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ABSTRACT

Synthesis and design teciniques for multiport, nmultilzyered, dis-

ributed parametor RC networks are investigated in this dissertation.,

3

e basic building block is a netuwork section of uniform width con-

sisting of allernate layers of resistive and cdielectiric materisls on
top of a perfectly conducting plane, The resulting network is com-
posed of a cascads of these secticns with all aces:ss terminals a2t one
end of the casesded rnetwork, The terminals at the other end sre either
onen cliculted or short circuiled, A method is discngsed for synthe-

3 3 1 Ty

sizing a network from a prescrilbed netwerk adwittance matrix., An ap-

pirroximatd Lon technique is given for cbtaining a realizable network im-

wittanee matrix from Bode plots of the short ~ireult sdmiittance para-

meters for the four-layoered case., Since thils apgproxiration technique
ma7 bo difficult to implaoment in prectical engincering rreoblens, high
veguercy agsymphotle relatieonships 2re given which are usefl

i

in practical design of nefworks. Desipgn sugpesticns sare given for

.

notch, 1o mass, saud high passc networks,
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- Thickness of the ath dielectric layer
th

- Thickness of the a’ resistivity layer

- Admittance level scaling parameter in the hyperbelic form of
the general realizable admittance matrix

- Admittance level scaling parameter in the exponential form of
the general realizable admittance matrix

- Flectrical current
- Unit matrix

~Coﬁstant 6btained as a direct result of the synthesis procedure



v

'sa

»
]

k

o> |

]

Length of each section of the cascaded network

Ratio of the eigenvalues of the RC product matrix for the four-
layered network

Log magnitude

Matrix used to diagonalize a realizable admittance natrlx when
evaluated at infinite frequency

nxvT !

Functional form of a general i section cascaded distributed
network in the +~s plane

Ratio of the resistivities of a four-layered distributed net-
work ,

Ratio of the resistivity of the ath resistive layer to the ath

layer of a general multi-layered network

Total resistance due to the c?h resistive layer in the ith

section of the cascaded network

Laplace transform variable

Indicates the transpose of a matrix if used as a superscript
Electrical voltage

Scalar transformation tanh V5T

Width of the ith section of the cascaded network

Ratio of the width of the ith

section to the pﬁh section of the
cascaded network

Matrix transformation tanh.v@af

Short circuit admittance parameter

Ldmittance of a cascaded distributed network looking into

the 1th section of the cascade., A lower case y indicates
the scalar admittance of the two-layered network.

 Admittance in the /s plane, The equation form is similar to

that of a lumped LC network.
The dlagonalized admittance matrix in the W plane
Impedance matrix

Constituent idempotent



€a

£F N DD >SI

Permittivity of the o' dielectric layer

Capacitance of the dth dielectric layer per unit wicdth of the
distributed network

Normalized frequency

Figenvalue of the RC product matrix T

th

Resistivity of the a"" dielectric layer

Peslistivity of the ath resistive layer per unit width of the
distributed network

Product of resistance and capacitance
Product of resistance and capacitance matrices
Phase angle of F3 evaluated at jwhy

Radian frequency



1.0 INTRODUCTION TO DISTRIEUTED RC NETWORKS
1.1 Purpose of Distributed RC Networks

Wiﬁh the advent of microelectronic technology, devices which can
be constructed using thin film or monolithic techniques are much in
demand. Among these devices, distributed parameter RC networks are
~becoming popular as a means of overcoming the difficulty of construct-
ing microminiature inductors (Ref. 3, 23) because they can be used to
construct low pass, high pass, and notch networks. A notch network
placad in the feedback loop of an active device can produce a bandpass

network. (Ref. 31).
1.2 Tefinition of Distribuled Farameter RC Netwrork

A distributed parameter RC network is an electrical netfwork composad
of alternate layers of resistive and dielectric films. Figure 1.1 shows
an example of a distributed RC network. In this dissertation it will
be assumed that these layers are deposited on a perfectly conducting
film or ground plsne and that the dielectric layers are non-conductive.
Further it will be assumed that each layer is electric¢ally homogeneous-
and of uniform thickness. Thus the resistivity p and permitiivity e
of Figure 1-1 are not functions of the spacial coordinates, and, since
the width of the network varies, the resistance and capacitance per
unit length are functions of x only. A convention used in this
Ajssertation 1s to call a circuit an n-layered device if the nunber of
resistive layers élus the nmurber of capacitive layers equals n, The
verfeetly conducting layer is not counted. By this convention the devi#e

of Figure 1.1 has two layers. If in discribing a netwo;k a bar appears



t conductor

(a).
I(x) r{x)A x I{(x+Ax)
—WWA —
R s
V(x) ' V{x+Ax)
l- c(x+ A x)Ax l-
- (b).

Figure 1-1. (a). Two-layered distributed parameter RC network.

(b). An incremental model.



abeve the letters B and €, specificzlly RC, 2 distributed jaramater

network is tc ke understocd,
1.3 Review of Frevious Work

The analysis of distributed RC networks is tased on transmission
line thecry. The network differential equations in the & dcmain,

sometimes called the telegrapher's equations, can be written as the

matrix equation (Ref. 1)

3 vix,s) 0 r{x) V(x,s)

ox | I(x,s) se(x) O I{x,s) | (1.1)
in which r and ¢ are respectively the resistance and capacitance per unit

length of the network, Elimination of sither V or I from these eqguations

rt(x)

Vir{x,s) - Vi(x,s) - r(t) e{x) sv{x,s) = 0 (1.22)
r{x)
ct(x)

I"(X’S) ( ) I'(X,S) had r(x) C(X) SI(XOS) - O (jozb)
e(x

where the prime denotes differentiation with respect to x. In early
analytic work, geomeiries were chosen such that equations (1.2) cculd

be solved in closed form, Sowme of the tapers studied for the two layered
network were the nniform (Ref.. 14), exponential (Ref, 31,1%), igonoretrie
Raf, 29), and linear (Ref. 1t} tapers. A solution to the completely

-

general taper waes obtained in the form of an infinite series of multinl:

A

integrals by Frotonotarios and Wing (Ref, 23). By solving equaticn
{(1.1) as a watrix differential equation, Bertnolli (fFef, 1) showed this
solution to be the matrizant, Googe and Su (Ref, 9) investigated the
four-layersd case of the uniform distributed RC network, paying special
attention to the two-port obtained by connecting leads between the two

ends 6f ths top resistive layer and the conductive plane. Bertnolli



(Fef; 1) pointed out that the rmlitilayered case may te obtained from
the two layered case by replacing all scalar electric quantities by
corresponding matrix quantities,

Some design work has been done by referring to a catalog of known
immittance and transfer functions of previously studied network
morphologies (Ref. 11, 13). Heizer (Ref, 16) and Hesselberth (Ref. 17)
succeeded in realizing a finite number of poles along the negative real
axis of the s-~plane by assuming special nonhomogenous distribations of
either the permittivity or the resistivity of the network leyers, The
positive real transformation W = tanh, /TGS enabled Wyndrum (Ref, 32)
to develop a synthesis procedure using two-layered uniform sections of
varying widths as the basic network building blocks, Network functions
of distributed networks in the VW-plane resemble those of discrete component
L-C networks in the s..plane and can be realized exactly by the use of
Ayndrunmt's procedure., The W-plane function is obtained by fitting log
magnitude plots of certain catzloged factors to a given admittance curve,
OtShea (Ref. 22) used the transformation p = cosh./T¢s and realized
transnission zeros in ‘the p-plane, By using gyrators and transformers,
Newcoib (Ref. 20,21 ) described an n-port synthesis procedure for lossless

transmission lines.
1.4 Scope of this Dissertation

The motivation of this work stems from the lack of distributed
mltiport synthesis procedures in ths literature, Wyndrum's work is
extended to include multilayered distributed vniform networks, Chapter
Two describes an exact n-port synthesis procedure providad the retwork
.function to be synthesized is in a form that is realizable. A method

of calculating some of the network parameters from the low and high



asymptotic freguency rosponse of chort circuit admittance parameters and
oren circuit voltage transfer functions is given in Chapter Three.
Chapter Four shows how a realizable function may be derived from the

short circuit admittance paraneters by curve fitting in a transformation

[ ]
£

¢

w3

ne, Finally in Chapter Five a decign procedure is disocussed which uses

4
s

-~

iigital computation to optimize selected performance characteristies
¢ four.layered two-port networks., OSeveral interesting sample circuits

are given aleng withh their log magnitude and phase plots,



2.1 Introduction

In his Fh,D. dissertation (Ref., 32) Falph W, Wyndrum described a one
port synthesis procedure and an approximation procedure using two-layered
distributed parameter RC networks of uniform width as elements of a
cascaded network, In this chapter Wyrndrum's synthesis procedure will be
extended to multiport synthesis in whieh multi-layered EC network sections
similar to the four-layered network of Figure Z.1 are elements, First
the uniform rmltilayered RC network is analized, then the synthesis
procedure is developed, ard finally examples are given which demonstrate

the procedure,
2.2 Analysis of the lMulti-layered Distributed RC Network

To begin the analysis of the uniform RC 1;;etwork consider the
incremental medel of an n-layered circuit shown in Figure 2-2 in which
the quantities r,, c,, etec. are the resistances and capacitances per
unit length of the uniform section., In equation (2.1) the wvoltage and
current relations ars written for this model,

Va(x) =r, AxIa(x) + Va(x+Ax)

Vi {x)

it

1y, AxTy(x) + Vi, (x+0x)

Vn(x) =1, AxIn(x) + Tn(x+Ax) |

To(x) = scy AXV,(x+Ax) - scpdxVp(x+4x) + Ty (x44x) (2.1)
Tp{x) = -5cg AXV,(x+4x) + s{cgy+op)dxVy (x+4x)

“schch(xa.-Ax) 4+ I (x+4x)

L g . ® L 4 L 4 [ ] ) L 4 Ld * * - L ] * L

In(x)

wscp_q AxVno1(x+hx) + s(ep_1+en) AxVu(x+8x) + I, (x+4x)
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I, (x) rg Ax T,(x+Ax)
Vo (x) E > V,(x+ Ax)
L
I (x) rbAXx sealix (x+Ax)
¥, () — A = Vi (e Ax)
Io(x) roAx :—schx )
V,(x) — AN LG A% Grax)
:_—scch
o mAx 1A
V() 2 A : U (xr 80
::sanx

Ref.

Figure 2-2. Equivalent circuit of an incremental length (Ax) of a

2n-layered distributed RC network.



If 1 is the total length of the section and Rz, C,, etc. are the total

resistance and capacitance of the respective layers of the section, then

k C :
a a .
ry Se— , ¢ T = , ete, YWhen Ax approaches zero in equation {(2.1), the
1 1

differential equations of the circuit result,

av,(x) R

..._i.._.... = _:a. Ia(x)
ox 1

v, (x) R

....E....... = - ..P. Ib(x)
ax 1

® L4 e E J L ] ® L 4 -« L * *

aVn(:’c) Rn
P = e e In(x)
ax 1
oI, (x) o C
2T .5 2 ’v’a(x) 4 x — Vb(x) (2.2)
dx 1 1
3T, (x) o C Ch
._P_..._=s—V(x)-s—i—i--—-vb(x)‘{-s-—vc(x}
3x 1 @ 1 1 1
3T, (x) C._ Cho1  Cn
ox 1 1
These egnations can be written in the matrix form
0 E
i 117 1Y
ox | X 1 I
— cs 9
B
wJ'b Ib
where v =]. sy L =1 ’
C"n_ L]




and

=/

i

o]

10

_Ro O hd . - o-

O Rp - +0

: : i (2.5)
0 0 - R
Tcq -Cq o 0 - -0 |

-Cq Cg+Cb  —Cp 0 -+ -0

0 -Cp Chp +C¢ ~Cc* ¢ ¢+ O

O o ~Ce C¥+Cd- * ¢ O . (205)
o o ) O+« ChoytCp

liote that R and C are syrmetriec, If the refersence directions for voltage

and current of Figurs 2-1 are used, thas solution of equation (2.3) as

given by Rertnolli (Ref, 1) in terms of terminal voltages ard currents is

whare

Vin Iin

cosh+/5HC (sg_)“'1 JSCR sinh V2
(2.6)
rR-1 sRC sinh +/sEC cosh -I>
Vig Lig
1, =|tb i =1, 2, and the 5 d
» I3 ={% R =1, 2, an 1@ square root anc

-

hypsrbolie functions of the matrices are as defined in Appendix A, It

is shown in Appendix B that equation (2.6) may be written in either the

form

or

where

]

(2.7)
(2.8)

b

j o]

T == , and 2 and Y are the 2nx2n matricss

b4
4

coth /SEC csch /SRG| [vEIc-1 R O
= (2,9)

csch o/SEG coth 4/siC 5] srnc—-1 R
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L34 Xy2 coth \AiC -csch ARC
and z = A = . (2.10)
I21 Ips -escha/siC  coth /skC :

Equations (2.9) and 2.10) are the desired forms of the solution of the

unifcrm multilayered distributed RC network.
'2.3 Cpen and Short Circuited Driving Foint Immittance Matrices

Ciserve that if tlhe outputs of the RC section are open circuited,

ie, Ip = O , then
0
Yy =211 Ly =cotavRRCVEEETY R I, .y (2.11)
and if the outputs are short circuited, i.e. Vo = 0 .
Ly =X44 Xy = .E-._i ‘\/E coth ~ERC EAR 0 (2.12)

-

Thess open eireult and short circult ralations of equations (2.11) and

(2.12) %111 be useful later,
2.4 Cascade Synthosis of Multi-layered RC Networks

Let several disiributed RC networks be cascaled as depicted in
Figure 2-3, To ensure uniform currsnt flow through each individual
network or section in the cascade assume a narrow conductive film across
the resistive films at the ends of each section of the cascaded network
as in the four-layered three section network of Figure 2-4, TFor the ith

natwork in the cascade let Ii represent the matrix

[ T Ty 0 o - .+ - 0
<21 ToxTez -T2z 0 - - - 0
I3 = Ry = 0 -732 732¥733 ~753 * ‘ * 0 (2.13)
| 0 0 ~Ti3 T43+Tzw, . . . 0
(.) o o . 0 « « .+ Thn-1+Tun




| |
' |
l l
T { T T { T T { open
or

o Ry ' 6-3141 M o4 | ™1 Ro > R4 | short
[ | circuit
| I
| l

In Li41 % L Y

Figure 2-3. m cascaded sections of a multi-layered RC network.

T
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Current Flow

VAR N Seeae
7 S A LLLL LT
€ =1 3

Narrow Conductive Films

Conductive layer

Figure 2-4. Four-layered three section cascaded network showing
narrow conductive films which ensure uniform current flow through

each section.
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where 711 = Raicai’ 7%1 = Rbicai’ 152 = Rbicbi’ etc. The first sub-
script on R and C denotes the layer index while the second subscript de-
notes which section in the cascade is under consideration. Later, a
change of vafiable will be made involving tanhq@fi. Since the variable
will have to be independent of the particular section under consideration,
tanhqug mist be the same for each section in the cascade., This requires
that zi=£j;l'which implies that corresponding RC products of all sections
are equal, Now write the equation for the input»admittance matrix of
the 1th section in terms of the input admittance matrix and the parameters
of theAi+1th section. The details are involved and are left to Appen-
dix B, the result is given in equation (2.14),
Y. (s) = "3*.1«/5; +1~/S—; - L341 tanh‘/S—")

X (L541 - Bi ﬂ V5% tanh /5T) (2.18)
If Y5(s) is multiplied by 1/v/5 an equation results which describes a
corresponding 1C circuit in the vr.plane.

F 8 = (1/ VL (s) = BLVERLE - F4q (V) tanndiE] ™

Z -
x [f141(/3) - B{1IE tanhJGE] (2.15)
Now make a change of variables similar +to one first suggested by Richards

(Ref, 28). Let

W = tanh VAL = (62¥FE L E) (2¥6T 4+ 3)~1 (2.16a)
or 02VET = (£ + W) (E - W)L ' (2.16b)
'}L_"_ (W) = j.‘f'if[R.“"iJ— - Yi+1(W) W] [Y1+1(W) - R, +1~I— WJ (2.17)

LC

Note that now the variable is the matrix W rather than the scalar s,

One form of Richard!s Theorem (Ref., 28) for the scalar case states

that if

y ¥i+41(8) = sysq(1) (2.18)
yi+1{1) = syi+1(s)

y1(s) = y3+1(1
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yi(s) iz positive real if yj,.4(s) is positive real and is of lower
degree than ys.q(s). Uyndrum (Ref. 32) descrited a synthesis procedure

for cascaded sections of the two-layered distributed RC network using
equation {2,18). He obtained an egquation for the driving point imped-

ance of a portion of the network in terms of the driving point impedance

and parameters of the preceding section, If Figure 2-3 is used as a diagram,
Wyndrun's equatioﬁ is W

V5T yiy - §§f1 tanh /ST

— o (2.19)
Ri+1 R?fi - Y541 tanh /ST

vy =

in which Ry and T are scalars. After multiplying by 1//5 and making

the substitution w = tanh +sr, this equation becomes

Ve

yiGw) =¥ Vi O ~TRe ¥ . (2.20)

te Ri+1 ‘f«zfm - yi+1(w) w

Zquation (2.20) is in the form of a lumped LC network in the w plane,
Thus it could be represented by a positive real ratio 6f polynomials
which have the characteristics of lumped LC networks. Wyndrum cbserved

~

that if

T

y341(1) = —
Le Ri+1

equation (2,20) is in the form of Richard's Theorem, equation (2.18).
Inspection of equation (2.17) reveals that in form 3t is identical to
equation (2,20), the difference being that in the fornmer all quantities
(including the variable W) are matrices while in the latter all gquanti.
ties are scalars. This leads one to suspect that a synthesis procedure
similar to Wyndrum's could be applied to multi-layered networks,

Observe that in the scalar case
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eZ‘\/ST ~1
w(s) = 1im tanh +/s7 = 1im — =1
—-® S—0 s—e~VST 41

and in the ratrix case application of Sylvester's Theorem leads to

W(s) = 1im tanh . /St “Z 1im tank +/sX; Zo(ry)
S—=® SsS—=-0 =1 s—-0

n .
=2 1+ Zo(nyg)
i=1

where the Ai's are the eigenvalues of the matrix T ard the Zo(\g)'s are

the constituent idempotents of T as defined in equation (A.10) of Appendix

A. The term Zo{\3) has the properties
n
2 Zo(r\y) =%
iy

so that

uis) = I,
s

Sirice equation (2,20) takes the form of a lumped LC network, -
+q JT(w2a3)
vilw) = L
Lc ];[ (.42-5‘303)

assurne that _Zi(_’x_'g'_) of equation (2,17) can be written in an analogcus fashilon,

I3 =W *1 ]‘[ W + a. z)n(wz +by 1) = By, (2.21)

and follow Wyndrum's lead bty identifying _I_’; +1\/f_l_' with Y, +1(§_).
[ -4
Unfortunately it can be seen from equation (2.21) that

Yi_-g.i( z) = 1+1( ) = k1+1 z 4 R1+1‘V

where k3i is a scalar, }’_éd_l(g_) is a scalar tirmes the unit matrix;

c
“13{_2‘,1«/:7:" is not even a diagonal matrix, much less a scalar matrix! This
trouble may be avoided by assuming a slightly different polynomial form

for Y3(W). Let
ic »
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A
L) =B (2.22)
where M is some yet to be deterrined constant matrix independent of 1.

Then define an~ther ¥ matrix as

6 = M-t i) = 25 (W) (2.23)
Thus Fi() = 1 { B 1~/ [“‘-»1 VI-Lipn ¥ aal-Suts

><[’l>l.,1 - Ris)-YT {] (2.24)
Now if (Bﬁ)“i\/:’[ is identified with 4.5_(_5_) one obtains
A . A
(R2)=' VT = 53(3) = B3 (@) = k3. (2.25)

Tre matrix ¥ must be chosen so as to diagonalize the lsft side of equaztion
(2.25)., Thus solving for M one arrives at

1

Ho=— 2 VT (2.26a)
ki
or G = 231 VT (2.265)

There is considerable freedom in the choice of M, but it mist be chosen

so that it is independent of the index i, For convenience choose I so

that %3 = 1/Ray. Then

~1/Rai 0 e o o 0 |
- -1 /= . 0 1/BRpy - - - 0
M= Raj_ Ry VT = Rai . . b1 . VT, (2.272)
0 0 « < « 1/Rpy

Let ry = Rbi/Rai, re = RCi/Rai, ete. so that

1 0O = -0
0 1/r, ¢+ 0 |

M=]- P . VT=uJT (2.27b)
o 0 . oi/rn | :
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By substituting the matrices X and C given by eguations (2.4) and (2.5)

into the equaticn

and equating corresponding components, it can be shown that the ry ,

etc, are the sare for each network section, i.e. by = Tp

J
Tas = Te s ete.  Thus MY is independent of the section index as required

and squation (2,25) becomes

A 1
LiE =y E== . (2.28)
Fay
Tow eguation (2,24) can be written in the form
-1
TG = E-Yy g U Ti4q - l.  (2.29)
Ragsq | Faset Rageq

2.5 The Synthesis Procedure

This synthesis procedure will yield the width of each section to

within an arbitrary constant., The starting point is a prescribed matrix

function of the form
Y. (s) =H 5T {tc.nh [(tann V5?2 + a}__} ’
X H [(m,anh VETR + bj;] 1}“1 (2.30)
where H; bj, aj are positive constants, bi‘:ai < bi+1' n=ia or n=r#l, and
p the number of sections in the cascade is equal to n¥u+l, First pre-

multiply Yp(s) by (1/V/§2§‘1.

1
N /
I (tanh/sT) = —yt Ip(s) =yt Bt Xp(s)

s

= H {ta;»n/ﬁ' H [-Stanhﬁ)z + as ] ﬁ (tarh ﬁz)z + b;-_E] '1}

the change of var;abln° indicated in equation (2.16a) obtaining

1

Next make

T G2 +a® JUGR + 631 # (2.31)
T = [g{j];[l(g +asE g;[lgg + b y2) .3
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ie

This is the form of the admittance matrix that will be synthesized,
Hote that since the only ratrices equatiocn (2.31) contains are the unit
matrix and W, all of the factors cormmute with respect to rultiplication.
Also the functional form of (2,31) is disomorphic to a positive real
quotient of rational polynomials. Richard's Theorem, equation (2,18),
can be written in the matrix form | |
T3 = Y344(2) [}'.14»1 W) - K Z.i+1(.5.)] [15-4,1(2) -4 Ii+1(‘i)] .
(2.32)
Equation (2.32) is not to be confused with the matrix forms of Eichard's
equation usually found in the literature (Ref. 15,20) which use the
Lanlace transform variable s as the independent variable, The variable
of equation (2.32) is the matrix W. Richard's Theorem assumes that
lipni(ﬂ) will be of lower degree than ip(y) if equation (2.32) is ap-
plied to (2.31) to find gp_i(ﬁ). Successive applications of (2.32) to

(2.31) will eventually lead to an equation of either the form

L@ =X W » (2.33)
or ths form
T =k wl (2.34)

Eguation (2.33) may be identified with the open circuited RC section of
equation (2.11) while (2.34) is the short circuited section givsn by
(2.12). That this identification is valid may be shown by applying tﬁe
transTormations used to obtainAﬁn(g) to aquations (2.11) and (2.12), Thus

1

A : 1y / -1 -1
Y (*f) S vcoth 5T sX "R' >
Y, = 1 tanh +ex =Y
1 ' -1 oo
= == /5T By Ry +/sT tanh 5T
Ry |
1
o (2.35)
- ‘
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1

and ::fisc<_z) = -; _1_;7"1 :‘1'1 Vst coth sT
! 1
hal

The next step is to caleulate the Ryz's from equation (2.28), i.e.

B, = 1/ki. To complete the synthesis procedure observe from Figure 2.5

1
- P | (2.37)

and consequently

fa Ky .
ho,

For ease of construction the thickness h and the conductivity P or

(2.38)

Wi =

permittivity € of a given layer should be the same for each section,
The restriction that TC,B be identical for each section has previocusly
been stated., Therefore
’TBB"-'— Reay (:313:1 = Raj ch
Pals = €g4"s _ Pats SBT3
hpa w3 h‘B hpq V3 b{B

or 11 = 1j
showing that the length of each section is also constant, From this it
can be sasen that the ternm Pal/h?a in eguation (2.338) is a constant and

may be arbitrarily selected,

2.6 Additional Comments

Application of this synthesis procedure assumes that equation (2.30)
is the starting poizi't. - It applies to any such 2n layered neiwork with

’n greater than zero, In the next chapter a method will be discussed for
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caleulating the components cf the ratrix T from the hizh and low frequency
asymptotes of either the desired short circuit admittance parameters or
the voltage transfer functions,
One more analogy may be made to Wyndrum's work. Recall that
tanh /5T = (e2V5X _ 1) (e2V/ST 4 )7 (2.39)
If this is substituted into egquation (2,30), one obtains after simplifi.

cation an eguation of the forn

by

in which‘g, Aj, and Bj are scalar constants, n=m or n=m+i, p=nin+i, and
Aj and B, are subject to the conditions
-2 < By < Ay < Bj+1< 2. (2.51)

The derivation of relation (2,41) is straight forward and cores from the
restriction in egquation (2.30) that 0< bj < aj < bj+1< W, A4s this is
conpletely analogous to the case where all quantities in (2.40) are
one.~.by~orne matrices (scalars the reader is referred to Theorem VI, page
L7 of reference 32 for the proof.

The network resulting from this synthesis technique is of the type
shown in Figure 2.4, with 2ll connection leads located on the left side,
The right hand ports are either open circuited or short circuited
daperding on whether the final application of Richard'!s egquation leads
Lo equation (2.233) or equation (2.34) ard, as a result, on whether the

+1 oxponent of the starting equation (relation (2,30) or (2.40}) is

positive or negative respectively,



2.7 Examples

Example 2,1: Synthesize the network function

__YB(S) = 3¥,/5T tanh ./sE(tanhz JET + 4F) (tanh?',/?sz -+ 2_3_)“1.
Solvticn: TFirst obtain the § admittance matrix by prermltiplying by
1/V5 21 and making the change of variables of equation (2.16a),

A 1 ‘.1
T3() = — ¥t Tq(s) = /T ! 1 (s)
3 3 tanh s/s_1;=ﬂ 3

tanh /st =W
= 2 + 4T) (42 + 23)-1,
A
Mowr _‘{3 mst te evaluated at W = X and Richard's equaticn in the fornm of

relation (2,22) should be applied,

%@ =2E +13) E+28)1 = 5% emikg =
o) = 53 [3‘;{(};{?— +hI) (W2 +2E)-1 - W . 5_33]

x[5Z - u - 2?4 6z) @+ 271 !
= 107(12 + ) (372 4+ 102)-1 (2 + x)-1
= 107(3% + 10x)~1

Repeat this process until the variable W is of degree one,

.
—

A . 10 10
Yo(E) = 10(3X + 10X)-1 = — X and k, = —
=== 13 13
A 10 T 10
Iy(W) = — I [100(3W? + 10 )% -+ — X
13 13
10 4
x[-—- W 100(W2 4 10_5_)-1] 1 .
13
3
T e W . (202‘;’2)
13
~ 3
Yl(_i_) = I ard ¥4 =

P>
W

o

Wi w
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By egquation (2.38)

Wo = 5
3
hPa
10 O, 1
WZ-—-—
13 hPa
3 ) 1
Wy = e =
1
13 hp,y

ard comraring equation (2.42) with (2.33) it can be scen that the final

section is open circuited,

Ixanple 2.2 Staft with equation (2.40) and for a three section cascaded
natwork with the end sz2ction open eircuited, find the valves of the Aj's
and Bj's in terms of the wxdths of the sections,
Solution: Tiis is to be a three section cascaded network so n=m=1 and
there is only one A and one 3, The open circuit specification reguires
that #1 in equation (2.40) be positive, The network equation then is
Y4(s) 3311"\/;-_?_ (ez‘/;‘.'.-") (e’“/;‘f-»Ae?E z)
X(e2 V5T 4 ) (*VEE 4 3 o 2VEE _:-I_)'.'1 (2.43)

To get this into the Torm of equation (2.31) substitute (2,1€}) into

(2.43) and premltiply by (1/¢§2§:

00 = — it G rvmEy (@ @2 A @t - g
x [z )2 g.;_) Bz (23071 + g |
=7 104 [:(2 + (2+A)_1§] {:(2-8)3_{2 + (2+3)_:£_]"1 (2.44)

Rapeated application of Richand's eyuation, 1.e. equation (2.32), will

Jead to

A N
¥5(2) =HZ
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A
A =3 2(A-B)
Y (= = *
=28/ =
4 - (A-B)

H(A-B) S 2-A
¥,(2) = z.
b - (A-B) 243

Therefore

k3 =f (2.45a)
"~

. H(A-B) _ A-B (2155

2 k- (aB - (A-B) P
A

k1 = 2(a-2) A = k2 i:f‘. . (2.45c)
h . (A<B) 24B 243

The simultaneous solution of equations (2.45b) and (2. %“5¢) for A and 3

vields

2 I kalkocks) + ko{kodky)
Lo~ A | pNB2TAYL/

2 ltﬂ(}«:?..k ) - o (k4 )
2 2721
R = [ ]. (2.’4‘6‘0)
(t(l't‘ 2 \k2+}*3)

Acceording to eguation (2,38),

R

'5'.’1 = ki .

Pa

but if this is substituted into equations (2.46) the constant term

( P 1)/n, cancels, yielding the required rssults,
a Py
2 Vw (womury ) + wol(wo4er, )
V27T Y2 .
A= [ E ] (2.47a)
(wi-m‘z) (\~J’2+W3)

2 Vwa (-, ) = vy Gasdary )

3 = [ 3 2 1 2 4 1 ] 9 I}r?b)

(vqtuy) (wz-i-wB )

These equations will be useful in the circuit design procedures of Chapter 5.
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3.0 ASTIPTCTIC REIATICHNSHIFS
3.1 Intrcduction

In the last chapter a procedure was developed to synthesize cascaded
maltiulayered'ie networks from a prescribed network admittance matrix.
The information actualily obtained from this procedurs is the width of
each section of the cascaded network., To make this s useful rrocedure,
more must be known about the relation between the prescribed network
admittance matrix and the physical network, Because of the complexity
of the mathematics for malti-layered distributed RC networks, this paper
will deal exclusively with the four-layered case from this point on,
Figure 3-1 shous a four-layersd network with the voltage, current, and
admittance notation that is used in the remainder of this dicsertaticn.
Asswiing a preﬁcribed network matrix, the eqgraticns for low and hizh
fraguency asymptotic propertiss of the short circuit adimittance parameters
arnd open circuit wvoltage transfer ratios are developed in this clizpter,

From these properties, the values of the corponents of the T umatrix can

T, -T3
- 11 11 (3.1)
-Tzy Tpq¥T2z
and it's eigenvalues, as calculated in Appendix C, are

1

)\1 = - (l1-75) (3.22)
2
1 3

AZ = . (’Fi'i",;) (3-20)
2

' where Tl = 7i1+7‘21+7éz (3-23)
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e 2
ard 755\/1:1 - 5Ty T2z (3.24)

Now apply Sylvester's Theorem to either equation (2.30) or (2.40). Define

the function of A\{ and XZ

’ g(tanlrzz Vsky+a )]tl
Fy = F(sA\y) = H+/sAy | tanh Q/‘s)\‘ X
]I(tavxh?‘\/ sA3+0 3 )J

(GZ‘VSXi - 1) g (61 )Xl + AJ e~ Vb)\l o+ 1)

( L‘\/OXI -+ 1\4(1”-1‘!)‘?1 I—E(G‘N‘;'h -+ Bj eZVSXi + 1)

(3.3)
where 1 = 1 or 2, Then the admittance matrix of a network composed of

m+nrtl cascaded four-layered network sections ray be written

1 1 ©

1(s) = 7 1o 1 [(xz_.:_ -T) F(sAp) = (ME - T) F(ahy)]

-aF{+bFp  -d(Fy-Fy)
- \ (3.%4)
~-A(Fp~F1) 2(vFq-aF,)
where the constants a, b, d, and »r ars defined in Appendix C., Appendix C

derives several rolationships amcng the constants a, b, d, z2nd r, as well

as their relationship to the components arid eigenvalues of T,
3.2 High Frequency Asyuptotes

As a first step toward studying the high frequency asymptotic
behavior consider the function F(s\y) of eguation (3.3), Either form
cculd be used, but the equations to be derived will be simpler if the
cred form is used, Ais lsl becomes extrenely large compared with 1/Xi,

A

Relation (3.5) holds whether the end section (secticn one or the section

l";

on the right in Figure 3-1) is'open or shert circuited, Let L ==k2/x1,

‘1.2, the ratio of the sigenvalues, Due to the prominence of the ternm

i1
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)\ i . -~ £
e in equation (3.3), normalize frequency (U such that |e~ViWM |z v

or -

77-‘-‘- 2w)\1 = 204\2/L. (2.6)
Then substitution of equation (3.5) into (3.4) gives the high frequency

asymptotes for the yi1, y12, and ¥22 parawmeters,

v _ .4 /m o [TE
yiiqg(ﬂn) = -a H Jg +b H 3.5

A
H
= = (ofl-a) /37 (3.7a)
V2
. ] . a /.ﬂL n
Yizoo(Jn) = Ygl(aﬂ) = mc(ﬂ J=— - H /3- )
A 2 2
dH
=- 7 V-1V (3.70)
NZ]
Gy = o (b ﬁﬁ 3/7’:)
J2 5N = - - - a J -
Zw J » > -
A
H
= —= (o-a/L) V7 (3.7¢)
2 ,
Tefine G as the voltage gainsuch that
Va2 | ~¥12
G1z = = = —
Vi |12=0 Y22 v (3.82)
v -¥12
Y2 |;y=0 Y12 (3.8b)

Substitution of equation (3.,7) together with the values of a, b, d, r,

and L given in Appendix C ylelds the high frequency asymptotes for gain,

) Vi -1 Tz (3.90)
C12p(im) =d r = 3.5
120087 | b - =L 7é1+ﬂéz+v7217§2
awL -1) 1 -
- (3.90b)

G. (3q) = -
2100 : bli-— a 14 22/ 11
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Pqiaticons (3.7) and (3.9) show that as frequency becowes largs the leg
the short cireuit admittance pararetsrs increaszss at the

rate of 12 ¢b per decade czusing both voltage gains to appreach a constant

at high frejuency. This behavior is indspendent of the termination that

2.

might be applied to the rizht hand terminals of the cascads,
3.3 Low Frequency Asymptotes

Two separate cases must be cocnsidersd when finding the low freguency

Lo}

2symnptotes of the short circuilt admittance parameters, The case where
the right end section of the network of Figure 2-1 is open civcuited will
be considered fTirst, and after that, the case where this section is

short circuited,
3.2.1 Right End Section Cpen Circuited

For the ecircuit configuration with the right end secltion open

ited the plus one exponent in squation (3.3) is retained so that

(o253 | 1)
) = H«/sA\3§

© A e smal (e2VEM 4 1)2(m-n)#l
0 (7Ver Aj e2VENS 4 1)
x j:i .
ﬁ (el‘z‘“;)\i + Bj 02 VSAL 4 1) |s—=small
J=1
. 2 n
ZTE
(125xi+( =7 1) + ., . .-1)H(2+Aj)
ZH A 3=1
Z(m-n)+l 2
2 (r-n) II(Z*Bj) s— 312l
jr1
(n-ml{j
! (244 2)
= = Y (sng) (3.10)

n
Il (2+Bj)
J=1

aad

Tho desired asymptotes may be found using equation 3., The results follow:
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m

3 p{n-m) 7T (2442)

Yaa (,}7)) = J=1 J
S11o -~ (tL-a) (3n) (3.11a)

2 (2'.‘33)

J:
& (nem) T
. § 4tmm) 11 (24 g)
Y120(3’7) = - J: . 3 d(T-1) (57m)

2 3{;.2*5-

L J
= ~y11o(jn) (3.11b)

& u<n—*>n(z+4 )
y220ldm = =1 (b-al) (37) (3.11c)
2 ]}K2+Bj) d
j:
d(L-1) Toy , :
G12 T2 e == 3.128.
© 'b-a.L Ei’i‘ 7-22

G21, =1 (3.12b)

equzl in magnitode, the

tance pararmeters have a

magn

3.3.2

seen that as

1iitude of the voltage gains have z3ro slope,

log magnitude plots of the

frequency becomes very small y14 and yq2 beccme

short circuit adnmit-

positive slope of 20 db per decads, and the log

Right End 3Section Short Circuited

In the short circuit case, -F3{5— 0) becomes

Fy,

i

I'\ -
e ¥

fing 22(m=n)+ 1 (2435)
| L

&N 2
i \/")\i . 2‘ ) +

’
\

-1 H (2th 3 )

Arppliying

this relation to eguation (3.%) cne obtains

driving point admittances

0
bo!

n
3EE(Z+33)

Jilo =

4n-m . ﬁ (2+Aj)
j=1

e s =

s— 0

(3.13)

for tho short circuit

(3.14a)
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Y110

i o=

Y220

(3.14b)
r

Because equaticn (3.13) indicates that Flo and on beth aprreach the
same constant at low frequency it must be used with caution., It may be
used to find the low-frequency asynptotes cf a term of the form pFl(w-*O) +
q Fow—0) so leng as this term does not vanish, Since in the case under
censideration Y2 is identically zero if (3.13) is used, a different
arproach is required for this parameter, Suppose the distributed network
is aprroximated by the lumped element pi section shown in Figurs 322,

Since C3 and Cy are short circuited they do not enter into the calculations,
The node voltage equations may be written LY inspection as
Ty = V4(Cys1iGqy) - V2Cys
Tp = AWy €y s 4 Va(Cys4Cps+Gr).

The transfer y rmarameters then are

Yiz = Y21 = =G4S

or with & = jw= .j17/(2 A1)
| Y12 = =37 X constant,

i.e. the maznitude of y4, is proportional to frequency, If one begins
with the equation

Y1z = =d(Fx-Fq) |
in which ¥4 is the evact form (equation (3.3) using the negative one
exponent) and replaces the exponentials by the first few terms of their

resvesctive Maclaurint's serins expansion, the result is

A n - *
B {d(r-1) jgh(d+Bj) n 4-83 z.Aj 1 .
VY125 = = Y —— - + - (i) [
yB" 2 _fl(ZfAj) ”Z+Bj 244y 3 (3.14¢c)
J=1

. The defivation of equation (3,1%c), though straight forward, is a long

dravn out process, and therefore the details are omitted from this discussien,
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Figure 3-2. Short circuited distributed network approximated as a
Jumped pi network.
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The open circult voltage gains are

M2 = —(L-1)) 3 __Z - ¥ —= - (3.15a)
2 j=1 2‘*‘3‘-] =1 2+Aj 3
~ Glzo
“elo 7 (3.155)
r
- 4 ) \ P 2 =
whare ~(-1) = T21 [(7;1+751+7521 M ~/k711+751+752> - b 117221 *
2 MUSEP | .

Bquations (3,14) and (3.15) show that at very low fregiencies 711 and yoo
epproach a constant value while y12 and the voltage gains are directly

Proporticnal to freguency.,
q 1] r 1 L4 L Y s - VA
3.4 Caleulation of the FMatrix T and the Constant H

The rasults of the previcus cecticns may be used to calculate
T4, T21, 0, and T if the asymptotic values of either the voltage gains
or the short circuit admitiance parameters sre specified, Since this is
a passive, resistive network, one would expect the asymptotic voltage
gains to be less than or egual to unity, and therefore
vid 2 |v1z| s|vz2] «
Equations (3,9) and (3.12) are especially useful because they are

simple functions of Tq4, 751, and 752. Since equations (3.1%a) and
(3.14b) contain the constents Aj and Bj they are of little value for the

prosent discussion,

There are four constants that azre to be determined Tyq, T2y, Top,
and ﬁ, and thus the number of quantities that can be chosen arbitrarily
is equal to four minus the nwiber of quantities specified, Since the
. normalized frequency 7 equals 2wAy the eigenvalue ki;'as will be shown

in Chapter 5, can be used as a fregquency scaling constant and therefore



should, if possible, be selected as one of the arbitrary constants,
2ecause the constant Q'does not appesr in the gain equations it is
arbitrary if only asymptotic gzins are specified, A look at the high

frequsney asynmptotic short circuit admittance (ys ) equations will show
that R tcgether with the normalized frequency m deternine the admittance
luevel, If any of the yij Paramcters are specified, the normalized
frequency for that value of y53 m ust also be specified, However, this

value of 7 is not one of the dsgrees of freedom because knowledge of it

does not give the value of the admittance level prodnct ﬁq.
3.5 Summary of Asymptctic Parameter Valuss

-

Table 2-1 surmierizes the asymptotic parameter values developed in

this chpater,

fude

impractical to attempt to write explicit ejuations ylelding

L+ 3

e
n
L]

9]

d for every possible set of specifications, three representa-

(b}

the 7; 's an

.
3
J

tive eoxamples are given. here,

Brample 3,1: TFind the components of the T ratrix and H if the gain Gpy
. at large frequency and the frequency scaling facter A3y are specified,
Solution: Since two quantities are specified, two may be selected arbitrar.

31y, Ieot Td bs salected arbitrarily. Then from (3.22)

and by (3,24)

(3.15)

Ty T2z



Low Freguency aAsymptotes

TR T e High Freguency Asymptotes
fight tnd Section Open Rignt End Section Short Circuited
ircuited
m n
nem [ (2+43) A I (2+33) A
113" -7:1 (bL-a){j7) ul;"m 3:1( ) —-g— (bv/L - a) Vg
I ) n 2+Aj
jgi\2+BJ) 51
~ (24B ) -
'l d(L-l) Jﬁi\ J)L: t,-Bj X; 2«4 A
=1 3 ](j 1)
m ,
YN 11 (2+h3) Y11 B

yzz _(JT] j=1 (b"ﬁl)(jq) "';— ,\/- (b - aﬁ)‘vj?}

I1(2+Bj) i} T2

=
Gyo(5m) T21 | (-1 0 2-5 5 245 _1_]( i) T2t

| Tt T2 | N T S T To1 *To2 +¥/M1T22
Gy (37) 1 Gypfr 1/(1 + Vol Ti4)
a=(Ty =T - Top - T,)/(2T,) d =Ty /T, T, =Ty + Tog + Tpp)2- b Ti1Too
b= (Tyy =Ty = Top *+ T,)/(27) r=Tot [Ty

Table 3-1. Low and high frequency asymptotic expressions for Y110 Y120 Yoo G12, and Gpq,

9¢
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From Table 3.1

1.6
7-22 I 21 (3.17)
[ e Li/

12 square root of the product of these last two equations Fields 7é2

wmhile the square root of their guotient yields 711. Then from equation

T29 =T - T4 - T22
and the components of T are determined. Since none of the yj3's were

A -
srecified, T is arbitrary.

Txomple 3,2: Given the asymptotic gain 612 at beth zerc and infinity

A .
caleulate the T matrix and H, TUse the configuration where the right end
section is open circuited,

Scluticen: By Table 3-1

Tz2 1-G12,
- o - -—c T e
T24 G124
and substituting this into the equaticn for Gy, gives
Tia 11 S EO
T1 o G120 C12 r

Choose Ay arbitrarily., Then with the aid of (3.2a)

A -
o1 = T, o i,
1 [ Ty+Toe+ 22J 7\ hy 22]
L Tt 21 1242
1 4 1 2 .S
L +H1c- (-: 4~1+c) e
r r
- wheres ¢ and r have just previously been calculated,
1
Finmally Ty =% Ty :
Ty = T21



38

A
and again d may te selecisd arbitrarily,

g e . =~ | - -y 3] - - R - K] .
sxawple 3,3: If ijiil, 'Jizl, ang lwzgl zre sSpecified 2zt some large

cwo gains for large freguency from eguations

\ and ] ”~
{(3.22) and (3.8b), Then by Table 3.1
2

',
i

P 3
L
ana
21
T~ T
Choose Ag and calculate Tyq with the aid of (2.2a).
A4
Ty = = _:.a
1 P 4T
= Ty 4 T142
Ekl
1%r+rc~q/fi+r+rc)4 - lre
Then 1_?1 = r’rq
-~ EANS
and To = rc?ii

1

b, and L may be determinced from eguaticns (2,10),

P
I

"irally the constents a,
6_11). and (C.23) ot Appendix C and n is specified, so by (3.7a)

1 bl v
(‘D«/f»-a)‘\/ n(n

-y



h,0 SYNTHESIS FROM A GRAPHICAL MAGNITUDE SPACIFICATION
4,1 TIntrodueticn

fhapter 2 described a procedure for finding the widths of the
individual sections of a cascaded EC network from a prescribed admit-
tance matrix the form of equation (2,40), Chapter 3 explained how to
calculate the T matrix and the constant § or equation (2,40) for a four-

Jayered network if the high or low frequency asymptotes of either the oren

e gain or short circuit admittance paramweters are specified,
To make use of this synthesis procedure a2 method is nceded to obtain the
“atrix function of equation (2.40) from spscifications. This chapter

attempts to deal with that problem,
L,2 Discussion of the Frocedure

In most synthesis problems the starting peint is a graphical response
specificaticn, often in the form of a log magnitude plot., The question
to be answered in this chapter is "How can an admittance matrix that is
realizable as a cascade of sections of a uniform rmulti-layered distributed
RC netwwork, i.,e, an equation of the form of equation (2.40), be obtained
from the log magnitude plots of a prescribed set of short circuit admittance
pafaméters." Because the Lulk of ths mathenatics rapidly becores prohibi-
tive as the number of resistance and dielectric layers increases, this

discnssion will again be limited to the exemplary four-layered RC network

9]

cascaée of the iype shown in Figure 2-4,

Since the circuit under consideration is a series of cascaded sections
with the right end section either opsan or short circuited, the left erd
driving peint admittance matrix is that of a two rort network., Supposs

log magnitude versus frequency plots are given for the shortAcircuit
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admittance paranmeters of some netusork that is to be synthesized, Thé
first step in symthesis is to obltain a realizable eguation that represants
he given plots to within a required degree of aceurscy. Since 20 log

ab = 20 log 2 + 20 log b, the usual prccedure {(Chapter @ of reference q0)
1s tc match a ccembination of log ragnituds curves from a catalogue of tue

actors allowved by the class of realizable funstions under consideration

i

to the given curve or curves, For example if a given curve is to be
+ +
realizad as a lurped LC network the allowed facters are s—1 and (52+a12)‘1

The desired eqxauion is obtzined by matching a combinaticn of ths cuives

&

20 1cglju4and + 20 10g|-‘2+312‘ to the given curve., In the case of

his dissertation it is known that the realizable equation belengs to

ot

the class of functicns given by squation (2.40), but the factors of this
ac2ation are matrices, not secalars., 'While it is possible to define by
Sylvester's Theorem the magnitude of 2 matrix such that

20 log Ly;] = 20 log H + 20 log !3[
whare A and B are mairix factors, this definition does not result in the
log magnitude of each facter of cach component of the eriginal matrix
(the ys 3 rarametors in this case). Sincs it has been supposed that the

leg megnitudes of the short circuit admittance rarameters (Y’j) are

specified, the usual procedure for the derivation of a realizable equation

rmust ke modified,

Equation (2.,40) will be veed as the starting peint for deriving
a procodure to obtain a realizable equation from the log maenlitude plots
of tﬁe short circuit adnittance parameters. The rrocedure develeps aqvations
*hat can be used to obtain a vlot of the log magnitude of the scalar
function F(s)\ ), defined in equation (3.3), from a plot of thes log magni-

tudes of the yi3 parameters, From this plot of F(s\1) an equation for this

function may be cbtained in the usual mannar, that is by fitting a sunm
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~ > .Y [ 3
f 1oz ragnitude plots of certain alloued facters, specifically SV

(e?V5N + 1), and («VEN 4+

]

0]

[

>
[V

A + 1), to the grarh of F(jw)\'i),
Cnce the scalar eqguaticn for F(s)\i) is obltained, the matrix equation
~ - NG R 2 3 . -

corresponding to (2,18} is obtai-ed rerely by replacing the scalar A

by the zatrix T,

L,3 ZDevelcpment of the Procedure

In Chapter 3 it was shown that

—aT{sX JOF{eh2) i [?(s)\g}-?(s)\i )]
. [ 1l

- [v {eXz2}-F{s)\q }} ..[br (eXg }-aF (Ao \]

in which the constants a, b, d, and r and the eigenvalues M and Ap are

¥(s) = (k1)

delined in Appendix C, Define Im }:(jw} to be the log ragritude of each
of the components of Y(jw), i.e.
] . 2= N ! : ) s N
. 20 *OSIJ11\Jw4 29 10&[]12(3w4
xrf f—
.L'T..!.(uw) - \ . ([4-2)
] e » .
20 log 5721(‘,00,] 20 Jog l-}"‘??,(-dwj
. Im F
_ 3 ™ Y S - ! X - -1 i . .
Lat Fy = 5\u“’>‘1/ = lrl c»“q?L whers Cbi = tan . _(Lv,3)
Ro By

Then from eguation (4.1),

A IFil (cosCI) + 3 sinCIDI) + b ‘le (cos CIDZ

1] = -ary + oFy| =
L(--a F1 cos @, + bJF,| cos @,)% + (- aley| sinCI31 + b|F,| sin®,) ]?
lerl‘z + bZ[FZI? - 2ab |7, | |F,] cos@, .cbl)] (%+.4a)
e = [-acm F)] = a[lrg]? + |r,)° - 2fry] IRl eosee, - 4’1)]% (t.4b)
o] =|2 (oFj-arp)| = 2 [0%|Fy|® + 2?[ral® - 2av e, |rp]cos@, @))%
(4.4c)

tH

If these equations are solved for ‘Filg and 'F‘Z‘ — the details are left

for Appendix C - squations (4,5) result.
2 2 2 2
'dz(alyiil + br ‘yzzl ) - ab(bﬁ)'ylzl

!Filz = B o) (4.5a)
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dz(b!ylilz + a rzlyzzlz) - ab(b«l—a)lylzlz

b, |

2|2 =

a®(lyy1]2 + r2[y,5|2) - (024a®)|yy,)?

‘Fd IFZI cos(cbz - @1) = oaZ

(4.5¢)
Fquatiocn (U;5a) 3s the equation to be used to obtain the log magnitude plot
of F(siy). Since Fy = F(jwN)
Lm F (s ) = 20 log |Fy]

Lm yq4/10 Lm ¥-5/10 Im y45/10
_ 2e10 M Tu P00 T2 )l ab(radto 12
= 10 log (4.6)
a%(vra) |

Fquations (%,.5b) and (4.5¢) are useful in deriving certain restricticns as

w7ill now be shown,

Recall that Fy = F(j'w)\.l) and choose soms freguency wj. Let

S
wi-1 = Wi — , (+.7)

A2
. . M .

Then Fo = F(.}‘wi_1>‘2) = F(Jws 5 Ap) = F(.’}"ix1) = Fq .

s=jwi-1 , 2 $=5wy
2
onr lF2(8=ju}i_1)l2 ~ lFi(Sf‘jwj_)l = 0,

From this relation and equations (4.52) and (4.55) one obtains
d” E?ly11(j~i)‘2 - bly11(jwi-1)\2] + a2 r? [élyzz(Jwi)\z - alypp(aws_1)|2
- ab(bia) Uyl2(j“’5.)lz - Iyiz(j“’i;i')‘z] =0 (4.8)
Since for any angle 8
-1 < cos@ £ 1
equation (4,5¢) suggests the inequality

P(y11]? + P2zl ?) - 0F4a2)|yy0]®

-lr4] 2l < a2 <|ry |r2l
or 0 < —;12( 'y11| 2 4 y2 Iyzzlz) - (b2+32)ly12|2 2 . ‘F1|2‘F2l2‘ (LL,9‘)
- 2d%
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Substitution of lFilZ anrd lFZIZ from sequations (4,5a) and (4.5b) into

(4.9) leads to _

wa® (o422 2 [y *[yi0| * - [dzqynlz“rz 22l *) - (b‘*a>2|3'12|2]2 2 0.
(4.10)

Fquations (4,8) and (4,10) place resitrictions on the relative magnitudes

of the specified parameters Yi1s Yq2» and yo5. If only two of the yij's

are given equation (4,8) could be used to find the third.

The method of deriviné the matrix function F(sT) described here is
theoretically correct but of questionable use in practice., The author
attempted to synthesize a notch filter by this method and discovered that
slight errors in constructing certain portions of the Inm F(SXI) curve could
cause large variations in the Yij parameters, Perhaps a certain class of
functions such as a notch filter or low-pass filter could be synthesized
by this method and then optimization techniques could be used to improve
the initial results, Certainly this procedure requires further study
bafore it will become a useful tool to the practicing engineer., For this
reason Chapter 5 is devoted to design techniques and a study of several

spacific types of network,



5.0 DESICGN OF POUR.LAYERED CASCADED DISTRIBUTED

RC NETWORKS
5.1 Introduction - Discussion of the Procedure

It was stated at the end of the last chapter that the approxima-
tion technique presented there is difficult to apply to a practical
engineering problem, For that reason Chapter 5 is devoted to design
procedures which can be applied to practical engineering problems,.

The circuit uvsed is the cascaded configuration of Figureé 2-4 and 3.1,
Appendix E discusses possibilities of selecting the circuit para-
meters., It shows that the parameter T of equation (2-40) changes the
admittance level of the network while the eigenvalue Ay of T may be
used to shift responses along the fregquency axis. Also isa, the con-
cstant determining the fesistivity of the top layer per unit width, is
arbitrary and can be chosen to give convenient values of resistivity of
the top layer, length of the individual sections, and the thickness of
the top layer. Since the designer will want to put practical limits
or "stops! on the ratios of the resistivities and permittivities of
the layers as well as on the ratios of the widths of the different
sections, it is convenient to choose r, ¢, and @3 as the network para-~
moters where r and ¢ are defined in equations (C.13) ard (C.1l4) and

A Vi |

Wy = — .

Yp

Specification of either the high or low frequency voltage gain may
remove a degree of freedom, leaving only one of the quantities r ard
¢ as an independent parameter. If both the low and high frequency

voltage gains are specified, as pérhaps in a low or high pass filter,

both r and ¢ are determined, restricting further the freedom of the
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designer.
The remainder of this chapter discusses in order notch filters,

low pass networks, and finally high pass networks.
5.2 Notch Filter

The approach to the design of a notch filter will be to look at
the high and low frequency asymptotic requirements, select the quan-
tities to be used as parameters and using convenient starting values
calculate an initial response curve. If the log magnitﬁde versus |
frequency response curve has no minimum or "dip,'" new starting values
must be selected. If there is a dip in the response curve, no matter
how slight, an iterative process may be used to optimize the network
by varying each undetermined parameter in turn until either further
perturbation of that parameter results in no improvement in the re-
spense curve or the value of the parameter reaches one of the limits
or "stops" predetermined by practical engineering considerations., A
digital computer is an invaluable aid for these iteralive computations,

A passive notch filter requires a gain of as near unity as pos-
sible at both low and high frequencies and a gain much less than one
at séme intermediate frequency. Table 3-1 shows that the low frequen-
cy asymptotic gain of the cascaded configuration with the right end
section short circuited approaches zero as frequency approaches zero
and thus this configuration is not useful as a notch filter. On the
other hand if the right end section is open circuited, Table 3-1
shows that the gain at low frequency is unity if the gain is taken
as the ratio V1/V2 with I1=0, i.e. port 2 éf Figure 3-1b is taken as

the input and port 1 is considered the output. This would be the
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logical configuration to use for a nétch filter. In this case speci-
fication of the low frequency gain és unity does not remove a degree
of freedom since G210 is unity and thus independent of all parameters.
Equation (3.9b) gives the high frequency gain for this configuration
as a function of 7iland 752, and from the definitions for r and ¢ it

can be seen that this is equivalent to

1
G21 = % - (5.1)

If r is selected as an independent variable parameter, equation (5.1)
may be solved for ¢ to obtain the permittivity ratio. A computer
program was written which would read the value of G2kD' the starting

values for r and the width ratios G&, and the stops for r, e, and

A
We

3+ 1t was decided that 0.01 and 100 would be physically feasible

minimum and maximum limits for r, ¢, and the width ratics (Ref. 3).
For a three section filter the constants A and B of equations (2.40)
were calculated in terms of the widths in Example 2.2 of Chapter 2.
To get A and B in terms of the width ratios, simply divide the numer-
ators and denominators of egquations (2.47a) and (2.47b) by w3. Fige
ure 5-1 gives an abbreviated flow chart of the computer program used.
First the minimum gain was found for the initial values, then one of
the widths was varied until the minimum possible gain was achieved.
Next the other width was varied, the first width optimized again and
the results tested for any improvement. This process was repeated
until both widths (for the three section case) rroduced optimum re-.
sults, Finally, the resistance ratio r was optimized in a similar
fashion, In the viecinity of the dip in the log magnitude response
curve double precision (16 digit) accuracy was necessary. Cne, two,

and three section networks with high freqency asymptotiec gains from
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Read in initial values for
r, wo, Wi, 02103, and stops

\

Calculate meximum gain

Perturb‘ﬁz

the results be
“improved by perturbing

Yes

Ferturdb Ql

WZ ?

Can
the resulls be
improved by perturbing

Yes

Perturb r

A

wy 7

Yes the results be

Jimproved by perturbing
. r ?

Print out points and plot
graphs for lm Gpq and phase

Figure 5-1. Flow chart for the computer program used to design a

three section distributed RC notch filter.
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-6 to -1 decibels and urder. no-load conditions were investigated in
this manner.

The results for one, two, and three section notch networks are
shown in the log magnitude and phase versus normalized frequency plots
of Figures 5-2 through 5-7. If these networks are used in the feed-
back loop of an active device, bardpass characteristics result. It
can be seen from Figures 5-2, 5-4, and 5-6 that the one section net-
work is useless as a notch filter, the two section network has a
minimun gain of about =42 db if -6 db gain at high frequencies can be
tolerated, snd the corresponding minimum for the three section net-
work is almost 6 db below that. If the equation for circuit Q of a
syrmetrical gain characteristic (Ref. 33) is used, i.e.

- Tk
T BW

where‘77is the normalized resonant freguency and BEW the bandwidth,

Q

curve 1 of the three section network of Figure 5.6 has a Q of about

10 if the network is used in a bandpass configuration. For all three

networks investigated, best results occurred when the resistance ratio

was set as low as possible and the width ratios as high as possible.
Figures 5-8 and 5-9 show the log magnitude and phase plots of a

two section notch network with G2100 equal to -6 db under various

loads. The notch characteristics are improved slightly by a loed,

but the low freguency end of the curve is severely degraded. In-

stead of having a loﬁ frequency gain of one (or zero db) the loaded

network has a low freguency gain with a 20 db per decade slope.
5.3 Low Pass Network

The response characteristic of a low pass network requires that
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the voltage gain be near unity at low frequency ard much less than unity
at high frequency. Looking at the asymptotic gain relationships of
Table 3-1 on page 36, one can see that the cascaded distributed network
with an end section open ecircuited would make the best low Prass network,
Also port 2 and port 1 of Figure 3-1 (page 27) should be used as input
and output respectively. The equations of Table 3-1 which apply to this
case show that this configuration has a voltage gain of unity at low
frequency and 1/(1+/rc) at high frequencies. Note that this is the same
configuration used for the notch network. The low pass network was in-
vestigated for one, two, and three section cascaded networks while keep-
ing the width, resistance, and capacitance ratios within the same bounds
as before, that is, between 0,01 and 100,

Figures 5-10 through 5-17 show the results. These plots were
made by a digital computer, plotter combihation using frequency in-
cremencs of Z&log77=0.i. The sharp changes of slope in the immediate
vicinity of the minimums or dips of the curves of Figures 5-12 and
5-16 are not network characteristics, but are caused rather by the
size of the ffequenqy increments chosen'for plotting and the fact
that the plotter drew straight lines between(plotted points, In all
of the Figures four different sets of values of r and ¢ were chosen
which would give a high frequency attenuation of 20 db., These sets
of r and ¢ were spaced from minirum to maximum r (or maximum to min-
irmm ¢ respectively) keeping both r and ¢ within the bounds of 0.01
and 100, A fifth r and ¢ set was chosen which would make the high
frequency gain as small as possible within the permitted range of r
and ¢. This asymptotic gain turned out to be about -40 db, In an

attempt to make the magnitude of the slope of the log magnitude re-
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sponse curves as great as possible at intermediate frequencies, the
width fatio of the two\;nd three secltion networks was chosen to be
the same that produced the best notch filter of Section 5.2. This
width ratio, Q1=$é=100, produced a slope of -20 db per decade (Figures
5-12 and 5-16). As radical changes in phase occurred at the point on
these curves where the gain dips are extreme (Figures 5-13 and 5-17) a
two section low pass network was investigated in whichlthe width ratio
was Q1=0.h34. Figures 5-14 and 5-15 show that this caused a more
moderate phase characteristic, but the slope of the gain curve at in-
termediate frequencies was reduced to -10 db per decade,

The networks of Figures 5-10 and 5-14 are also suitable for use
as phase lag compensators. The response characteristics for the typ-
ical lumped eclement phase lag compensator with voltage gain Gc(s) =
(1+4st)/(14sa7), @>1, are shown in Figure 5-18 (Ref. 5, pp 295 and'éih).
If Gy is the nncompensated open loop voltage gain of a unity feedback
syétem, a properly designed lag componsator has the effect of rotating
the phasor of the polar plot of G,(j®) clockwise in the vieinity of
the -1,0 point and reducing the gain at large frequencies while leav- .
ing the low frequency end of the plot unchanged. Because all of the
curves of Figures 15-10 and 15-14 meet these requirements, the net-

works they represent can be used as lag compensators.

5,4 High Pass Network

A passive high pass network should have a gain much less than
unity at low frequencies and as near unity as possible at high frequen-
cles. A search of the asymptotic gain equations of Table 3-1 on page

36 shows that for the case of the cascaded networks with the right end
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short ecircuited the gain at low frequency is directly proportional to
frequency regardless of which port is used as input or output. Thus
r and c should be selected so that the high frequency asymptotes are
near unity. Several possible combinations of r and c were investiga-
ted for the one section case first using port 1 as the input, then
using port 2 as the input, with the remaining port open circuited in
both cases. The results are shown in Figures 5-19 through 5-22. As
expected, the low frequency portion of each curve has a positive
slope of 20 db per decade. Using port 1 as input Figure 5-19 shows
that the best results are obtained with r=100 and ¢=0.01. With port
2 as input the best results occufkfor r=c=,01, For these two cases
the attenuation at high frequencies is less than two tenths of a deci-
bel.

Another type of high pass network, especially suited for use
as a coupling network can be constructed by adding a resistive load
to an all pass network. The design procedure for the all pass net-
work is alm&st identical to that of the notch filter, the only dif-
ference being that the computer program should minimize instead of
maximize the notch. The same network configurétion can be used for
the all pass coupling network as for the notch filter, i.e. the right
end section of the cascaded network is open circuited and terminals
2-2' of Figure 3-1 on page 27 are used as the input. A one section
and a two section network were investigated with high frequency gains
G21a3 of ~-0.5 to -0.1 decibels., Since the results were best for
small ¢ and improved as r became lower, the case with r and c both
at the lower stop limits (0.01) was also investigated. These results

are shown in the graphs of Figures 5-23 through 5-26, Because the
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results of the two section network were not significantly better
than those of the one section (0,0058 db improvement), a three sec-
tion network was not investigated. The unloaded one section cou-
pling network could be made to have a minimum gain of -0,0983 db
with phase distortion less than 0.3 degrees. Figures 5-27 and 5-28
show the log magnitude and phass plots respectively for the best of
the one section networks of Figures 5-23 and 5-24, but under loaded
conditions. Curve #1 of these Figures corresponds to the no load
case, Under loaded conditions the gain equation becomes

Gy = ~yi2 (5.2)

. 4.
where yy is the load admitiii;Z% The equations in the first column
of Table 3-1 show that at low frequency y,, and y;3 are both propor-
tional to frequency. Therefore if yj is a purely resistive load, the
demoninator of equation (5.2) will be approximately equal to yj at low
frequensy making Gp{ proportional to frequency. Thus as is shown by

Figure 5-27, if the all pass network works into a finite load it be-

comes a high pass network.
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6.0 SUGGESTIONS FOR FURTHER RESEARCH

The results of this dissertation suggest several arcas for further
research on synthesis problems. First recall that the RC product matrix
was chosen from the high and low frequency asymptotie regquirements of
prescribed short circuit admittance parameters. Are therse other ways
of choosing the components of this matrix? Are there methods of graph-
ically obtaining a realizable matrix equation, equation (2,30) or (2.40),
from prescribed short circuit admittance parameters that are more ac-
curate than the method presented in Chapter 47 Note that the high
frequency asymptotic equations, third column of Table 3-1 on page 36,
are independent of Aj and Bj and thus are also independent of the
ridths of the individuai sections of the cascade. Do these equations
also apply to any four-layered distributed parsmeter EC network re=-
gardless of the geometric taper of the widths? Only left end connections
of tge cascadéd network were investigated leaving all the terminals of
the right end section either open circuited or short circuited. What
kind“of network responses could be obtained if some but not all layers
are shorht circunited? Can a synthesis procedure be developed using
connections at both ends of the cascaded network as ports? It was as-
suﬁed in this dissertation that the RC product matrix T was the same
for each section in the cascade, ard thus that each section is the same
length, A synthesis procedure which does not rcgquire this restriction
would allow morse Ifreedon of design. This leads naturally into the
prcblen of synthesis using some morphology other than the cascade of
unifori secticns, or porhaps even cynithesis of completely arbitrarily

tapered networks. -

Saveral analysis problems also remain to be solved., One dimen-



sicnal current flow was assumed in each section of the cascaded net~
work. VWhat happens to the network responses if current flows in two
dimensions as it would if the narrow conductive strips of Figure 2-4

on pacge 13 were removed, In the transmission line equations in Chapter
2, inductance was assumed nsgligible compared to resistance, Woculd this
type of network be useful if inductidnce btecame a significant parameter?
Could it have some usc at frequencies so high that the device begins

to act as a lossy waveguide?

Construction of distributed pzrameter RC networks suggests a few
riore interesting problems. Suppose a device of this type is construct-
ed using monolithic techniques with the resistive layers being com-
posed of either n-type or p-type materials and the dielectric is formed
by the depletion layer between adjacent n-type and p-type materials,

If a d-c reverse bias is applied to the p-n junction, the width of the
depletion lsyer chahges, changing the capacitance, Can a change in the
d-¢ bias alter the resonant frequency of a notch filter or, perhaps,
change the notch filter to an entirely different type of circuit such
as a low pass filter? The capacitance inherent at a back-~biased p-n
junction is the same principle used for varactors, Perhaps some
rather exotic properties could be obtained by using monolithic dis-
tributed RC networks of various morrhologies as varactors in parsmetric

anplifier or nmltiplier configuratiqns.
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APPENDIX A. MATRIX FUNCTICNS AND IDENTITIRS

While books on matrix theory are plentiful, they gené;ally either
deal with theory useful mostly for numerical analysis or else with the
very sophisticated mathematical peculiarities of matrices in regard to
set theory. Therefore the author fesels that definitions of certain matri:
functions much used in this dissertation are in order. This appendix
pfovides these definitions as well as some matrix identities that are
useful in the proofs of Chapter 2 and Appendix B.

The 1iterature (Ref. 7, 18) defines a quantity e&, in which Ais
a matrix, by the same infinite series expansion used to define the scalar

guantity e2, i.e.

) : a
A=z aal 2,1 34... = I 5 A1

where X is the identity matrix. If and only if the matrices A and B cormm

with respect to multiplication

ed eB= B glh= B, | | (A.2)
This can be shown by multiplying the series expansions of the two terms
on the left of equation (A.2) and identifying the product term by term
with the series on the right. Thus

ed o A=13,
The matrix hyperbolic functions sinh A and cosh A may be defined by serie
expansions analogous to the power series expansions of the corresponding
scalar functions sinh a and cosh a; however, it is more convenient to
use exponential definitions. So the definitions

sinh A =4(ed - e-2) (a.3)

cosh A =2(ed + ¢-4) (4.4)

are chosen. In general the product of two matrix functions of A, e.g. .P(

and Q(A), commute since éach is expressible as a polynomial (or series)
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in A. Thus the remaining matrix hyperbolic functions may be defined in

terms of sinh A and cosh A.

sech A = (coth A)-1 (a.5)
csch A = (sinh A)-1 (4.6)
tanh A = sinh 4 sech A = sech A sinh A (A.7)

coth A =cosh A csch A

csch A cosh A (A.8)
The definitions given by equations (A.3) to (A.8) can be shown to be
compatible with Sylvester's Theorem,

Sylvester's Theorem, a very powerful tool of matrix theory, states
that 1f the n eigenvalues Ay of a matrix A are all distinct and if P(A)

is any polynomial in A (including infinite series), then

P = 3 POM) ZoGy) (5.9)
n n
vhere Zo(N\) = Jgi(xji-é)/j%()‘j-)\i)' (A.10)
The quantity Zo has the properties
Zo(Xg)Zo(A3) = Zo(X1)84 5 (a.11)
and § Zo(N;) = £ : (A.12)
i=1 '

where 83 j 1s the well known Kronecker delta,
Another function that is used throughout this dissertation is the
1
square root of a wmatrix. This function is defined as a matrix A? such

1
that A2 g%‘ = A and is most simply expressed by Sylvester's Theorem. Thus
n

n

\/.:Q; = Z :"/Xi ()«i_i_ - _._A_)/ g()\j-xi) (A.13)
i=1 JH J

in which the 2hs;igns of the various‘ﬁi's are independent of each other,

Several matrix identities are very useful throughout this dissertation

and will now be given in the form of a theorem.
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Theorem 1, Given (1.) A, B, and C are nxXn matrices

T

(2.) A= T and B=3B", 1.e. A ard B are symmetric
(3.) ¢c=4B
(4.) Sylvester's Theorem applies to the function P(C)
Then: 1.) A P(CT) = P(C) A or P(C) A is symmetric (a.14)
2.) Bl pcTy = p(c) B! or P(C) B~! 1s syrmetric (A.15)
30 BleT=vEla (A.16)

Proof: For the case where P(C) is a polynomial in C parts 1 and 2 are
obvious by inspection. The proofs given will apply also to functions
vhich can be expressed by Sylvester's Theorem but not by a polynomial,
e.g. /L.
Part 1.) Since the determinate of a matrix and its transpose are
identical, the eigenvalues of a matrix and its transpose are also
identical, From Sylvester?s Theorem
n . n n ’
A P(ET) = TPO0) A TTOVE - €D/ TTOg = 2y)-
i=1 Jfi S#

Consider the term A (M I - Q?).

AOE-CT) = (\A-ABA) = (qE-C) A
Reversing the order of A and (xig,- Q?) successively to each term in the
product ATIAE - €T) leads to [H(xj_z_ - g_)]g_ or

4 p(ch) ~[*§1Po\ ) H(x -0/ floy -2a= o A emo.

e \J Ji

Part 2.) As before apply Sylvester's Theorem.
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so g1 ]:[i(xji -ch =[ ﬁ(xj_i_ - QT)]g-i

J#L
and 51 peh) [ £ P00 TTOGE - 0/ TTOy - Ap]E ! = p(o) B
S 3=t A i

Q.E.D.

Part 3.) By equation (A.155
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AFPENDIX B. DERIVATION OF EQUATIONS (2.9), (2.10), AND (2.14)

B.1 Derivation of Equation (2.9)

it V4| |ecoth +/sRC (sc)-1 v/sCR sinh +/sCR Vo
= (B.1
Iy _R_‘1 +/sRC sinh +/sRC cosh v'sCR -Is )
find matrices Z and Y and that
V=z I
and L=xXY
hET 11
where V= and I = . Equation (B.1) may be written as the
Vv I :
.—2 =
two matrix equétioné
¥4 = cosh vsRC V5 - (sC)-1 /5CR sinh +/sCR I (B.2)
Iy = R~*+/sRC sinh +/SRC Vp - cosh +/sCR I,. (B.3)

If equation (B.3) is solved for ¥V, one obtains
V» = csch @@“1 _f_i_[_]_i_l + cosh-+/sCR 22]. (B.4)
If this is substituted into equation (B.2) there results
vy = coth/siC vsRC-1 R I
+ [coth@@‘i R cosh VsCR - (sC)~1 V&CR sinh ‘/59—-3]12

(38.5)
These two equations can be written
rcoth-\/s—g_é_ \/s__g—__"i R coth v/sRC vsRc~! R cosh \/-s—éi_;
i _(sC)-L /TR simn vaiR| |
2 csch v/SRC @-1 R ecsch @@'1 R cosh @J *2
) | (B.6)

which is of the form V = Z I, Since the geometry of the network undsr
consideration is symmetric, it would be natural to expect that Z31 = 255
and Zyp = Zoq. That this is in fact true will now be shown. Consider the
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Z55 term of equation (B.6).

Z55 = csch @@-1 R cosh v/sCR |
If R is identified with the matrix A and C with the matrix B of equation
(A.15), then

Zoo = csch@@‘i cosh@ R.

Matrices which are functions of a common matrix—in this csse RCe=commute

with respect to multiplicaticn so that

Zos = csch\/;_f}—.g cosh\/s-E~/;§.—_:'1 R
= cothvsRC vsRc~! R = 2,,.
The 245 term can be similarly reduced.

Z45 = coth @ src-1 R cosh @ - (sc)-1 \/sz_g sinh \/;C____—&
Application of equation (A.1l4) and (A.16) to R cosh@ and (sg)"i@
respectively leads to

Zyp = coth vsRC v/sRC~! cosh vsRC R - +SRC-! R sinh +&CR.
Again usiﬁg (A.14), this time to R sinh V/sCR ylelds
= coth \/s——B_Q_ cosh @ SB._C__-I R - sB_Q"i sinh  sRC
= (cosh? v/sRC - sinh? \/;_B—_a_) (sinh v/sRC)=1 @"1 R.
An appeal. to the exponential definitions of cosh@ ard sinh@

Jo

242

shows that the scalar hyperbolic identity also applies to the corresponding

matrix case, i.e.
cosh® A - sinh? A = Z,
Thus Zy, = csch V'sRC s_{l__C_“" R = 251

and equation (B.6) becomes

Ve coth v'sRC csch v sRC \/SB_C_-i R o] I4
v, csch v/SRC coth V/SRC | | © Jerct r| | L,
Q.E.D.

(B.7)
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B.2 PDerivation of Equation (2.10)

In order to get the form I = Y V one could either invert Z of equation
(B.7) or go bsck to equations (B.2) and (B.3). Choosing the latter
approach and solving (B.2) for I, results in

I> = esch @ @"1 sC [—V1 + cosh V/sRC }[2] . (B.8)
Substitute this into (B.3).
Iy = coth\/s—il—_‘_& J;C—J__:"l sCVy - [coth@ @'1 sC cosh@
- R~1 V/sRC sinh Js_f_g_] Vo (B.9)

Equations (B.9) and (B.8) can be written as the single matrix equation

[ coth ~/'sCR s/s_Q_l_l_"i sC - coth V/sCR «/s_C_i_i_'i sC cosh «/sRC
L1 KA1
= ' - _13_'1 v sRC sinh v/sRC
I, - i v,
~ cschv/'sCR sQ__"i sC esch VsCR v/ sCR™" sC cosh +/sRC
(B.10)

This equation is of the form I = Y V, but again it should be expected

from symmetry that Y44 = ¥,5 and Yy = ¥54. Apply equation (A.14) to Yoo,
. Yop = csch@ @"1 sC cosh«/s__PT_(_Z_
= csch@ s_(_l_li'i’cosh@ sC
= coth@ Js_—gji sC = Y11
Repeated application of equation (A.1§) and use of (A.16) on Y4, leads to
Y45 = coth V/sCR @”1 sC cosh«/gl_i—:C_ - _13_'1 @ sinh v/SRC
= coth@ @'1 cosh@ sC - @'1 sC sinhwfs_F_-_E \
= (cosh? V/sCR - sinh? +/sCR) csch v/sCR @'1 sC
= csch@ @'1 sC = ~1o4

Thus equation (B.10) takes the form

I1 coth vsCR -csch v sCR \/sg_B_.'i sC 0 \'s
1,| |-csen/scR cothvsCR| |0 scr-1 sc v

(8.11)
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Each of the components of this equation fits the form P(sCR) scr-! sc.
By equation (A,18) and (A.15) '
P(sCR) v/sC&™1 sC = P(sCR) R-1 VRC = R~! /SR P(sRe).

Thus equation (B.11) can be written

Iy r~1/sRC 0 coth +/sRC -csch VsRE | [ v,
i, 0 r-1/sRC -csch /SEC  coth/SRC | | ¥,
(B.12)

If one multiplies Y by Z the expected 2n X 2n identity matrix results,

HH
o

z2i=1%

S
i

9 Z
B.3 Derivation of Equation (2.14)

Derive the.driving point admittance matrix of the ilh section of the
cascaded RC network of Figure 2-3 in terms of the driving point admittance
matrix and the parameters of the i+i'h section, i.e. derive oquation (2,14),
%(2) = 55l /5T (Rghy oL - Yyoy tanh VoD (ZyyyRE+vET tanho).

(B.13)
Equation (B.13) can be derived more easily if the following theorem is
fifst proved,
Theorem 2. If Xi is the driving point admittance matrix of the ith section
of a cascaded multi-layered distributed RC network, P(T) is a matrix poly-
nomial in T, T = RC, and R and C are symmetrical matrices, then
Py = Y5 PCD). (B.14)

The proof of Theorem 2 will be proof by induction., First it will be
shown that if (B.14) holds for i=j, it also holds for i=j1. Then it will
be shown that (B.14) holds for i=1.

Proof: Assume P(TT)YJ = XJPC[),‘fhen find Ys,q in terms of’id. Reference

to Figure B-1 shows that



Li+1 1,
G e
+ T = Ri+1Ci41 +
Vit ] Rivt Vi X3

Yi41

Figure B-1. A block diagram of the i+lth section of a cascaded RC
network. ’
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3+1 = YJ+1 il (B.‘15)
~Ls=XY5 V5. (B.16)

With Figures 2-3 and B-1 in mind egvation 2.10 can be written

L1 R-IET 9] [eotn /5T ~esch VET| (Vi1
I3 o} Rl VeT| |-esen VST cotnv/sT | | v, |.

B.17)
By substitution of (B,16) into (B.17) one obtains
Iivg = 3+1*/_ (coth V6T V341 - esch /5T V)
“YsVy = R «/_. -csch\/&y_.ﬁi + coshv/sT Kj)’

Elimination of V4 from these two equations gives

\/_sj—‘[coth«/sf- esch «/S?(B_Eii VST coth V5T + Ys5)” -1
| i xRJl‘i %s_fcsch \/ST].Y.j-kl
5}%1 VsT [coth VST - cech VT sech VsT(E
+ sich VST VATt Rypq Xy sech Vo)1) vy
or I.j“.’i = 3}31 V sT(tanh /ST + cosh v&T JsT! Rspq Ly sech/sT)
X(E + sivh V5T VT Rjpq L sech /aD~1
If 'equation (B.14) holds for i=j then _
Rjr1 L sech /ST = Rjr1 sech YSTL; = sech /ST Ryyq Xj,
the last equality coming from equation (A.14), Thus
1, AT (tanh 5T 4 /ST =1 Ryyy X5) (2 + tanh VET VET Byt )™t
(B.18)

I
Ly1 = B3

Ij«yi =
and P(IT);f_j+1 = P(IT)E}%j, v sT{tarh v/sT + «/s:f'l Ripq Zj)
x(Z + tanh /5T V52! Rug 15071
= -&3‘?’.1 ~/ SI Ttanhv SI P(I) + sg_‘-i B—J‘*‘l P(’]:T)}'_j]

| [f + tanh VT szt Rjeq .Y_j] -1
- | T+ St
= B-j"’l sT _tanh J*i -Y-j]

x[_I_ + tanh +/sT \/sf'l Ris1 Ij]"l P(T)
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or P(I) L3n1 = Lgny PD.
Thus if (B,14) holds for i=j it also holds for i=j1. New if it holds
for i=1 the theorem will be proved. If the output _of the i=1 section
is open circuited, its driving point admittance is given by equation
(2.11), or

Yy = (211)" = R VET tanh VoL
Then P(TT) Yy = P(TT) _@'1'1 VST tanh V5T = R~} VT tanh V5T PCT) = Yy PCT)
If the output of the i=1 section is short circuited, its driving point
admittance is given by equation (2.12), or

Yy = X3 = R]" /T coth voT
Then POT) Yy = PIT) Rel V/oT coth V& = ™1 V/ET coth vsT P(T) = 1y P(T)
and the theorem is proved.

Fquation (B.13) can now be derived from equation (B.15), (B.16),
and (B.17) with the help of Theorem 2; however, since the theoren is
true, equation (B.18) holds for zny wvalue of j and offers a shorter
derivation., Solving (B.18) for Y; leads to

Yivt ¥ L5341 tanh\/;f N B Yy = ?:I-%i V5T tanh ‘*/;'.—L:"’Ii
(2 - Lyyy tarh VAT VAT Ryu) ™ Wast - Bipy AT tanh ¥5T)

g =
- -1 -1 r
or Y = B—;ii b’_]:(glii VvsT - I344 tanh VvsT) (zi+1 - Ry VST tanh@

Q.E.D,
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AFPFENDIX C. DERIVATION OF EIGENVALUES AND THE CONSTANTS a, b, 4, and r.
C.1 Derivation and Discussion of Eigenvalues

For the four-layered distributed RC network of Chapter 3 the matrix T
is defined as

r=|lT T
T T2 ¥
where TgB8 = Ray Cﬁi = Raj CBJ- and a, B =a, b and each of the Tqg's are

real and positive. Let

”3. = ’111 + T21 ‘l"’rzz (c.1)
and T =Ty - Toq - Toze (c.2)

The eigenvalues are obtained from the determinant equation
“)‘f‘- - I“ =32 -X| + Ty Top =0
2
T2 - T- % Ty Ta
2

or A\ = .
If one lets
To =+/Ti% - 4 Ty Toz =\/é12 + 4 Ty T2q (c.3)
then A\ = 2T - To) (c.4)
Ay =3T3 + Tg), (c.5)
and Ay = Ay = HT +Ta) = 20Ty - T) = To (c.6)

From {(C.3) it can be seen that 'I’o is alwa:,fs real and greater than zero, i.e,
To =«/ﬁ‘12 +4 T, T21> 0 (c.7)
Equation (C-3) suggests that
TP -4 T T2 = 77 =P b Ty Ty
or. A ’I'lz > Toz > ’/}\‘12.

.and’ since T, is greater than zero

TH>T, > }?‘1‘3 0 ' | | (Q.B,)
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With inequality (C.8) in mind, inspection of equaticrs (C.4) and (C.5)

shows that

(C.9)

Hence both of the eigenvalues are positive and they are distinct.

C.2 Definition and DPiscussion of the Constants a, b, 4, r, and ¢

The quantities a, b, d, and r, used for convenience starting in

Chapter 3, are defined as

A2 - Tig
8 = -
To
A - Ty
b= -
T
T
da= _il
- T
R, BRpla Tpy
PE = = —
R, RaCqy T11

Another useful definition is

Tn addition to (C.10) "a" may also be written
..)\2 + 'Til i

(M1-T21~Tr2-T5)
To 2T,

3

a =

M- (T21+T22)

= — (T1-T5-2T21-2Tiy) =
2To To

Similarly it can be shown that
A2 - (T214T22)
To

b

(c.10)

(c.11)

(c.1é)

(C.13)

(Cc.14)

. (C.15)

(C.16)
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Rslationships among the qusntities a, b, d, and r ars useful in the
manipulation of many of the equations of Chapter 3. To begin with, |
subtract equation (C.11) from (C,10),
M-Ty - Ty A=

T A

Substituting (C.12) into (C.11) and (C.10) and solving for the eigenvalues

Dug = -

1 (C.17)

leads to ‘
| (a-b) T, (C.18)
(a-a)T; . (c.19)

S

i

and | )\?

-

With the 2id of inequality (C.8), bounds may be put on "a'",
A A
ot Ty -Ti-Trehy - ] -7

a = =

To 2To 2T, 27,
A A
nl -l
< =
2T
A A
T-T ~Fl-T =T -T.
Also a = 1 _°2 h.'! 252 o,_=-1.
2T, 2T, 2T,
Therefore -1<a<0, (c.20)

Since b = 1 4+ a relation (C.20) may be written
~141 < atl < O#1
or 0<b«<i ' (Cc.21)
From equation (C.18) and inequality (C.9)
0 <Xy = @Db)T
or d > b. (c.22)
Cne more relation that is useful can be obtained by letting L = )*2/)‘1
and solving the ratié of equation (C.19) to (C.18) for d.
A2 4. | bl-a

— e d =

Ay d-b L-1

(C.23)

i

L



99
APPENDIX D. DERIVATION CF EQUATION (4.5)
Starting with equations (4.4) derive equations (4,5), From equation
(L‘.L}c),

[psz]*

dz © (Dﬂl)

2
Substitute this into equations (4.%a) and (4.4b) and remember that b-a = 1,

lyi}lz - 82!F1,2 . bz[lez _ ab([F1l2 + [lez _ IZQZ'z )

i O N A Ly P (v.2)

2
Al - 2l + el <l ffz )
ab dz
=olr1]? - afra|? + 5 [y1ol? ®-

From equation (D.2)
el + 2 frsal® - o

a

,F1IZ - (D.2)

Substitute this into (D.3) and solve for !lez.
b _ ab

rzlyzz‘z = S [%!lezr*‘EE ‘Y12l2 - 'Y11‘2:]?3IF2]2 *’;g ly12|2

da? (blyy4)|? +a rzlyzzlz) - ab(b+a)ly12]2

a2 (b+a)

(D.5)

2 _
lei =

Substituting (D.5) into (D.B) results in
' 2 . 2
l ‘? b[dz(b !yiilz-f a rl 'YZZI ) - a.o(b—!ra)‘yiz! ]
Fi - -

a d2(b+a)
|711]2

. o 134477

+ = IYiZl 2.
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_ dz(alylilg 4+ b rzlyzzlz) - ab(bd-a)lylzlz .6)
) d2(b+a) (D

Substitution of (D.6) and (D.5) into (D.3) leads to
dz(!yn‘z + rz‘yzziz) - (b2+32)‘y12|2

!Fl‘ {le cos(P 2 -¢1) = v

(D.7?)
Equations (D.6), (D.5), and (D,7) are equations (4.5a, b, and ¢)

respectively.
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AFPENDIX E, DISCUSSICH CF NETWORK PARAMETERS

In the design of any network the engineer must decide what are the
parameters, how many independent parameters or degrees of freedom he has
to work with, and which parameteré are then dependent, and which if any
have ﬁo effect whatscevaer on the network response, This appendix discusses
these guestions as they apply to the design procedure of Chapter 5,

The general circuit equation for a distributed RC network with

p = n4m+l cascaded secticns, equation (2,40), i.e.

1) = f ¥ AF [(62/5_5 ; _}_)jfjl (?ufs}. + 8302Y5E + D

n
X [(32 Vst 4 3)2(m-n)+l I'g(eb"éz + By o5 4 iin

F (E.1)

has p+3 constants or parameters that require evaluating, Ty1. Toq1. T2z, i,

Aj (3=1,2,°°°°,m), and B (jﬁl,z;°°°-,n) for p+3 degrees of freedom of the

equation., Let

F’)‘:@ (2.2)
?Pa
c,1
and é% = :1- , @a=a2a, b, _ (E.3)

Then, looking at the physical device the degrees 6f freedom are pg, 3b. P
35, and the p widths for a total of pt4., Since the rhysical device has

one mora degree of freedom than the equation, one of the physical parameters
may be ;hosen completely arbitrarily, Let this be ﬁa so that the resisti-
vity, length, aﬁd thickness (p .1, and hPa respectively) may be sslected

by the engineer within the physical realizable range. Observe from
equation (2,40) or (3.3) and (3.%4) that the constant fl 35 a multiplicative
factor of each of the short circuit admittance parameters (yij's). Bacause

’ : A
of this, the network may be designed by initially ignoring H or setting it
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equal to unity before evaluating the other neiwork constants, After the
basic design, which consists of the selection of the other cirecuit constants,
is complete ﬁ may be adjusted to give the desired admittance level without
altering the network performance in any other way,

The normalized frequency 7 = Z“AI. will now be discussed, By refering
to the definition of Ay, T3, and T, of equation (C.4), (C.1), and (C.3)
it can be seen that multiplying )\1 by some factor q is tha same as milti-
pPlying Ty, Tp4, T22, and consequently T3 and Ty by the same factor,
Further, reference to the defining equations for a, b, and 4, equations
(C.10), (c.11), and (C.12), shows that multiplying M\{ by q leaves these
unchanged, and consequently by equation (3.4) the short circuit admittance
rarameters as functions of 7 are also unchanged. Thus rmltiplication of A
by the constant q leaves the plot of the network response unchanged in
shape but shifted along the frequency axis by a factor 1/q., Therefore in
the design procedure the value of XA should be selected at the same time

A
H is chosen, after the basic design is complete,

2v/sT

If equation (2.39) of Chapter 2 is solved for ¢ ~ and the result
substituted into (2.40) it can be seon that

Vel A
_Y';p(_:i_) =HZ%,

and by (2,.28)
N N
5@ =pE=HE.

Thus ?‘I = kp and recalling from Chapter 2 equation (2.38) that

A
vy = g =Py
Ppa

it can be seen that |
A A
-— — .u
Vo —Pa kp "PaH (E.4)
‘so that the actual value of the widths of the pth section is determined

: : A
bryvﬁa and ﬁ. In“ other words the selection of H as a parameter replaces Wp
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as a degree of freedon,

It has just been shown that ﬁ;. ﬁ, and Ay do not affect the shape of tt
response plot and are therefore to be selected after the basic design is
completed, Substracting these quantities from the original p+# degrees
of freedom leaves p+l parameters to be discussed, In design work the engine
1s concerned with practical considerations such as how great a width ratio
can te obtained between two sections and what are the maximunm practical
'1imits to the ratios of permittivity or resistivity between layers, Since
wp 1s determined by  and Pa, it is convenient to use w, as a reference
and di#ide the width of each saction by s and choose these ratios as

parareters, giving p-1 more parameters, Therefore let

Wy E == i=1, 2, *°°°, p"1° (EoS)
“p
Sincs for the four layered case
”n
Ry o/ Po
i Pla B (E.6)

Chi _ goWi _gb (5.7)

and C = e T e =
Cai €;w1 é: '

r and ¢ would be convenient cholices as the remaining two degrees of freedom,

If an asymptotic gain is specified such as Gypg Or Gpyp ©f cquations (3.9=
and (3,9b), only one of the quantities r and c remains an independent
parameter,

After all of tha @i’s, r, c, ﬁ, N\, and B, are selected, thoe physical

parameters way be calculated, The widths are calculated from equations

(E.1) and (E,5).

=Q (E.8)

Wp = Fg H
. and w3 .‘:Gi‘wpo i- 102a Tty P—l. _ (3.9)
(E.10)

Also, from (E.G.) ﬁb = r,pa.
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From equations {C,1), (C.3), and (C.b4)

AN =3 [("—11”721”—22) - T+ B3 )° - ’”‘117'22] .

Pivision of each side of this equation by Tyq leads to

2Ny
7i1 ) (14r4re) - \/(I;r+rc)2 - bre E.11)
and since Ty4 = Ray Cu4 ==f,5& ga'
2 - "Zﬂﬁa (E.12)
and gb = c ga (F.13)

Equations (£.8) through (E,13) constitute the firal design phase,
that of determining the magnitudes of the constants of the real, physical

nztwork,
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