11 th-s se equa tlons 

1·e sn J. ts in 

r' (x) 
i.lrt (x, s) -

r(x) 
V' (x,s) - r(x) c(x) sV(x,s) = 0 (1.2a) 

c' (x) 
I"(x,s) -

c(x) 
I' (x,s) - r(x) c(x) si(x,s) -- 0 ( J .2b) 

~..rhore ·the prime denotes differentiation with respect to x. In early 

ana]_ytic ~1o1~k, geometries were chosen such that equations ( 1.2) could 

be so1;'/ed i.n closed form. So~·ne of the tapors studied for the t~·TO layered 

nP. t...w.:>rk were tho nnlform (Ref •. · 14 ), exponentia 1. (Ref. 31.14), trj_g0non:etric 

("Fief. 29) • and 1_lnear (Ref. 1h) tapers. A solu-tion to the completely 

genera]_ ·tap~.Jr Has obtalned in the "form or nn infinite series of Mu1J:.i:?l•3 

·Li.tegra]_s by Frotonotarios and ~-Jlng (Ref. 23). By solving equation 

( 1.1) 3-S a rr.z-'1. t.r:tx dif:ferential equation, i3ertnolli (Ref. 1) shm-led this 

soJ.'ltion to be t...he rratr::zant. Googe and Su (Ref. 9) investi.gated the 

:four-l~yered case of the uniform distributed RC neb·wrk, paying spec1.a1 

attention to the two-port obtained by connecting leads bet-v;een the two 

ends ot: th~ top resistive layer and the conducti-..re plane. Bertnolli 



(Re.f. 1) pointed out that the r.rttl tila;yered case m-:1y be obtair~ed :from 

the tuo lt1yered case by replacing all scalar electric quantities by 

corresponding uatrix quantities. 

Some design work has been done by re:ferring to a catalog o:f known 

irn1uittance and trans:fer :functions o:f previously studied netHork 

morp~ologies (Re:f. 11. 13). Heizer (Re:f. 16) and Hesselberth (Ref. 17) 

suc~eeded in realizing a :finite number o:f pol13s aJ_ong the negative real 

axis o:f the s-plane by assuming special nonho::.nogenous distributions o:f 

either the permittivity or the resistivity of' the nebv-ork le_yers. The 

positive real trans forma. tion W - tanhftCS enabled Hyndrum {F.ef. 32) 

to develop a synthesis procedure using two-layered uni1orm sections of 

varying widths as the basic network building blocks. Net.work :functions 

4 

o-r distributed networks in the \-1-pla.ne resemble those of discrete component 

I,-C networks i11 the s .• pJ..ane and can be realized exactly by the use of 

"A .. yndrt.un's procedure. TheW-plane .function is obtained by fitting log 

n~gnitude plots of certain cataloged factors to a given ad~1ittance curve. 

QtS~ea (Ref. 22) used the transrormation p =cos~~ and realized 

t.ransmiss ion zeros iu the p-pJ_ane. By using gyrators and trans :formers • 

Ne1~cmnb {Re:r. 20.21 ) described an n-port synthesis procedure :for lossJ.ess 

transmission lines. 

1.4 Scope o:f this Dissertation 

The motiva. tion of th:ts Ttlork sterns from the lack oi' distributed 

multi.port. SJ'nthesis p.i:'ocedures in the literature. Hyndrum's work is 

extended to incJ_ude mu1_tilayered distributed uniform networks. Chapter 

Tli'O describes an exact n-port synthesis procedure provided t.he r..etuork 

. function to be synthesized is in a :form that is rea1_izab1e. A method 

o:f calculating some of the neb-ro:rk pa.ra.loeters :from the low and high 
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asyrr:p·totic :frequency rosp:mse of ~hort circuit admittance 1~rarr.eters and 

open circuit volt .. age transfer :functions is given in Chapter Three. 

Chapter Four shows how a rea]_izable :function may be derived :from the 

short circuit admittance parameters by curve .fittjing in a trans:forn'..ation 

pJ.ane. Fh1.."l.lly in Chapter Five a de~:3.gn procedure is disouosed which eses 

d1.gi tal co:n.P'.lta. tion to optimize selected performance cha.racteristics 

of' .four .• J.ayered tt-10-port networks. Several interesting sample circuits 

are giv011 al,~ng 't'lfith their log magnitude and phase plots. 
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2. 0 !-il.-:L'i'IFORT S1:I~Tii:SSIS 

2.1 Introduction 

In his Ph.D. dissertation (Ref. 32) E.alph W. \1yndrum de~c'!"ibed a one 

port s;ynthesis procedure and an approximation procedure using bm-la.yered 

distributed parameter RC neboi'orks o:f uni:form ";.;ridth as clor::e:nts of a. 

cascaded neb·tork. In this chapter Hyndrum' s sy11thesis procedure -rTi11 be 

extended to nmltiport synthesis in <t-rhich muJ.ti-layered F.C net~1ork sections 

s i:nilar to the :four-layered network of Fig\1re 2-1 are elements. First 

the uniform Inultilayered RC neb1ork is analized, then the synthesis 

procedure :is developed, and. finally exa1::.ples are given l'Thich demonstrate 

the procedure. 

2.2 Analysis of the l~ult,i-I..ayered Distributed RC Neb·;ork 

To begin the analysis of the uniform RC network consider the 

incremental model of an n-layered circuit shown in Figure 2-2 in Hhich 

the quantities ra, ca., etc. are the resistances and capacitances per 

unit J.ength of th-3 uniform section. In equation (2.1) the voltage and 

current relations ara ,,:rritten for this model. 

Va(x) - ra ~xia(x) + Va(x+Ax) 

vb (x) = Ib ~xib (x) + vb (x+llx) 

• • • • • • • • • • • • • • • 

Vn(x) - :t•n [lxin(x) + Vn(x+bx) 

Ia.(x) =sea ~xVa(x+Ax) - sct,~xVb(x-t.6x) + Ia(x-i-(p,:) 

Ib(x) -- -sea ~xVa.(x+Ax) + s(ca+Cb)L1xVb(x+Ax) 

-scbAxVc(x+Ax) + Ib(x+Ax) 

• • • • • • • • • • • • • • • 

(2.1) 



+ 
v1a 

cb dielectric layer 

Conductor 

Figure 2-1. Four-layered distributed Rc network. 

I2 a 

I2b 

""' 



Ia(x) ra~x Ia(x+~x) 
Va(x)·~~~~~>~~~-~~~~~~~-~~~~~~>~~~~Va(x+~x) 

rc~x 

Vc(x)----~~-~~~~--~ 

Figure 2-2. Equivalent circuit of' an incremental length (~x) o:f a 
2n-la.yered distributed RC network. 

8 
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I:f 1 is the total leng-t.h of the $ection and Ra• Ca• etc. are t!lc total 

resistance and capacitance of the respective layers of the section. then 
Ra Ca 

r a =- , c = - • etc. Hhen ~x approache::; zero in equation (2. 1), the 
l a l 

differen·t.ial equations of' the circuit result. 

dVa (x) Ra 
Ia. (x) = 

OX 1 

dVb(x) Rb 
Ib(x) --ox 1 

• • • • • • • • • • • 

oVn(x) Rn -- - In(x) 
ox 1 

o Ia (x) ca 
Va(x) 

ca 
V0 (x) = -S +x 

ax 1 l 
(2.2) 

oib(x) ca. 
Va(x) - s(~a c~ C, - s + - Vb(x) + s - V0 (x) 

ax l l 1 

• • • • • • • • • • • • • • • • • • • • • • • • • • 

din(x) cn-1 cn-1 ~ Vn(x) -- - s - vn .. (x) -S- + 
ox 1 -J. 1 l 

These equations can be ritten in the L:atrix :form 
0 R 

0 [~] 
1 v 

= ox ]_ I 
Cs 0 

(2.)) 

Ya I a 
'~u Ib 

where v ;: • , I = • ' 
• • 
v n In 
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Ra 0 . 0 

0 Rb• . . 0 
R -

• ' (2.4) 
• 

0 0 • • . 
Co -Co 0 0 . • . 0 

-Co Co+Cb -cb 0 . . • 0 
0 -cb Cb +Cc -Cc • • • 0 

and !; = 0 0 -Cc Cc+Cd • • • 0 ' (2.5) 
• • • • • 
• • • • 

• • • 
0 0 0 0 ... Cn-t+Cn 

Hote that R and C are syr .. anetric. I:f the ref'erence directions :f"or voltage 

and current of Figura 2-1 are used, the solution of' equation (2.3) as 

given by B8rtnoJ_1i (Re:f. 1) in terms of' tel."nrtn..3..1 voltages and currents is 

(2.6) 

Via Iia 

~-There v. :::: Vib I- = Iib 
-~ • ' -~ • , i = 1, 2, and the square root and 

• 

Vin I in 

hypsrbolic f'unctions of the matrices are as de:fi:ned in Appendix A. It 

is sho~·rn in Appendix B that equation (2.6) rr.ay be Hritten in either the 

:form 

or I=YV 

, and ~and !. are the 2nx2n matricr:~s 

(2. 7) 

(2.8) 

{2.9) 
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and -csch ~ • (
2

•
10

) 

coth~~ 
Equations (2.9) and \2.10) are t!"1e desired forms of the solution of' the 

uni:fcrm :multilayered distri'Juted RC network. 

2.3 Open and Short Circuited Driving Foint Im111itta:.-1ce l~trices 

Observe that if the outputs o:f the Rc section are open circuited, 

~ = m· then 
i.e. 

V 1 = Z 11 I 1 = coth /sRC ...,~sRC- 1 R I
1 

, 

:~.nd if tJ-.:.e outputs are t;l10rt circui tE.'Cl, i.e. V 2 

T1 = Y11 v1 = .~-1 ~ coth ~ Vt. 

= m . 
(2.11) 

(2.12) 

Thnsa o:'),::n ci:J.~cu:l:t arzi Ehort circuit ,."'"'., -t;ol~s o~ equat;ons (2 11) "'nd s:- • ·;;;..1...<::1. .... -· J. '- - • = . 

(;...12)1-Jill be use:fu.l later. 

2.4 Cascade Synth0sis C·l ~nltl-T .. ayered RC Networks 

IJBt seve1·al distributed RC net1-;orks be cssca1orl as depicted in 

Figure 2-J. To ensure uniform current :fJ .. ow through each ind iv-idua1 

neb..rork or section in the cascade assume a na.rrou conductive fiJ.m across 

the resistive filr,lS at the ends of each section of the cascaded tv~tYTork 

as in the four-layered three sec·tion network o.f Figure 2-4. For ti1.a 1th 

n·:Jb,;ork in the cascade :tet 'r.. represent the matrix 
-J.. 

'lit -Ttt 0 0 • 

·-721 'lzt+T22 -T22 0 • 

1i Rt~h 
0 -1J2 1J2+TJJ -TJJ • = ::: 

0 0 -T43 T4J+T44 
• • • • 
• • • • 
• • • • 
0 0 0 0 • 

• 0 

• • 0 

• • 0 (2.1J) 

• 0 . . 
• 'Tn n-1+trm , 
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Narrow Conductive Films 

Conductive layer 

~2gure 2-4. Four-layered three section cascaded network showing 
narroH conductive fi].ms which ensure uniform current flow through 
each section. 
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v.rhere 1'11 = Rai Cai, '121 = Rb:i. C3.i, 'J22 = R~ Cbi, etc. The :first sub­

script on R and C denotes the layer index while the second subsc~pt de-

notes which section in the cascade is under consideration. Later, a 

change o:f variable will be made involvi.ng tanh../sri. Since the variable 

w~ll have to be independent o:f the particular section under cor.sideration, 

tanh~ m11st be the same :for each section in the cascade. This requires 

that Ta=Ij=L which implies that corresponding RC products o:f all sections 

are equal. Now wrl te the equation .f'or the input admittance matrix o:f 

the i th section in terms o1 .. the input admittance matrix and the parameters 

o:f the i+1 th section. The details are involved and are lef"t to Appen­

dix B, the result is given in equation (2.14). 
1 -1 r- -1 

Yi (s) = ~ ... 1 ../si (Ri+1 ./Si - Yi.+1 tanh vs.:£) 

X (Yi+1 - Ri!t ../Si_ tanh Jsi) (2.14) 

I.f' Yi (s} is multiplj_ed. by 1/../S an equation results which describes a 

corresponding LC circuit in the ../5 plane. 

rz -1 r, -1 a 
yi (../5) = (1/ ../S)Yi. (s) = Ri+1JI:l~+1£- yi+1 (.JS) tanh.../ST]-1 

(2.15) 

Now make a change o:f variables similar to one .f'irst suggested by Richa1~s 

(Re:f. 28). !Jet 

}:! = tanh ../ST = ( e 2 ../ST - ~) ( e 2...;;:; + % ) - 1 

or e2~ = (r + !0 {! - w)-1 

(2.16a) 

(2.16b) 

(2.1?) 

Note that now the variable is the matrix W rather than ·the scalar s. 

One :form of' Richard's Theorem (Ref'. 28) ~or the scalar case states 

that i.f' 

(2.18) 
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y i (s) is positive real if Yi+l (s) is positive real and is of lov:er 

degree tr...an Yi+l (s). 1lyndrum (Ref'. J2) described a synthesis procedure 
- . 

£or cascaded sections of the two-layered distributed RC network using 

equation (2.18). He obtained an equation for the driving point irr.ped-

ar.ce of' a po~tion of the net\-rork in terms of the driving point impedance 

and parameters of the preceding section. If Figure 2-J is used as a diagram, 

/lyndrum's equation is 

...rs;. ..£; 
tanh~ Yi+1 - Ri+1 

Yi = 
~ 

(2.19) 
Ri+1 -~i+1 Yi+1 t.anh .../ST-

in vlhich Ri and Tare scaJ..ars. After multiplyj_ng by 1 /./S and making 

the substitutj_on vt = t.an_'h ..;;;;. , this aqua. tion becomes 

yi+1 (w) - %.+1 w 

...R y (w) w 
Ri+1 - i+1 

• (2.20) 

.Zqua.tion (2.20) is :ln the form of a lumped LC network ln the w plane. 

Thus it could be represented by a positive real ratio of polynomials 

which have the characteristics of lumped LC networks. wyndrum observed 

that i:f 

..IT 
Yi+1(1) =-

LC Ri+1 

equation (2.20) is in the forl'll of Richard.' s Theorem, equation (2.18). 

Inspection of eqna tio:n (2. 17) rEWt:)aJ.s tl1a t in :form j_t is ide:ntica 1. to 

equat.ion (2.20), the dif.ference being that in the forr:1er all ql.~ant.ities 

(including the variable 3:[) are na.trices iThile in t.he J ... "l. tter all quanti-

ties are scalars. This leads one to suspect that a. synthesis procedure 

similar t.o ~..fyndrum' s could be applied to multi~-layered networks. 

Observe t.ha t in the scalar caso 



e2£r -1 
= lim tanh ..,f;; = li..>n ----

s-ro s -ro s-roe2....rs-T +1 
= 1 

and L"'l the riatrix case application or Sylvester's Theorem leads to 

H(s) I s-ro = 
n 

lim tan.~ ./S.I =}: lL'l tan..~~. Zo(x~) 
~- ..._ s-co i=1 s- co 

vlhere the>..:t's are t.he eigenvalues o"£ the matrixX:and the Zo(Ai)'s are 
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the constituent idernpotents of I as defined in equation (A.10) or Appendix 

A. The term fo (Xi) h . .a.s the properties 

so that 

n 
~ Zo(Xi) = ± 

i=1 

H(s) I 
s 

-:r - .;;;.• 

Sl:r!ce eqv.ation (2.20) takes the .form of a lumped LC network, 

• 

assume that Yi(W) of equation (2.17) can be written in an analogous fashion, 
LC: 

l.i<:1> = r£1 n ('!J! +a. -1~J nc!!2 + bj !)-1 = Pi(!£), (2.21> 
L' • ~ • 

.J J 

and follo1-r Hy-oorum's lead by identifying Ri!:r./I"Ylith .!i+1(_!). 
L.C 

Unfortunately it. can be seen from equation (2.21) that 

.Ii+l (,!) = pi+1 (i) = ki+1 !£ I= ,gi!t ~ 
'-' 

't-J"here ki is a. scalar. ytt1 (!) is a scalar tirnes the unit matrLx; 

,,-1 ...IT i 
!:i+1 - s not even a dia.:.~onal >..:> !Jlatrix, much less a scalar rnatrix! This 

trouble may be avoided by assuming a. slightly different pol~1omial form 

ror Yi (\-1). Let 
&.c-



" Y1 {;·1) = M P {l{) --i-
LC 

-:·There H is some yet to be determined constant rna. t:r-ix independ-ent 

Then de .fine an0ther Y IP..a trix as 

Thus 

x GYit1 - IIT~r.lr1-DJ 

= (Ri+ili)-
1 JT [<.hllili>-1 ../T. - ~ i~{v~ - 1 

X ~i+1 - (Ri+1H)-VT:~ 
""' now if (R:i]i)-1.../J: is identified uith Yi(!) one obtains 

1 A A 
(R_ili)- ../7'" = Y1 (,!) = P1 (z) = ki,!. 
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(2.22) 

of" i. 

(2.23) 

(2.24) 

{2.25) 

'fhe :rr:a trix M must bo chosen so as to diagonalize the lei't side of eq1.:~tion 

(2.25). Thns solving :for H one arrives at 

(2.26a) 

or (2.26b) 

There is considerable freedom L~ the choice of M. but it must be chosen 

so that it is .J.ndependent of' the index 1. For convenience choose 11 so -

1/Ra.i 0 . . . 0 

= Rai Ri1../T = Rai 
0 1/Rbj_ • . . 0 ../I. (2.27a) N • 
• 
• • • 

0 0 . . . 1/Rn 

1 0 • . 0 
0 1/~· • 0 

../T=-M-..!T !i= • • - - - (2.27b) 
• • • 
0 0 • •1/rn 



By s,1bstituting the n::atrices R. and .Q given by equation5 (2.1~) and (2.5) 

into t!J.e eqt"taticn 

R. C.; - ::: R • c . = T 
~-.... -J -J 

and equating correspondL"lg components, it can be shown that the lQ • 

etc. are the saH:e :tor each neb·;ork section, i.e. r'bi = lb., 
J 

rc1 = rcj• etc. Thus H is independent of the section index as required 

and equa tio11 (2. 25) beco1nes 

""" 1 
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y (~) = ki % = i • 
~i .;;. - = -- (2.28) 

Pai 

(2.29) 

2.5 Tne S~nthesis Procedure 

'I'his synthesis ;,rocedure Hill yield the width or each section to 

1-Ti-t.hin an arbitrary const-ant. 'TIH"l sta.rtL"lg point is a prescribed lnatrix 

function of the .form 

,!p(s) = H t': ~ {tanh ...Rf fl [<tanh ..jS.f)2 +a~] 
X n ~tanh Jsf)2 + b~]-1}±1 (2.30) 

~-There H, bj, a.j are positive constants, bi < a 1 < bi+l' n=:m or n=rn+l, and 

p the num.ber o.f sections in the cascade is equal. to n+1·:1+1. :First pre­

multj_ply Yp(s) by (1/../S)r.rl. 

A 1 1 
Yp(tanh .Js!,) = -1-1 Yp(s) =fi!_-1 n-1 Yp{s) 

Js 

= H { tanh fi! .n E tanh .Jsl)2 
+ a ft. J .n ~tanh .fi.!)2 + b ~ -~ rtt 

J=l J=l 
N')xt n1.~ke the change of variables i.l'ldica. ted in equation (2 .16a) obtaining 

n (vl2 + b :ft., )-1] ±1 
j=l 

(2.)1) 
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This is the form of th'3 adrd tt.a.nce ma. trix the. t will be synthl')sized. 

Note that since the only rnatrices equation (2.31) contalns are the unit 

i:'1atrix and ~-f. all of the factors coJ;>.mute with respect to multj_pJ.ication. 

AJ_so the functional form of' (2.31) is isomorphic to a positive real 

quotient of rational polynomials. Richard's Theorem, equation (2.18), 

can be ~·itten in the matrix ro1~ 

I:i (H') = yi+1 (~) [ yi+1 (H) - li !i+1 (i)J [Y5_+1 (:E) - ;-1 y i+1 (11~ : 1 

(2.32) 

~~uation (2.32) is not to be confused with the ~~trix forms of Richard's 

equation usually f'ound in the literature (Re.f. 15,20) vrhich use the 

Laplace transform v~riable s as the independent variable. The variable 

of equation (2.32) is the ~~trix W. Richard's Theorem assumes that 

A 

Y p...1 (it) l-till be or lower degree than Y p(W) i:C equation (2.32) is ap-

plled to (2.31) 
A 

to f'ind Y p-1 (\i). Successive applications of' (2.32) to 

(2.31) v-dll eventuaJ.ly lead to 8.11 equation of either the .form 

or the .form 
A 

!1 Ci> 

(2.33) 

k l~-1 = 1 :1. • (2.)4) 

Equa.t:ton (2.33) -m...o:ty be identified \-lith the open circuited ·:Kc sec"cion of 

equation (2.11) while (2.Jl.J.) is the short circulted section given by 

(2 .12). Th::~ t this identifica t....ion is valid l~ia.y be shOi·m by applyL1g the 

/'\ 
t.t·a:tlSforl:ntions used to obtain. Yn(~'J) to •3quations (2.11) and (2.12). Thus 

...... -

y1 (~-T) -
- oc- fl 

1 

=iT 

(2.J5) 
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../s 
1 --
Ra1 
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I-! 1 ~11 ../SJ.. coth ../"SX 

(2.J6) 

The next step is to calculate the Rai's from equ.a.tion (2.28), j_.e. 

--, 1 ,, 
l""'·ai = fKi• To complete the SJ~thesis procedure observe £rom Figure 2-5 

that 

Pa 1 
R =---ai • (2.37) 

and coJ:1sequently 

(2.38) 

p,)r ease o:f construction ths thickness h and the cor,ductivity p or 

pern;.J_ttivi ty € of a gbren layer should be the sar11e for each section. 

Tho restriction that 'Ta/3 be id~ntica.l for each section has previously 

been stated. Tcerefore 

'Taf3::: Rai 9J31 = Raj Cf3j 

Pa·1 i E..J..iwl Pa 1 j Ef3 1 j"" j 
X f:j == X 

hpa wi h~/3 hpa w j 1~/3 

or li = lj 

f..>howlng that the length of each section is also constant. From this it 

ean be s-:~on that the tor.m pa_1/l1_!Ja in equation (2.J8) is a const.:'lnt and 

may be arbitrarily selected. 

2. 6 Addi tiona.l Cornments 

Application of this syr1thesis procedure assu111..es th-at eqnation (2.30) 

is the sta:rting point. It applies to alzy' such 2n laye:red nebvork with 

n greater than zoro. In t.he next chapter a method will be discus~ed for 
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1 '~r---------:-- ' 

-n-section cascaded RC netwo~k. 



22 

calculating the compone~ts cf the r..atrix I from the high and low :freq'..!Emcy 

as:ymptotes of either the desired short circuit admittance pa.ra1:1et~rs or 

the voltage transfer functions. 

One mo:t"e analogy may be :rr.r.a.de to Hyndrwn' s work. Rec~11 that 

tanh ..r;;. = (e2 ..rs:; - 3:) (e2 ...;-;;. + :::)':1 (2 .39) 

If this is substituted into equation (2.30), one obtains after si:ro.plifi-

cB.tion an equation of tho form 

= H H-./ST { fce2.../ST- ±)Il(e4 ../.3I + AJ·e2..§T -t ~~ 
- ~ - J=I -:.J 
~e2~ + i)2(m-n)-H A (e4-./ST + Bje2.JsT + =~ -1}±1 

(2.It-O) 

A 
j_n :vhich H, A j, and B j are scalar const<l.nts, n:::in or n==m+1, p=1""l+E+1, and 

A . e.nd B are sub -~ect to the conditions 
J j -

-2 < Bj < Aj < Bj+t < 2. (2.41) 

Tho deriv&. tion of rela. tion (2 .41) is straight for.-;ard an:l cor1es from the 

rest:rictlon i."'l equation (2.30) that 0 < bJ- < a. < b. 
1
< CO • As this is 

J J+ 

con~pletely r1.na.logous to the case where all quantities in (2.1+-0) are 

o~e-by-o1·1o !r..atrices (scalars) the reader is referr~d to TheoreM VI, page 

1~7 of reference 32 :for the proof. 

The :t:etvrork resulting f!'om this synthesis teclu1ique is of the type 

shoHn in Figure 2-4, 1-rith a.ll connection leads located on the left side. 

Tho right hand ports are either open circuited or short circuited 

d·3:p9:r~ding on v-rhether the final application cf Richard's eq1~ation leads 

to equation (2.33) or eq'IJation (2.J4) and, a.s a result, on -.,.Thet.her t,he 

±1 Bxponent o:f the starting Gquation (rol~tion (2.JO) or (z.l~O)) is 

positive or nega.t.i.ve respectively. 



2.7 Exarr:ples 

Sxa:::pJ~ 2.1: S:ynthesize the nct:r-rork f'unction 

Y3(s) = 3~ .JS:! tan~ JSI( tanh2 ../Si_ + 4~) ( t.:'l~h2 ~ + 2! )-1.. 

Solution: Fj_rst obtain the ~ ad:r"t..ittance rr..strix by pre!m!ltipiying by 

1/../S 1~-1 a::1d :rr.aki.ng the change of ...ra:d.a.bles of eq11ation (2.16a). 
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YJ(~) = _: y-1 ,I3(s)l = ../Si -n-1 Y3(s)l 
../s tanh ~ = 1-l ~nh ../Si = 1·1 

= '3:!(?!_2 + 4=) (r:J..2 + 2:!: )-1. 
1\ 

Nc1>-r Y3 J::ust ce e1taluated at H = :E and Richard's equation in the form o-r 

reJ_.ation (2.32) should be applied. 
A 

Y3(]) = :;(~ + t~!) (_! + 2_!)-1 = 5,! and k3 = 5 

~ <lO = 5:; [ -:J:!(y_2 + 11-;f) <!12 + 2± >,-1 - ~.., • s:.;] 
x [s:t - ~ • JY-T(u2 + 4!) <T + 2::£ )-t] -1 

= 1 (T:J(-':·r2 + ±) <:r.l~ + t0,!)-1 <-~·r2 + f)-1 

= 1 CH(J';!2 + 1 O:f )-1 

Tispea.t this process until the variable ~·J is or degree one. 

x[~ l 
13 

3 
-·- w 

13 

""'. 
!1 (!) = 

13 
I 

10 

13 

and 

and 
10 

k2 =-
13 

• 

(2.42) 



By oqu3.tlon (2 • .38) 

R 1 
1-73 = 5 

hpa 

10 Pa 1 
w2 --

13 hpa 

J 
'YT1 ::: 

13 

and con:::,aring equation (2.42) with (2.JJ) it can be seen th.at the final 

section is op€:n circuited. 

Exar::p1e 2.2: Start with equation (2.1-l-O) and for a three sect.ion cascaded 

n9hTo:rk nith the end section open cJr,:mited. fir1d the valves of the Aj's 

and Bj's in terr-:-.:.5 of t~e Nidths of the Eections. 

Solution: This is to be a three section cascadGd nebrork so n=-~~~=1 and 

tht:n··e is only one A and one :3. The open circuit specification requires 

V.1at :t1 in equ~tion (2.40) be positive. Tb.e nebrork equation t"h.en is 

Y3(s) = H n JS'i (e2 ../ST - _!) (e1
1- ./ST + A e 2 ...1ST+ ~) 

X(e2 ../ST + _!) (e!J.~ + B e 2 ./Si + :r:):1 

ro get this into the form of equation (2.Jl) substitute (2.161-) into 

(2.43) and preinultiply by (1/.Js)~:1 

/\ 
1 

-1 "' [ 2 . J Y e·l) == - }1 H 1t. ../Si_ Ttl (i_·f.1) (!-l:)-2 + A(_!-¥.::0 C=-n)-1 + :f 
-J -- 45 - . - - -

X K~-FJ)2 (~-~)-,2 + B(!-f":T) <:~-irl)-1 + ~J 

= H 1·[ 82-A)i!:2 + (?+A):EJ ~2-B)·;-r2 + (2-t3):EJ-
1 (2.44) 

R~}.::-0att:d application of' Richarcl's equation, i.e. equation (2.32), -v1i11 

)_cad to 

./\ 
-- H :E -
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"" 
A H{A-B) 
.!z(:E) = ~ 

::r 
1} ·- (A-B)-
A 

A H(A-B) 2-A 
Y1(:E) -- + 

4 (A-B) 
.=.• 

- 2+B 

There:for-e 

(2.45a) 

" 3{A-B) A-B 
kz = = k3 

4 - (A-B 4 - (A-B) 
(2.l~_5b) 

A 
H(A-B) 2-A 2-A 

kt = = k2 
4 - (A-B) 2+B 2+3 

• (2.'-+-5c) 

The simu1t.aneous solution of equations {2.1.},5b) and (2.'~5c) for A and 3 

yields 

( l(' +'lr ) rk +l- ) ·-t '"2, \ 2 .i'.3 

According to equation (2.38). 

but if this is substituted into equations (2.46) the constant term 

( Pa 1)/hpa. cancels, :fielding the required result.s. 

A = 2 [ •·r3 (,-12-"r1 ) + vr2 (w2~T! )] 

(vr1+t-t2 ) (,-12 +w3) 

-- 2 [ 1•! J (tJ 2 - 't·T! ) - v1z ( ;.12 oft·T 1 ) ] 
B 

( vT 1 ·tt.r2 ) ( vr 2 +~-r 3 
) 

(2.46a) 

These equations will be llSeful in the circuit design proced'.lres of Chapter 5. 
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3.l Introduction 

In the last chapter a procedure ~as developed to sJ~t~esize cascaded 

ill'..llti-layered 2c n~h-rorks from a prescribed network admittance matrix. 

Tho in:tor:n-:a tion actually obtained frorn this p!"ocedura is t-he width of 

each section of the cascaded neb;ork. To rr.cake this ~ use.ful procedure, 

1c.ore must be knc:1m about the relation between the prescribed nebrork 

admittance 1r,at1·ix and the physical n~b-rork. Because of' th'3 con:.plexity 

of the matheH1'1tics for multi-layered distributed RC neh!orks. this p9.per 

':Ji]J_ deal exclusively with the .four-layered case from this point on. 

Figure 3-1 s~ous a. four-layered neb·rork l-tith t!le voltage. current. and 

:rr.-3quency asyntptotic properties of the short circuit admittance parameters 

and 0pen circuit volt-age transfer ratios are developed in this chcl.ptor. 

~ro,..., t'· c -A py.o- "'-tl• e~ tl-_•e "'ralPeS of t0 ... e cv-Yl.•ponen+ s of' the _-r na-},... __ ·1x car ... _,... r ._ ::> ~ • , l-'e ._ "" • v ..... - - ~ r v u 

be c9.J.cul-'3. ted. 

For cascaded :four-J_ayered neb.vorks • the I matrix is 

[
'111 r= 

- -~1 
-7i1J 

Tzt+Tzz 
(3.1) 

and it's eigenvalues, as calculated in Appendix c. Are 

1 
\1 = <'Ti -To> (J.2F.!.) 

2 

(J.2b) 

':-There (J.2c) 



-t+ 
vz 
t-

1 

Port 1 

1' 

1 ;:-
I 

- Y11 t+ 
v 1 t- Y21 
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open or 
Section 1 _::? 

(a). 

- ... 2 
yl2 t + 

v 

Y22 t 
2 Port 2 

2' 

(b). 

Figure 3-1. (a). Four-layered distributed RC network. (b). Black 

box approach. 
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a.r:d (J.2d) 

rqo"' apply .3ylvester 1 s Theorem to either equation (2.)0) or (2 .!}0). i)efi.ne 

the function of At and Az 

J
:tl 

+ 1) 

(3.3) 

vThere i = 1 or 2. Then the ad1:littance wat.rix of a netvrork composed of 

rn+n+1 ca.s·~ded :four-L'l.yered neh10rk sections nay be written 

1 

G ;] [CA21, - T) F(sAt) (At! -'JJ F(sA2 ~ I(s) = 
~ 

~aF1+bFz -<l(Fz-F1) J 
(J.4) = 

;(bF1 -aF2 ) -d(F2-F1 ) 

-r-There the constants a, b, d, and 1' are defined in Appendix c. A.ppen<:Ux C 

derives several :rolat,ionships among the constants a, b, d, and r, as well 

as their relationship to the components arid eigenva'lues o:f T. 

.3.2 High Frequency Asyntptotes 

As a f1.rst step to-v.m.rd studying the high frequency asymptotic 

beh.av:ior consider the ftmction F(sX.i) of equation (.3.3). Eit!lcr form 

cou]_d be used, but the equations to be derived will be simpler if the 

secc:t:::d f'orJ.:"! is used. As I sf becorr.es extre1•1ely large compa.red Y..ri t~1 1/X.j_, 

Fl· rn = F(SA~) I = H ~- • (3.5) 
~ ..... s-co .J.. 

R<::1.at.1cn (.3 • .5) holds "\-Thether the end section (section one or the section 

on the rigb.t in Figure .3-1) is open o:r short circuited. Let L = x2 /A1• 

·i.e. the ratio of the eigenvalues. Due to the prominence of the t.erJn 
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ez..hii 1n < ) I --- CTI c.-equ.atiun 3 • .3 , nor.rr..~lize frequency W such. tn<=: t e'"-vJW"-1. :: ev.TJ , 

or 

(3.6) 

Then substitution of equation (3.5) into (3.4) gives the high .:fr·equency 

a.sY'l'Gptotes for the Y11• Y12• and y 22 parameters. 

:Cefine G 

v.nd 

Y (J•7J) 12 <X) 

"\T"'2 ( ·~-n) v,.::, <X) .;-, 

A 
H 

= - (b-a../L) ./fry 
r~ 

as the voltage gain such that 

Vz I . -Y12 
G12 --

I 2=o = Yzz Vf, 

vt -Y12 
Gzt -- --

Vz It=O Yt'1 

{J.7a.) 

(3.7b) 

(3.7c) 

(3.8a) 

(3.8b) 

Substitution of eq·nat.ion (3.7) togethc1.• 1.-1ith the values o.:f a, b, d, r, 

G.nd L given in Appendix C yields the high .:frequE:·ncy asymptotes fer gain. 

Tzt 
G12co(j7J) = d :r = -:::-~~~~~ 

b - dL Tz1 +12z+"'1i1122 

A- 1 
(J.9a) 

d(./L -1) 1 
(3.9b) 
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( .... ,...,, ..3 (J 9' . .) • t J anc • · J snov: thc:.t as :Tre.qu.t•::-w:,; becoH:-3S larg'-3 leg 

r;<.liYLitude vf tLs short c:trc'.lit ad?littance parRr;etel·S increases at the 

1"3. te of 10 c.1b per decade c~usiP..g both voltage gains to c:..p_p::cc.a ch a. constant 

at 1Yigh fre·l_u0ncy. This ber.!Avior is indspendent of the ter:::ti:n!3.tion t:tat 

might be applied to tht3 right hand term:ir1als of the cascade. 

J. 3 Low Fre,1uency Asymptotes 

T1.;o s·~p:lra.te cases must be c·:.nsidered Hl:.en finding tl-.e lo1:1 frequency 

?sy·.nptotes of the short circuit ac~1~ittanct: r-ara::r1eters. The case wh'3re 

the rig~.1t .;.nd se·~tion of the neh10rk of Figure 2-1 is open circ\1it,3d \-lill 

be considered first, and af-ter that, the case -..rhcre this section is 

sh.ort circuited. 

3.3.1 Right E:nd Sec·t.ion Open Circ•1ited 

For the circuit configuration ,.,..-ith the right end SE•ction open 

circuited. the pl~_lS one eXl_)onent in equa-t.lon (J.3) is retained so that 

?~ ~ F(SA•) I -'-0 ~ 
s-sirl_'l-11 

( 1 +2.Js>\i + 
2t 

( . ,m 
l n·-T:J;n (" •..A ·) J. ,_.,"l.J 

~ __ ... ..:o;j_::.._·1 ___ _ 
tl n <z+n.) 

j=1 J 

2(m.:n)+1 
2 

!1 n (2+B ·) 
j"1"'1 J 

f'1 

1) n (2+Aj) 
j=1 

s- sn.all 

(3.10) 

Tho deslrod ctsymptotes rr.ta.y be found using equ.s. tion J.IJ.. The results follot-T: 



m 
? 4(n-m) n (2 ) -~ -+..4.J· 

Y11.._ 0 Cj~) = J~1 
~n-(--' (t.L-a) (j17) 

J.[\_ 2+Bj; 2 

a 4 Cn-m.) n <z+.A. > . 
j=l J 

: d(L-1) (j~) 
2 }} (2T:Bj) 

= -Y11
0

(j7J) 

H 4(n-r,;) ll(2+Aj) 
Y2z 0(j~) = j=1 (b-aL) {j7J) 

. ' d(L-1,~ 

-----
b-aL 

Gzto = 1 

2 :r 
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(,3.11a) 

(3.11b) 

(J.11c) 

(J.12a) 

(J.12b) 

Thus it is seen tJ1.at as £requency becomes V·9ry small Y11 and Y12 become 

equc..l in Ir .. agnituda, tha log Tl'.agnitude plots o:r the short circuit admit-

t~nce pa:ra.neters have a positiv-; slope or 20 db per decade' and the log 

m~gnitude o:f the voltage gains r..a.ve Z9l'O sJ.ope. 

J.J.2 Right End Section Short Circuj.ted 

In the short circuit case, ·Fi(!5- 0) becomes 

}1~ 22(m-l,)+1 ft (Z-rBj) 

::: F(s>..i >I s- 0 = . .j=1 
,__, ~)2 

, .. . ~ ~ ' '- "'~ J\j + 
\.L-r ... -.tSAi + 2! • • 

• 

s- 0 

(J.1J) 

AppJ.J'i:ng this relation to equation (3.4) cne obt:ains :for t!!o short oircuit 

drivlng point 

Y11~ 

adrr.i t tance s 
A n 

= ~ ,f1C2+3j) 

4n-m fi (2-t-A.) 
. . 1 J 

J= 

(J.14a) 
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Yt1o 
Y22o--

r 

Eecau.-::e equ~ticn (3.13) i~dicates t~t F10 and F20 beth aprrcach the 

Sr>..n;e constan-t at low frequency it r::u .. st be used Hitb caution. It m..'!!.y be 

used to find the 10'':-t-freq,J.ency acympt,otes c:f a term of the form pF1 {w-o) + 

q F2 (w- 0) so lcng as this term does not vanish. S2.'"'!ce in the co.se under 

consideration y 12 is identicaJ .. ly zero if' ().1)) is used, a different 

npproach is required for this parameter. S'..lppose the distributed network 

:ts approxi:rr..ated by the lumped ele!"!ent pi section shown ~n Figure 3-2. 

Since CJ and C~ are ~hort circuited they do not c~ter into the calculations. 

'!'he node voltage equations I"".ay be ~·rrit.tPn oy inspection as 

I 1 = V l ( C 1 s -iG1 ) - V 2 c1 s 

I2 = -1!1 c1 s + Vz(Cts~~s+Gz). 

The t.ra:ns:for Jr parameters then are 

Y:t.2 = Y21 = -Cl s 

or with s = j.w = j17 /(2 ~·t> 

y 12 = -j7J X constant. 

i ·"· the :magni·tude of y 12 is proportional to frequency. If one begins 

T-Tith the equation 

in Hhtch ? 1 is th.e e::v::act form (equation (J.J) using the negative one 

13Xpor.ent) and ropl~.ces the ~xpone:ntial.s by the 'first few terms of their 

~9s:pective Y..acJ.? .. urin' s seri~s expansion, the resu".lt is 
;.. n 

Yt2o - ::._t(L-1) j:.1 (~+BjJJ~-n ~-Bj - r 2-Aj 

n-m n ( 'l_t_A ) =1 _.n 2+A L~ - 2 . .cTl-ij ~~j · . J. 
J =1 

1] + - (j']) 

3 ( 3.111-c) 

. The derivation of equ~tion (J.14c), though straight fortr?"~rd, is a 1ong 

dr~~rn out process, and therefore the details are onitted from this discussion. 



G1 CJ 

+ I2 G2 
"""' 

vt J 
v2 c2 c4 

-I 

Figure J-2. Short circuited distributed network approximated as a 
lumped pi network. 

JJ 



T:l.e open eircuit voltage gains are 

= ~(L-1) [ f 
2 j=1 

G12o 
r:~. 1 --~c. 0--

r 

m 2-Aj 
r 
j=l 2+Aj 

C3.l.5a) 

(J.15b) 

rd(L-1) 

2 

(J. t4) 

= 
'21 [ <1i1+'2t+'122) + .Jc111+72t-+f2z)2 - 41ft'2d • 

1~111'22 

Squations and (3.1.5) sho\.; that at very J.ow freq11encies y 11 and y 2 z 

e.pr-rc:.:;;.eh a const.:lnt value \'fhile Y12 and the 'Tolt,":!..ge ga.1ns are directly 

pl~oportional to .frequency. 

J\ 
CalcuJa. tion of t~e !·~a trLx T and the Constant H 

The :r;.;sults o.f tl-::.e previous ~ecticns rnay be used to calculate 

A lit.'lz!,'J2z, ,3.n:l H if the asymptotic values of either the voJ.ta.gd gains 

or the short circuit adNitta.nce para::nete.r:z are specified. Since this is 

a passive, resistive nehrork, Ol1e vTould expect the asyr'lptotio voltage 

gains to be less than or equal to unity, and therefore 

jYt~2.fYt2l.s(Yzzl· 
Equations (3.9) and (3.12) are f:3Speci.ally useful because they are 

sb1ple functions of lit. '121. and Tzz. SL"lce equations (J. t4a) and 

(J.1l}b) contain the const-9-nts Aj and Bj they are of little value for the 

present discussion. 

There are four constants that are to be determined 'Tit• '121, 'G.z, 
A 

and H, and thus the number of quantities that can be chosen arbitrarily 

1s equal to four n:.inus the number of quantities specified. Since the 

nor~Alized frequency ~ equals 2wX1 the eigenvalue X1, as will be shown 

in Chapter 5, can be used as a frequency scaling constant and therefore 



shoul..d, i:f possi"ble • be selected as one of the a"t:'b:ttra.ry const.'\nts • 

.3~c~usc the ~onste:nt H does not ap~ear in the gain equc..t::!o:ns "it .:is 

A.rbit!'~ry :i.:f on.ly asymptotic gains are spec-if'ied. A look at the high 
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f:requ,~ncy asymptotic short circuit adlili "ttance <Y:tj) equations will show 
,.. 

::.h~.t :I lc;:;ether l>tith the norn'-'"l.lized frequency 'Y'J detr~rrd.11.e the adn:ittance 

fl:''}q uency :for that value of Yij 1nust also be S?ecified. Ho.,_,Iovar. this 

·va.Jx~e of 'Y'J is not one of the degrees of :freedom because knowledge of it 

does not give the value of the admittance level product !?11. 

3. 5 Sur:,m a:r-y of .As;ymptctic Pa.ran:eter Values 

T.'l.ble 3-1 sur:m<erizes tee asymptotic r~'1.retweter values developed in 

this chpater. 

).6 Ex~mplcs 

II • + • .,s J. J J.S :tmpr.:?..ctica.l to n.tte:r.:pt to ~rite explicit eqt:.atlcns yielding 

t.bo 1i.j'S tlnd H f'or ev-ery possib].e set of specifications. three represcnta .. 

t.i V·3 oxampJ_cs ~:rc given. here. 

1\ 
E:;.~a:r.:ple J. 1: Find the components of the T r.,a. tri.x and H if' the Gain G21 

at large f'requcncy and the frequency sca.J.i:r.g factcr ~i are specified. 

SoJ_utL,~1: Since t-:ro quantit.ics 3.re spcc:tfied, t'i.ro m~y be selected a.rbi·tr.n.~-

ily. I.0t To be s-3lcctod a'!"bltrarily. Th2-n :from (J.2a) 

T1 -- 2.>..1 + ~ 

ar.d by (3.2d) 

~2 2 
'J_ - To-

111 '122 = 
4 

• {3.16) 



Low Frequency Asymptotes l 
Right End Section Open 

Right End Section Short Circuited 
High Freauency Asymptotes I 

Ci!'cui ted 
In n 

I ~ , n-m .rr (2+Aj) A n (2+n;) II 

yll ( j "f1) . ~ J=l (bL-a) ( j TJ) H . 1 " 1 (b./1- a) ./j; ,= 
.) 

2 n 
I 4n-m m (2+A ) 

j~l (2+Bj) . n ,j 
j=1 

~ ft ( 2+ B · )rn .. B m 2 A 
...., d(L-1) J=l - J ~ "" .i ~ 1\ 

y 12(j TJ) - ~---L 
- ~ ( ./1 - 1);:t;j' - Y11 (jTJ ) , n-m . 2 m . J 2+B j j-1 +A j 

4 p1 <z+A j) .. rL- ) 
- +) (j'r} 2 

m 
n-m TI (2+Aj) Y11 1\ 

~22 (j"f1) H q 4 ;=1 (b-aL) ( j "1) - - (b- aJL)~ 
2 ~ ) r r rJ2 .i~h (2+Bj 

G12( jTJ) 'f21 rd(L-1~ n 2-Bj _ & 2-A.l + !. } ) 121 
'121 + T22 2 . ~ ~+B-;o ·= 2+A · 3 j 7J '121 +'22 + /Tt1T22 ~=1 .J J .1 

G21 ( j7]) 1 o12/r 1/(1 + /72z/1i1) 

a = ('111 - 721 - 122 - 'fo)/(Z'fo) d = '111 /T0 To = Jn11 + 1'21 +. Tzz) 2- 4 '111'22 

b = C7i1 - Tz1 - Tzz + Ta)/(ZTc) r = 'f21 17it 
Table 3-1. Low and high frequency asymptotic expressions for y11 , y12 , y22 , G12, and G21• 

w 
0'\ 
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From Table 3-1 

(3.17) 

The squa:re root of the prod't1ct of t.hese llSt tHo equations :;-ields ~2 
-:·rhile t~e :.~quare root of their quo+.ient yields '71.

1
• Th.('!n f'rora equa tlon 

(3.2c) 

:1n~1 the coMponents of Tare determ11ed. Since none of the Yij' s lro:re 
/'-. 

specified, :S is arbitrary. 

r.o,,,:> mple 3 2 • A..J,I\.\;....J.I.a. • e Given the as;y-m.ptotic gain a 12 at beth zero and mfin1.ty 

" caJ.cula te the T 1na trix and H. Cse the configura. tion Hhere the rlght e:r.d 

sectj.on is open circuited. 

SoJ.ution: By Table 3-1 

Tzz = c 

and subs·tituting this into the equation for G12co gives 

11t 1 [1 1 ]
2 1 

'121 = ~ G12~ G12 = ; • 
Choose Ai .-;trbitrarily. Then -vrith the aid cf (3 .2a) 

121 = 

= -------~======~= 

/ 
~c * +1+c- (; +1+c) _l,r 

"C·lhor~ c ~nd r have just previousJ.y been calculated. 

1 
· Fin~.lJ.y '111 = -r '121 

'122 = c '12t 



" and azain H n1ay C'-3 sel3c·ts-:! a rt-.1 -':.~arily. 

~·~xa,~:.)!e 3.3: If' I Yi:tl, JY1~, and J yzzl ~.re specified at some 1".l.r:_:;e 
A 

n:)r:":..~ l:ized f::(·eq·~.:.enc.{ "'m• find H and th•3 T Jr'...,'l. tri.x. 

Sol.u t.ion: First find the two gains for 1.~rge .freqt~€ncy from equc tions. 

== ( 1-G21 ) 
2 

= rc 

Gzt 

and 

r • 

~r .... Jose At . 
2.1'!Q ca.lcuJ.ate 111 with t:1e aid of (3.2a). 

~A 
A! 

-· l l 

!~~ ~J- J - l;-11 .. ~:., l .. <:., 

7112 ,__ _t_ ~·-

2A1 
= 

1-i~·+:r.·c- 4( 1-tr+rc )2 - 4rc 

T~t)n 121 - r'T.-4 
1 . .l 

and 122 = rc111 

38 

F:ir.a11y the coast.e.:nts a., b, and L m.;.y be clete1·mincd frvm oqu:::. tions (::~.10), 

(G.1.1), an(1 (C.2J) ot' Apper1d.ix C and T'J is specified, so by (.3.7a) 

I1 _l:ru I .;2 
(ct/f-a)~ • 
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I}. 0 SYNTHESIS FROH A GRAPHICAL HAGN'ITUDE SPEJ.:'!lli"""'ICATION 

4.1 l~troduction 

·::hapter 2 described a procedure for .finding the <-ridths o.f the 

i!1d;_vidual sections of a. cascadE>d RC netv-:rork .fror.1 a prescribed admit­

tance ;.~:1trix the form of equation (2.40). Chapter 3 explained hm.f to 

calculate the T rr.atrix and the const.-a.nt H of' equation (2.!1-0) .for a. :f"our­

J.ayered network if the high or low frequency asymptotes of either the open 

ei:::cuit vvltage gain or short circuit aduittance paral:-.eters are sp=;cified. 

To J:rake use of this synt:J.esis procedure a :method is needed to o::.tain the 

r.atrix f;;.nction o:f equation (2.1!-0) f'rom spscif'ications. This chapter 

at·t.empts to deal with that problem. 

Zt-.2 Discussion of: t11e Frocedure 

In most synthesis proble~•1r.> the st.-cn•ting point is a grap~1ical response 

sp·3cification, o:ften L"'l the :form of' a log magnitude plot. The quostic-n 

to be anS1-re1•ed in this chapter is "How c--:tn an admittance !!1.-'ltrix t!1a:t is 

realizable as a. cascade of sections of a Ul'1iform r.ml ti-layered distributed 

RC neh10rk, i.e • .!:.11 equation of the .form of" equation (2.40), be obtained 

.fro1n the log .m.ag:nitude plots o:f a prescribed set of short circuit ad:mittance 

p.::tr.3-meters. n Because the bulk of the tr..a thema tics rapidly becor.:es prohibi­

tive as the num".Jer o.f resistn.ncc and dielectric layers incret=>.ses, thj_s 

discussion will again be l:L..'iited to the exet:pla.ry :four-L-ty~rcd RC network 

cascade o:f the ·type sho~m in Fis'llre 2-4. 

S3.nca t.he clrcuit under considoration is a series of' casmdod sections 

with the right end section either open or short circuited. the le:ft end 

driving point admittance matr:bc is that o£ a bro port nework. Suppose 

log ~~gnitude versus £requency plots are given ~or ~~e short circuit 
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8.c~mitt~nce Pc'.raneters o~ ~omc ne .. c. .. :ror!-c t"!13.t is to be synthesized. The 

first stop in s;y"'l1thesis is to ob-tain a realizable equ.~tion t~ut represents 

the given plot~ to within A req11ired degree "Jf accur~cy. Since 20 log 

ab ~ 20 log ~ + 20 log b. the usual procedure (Chapter 9 of reference 30) 

is to l"l:"'tch a cc.'l-;.b.e-_, .. t_iv'"'n o.J:O.~. log ,.,._,..,~nit"~ ..... c"rves ~rom.., "" ... ""-"lo 1 I:' t""' ::.. - .LUo. - •. .__.'-- ""- 9 .._..._ .1. ...., "-'-'-!...a.- !;1. 0 0.!. uO 

factc.rs a.llo-;;ed by the class o~ reo.l1zablc .fun::tions ur.dcr con~ic!er.'l tion 

to the given curve or curves. For exa.nple if a given curve is to bo 

realized as a lur,:;ped I.e neb:-ork the allm-md ~a~tcrs ~re s:t1 and (s~+a12fi1. 
The desired eqnaf,ion is obt.s.incd by ::n."!tching a conb3_naticn of the c,n-.;es 

c'f ·± 20 leg Jjw,c..:nd t 20 lo:s (-u?--tai2} to the given curve. In the ca~e of 

this dissert.~.tion it is kr.c~ .. 'n that the reg,J.izable c~t~:1t~.on belongs to 

t~e cl~~s of f't:.nc·ticns glvsn by equation (2.40), but the .:factors o-r this 

Sylvestc~r's Tr.ec:rem the !::"Agnit:u.de of ~ rr'.a.tr1.x suc!'l. t~t 

20 lor~ 1/\.'8} = 20 J.og f.~. f + 20 log 1.£ I 
uh•31"e A and B a.re '!""...3. trix factors, this defiJ1i tion does not res11lt in the 

log rr..agni tude of e~ch factor of each co:nponent of" t~e c-rigiYl:11 lila trix 

(the Y]j r~'lr;.metcr~ in this case). Since it ha.s been supp:)sed that tho 

1cg m2.gnitudes o:f the short circuit ad:m.itta.nce psrametcr~ (Yij) are 

specified. tr.a usual procedure for t!le de:-i·• . .ration o~ a rcali~able 8quat.ion 

Equation (2 .z~o) -vrill be u~ed as the starting poi;:1t fer deriving 

:.1 proc:)dt-:.re to obtain a realizable equ~.tion f"rom the J.og m~gnttude plots 

of the short circuit ad:rd.tta.nce ~.:rR~eters. The procedure develoJ.1S .:-q".'ations 

th~t c:1n be used to obtain a. plot of the log n-agnj.tude of the sca.lar 

!'unction F(sA! ), defined in equation (J.J), from a plot of' the log rr-..a.gni­

·tudes of the Yij parameters. From tbis plot of F(sA!) an equation .for this 

f'ur.tction may be obtained in the U3ua1 rr.a.nnar, that is by .fitting a. sum 
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of l,:;z !1·c>.gn5.t.ude plots of cert;::~.in allm1c-d .factors, sp~c-tfica1l~/ .Jsil, · 

C~ce t1:e scalar eq1:a.tion .for F(s>..1) is obt-ained, the n;a-trix equ~t.ion 

correspondi::'lg to (2 .l.!-0) is obta i·!ec.." .r.'erely by Y"cplacing +,h~J scalar >..t 

l!.J Develop:r;.ent of thP. Procodure 

(L.1) 

in Hhich the const...ants a., b, d, a:nd rand the eigcn~_r;~.J_ues ~ and >..2 are 

'L'hen 

= ti""' ~w>... ',· == - ... l 

" ~. ..,. ....... ( . ' ue1 ~ne L1'1 .1. ;;w; 

1 -:;'·lf>j~ - l -

from (::quat.ion ( l.,t. 1), 

(!..J-;,2) 

---. (4.J) 

= j-aF 1 + bFzj = l-a jF 1j (cos ell 1 + j sin cl>1) + b jF 2j (cos <l>z + j sin:t' 2 >I 
= [<-a IF11 cos 4>1 + b'fF21 cos 4>2 )

2 + (-a.IF 1J sin4>1 + biF21 sin<P 2 )
2
]

2 

= [a?jF1 J
2 + b 2 (F2 J

2 
2ab IF1\ lF2 ' cos(4>2 4>1 )]t (lJ..l~a) 

(Ytzl = r-d(F2 -Ft)l = d[IFtf2 + IF212- 2JF111Fzlcos(<Pz- q,t)l~ (lJ..4b) 

!Yzzl ==(; (bF1--n.Fz)J = ~ [b21Ftl2 + a2(Fzl2- 2-?.biFtiiFz)cos(<Pz -<P1~j-
(4.4c) 

If those equatiom> are solved for IF 11._ and IF2J - the det.ails are left 

for Appendix C -- equations (4.5) result. 

jF1j2 = d2(ajy11j2 + br21Yz212>- ab(b+a)jy1212 
d2(b+a) 

{4.5a) 



42 

(4 • .5b) 

(4.5c) 

Equa·ttcn (1+. 5a} is the equa. tion to be used to obta:in the 1og :rr..a.gnitude plot 

of F(sA1)• Since F 1 = F(jw>..t.) 

Llll F (s )..1 ) = 20 log I F1J 

[ 

2 
Lm y 11/10. 2 Lm Y?z/10 

= 10 log d (a. 10 + br 10 -

d2(b+a.) 

Lm y 12/10l 
)- ab(b+a)lO J (4.6) 

Equations (lt.5b) and (4 • .5c) are useful in deriving certain restrictions as 

"t·rill :not.r be shown. 

Recall t~~t Fi = F(jw)..1 ) and choose some frequencywi• Let 

)..1 
wi-1 == Wi, - • (4.7) 

).2 

Then Fzl . = F(jw1 _ 1)..2) = F(jwi ~ }...z) = F(jwi"-1) = F11 
s:-=:.:JWi-1 2 s=jwi 

or [Fz(s=j~-t>l2 - {F1(s~jWi))2 = o. 
From this relation and equations (l.J. • .5a) and (4 • .5b) one obtains 

d 2 La IY11(j~1>) 2 - bjy11(jwi-t>\ 2
] + d 2 r2 [blyzz(jwi)l 2

- afYzz(jwi-t>l 2 

- nb(b-t~) [\Ytz(jwj_>l2- jy12(jwi_:1·)l2] = 0 (4.8) 

S:lnca for o..rzy angle 8 

-1 s cos 8 ~ 1 

equation (4 • .5c) suggests the inequality 

(4.9) 
or 



Substitution of IF112 
ar.d IF21

2 
from equations (4.5a) and (4.5b) into 

(4.9) leads to 

4d2(b....r.-.)2 2( 121 12 f.d2{1 12 21 12) (b >21 1212 1 ~ r Y22 Y12 - ~ Y11 -r Y22 - ~ Y12 J > o. 

43. 

(4.10) 

Equations (4.8) and (4.10) place resitrictions on the relative magnitudes 

of the specified parameters y 11 • Ytz• and y22 • If only two of the Yij's 

are given equation (4.8) could be used to find the third. 

The method of deriving the matrix function F(sT) described here is 

theoretically correct but of questionable use in practice. The author 

attempted to synthesize a no·tch f-j_lter by this method and discovered that 

slight errors in constructing certain portions of the Lm F(s>..r) curve could 

<.'"-use l~rge variations in the Yij pa.raxneters. Perhaps a certain class of 

functions such as a. notch filter or low-pass filter could be synthesized 

by this method and then optimization techniques could be used to improve 

the initial results. Certainly this procedure requires further study 

before it will become a useful tool to the pract~cing engineer. For this 

reason Ch~pter 5 is devoted to design techniques and a study of several 

Sf~cific types of network. 
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5.0 DESIGN OF FOUR-LAYERED CASCADED DISTRIBUTED 

RC NETWORKS 

5.1 Introduction - Discussion of the Procedure 

It was stated at the end of the last chapter that the approxima-

tion techP~que presented there is difficult to apply to a practical 

engineering problem. For that reason Chapter 5 is devoted to design 

procedures which can be applied to practical engineering problems. 

The circuit used is the cascaded configuration of Figures 2-4 and J-1. 

Appendix E discusses possibilities of selecting the circuit para-
A 

meters. It shows that the parameter H of equation ( 2-40) cha.nges the 

admittan~e level of the network while the eigenvalue x1 of lrn>ay be 

used to shift responses along the frequency axis. Also "" .t..h Pa• ..., e con-

stant determin.i.ng the resistivity of the top layer per unit width, is 

arbitrary and can be chosen to give convenient values of resistiv·ity of 

the top J.ayer, length of the individual sections, and the thickness of 

the top layer. Since the designer will want to put practical limits 

or "stops" on the ratios of the resistivities and per1nittivities of 

the l~ers as well as on the ratios of the widths of the different 

"' sections, it is convenient to choose r, c, and ""i as the network para-

meters Nhere r and c are de-fined in equations {C.lJ) and {C.l4) and 
w· 

""' ·- ~ wi =- • 
Wp 

Specification of either the high or low .frequency voltage gain may 

remove a. degree of t•reedom, leaving only one of the quanti ties r and 

c as an independent parameter. If both the low and high frequency 

voltage gains are specified, as perhaps in a low or high pass filter, 

both r and c are determined, restricting ~urther the freedom o~ the 



designer. 

The remainder of' this chapter discusses in order notch filters, 

low pass networks. and finally high pass networks. 

5.2 Notch Filter 

45 

The approach to the design of' a notch filter 'dll be to look at 

the high and low frequency asymptotic requirements, select the quan­

tities to be used as parameters and using convenient starting values 

calculate an initial response curve. If' the log magnitude versus 

:frequency response curve has no minimum or "dip," new starting values 

must be selected. If' there is a dip in the response curve, no matter 

how slight, an iterative process may be used to optirr~ze the network 

by var.ying ea~h undeterrr~ned parameter in turn until either further 

perturbation of' that parameter results in no improvement in the re­

sponse curve or the value of' the parameter reaches one of' the limits 

or "stops" predetermined by practical engineering considerations. A 

digital computer is a.n invaluable aid for these iterative coznputations. 

A passive notch filter requires a gain of as near unity as l~S­

sible at both low and high frequencies and a gain much less than one 

at some intermediate frequency. Table 3-1 shows that the low frequen­

cy asymptotic gain of' the cascaded configuration with the right end 

section short circuited approaches zero as frequency approaches zero 

and thus this con:figu.r.ation is not useful as a notch filter. On t.he 

other hand if the right end section is open circuited, Table 3-1 

shows that the gain at low frequency is unity if the gain is taken 

as tho ratio v
1
Jv2 with It=O, i.e. port 2 of Figure 3-lb is taken as 

the input and port 1 is considered the output. This would be the 
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logical coniiguration to use ror a notch filter. In this case speci­

fication of t.he low .frequency gain as unity does not remove a degree 

of rreedom since G210 is unity and thus independent of all parameters. 

Equation (.3.9b) gives the high frequency gain .for this con.figuration 

as a runction of fitard 122 • and from the definitions for r a.nd c it 

can be seen that this is equivalent to 

1 
G21 = i+::jrc • (5.1) 

rr r is selected as an independent variable parameter. equation (5.1) 

m8y be solved for c to obtain the permittivity ratio. A computer 

program was written '\..Jhich would read the value or G2 1a:>, the starting 

values for r ~~d the width ratios oi. and the stops ror r, c. and 

A 
wi. It was decided that 0.01 and 100 , .. ~uld be physically feasible 

minimum and ma:x:imum limits ror r, c, and the width ratios (Rer • .3). 

For a three section filter the constants A and B of equations (2.40) 

were calculated in terms of the widths in Example 2.2 of Chapter 2. 

To get A and B in terms of the width ratios, simply divide the numer-

ators and denominators of equations (2.47a) and (2.47b) by w
3

• Fig­

ure 5-1 gives an abbreviated flow chart or the computer program used. 

First the minimum gain was round for the initial values, then one of 

the widths -was varied until the minimum possible gain was achieved. 

Next the othor v.ridth was varied, the first width optimized again and 

the results tested for any improvement. This process was repeated 

until both w.ldths (for the three section case) produced optimum re-

suJ.ts. lt'"'ina~lly, the resistance ratio r "'ras optind. zed in a similar 

fashion. In the vicinity or the dip in the log magnitude response 

curve double precision (16 digit} accuracy was necessary. One, two, 

and three section networks with high .freqency asymptotic gains from 



Read in initial values ~or 
r, w2, w1, G2 1co, and stops 

r---------------------;...,.Ca.lculate maximum gain 

PerVn·b '02 

Pertnrb ~l 

Perturb r 

Yes 

Yes 

Yes 

Print out points ar:d plot 
graphs ~or Lm G21 and phase 

Figure 5-1. :F'low chart i~or the ..£..2mputer program used to design a. 
three section distributed RC notch filter. 



48 

-6 to -1 decibels and under. no-load conditions were investigated in 

this manner. 

The results for one, two, and three section notch networks are 

sho~~ in the log magnitude and phase versus normalized frequency plots 

of Figures 5-2 through 5-?. If these networks are used in the feed-

back loop of an active device, bar.-dpass characteristics result. It 

ca.n be seen :frozn Figures 5-2, 5-4, a.nd 5-6 that the one section net-

work is useless a.s a. notch filter, the two section network has a 

minimum gain o:f about -42 db i:f -6 db gain a.t high frequencies can be 

tolerated, and the corresponding rr.inimum for the three section net-

work is almost 6 db below that. If the c,-.oquation for circuit Q o:f a. 

syrr..metrical gain characteristic (Ref • .33) is used, i.e. 

Q - TJo 
-BW 

whore 7] is the normalized resonar.:t frequency and Fw the bandl-ridth, 

curve 1 of the three .section network o:f Figure 5-6 has a Q o£ about 

10 if the network is used in a bandpass configuration. For all three 

neb:·mrks investigated, best results occurred when the resistance ratio 

was set as low as possible and the width ratios as high as possible. 

Figures 5-8 and 5-9 show the log magnitude and phase plots of a 

bvo section notch network with G2100 equal to -6 db under various 

loads. The notch characteristics are improved slightly by a load, 

but the low frequency end of the curve is severely degraded. In­

stead of having a low frequency ea..in of one (or zero db) the loaded 

netv;ork has a low freqnency gain with a 20 db per decade slope. 

5.3 Low Pass Network 

The response characteristic of' a low pa.ss network requires that 
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the voltage gain be near unity at low rrequency arrl much l.ess than unit-y 

at high £1'"equency. Loold.ng at the asymptotic gain- relationships o£ 

Table 3-1 on page 36, one can see that the cascaded distributed network 

with an end section open circuited would make the best low pass network. 

Also port 2 ar1d port 1 o-F Figure 3-1 (page 27) should be u~ed as input 

and output respectively. The equations o£ Table 3-1 which apply to this 

case show that this configuration has a voJ_ta.ge gain o£ unity at low 

£requency and 1/(1+-./rc) at high rrequencies. Note that this is the same 

con:figuration used ror the notch network. The low pass neb·:ork was i.n-

vestigated £or one, two, and three section cascaded networks while keep-

ing t."le -vtidth, resistance, and capacitance ratios within the same bounds 

as berore, that is, between 0.01 and 100. 

Figures 5-10 through 5-17 show the results. These plots were 

rnade by a digital computer, plotter combination using :frequency in-

crements o:f 61og7]=0.1. The sharp changes of slope in the immediate 

vicinity o£ the minimums or dips o:f the curves o:f Figures 5-12 and 

5-16 are not network characteristics, but are caused rather qy the 

size o:f the :frequency increments chosen £or plotting and the :fact 

that the plotter drew straight lines between plotted points. In all 

o£ the Fie:ures :four di.f:ferent sets o:f values o:f r and c were chosen 0 

which would give a high .frequency attenuation o:f 20 db. These sets 

o:t .. r and c were spaced f'rom minimum to ma.."Ci.mum r (or :maximum to min­

irnum c respectively) keeping both r ar..d c within the bounds o£ 0. 01 

and 100. A .fi:ft.h r and c set was chosen which would make the high 

:frequency gain a.s small as possible within the permitted range o£ r 

and c. This asymptotic gain turned out to be about -40 db. In an 

attempt to make the magnitude o.r the slope o:f the log magnitude re-
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sponse curves as great as possible at intermediate f'requencies, the 

w"idth ratio of' the two and three section networks was chosen to be 
' 

the same that produced the best notch :filter of' Section 5.2. This 

~ddth ratio, ~1=02=100, produced a slope of' -20 db per decade (Figures 

5-12 and 5-16). As radical changes in phase occurred at the point on 

these curves wJ1ere the gain dips are extreme (Figures 5-13 and 5-17) a 

two section low pass network was investigated in "v-hich the width ratio 

was 01=0.1+.34. Figures 5-14 and 5-15 show that this caused a more 

moderate phase characteristic, but the slope of' the gain Cl.Jrve at in-

termediate frequencies was reduced to -10 db per decade. 

The neb·10rks o:f Figures 5-10 and 5-llJ. are also sui table i'or use 

a.s phase lag compensators. The response characteristics for the typ­

ical lun1ped !"!lement phase lag compensator with voltage gain Gc(s) c 

(1+sT)/(1"1-saT), a>1, are shown-i.n Fi.gure 5-18 (Ref'. 5, pp 295 and -314). 

If Gu is the 1.1ncompensated open loop voltage gain of' a. unity feedback 

system, a properly designed lag compensator has the ef:fect of' rotating 

the phasor o:f the polar plot of' Gu(jw) clockwise in the vicinity of' 

the -1.0 point and reducing the gain at large :frequencies while leav- ~ 

ing the low :frequency end of' the plot unchanged. Because all of the 

curves of' Figures 15-10 and 15-14 meet these requirements, the net-

Horks they represent can bo used as lag compensators. 

5.4 High Pass Network 

A. passive high pass network should have a gaj_n much less than 

unity at low .frequencies and as near unity as possible at high :frequen­

cies. A search of the asymptotic gain equations of Table 3-1 on page 

36 shows that for the case of' the cascaded networks with the right end 
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short circuited the gain at low ~requency is direct~ proportional to 

~requency regardless of' which port is used as input or output. Thus 

r and c should be selected so that the high :frequency asJ7lnptotes are 

near lunity. Several possible combinations of' r and c were investiga­

ted for the one section case ~irst using port 1 as the input, then 

using port 2 as the input, with the remaining port open circnited in 

both cases. The results are shown in Figures 5-19 through 5-22. As 

expected, the low :frequency portion o~ each curve has a positive 

slope o~ 20 db per decade. Using port 1 as input Figure 5-19 shows 

that the best results are obtainod with r=100 and c=0.01. With port 

2 as input the best results occur :for r=c=.01. For these two cases 

the attenuation at high frequencies is less than two tenths of' a deci-

bel. 

Another type of' high pass network, especially suit$d :for use 

as a coupling net"t·.rork can be constructed by adding a resistive load 

to an all pass network. The design procedure :for the all pass net­

work is almost identical to that of' the notch :filter, the only dif'-

:ference being that the computer program should minimize instead of' 

maximize the notch. The same network configuration can be used f'or 

the all pass coupling network as :for the notch f'ilter, i.e. the right 

end s<;ction of' the cascaded network is open circuited and terminals 

2-2' o.f Figure .3-1 on page 27 are used as the input. A one section 

a.nd a two seeti·on network were investigated with high frequency gains 

Gz1co of' -0.5 to -0.1 decibels. Since the results were best f'or 

small c and improved as r became lower, the case with r and c both 

at the lower stop limits (0.01) was also investigated. These results 

are shown in the graphs of Figures 5-23 through 5-26. Because the 
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results of the t-....ro section network were not significantly better 

than those of the one section (0.0058 db improvement), a three sec-

tion network was not investigated. TI1e unloaded one section cou-

pling network could be made to have a minimum gain of -0.0983 db 

with phase distortion less than 0.3 degrees. Figures 5-27 and 5-28 

show the log magnitude and phase plots respectively for the best of 

the one section networks of Figures 5-23 and 5-24, but under loaded 

conditions. Curve #1 of these Figures corresponds to the no load 

case. Under loaded conditions the gain equation becomes 

76 

= (5.2) 

where y 1 is the load admittance. ·rhe equations in the first column 

of Table 3-1 show that at low frequency y 12 and Y11 are both propor­

tional to frequency. Therefore if Yl is a purely resistive load, the 

demon.i.nator of equation (5.2) will be approximately equal to Yl at low 

frequency making G21 proportional to frequency. Thus as is shown by 

Figure 5-27 • if the all pass network works into a finite load it be-

comes a high pass network. 
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6.0 SUGGESTIONS FOR FURTHER RESE..4RCH 

The results of' this dissertation suggest several ll::.-<'9-S :for :further 

research on synthesis problems. First recall that the RC p:t"oduct matrix 

was chosen :from the high and low :fr.equency asymptotic requirements o:f 

prescribed short circuit ad~ttance parameters. Are there other ways 

o:f choosing the components of' this matrix? Are there methods o:f graph­

ical~ obtaining a realizable matrix equation. equation (2.30) or (2.40), 

from prescribed short circuit a.d_rni t tance parameters tha. t are more ac­

curate than the method presented in Chapter 47 Note that the high 

:frequency asymptotic equations, thi1"<i column of' Table 3-1 on page 36. 

are independent of' Aj and Bj and thus are also independent o:f the 

-r·r:l.dths of the individual sections of' the cascade. Do these equations 

p]_so apply t,o a.qy .four-layered distributed par.!:l.rneter RC network re­

gardless of t.he geometric taper of the widths!· Only lef't end connections 

o.f the cascaded net1-rork were investigated leaving all the terminals o:f 

the right end section either open circuited or short circuited. What 

kind o.f network responses could be obtained if' some but not all layers 

are short circuited? Can a synthesis procedure be developed using 

connections at bot.h e:nds of' the casc~.dod net'VlOrk as ports? It was as-

sumed in this dissertation t.h.at the RC product matrix Twas the srune 

:fer eo.ch section in the cascade. a.:r..d tl2us that each section is the same 

length. A synthesis procedure which does not require th..i.s restriction 

-v~ould a.llow mora ireedom of' design. This leads naturally into the 

problea of' SjiTithesis using so:rn9 n:.orphology other than the cascade of 

u:n:i:for~·.1 secti e-ns, or perhaps even ~··ntbesis o.f completely arbitrarily 

tapered networks. 

Saveral analysis problems also remain to be solved. One dimen-



sional current £low was assmned in each section o£ the cascaded net­

work. Hhat happens to the network responses if current flows in b.vo 

dimensions as it would i£ the narrow- conductive strips of Figure 2-'-1-

80 

on page 13 were removed. In the transmission line equations in Ch.3pter 

2, inductance was assumed negligible comp.3.red to resistance. Would t.his 

type o£ nebrork be useful if inductance beca.'lle a significant pararr.eter? 

Could it have some usc at frequencies so high that the device begins 

to act as a loss,y waveguide? 

Construction of' distributed parameter RC net~orks suggests a. few 

more interesting problems. Suppose a device of' this type is construct­

ed using :monolithic techniques w-1. th the resistive layers being com­

posed of either n-type or p-~pe materials and the dielectric is £orrr.ed 

by the depletion layer between adjacent n-type and p-type materials. 

I:f a d-e reverse bias is applied to the p-n junction, the 'Hidth o£ the 

depletion l.g~.rer changes, chanGing the capacitance. Can a change in the 

d-e bias alter the resonant frequency of a notch filter or, perhaps, 

change t,he no·tch :filter to an entirely different type o£ circuit such 

as a lou pass filter? The capacitance inherent at a back-biased p-n 

junction is the sa.me principle used :for varactors. Perhaps some 

ra·ther exotic properties could be obtained by using monolithic dis­

t:cibuted Rc networks of various morphologies as varactors in parametric 

amplifier or multiplier config;urations. 
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APP&l\o"'DIX A. l'~TRIX ltlJNCTICNS AND IDENTITIES 

While books on matrix theory are plentiful, they generally either 

deal w.i.th theory useful mostly for numerical analysis or else with the 

ve~j sophisticated mathematical peculiarities of matrices in regard to 

set theory. Therefore the author feels that definitions o:f certain rna.trbc 

functions much used in this dissertation are in order. This appendix 

provides these definitions as well as some matrix identities that are 

useful in the proofs of Chapter 2 and Appendix B. 

The litera.ture (Re:f. 7, 18) defines a quantity eA, in which A is 

a matrix, by the same infinite series expansion used to define the scalar 

q;1anti ty ea, i.e. 

e A = _3: + A + !._ A2 + L A3 + 
2t - 3' -

• • • = ~ 1 Ai 
i~O it - • 

(A.1} 

where I is the idonti ty matrix. If' and only if the matrices A and B con!l.nl. 

with respect to multiplication 

e A e B = e B e A = e A+ B • (A.2} 

This can be shown by multiplying the series expansions of the two terms 

on the left of equation (A.2) and identifying the product term by term 

with the series on the right. Thus 

A -A - I e- e-- _. 

The matrix hyperbolic functions sinh A and cosh A may be defined by serie: 

expansions nns.logous to the power series expansions of the corresponding 

scalar :functions sinh a and cosh a; howover, it is more convenient to 

use exponential definitions. So the definitions 

sinh ! = t< e A - e -A> (A.J} 

cosh ! = t< e A + e-!) (A.4) 

are chosen. In general. the product o:f two matrix functions of A, e.g •. P( 

and Q(!), commute since each is expressible as a polynomial (or series) 



86 

in !• Thus the remaining matrix hyperbolic .functions may be defined in 

terms o~ sinh A and cosh A. - -
sech A = ( coth A)-1 

csch A =(sinh !,)-1 

tanh A = sinh A sech A = sech A sinh ! 

coth A = cosh A csch A = csch A ~osh ! 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

The definitions given by equations (A.J) to (A.8) can be shown to be 

co:mpatible with Sylvester's Theorem. 

Sylvester's Theorem, a ver,y powerfUl tool of matrix theo~, states 

that if the n eigenvalues Xi of a matrix ! are all distinct and if P(!) 

is any polynomial in ! (including inf'ini te series), then 

where 

n 
P(!,) = L P(Xi) ~o(Xi) 

i=1 
n n 

Z.o(Xj_) = TI ( Xj!-A)/ IT (Xj-Xf). 
Jfi j1l 

The quantit,y Zo has the properties 

and 

Zo(Xi)Zo(Xj) = Zo(Xi)8ij 
n 
L Zo(Xi) = 3: 

i=1 

where 8ij is the well known Kronecker delta. 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

Another fUnction that is used throughout this dissertation is the 
1 

square root of: a matrix. This function is def:ined as a matrix Az such 
1 1 

that A2 A2 = A and is most simp~ expressed by Sylvester's Theorem. Thus 
n n 

../A = L ~ ~i JJ (Xi! - ~)/ JT ( Xj-Xi) (A.13) 
i=1 J,-i .fii 

in which the ±·signs o:f the various./Xi' s are independent of each other. 

Several matrix identities are very useful throughout this dissertation 

and will now be giveri in the form of: a theorem. 
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Theorem 1. Given (1.) A, B, and C are n X n matrices - - -
(2.) 

{J.) 

A = AT and B = BT i e A and B ft t 1 _ _ _ _ , • • _ . _ ... re syrrJ'!le r c 

C = A B - --
(4.) Sylvester's Theorem applies to the function P(C) 

Then: 1.) A P(CT) = P(C) A or F(C) A is SYF~etric 

2.) B-1 P(£T) = P(C) B-1 or P(C) B-1 is s.ymmetric 

J.) B-1g =Jc-1 A 

(A.14) 

(A.15) 

(A.16) 

Proof: For the case where P(C} is a polynomial in C parts 1 and 2 are 

obvious qy inspection. The proors given will app~ also to ~~nctions 

vrhich can be expressed by Sylvester's Theorem but not by a polynomial, 

e.g.£. 
Part 1.) Since the determinate or a matrix and its transpose are 

identical, the eigenvalues o~ a matrix and its l:i"anspose are also 

identical. From SyJ_vester 1 s Theorem 

n . n T n 
A P(CT) = LP().i) A fl()..:t - c )/ fl(Aj - ).i). 

i=1 Jfi ~ jfi 
Consider the term A ().1f - cT). 

A ().1~- fT) = (AtA- A~~)= ().1%- £)! 
T 

Reversing the order of A and ().1! - £ ) successively to each term in the 

product Afl(Aj! - fT) leads to ~(Aj!. - c)] A or 

n n n ;1 
A P(CT) =[L P(A1 ) Jl().jl- C)/ J1 ().j- ).i)JA = P(£) A 

~ =1 ~~i 44i - Jt· o.)l 

Q.E.D. 

Part 2.) As before apply Sylvester's Theorem. 

n n , n 
B-1 P(cT) = L P().1 ) B-1 Jl().~- £r)/ J1CAj- A1 ) 

i=1 jli. j-/:1 

But B-1 ().j!_ ·- f..T) = (Afl-1 -:- ~-i_g A) = (Aj. - ! B) B-
1 
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so B-1 TI<).ft_- cT) =[ ftc).jl- cT~~-1 
j#i jli 

and ~-1 P(CT) =[ ~ P(~i) ~ (~j!_- C)/ ~(~j - ~i)J~-1 = P(£) li-1 
. ~=1 Jf.i J# 

Q.E.D. 

Pa~t J.) ~equation (A.15) 

B-1 R = 4f. 1?.-1 = Jc c-1 c B-1 = ../C-1 ! ~ B-1 = .jf_-1 A Q.E.D. 

·, 
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APPENDIX B. DERIVATI ) ON OF EQUATIONS (2.9 • (2.10). AND (2.14) 

B.1 Derivation o£ Equation (2.9) 

I:f [V ~ roth ../sRC 

rJ={_lt-1 ~sinh~ 
find matrices ! and ! and that 

V = Z I - - -
and I = Y V - --

(s£)"'"
1 ~sinh :]9! 

cosh .JsCR - [ Y2.J (B.1) 
-!2 

where y_ -- [_-vv21J [I~ and I= rJ. Equation (B.l) may be written as the 

two ma.t:rl.x equations 

Y.t = cosh ~ Y..z - (sC)-1 ~ sinh Jsf[ ~ 

lt = .B,-1 ~ sinh~ Y.z - cosh~ !_2 • 

I.f equ.ation (B.J) is solved for ~ one obtains 

"Y-2 = csch JsRC JsRC-1 .!![I 1 + cosh·....fsCR ~]· 

I.f this is substituted into equation (B.2) there results 

Y.t = coth ~ ../sRC-1 R r 1 

(B.2) 

(B.J) 

(B.4} 

+ [ coth fsB£ ~-1 E. cosh~- (sc)-1 JsCR sinh .JsCR}I2 
(B.5) 

Thes·~ two equations can be written 

coth ....rsRC ~-1 g coth JsRC JsRC-1 R cosh JsCR 

csch JsRC JsRC-1 R - - -

-(sc)-1 ~ sinh .fsCR 

csch JsRC JsRC-1 R cosh .JsCR --- - - -
(B.6) 

which is of' the form Y. = Z I. Since tho geometry o:f the network under 

consideration is s,ymmetric, it would be natural to expect that ~11 = ~2 

and !12 = z21• That this is in :fact true will now be shown. Consider the 
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~22 term o£ equation (B.6). 

~2 = csch .JsRC JsRC-1 ]i cosh JsCR-

If R is identi:fied with the rnatrix ! and £. with the rnatrix B or equation 

(A.15), then 

~2 :c: csch JsRC .fsRC-1 cosh JsRC R • 

. Hatrices w!-.ich are :functions o£ a common matrix-in this case RC-coiTUmlte 

with respect to multiplication so that 

~2 = csch JsRC cosh~ .Jsftc-1 !!. 

= coth JsRC JsRC-1 R = Z • 
- - - -11 

The Z12 term can be similar~ reduced. 

Z12 = coth ~ JsRC'-1 11 cosh~- (s£.)-1 .fsCR sinh~ 
Application o£ equation (A.14) and (A.16) to R cosh JsCR and (sc)-1JsCR - - - --
respective~ leads to 

~12 = coth JsRC ~-1 cosh~ !! - ../s'RC-1 R sinh JscR. 

Again usi~g (A.14), this time toR sinhJs'CRyields 

~12 = coth JsRC cosh .fsRC s~-1 R - sRc-1 sin.l,. 

= (cosh2 ~ - sinh2 JsRC') (sinh ../s"RC)-1 fsRC-1 R. 

An appeal to the exponential de:fini tions o:f cosh JsRC and sinh JsRC 

shows that the scalar hyperbolic identity also applies to the correspondin€ 

matrix case, i.e. 

cosh2 A - sinh2 A = I. - - -
Thus Z1 2 = csch JsRC .../';Rc"-1 J1 = ~1 
and equation (B.6) becomes 

[~V ~11 = [coth ~ -d csch JsRC 
cschfsRCJ 

coth JsRQ JsRc-1 

Q.E.D. 

(B.?) 
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B.2 Derivation of' Equation (2.10) 

In order to get the :form ~ = ! Y one could either invert ~ of equation 

(B.?) or go back to equations (B.2) and (B.J). Choosing the latter 

approach and solving (B.2) :for r 2 results in 

!.2 = csch ./sCR JsCR-1 sf. [-vt + cosh ./sRC Y.z] • 
Substitute this into (B.J). 

{B.8) 

It = coth ~ J;CR-1 sCV 1 - [ coth /sCR ~-t 

- s-t ~ sinh JsRC] Y2. 

sC cosh ./sRC - -
(B.9) 

Fq_uations (B.9) and (B.8) can be written as the· single matrix equation 

coth JsCR ~-t s£ - coth ../;CR J;CR-1 s.£ cosh .JsRC 

- R-1 ../";RC sinh .fsRC - - -
csch ../;CR fsCR-t sC cosh JsRC 

[~] = 
- csch../;CR ~-1 sf. 

(B.10) 

This equa·tion is of' the :form I = Y y, but again it should be expected 

:from symmetry that Y11 = Y22 and Ytz = !zt• Apply equation (A.1L~) to !22 • 

Yzz = csch ./;CR JsCR-1 sC cosh JsRC 

= csch .fsCR ..J;G:R-1 ' cosh .;;c'R sC - --
= cothJs'CR ~-1 sf.= !.11 

Repeated application of' equation (A.14) and use of' (A.16) on Yt2 leads to 

~y 12 = coth ../s£B ~-1 sC cosh~ - R-t JsRC sinh .../sRc 

= coth ../;CR ..J;CR-1 cosh ../;CR sC - ..;;GR-1 sC sinh~ 

= (cosh2 ../;CR - sinh2 ../;CR) csch ~ ~-1 
sC 

= csch JsCR ~-1 sC = -121 

Thus equation (B.tO) takes the :form 

fit] fcoth ~ 
Liz = L-esch JsCR -:::: ~] ~-1 sC ~-1 sJ [j 

(B.11) 
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Each of the components of this equation fits the form P(sCR) ~-1 
- v:i~ s£. 

~ equation (A.16) and (A.15) 

P(sg) ~-1 sC = P(sfE) R-1 ~ = R-1 v'sg P(sEQ). 

Thus equation (B.11) can be written 

rii~1J = [g0-l JsRC OJ [coth JsRC l~ !i-1~ -csch ~ -csch JsBf.J [v1J 
coth JsjiC V 

2 

(B.12) 

If one lll'..lltiplies Y by! the expected 2n X 2n identity matrix results. 

B.J Derivation of Equation (2.14) 

De1~ve the driving point admittance matrix of the ith section of the 

casc9-ded Rc net1.rork of Figure 2-3 in terms of the driving point admittance 

matrix ru1d the parameters of the i+tth section, i.e. de1~ve, equation (2.14), 

Xi ( s) = Ri!t /7F (B:,i;t ~- Ii+1 tanh Js:T-)-1 (!i+t-ai!t..fsi tanh~)-. 
(B.13) 

Equation (B.13) can be derived more easi~ if tho following theorem is 

first proved. 

Theorem 2. If Ii is the driving point admittance matrix of the i th section 

of a casc.:a.doo multi-layored distributed Rc network, P(T) is a matrix poly­

nomial in J:, T::: B.£, and li and c are symmetrical matrices, then 

P('[T)x_1 = Xi P(T). (B.14) 

The proof of Theorem 2 will be proof by induction. li'irst it ldll be 

sho ... ,..'!l that if (B.14) holds for i=j, it also holds for i=j+1. Then it 'tdll 

be shol~ that (B.14) holds for i=1. 

Proof: Assume P(J:T)!.j = Y jf>(TY, .then .find I.j+t in terms of Y j• Reference 

to Figure B-1 shows that 



!:i+1 I -i 
• -c.--

+ T = lli.+1£i.+1 + I 
Yi+l ~ Rd..+l V· -1.. 

Y. 
-~ 

- I 

Figure B-1. A block diagram of the i+l th section of a ca.scaded RC 
network. 

93 



I j+l = y j+l V j+l 

-I j = Y j V j• 

\·ii th Figures 2-3 and B-1 in mind equation 2.10 can be wrl tten 

(B.15) 

(B.16) 

j.r ji-~ = [R-1-.RI 

L-rj J Q 

. o.l fcoth ../?f 

R-1 vr.il L-esch /if 
-csch JsTl [V:i.+j 
coth JsT J !.; • 

._ 

~ substitution o~ (B.16) into (B.17) one obtains 

I j+1 = Rj!t ~ (coth .JsT V j+1 - csch .;;y V j) 

-ljYj = Rj-!1 ~ (-csch/qvj+1 + cosh/qVj). 

Elirrination o~ Yj £rom these two equations gives 

I j+1 = R}-1:1 .JST[coth ..rs:f- csch JsT (R~1 .JsT coth ..J;r + Y j)-1 

X Rj!1 /si csch .fsT]v j+1 

= Ri!1 J;f [ coth ../sT- csch ..rsr sech ./sf.(I 
v 

B.1?) 

+ sinh ..;;r Jsi-1 Rji-1 Y j sech ~)-1 ] V j+1 

or IJ~ 1 = Rj-!1 ~tanh .;;;;= + cosh ../q .J;:r-1 Rj+t Y j sech Jsj) 

X(I + sir.h /?f ..;;z-1 Rj+l Y j sech ../ij)-1 

I£ equation (B.14) holds ~or i=j then 

Rj+1 Y j sech ..rs:f = Rj+1 sech /;(fy j = sech ./;:j Rj+1 Yj , 

the last equality coming ~rom equation (A .14). Thus 

Y j+l = ~j-! 1 .J;:F (tanh Jsi + /;I -1 ~i+i Y j) (! + tanh .JsT Vsi-1
Rj+1Y,j)-1 

(B.18) 

and P(TT)y j+1 = P(J:T)RJt1 /sT(ta.nh ./sT + ..;;z-t Rj+1 Y j) 

><(I+ tanh~ ..;;x-1 Rj+t Yj)-1 

= ~J!t J;f [tanh ..Iff P(:[) + ~-1 R j+l P(TT)y j] 
x[I + tanh v'q J;T:-1 Rj+i Y ~ -1 

= Rj!1 fsT [tanh .fsi + J;T--1 ~j+1 Y j] 
X [I + tanh.Jsi ..J;,i-1 Ri+l Y j] -1 

P('r) 
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~ 
or P(T ) Y j+l = Y jtl P('[). 

'Ihus if (B.14) holds for i=j it also holds for i=j+1. Now if it holds 

for i=1 the theorem will be proved. If the output of the i=l section 

is open circuited, its driving point adn:i tta.nce is given by equation 

{2.11), or 

Yt = (~11)-t = 1111 Jsf tanh~. 
Then P('[T) It = P('[T) Rt! .;;;;=tanh ~ = R-1 /if tanh ./ff P('r) = Y 1 P('T) 

If the output of the i=1 section is short circuited, its driving point 

admitta,nce is given by equation {2.12), or 

y 1 = y 11 = Ri1 .Jff coth .;;;:r 
Then P('fT) Y1 = P("[T) 1!11 ..;;;_r coth ~ = R-l /if coth .,;;;r P('r) = Y 1 P(i:) 

and the theore~ is proved. 

F,qua.tion (B.1J) can now be derived from equation (B.15), (B.16), 

.and (B.1?) with the help of Theo~ern 2; however, since the theorem is 

true, equation (B.18) holds f"or any value of j and offers a shorter 

derivation. Solving (B.18) for Yi leads to 

Ii+1 + !.i+1 tanh /if R 1 ~+1 yi = ~!1 ~ ta,nh £;I+ 4 
Y1:.: (f- li+1 ta.nh./q ~-1 

Ri+1)-i(yi+1- Ri!t.;;£ta.nh../if) 

or Ii = ai!1 ~~!1 £;I- !1.+1 tanh .;;T)-\Yi+1 - £11!1 ~tanh~ 
Q.E.D. 
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APPENDIX C. DERIVATION OF EIGE.NVALUES AND THE CONST.-~NTS a, b, d, and r. 

C.1 Derivation and Discussion of Eigenvalues 

For the four-layered distributed RC notwork of Chapter 3 the ~trix'r -
is defined as 

i-;here b/3 = Rai Cf3i = Raj C{3j and a, {3 = a, b and each of the 'TafiJ 's are 

real and positive. Let 

and 

'T1 = 'Ti 1 + 1""21 + 1""22 
/\ 
T1 = 1i1 - 1""21 - 'T22· 

The eigenvalues are obt&ined from the detarm:hunt equation 

I:f one lets 

then 

and 

'To == ,.j 1""12 - 4 '111 1""22 = ,./7-1
2 

+ 4 111 1""21 

At = tt7i - 'To), 

Xz = t<'7i + 'fo ), 

Xz - X1 == tC'7i +'To) - t<T1 - 'To> = 'fo· 

{C.1) 

(C.2) 

(C.J) 

(c.4) 

(C.5) 

(c.6) 

From (C.J) it can be seen that 7"
0 

is always real and greater than zero, i.e. 

'To = ,.j~2 + ll 'T11 'T21 > o. (C.7) 

Equation (C-J) suggests that 

'7i2 - 4 'Tit '122 = 'fo2 = fi2 + 4 7"11 7"21 

or 
2 2 .1\2 

'f1 > 'fo > 1""1 • 

. ar::~ _·_since 'fo is greater than zero 

'Tl > 7;, > lTll~ 0 (G.8) 
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with in0quality (C.8) in mind, inspection of equatiors {C.4) and (C.5) 

sho-ws that 

1i 
0 < ).1 <. 2 < ).2 < 1]_. (C.9) 

Hence both of the eigenvalues are positive and they are distinct. 

C.2 Definition and Discussion of the Constants a, b, d, r, and c 

The quantities a, b, d, and r, used for convenience starting in 

Chapter 3, are defined as 

a=-----

b=:-

~ RbCa. 'lit 
r =-- = --- • 

Ra. Ra.Ca. 'rtt 

A.--.,othel• useful definition is 

cb CbRb 122 
c=~ = -- • 

Ca Ca.Rb 121 
In addition to (C.10) "a." may also be written 

a= 
1 

= - <'1it-'72t-··12z-To> 
21";, 

(C.10) 

(C.11) 

(C.12) 

(C.13) 

(C.14) 

1 At - ('lrztT12z> 
= - ('7i -1';-2Tzt-2Tt1) ::----- • (C.15) 

,...,.. To 
GIO 

Similar~ it can be shown that 

b = . (C.16) 
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R·3la.tionships among the quo .. ntities a, b, d, and r are useful in the 

mar~pulation of manY of the equations of Chapter J. To begin with, 

subtract equation (C.11) from (C.10). 

Xt - 111 
b-a = - + 

'1;, 

X2 - 1'11 ).2 - ).1 
= = 1 

To 'fo 
(C.17) 

Substituting (C.12) into (C.11) and (C.10) and solving for the eigenvalues 

leads to 

).1 = (d-b)'fo 

and ).2 = (d-a)Tc, • 

t>li th the cid o:f inequality (C.8), bounds ma.y be put on "a". 

-~z + 1it 
a= = 

-1\- ~ +21it = 73. -To s (-?11 - ,-0 
~ 

r~J - f'PJ 
< = 0 

2'1;, 
1\ 

?: -~1-1j_-Ta 'fa -To -To 
-1. Also a == > = .., 

2To 2'f"o 2~ 

The1 .... e:fore -1 < a < 0. 

Since b = 1 + a relation (C.20) m~ be written 

or 

-1+1 < a+1 < 0+1 

0 < b < 1 

From t~uation (C.18) and inequality (C.9) 

0 < )l1 = ~-b)~ 

or d >b. 

(C.18) 

(C.19) 

(C.20) 

(C.21) 

(C.22) 

One more relation that is usefUl can be obtained qy letting L == X2/).1 

and solving the ratio of equation (C.19) to (C.18) for d. 

L -= _... = ----
bL-a 

d = (C.2J) 
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APPENDIX D. DERIVATION OF EQUATION (1~.5) 

Starting with equations (4.4) derive equations (4.5}. From equation 

(4)-J.c ), 

(D.1) 

Substitute this into equations (4.4a) and (4.4b} and remember that b-a = 1. 

=-ahl 2 +bhl 2 +~ ly1d 2 

r21Y2212 = b2 h!2 + a2hr - 2b(l Ftl2 + 

ab 
= biF1I 2 

- a[F2I 2 + dt fY12I 2 

a 

Substitut~ thls into (D.J) and solve for IFzJ 2 • 

(D.2) 

(D.J) 

(D.!:.) 

(D.5) 

:134477 



= d2(aly11f2 --+ b r2fy2212) - ab(b+a){Ytzl2 

d2(b+a) 

Substitution or (D.6) and (D.5) into (D.3) leads to 

100 

(D.6) 

' 

I r 1 
d2(ly11l

2 + r 2 1Yzz}
2
)- (b2+aZ)(Ytz) 2 

F1 F
2 

cos(~ 
2 
-~ 1 ) = -----~-_;;.. ______ _;_ 

2d2 

(D.?) 

Equations (D.6), (D.5), and (D.?) are equations (4.5a, b, and c) 

respectively. 
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AFPKNDIX E~ DISCUSSION OF NETI-lORK PARAMETERS 

In the design of any network the engineer must decide '-'That are the 

parameters, ho;.T rr.any independent parameters or degrees of freedom he has 

to -v:ork with, and which parameters are then dependent, and which if any 

have no effect whatsoever on the network response. This appendix discusses 

these questions as they apply to the design procedure of Chapter 5. 

The general circuit equation for a distributed RC network with 

p = n·hn+1 cascaded sections, equation (2.1~0), i.e. 

YP(s) =Hj! Jsi [<e2~-x)fl (e4./si +Aje2~ + :rB=h 
. j=l .. 

X frez...JS:! + f)2(m-n)+1 fr (e4~ + Bj e~ + Ij;.t 
.f.=l (E.l) 

has p+J constants or parameters that require evaluating, 'Tit• 'T21• 'Tzz• H, 
Aj (j=1,2,••••,m), and Bj (j=1,2,••••,n) £or p+3 degrees o£ £reedom o£ the 

equation. Let 

(E.2) 

and (E.J) 

/\ A ~ 

Then, looking at the physical device the degrees of freedom are Pa• Pb• ~a• 

~. ar!d the p t.rid ths for a tot.1.l of p+4. Since the physical. device has 

one mer-~ degree of freedom th:t.n the equation, one of the physical }"<a.ranteter3 

r~y be chosen completely arbitr~rily. LAt th4s be ~p so t~~t the resisti-~ . ~ a - !U:.I. 

·.rity, length, al{d thickness (p.1,1, and hpa respectively) may be sQlected 

by the engineer within the physical realizable range. Observe from 
,.. 

equation (2.40) or {3.3) and {J.4) that the constant H is a multiplicative 

factor of each of the short circuit admittance parameters (Yij' s ). Because 
A 

o£ this, the network ~ be designed by initially ignoring H or setting it 

' •. 1 . 
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equal to unity before evaluating the other network co~stants. After the 

basic design, which consists of the selection of the other circuit constants 
1\ 

is complete H nay be adjusted to give the desired admittance level 't.rithout 

altering the network performance in any other way. 

The nor!'rl..a.lized frequency TJ = 2w\1 will now be discussed. By refering 

to the definition of ~1• 1i, and "fo of equation (C.4), (C.1), and (C • .3) 

it can be saen th.'l.t multiplying ~1 by sorr.e factor q is the same as multi­

plying '111• '21• 'f22, and consequently 7i and T0 by the same factor. 

Further, reference to the defining equations for a., b, and d, equations 

(C.10), (C.11), and (C.12), shows that multiplying ~1 by q leaves these 

unchanged, and consequently by equation (,3.1.}) the short circuit admittance 

pararr.eters as functions of~ are also unchanged. Thus multiplication of X1 

by the constant q leaves the plot of the network response unchanged in 

shapa but shifted along the frequen_cy axis by a. factor 1/q. Therefore in 

the design procedure the value of >..1 should be selected at the sa:ne ti:ne 
)\ 

H is chose~1, after the basic design is cornplete. 

If equation (2.39) of Chapter 2 is solved for e2~ and the result 

substituted into (2.40) it can be seen that 

/\ A 

lp(!) = H .! ' 
nnd by (2.28) 

" = kp,! = H I • 

Thus H = kp and recalling from Chapter 2 equation (2 • .38) that 

_Pal 
wi -­

hpa 

it can bo seen that 
1\ ;"\ 1\ 

Wp =Pa, kp =Pa H (E.4) 

'so that the actual value of the widths of the pth section is determined 

"" . A 
by Pa and H. 

1\ 
In other words the selection of H as a parameter replaces wp 

• 
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as a deg~ee of freedom. 

I'\ A 
It has just been shown that Pa• H, and ~1 do not affect the shape of thE 

response plot and are therefore to be selected after the basic design is 

completed. Substract:ing these quantities from the origi:r..al p-tl.} degrees 

of freedom leaves p+1 parameters to be discussed. In design work the eng3ne~ 

ts concerned with practical considerations such as how great a width ratio 

can ce obtained beh1een bolo sections and wr...a.t are the l'la.XililUI!l practical 

limits to the ratios of permittivity or resistivity betwe~n layers. S~1ce 

,.. 
Wp is determined by H and 'f'a, it is convenient to use Wp as a reference 

and divide the width of each section by 

parareeters, giving p-1 more parameters. 

'Wi 
A • 12 ••• p1 Wi :; - • :1. = ' • t - • 

Wp 

Since for the four layered case 

and 

~ and choose these ratios as 

Therefore let 

(E.5) 

(E.6) 

{E.?) 

r and c vrould be convenient choices as the remaining two degrees of freedom. 

If an asymptotic gain is specified such as Gt2co or Gztco of equations ().92 

~.nd (J.9b), only one of the quantities rand c rerr..ains an independent 

p.-~.r~Ineter. 

After all of tha Oi's, r, 

p~1-.:;:metors t:: .. ~y be calculated. 

(E.'~) and (E. 5}. 
A " 

... r = 0 H "P 1-a. 
1\ 

and Wi = Wi•Wp, i = 1,2, 
L\ /.'~.. 

Also, from (E.6) {Jb = rPa• 

I' 
c, H. ~1• a!~ ~a are selected, the physical 

The ~idths are c<l.lc~.tlatod froM cq\:~tions 

•••• p-1. 

(E.8) 

(E.9) 

(E.10) 



From equg.tions (C.1), (C.J), and (C.lJ.) 

~1 = ~- [<11t+12t+'12z)- 0-r1t+12t·t-'J2z)2
- 1~'f'tt122_] • 

Divi.sion of each side of thls equation by 'Tit leads to 

2X1 
= 

( 1 +r+1 .. c) - -A 1 +r+rc) 2 - 4re ' 

l()q. 

(E. 11) 

(i\.12) 

(~.13) 

Equations (E.8) through (E.1J) constitute tha fir:al design ph3.se, 

that of determining the magnitudes of the const.ants of the rea.l, phys ic:1l 

network. 
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