
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

1970

A coordinate oriented algorithm for the traveling salesman A coordinate oriented algorithm for the traveling salesman

problem problem

Joseph Sidney Greene

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Mathematics Commons

Department: Mathematics and Statistics Department: Mathematics and Statistics

Recommended Citation Recommended Citation
Greene, Joseph Sidney, "A coordinate oriented algorithm for the traveling salesman problem" (1970).
Doctoral Dissertations. 2100.
https://scholarsmine.mst.edu/doctoral_dissertations/2100

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229271495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2100?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A COORDINATE ORIENTED ALGORITHM FOR THE TRAVELING SALESMAN PROBLEM

BY

JOSEPH SIDNEY GREENE, SR., 1932

A DISSERTA'riON

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

1970

. J
(' 2 L L i : 1 L· L [.lf '

/
l

'~

~ £t:a1d.Z!:~it

ABSTRACT

The traveling salesman problem may be stated as follows:

"A salesman is required to visit each of n given cities once and

only once, starting from any city and returning to the original

place of departure. What route should be chosen in order to

minimize the total distance traveled?''

ii

A new algorithm is developed which gives a good approximation

to the solution for a large number of cities using reasonable computer

time and which will converge to the exact solution if allowed to

continue.

This algorithm is a branch and bound technique which utilizes

the distance between cities in its bounding procedure. The book­

keeping scheme for the algorithm is such that only the partial

solution along with those routes currently being checked need be

retained in memory. The branching technique requires that only

one row of the distance matrix be in memory at any time.

The algorithm is demonstrated using a four-city problem and

a formal statement is given. Computational results from computer

implementation of the algorithm are given, including three realistic

problems from the printed circuit industry.

ACKNOWLEDGEMENTS

First, the author wishes to express his sincere appreciation

to Dr. A. K. Rigler of the Computer Science Department and to

Dr. Billy E. Gillett, Chairman of the Computer Science Department

for their help and guidance through the preparation of this

dissertation.

The author also wishes to thank Professor Ralph E. Lee and

the staff of the University of Missouri-Rolla Computer Center for

their ever present help in testing the algorithm developed in this

dissertation as well as other algorithms. Two former students,

Steven N. Nau and Paula Graves also saved the author many hours

of waiting and did much of the tedious testing.

iii

Also, the author is indebted to the National Science

Foundation for their financial support during the course of his

study. In addition the author wishes to thank his associates of

the Advanced Circuitry Division of Litton Precision Products for

their cooperation and technical support. To Mrs. Charlotte Beazley

goes a special thanks for her exceptional skill and patience in

typing this manuscript.

Finally to my wife Joanne, son Joey, and daughter Julie go

a very special expression of gratitude for their encouragement,

patience, understanding, and sacrifices during the years of study.

TABLE OF CONTENTS

ABSTRACT . . . •

ACKNOWLEDGEMENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES . . .

I. INTRODUCTION

A.
B.
c.
D.

Statement of the Problem
History •
A New Application .
An Overview

II. REVIEW OF THE LITERATURE

III.

A. Formulations of the Problem
B. Gomory's Cutting Plane Method .
C. Land and Doig's Branch and Bound
D. The Algorithm of Balas
E. Little's Branch and Bound
F. Local Optimal Algorithms

THE ALGORITHM . . • .

A.
B.
c.

D.
E.
F.

The Problem
Definitions and Notation
Statement of Theorems

1. Theorem 1
2. Theorem 2

Description of the Algorithm
The Algorithm
Proofs of Theorems

1. Theorem 1
2 . Theorem 2 .

IV. DISCUSSION

A. Preliminaries .
B. An Example
C. Shortest Route
D. Comments

iv

Page

ii

. iii

vi

vii

1

1
1
2
4

5

5
8

10
12
14
17

18

18
18
20
20
20
20
23
27
27
28

30

30
32
37
38

V. COMPUTATIONAL EXPERIENCE •.

A.
B.
c.
D.
E.
F.
G.

Test Problems . . •
Random 10-City Problems
Bound Tests
Convergence Time Tests • .
Circuit Board Problems .
Economic Considerations
Shortest Route Results .

VI. CONCLUSION ..

A.
B.
c.

APPENDIX A

BIBLIOGRAPHY

VITA

Summary
Results
Suggestions for Further Research .

Coordinates for Sample Problems

40

40
42
45

• • 46
48
49
51

. 52

. 52

. 53
54

. . 56

56

. . . 59

. . 61

v

vi

LIST OF ILLUSTRATIONS

Figure Page

1 . Flow Di agra.m • • . • • • . . . 26

Plates

1. Semple Circuit Board . . • • . • • • . . . • 4 a

Table

I.

II.

III.

IV.

v.

VI.

VII.

VIII.

LIST OF TABLES

Comparison with Lin's Algorithm for Test Problems .

Results of Further Iterations for Test Problems •

Distance Comparisons .

Time Comparisons • • .

Number of Solutions Explicitly Enumerated

Time Vs. The Number of Cities

Matrix in Storage Vs. Distance Generated .

Printed Circuit Problems ...

vii

Page

41

42

43

44

45

46

47

48

1

I. INTRODUCTION

A. Statement of the Problem

The traveling salesman problem is easy to state: A salesman

starting in one city must visit each of n-1 other cities once and

only once and return to the originating city. What should be the

order of the visits if the salesman wishes to minimize the distance

traveled? Considering distance as symmetric we see that there are

(n-1)!/2 possible tours~ one (or more) of which must give the minimum

distance.

h History

The origin of the traveling salesman problem is attributed by

Dantzig (~) to a seminar talk given by Hassler Whitney at Princeton

in 1934.* In 1937 Merrill Flood, who also credits Whitney with the

origin of the problem, applied the problem to school bus routing

(~). The problem is closelY related to problems considered by

Hamilton in which he tried to determine the number of different

tours possible over a specified network (J). In their survey paper

(~)~Bellmore and Nemhauser credit Flood with early stimulation of

research in the problem. The Rand Corporation offered a prize for

any significant theorem relating to the problem, but in 1956 Flood

reports that no award had been made. In 1962 a soap company offered

* All numbers (~) refer to the bibliography while the numbers (a~b)

refer to equations.

prizes of up to $10,000.00 for identifYing the best route in a

particular 33-city problem (~). This gave national recognition

to the problem and motivated further research in the area.

The survey of the problem by Bellmore and Nemhauser lists 10

theorems related to the problem. These same authors list several

methods of solution to the problem and give the computational

experience when available. Some of these methods will be explored

in greater detail below.

C. A New Application

2

The circuit board industry furnished motivation for making further

study of the traveling salesman problem. Circuit boards (many of which

are used in computers) usually have numerous holes, sometimes more

than one thousand. These holes are drilled by a numerically con­

trolled printed circuit board drilling machine. In this context

the holes in the circuit board correspond to cities, and the move-

ment of the drill head above the boards to travel or distance. We

might point out that movement can be made only in the horizontal

or vertical direction. This would correspond to travel by city

blocks in a routing problem, for example, a taxicab routing problem.

A fringe benefit of this application is that data is readily available

on paper tape. That is, the data is given in the form of points on

a rectangular coordinate system and the order of the points represents

a feasible solution. This solution is obtained manually by a well

trained technician and m~ be nearly optimal. This is an instance

where one generation of computers is used to help control cost on

computers of future generations.

In the industry several circuit boards are placed on a panel

for the manufacturing process, (see Plate 1). In order to find the

shortest route through a board we need a shortest route algorithm.

To find the shortest path connecting all boards a traveling sales­

man algorithm is needed.

Thus it is the purpose of this dissertation to develop an

algorithm suitable for application in the circuit board industry.

This dictated the following requirements:

1. That all constraints be generated by the program.

2. That the algorithm can be stopped at any time giving

a "current best solution."

3. That the algorithm make rapid progress toward convergence

early in the computational stages.

3

4. That the algorithm converge to the exact solution if

computer time is available and if circumstances warrant the

expenditure.

5. That the algorithm be readily usable either as a traveling

salesman or shortest route algorithm.

D. An Overview

In Chapter II a review of the literature including several

formulations of the problem is given. The emphasis is placed on

those procedures which satisfY at least one criterion stated above.

Chapter III contains the development of a new coordinate

oriented traveling salesman algorithm. Two new theorems are pre­

sented which play a major role in the development of the algorithm.

A dis~ussion of how the algorithm differs from those ~resented

in Chapter II is given in Chapter IV. The chapter concludes with

an example to illustrate how the algorithm is applied.

Computational results involving the algorithm are presented

4

in Chapter V. In particular~ five problems were constructed for

testing purposes. These problems were constructed so that the points

fell on a rectangle or circle so the minimums were readily available.

Also sixteen problems were randomly generated for comparison pur­

poses. The chapter concludes with three live problems from the

printed circuit industry and economic considerations indicating

when to use the algorithm.

Chapter VI contains the conclusions and suggestions for further

study.

~
~
~
~
~
~
~
~

•s
n~
'

8
5

7
n

'
8

5
7

3
3

'
8

5
7

3
3

'
8

5
7

3
3

'
8

5
7

3
3

'
8

5
7

3
3

'
8

5
7

3
3

\

~
~
~
~
~
~
~
~

8
5

7
3

3
'

8
5

7
3

3
\

8
5

7
3

3
'

8
s
7

3
3

\
8

5
7

3
3

'
8

57
3"

!>
'

8
57

3"
!>

'
8

57
3'

!>
'

d
\
\
d
l
}
d
l
}
d
l
}
d
,
d
l
}
d
l
}
d
~

E

~
~
~
~
~
~
~
~
~
~
"
'

e
s
7

3
3

\
8

s7
3"

!>
'

8
s7

3'
!>

'
8

5
7

3
3

\
8

5
7

3
3

'
8

5
7

3
3

'
8

5
7

3
3

'
8

5
7

3
3

'
H

d\
\ d

l}
 d

l}
 d

'
dl

}
d

'
dl

}
dl

}
~
~
~
~
~
~
~
~
~

•5
7

3
3

\
8

5
7

3
3

'
8

5
7

3
3

'
8

5
7

3
3

\
8

5
7

3
3

\
8

5
7

3
3

\
8

5
7

3
3

'
8

s7
3

3
\

d
~
 d

l}
 d

l}
 d

'
d\

\ d
l}

 d
'
d
~

~
~
~
~
~
~
~
~
~
~
~

8
5

7
3

3
\

8
5

7
3

3
'

8
S

7
3

3
'

8
s7

3
3

\
8

s7
3

3
\

8
s
n

"
!l

'
8

5
7

3
3

'
8

5
7

3
3

'

~

p;

II. REVIEW OF THE LITERATURE

All available literature concerning the traveling salesman

problem was examined; however, emphasis was placed on those

methods which satisfied at least one of the criteria as stated

in the introduction.

After stating several formulations of the problem some of

the more successful known algorithms are presented.

A. Formulations of the Problem

The problem can be formulated in terms of finding a

permutation of the first n natural numbers such as;

P = (i1 , i2, ... , in) which minimizes the quantity

n-1
t di + d· where the ~q designate real

k=l k,ik+l 1 n, il

numbers corresponding to the distance between city p and city q.

In this context the problem may or may not be symmetric, that is

dpq may or may not equal dqp•

5

The distances between each city can be written in matrix form

by defining dii = 0 for all i = 1, ... , n, and D = (dij). Then one

can describe the problem in terms of the distance matrix D as follows:

Determine xij which minimizes

F = EEdijxij subject to
ij

Xij = 0,1

= LX.j = 1, and for any subset of the . l.
l.

first n natural numbers P = {i1 , i 2 , •.. , ir} we have

Xi i +Xi i + Xl.•3i4 + ••• + Xl.• l.•
1 2 2 3 r 1

< r for r < n
< n for r = n.

(1)

(2)

(3)

(4)

If xij = 1 then one travels from city i to city j and if Xij = 0

one does not. The constraints (II,3) guarantee that each city is

visited once and only once while (II,4) eliminates subtours. Re-

call that each city is to be visited before returning to the orig-

inating city. A subtour is also called a cycle. It is this last

constraint which distinguishes the traveling salesman problem from

the assignment problem. Note that the latter formulation is a

0,1 integer programming problem also.

6

The formulation of Tucker (~) was selected as the most promising

because the number of constraints necessary is less than the number

required for the above formulations. In addition, it is possible

to generate the constraints that prevent cycling as they are needed.

If dij again represents the distance from city i to city j Tucker's

formulation can be stated thus:

minimize n
l<i ; j<n

subject to

n
l: Xij = 1

i=l
i;Ej

n

1: xij = 1
j=l
j;Ei

7

(j = 1, ... , n) (5)

(i = 1, ... , n) (6)

(7)

Again the equations represented by (II,5), and (II,6) guarantee

that each city is visited once and only once. The equations repre-

sented by (II,7) is an unusual way to prevent cycling. Here the

u's represent arbitrary real numbers whose sole function is to

prevent cycling. The proof that this is true is also given in the

above cited article (6).

This formulation also requires fewer variables than the above

formulation. However the article states that a four-city problem

required 13 constraints and 9 variables. In general ann-city

problem requires n2 + n inequalities and n2 variables. These can

be reduced somewhat by a judicious choice of the slack variables.

From the point of view of graph theory, we may consider the

n cities as vertices of a nondirected complete graph, and the entries

dij of the distance matrix real numbers assigned to links Xij connecting

city ito city j. A permutation P = (i1 , i 2 , .•• , in) representing

a tour may be considered as a collection of n links x· · x· ·
~1~2, ~2~3.

... ' x· · forming a Hamiltonian circuit, and the quantity C =
~n~l

• • . + d· · the cost associated with the tour .
~n~l

Finally there is the matrix representation of the problem.

By this we mean that a distance matrix D is defined as in the

integer programming formulation. However, this is the entire

formulation in that the necessary constraints are implicit in the

method of transforming the distance matrix. That is, there are

algorithms that make only transformations on the distance matrix.

This will be called the matrix formulation.

B. Gomo;r's Cutting Plane Method

Gomory's method (l) uses the integer programming formulation

of the problem. First the linear programming problem

subject to

max F = ~~ dijxij
O~i1j<n

n
~ xij = 1 (j = 1, ... , n)

i=O
i1j

n
~ xij = 1 (i = 1, .•. , n)

j=O
i1j

(8)

(9)

(10)

8

9

(11)

is formulated.

Gomory's algorithm is best suited for a maximization problem,

hence the appropriate changes of signs are necessary in equation

(II,8). The number of cities is represented by n.

Now the simplex algorithm is used to solve this problem. If

all xij = 0, or 1 the algorithm terminates. Otherwise there is a

non-integer xij in the solution. Thus in the final simplex tableau

we have a row such as

oxil + ··· + xij + ··· + oxin + Ylxi,n+l + ··• + ykxi,n+k = t.

Here the xi,n+l to xi,n+k represent slack and surplus variables.

Hence we read

xij = t and xim = 0 for m > n

where t is not an integer. A new constraint is now generated in

the form

Y'lxin + ··· + Y'kxi,n+k ~ t' (12)

where Y'm and t' are the smallest nonnegative numbers congruent to

Ym and t respectively.

This new constraint is annexed to the constraints of the last

tableau and this new problem is solved using the dual simplex algorithm.

The dual algorithm is used because the simplex terminating criterion

has been satisfied. Also, when the new constraint is added the new

10

tableau is in the desired form for the dual algorithm. The process

continues until all variables are integers.

In his paper Gomory shows that equations of the form (II,l2)

form a necessary condition that will prevail when all variables

have their optimum integer values. In order to accelerate conver­

gence Gomory suggests that the variable with the largest fractional

part be used to generate the new constraint.

A computer code for this algorithm is available in both FORTRAN

and ALGOL (~).

This algorithm was discarded because the number of constraints

became prohibitive even for small (five-city) problems. This is

due in part to the fact that the algorithm utilizes both the simplex

and dual simplex techniques. Because the dual is used each equation

(II,3) must be replaced by two inequalities.

C. Land and Doig' s Branch and Bound

Land and Doig's algorithm (~) also utilizes the integer pro­

gramming formulation of the problem. First the relaxed problem

(II,8), (II,9), (II,lO), and (II,ll) is solved by the simplex tech­

nique. This solution gives a bound for an all integer solution.

If this solution contains a non-integer xij say

Xij = t,

two new problems are generated. The first is obtained by annexing

to the original problem given by (II,8), (II,9), (II,lO), and (II,ll)

11

the additional constraint

xij = [t].*

This is called branch 1. The second problem is obtained by annexing

to the original problem the additional constraint

xij = [t] + 1.

This is called branch 2.

These 2 problems are solved using the simplex algorithm. The

resulting objective function values constitute bounds on all further

constrained problems in their respective classes. If the solution

with the largest value of objective function has a non-integer

value another branch is made. That is 2 additional problems are

generated. Suppose branch 1 has the maximum objective function and

xkl = s

where s is not an integer. To the original equations for branch 1

we annex

xkl = [sl

to obtain branch 3. To obtain branch 4

xkl = [s] + 1

is annexed to branch 1. Again these two problems are solved using

the simplex technique given additional bounds. We now have three

terminal branches, 2, 3, and 4. Of these, the one with maximum

*[a] indicates the entier function.

12

objective function value is chosen. If this branch contains a non-

integer value two new branches are constructed as above. This

process is continued until the maximum terminal branch has all

integer values.

This algorithm worked well for three and four-city problems.

However, it was found that auxiliary storage* was necessary for

larger problems. This increased convergence time significantly.

For a five-city problem computer time was excessive. The code we

used is found in McMillan (10).

D. The Algorithm of Balas

For Balas' algorithm (11), (12) the integer programming formu-

lation is also used. The problem is written for the algorithm as

minimize

subject to

nn
F = 1:1: d.j xij

i=l~j=i

n
-1 + Exij = 0 (j = 1, ... , n)

i=l
i~j

n
-1 + Exij = 0 (i = 1, ... , n)

j=l

* Auxiliary storage is defined as magnetic tape or magnetic disk

storage.

That is, each constraint is written in the form of> 0. The

integer constraints are not needed as this is a 0-1 algorithm.

13

The algorithm begins with the infeasible solution (0, ... , 0).

The constraints are evaluated for this solution and a measure of

infeasibleness is made. This measure is the sum of the amount

less than zero over all violated constraints. This is called the

"test measure."

Next the variable which reduces the test measure by the largest

amount is set to 1. This partial solution is also checked for

infeasibility. If the solution is infeasible the above process

is repeated and a new variable is set to 1. This process continues

until a feasible solution is obtained.

Now no other variable would be raised to 1 as this would in­

crease the value of the objective function. A backtracking scheme

begins at this point.

Consider a solution vector of the form

(1, 0, 0, 1, 1, ... , 0, 1)

which gives a value for the objective function, say z. The variable

which was last entered into the solution is set "free." That is,

its value is set to 0, but for testing and bookkeeping purposes it

is given the value -1 (underlined). Now the test measure for this

partial solution is made and the free variable with maximum increase

becomes a candidate for entry into the solution.

If the value of the partial solution, that is ~E dij xij where

l4

xij = l, plus the distance dij associated with the new candidate

is less than z the candidate is entered into the solution. Z is

set to the value of the objective function for this solution and

backtracking continues. Backtracking continues by underlining the

last variables which was set to l and which has not yet been under­

lined.

When all elements in the original solution have been underlined

the algorithm terminates as all solutions have been enumerated either

explicitly or implicitly.

The algorithm was revised somewhat to fit the problem at hand.

For example, the first feasible solution was generated from the

order in which the points were read. The code used for testing can

be found in McMillan (lO).

This algorithm worked well for three and four city problems,

but again computer time was excessive for larger problems. For

example, a five-city problem took five minutes on the IBM-360/50.

Revision of the code and algorithm led to reductions of approximately

three minutes for a five-city problem. Balas' algorithm was reluc­

tantly abandonded because it satisfied all requirements, stated in

the introduction, except reasonable convergence time.

E. Little's Branch and Bound

One of the more successful methods for exact solutions of the

traveling salesman problem is that due to Little, et al, (2).

Little's procedure uses the matrix representation of the problem.

The algorithm may be described in general as a method of splitting

the tour solution space into disjoint subspaces with a concomitant

increase in the lower bound on the solution. The subspace with

the smallest lower bound is used as a basis for further splitting.

This process is terminated when a subspace is found which contains

only a tour solution and whose lower bound distance is less than

or equal to that of every other derived subspace.

A theorem found in (~) and (13) is used to establish the

initial lower bound on all tours. Constants are subtracted from

rows and columns of the cost matrix until there is at least one

zero and no negative elements in every row and column. By the

theorem, the sum of these constants is a lower bound on all tours.

Next, the splitting procedure begins.

At every stage, the zeros of the matrix are examined. The

splitting is accomplished by means of a single variable xij whose

cost entry is zero. The subspace is split into two subspaces

representing those tours containing xij (denoted by xij or (i,j))

and those not containing xij (denoted by xij or (i,J)).

1. If xij is not on the optimal tour then the minimum cost

incurred must be

tij =Min Aik +Min Amj.

k # j m # i

The xij whose value tij is maximal is chosen as a basis

15

16

for further splitting.

2. If xij is on the optimal tour, cross out row i and column

j, prohibit all subtours containing xij and those variables

already committed and see if the matrix may be further

reduced so that at least one zero appears in every row and

column (not crossed out).

The new lower bounds are computed as follows:

W2(xij) = W + R

where W is the lower bound on the subspace before splitting and R

is the sum of reducing constants.

Subtours are prohibited by setting

Alr = (10 A,m

where (k,m) is the closure of the longest subtour involving Xij

and those variables already committed. Only the zeros of the matrix

need be examined since for any other element tij = 0.

When n-2 variables have been committed to any subspace, this

subspace represents a tour. If its lower bound is minimal it is

the optimal tour. If not, go to the subspace of minimum lower bound

and continue the procedure. Once a tour has been established, any

subspace whose lower bound exceeds the tour cost may be disregarded.

This algorithm was not tested since comprehensive tests were made

by Shapiro (14) and Sweeny (15). Shapiro reports that for a 25-city

problem the algorithm generated in excess of 3,000 subspaces vith­

out converging to the minimum. Both Shapiro and Sveeny report

difficulty in solving symmetric problems.

F. Local Optimal Algorithms

17

The most successful locally optimal solution previously pub­

lished is due to Lin (16). This algorithm uses the graph theory

formulation of the problem. Lin's algorithm begins with a random

tour and the procedure can be summarized in the following definition:

A tour is said to be A-optimal (A-opt) if it is impossible to obtain

a shorter tour by replacing any A of its links by any other A links.

Crees (17) applied a simple transformation called "inversions"

to transform a trial solution into another vith shorter distance,

iterating until no further inversions are possible. Crees showed

this eliminated routes that cross, which are not optimal (l).

Lin shows that for A=3 his algorithm gives inversion-free

tours with average distance considerably less than that given by

Crees' inversion method.

However, for A>3 Lin reports that convergence time for the

algorithm was prohibitive and accuracy was not improved significantly.

Lin's algorithm is used extensively in Chapter IV for compari­

son purposes. The code for the algorithm was furnished by Miller (18).

III. THE ALGORITHM

A. The Problem

Given a set of n points

P1, P2, · · · ' Pn

in a plane it is required to generate a traveling salesman problem

and obtain a solution for it. The algorithm used should have the

properties stated in the introduction. In this setting the points

correspond to cities and distance between them can be computed by

any desired formula.

B. Definitions and Notation

To facilitate the description of the algorithm we make the

following definitions.

1. n as the number of cities.

2. Let ~ and v be the vectors of ordinates and abscissas of

the cities.

3. Let D = (dij) be the matrix of distances from city ito

city j. dii is not defined for all i. The problems

used from the printed circuit industry dictates that

dij = I ~i -~j I + I Vi -v j 1 where i :# j •

4. ~ the solution vector currently under consideration,

18

19

containing row and column numbers in order of consideration.

5. iz the distance associated with the partial solution vector

currently under consideration.

6. w the vector of the incumbent best feasible route.

7. z the distance of the incumbent route.

8. a the vector designating whether or not row i has been con­

sidered in the backtracking scheme. If ai=O then row i has

not been reached in the backtracking scheme. If ai=l then

i is the highest row under consideration. ai=-1 designates

that row i has been tested in the backtrack scheme.

9. 8 the vector whose i elements designates the number of

elements which have been underlined in row i.

10. k the row currently under consideration.

11. y the vector of minimum row values.

12. ns the number of underlines required in the current iteration.

13. Index the number of values currently in ~ which also

includes the underlined elements.

14. "Free" columns are those columns which are eligible for

20

entry into the solution.

In the discussion ai Si ••. represent the ith elements in , ,

the vectors a, S, •.. , •

C. Statement of Theorems

As the theorems play a major role in the algorithm they are

presented here for reference purposes. The proofs will follow in

Section F of this chapter.

Theorem 1. For Sk = 0, or 1, the row search can begin in column

k + 2. Furthermore if a column is chosen greater than k + 1 the

partial solution contains no cycle.

Theorem 2. The algorithm enumerates all solutions.

D. Description of the Algorithm

The algorithm begins by generating the distance matrix D as

given above. A first feasible solution is generated by the order

in which the points are given. This solution is placed along the

upper main diagonal of D. That is, the first solution is: city 1

{point 1) to city 2; city 2 to city 3; ••• ;city n to city 1. This

is recorded as a vector w = {1,2,2,3, ••• ,n-l,n,n,l}. The distance,

z, generated by this solution is recorded with the solution w.

Next a vector y of row minimums is generated. Thus the ith element

of y is the minimum of row i in D.

A vector ~ which is used to record the partial solutions is

set equal to w. Two other vectors a and 8 are set equal to the

zero vector and are used to aid in the bookkeeping as explained

below.

21

At this point a backtracking scheme begins by deleting the

pairs (n,l), (n-l,n) from~ and the pair (n-2,n-l) is replaced by

(-n+2,-n+l). The latter operation is called underlining. Now k,

the row currently under consideration, is set equal to n-2, ak is

set to 1, and ai to -1 fori > k. Also Sk is set to 1. The values

of a indicate whether a particular row has been tested, is the row

currently being tested, or is below the row which is currently

being tested for solution improvement. The value Si, indicates the

number of elements in row i which has been tested for solution

improvement.

Row k is now searched for the 11 free" column with the minimum

value. A free column is a column which has not been assigned in

the partial solution or has not been underlined. The value of

this minimum is added to iz, the value dictated by the current

partial solution. This sum is added to the sum of Yi for i > k.

If this sum is less than z, the value of the incumbent solution,

and the assignment does not produce a cycle, k is incremented by

1 and the search begins again in row k + 1. However, if the sum

is greater than the value of the incumbent solution, k is decreased

by 1 and a backtracking process begins.

When backtracking the value of 8k is examined to see if the

required number of tests (underlines) have been made on row k.

One underline is required for each row on the first iteration,

two on the second, and so forth. If the correct number of under­

lines have been made backtracking continues. If not, the search

for a minimum begins as explained in the preceding paragraph.

If the value of k becomes n, an improved solution has been

found which replaces the incumbent solution. When the value of k

becomes 0, the underlining requirement has been met for every row

and the iteration is complete.

22

To begin the next iteration the vectors ~ and v are reordered

to coincide with the order of the incumbent solution. Then the

matrix D is again generated with the current solution along the

upper main diagonal. For this iteration an additional element in

each row must be tested (underlined) for solution improvement before

backtracking. This process continues until k = n-1 or until other­

wise terminated.

Theorem 2 shows that if n-1 iterations are made the exact

solution has been found.

A new matrix D is generated at each iteration in order to

utilize Theorem 1. In certain cases Theorem 1 reduces both the

number of elements which must be tested for minimum values and

also eliminates testing for cycles. These cases are dictated by

the values of a.

The general procedure for the algorithm and a flow diagram

follow.

E. The Algorithm

Step 0.

Read coordinates of points as given by ~ and v.

Step 1. Initalize.

Generate D from ~ and v. The first value of w is given by

the order in which the points are given. That is

w = (1 2 2 3 3 4 n-1 n n 1).

Index is set to 2 times n. ~ is set to w and iz and z are

computed from these routes. The vector of row minimums y is

computed from D. Set k = n-2 and ai= Si = 0 for all i.

Then go to Step 2.

Step 2. Backtrack.

Test to see if the required number of underlines for row k

has been made. If so decrease k by 1 and test again. (If

the criteria has been satisfied for all rows go to Step 5.)

If not, test ak to determine the branching status of row k.

If ak is positive, then k is the highest row which has been

considered in the backtrack scheme. In this case go to Step

2a. If ak is zero, row k has not yet been used in the back­

track scheme. For ak = 0 go to Step 2b. If ak is less than

23

24

zero, row k is below the topmost row which has been considered

in the backtrack scheme. If this occurs go to Step 2c.

Step 2a.

Drop all entries in ~with row value greater than k. Set

Index= 2k + 28k· Set 8i = 0 for all i greater than k. Under-

line the two rightmost entries in ~ and increase Bk by 1 and go

to Step 3.

Step 2b.

Set ai = -1 and 8i = 0 for all i greater than k. Drop all

entries in ~ with row value greater than k. Set Index = 2k.

Underline the rightmost two entries in ~· Increase 8k by 1

and go to Step 3.

Step 2c.

Drop all entries in ~ with row value greater than k. Set

k
Index = 2E8i + 2k

i=l

Set Bi = 0 for all i greater than k. Underline the two right-

most elements in ~ and increase Bk by 1. Go to Step 3.

Step 3. Forward Step.

Compute iz for the partial solution. Add to iz the sum of

ai for i greater than k. Search the free columns in row k

for the minimum distance. The search will begin at column

2k + 2 if Bk = 1 or 0, (see Theorem 1). Otherwise the search

will begin in column 1. Augment ~ by the coordinates of this

minimum. Add this distance to iz and if iz is less than z

increase k by one and go to Step 4; otherwise decrease k by

1 and go to Step 2. Index is used in all calculations which

involve ljJ.

Step 4.

25

Test 1jJ for cycles. If there is no cycle and k is not greater

than n, go to Step 3. If k equals n replace w by 1jJ and z by

iz, set k to n-2 and go to Step 2. If 1jJ cycles underline the

two rightmost entries in ljJ, increase 8k by 1 and go to Step 2.

Step 5.

Write the current solution w and z with the value of ns. If

ns is less than n-2 replace ns by ns + 1 and go to Step 6,

otherwise terminate.

Step 6.

Re-order the coordinates of the vectors ~ and v to coincide

with the order of the "current best solution." Go to Step 1.

A simplified flow diagram is given in Figure 1.

26

Figure 1

Flow Diagram

Read
Coordinates

j.-A

Initialize vectors - Generate D.
The solution along the upper
main diagonal. Set k = n-2.

No

Is Decrease Is
Bk < ns No k by 1 k < 1

Ye~ l
J Yes jwrite w, z, and nsf

t
Update partial solution ~. Is
a, and k by 2a, 2b, or 2c ns < n-2 No r Terminate l

B- Yes

Compute iz from partial Reorder the coordinates
solution. Replace iz by to coincide with order
iz + L'Yi for i > k of current solution

replace ns by ns + 1

t
Search for free column with
minimum distance. Add this
distance to iz Check for cycles

~ Yes if necessary

{ z
Is I jNo

No < iz

Yes j Increase No
Is

k by 1 k = n

Increase l3 I
ek by 1 - ! Yes

Set: z = iz; I
w=~; k = n-2 [

F. Proofs of Theorems

Theorem 1. For Sk = 0, or 1, the row search can begin in column

k + 2. Furthermore if a column is chosen greater thank + 1 the

partial solution contains no cycle.

Proof:

For Sk = 0 we have the current partial solution:

1P = {(1,2), (2,3), •.. , (k-l,k), (-k, -k-1)}.

27

Now if we choose the element (k,m) for entry into the solution where

m < k then ,p is in the form

,P = {(1,2), (2,3), ••. , (m,m+l), ••• , (k-l,k), (-k,-k-1), (k,m)}

thus the cycle is

{(m,m+l), (m+l,m+2), .•. , (k-l,k), (k,m)}.

Note that (k,k) is not defined and (k,k+l) is underlined; there­

fore our search can begin at column k+2. For Sk = 1 the proof is

also valid. The only difference being that 1P contains additional

underlined elements.

To show that the new partial solution does not cycle it suffices

to consider the partial solution

1P = {(1,2), (2,3), ... ' (k-l,k), (-k,-k-1), (k,m)}

where m > k + l. Since m is also greater than every first element

in the ordered pairs no cycle is possible. End of proof.

The power of Theorem 1 used in the backtracking scheme lies

in two areas :

l. The search can begin to the right of the diagonal and

2. The partial solution obtained in this manner need not be

checked for cycling.

28

It is Theorem l that makes this a coordinate oriented algorithm.

For in order to use Theorem l, the initial solution must appear on

the upper off diagonal of the distance matrix. Thus after each

iteration a new distance matrix must be generated with the initial

solution located in this position.

Theorem 2. The algorithm enumerates all solutions.

Consider a new matrix X= (xij) with values lor 0, depending

on whether dij is in the current solution or not. That is, xij = 1

means we go from city-i to city-j in the current solution and xij = 0

means we do not. Certainly there are only n 2 elements in X. Now

for the solution w with distance z found in the ns = n-2 iteration,

X contains n elements with value 1 while all other elements have the

value 0. If any of the xij = 0 are set to 1 we have an infeasible

solution which also has distance greater than z. Thus no more than

n of the n2 values are 1 and the enumeration can begin by setting

these l's equal to 0.

Now consider the matrix X as a vector o of 0 and l's. Here

O(i-l)n+j=Xij• Our backtracking scheme sets the rightmost 1 in

o equal to 0 and considers all other values of 0 for entry into

29

the solution. Next the two rightmost l's are set to 0 and all values

of 0 are considered for entry into the solution except the last one

set to o. This process is continued until all l's have been set

to 0 at which time all solutions have been enumerated. That is,

for each i in the original solution, the solutions have been enumerated

for which oi = 1 and those for which oi = 0 and this is all of them.

End of proof.

30

IV. DISCUSSION

A. Preliminaries

Before giving an example illustrating the algorithm the

similarities and differences of the algorithm and those presented

in Chapter II are noted. First~ as with Little, a matrix D of

distances is used where the main diagonal elements are not defined.

The matrix is not reduced or changed in any way; hence~ the bound

technique is different from that employed by Little. Also the

scheme works with the D matrix systematically from the last row

to the first, thus reducing the bookkeeping. That is, the algorithm

systematically begins the improvement technique in the last row of

the matrix D. Each row is tested in order, from last to first, for

route improvement.

The backtracking and enumeration scheme resembles that used

by Balas. In particular the bookkeeping scheme parallels that

employed by Balas in that a vector of partial solutions is used

and a system of underlining those columns checked. However~ dif­

fering from Balas, the partial solution is augmented by the "free"

column with minimum distance which does not produce a cycle and

does not violate the bound criteria.

The bound technique is an improvement of Balas' in that to

the distance dictated by the current partial solution the sum of

the row minimums for the rows below the current row is added.

31

This distance is tested against the distance of the "current best

solution." The bound which Balas uses is the distance given by the

partial solution. Recall also that Balas' algorithm uses the integer

programming formulation of the problem and uses a branch and bound

technique to find the values of 0 and 1 which give the minimum

solution. The algorithm of Chapter III is a branch and bound tech­

nique based on the matrix representation of the problem.

Another way of viewing the formulation is to note that Balas

uses the matrix D as a vector for his cost function. In addition

to this vector Balas' formulation also requires a matrix of con­

straints. Some of these constraints guarantee that each city is

visited once and only once while the others eliminate cycling.

The underlining technique requires that one or more elements

in the current row be completelY tested for solution improvement

before backtracking continues. This gives the algorithm the capa­

bility of giving either an exact solution or sub-optimal solution.

This idea is similar to that employed in Lin's A-opt technique.

However, there is no similarity between the two algorithms. As Lin

uses 3-opt to get a good solution fast, the algorithm tests (under­

lines) one element in each row before backtracking to obtain a good

fast approximation. See Tables I and III in Chapter V for a com­

parison of these two methods. This improved solution also gives a

better bound with which to use the next iteration where it is

required that two elements be underlined before backtracking. At

any time the "current best solution" is in memory along with the

number of underlines currently required.

B. An Example

The following is the matrix representation of a four-city

problem. The problem was generated from the following four points

located in the first quadrant: (0,0), (10,5), (10,0), (3,5).

15 10 8

15 5 7

10 5 12

8 7 12

The first solution was generated from the order of the points.

This solution

w = {(1,2), (2,3), (3,4), (4,1)}

32

becomes the "current best solution" and the first working solution.

The value of the current best solution 40, becomes the bound for

the backtracking operation. Next the vector of row minimums is

computed giving

y = (8, 5, 5, 7).

These values are used along with the value of the partial solution

when enumerating solutions.

The first solution is stored in the working vector

tjJ = { (1 '2) ' (2 '3) ' (3 '4) ' (4 ,1) }

and backtracking begins. The last two row assignments are set

free and the assignment for the second row is underlined. This

is recorded thus:

~ = {(1,2)~ (-2,-3)},

iz = 15, and min = 12. The value of the partial solution is iz

and min is the sum of the row minimums below the pivotal row.

Now the forward search begins at row two. The minimum free

column to the right of the diagonal is chosen as a candidate for

entry into the partial solution. A choice to the left of the

diagonal would produce a cycle, (see Theorem 1). In this case

(2,4) with distance 7 is the candidate. Now the value of the

"current best solution" is 40 and

15 + 12 + 7 < 40;

hence, the partial solution is augmented to

~ = {(1,2), (-2,-3), (2,4)},

iz = 22~ and min= 7. The search now begins in row 3.

33

In this case the candidate can come from any free column which

does not produce a cycle. Here Theorem 1 does not apply as row 3

is not the highest row being considered in this iteration. The

candidate in this case is (3,1) with value 10. Now

22 + 7 + 10 < 4o

and the partial solution does not produce a cycle hence ~ is

augmented to

~ = {(1,2), (-2~-3), (2,4), (3,1)},

iz = 32, and min = 0.

The candidate from row four is (4,3) with value 12. Now

32 + 0 + 12 > 40;

hence backtracking begins.

Row one is underlined and the entries to the right in ~ are

dropped giving

ljJ = {(-1,-2)},

iz = 0, and min= 17. The new candidate from row one is (1,4)

with distance 8. Now

0 + 17 + 8 < 40;

hence ljJ is augmented to

~ = {(-1,-2), (1,4)},

iz = 8, and min = 12.

The candidate from row two is (2,3) with distance 5. Now

8 + 12 + 5 < 40

and no cycle is produced; hence ljJ is augmented to

ljJ = {(-1,-2), (1,4), (2,3)},

iz = 13, and min= 7.

The candidate from row three is (3,2) with value 5. Now

13 + 7 + 5 < 40

but (3,2) produces a cycle. Hence ljJ is augmented to

ljJ = {(-1,-2), (1,4), (2,3), (-3,-2)}

and the search continues. The new candidate is (3,1) with value

10. Now

13 + 7 + 10 < 40

34

and no cycle is produced hence ¢ is augmented to

¢ = {(-1,-2), (1,4), (2,3), (-3,-2), (3,1)},

iz = 23, and min = 0.

The candidate ~rom row four is (4,2) with value 7. Now

23 + 0 + 7 < 40

35

and ¢ is a new "current best solution." This solution is stored in

w as

w = {(1,4), (2,3), (3,1), (4,2)}

and 30 becomes the new bound. The new working vector ¢ is

¢ = {(-1,-2), (1,4), (2,3), (-3,-2), (3,1), (4,2)}.

Each row, if it is possible to have one, has one underlined

element so the first iteration is complete. The new working vector

becomes w, or

¢ = {{1,4)' (2,3), (3,1), (4,2)}

and the second iteration begins.

Backtracking continues by requiring that two elements in each

row be underlined. As before, the last two row assignments are

set free and the assignment ~or row two is underlined giving

¢ = {{1,4), (-2,-3)},

iz = 8, and min = 12.

The candidate ~rom row two is (2,1) with value 15. Now

8 + 12 + 15 > 30

is the new "current best solution." Thus backtracking continues

to the first row giving

1jJ = {(-1,-4)},

iz = 0, and min= 17.

The candidate from row one is (1,3) with value 10. Now

0 + 17 + 10 < 30

and ¢ is augmented to

1jJ = {(-1 ,-4) ' (1,3)},

iz = 10. and min = 12.

The candidate from row two is (2,4) with distance 7.

10 + 7 + 12 < 30

and there is no cycle; hence ¢ is augmented to

1jJ = {(-1,-4), (1,3), (2,4)},

iz = 17, and min= 7.

Now

The candidate from row three is (3,2) with value 5. Now

17 + 7 + 5 < 30

and no cycle is produced; hence ¢ is augmented to

1jJ = {(-1,-4), (1,3), (2,4), (3,2)},

iz = 22, and min = 0.

The entry from row four is (4,1) with value 8. Now

22 + 0 + 8 > 30,

so backtracking begins in row three and

1jJ = {(-1,-4)' (1 ,3)' (2 ,4)' (-3,-2) },

iz = 17, and min= 7.

The new candidate from row three is (3,1) with value 10.

Now

17 + 7 + 10 > 30

36

hence backtracking continues to row two giving

~ = {(-1,-4), (1,3), (-2,-4)},

iz = 10, and min= 12.

The candidate is (2,1) with value 15. Again

10 + 12 + 15 > 30

so backtracking continues giving

~ = {(-1,-4), (-1,-3)},

iz = 0, and min= 17.

The candidate is (1,2) with value 15. Again

0 + 17 + 15 > 30

37

and iteration 2 is complete. As n-2 iterations have been made all

solutions have been enumerated, (see Theorem 2). The minimum solution

is therefore

w= {(1,4), (2,3), (3,1), (4,2)}

with value 30.

C. Shortest Route

To use the algorithm for a shortest route problem

1. Read the first city to be visited as (xl,Yl) and the final

city to be visited as (xn,Yn).

2. After the matrix D has been generated set dl,n = dn,l = O.

This can be implemented through a code on an input card.

38

D. Comments

It is noted that only row k needs to be in memory at any time;

therefore matrix D can be generated as needed or stored in auxiliary

memory.

The dimension of ~ has an upper bound of 2(n-1)2 where n is

the number of cities. However it was found for the problems con­

sidered that substantially less memory was required. This is due

to the bounding technique of the algorithm. A compromise between

the number of rows of D in memory and the dimension of ~ is dictated

by the size of the problem and the memory size of the computer.

It appears that Step 2a and 2c of the algorithm are the same.

However, for purposes of coding it is necessary to distinguish

between the two branches. In each case the number of elements

set free in ~ is computed from different formulas.

The search for the minimum free element differs with the values

of a. If ak is 0 or 1 the search is carried to the right of the

diagonal in row k. In order to make this true when increasing the

number of underlines required a new D matrix (Step 6) is generated

when this increment is made. Note that this change was not made in

the sample problem.

Another property of the algorithm is that a "current best

solution,, along with the number of underlines required, can be

punched out and read in at a later time. The algorithm will continue

39

to iterate at that point. This locates the starting point better

than Balas' algorithm which would use only the "current best solution."

As the example illustrates all solutions could be generated

by a small alteration of the algorithm. Also it appears that the

algorithm can be used for the assignment problem by eliminating

the steps where cycling is checked.

There are several w~s of terminating the computation.

For example:

1. After all solutions have been enumerated.

2. For a fixed value of ns.

3. When there is no change in z from one iteration to the

next.

4. When the relative change in z between iterations is "small. 11

5. When the difference between the "current best solution" and

the lower bound is "small." (See Chapter VI).

Finally, note that the algorithm is not a combination or revision

of any known algorithm. However the algorithm tends to incorporate

some of the ideas of other algorithms but in an entirely different

manner.

40

V. COMPUTATIONAL EXPERIENCE

A new algorithm for the traveling salesman problem has been

presented with the characteristics described in the introduction.

Computational results and comparisons with Lin's 3-opt algorithm

are contained in this chapter. The algorithm was implemented on an

IBM-1130 with 8k words of memory. All computation work referred

to in this chapter was performed on this machine.

A. Test Problems

The algorithm was tested extensively on the following five

problems. These problems were designed so that solution improve-

ment could be followed and for which final solutions were readily

available. In addition comparisons were made with Lin's 3-opt algo­

rithm for these problems. Both algorithms were given the same initial

routes with initial distances as given in column 6 of Table I. The

test problems follow:

1. 6-city with (x,y) coordinates (0,0), (5,5), (8,2), (10,0),

(8,8), (10,10), (0,10);

2. 10-city with (x,y) coordinates (0,0), (5,5), (8,2), (10,0),

(8,8), (10,10), (0,10), (5,8), (2,4);

3. 10-city with (x,y) coordinates (0,0), (10,2), (2,10), (0,8),

(1,0), (10,6), (7,8), (0,5), (6,0), (10,8);

4. 15-city with (x,y) coordinates (0,0), (5,5), (8,2), (10,0),

(8,8), (10,10), (0,10), (5,8), (2,8), (2,5), (0,6), (5,3),

41

(9,5), (4,1), (0,2);

5. 16-city with (x,y) coordinates (0 ,0), (20 ,1), (7 ,0), (20 ,0),

(16,25), (0,23), (3,0), (17,10), (9,24), (1,19), (5,1),

(17,15), (6,24), (1,12), (12,0), (17,19).

A summary of the results is contained in Table I.

TABLE I

COMPARISON WITH LIN'S ALGORITHM FOR TEST PROBLEMS

Problem Algorithm Algorithm 3-0pt 3-0pt Actual Initial
Numbers Time Distance Time Distance Minimums Distance

(1) .002 46 .002 44 44 54

(2) .003 58 .007 58 54 64

(3) .014 54 .005 78 40 112

(4) .050 66 .024 76 6o 90

(5) .066 108 .030 280 100 348

All times were taken from the console clock of the IBM-1130

with the aid of pause statements. Time is measured in hours on

the 1130.

Results for additional iterations of the algorithm are contained

in Table II.

The above test problem indicates that the algorithm is com-

petitive with the 3-opt algorithm. Only for problem 1 was the 3-opt

results better than that of the algorithm, and then but slightly

(2 units). For problem 5 the algorithm gave a significant improve-

42

ment over the 3-opt (172 units). Also Table II indicates that

the algorithm tends to converge on the second or third iteration.

Because these problems were chosen for easy testing it was decided

to generate ten random problems and make the comparisons again.

TABLE II

RESULTS OF FURTHER ITERATIONS FOR TEST PROBLEMS

Problem NS = 2 NS = 3 NS = 4
Number Time Distance Time Distance Time Distance

(1) .003 44 .002 44 .002 44

(2) .012 54 .018 54 .022 54

(3) .006 46 .006 4o .002 40

(4) .098 6o .078 6o .088 60

(5) .200 100 .148 100 .211 100

B. Random 10-City Problems

Ten 10-city problems were randomly generated.* These were

also compared with Lin's 3-opt as well as used to determine other

statistical data. In Tables III and IV comparisons are given which

parallel those given in Tables I and II. Table III is given in the

form of a distance table and Table IV is given as a time table.

Again the algorithm is competitive with the 3-opt algorithm

for the first iteration. Only for two of the ten problems does

* See Appendix I for a list of the problems.

43

3-opt give a better solution, (problems Rl0-10, and Rl0-4), and

this improvement is relatively small. Note however, that all solu-

tions given by the second iteration are better than those given

by 3-opt. The actual minimums were obtained by using all iterations.

However the algorithm's solution is significantly better for several

problems; see, for example, problems Rl0-2, Rl0-5, Rl0-8, and Rl0-9.

The time saving achieved by using the 3-opt instead of the algorithm

for the first iteration is insignificant.

TABLE III

DISTANCE COMPARISONS

Problem Initial 3-0pt Algorithm Distance by Iteration Actual
Number Distance Distance 1 2 3 4 Minimum

(Rl0-1) 512 384 308 286 286 286 256

(Rl0-2) 294 204 134 130 130 130 130

(Rl0-3) 290 196 188 184 184 184 184

(Rl0-4) 334 274 280 258 236 236 236

(Rl0-5) 500 352 262 258 258 258 224

(Rl0-6) 432 316 282 246 246 246 246

(Rl0-7) 496 382 332 306 306 306 290

(Rl0-8) 510 350 258 258 258 258 254

(Rl0-9) 598 446 250 224 224 224 224

(Rl0-10) 384 290 328 264 240 240 236

44

An advantage of the algorithm is that the algorithm can continue

in an iterative process. Tables II and III give the results for

continuation for the fifteen problems. or the fifteen problems

eight converged to the exact answer on the second iteration and

two converged to the exact answer on the third iteration.

This leads one to conjecture that if one wanted the exact

solution in the shortest time ns could be set to ns = n-1 after

the first iteration. That is, the iterations where 2, 3, .•. , n-2

underlines are required could be eliminated. This conjecture was

tested on problems Rl0-1 and Rl0-2 and resulted in a decrease in time

of 11%.

TABLE IV

TIME COMPARISONS

Problem 3-0pt Algorithm Time by Iteration
Number Time 1 2 3 4

(Rl0-1) .008 .010 .018 .026 .048

(Rl0-2) .006 .006 .010 .022 .042

(Rl0-3) .010 .010 .032 .076 .168

(Rl0-4) .006 .008 .048 .084 .122

(Rl0-5) .008 .008 .018 .040 .088

(Rl0-6) .008 .012 .o4o .084 .172

(Rl0-7) .006 .006 .034 .118 .172

(Rl0-8) .008 .006 .012 .024 .o48

(Rl0-9) .006 .oo6 .018 .040 .090

(Rl0-10) .008 .008 .052 .078 .144

C. Bound Tests

Using the above problems the bound technique was tested. That

is, the number of the (n-1)!/2 solutions that were explicitly enu-

merated were counted. The results follow in Table V. Comparison

with the 3-opt is meaningless except to note that the 3-opt seems

to explicitly enumerate more solutions than the first iteration of

the algorithm. Table V indicates that only a fraction of the

181,440 solutions are explicitly enumerated.

TABLE V

NUMBER OF SOLUTIONS EXPLICITLY ENUMERATED

Problem The Algorithm by Iteration Lin's
Number 1 2 3 3-0:Et

(Rl0-1) 9 1 0 11

(Rl0-2) 9 1 0 12

(Rl0-3) 6 1 0 14

(Rl0-4) 4 5 3 9

(Rl0-5) 7 1 0 9

(Rl0-6) 9 3 0 9

(Rl0-7) 4 4 0 12

(Rl0-8) 9 0 0 7

(Rl0-9) 6 5 0 8

(Rl0-10) 4 5 1 8

46

D. Convergence Time Tests

Three five-city and three 15-city problems were randomly generated.

These, in addition to the ten-city problems and the problems of section

E were used to test computer time with respect to the number of cities.

Tables VI and VIII gives the results of these tests. The number

following the R is the number of cities. A formula for computer time

as a function of the number of cities is given in section F of this

chapter.

TABLE VI

TIME VS. THE NUMBER OF CITIES

Problem Iteration 1 Iteration 2
Number Time Distance Time Distance

(R5-l) .002 254 .004 254
Five

(R5-2) .002 220 .oo4 220
Cities

(R5-3) .002 224 .003 224

(Rl0-1) .010 308 .018 286
Ten

(Rl0-2) .006 134 .010 130
Cities

(Rl0-3) .022 184 .o66 184

(Rl5-l) .096 280 .190 274
15

(Rl5-2) .060 352 .680 302
Cities

(Rl5-3) .126 284 1.054 260

To test the practicality of generating the distance matrix as

needed we used the same problems as those referred to in Table VI.

Here the row distances were computed, as needed, by the formula

given in section B of Chapter III.

TABLE VII

D MATRIX IN STORAGE VS. DISTANCE GENERATED

Five

Cities

Ten

Cities

15

Cities

Problem
Number

(R5-l)

(R5-2)

(R5-3)

(Rl0-1)

(Rl0-2)

(Rl0-3)

(Rl5-l)

(Rl5-2)

(Rl5-3)

Iteration 1
D Generated D In

.002

.002

.003

.014

.006

.010

.108

.o66

.136

.002

.002

.003

.010

.006

.022

.096

.066

.126

Iteration 2
D Generated D In

.003

.004

.005

.020

.036

.018

.212

.750

1.026

.002

.002

.001

.008

.004

.044

.096

.620

.928

47

Thus it appears that for problems under size 15 the first version

is slightly superior to the second. The 15-city problem indicates

that time is going to increase significantly when generating the

D matrix. The erratic behavior of the timings is explained by the

fact that the number of times the distances are generated is dependent

48

on the number of solutions explicitly enumerated. With the first

version we are able to make three iterations for a 40-city problem

on an IBM-1130 with 8k memory; that is, without using auxiliary

memory. By generating the distances up to three iterations can be

made for a 200-city problem on this machine.

E. Circuit Board Problems

Three live problems were taken from the printed circuit industry.

In this industry a route is generated by a person using a magnifying

glass and drawing a route on the photograph of the circuit board.

From this sketch a paper tape which controls the drilling machines

is prepared by a well trained technician. It was from these tapes

that our data was prepared. In Table VIII the results for three

problems are given. Table VIII shows that the technician makes

both "good" and "poor" first approximations. The actual minimums

are not known for these problems. The (x,y) coordinates for these

problems are located in the appendix.

TABLE VIII

PRINTED CIRCUIT PROBLEMS

Visual 3-0pt 3-0pt Algorithm Algorithm
n Distance Time Distance Time Distance

20 79 .10 77 .32 77

28 3728 • 36 3028 1.24 2164

40 152 1.57 144 2.14 144

49

For these examples the savings over the visual distance range

from less than 3% to almost 50%. In the next section a decision

function is presented which incorporates the computational experience

given above and which will aid in determining when to use the algorithm.

F. Economic Considerations

The above sample problems indicate that it may not be econom­

ically feasible to use the algorithm. To help in this determination

a decision function was developed. First it is noted that all

circuit boards are different. Some boards contain extremely complex

and dense circuitry with randomly placed holes while others are quite

uniform in nature. A board may have several different hole sizes

and each size must be treated as a separate problem. Circuit boards

range in size from 12" by 18" to less than 1" by 1". All circuits

are shown on the photograph of the board from which the tape pro­

grammer prepares a tape for the tape drill machine. All of these

factors effect the tape programmer's choice of routes and helps

account for the unreliable estimates.

If the tape programmer is eliminated and random tours are used

as initial estimates, Tables III and IV show that the algorithm still

performs quite satisfactorily.

The decision function will only be an aid to the engineer as

many variables which the engineer must consider are not contained

in the function. For example, the experience of the programmer and

the availability of computer and/or tape drill time are not considered

by the function.

Note that there are several types of tape drills and consider

the following definitions:

1. N as the number of boards to be produced.

2. n the number of holes per board.

3. d the distance obtained from the tape prepared by the

tape progrgmmer.

4. sh the stack height, that is, the number of boards that

are drilled by one drill bit. The maximum is five.

5. nh the number of heads on the drill, all of which are

controlled simultaneously by the tape. The maximum is

six.

6. ms drill movement speed.

7. cp the computer cost per hour.

8. de the tape drill cost per hour.

9. ad approximate distance reduction.

The algorithm would be recommended for use if the following

function is positive,

F(N,n) = dc·g(n) - cp·h(n)

where

g(N) = ad(d/ms) (N/sh•nh)

h(n) = .0654n - .6497

50

The coefficients for h were found by fitting the data of Tables VI

and VIII to the curve using the least squares method. Of a cubic,

quadratic and linear approximation, the linear gave the best fit.

Note that the formula is for the first iteration of the algorithm

only. For computational purposes we use cp = 2dc for a six-headed

drill where cp is the cost related to the IBM-1130.

Computations with conservative figures show that the number

51

of boards one must produce in order to break even are approximately

12,000, 2,500, and 60,000 for the 20, 28, and 40 hole board respec­

tively. Orders of around 20,000 boards are not uncommon and these

orders are sometimes repeated. For such an order the savings made

possible by the algorithm for the 28 hole board would be in three

figures.

G. Shortest Route Results

'fhe algorithm was not tested extensively for this problem.

However, this formulation was checked for problems 1-5 with satis­

factory results. Also the 20-city problem listed above was solved

as a shortest route problem. The times for problems 1-5 were

slightly less than those reported in Tables I and II.

VI. CONCLUSION

A. S~ary

The first known coordinate oriented algorithm was developed

and presented in Chapter III. The algorithm was developed for a

particular problem in the printed circuit industry. However, it

can be utilized, with only minor modifications, for all traveling

salesman problems for which coordinates are available.

Chapter II presents a review of the literature with emphasis

placed on those algorithms applicable to the problem as given in

Chapter I. In the discussion of Chapter IV the similarities and

differences of these algorithms and the one presented in Chapter

III are pointed out. These comparisons serve to emphasize that

the algorithm presented is indeed new.

In Section E of Chapter V the algorithm is applied to three

problems from the printed circuit industry. The results vary

widely with the problems. These variations are explained in sec­

tion F of Chapter V where an economic decision function is pre­

sented.

The theorems presented in Chapter III and the computation

results given in Chapter IV indicate the findings given in the

next section are valid.

52

B. Results

1. The performance of the algorithm for the first iteration

is superior to that of the best known algorithm (3-opt)

for a locally optimal solution. Of the 24 problems

solved, the 3-opt algorithm gave slightly better results

at the end of one iteration for only 3 of the problems.

2. The algorithm converges to the exact solution, (see

Theorem 2 of Chapter III).

53

3. The algorithm can be stopped at any time giving a "current

best solution." Also this solution can be used later as

an initial solution for the algorithm, (see Chapter III,

Section C).

4. The algorithm is easily adaptable to a shortest route

problem. Section C of Chapter IV contains the formula­

tion and Section G of Chapter V gives the computational

experience.

5. The algorithm can be effectively implemented on a small

computer. All work was done on an IBM-1130 with 8k words

of memory.

6. The distance matrix can be generated as needed, thus in­

creasing the size of the problem which can be solved.

This ability was demonstrated in Section D of Chapter V.

1. The bound criterion is successful as only a few of the

solutions are enumerated explicitly. Experimental results

for ten problems is given in Section C of Chapter V.

8. The algorithm generates all constraints from the co­

ordinates and the solution is given in coordinates, (see

Chapter III).

C. Suggestions for Further Research

The codes for the algorithms were programmed in FORTRAN with

all variables integers. The programs consist almost entirely of

additions, subtractions, and comparisons. As the programs for the

algorithm have undergone constant revision the codes used for

timings were undoubtedly less than optimal.

There are two other areas where the speed of convergence of

the algorithm might be improved.

1. The cycle test (II,4) of the 0-1 integer programming formu­

lation given in the introduction was utilized in the codes.

The cycle constraints (II,7) of Tucker should also be

tested.

2. The bounding technique might be improved, at least for

large problems, by adding to the distance of the partial

55

solution the sum of the minimums for the "free" rows where

the row minimum is the minimum of the "free" columns.

Both computation and search time might be reduced for symmetric

problems by restructuring the algorithm for this problem.

A combination of the A-opt and the algorithm might be used in

an iterative process. That is, from an arbitrary solution, find

a A-opt solution and use this for the initial solution for the

algorithm. The solution given by the algorithm would then be used

as input for the A-opt algorithm. This process could continue as

long as improvement was made.

Little's algorithm might be used in conjunction with the

algorithm presented here to help isolate the actual minimum. This

could be done by using the algorithm to find a decreasing sequence

of upper bounds on the solution and Little's algorithm to find an

increasing sequence of lower bounds. The procedure could be ter­

minated when these bounds were relatively close; i.e., when the

difference between the upper bound and lower bound divided by the

upper bound is small.

The algorithm could also be modified and tested for solutions

to the assignment problem.

Finally, the author feels that the algorithm can be adapted

to a partitioning technique for "large" problems, and it is in

this area that his future efforts will be directed.

56

APPENDIX A

COORDINATES FOR SAMPLE PROBLEMS

Problem (R5-l)

(10,3), (21,15), (0,55), (20,80), (34,96).

Problem (R5-2)

(22 , 7) , (2 8 , 81) , (19,31), (37,96), (16,80).

Problem (R5-3)

(25,0), (43,73), (10 ,48), (15 ,48), (27 '79).

Problem (Rl0-1)

(24,22), (6,94), (18,75), (10,17), (24,53), (22,74), (30,0), (25,10),

(12,33), (30 '75).

Problem (Rl0-2)

(27,61), (19 ,61) , (26 ,39), (13,49), (29 ,59), (24,40)' (30,78), (17 ,36),

(32,75) , (25,79).

Problem (Rl0-3)

(13,44), (12,46), (8 , 89) , (11 , 5 4) , (30 , 31) , (5,34), (22,30), (23,55),

(14,61), (30,34).

Problem (Rl0-4)

(25,49), (29 ,54), (14,42), (40,39), (21,27), (11,2), (29,38), (29,75),

(13,86), (28,34).

Problem (Rl0-5)

(33 ,46) , (22,43), (27 ,5), (27 ,60), (20 ,86)' (8,2), (41,65), (22,91),

(14,28), (20 ,51).

57

Problem (Rl0-6)

(1,30), (25,56), (22,73), (7 ,57), (41,99)' (17 ,67), (16,18)' (22,56)'

(20,85), (17,30).

Problem (Rl0-7)

(0,95), (38,60), (22,99), (14,1), (10,48), (11,55), (30,96), (17,61),

(9,47), (17,78).

Problem (Rl0-8)

(4,73), (9,65), (40,10), (22,25), (27,97), (29,19), (32,79), (19,68),

(31,47), (22,97).

Problem (Rl0-9)

(35,46), (19,90), (25,42), (20,30), (2,88), (25,36), (21,12), (26,81),

(17,12), (14,85).

Problem (Rl0-10)

(11,47), (38,81), (26,61), (11,82), (12,50), (14,21), (20,14), (25,49),

(41,94), (24,55).

Problem (Rl5-l)

(5,15), (36,27), (21,68), (29.70), (10,3), (15,79), (19,41), (33,37),

(25,14), (32,43), (30,47), (23,19), (23,83), (23,33), (27,7).

Problem (Rl5-2)

(26,63), (21,17), (32,80), (21,44), (24,52), (30,6), (36,70), (23,94),

(22,74), (24,3), (12,65), (13,32), (17,92), (25,10), (3,46).

Problem (Rl5-3)

(37,22), (17,32), (22,37), (32,90), (9,35), (18,67), (17,98), (27,52),

(7,85), (25,44), (26,52), (8,83), (26,36), (28,66), (23,98).

58

Problem (20-City)

(47,7), (49,11), (46,11), (46,13), (47,12), (43,12), (45,14), (50,14),

(56,17), (58,16), (60,16), (49,18), (47,18), (43,18), (46,19), (45,20),

(48,20), (47,21), (43,23), (42,25).

Problem (28-City)

(17,825), (42,825), (202,825)' (227,825), (387,825), (412,825),

(572,825), (597,825), (758,825), (783,825), (923,825), (737,825),

(552,825), (367,825), (17,877), (42,877), (202,877), (227,877),

(387 ,877)' (412,877)' (572,877)' (597 ,877)' (758,877)' (783,877)'

(923,877), (737,877), (552,877), (367,877).

Problem (40-City)

(16,11), (19,12), (20,8), (21,7), (19,6), (16,5), (15,7), (12,6),

(10,6), (10,9), (12,12), (10,12), (10,15), (12,18), (10,18), (10,20),

(10,21)' (4,23)' (9,24)' (11,25)' (10,27)' (12,28)' (11,30)' (10,30)'

(10,33), (10,36), (10,39), (10,42), (2,42), (2,39), (2,36), (2,33),

(2,30)' (2,27)' (2,21)' (2.18)' (2,15)' (2,12)' (2,9)' (2,6).

BIBLIOGRAPHY

1. Dantzig, G. B., Fulkerson, D. R. and Johnson, S. M., "On a
Linear Programming, Combinatorial Approach to the Traveling
Salesman Problem," Operations Research, VII, 1959, pp. 58-66.

2. Flood, M. M., "The Traveling Salesman Problem," Operations
Research, IV, 1956, pp. 61-75.

3. Ore, Oystein, "Graphs and Their Uses," New York, Random House
and The L. W. Singer Company, 1963, pp. 28-31.

4. Bellmore, M., and Nemhauser, G. L., "The Traveling Salesman
Problem: A Survey," The John Hopkins University, Baltimore,
Maryland, 1966.

5. Little, J.D. C., Murty, K. G., Sweeney, D. w. and Karel, C.,
"An Algorithm for the Traveling Salesman Problem," Operations
Research, XI, 1963, pp. 972-989.

59

6. Miller, C. E. , Tucker, A. W. and Zemlin, R. A. , "Integer Pro­
gramming Formulations and Traveling Salesman Problems," Journal
of the Association for Computing Machinery, VII, 1960, pp. 326-
329.

7. Gomory, R. E., "Outline of an Algorithm for Integer Solutions
to Linear Programs, 11 Bulletin of the American Mathematical
Socie~, LXIV, 1958, pp. 275-278.

8. Kunzi, Hans P. and Tzschach, H. G., and Zehnder, c. A.,
"Numerical Methods of Mathematical Optimization," New York
Academic Press, 1968.

9. Land, A. H. and Doig, A. G., "An Automatic Method of Solving
Discrete Linear Programming Problems," Econometrica, XXVIII,
1960, pp. 497-520.

10. McMillan, Claude, Jr. , "Mathematical Programming," New York,
John Wiley & Sons, Inc., 1970.

11. Balas , E. , "An Additive Algorithm for Solving Linear Programs
with Zero-One Variables," Operations Research, XIII, 1965,
pp. 517-546.

12. Geoffrion, A., "Integer Programming by Implicit Enumeration
and Balas' Method, 11 SIAM Review, IX, 1967, pp. 178-190.

13. Kruskal, J. B., "On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem," Proceedings American
Mathematical Society, II, 1956, pp. 48-50.

60

14. Shapiro, Donald M., "Algorithms for the Solution of the Optimal
Cost and Bottleneck Traveling Salesman Problems," Ph.D. Thesis,
1966, Washington University.

15. Sweeney, D. N., "Exploration of a New Algorithm for Solving the
Traveling Salesman Problem," M. S. Thesis, 1963, M. I. T.

16. Lin, S., "Computer Solution of the Traveling Salesman Problem,"
Bell System Technical Journal, XLIV, 1965, pp. 2245-2269.

17. Croes, G. A., "A Method for Solving Traveling Salesman Problems,"
Operations Research, VI, 1958, pp. 791-812.

18. Miller, L. R., "Heuristic Algorithms for the Generalized Vehicle
Dispatch Problem," Ph.D. Thesis, 1970 University of Missouri­
Rolla.

61

VITA

Joseph Sidney Greene was born on February 29, 1932, at Morganton,

North Carolina. He graduated from The High School Division of Warren

Wilson College in June 1950. In June 1950 he entered the U. S. Navy

and served for four years in the Pacific. In May 1954 he entered

Southwest Missouri State earning the Bachelor of Science degree with

majors in Industrial Education and Mathematics in January 1957.

From January 1957 to June 1961 he was employed at The School of the

Ozarks as a teacher-administrator. During this period he attended

summer school at the University of Missouri-Columbia studying Adminis­

tration and Mathematics. In June 1960 he received the Master of

Education degree. In the summer of 1961 and academic year of 1961-

1962 he received N.S.F. fellowships in Mathematics at The University

of Missouri-Columbia and Oklahoma State University respectively.

In August 1963 he received the Master of Science Degree in Mathe­

matics at Oklahoma State University. In the summer of 1965 and

1968 he received N.S.F. fellowships in Computer Science at the

University of Missouri-Rolla. From 1963 to the present he has been

employed at Drury College as an Assistant Professor of Mathematics.

Drury granted him a sabbatical for further study in 1968-1969.

In May 1968, he formed Springfield Computer Consultants, Inc.,

which currently employs four people.

	A coordinate oriented algorithm for the traveling salesman problem
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069

