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ABSTRACT

While the original concept of the atom can be traced back to the ancient

Greeks, current knowledge of the atom is due largely to the study of atomic colli-

sions. The structure of atoms is now fairly well understood, but the understanding of

their interactions remains incomplete. In atomic collisions, the particles involved in

the collision interact through the Coulomb force, which is known exactly. However,

for Coulomb forces, the solution of the Schrödinger equation can only be obtained

analytically for two mutually interacting particles. As a result, when more than two

particles are involved, theory must resort to approximations. The validity of these

approximations is then determined by comparison with experiment.

Three new fully quantum-mechanical models that include all relevant two-

particle interactions are presented here, and used to study fully differential cross

sections (FDCS) of four-body collisions. In particular, this work focuses on electron-

impact excitation-ionization of helium, as well as single charge transfer, transfer-

excitation, and double charge transfer in proton + helium collisions. The calcula-

tions required for this work result in nine-dimensional integrals that are performed

numerically.

For excitation-ionization, the projectile-ejected electron interaction is found to

be important in correctly predicting the shape of the FDCS. However, the projectile-

atom and projectile-ion interactions play a much smaller role in this process. For

single charge transfer and transfer-excitation, the current model does a reasonable

job of predicting the shape and magnitude of experiment. However, for double charge

transfer, the theoretical results overestimate experiment by several orders of magni-

tude. For all of the charge transfer collisions, calculations show that the interaction

of the electrons within the target atom has little effect on the FDCS.
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1. INTRODUCTION

Atomic collisions have been studied since the early 20th century and have

played a crucial role in the development of physics. Beginning with the well-known

experiment by Geiger and Marsden [1], and corresponding calculation by Rutherford

[2], atomic collisions have been used to study the structure and interactions of atoms.

Aside from this purely scientific endeavor, atomic collisions also have many important

applications, including astrophysics, plasma physics, and biophysics.

Atomic collisions is a broad field of study, and the work presented here falls

into the narrow subset of four-body problems. In general, the four-body problem

will be defined as any collision involving the interaction of four atomic particles (i.e.

electrons, protons, nuclei and/or their antiparticles). One of the simplest four-body

problems is that of a single charged particle interacting with a two-electron atom or

ion. The possible outcomes of such a collision include excitation-ionization, double

excitation, and double ionization for either positively or negatively charged projec-

tiles, as well as single charge transfer, double charge transfer, transfer-excitation,

and transfer-ionization for positively charged projectiles. Other four-body collisions

include charged particle collisions with molecules, as well as atom-atom collisions.

This work will focus on excitation-ionization, transfer-excitation, and double charge

transfer.

For charged particles interacting through the Coulomb force, the motions of

the particles can only be described exactly for two particles. To describe the motion

of three or more mutually interacting particles, some approximation must be made.

Much work has been done on the three-body problem, and agreement between experi-

ment and theory is quite good for simple atoms [3–6]. A natural next step is to extend

the three-body models to four-body models. This has not been a simple task, and

current four-body models do not yet provide an accurate description of the physical
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process. In an effort to advance the overall understanding of four-body processes,

new theoretical models are presented here for the study of four specific reactions.

1.1. EXCITATION-IONIZATION

The first collision process to be discussed is electron impact excitation-ionization

of helium (hereafter referred to as EI). In EI, an incident electron collides with a he-

lium atom, causing one of the atomic electrons to be ionized and the other to be

promoted to an excited state of the ion. Over the last two decades, several experi-

mental and theoretical studies have been conducted for this process. A wide range of

kinematical conditions have been measured experimentally [7–13], and a number of

theories have been developed to examine how different treatments of the particles and

their interactions affect the fully differential cross sections (FDCS). A cross section is

considered fully differential if the position and momenta of all initial and final state

particles is known. The following is a summary of the existing theoretical models for

excitation-ionization, and some of the conclusions drawn from them [14].

Several models explore the role of the ground state helium atom wave function,

and the choice of this wave function has been shown to change both the magnitude

and shape of the FDCS [8, 15]. In particular, Balashov and Bodrenko [15] examined

the difference between a six parameter Hylleraas wave function and a 41 parameter

wave function by Tweed [16]; Dupré et al. [9] compared a Hartree-Fock wave function

and a multi-channel close-coupling wave function; and Bellm et al. [8] compared a 20

parameter Hylleraas wave function with the Pluvinage wave function. All of these

results show that there is little difference in the FDCS for the various wave functions

when the He+ ion is left in the ground state, but drastically different results when

the ion is left in an excited state. These calculations also show that it is important

to use a wave function that contains both radial and angular electron correlations.
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Correlation is defined as the mutual interaction of the atomic electrons in the initial

state.

Besides correlation in the ground state helium atom wave function, correlation

between the two outgoing electrons in the final state could also be important in the EI

process. Franz and Altick [17] explicitly included the Coulomb interaction between

the two outgoing electrons in their final state wave function, and found improved

agreement with experiment. Kheifets et al. [11] also found improved agreement when

including final state correlations using a coupled-channel approach. In both cases,

the inclusion of additional correlation in the final state wave function produced a shift

toward smaller angles in the recoil peak and larger angles in the binary peak [11,17,18],

which is consistent with what one would expect from the mutual repulsion of the two

electrons. The recoil peak is a result of the electron being ejected in the backward

direction, and the the binary peak is a result of the electron being ejected in the

forward direction. The results of Franz and Altick [17] and Kheifets et al. [11] show

that an accurate prediction of the location of the binary and recoil peak requires the

inclusion of final state correlations.

Obviously, the ejected electron is an active participant in these final state cor-

relations, and several different treatments of the ejected electron-He+ ion interaction

also have been explored. Dupré et al. [9] used an orthogonalized Coulomb wave in the

field of the residual ion; Franz and Altick [17,19], Chen and Madison [20], and Bellm

et al. [8] used a Hartree-Fock distorted wave; Kheifets et al. [11, 21], Marchalant et

al. [12, 22], Balashov and Bodrenko [15], and Sakhelashvili et al. [10] used a close-

coupling approach; and Kheifets et al. [21], Fang and Bartschat [23], Sakhelashvili et

al. [10], and Bellm et al. [7, 8] used an R-Matrix treatment. It is important to point

out that the close-coupling and R-Matrix treatments of the ejected electron should

yield the same results, as long as both of the expansions have converged [21]. How-

ever, when relatively few states are used in the expansion, significant discrepancies
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exist between the two methods, with more states leading to better results [11]. For

larger ejected electron energies, all of these methods yield similar results, but dis-

crepancies appear when the energy of the ejected electron becomes less than about

10 eV. Currently, there is no single treatment of the ejected electron that leads to

satisfactory agreement with experiment for all of the measurements.

Most of the models mentioned above would typically be called first order the-

ories, meaning that they are first order in the perturbation. The sensitivity of the

FDCS to changes in the initial and final state wave functions for these first order treat-

ments suggests that a second order theory may be needed to more accurately treat

this problem [9, 24]. Several second order theories have been developed, including

calculations by Franz and Altick [19], Marchalant et al. [12], Fang and Bartschat [23],

Sakhelashvili et al. [10], Chen and Madison [20], and Bellm et al. [7, 8].

The first thing to note about the second order theories is that they all result

in improved agreement with experiment over their analogous first order counterparts.

This is to be expected since two interactions are required to get two atomic electrons

to change state, implying that a second order theory should be better. The second

thing to note is that all second order theories produce an increase in the recoil peak

compared to the corresponding first order theories.

It should be pointed out that the terms ‘first order’ and ‘second order’ can

be misleading if not properly defined. All of the previous ‘first order’ calculations

include the interaction between the projectile electron and the two atomic electrons

to first order, and similarly, all of the second order theories include this interaction

to second order. However, it is possible to have a first order model that includes

certain interactions to higher order. For example, any physics contained in the wave

function is automatically treated to all orders of perturbation theory.

While the inclusion of second order effects in the calculations does improve

agreement with experiment, there are still large discrepancies between experiment
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and theory. In particular, the second order theories do not predict the proper angular

location for the binary and recoil lobes [10, 12, 20, 22], and there are problems with

the shape and absolute magnitude of the FDCS [12,20,22].

1.2. TRANSFER-EXCITATION

The second collision process to be discussed is charge transfer in proton +

helium collisions with simultaneous excitation of the He+ ion (hereafter referred to

as transfer-excitation, TE). Here, an incident proton collides with a helium atom,

captures a single electron, and leaves the collision as a neutral ground state hydrogen

atom. The remaining electron in the He+ ion is left in an arbitrary excited state.

Unlike the EI, TE will occur only with a positively charged projectile, typically a

proton or other heavy ion.

The specific process of TE has been studied very little, but the similar process

of charge transfer without excitation (or single capture, SC) has been studied a great

deal [25–164], typically in the form of total cross sections. Both single and double

charge transfer (discussed in the next section) have applications for plasmas [43,

165], low wavelength lasers [165], stellar atmospheres, proton auroras [47], and most

commonly thermonuclear fusion [43–46,165].

The first theoretical model for charge transfer was developed by Thomas [25]

in 1927 for alpha particle collisions with hydrogen, and was strictly a classical calcu-

lation. Thomas’s model for charge transfer consisted of a two-step process. The first

step is a close collision between the projectile and the bound electron. This causes the

electron to scatter towards the nucleus with the speed of the incident projectile. The

second step is a close collision between the electron and the target nucleus, sending

the electron out in the same direction, and with the same speed, as the scattered

projectile, resulting in capture. This mechanism leads to the presence of what is now

known as the Thomas peak in the differential cross section.
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The year after Thomas’s calculation, Oppenheimer [26] performed the first

quantum mechanical calculation for charge transfer, followed two years later by

Brinkman and Kramers [29]. Their model would later become known as the OBK

approximation. In the OBK approximation, the projectile is treated as a plane wave

in both the initial and final states, and only the interaction between the projectile and

the atomic electron is included. The projectile-nuclear interaction is ignored based

on the assumption that this term only contributes due to the nonorthogonality of the

initial and final state wave functions [26]. The OBK calculation yielded results that

were at least a factor of four too large [30], and nearly fifteen years passed before

Jackson and Schiff [30] (hereafter referred to as JS) performed a calculation using the

full interaction potential, including the projectile-nuclear term.

The JS results agreed with experiment much better than the OBK results, and

correctly predicted the magnitude [30, 48] of the cross section. Since the OBK and

JS models were introduced, much discussion has centered around the inclusion of the

projectile-nuclear term. It has been shown by Belkić and Salin [34] that including

the projectile-nuclear term in the perturbation improves agreement with experiment,

particularly at large angles. When this interaction is ignored, the differential cross

section drops off much more quickly than when it is included. This can be attributed

to the idea that scattering of the projectile through a large angle is typically a re-

sult of scattering from the nucleus. Classically, this is analogous to small impact

parameter scattering, where the projectile penetrates the electron cloud, and scatters

elastically from the nucleus. It is now accepted that the projectile-nuclear term in

the perturbation needs to be included to accurately predict the magnitude of the

charge transfer cross section.

For single charge transfer, the use of hydrogen as a target is clearly the simplest

case to study, and it was nearly 30 years after Thomas’s proton + hydrogen calculation

before a calculation was done with a helium target. For helium, the problem can still
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be treated as a three-body process if it is assumed that the non-captured electron is

passive, and only serves to screen the nuclear charge. The first calculation for charge

transfer from helium was performed by Bransden, Dalgarno, and King [35] in 1954,

using the OBK approximation.

From this time forward, calculations for capture from helium were performed

almost exclusively using the independent electron model [35, 49–67]. In this model,

the two target electrons are treated independently, and no interaction between them is

included in the calculation. The few exceptions to this are a 1963 paper by Mapleton

[37], and a 1987 paper by Crothers and McCarroll [68]. The Mapleton paper uses

a six parameter Hylleraas wave function for the target helium atom, which includes

electron-electron correlation. Mapleton found that compared to a variational helium

wave function with no correlation, total cross sections calculated with a Hylleraas

wave function were smaller, particularly in the OBK approximation at high energy.

Crothers and McCarroll used a Pluvinage wave function, and similarly found that

including correlation lowered the magnitude of the total cross section.

The advances that were made within the independent electron model typically

involved the treatment of the projectile-target interaction. One such model is the

Continuum Distorted Wave (CDW) model, which includes the long-range Coulomb

interaction between the projectile and the captured electron in the initial state [70].

It also includes continuum intermediate states that satisfy the correct boundary con-

ditions [134].

Another common treatment of the projectile-target interaction is the Eikonal

approximation, which includes the distortion of the incident projectile wave func-

tion due to the target through the inclusion of a phase factor. Other models in-

clude the Static Brinkman-Kramers [50], Coulomb Brinkman-Kramers [71, 72], Bi-

nary Encounter [56, 73], Distorted Wave Born [40, 58, 74–76], Boundary Corrected

First Born [80–84, 166], Second Born [61, 62, 89–104], Strong Potential Born [77–79],
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Coulomb Born [83,86,88], and the Born Distorted Wave [63,85] approximations. All

are different approximations for treating the Coulomb boundary conditions. It has

been shown that neglect of Coulomb boundary conditions results in large discrepan-

cies between experiment and theory [38,39,82].

Within the three-body model, it is also possible to have capture to an excited

state, where the outgoing hydrogen atom is in an excited state. Oppenheimer [26]

was the first to show that total cross sections for capture to an excited state scale as

n−3. Thus, the cross section for capture to any state is simply 1.2 times the cross

section for capture to the ground state.

Most of the work done for charge transfer has involved total cross sections. A

much more stringent test of theory is the study of cross sections that are differential

in projectile scattering angle. For proton + hydrogen single charge transfer, the first

differential cross section calculations were performed by Bassel and Gerjuoy [40] in

1960. For proton + helium single charge transfer, differential cross sections were not

calculated until the late 1970s [50, 51]. In both cases, the collision was treated as a

three-body problem, with only the captured electron taking part in the reaction. A

very recent paper by Schöffler et al. [167] included electron correlation in the target

atom wave function, and found that the differential cross section is unaffected by the

inclusion of correlation.

In general, differential cross sections for proton + helium single charge transfer

decrease rapidly as the scattering angle increases, and typically exhibit a change in

slope between a scattering angle of 0.03◦ and 0.08◦. This change in slope represents

the boundary between small and large angle scattering. At small angles, the projectile

scattering is a result of scattering from the atomic electrons, whereas for large angles,

it is a result of nuclear scattering, as discussed above [51].

Relatively early in the theoretical study of charge transfer, second order calcu-

lations were performed [41,42,61,62,89–104]. For total cross sections, the second order
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terms were, surprisingly, the same magnitude as the first order terms. In fact, at pro-

jectile energies above a few MeV, the second order term dominates [89,91,92,98,104].

It has also been shown that the second order contributions become more important

as the charge of the target nucleus increases [95]. For differential cross sections,

first order theories predict a zero in the FDCS, but inclusion of second order terms

removes this zero. At high energies, second order theories also introduce a peak in

the differential cross section at 0.5◦ corresponding to the Thomas mechanism. This

is not surprising since the two-step Thomas process should require a second order

theory for an adequate description.

In terms of projectile speed (or equivalently projectile energy), charge transfer

collisions generally divide into three regimes. The first involves collisions with a

projectile speed less than one atomic unit1. For this case, it is common to use a

two center molecular orbital approach. At the other end of the energy spectrum are

collisions with relativistic projectile speeds. The range in between is typically referred

to as the intermediate energy range, and for proton projectiles is about 25 keV to 2

MeV.

While TE is a similar process to SC, it presents additional theoretical chal-

lenges due to all four particles being actively involved in the collision. A theoretical

treatment of this process requires a full four-body model, and to date there is only

one existing model due to Kirchner [168, 169]. Kirchner’s model is a semi-classical,

non-perturbative impact parameter model that uses the independent electron model.

It has shown that electron correlation in the target atom is not important in predict-

ing the structure of the ratio of transfer-excitation times single excitation divided by

single capture times double excitation. This structure is attributed to a quantum

mechanical treatment of the projectile scattering. Experimental absolute differential

11 a.u. of speed corresponds to the speed of an electron in the first Bohr orbit of hydrogen.
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cross sections for TE show little structure themselves, while Kirchner’s theory pre-

dicts some structure. This predicted structure is not unique to the TE process, but

also occurs in single-transfer calculations [63,66] where experiment again shows little

structure.

1.3. DOUBLE ELECTRON CAPTURE

A process similar to single charge transfer and TE is that of double charge

transfer (or double capture, DC). It is the fourth collision process studied here, again

within the context of proton + helium collisions. In DC, the incident proton captures

both atomic electrons from the target helium atom and leaves the collision as an H−

ion. DC was first studied in the mid-to-late 1960s, but the vast majority of work

on this problem has been completed in the last 30 years. This is due mostly to the

difficulty of treating a full four-body problem, and the fact that DC cross sections

are typically 2 to 3 orders of magnitude smaller than SC, making measurement and

calculation difficult.

Like single capture, most work on DC has involved total cross sections, and

typically the resonant process of alpha particles, or more highly charged bare pro-

jectiles, incident on helium atoms. In these cases, DC to excited states is not small

compared to DC to the ground state [46, 106–108]. Thus, any calculation performed

would need to include capture to excited states in order to accurately compare with

experiment. In the case of proton collisions, the electrons are guaranteed to be cap-

tured to the ground state because the H− ion has no stable excited states. This

greatly reduces the amount of computation required.

Many theories have been applied to the DC process, and generally they are the

same theories used for the SC process (i.e. the Close Coupling Approximation, Classi-

cal Trajectory Monte Carlo, Two State Atomic Expansion, Coulomb Distorted Wave,
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OBK, Time-Dependent Hartree-Fock, Boundary Corrected First Born, Coulomb Dis-

torted Wave-Eikonal Initial State, and 4-Body Coulomb Distorted Wave). In DC,

the main focus of many of these studies is the role of electron-electron correlation.

Initially the independent electron (particle) model was used in order to simplify the

calculation [170]. In this model, any contribution to the DC cross section resulting

from one electron being captured due to its interaction with the other is ignored [109].

The independent electron model is typically valid for high target nuclear charge [110],

and high incident projectile velocity [105], where correlation is not important. How-

ever, since this is a true four-body problem, one would expect that some correlation

should be included.

The next step theoretically was the independent event model. In this model,

static correlation is included in the target wave function, but generally dynamic corre-

lation is not included. Dynamic correlation involves the inclusion of the Coulomb in-

teraction between the final state captured electron and the residual ion, and should re-

sult in structure in the differential cross section similar to a Thomas peak in SC [111].

Within these models, the probability of a two electron transition is approximated as

the product of two single electron transitions. The independent event model considers

DC to be the result of two successive single capture events [112].

Both the independent particle model and the independent event model ignore

any four-body effects which may be present. This spurred the development of several

full four-body models [43, 68, 109, 111, 171], all of which found that correlation had

little effect on the total or differential cross section. The inclusion of correlation

generally decreased the cross section by less than a factor of 3, but did not alter the

shape.

The first differential DC cross section was calculated in 1991 by Schuch et

al. [111] for α + helium resonant capture. Since then, only four other calculations of

differential cross sections for DC have been performed, all for α + helium collisions.
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Schuch et al. [111] and Gravielle and Miralglia [113] showed that electron correlation

is not very important; Belkić [114] showed that the Boundary Corrected First Born

approximation has a zero in the differential cross section at 0.112 mrad due to the

potential vanishing at this scattering angle; Schöffler et al. [167] found a minimum

in the DC cross section similar to that in the SC cross section when using the Born

Distorted Wave model; and Mart́ınez [106] showed that a double peak structure due

to a double scattering mechanism is observed when the energy is large enough.

At this point, only three sets of experimental differential cross section results

exist for non-resonant DC, and there is only one theoretical model. The experimental

results are those of Schulz et al. [172] for proton + helium, and Martinez et al. [173]

and Afrosimov et al. [174] for proton + argon. The theoretical results are those of

Martinez et al. [173] for proton + argon. Thus, the work presented here represents

the first theoretical differential cross sections for proton + helium DC.
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2. THEORY

2.1. GENERAL THEORY

The goal of any atomic collision experiment is to study a fundamentally quan-

tum mechanical process. From a theoretical perspective, the study of atomic colli-

sions amounts to solving the Schrödinger equation for a particular Hamiltonian with

particular boundary conditions2. The basic elements of scattering theory are pre-

sented in this section, and atomic units3 are used throughout, unless otherwise noted.

2.1.1. Potential Scattering.

2.1.1.1. Separation of the Center of Mass Motion. Consider the

interaction of two non-relativistic, spinless, charged particles, A and B, with masses

mA and mB, coordinates ~rA and ~rB, and momenta ~pA and ~pB. Assuming that the

interaction potential depends only on the relative distance r =| ~rA− ~rB | between A

and B, the corresponding Hamiltonian is

H =
−1

2mA

∇2
A +

−1

2mB

∇2
B + V (r) . (1)

The center of mass vector for A and B is defined as

~R =
mA~rA + mB~rB

M
, (2)

where M = mA + mB. Using equation (2) and the relative coordinate ~r, the Hamil-

tonian from equation (1) can then be written as

H =
−1

2M
∇2

R +
−1

2µ
∇2

r + V (r) , (3)

where µ = mAmB/(mA + mB) is the reduced mass.

2The derivations in this section closely follow those of [175].
3See Appendix A for a list of atomic units.



14

Now, the wave function satisfying Schrödinger’s equation for the Hamiltonian

in equation (3) can be written as

Ψ(~R,~r) = χ(~R)φ(~r), (4)

where χ(~R) is the wave function for the center of mass motion, and φ(~r) is the wave

function for the relative motion of A and B. These wave functions satisfy

−1

2M
∇2

Rχ(~R) = ECMχ(~R) (5)

and [−1

2µ
∇2

r + V (r)

]
φ(r) = Erelφ(r). (6)

The total energy can then be written as E = ECM +Erel. Because the center of

mass of the system is moving at a constant velocity, a transformation to the reference

frame where the origin is located at the center of mass can be made. This allows for

the motion of the center of mass to be neglected, and only solutions to equation (6)

are needed.

2.1.1.2. The Scattering Amplitude. Since V (r) does not depend on

time, the eigenstates of the Schrödinger equation can be written as

Ψ (~r, t) = ψ(~r)e−iErelt, (7)

where the total kinetic energy in the center of mass frame can be expressed as

Erel = k2/2µ. Note that, ki = kf = k for potential scattering, where ~ki is the

incident wavevector and ~kf is the scattered wavevector. Thus, the time-independent

Schrödinger equation can be written as

Hψ(~r) = Erelψ(~r). (8)
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Applying the substitution U(r) = 2µV (r) gives the following differential Schrödinger

equation
[∇2

r + k2 − U(r)
]
ψ(~r) = 0. (9)

The solution to this equation must asymptotically satisfy the following boundary

condition4 for large r

ψ (~r) → ψI + ψSC (10)

→ N

[
ei~ki·~r +

eikr

r
f(k, θ, ϕ)

]
,

where the first term represents an incoming plane wave and the second term is an

outgoing spherical wave that has been scattered from the target. The quantity N is

a normalization constant, and θ and ϕ are spherical polar coordinates corresponding

to the direction k̂f . The function f(k, θ, ϕ) is known as the scattering amplitude,

and its determination yields the complete solution to the Schrödinger equation.

To find an expression for f(k, θ, ϕ), it is useful to write equation (9) in integral

form. Rearranging equation (9) and putting in the explicit wavevector dependence

gives
[∇2

r + k2
]
ψ~ki

(~r) = U(r)ψ~ki
(~r), (11)

where the term on the right hand side can now be considered an inhomogeneous

source term. The general solution to this equation is

ψ~ki
(~r) = β~ki

(~r) +

∫
G0(k, ~r, ~r ′)U(r′)ψ~ki

(~r ′)d3r′, (12)

4This solution holds only for potentials that approach zero faster than r−1, i.e. not the Coulomb
potential.
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which is known as the Lippmann-Schwinger equation. The term β~ki
(~r) is a solution

to the homogenous equation [∇2
r + k2] β~ki

(~r) = 0. It is simply a plane wave given by

β~ki
(~r) =

ei~ki·~r

(2π)3/2
, (13)

and G0(k, ~r, ~r ′) is the Green’s function satisfying

[∇2
r + k2

]
G0(k, ~r, ~r ′) = δ(~r − ~r ′). (14)

To determine the Green’s function, it is useful to write the Dirac delta function in its

integral form,

δ(~r − ~r ′) =
1

(2π)3

∫
ei~k′·(~r−~r ′)d3k′. (15)

It is also helpful to introduce the Fourier transform of the Green’s function g0(k,~k′, ~r ′)

so that G0(k, ~r, ~r ′) can be written as

G0(k, ~r, ~r ′) =
1

(2π)3

∫
g0(k,~k′, ~r ′)ei~k′·~rd3k′. (16)

The explicit form of g0(k,~k′, ~r ′) is

g0(k,~k′, ~r ′) =
e−i~k′·~r ′

k2 − k′2
. (17)

By combining equations (16) and (17) and performing the appropriate integrals in

the complex plane, the Green’s function corresponding to the correct asymptotic

boundary condition (10) is found to be

G
(+)
0 (k, ~r, ~r ′) = − 1

4π

eik|~r−~r ′|

| ~r − ~r ′ | , (18)

where the (+) denotes the outgoing wave nature.
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It is now necessary to compare the asymptotic form of equation (12) with

equation (10). The asymptotic form of equation (12) for an outgoing spherical wave

is given by

ψ
(+)
~ki

(~r) → ei~ki·~r

(2π)3/2
− 1

4π

eikr

r

∫
e−i~kf ·~r ′

U(r′)ψ(+)
~ki

(~r ′)d3r′. (19)

By comparing equations (19) and (10), and using U(r) = 2µV (r), the scattering

amplitude can now be written as

f(k, θ, ϕ) = −(2π)3/2

4π

∫
e−i~kf ·~r ′

U(r′)ψ(+)
~ki

(~r ′)d3r′ (20)

= −(2π)2µ〈β~kf
| V | ψ(+)

~ki
〉, (21)

which clearly represents the amplitude for a transition from a state ψ
(+)
~ki

to β~kf
through

the interaction V .

2.1.1.3. Alternate Form of the Scattering Amplitude. The form of the

scattering amplitude in equation (21) is not the only representation. An alternate

integral representation of the scattering amplitude can also be derived by writing the

Lippmann-Schwinger equation (12) as

ψ
(+)
~ki

(~r) = β~ki
(~r) + ψ(+)

sc (~r), (22)

where the solution to the homogenous equation β~ki
(~r) is again given by equation (13),

and ψ
(+)
sc (~r) satisfies the inhomogeneous equation

[∇2
r + k2 − U(r)

]
ψ(+)

sc (~r) = U (r) β~ki
(~r). (23)



18

Let G(+)(k, ~r, ~r ′) be the total Green’s function that satisfies the equation

[∇2
r + k2 − U(r)

]
G(+)(k, ~r, ~r ′) = δ(~r − ~r ′). (24)

Then, the outgoing spherical wave can be written as

ψ(+)
sc (~r) =

∫
G(+)(k, ~r, ~r ′)U(r′)β~ki

(~r ′)d3r′. (25)

In terms of Dirac notation, equation (12) can be written as

| ψ(+)
~ki
〉 =| β~ki

〉+ G
(+)
0 U | ψ(+)

~ki
〉. (26)

Noting that G
(+)
0 and G(+) are related by

G(+) = G
(+)
0

(
1 + UG(+)

)
, (27)

the combination of equations (22) and (25) gives

| ψ(+)
~ki
〉 =| β~ki

〉+ G(+)U | β~ki
〉. (28)

Recall that this is the wave function corresponding to an incident plane wave plus an

outgoing spherical wave with incident projectile wavevector ~ki. Then, substitution

of equation (28) into the scattering amplitude (21) gives

f(k, θ, ϕ) = −2π2〈β~kf
| [U + UG(+)U

] | β~ki
〉. (29)

It is now useful to note that the eigenfunction of H corresponding to an inci-

dent plane wave plus an incoming spherical wave with scattered projectile wavevector
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~kf is given by

| ψ(−)
~kf
〉 =| β~kf

〉+ G(−)U | β~kf
〉, (30)

where

G(−) = G(+)†. (31)

Writing equation (29) as two terms, and substituting the adjoint of equation (30) into

the second term gives

f(k, θ, ϕ) = −2π2〈ψ(−)
~kf

| U | β~ki
〉 (32)

= −4π2µ〈ψ(−)
~kf

| V | β~ki
〉 (33)

Equations (21) and (33) are two alternative forms for the scattering amplitude. The

form given by equation (21) contains a plane wave representation for the scattered

projectile, and an outgoing spherical wave for the incoming projectile, with the in-

teraction between the two particles represented by V . On the other hand, the form

given by equation (33) contains a plane wave representation for the incident particle,

an incoming spherical wave for the scattered projectile, and the same interaction V

between the two particles.

2.1.2. Coulomb Scattering. It was mentioned that the boundary condition

of equation (10) only holds for potentials approaching zero faster than r−1. The

question remains of what to do in the case of Coulomb scattering, where

V ∼ 1

r
. (34)
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By writing the Schrödinger equation for a Coulomb potential in parabolic coordinates,

the solution can then be written as

ψcw (~r) =
e−πγ/2

(2π)3/2
ei~k·~rΓ (1 + iγ)1 F1(−iγ, 1; ikr − i~k · ~r), (35)

where 1F1(−iγ, 1; ikr − i~k · ~r) is a confluent hypergeometric function and Γ (1 + iγ)

is the gamma function. This solution is known as a Coulomb wave. The quantity γ

is the Sommerfeld parameter, and is given by

γ =
ZAZB

v
, (36)

where ZA and ZB are the charges of the two particles, and v is their relative speed.

The asymptotic form of the Coulomb wave can be written to first order as

ψcw (~r) → 1

(2π)3/2

[
eikzeiγ log(kr−~k·~r) + fcw (θ)

eikre−iγ log(2kr)

r

]
, (37)

where

fcw (θ) = −γ
Γ (1 + iγ)

Γ (1− iγ)

e−iγ log(sin2 θ
2)

2k sin2 θ
2

. (38)

This can again be interpreted as an incident plane wave plus an outgoing spherical

wave. However, these waves have now been modified by phase factors that account

for the Coulomb interaction.

2.1.3. Derivation of the T-Matrix. Let H be the Hamiltonian of a

particular system, and let the possible ways of splitting H be called arrangement

channels. Then, for a given channel c,

H = Hc + Vc. (39)
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Let Φcγ be the eigenstates of Hc such that

HcΦcγ = EcγΦcγ. (40)

Here, γ contains all the information about the particles when they are in the asymp-

totic region of channel c. In scattering problems, it is typical to split the Hamiltonian

into either the initial or final arrangement channel. For the initial channel,

H = Hi + Vi, (41)

and for the final channel

H = Hf + Vf . (42)

The corresponding eigenstates of Hi, denoted by Φiα, satisfy

HiΦiα = EiΦiα, (43)

where the subscript α represents the initial state of the system in arrangement channel

i. Similarly, the eigenstates Φfβ of Hf , satisfy

HfΦfβ = EfΦfβ, (44)

where β represents the final state of the system in arrangement channel f . To de-

rive the T-Matrix, it is convenient to begin with a Hamiltonian that has only one

arrangement channel,

H = H0 + V, (45)

where H0 is the unperturbed Hamiltonian that governs the particles when they are

far apart, and V is the interaction of the particles. Let the eigenstates of the full
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Hamiltonian be Ψα with corresponding energies Eα, such that

HΨα = EαΨα. (46)

Let the eigenstates of H0 be denoted by Φα, Φβ, · · ·. These states are orthonormal,

〈Φβ | Φα〉 = δαβ, (47)

and form a complete set
∑

α

| Φα〉〈Φα |= 1. (48)

For this Hamiltonian, there exists the unitary evolution operator U(t, t′) in the inter-

action picture given by

U(t, t′) = eiH0te−iH(t−t′)e−iH0t′ . (49)

The Møller operators, which convert an eigenstate governed by H0 into an

eigenstate of H at t = 0, are defined as

Ω(±) = U (0,∓∞) (50)

and

Ω(±)† = U (∓∞, 0) . (51)

Then, the eigenstates of the full Hamiltonian can be expressed in terms of the eigen-

states of the unperturbed Hamiltonian and the Møller operators as

| Ψ(±)
α 〉 = Ω(±) | Φα〉. (52)
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This implies that

〈Φβ | Ω± | Φα〉 = 〈Φβ | Ψα〉. (53)

Note that the Møller operators of equation (50) can now be rewritten as5

Ω(±) = lim
t→∓∞

U (0, t) (54)

= lim
t→∓∞

eiHte−iH0t (55)

= lim
ε→0+

∓ε

∫ ∓∞

0

e±εteiHte−iH0tdt. (56)

Using the completeness relation of equation (48), the Møller operators can then be

written as

Ω(±) = lim
ε→0+

∓ε
∑

α

∫ ∓∞

0

e±εeiHt | Φα〉〈Φα | e−iH0tdt (57)

= lim
ε→0+

∓ε
∑

α

∫ ∓∞

0

e±εeiHt | Φα〉〈Φα | e−iEαtdt (58)

= lim
ε→0+

∓ε
∑

α

∫ ∓∞

0

ei(H−Eα∓iε)t | Φα〉〈Φα | dt (59)

= lim
ε→0+

∑
α

±iε

Eα −H ± iε
| Φα〉〈Φα | . (60)

Changing the summation index to α′ and multiplying both sides by | Φα〉 gives

Ω(±) | Φα〉 = lim
ε→0+

∑

α′

±iε

Eα −H ± iε
| Φα〉δα,α′ , (61)

and finally,

| Ψ(±)
α 〉 = lim

ε→0+

±iε

Eα −H ± iε
| Φα〉. (62)

5The last step requires the limiting procedure [177], limt→−∞ F (t) =

limε→0 ε
∫ 0−∞ eεt′F (t′)dt′ and limt→∞ F (t) = limε→0 ε

∫∞
0 e−εt′F (t′)dt′.
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It is now useful to note some relationships using the Møller operators. In

general,

Ω(±)†Ω(±) = 1 =
∑

α

| Φα〉〈Φα | (63)

Ω(±)Ω(±)† =
∑

α

| Ψ(±)
α 〉〈Ψ(±)

α |6= 1. (64)

Note that the states | Ψ
(±)
α 〉 do not form a compete set because they do not include

bound states. Letting | ΨB〉 denote a bound state leads to

∑
α

| Ψ(±)
α 〉〈Ψ(±)

α | +
∑
B

| ΨB〉〈ΨB |= 1. (65)

Therefore,

Ω(±)Ω(±)† = 1−
∑
B

| ΨB〉〈ΨB | . (66)

If the operator Λ =
∑

B | ΨB〉〈ΨB | is introduced as the projection operator onto

bound states of H, then

Ω(±)Ω(±)† = 1− Λ. (67)

It can then be concluded that the Møller operators are only unitary if H and H0 have

no bound states. Also,

HΩ(±) = Ω(±)H0 (68)

Ω(±)†H = H0Ω
(±)† (69)

Ω(±)†Λ = 0. (70)

It is useful to generalize the Møller operators to the case where H can be split

into several possible arrangement channels. Let

Λc =
∑

γ

| Φcγ〉〈Φcγ | (71)
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be the channel projection operator for channel c, where the sum over γ represents a

sum over states within channel c. The Møller operators associated with channel c

are defined as

Ω(±)
c = Uc (0,∓∞) Λc, (72)

and

Ω(±)†
c = ΛcUc (∓∞, 0) . (73)

Then, the eigenstates of H at t = 0 are

| Ψ(±)
cγ 〉 = Ω(±)

c | Φcγ〉, (74)

and specifically for the initial and final arrangement channels,

| Ψ(±)
iα 〉 = Ω

(±)
i | Φiα〉 (75)

and

| Ψ(±)
fβ 〉 = Ω

(±)
f | Φfβ〉. (76)

By generalizing equations (49) through (70), in general

Ω(±)†
c Ω(±)

c = Λc. (77)

However, unlike equation (47), in general for two different arrangement channels c

and c′,

〈Φcγ|Φc′γ′〉 6= 0, (78)

and specifically

〈Φfβ|Φiα〉 6= 0. (79)
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This implies that the eigenstates of two different Hamiltonians, Hi and Hf , are not

necessarily orthogonal.

However, it can be concluded that

〈Ψ(±)
b |Ψ(±)

a 〉 = δba (80)

since solutions of the full Hamiltonian are orthonormal. Further generalizations show

that

ΛcΛc′ 6= 0 (81)

Ω
(±)†

c′ Ω(±)
c = Λcδcc′ (82)

∑
c

Ω(±)
c Ω(±)†

c = 1− Λ (83)

HΩ(±)
c = Ω(±)

c Hc (84)

Ω
(±)†

c′ Λ = 0. (85)

Then, in general,

| Ψ(±)
cγ 〉 = lim

ε→0+

±iε

Ecγ −H ± iε
| Φcγ〉. (86)

Recalling that Hc | Φcγ〉 = Ecγ | Φcγ〉 and H = Hc + Vc, a little mathematical

manipulation gives

| Ψ(±)
cγ 〉 =| Φcγ〉+ lim

ε→0+

Vc

Ecγ −H ± iε
| Φcγ〉. (87)
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Recall from potential scattering the form of the scattering amplitude (equation

(21) or (33)) is

f(k, θ, ϕ) = − µ

2π
〈Φ~kf

| V | ψ(+)
~ki
〉 (88)

= − µ

2π
〈Φ~kf

| V Ω(+) | Φ~ki
〉. (89)

Finally, the transition operator T can be defined as

T = V Ω(±), (90)

with matrix elements given by

Tfi = 〈Φ~kf
| V Ω(±) | Φ~ki

〉. (91)

Now, rewriting equation (87) for the final channel gives

| Ψ(±)
~kf
〉 =| Φ~kf

〉+ lim
ε→0+

Vf

Ef −H ± iε
| Φ~kf

〉. (92)

Multiplying both sides by 〈Φkf
| gives

Ω
(±)
f = 1 + lim

ε→0+

1

Ef −H ± iε
Vf . (93)

Thus,

T = Vi + lim
ε→0+

Vf
1

Ef −H ± iε
Vi. (94)
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Consider the matrix elements Tfi.

Tfi = 〈Φ~kf
| Vi | Φ~ki

〉+ 〈Φ~kf
| Vf

1

Ef −H ± iε
Vi | Φ~ki

〉 (95)

= 〈Φ~kf
|
(

1 + Vf
1

Ef −H ± iε

)
Vi | Φ~ki

〉 (96)

Tfi = 〈Ψ(−)
~kf

| Vi | Φ~ki
〉 (97)

This is the prior form of the T-Matrix. Analogously, the post form can be written as

Tfi = 〈Φ~kf
| Vf | Ψ(+)

~ki
〉. (98)

Note that if the exact scattering wave functions are used, the post and prior forms of

the T-Matrix are equivalent.

2.1.4. Two Potential Formulation. Recall from equations (97) and (98)

that the T-matrix can be written in either the post or prior form as

Tfi = 〈Ψ(−)
~kf

| Vi | Φ~ki
〉 = 〈Φ~kf

| Vf | Ψ(+)
~ki
〉. (99)

In the two potential formulation, the initial or final potential (Vi or Vf ) is written as

the sum of two potentials such that

Vi = Ui + Wi (100)

and

Vf = Uf + Wf . (101)

Then,

Tfi = 〈Ψ(−)
~kf

| Ui + Wi | Φ~ki
〉 = 〈Φ~kf

| Uf + Wf | Ψ(+)
~ki
〉. (102)
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Focusing on the post form, 〈Φ~kf
| can be written in terms of distorted waves, 〈χ(−)

~kf
|.

〈Φ~kf
|= 〈χ(−)

~kf
| −〈Φ~kf

| Uf
1

Ef −Hf + iε
, (103)

where Hf = Hf + Uf . The distorted waves are continuum waves that have been

distorted by the potential Uf , and are solutions of the Lippmann-Schwinger equation

| χ(−)
~kf
〉 =| Φ~kf

〉+
1

Ef −Hf − iε
Uf | Φ~kf

〉. (104)

Combining equations (102) and (103) gives the post form of the T-Matrix,

T post
fi = 〈χ(−)

~kf
| Uf + Wf | Ψ(+)

~ki
〉 − 〈Φ~kf

| Uf
1

Ef −Hf + iε
(Uf + Wf ) | Ψ(+)

~ki
〉 (105)

= 〈χ(−)
~kf

| Vi −Wf | Φ~ki
〉+ 〈χ(−)

~kf
| Wf | Ψ(+)

~ki
〉. (106)

Similarly the prior form of the T-Matrix is given by

T prior
fi = 〈Φ~kf

| Vf −Wi | χ(+)
~ki
〉+ 〈Ψ(−)

~kf
| Wi | χ(+)

~ki
〉, (107)

where | χ(+)
~ki
〉 are now distorted waves for the potential Ui. Note that if Ui or Uf can

only cause elastic scattering, the first term in equations (106) and (107) is zero.

2.1.5. Differential Cross Sections. The differential cross section dσfi/dΩf

can be related to the squared magnitude of the T-matrix through a multiplicative

factor involving particle masses and momenta. This factor depends on the process

being studied, and can be derived using Fermi’s Golden Rule. For SC, TE, and DC,

the factor is the same, and derived below.

Consider Fermi’s Golden Rule for an incident projectile that is scattered from

a target atom with energy Ef into a solid angle dΩf . The transition rate is given by
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dωfi = 2π | Tfi |2 ρ(Ef ), (108)

where ρ(E1) is the density of final states. Then,

dσfi =
dωfi

Φ
, (109)

where Φ is the flux of the incident projectile. This can be written as the speed of

the incident particle times the number density n, or number of particles per volume,

Φ = vin. (110)

The number density is simply given by

n =| βi(~r1) |2, (111)

where βi(~r1) is the plane wave of equation (13). Then the flux becomes

Φ =
vi

(2π)3
. (112)

Combining equations (108) and (111) gives

dσfi =
dωfi(2π)3

vi

. (113)

The speed of the incident particle vi can be written as

vi =
ki

µpa

, (114)

where µpa is the reduced mass of the projectile and target atom. Then,

dσfi = (2π)4µpa

ki

| Tfi |2 ρ(Ef ), (115)
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and the density of final states is given by

ρ(Ef )dEf = k2
fdkfdΩf . (116)

The energy of the scattered projectile Ef can be written in terms of the momentum

of the scattered projectile and the reduced mass,

Ef =
k2

f

2µpi

, (117)

and therefore,

dEf =
kf

µpi

dkf . (118)

Combining equations (116) and (118) gives

ρ(Ef ) = µpikf . (119)

Then, the differential cross section for SC, TE, and DC becomes

dσfi

dΩf

= (2π)4µpaµpi
kf

ki

| Tfi |2 . (120)

A similar derivation for EI yields

d5σ

dΩpdΩedEe

= µpaµie
kfke

ki

| Tfi |2, (121)
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where dΩe is the solid angle into which the ejected electron is scattered, Ee is the

energy of the ejected electron, and ke is the wavevector of the ejected electron.

2.2. EXCITATION-IONIZATION

This section contains the theory for the models used in calculating FDCS for

electron-impact excitation-ionization of helium. Results using the models presented

here are shown in Section 3.1. For excitation-ionization, the FDCS as derived in

section 2.1.5 is given by

d5σ

dΩfdΩedEe

= µpaµie
kfke

ki

| Tfi |2 (122)

where µpa is the reduced mass of the projectile and the target atom, µie is the reduced

mass of the residual ion and electron, and ~ki (~kf ) is the wavevector of the initial

(scattered) projectile. It is differential in projectile solid angle, as well as ejected

electron solid angle and energy.

2.2.1. 4-Body Distorted Wave (4DW) Model. The prior form of

the T-Matrix (107) is evaluated for the 4DW model for electron-impact excitation-

ionization of helium. Because the distorting potential Ui causes only elastic scattering

in this case, the T-Matrix is given by

Tfi = 〈Ψ(−)
f | Wi | Ψi〉 = 〈Ψ(−)

f | Vi − Ui | Ψi〉, (123)

where

Vi =
ZpZnuc

r1

+
ZpZe

r12

+
ZpZe

r13

(124)

is the initial state projectile-atom interaction. Here, Zp, Znuc, and Ze are the charges

of the projectile, nucleus, and electron respectively, and r1, r12, and r13 are the
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magnitudes of the relative coordinates for the projectile-target nucleus and projectile-

target electrons (shown in figure 2.1).

Figure 2.1. Coordinate system for the projectile-helium atom system, in which r1, r12,
and r13 are the magnitudes of the relative coordinates of the projectile to
the helium nucleus and atomic electrons respectively.

The initial state wave function Ψi is given by

Ψi = χi(~r1)ξ (~r2, ~r3) . (125)

Here, χi(~r1) is a distorted wave for the incident projectile, which is a solution of

the Schrödinger equation for the distorting potential Ui. This distorting potential is

a spherically symmetric approximation to Vi. Therefore, the term Vi − Ui in (123)

represents the nonspherical part of the initial state projectile-atom interaction. The

term ξ (~r2, ~r3) is the ground state wave function for helium, which is given by a 20

term Hylleraas [176] wave function that includes both radial and angular correlations.

The final-state wave function Ψ
(−)
f is approximated by

Ψ
(−)
f = χf (~r1)χe (~r2) ϕnlm (~r3) C(γ,~k12, ~r12), (126)
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where for clarity electron 2 is labeled as the “slow” ejected electron and electron 3

as the remaining bound electron of the He+ ion. The two continuum distorted waves

χf (~r1) and χe(~r2) are solutions of the Schrödinger equation for the final state distort-

ing potential Uf , which is a spherically symmetric approximation for the potential of

the He+ ion. The term ϕnlm (~r3) is the hydrogenic wave function for the He+ ion, and

C(γ,~k12, ~r12) is the Coulomb distortion factor that accounts for the electron-electron

interaction between the two continuum electrons in the final state. This term is often

referred to as the “C-factor” or post collision interaction (PCI). It is exact, and is

given by

C(γ,~k12, ~r12) = e−πγ/2Γ(1 + iγ)1F1(−iγ, 1, i(k12r12 + ~k12 · ~r12)), (127)

where 1F1 is a confluent hypergeometric function and Γ (1 + iγ) is the gamma func-

tion. Here, γ = µpeZpZe/k12, where µpe is the reduced mass of the projectile and the

ejected electron and ~k12 is the relative momentum between the two outgoing electrons.

Because electrons are indistinguishable, it is necessary to make the final state

spatial wave function symmetric with respect to the two atomic electron coordinates.

Thus, for the 4DW calculations presented in section 3.1, the final state wave function

that is used is of the form

Ψsym
f = χf (~r1)

[
χe(~r2)ϕnlm(~r3)C(γ,~k12, ~r12) + χe(~r3)ϕnlm(~r2)C(γ,~k13, ~r13)

]
. (128)

In the 4DW T-matrix of equation (123), the interactions that are contained

to first order in perturbation theory are those in Vi − Ui (i.e. the nonspherical part

of the initial state projectile-atom interaction). Since any interaction contained in

the final state wave function is contained to all orders of perturbation theory, the

inclusion of the final state electron-electron Coulomb interaction in the wave function

ensures that PCI is included to all orders of perturbation theory. When one solves
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the Schrödinger equation for a distorting potential U , the physical effect contained

in the resulting wave function is elastic scattering from the spherically symmetric

atom (ion) represented by U . Consequently, using the He+ distorting potential Uf

to calculate the two final state continuum-electron wave functions guarantees that

elastic scattering of the continuum-electrons from the spherically symmetric distort-

ing potential Uf representing the ion is also contained to all orders of perturbation

theory. Similarly, the initial state distorted wave contains elastic scattering from the

spherically symmetric initial-state distorting potential Ui to all orders of perturbation

theory.

It is also important to note that the final state wave function (126) is an

asymptotically exact solution to the Schrödinger equation [178, 179]. For the three-

body problem, it has been shown that ‘asymptotic’ means for one particle to be

greater than about 2a0 from the other two, which can be arbitrarily close to each

other [180]. As a result, one would expect that the wave function (126) is also

accurate for relatively small separations of the four particles.

It has been observed for single ionization that orthogonalizing the ejected

electron wave function to the initial bound state wave function using Gram-Schmidt

orthogonalization normally improves agreement with experiment, although it is not

required by the theory [181]. Because simultaneous excitation-ionization involves

two active electrons, it is necessary to generalize the orthogonalization procedure

so that the final state wave function for the two active electrons χe(~r2)ϕnlm(~r3) is

made orthogonal to the initial state wave function for the two bound state electrons

ξ(~r2, ~r3). The four-body analogue to the three-body orthogonalization procedure gives

the following form for the final state orthogonalized wave function, which is used in

the results presented in Section 3.1:

Ψorth
f (~r2, ~r3) = χe(~r2)ϕnlm(~r3)− ξ(~r2, ~r3)

∫
χe(~r

′
2 )ϕnlm(~r ′

3 )ξ(~r ′
2 , ~r ′

3 )d~r ′
2 d~r ′

3 . (129)



36

2.2.2. First Born Approximation (FBA) Model. In addition to the

4DW model, an analogous calculation, which ignores all projectile-target interactions

while treating the two atomic electrons exactly the same, is presented in Section 3.1.

This approach is known as the first Born approximation (FBA) since the projectile

wave functions are now plane waves. The FBA T-Matrix is given by

Tfi = 〈Ψ(−)
f | Vi | Ψi〉 (130)

since the incident projectile wave function is a plane wave, and consequently Ui = 0.

The initial state projectile-atom interaction Vi is the same as in equation (124),

and the initial and final state wave functions are given by

Ψi = βi (~r1) ξ (~r2, ~r3) (131)

and

Ψf = βf (~r1) χe (~r2) ϕnlm (~r3) , (132)

where βi,f (~r1) is a plane wave for the initial (final) state projectile given by equation

(13). The helium atom wave function ξ (~r2, ~r3) is again a 20 term Hylleraas [176]

wave function, χe (~r2) is the distorted wave for the ejected electron calculated using

the potential Uf , and ϕnlm (~r3) is the hydrogenic wave function for the residual He+

ion. Note that the FBA model does not include PCI in the final state wave function,

while the 4DW model does. Results of the FBA model are presented in Section 3.1.

2.3. SINGLE CHARGE TRANSFER AND TRANSFER-EXCITATION

This section contains the theoretical model used in the calculation of FDCS

for SC and TE, the results of which are presented in Sections 3.2 and 3.3. The FDCS

for SC and TE is differential only in scattering angle, and as derived in Section 2.1.5,
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can be written as

dσ

dΩ
= (2π)4µpaµpi

kf

ki

| Tfi |2, (133)

where µpa is the reduced mass of the projectile and target atom, µpi is the reduced

mass of the projectile and residual ion, and ~ki (~kf ) is the wavevector of the incident

(scattered) projectile.

2.3.1. 4-Body Transfer-Excitation (4BTE) Model. Similar to the

4DW model, the 4BTE model uses the prior form of the transition matrix Tfi, which

is given by equation (123)

Tfi = 〈Ψ(−)
f | Wi | Ψi〉. (134)

The initial state wave function is given by

Ψi = χi
p(~Ri)ξHe(~r2, ~r3), (135)

where χi
p(~Ri) is the incident projectile wave function and ξHe(~r2, ~r3) is the ground-

state helium atom wave function. The final state wave function is given by

Ψ
(−)
f = χf

p(~Rf )φH(~r12)ψHe+(~r3), (136)

where χf
p(~Rf ) is the scattered hydrogen wave function, ψ

He+
(~r3) is the final state He+

wave function, and φH(~r12) is the outgoing hydrogen wave function. Both φH(~r12)

and ψHe+(~r3) are simply hydrogenic wave functions, and thus known exactly. For an

incident plane wave, Wi is simply the projectile-target interaction potential Vi, given

by equation (124)

Vi =
ZpZnuc

r1

+
ZpZe

r12

+
ZpZe

r13

. (137)

Again, the final state wave function has been properly symmetrized in the calcula-

tions, but the electrons have been labeled here for clarity.
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The calculations are performed in the center of mass frame, using the Jacobi

coodinates [182] shown in figures 2.2 and 2.3. In this coordinate system, ~Ri is the

Figure 2.2. Jacobi coordinate system for the projectile-helium atom system.

relative vector between the projectile and the center of mass of the helium atom, and

~Rf is the relative vector between the center of mass of the hydrogen atom and the

center of mass of the He+ ion. They are given by

~Ri = ~r1 − me

mα + 2me

(~r2 + ~r3) (138)

and

~Rf =
me~r2 + mp~r1

mp + me

− me

me + mα

~r3, (139)

where me, mα, and mp are the masses of the electron, alpha particle, and projectile

respectively. In the calculations presented in Section 3.3, two different wave functions

for the incident projectile, ground-state helium atom, and scattered projectile are

examined.
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Figure 2.3. Jacobi coordinate system for the hydrogen-helium ion system.

For the incident projectile wave function, either a plane wave given by

χi
p(~Ri) =

ei~ki·~Ri

(2π)3/2
(140)

or an Eikonal6 wave function [183] given by

χi
p(~Ri) =

ei~ki·~Ri

(2π)3/2
exp

[
i
Zp

vp

ln

(
(vpr1 − ~vp · ~r1)

Znuc

(vpr12 − ~vp · ~r12)(vpr13 − ~vp · ~r13)

)]
(141)

is used, where ~vp is the velocity of the incident projectile.

For the ground-state helium atom, either an analytic Hartree-Fock [184] wave

function or a 20-term Hylleraas [176] wave function is used. Again, the Hartree-Fock

wave function has no electron-electron correlation, while the Hylleraas wave function

contains both radial and angular correlation.

6For the Eikonal calculation, the post form of the T-matrix was evaluated. See Appendix C for
details.
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For the scattered projectile, either a plane wave given by

χf
p(~Rf ) =

ei~kf ·~Rf

(2π)3/2
(142)

or a Coulomb wave given by

χf
p(~Rf ) =

ei~kf ·~Rf

(2π)3/2
e−πγ/2Γ(1 + iγ)1F1(−iγ, 1; i(kfRf + ~kf · ~Rf )) (143)

is used, where γ =
ZpZHe+

vH
. The quantities Zp and ZHe+ are the electric charges of

the projectile and He+ ion; vH is the speed of the hydrogen atom. The FDCS for

single charge transfer without excitation can also be evaluated using the 4BTE model

by simply allowing the He+ ion to be left in the ground state. Results of the 4BTE

model for SC and TE are presented in Sections 3.2 and 3.3 respectively.

2.4. DOUBLE CHARGE TRANSFER

This section contains the theoretical model used in the calculation of FDCS

for DC, and the corresponding results are presented in Section 3.4.

2.4.1. 4-Body Double Capture (4BDC) Model. The theory for DC is

quite similar to that of SC or TE. Because the fully differential cross section for DC

is again differential only in scattering angle, it is given by equation (133), and the

corresponding T-Matrix is given by equation (123). The initial state wave function

is the same as that of TE and equation (135). However, the final state wave function

is now given by

Ψ
(−)
f = χf

p(~Rf )ψH−(~r12, ~r13), (144)

where ψH−(~r12, ~r13) is the wave function for the outgoing H− ion, and χf
p(~Rf ) is the

scattered projectile wave function. The calculation is again performed in the center of

mass frame, and the Jacobi coordinate ~Rf is now the relative vector between the alpha
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particle and the center of mass of the H− ion. Unlike SC or TE, it is now possible

to examine the effects of correlation in both the initial and final bound state wave

functions. Thus, in the calculations presented in Section 3.4, either a Variational

wave function [185] or 20 parameter Hylleraas [176] wave function is used for the

helium atom and H− ion. The initial projectile is treated as a plane wave, and the

final projectile is treated as a Coulomb wave, where γ =
ZH−ZHe++

vH−
, with ZH− and

ZHe++ being the charges of the H− and He++ ions, and vH− being the speed of the

H− ion.
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3. RESULTS

3.1. EXCITATION-IONIZATION

Recall from Section 1.1 the process of EI, in which an incident electron collides

with a helium atom, causing one of the atomic electrons to be ionized and the other

to be promoted to an excited state of the ion. Results from the 4DW and FBA

models of Sections 2.2.1 and 2.2.2 are compared to two different sets of experimental

results, which involve excitation and ionization of the He+ ion to either the 2p state

or to the n = 2 or n = 3 states. In both cases, the individual angular momenta are

not determined, and the FDCS contributions from the individual magnetic substates

must be summed to allow for direct comparison with experiment.

3.1.1. Cross Normalized Results. FDCS for EI are presented in this

section for a given incident projectile energy E0, scattering angle θa, and ejected

electron energy E2 as a function of the ejected electron angle θe. The results in this

section are presented for an incident projectile energy of 500 eV and two ejected

electron energies of 3 eV and 10 eV. For each ejected electron energy, two different

scattering angles of approximately 4◦ and 29◦ are shown. The experimental results

are not absolute, and therefore must be normalized to one of the theories. However,

the cross normalization between measurements is fixed, so only one normalization can

be used for all four data sets. The experiment has been normalized to the 4DW model

at the binary peak for E2 = 3 eV and θa = 4.1◦, which is the largest cross section.

Figure 3.1 shows both the 4DW and FBA calculations for excitation-ionization of

helium with the ion left in the 2p state as a function of ejected electron angle θe

[14]. The calculations are compared to the experimental results of Sakhelashvili et

al. [10] and a second Born R-Matrix with pseudostates calculation (DWB2-RMPS) by

Bartschat [10]. The DWB2-RMPS calculation has been divided by 1.8 to normalize

it to the same point and provide the same shape comparison as in reference [10].
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Figure 3.1. Theoretical FDCS for electron-impact excitation-ionization of helium as
a function of ejected electron angle θe. Results of the 4DW, FBA, and
DWB2-RMPS (divided by 1.8) models are compared to the relative ex-
perimental results of [10]. The incident energy is 500 eV. Experimental
results have been normalized to the binary peak of the 4DW calculation
at E2 = 3 eV and θa = 4.1◦

A comparison of the 4DW and the FBA calculations reveals what effect the

treatment of the projectile has on the FDCS. Figure 3.1 shows that the 4DW calcu-

lation predicts a larger recoil peak (peak near 220◦) than the FBA, which is shifted

slightly to smaller ejected electron angles. The 4DW also predicts a larger binary

peak, which, in all but one case, has been shifted to larger ejected electron angles.
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The observed angular shifts are exactly what one would expect from the final state

PCI repulsion between the two continuum electrons.

In comparison with experiment, the 4DW does a reasonably good job of pre-

dicting the binary peaks for the small projectile scattering angles, but drastically

underestimates the binary peak for large projectile scattering angles. Also, the 4DW

overestimates the recoil peak for small scattering angles, while there is at least qual-

itative agreement for the recoil peak at large scattering angles.

Overall, the DWB2-RMPS results are in better agreement with the shape of

the experimental data than the 4DW. The two theories differ in the treatment of the

initial state interactions, ejected-electron-ion interaction, and PCI. The differences

are: (1) the 4DW treats initial state interactions to first order and the DWB2-RMPS

treats initial state interactions to second order; (2) the 4DW treats the ejected electron

as a distorted wave, while the DWB2-RMPS treats the ejected electron as a close

coupling wave function; and (3) the 4DW treats PCI to all orders of perturbation

theory, while the DWB2-RMPS ignores PCI. Clearly, the shape of the FDCS is more

sensitive to either initial state interactions or ejected-electron-ion interactions than

to a proper treatment of PCI, at least for these kinematics. However, many of these

conclusions could be affected by the choice of the normalization factor, and agreement

with experiment could change drastically if one chose to normalize to something other

than the largest cross sections. Thus, it is useful to study absolute experimental

results.

3.1.2. Absolute Ratio Results. In this section, results are presented

for ratios of the FDCS of leaving the ion in the n = 1 state divided by the FDCS of

leaving the ion in the n = 2 (n = 3) state. Two different energy sharing cases are

shown. In the case of symmetric energy sharing, the scattered electron and the ejected

electron have the same energy. For asymmetric energy sharing, the two electrons have

different energies. Figure 3.2 shows the experimental FDCS ratios of Bellm et al. [7,8]
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along with the 4DW, FBA, and DWB2-RMPS calculations [14]. The top half of the

figure shows results for asymmetric energy sharing with a scattered projectile energy

of E1 = 200 eV and an ejected electron energy of E2 = 44 eV. The bottom half of

the figure shows symmetric energy sharing with both final state continuum electrons

having the same energy, i.e. E1 = E2 = 44 eV.

The first column in figure 3.2 shows the FDCS for ionization without excitation

divided by the FDCS for ionization with excitation to the n = 2 state. Similarly, the

second column shows the FDCS for leaving ion in the n = 1 state divided by the

FDCS for leaving the ion in the n = 3 state. For the asymmetric energy sharing, the

FBA model has been divided by 5, and the 4DW model has been divided by 3. For

the symmetric energy sharing, the FBA has been divided by 5, while the 4DW has

only been divided by 2. The DWB2-RMPS model, however, has no normalization

factors. None of the calculations are in excellent agreement with experiment, but the

4DW provides probably the best agreement with the shape of the experimental data,

while the DWB2-RMPS clearly has the best magnitude agreement.

Figure 3.3 shows the experimental results of Bellm et al. [186] and the 4DW,

FBA, and DWB2-RMPS calculations [186]. The first column in this figure also shows

the FDCS for ionization without excitation divided by the FDCS for ionization with

excitation to the n = 2 state, and the second column shows the FDCS for leaving the

ion in the n = 1 state divided by the FDCS for leaving the ion in the n = 3 state.

These results are for asymmetric energy with a scattered projectile energy of 150 eV

and an ejected electron energy of 20 eV.

A comparison of the 4DW and FBA models shows that for both asymmetric

and symmetric energy sharing, a more accurate treatment of the projectile signifi-

cantly improves both the shape and magnitude of the FDCS. However, the 4DW still

overestimates the absolute magnitude of the experiment for the energies shown in fig-

ures 3.2 and 3.3. One possible reason for this disagreement in magnitude is the large
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Figure 3.2. Theoretical results of the 4DW and FBA theories for FDCS ratios for
excitation-ionization as a function of ejected electron angle θe with a
scattering angle of θa = 32◦. The calculations are compared to a DWB2-
RMPS calculation and absolute experimental data [8]. Incident projectile
energies are: (a) E0 = 268.6 eV (n = 1) and E0 = 309.4 eV (n = 2); (b)
E0 = 268.6 eV (n = 1) and E0 = 316.9 eV (n = 3); (c) E0 = 112.6 eV
(n = 1) and E0 = 153.4 eV (n = 2); (d) E0 = 112.6 eV (n = 1) and E0

= 161.0 eV (n = 3). For (a) and (b), the FBA has been divided by 5,
and the 4DW has been divided by 3. For (c) and (d), the FBA has been
divided by 5, and the 4DW has been divided by 2.

projectile scattering angles. It has been seen in previous work with the Three-Body

Distorted Wave model that the theory agreed nicely with the shape and magnitude

of absolute experimental data for small projectile scattering angles. However, as the
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Figure 3.3. Theoretical results of the 4DW and FBA models for FDCS ratios for
excitation-ionization as a function of ejected electron angle θe for a scat-
tered projectile energy of 150 eV and an ionized electron energy of 20 eV.
The calculations are again compared to a DWB2-RMPS calculation and
absolute experimental data [8]. For panel (a), the 4DW and FBA have
been divided by 2.5. For panel (b) the 4DW and FBA have been divided
by 5, and the DWB2-RMPS has been divided by 2. All other calculations
are absolute.
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scattering angle increased, shape agreement remained, but the magnitude became

incorrect [187]. Since the projectile scattering angles here are fairly large, it appears

that a similar behavior is being observed. Dramatic shape differences between the

4DW and FBA can be seen in figure 3.3, particularly at 44◦ and 56◦, while in fig-

ure 3.2, the FBA and 4DW exhibit similar shapes. For these two sets of energies,

the relative speeds of the scattered and ejected electron is approximately the same.

Thus, the effect of PCI in both cases should be approximately the same, and the

resulting differences between the FBA and 4DW in both cases are most likely due to

the distorted wave treatment of the projectile. This indicates that a distorted wave

treatment is much more important at lower energies and larger scattering angles, as

expected.

It is also interesting to note that, contrary to the results of figure 3.1, the 4DW

agrees with the shape of the experimental data somewhat better than the DWB2-

RMPS. Since the ejected electron energies are significantly higher in these cases, there

should be much less difference between a close-coupling wave function and a distorted

wave. This would suggest that the better shape agreement seen in figures 3.2 and 3.3

for the 4DW is a result of the better treatment of PCI in the 4DW. Also, the better

shape agreement for the DWB2-RMPS seen in figure 3.1 for lower ejected-electron

energies probably is a result of the better treatment of the ejected electron wave

function in the DWB2-RMPS.

In all cases, the FBA overestimates the magnitude of experiment and only

predicts the correct shape for asymmetric energy with the two smallest scattering

angles. For asymmetric energy, the overestimation of the magnitude of the FBA is

most likely due to the PW treatment of the projectile, and not the lack of PCI.

3.1.3. Absolute Results. “Absolute experimental” results for excitation-

ionization with the He+ ion left in the n = 2 (n = 3) state can be produced using the

FDCS ratios of Section 3.1.2 by assuming that convergent close-coupling calculations
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(CCC) for ionization without excitation are accurate, and using these to put the n =

2 (n = 3) data on an absolute scale [188]. Figures 3.4 and 3.5 show the theoretical

results of the 4DW, FBA, DWB2-RMPS, and CCC models for ionization without

excitation, and in figure 3.5 the experimental results of [8] are also included. As

expected, the 4DW is significantly closer to the CCC than the FBA. However, the

4DW still overestimates the CCC, except for the largest scattering angles in figure

3.5, where both the shape and the magnitude differ greatly from the CCC.

Figure 3.4. Comparison of theoretical calculations for ionization without excitation
as a function of ejected electron angle θe with a scattering angle of θa =
32◦. The incident energies are (a) E0 = 268.6 eV and (b) E0 = 112.6 eV.

Figures 3.6 and 3.7 show FDCS for transitions leading to the He+(n = 2) and

He+(n = 3) states. For asymmetric energy, it can be seen that the 4DW approach gives
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Figure 3.5. Comparison of theoretical calculations for ionization without excitation
as a function of ejected electron angle θe with an incident energy of E0 =
194.6 eV and an ejected electron energy of E2 = 20 eV.

the best agreement with the shape of the “absolute experimental” data. However,

the 4DW and FBA results shown in figures 3.6 and 3.7 have been multiplied by 2

and 2.5 for the n = 2 and n = 3 asymmetric energy sharing, respectively. This is

to be contrasted with the symmetric energy sharing case, where the shape is not
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Figure 3.6. Absolute FDCS as a function of ejected electron angle θe with a scattering
angle of θa = 32◦. The 4DW and FBA theories are compared to the
DWB2-RMPS model and “absolute experimental” results [8]. The FBA
and 4DW calculations have been multiplied by 2 and 2.5 in (a) and (b)
respectively. Incident energies are the same as those listed for figure 3.2.

quite as good, but the magnitude is much closer to experiment since there are no

normalization factors for this case. Particularly for the asymmetric energy case, the

4DW does better than the FBA and DWB2-RMPS in predicting both the shape and

angular location for the binary peak. As mentioned above, this is likely due to the

better treatment of PCI in the 4DW.
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Figure 3.7. Absolute FDCS as a function of ejected electron angle θe with a scattered
projectile energy of 150 eV and an ejected electron energy of 20 eV. The
4DW and FBA theories are compared to the DWB2-RMPS model and
“absolute experimental” results [186]. The FBA and 4DW calculations
have been multiplied by 2 for the n = 2 results and by 2.5 for the n = 3
results.
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By examining figures 3.4 - 3.7 the source of the magnitude discrepancies in

the FDCS ratios shown in figures 3.2 and 3.3 can now be understood. For ionization

without excitation (figure 3.5), the 4DW model overestimates the CCC and DWB2-

RMPS by roughly a factor of 2. For asymmetric energy with excitation (figures 3.6

and 3.7), the 4DW underestimates the experiment by about a factor of 2, and for

symmetric energy gets the magnitudes correct. This results in the overestimation of

the ratios by the 4DW and FBA models.

One might be puzzled that the 4DW predicts the magnitude of the n = 2 (n

= 3) FDCS so much better for symmetric energy than asymmetric energy. This is

not due entirely to the symmetric treatment of the outgoing electrons, but rather

the exchange between the two continuum electrons in the final state. The complete

FDCS should be calculated with both the direct and exchange amplitudes. The direct

amplitude corresponds to the case where the scattered electron is the “fast” electron,

and the exchange amplitude corresponds to the case where the scattered electron is

the “slow” electron. For highly asymmetric energies, one typically expects that the

exchange amplitude is quite small. Therefore, it is usually ignored, and is not included

in either the FBA or 4DW calculations in the asymmetric energy cases. However,

for the symmetric energy case, the direct and exchange amplitudes are identical and

can both be included by simply calculating the direct amplitude and multiplying by

2, which is what has been done here. Therefore, exchange between the outgoing

electrons is included for symmetric energy sharing, but not for asymmetric energy

sharing.

To get an idea of the importance of exchange for the asymmetric case, a sim-

ple first order distorted wave Born approximation calculation for ionization without

excitation using an uncorrelated product wave function for the helium atom was per-

formed. This showed that inclusion of the exchange amplitude lowered the cross
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section by about 20%, suggesting that exchange may be more important than one

would typically expect for these kinematics.

3.2. SINGLE CHARGE TRANSFER

As discussed in Section 1.2, in proton + helium SC, an incident proton collides

with a helium atom, captures a single electron, and leaves the collision as a neutral

ground state hydrogen atom. The remaining electron in the He+ ion is also left in

the ground-state.

There is much experimental data available for single charge transfer, and the

model used in these calculations is not new. However, the calculations were neces-

sary for analysis with double charge transfer, and so are presented in figure 3.8 for

the specific energies needed. FDCS are calculated using the 4BTE model discussed

in Section 2.3.1. The calculation with all three terms in the perturbation is similar

to a JS calculation, while the calculation without the nuclear term is similar to an

OBK calculation. These results exhibit some well-known features and trends. The

unphysical minimum seen in the calculation with the full perturbation is typically

attributed to a cancellation of the terms in the perturbation [92]. Note that this min-

imum becomes deeper and shifts to smaller angles as the projectile energy increases,

as was previously observed by Band et. al [189] and Sil et al. [190]. The removal of

the projectile-nuclear term in the perturbation results in the removal of this mini-

mum, and an increase in the overall magnitude of the cross section, something seen

by Belkić and Salin [34].

3.3. TRANSFER-EXCITATION

The results of the 4BTE model, which was discussed in Section 2.3.1, are pre-

sented here for proton + helium TE. Currently, experimental data for fully differential

cross sections are available for proton + helium TE collisions at projectile energies
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Figure 3.8. FDCS as a function of projectile scattering angle for p + He SC. Exper-
iment: results of Schulz et al. [172] for the incident projectile energies
shown in the figure. Both theoretical curves are from the 4BTE model
with a plane wave for the incident projectile, Hylleraas wave function for
the helium atom, and a Coulomb wave for the scattered projectile. The-
oretical results: — all three terms in the perturbation; - - - no projectile-
nuclear term in the perturbation.

of 25, 50, and 75 keV. These energies correspond to projectile speeds of 1, 1.4, and

1.7 a.u., placing them at the lower end of the intermediate energy regime. The ex-

periment was performed by Hasan et al. [168], and is absolute. From experiment, it

is known that the outgoing hydrogen atom is in the ground state, and the residual

helium ion is in an excited state. However, it is not known in which excited state the

helium ion is left. Therefore, the cross sections must be summed over all possible

excited states. Calculations have shown that contributions from excited states above

n = 4 are negligible, as are contributions from higher angular momentum states. This

can be seen in figure 3.9. Because of this, the present results include only s and p

excited states for 2 ≤ n ≤ 4.

Figures 3.10 and 3.11 show the effect of the projectile-atom interaction on

the FDCS. Despite the fact that the target atom is neutral, the interaction of the
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Figure 3.9. FDCS as a function of projectile scattering angle for p + He TE showing
the relative magnitudes of excitation to different energy levels in the He+

ion. All theoretical curves are from the 4BTE model with a plane wave
for the incident projectile, Hylleraas wave function for the helium atom,
and Coulomb wave for the scattered projectile. Theoretical results: —
excitation to the n = 2 level; - - - excitation to the n = 3 level; · · ·
excitation to the n = 4 level.

projectile with the constituents of the target atom can be included through the use

of an Eikonal initial state wave function. When the projectile is close to the target,

its interaction with the nucleus and the atomic electrons is included through a phase

factor modifying a plane wave. Figure 3.10 shows the effect of including the incident

projectile-atom interaction when a plane wave is used for the scattered projectile.

Similarly, figure 3.11 shows this effect when a Coulomb wave is used for the scattered

projectile.

The Eikonal wave function is typically used for high energy projectiles, and is

considered a valid approximation when the ratio Znuc/vp is less than 1. For the three

energies studied here, this ratio ranges between 1.2 (75 keV) and 2 (25 keV), pushing

the limit of the Eikonal’s validity. In both figures 3.10 and 3.11, the use of Eikonal

wave function has a fairly small effect, with the largest difference being observed at
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small scattering angles. The biggest change in shape occurs at 25 keV, where the

Eikonal approximation is expected to be the least valid.

Figure 3.10. FDCS as a function of projectile scattering angle for p + He TE showing
the effect of the incident projectile-target atom interaction. Experiment:

results of Hasan et al. [168] for the incident projectile energies shown
in the figure. Theoretical results: — 4BTE model with an Eikonal wave
function for the incident projectile, Hylleraas wave function for the he-
lium atom, and plane wave for the scattered projectile; - - - 4BTE model
with a plane wave for the incident projectile, Hylleraas wave function for
the helium atom, and plane wave for the scattered projectile

In the final state, the outgoing hydrogen atom is in the field of the He+ ion.

Asymptotically, the ion has a charge of 1, but the hydrogen atom is neutral. This

seems to imply that a plane wave should be used for the outgoing hydrogen in order

to match asymptotic boundary conditions. However, the dynamics of the collision

take place at small projectile-ion separations, so that one might consider the use of a

Coulomb wave for the proton in the field of the He+ ion (i.e. a Coulomb wave with

charge 1). Results for both of these approximations are shown in figure 3.12. It is

clear that the use of a Coulomb wave is required in order to achieve the correct order
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Figure 3.11. FDCS as a function of projectile scattering angle for p + He TE showing
the effect of the incident projectile-target atom interaction. Experiment:

results of Hasan et al. [168] for the incident projectile energies shown
in the figure. Theoretical results: — 4BTE model with an Eikonal
wave function for the incident projectile, Hylleraas wave function for
the helium atom, and Coulomb wave for the scattered projectile; - - -
4BTE model with a plane wave for the incident projectile, Hylleraas
wave function for the helium atom, and Coulomb wave for the scattered
projectile.

of magnitude. However, virtually no change in shape between the two calculations is

observed. One might also notice that the difference between the calculations dimin-

ishes as projectile energy increases. This is expected since a projectile with a larger

speed spends less time in the field of the ion than one with a smaller speed.

In figure 3.13, the effect of initial state correlation is shown. One would be

inclined to think that correlation would play an important role in the first order model

of a four body process because the only interactions included in the perturbation are

between the projectile and each individual electron, as well as the projectile-nuclear

interaction. Thus, in order for two electrons to change state, some correlation should

be required. However, figure 3.13 shows this expectation to be incorrect.
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Figure 3.12. FDCS as a function of projectile scattering angle for p + He TE show-
ing the effect of the scattered projectile-residual ion interaction. Exper-
iment: results of Hasan et al. [168] for the incident projectile energies
shown in the figure. Theoretical results: — 4BTE model with a plane
wave for the incident projectile, Hylleraas wave function for the helium
atom, and Coulomb wave for the scattered projectile; - - - 4BTE model
with a plane wave for the incident projectile, Hylleraas wave function
for the helium atom, and plane wave for the scattered projectile.

Here, two different atomic helium wave functions are used. The Hartree-Fock

wave function is a product wave function that treats the two atomic electrons indepen-

dently with no correlation. This calculation corresponds to an independent particle

model. The Hylleraas wave function includes both radial and angular correlation

between the two initial state atomic electrons. There is very little difference between

these calculations except at small scattering angles, indicating that correlation is not

important in this process.

Figure 3.14 shows the effect of the projectile-nuclear interaction on the fully

differential cross sections. This term in the potential corresponds to scattering from

the nucleus. As noted in the Introduction, the FDCS at large angles should be

dominated by this interaction. Thus, its exclusion from the calculation should result

in a more rapid decrease of the FDCS as scattering angle increases. This effect is



60

Figure 3.13. FDCS as a function of scattering angle for p + He TE showing the effect
of electron correlation in the target atom wave function. Experiment:

results of Hasan et al. [168] for the incident projectile energies shown
in the figure. Theoretical results: — 4BTE model with a plane wave
for the incident projectile, Hylleraas wave function for the helium atom,
and Coulomb wave for the scattered projectile; - - - 4BTE model with
a plane wave for the incident projectile, Hartree-Fock wave function for
the helium atom, and Coulomb wave for the scattered projectile.

not observed here. Also, contrary to SC, for TE, exclusion of this interaction has the

effect of lowering the magnitude, but not drastically altering the shape.

3.4. DOUBLE CHARGE TRANSFER

In the DC process described in Section 1.3, an incident proton captures both

atomic electrons from the target helium atom and leaves the collision as an H− ion.

Theoretical results using the 4BDC model discussed in Section 2.4.1 are presented in

figure 3.15 for the same energies as SC and TE (25, 50, 75 keV). The first thing to

note is that experimental results for DC are about three orders of magnitude smaller

than those of SC, indicating a much less likely process. The second thing to note is

the similarity of the DC differential cross section to the SC differential cross section.
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Figure 3.14. FDCS as a function of scattering angle for p + He TE showing the effect
of the projectile-nuclear interaction. Experiment: results of Hasan et
al. [168] for the incident projectile energies shown in the figure. Both
theoretical curves are from the 4BTE model with a plane wave for the
incident projectile, Hylleraas wave function for the helium atom, and
Coulomb wave for the scattered projectile. Theoretical results: — all
three terms in the perturbation; - - - without the projectile-nuclear term
in the perturbation.

A minimum is again observed in the DC cross section, and excluding the projectile-

nuclear term from the perturbation results in the removal of this minimum. Also,

the location of this minimum moves to smaller angles as energy increases. As is ex-

pected, theory requires the inclusion of the projectile-nuclear term to more accurately

predict the magnitude of experiment. However, the models shown in figure 3.15 still

overestimate experiment by a factor of 100.

The effect of angular correlation in both the initial and final states is shown

in figure 3.16. Four calculations are shown, using either a 20 term Hylleraas wave

function or an analytic Hartree-Fock wave function for the initial state helium atom.

For the final state H− ion, either a 20 term Hylleraas wave function or a two parameter

variational wave function is used. All four of the calculations shown are similar in

both shape and magnitude, indicating that angular correlation is not important in
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Figure 3.15. FDCS as a function of projectile scattering angle for p + He DC. Exper-
iment: results of Schulz et al. [172] for the incident projectile energies
shown in the figure. Both theoretical curves are from the 4BTE model
with a plane wave for the incident projectile, Hylleraas wave functions
for the helium atom and H− ion, and a Coulomb wave for the scattered
projectile. Theoretical results: — all three terms in the perturbation; -
- - without the projectile-nuclear term in the perturbation. Both calcu-
lations have been divided by 100.

the DC process. In the initial state helium atom, the inclusion of correlation slightly

lowered the magnitude of the FDCS, while in the final state H− ion, the inclusion of

correlation slightly increased the magnitude of the FDCS.

Figure 3.17 shows the ratio of DC to SC, where some structure can be seen

in the experiment. Clearly, since the absolute magnitude of the SC and DC theory

is not in good agreement with experiment, the ratio results are not expected to have

proper magnitude agreement either.

Structure is also predicted by theory, as well, and it can be traced to either the

individual DC or SC results. For inclusion of the projectile-nuclear term, the large

peak in the ratio at small angles is due to the minimum in the SC cross section. Also,

the minimum in the ratio just to the right of the peak is due to the minimum in the

DC cross section.
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Figure 3.16. FDCS for 75 keV p + He DC showing the effect of electron correlation in
the target atom and the scattered ion. Experiment: results of Schulz et
al. [172]. All calculations are the 4BTE model with a plane wave for the
incident projectile and Coulomb wave for the scattered projectile. The
labels in the figure indicate the helium atom and H− wave functions
respectively. All calculations have been divided by 100.
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Figure 3.17. FDCS ratios for p + He DC divided by p + He SC. Experiment:
results of Schulz et al. [172] for the incident projectile energies shown
in the figure. Both theoretical curves are from the 4BTE model with
a plane wave for the incident projectile, Hylleraas wave functions for
the helium atom and H− ion, and a Coulomb wave for the scattered
projectile. Theoretical results: — all three terms in the perturbation
divided by (a) 100, (b) 35, (c) 25; - - - without the projectile-nuclear
term in the perturbation divided by 10 in all three panels.

If the projectile-nuclear term is excluded, the shape of the ratio is in fair

agreement with experiment. Here, however, it is not easy to identify the source of

the structure. These ratios seem to imply that scattering from the nucleus should

not be included in the theory. One possible explanation for this is that capture

takes place at large impact parameters, and that the scattering is dominated by the

projectile-electron interaction.

The results of the SC, TE, and DC calculations lead to some puzzling observa-

tions. First, the model correctly predicts the magnitude of the SC and TE results, but

overestimates the DC results by a factor of 100. Second, the SC and DC calculations

show a minimum when the full perturbation potential is used, but no minimum when

the projectile-nuclear term is removed. Also, for the SC and DC calculations, removal

of the projectile-nuclear term increases the magnitude of the calculation. However,
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for TE, there is no minimum when the full perturbation is used, and removing the

projectile-nuclear term has little effect on the shape or magnitude of the calculation.

This indicates that a cancellation of terms in the perturbation cannot be the only

explanation for the minimum seen in the SC and DC cross sections.



66

4. CONCLUSION

In an attempt to improve the understanding of four-body collision processes,

several four-body models have been presented and compared to experiment in the con-

text of fully differential cross sections (FDCS). For the case of excitation-ionization

(EI), the Four-Body Distorted Wave (4DW) and First Born Approximation (FBA)

models were presented, and the effects of projectile interactions were explored. Through

the use of distorted waves, the 4DW model contains elastic scattering of the projectile

from the target to infinite order in both the initial and final state. The FBA neglects

this interaction. It was found that the importance of these interactions depends

upon the kinematics. For smaller projectile energies, a distorted wave treatment was

necessary to achieve the correct shape. However, for larger projectile energies, the

difference between a plane wave and a distorted wave treatment was small.

In addition to elastic scattering, the 4DW model also includes the post-collision

interaction (PCI) to infinite order, while the FBA model neglects PCI. PCI accounts

for the mutual repulsion of the two outgoing electrons in the final state. In all cases,

the inclusion of PCI improves agreement with experiment by shifting the theoretical

peak locations closer to the experimental locations. PCI was found to be particularly

important for the case of symmetric energy sharing since the two outgoing electrons

leave with the same speed and have a greater effect on each other.

There are four main possibilities for the remaining discrepancies between ex-

periment and the 4DW model for EI. The first is an inadequate treatment of the

ejected electron-residual ion interaction. While the 4DW model treats this interac-

tion through the use of a distorted wave, this may be inadequate for ejected electron

energies less than 10 eV, where exchange between the ejected and bound electrons

is more likely. This is the kinematical situation for the relative experimental results

presented in Section 3.1.1, and the likely cause for any disagreement between this ex-

periment and theory. The second possibility is that exchange between the projectile



67

electron and remaining He+ bound electron is not negligible. For highly asymmet-

ric energy sharing, the probability of this type of exchange is typically thought to

be small. However, for the kinematics used in the FDCS ratios and absolute FDCS

shown in Sections 3.1.2 and 3.1.3, the energies may not be asymmetric enough, and

exchange may be important. For symmetric energy sharing this exchange was in-

cluded, and improved agreement in magnitude was observed.

The third possibility for the discrepancies between experiment and the 4DW

model is the large scattering angles involved. It has been seen with similar models

that as the scattering angle increases, the shape agreement between experiment and

theory is maintained, but the magnitude of the theory decreases. The same effect was

observed here, where the 4DW generally agreed well with the shape of experiment,

but incorrectly predicted the magnitude. The fourth possibility for the remaining

disagreement between experiment and theory is that a second, or higher, order model

is necessary to describe this process. Because EI is a four-body process in which

two atomic electrons change state, it is not unreasonable to expect that a model

that includes projectile-electron interactions to the second, or higher, order might be

required.

Aside from the EI process, the remaining collisions studied in Sections 3.2 -

3.4 involve heavy particle scattering and charge transfer. The single capture (SC) and

transfer-excitation (TE) processes are similar, and in fact were studied using the same

Four-Body Transfer-Excitation (4BTE) model. The difference between these two

processes is simply in which state the residual ion is left. However, great differences

were observed in the calculations for SC and TE. In particular, for SC, a pronounced

minimum was observed when the full perturbation was used. This minimum was

removed when the projectile-nuclear interaction was excluded from the perturbation.

These results were expected since they have been seen in similar models. However, for

TE, no such minimum was observed and the removal of the projectile-nuclear term
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from the perturbation had little effect on the FDCS. The accepted explanation for

the appearance of a minimum when the full perturbation potential is used is that it

is a result of cancellation of the terms in the perturbation. If this is indeed the case,

one would expect the same to be true of TE, where the only thing that has changed

is the state of the residual ion. Since no minimum is observed for TE, a cancellation

of terms alone cannot account for the minimum.

In addition to studying the effect of the projectile-nuclear interaction, the

projectile-atom and projectile-ion interactions were studied in the initial and final

states respectively. For the projectile-atom interaction, an Eikonal wave function

was used to include distortion of the incident projectile wave function by the target

atom. This distortion had little effect on the FDCS, indicating that the projectile-

atom interaction is not important in the TE process. In the final state, the use of a

Coulomb wave for the scattered projectile was necessary to achieve the correct order

of magnitude, with the effect of the Coulomb wave diminishing as projectile energy

increased.

The effect of electron correlation in the target helium atom was also studied.

It was expected that this interaction would be important in causing both atomic

electrons to change state. However, this expectation was incorrect, and it was shown

that the effect of correlation was negligible in the TE process.

Double capture (DC) was the final collision process studied through the de-

velopment of the Four-Body Double Capture (4BDC) model. Like the theoretical SC

results, the 4BDC model predicts a minimum in the FDCS when the full perturba-

tion is used. Again, this minimum is removed when the projectile-nuclear term is

excluded from the perturbation. In addition to the puzzling nature of the minimum,

it is interesting that the 4BTE model correctly predicts the magnitude of the SC and

TE experiment, but the 4BDC model overestimates the experiment by a factor of
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100. The effect of electron correlation was shown to have little effect in either the

initial or final state of the DC process.

The final analysis made for charge transfer was to examine the ratio of FDCS

for DC divided by SC. The ratio calculated with results that neglected the projectile-

nuclear term in the perturbation agreed best with experiment, primarily because they

did not exhibit the unphysical minimum in the individual FDCS. However, these

results overestimated the magnitude of the ratios, and did not exhibit the structure

seen in experiment.

The models and results presented here represent a step forward in the study

of four-body collision processes. They are unique in their ability to explicitly treat all

four particles in the collision, and to study the individual two particle interactions.

However, the four-body problem remains a difficult one both theoretically and exper-

imentally. Current agreement between experiment and theory is generally fair, and it

is anticipated that as computational resources and experimental technology improve,

the remaining discrepancies will be explained.
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In atomic units,

a0 = 1 (A.1)

~ = 1 (A.2)

me = 1 (A.3)

e2

4πε0

= 1. (A.4)

(A.5)

Also, 1 a.u. of energy is equivalent to 27.2 eV, and the fine structure constant is given

by

α =
e2

4πε0~c
=

1

137
. (A.6)
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Within the two potential formulation of Section 2.1.4, the post form of the

exact transition matrix is given by [175]

Tfi = 〈Ψ(−)
f | W †

f | Ψi〉+ 〈Ψ(−)
f | Vi −W †

f | β~ki
ξHe〉, (B.1)

where Ψi is the total initial state wave function, which includes the Eikonal approxi-

mation for the incident projectile, Ψ
(−)
f is the final state wave function, β~ki

is a plane

wave, and ξHe is the initial state helium wave function. The initial state proton-

helium interaction Vi is given by equation (124). The final state perturbation Wf

satisfies

(H − E)Ψ
(−)
f = WfΨ

(−)
f , (B.2)

where H is the full Hamiltonian

H = − 1

2µpa

∇2
r1
− 1

2
∇2

r2
− 1

2
∇2

r3
+ V, (B.3)

and E is the total center of mass energy

E =
k2

f

2µpa

+ BH + BHe+ . (B.4)

The quantities BH and BHe+ are the binding energies of the hydrogen atom and

He+ ion respectively. Let V be the total interaction potential for a proton + helium

collision, such that

V =
2

r1

− 2

r2

− 2

r3

− 1

r12

− 1

r13

+
1

r23

.

The perturbation Wf can then be calculated by

Wf =
1

Ψ
(−)
~kf

(H − E)Ψ
(−)
~kf

(B.5)
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The final state wave function Ψ
(−)
~kf

is written as a product of the wave functions for

the three particles relative to the helium nucleus

Ψ
(−)
~kf

= A(~r1)B(~r3)C(~r12). (B.6)

For the case of transfer-excitation, A(~r1) is the scattered projectile wave function,

B(~r3) is the He+ bound state wave function, and C(~r12) is the hydrogen wave function.

The He+ bound state wave function and hydrogen wave functions are given by

B(~r3) = ψHe+(~r3) (B.7)

and

C(~r12) = φH(~r12) (B.8)

=
e−r12

√
π

.

The scattered projectile wave function can be either a plane wave given by equation

(13)

A(~r1) = β~kf
(~r1) =

ei~kf ·~r1

(2π)3/2
(B.9)

or a Coulomb wave given by equation (35)

A(~r1) =
Nei~kf ·~r1

(2π)3/2
1

F1(−iγ, 1; ikfr1 + i ~kf · ~r1), (B.10)
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with N = e−πγ/2Γ(1 + iγ), γ =
µptZHe+Zp

k1
, and 1F1(−iγ, 1; ikfr1 + i ~kf · ~r1) a confluent

hypergeometric function. The left hand side of equation (B.2) can then be written as

(H − E)Ψf = − B

2µpa

∇2
r1

(AC)− AB

2
∇2

r2
C − AC

2
∇2

r3
B (B.11)

+(
2

r1

− 2

r2

− 2

r3

− 1

r12

− 1

r13

+
1

r23

)ABC

− k2
f

2µpa

ABC −BHABC −BHe+ABC.

Note that

−1

2
∇2

r3
B − 2

r3

B = BHe+B (B.12)

and

−1

2
∇2

r12
C − 2

r12

C = BHC. (B.13)

Also, because C(~r12) is only a function of ~r12,

∇2
r12

C = ∇2
r1

C = ∇2
r2

C. (B.14)

Then, equation (B.11) can be written as

(H − E)Ψf = − B

2µpa

∇2
r1

(AC) + (
2

r1

− 2

r2

− 1

r13

+
1

r23

)ABC

− k2
f

2µpa

ABC.

Using the operator identity ∇2
r1

(AC) = C∇2
r1

A + A∇2
r1

C + 2∇r1A · ∇r1C gives

(H − E)Ψf = − B

2µpa

[C∇2
r1

A + A∇2
r1

C + 2∇r1A · ∇r1C]

+(
2

r1

− 2

r2

− 1

r13

+
1

r23

)ABC − k2
f

2µpa

ABC.
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Then, the perturbation Wf can be written as

Wf = − 1

2µpaA
∇2

r1
A− 1

2µpaC
∇2

r1
C − 1

µpaAC
∇r1A · ∇r1C (B.15)

+(
2

r1

− 2

r2

− 1

r13

+
1

r23

)− k2
f

2µpa

.

Using a plane wave for the scattered projectile gives

∇2
1e

i~kf ·~r1 = −k2
fe

i~kf ·~r1 (B.16)

and

∇1e
i~kf ·~r1 = i~kfe

i~kf ·~r1 . (B.17)

Also, for SC or TE,

∇2
r1

e−r12 =
r12 − 2

r12

e−r12 . (B.18)

Plugging these into equation (B.15) gives the final state perturbation when treating

the scattered projectile as a plane wave

W PW
f =

2− r12

2µpar12

+ i
~kf · ~r12

µpar12

+ (
2

r1

− 2

r2

− 1

r13

+
1

r23

).

Using a Coulomb wave for the scattered projectile gives

∇2
1[1F1(iγ, 1;−ikfr1 + i~kf · ~r1)e

i~kf ·~r1 ] = (B.19)

ei~kf ·~r1 [
2γkf

r1 1

F1(1 + iγ, 1;−ikfr1 + i~kf · ~r1) (B.20)

+2iγkf 1F1(1 + iγ, 2;−ikfr1 + i~kf · ~r1)(k̂f + r̂1) · ~kf (B.21)

−k2
f 1F1(iγ, 1;−ikfr1 + i~kf · ~r1)] (B.22)
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and

∇1[1F1(iγ, 1;−ikfr1 + i~kf · ~r1)e
i~kf ·~r1 ] = (B.23)

ei~kf ·~r1 [γkf 1F1(1 + iγ, 2;−ikfr1 + i~kf · ~r1)(k̂f + r̂1) (B.24)

+i1F1(1 + iγ, 1;−ikfr1 + i~kf · ~r1)~kf ]. (B.25)

Thus, the final state perturbation when treating the scattered projectile as a Coulomb

wave is given by

WCW
f = −γkf

µpa

1F1(1 + iγ, 1;−ikfr1 + i~kf · ~r1)

1F1(iγ, 1;−ikfr1 + i~kf · ~r1)
(B.26)

+
1F1(1 + iγ, 2;−ikfr1 + i~kf · ~r1)

1F1(iγ, 1;−ikfr1 + i~kf · ~r1)

×[
γkf

µpa

(k̂f + r̂1) · ~r12

r12

− i
γkf

µpa

~kf · (k̂f + r̂1)]

+
2− r12

r12

+ (
2

r1

− 2

r2

− 1

r13

+
1

r23

) + i
~kf · ~r12

µpar12

.
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The Eikonal wavefunction for a projectile incident on a one active electron

atom is given by [183]

ψ1active =
ei~ki·~r1

(2π)3/2
exp

[
i
Zp

vp

ln

(
(vpr1 − ~vp · ~r1)

(vpr12 − ~vp · ~r12)

)]
, (C.0)

where Zp is the charge of the projectile and vp is the speed of the incident projectile.

Generalizing this to two active electrons gives

ψ2active = χ
ei~ki·~r1

(2π)3/2

=
ei~ki·~r1

(2π)3/2
exp

[
i
Zp

vp

ln

(
(vpr1 − ~vp · ~r1)

Znuc

(vpr12 − ~vp · ~r12)(vpr13 − ~vp · ~r13)

)]
.
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CODE TESTING
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All calculations for this work were performed using FORTRAN codes that

require nine-dimensional integrals. The excitation-ionization work used the 4dw.f

code; the transfer-excitation and single charge transfer work used the transfer.f code;

and the double charge transfer work used the transfer.double.capture.f code. In order

to ensure that the codes were functioning properly, numerous tests were completed.

D.1. 4DW.F

The 4dw.f code was checked by comparing results to those obtained from the

fba.f code, which had been checked using analytic calculations. In one such test, the

following integral was used:

∫ ∫ ∫
β∗~kf

(~r1) χ∗e (~r2) ϕ∗2p0 (~r3) Viβ~ki
(~r1) ξ (~r2, ~r3) d~r1d~r2d~r3, (D.0)

where β~kf , ~ki
is a plane wave given by equation (13), χe (~r2) is the ejected electron

wave function, ξ(~r2, ~r3) is the helium atom wave function, and Vi is the projectile-

atom interaction given by equation (124). For energies of E0 = 5500 eV and E2 = 75

eV, and a scattering angle of 1
◦
, the 4dw.f and fba.f results differed by 0.9%.

To check that the PCI was correct, a calculation was performed for both the

scattered and ejected electron leaving the collision with the same angle and energy.

Since two electrons cannot be in the same place, the inclusion of PCI should cause

the FDCS to be zero. The result from the code was numerically zero.

D.2. TRANSFER.F

The transfer.f code was checked by comparing results to analytic calculations,

and to results from the code 4dw.f. Table D.1 shows the analytic tests and the

integrand used in each test. Table D.2 shows the tests performed for comparison

with the 4dw.f code and the integrand used in each test. The integrals performed
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were ∫ ∫ ∫
integrand d~r1d~r2d~r3, (D.0)

where the d~r1 integral is performed in cylindrical coordinates, and the d~r2 and d~r3

integrals are performed in spherical coordinates. The analytic and numerical answers

listed are the corresponding square of the T-Matrix, i.e.
∣∣∫ ∫ ∫

integrand d~r1d~r2d~r3

∣∣2 .

In all cases, the initial state wave function used was

ξi(~r2, ~r3) =
α3

π
e−α(r2+r3), (D.0)

where α = 1.6875. The wave function φnlm is a hydrogenic wave function for the

corresponding excited state. If no excited state is included as a subscript, multiple

excited states were tested. The wave function β is a plane wave given by equation (13),

χCW is a Coulomb wave function given by equation (143), and χDW is a numerical

Hartree-Fock distorted wave.

Table D.1. Results of analytic code checking for transfer.f code.
Integrand Analytic

Answer
Numerical
Answer

% dif-
ference

ξi(~r2, ~r3)φ1s(~r3)/ρ1 3.233×107 3.232×107 0.03
2ξi(~r2, ~r3)φ1s(~r3)/r1 8.052×107 8.021×107 0.2

ξi(~r2, ~r3)φ1s(~r3)(ρ1 + iz2
1) 4.917×1011 4.929×1011 0.1

ξi(~r2, ~r3)φ1s(~r3)(
1
r1
− 1

r12
)ei(~ki−~kf )·~r1 3551 3469 2.3

ξi(~r2, ~r3)φ1s(~r3)(
1
r1
− 1

r13
)ei(~ki−~kf )·~r1 240.2 235.7 1.9

β∗f (~r1)φ
∗
1s(~r3)Viβi(~r1)ξi(~r2, ~r3) 6819 6717 1.4

β∗f (~r1)φ
∗
1s(~r3)φ

∗
1s(~r2)Viβi(~r1)ξi(~r2, ~r3) 24.22 24.21 0.04

β∗f (~r)β
∗
e (~r3)φ

∗
1s(~r2)Viβi(~r1)ξi(~r2, ~r3) 3386 3297 2.5

β∗f (~r1)φ
∗
1s(~r12)(− 1

r12
)βi(~r1)ξi(~r2, ~r3) 1.117×105 1.150×105 3.3

β∗f (~r1)φ
∗
1s(~r3)φ

∗
1s(~r12)(− 1

r12
)βi(~r1)ξi(~r2, ~r3) 2613 2700 3.4
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Table D.2. Results of numerical code checking for transfer.f code.
Integrand 4dw.f transfer.f % dif-

ference
β∗f (~r1)β

∗
e (~2)φ

∗(~r3)Viβi(~r1)ξi(~r2, ~r3) 8249 8355 1.3

χ∗CWf (~r1)β
∗
e (~r2)φ

∗(~r3)Viβi(~r1)ξi(~r2, ~r3) 4886 4829 1.2

χ∗CWf (~r1)χ
∗
DWe(~r2)φ

∗
1s(~r3)Viβi(~r1)ξi(~r2, ~r3) 4121 4122 0.02

β∗f (~r1)β
∗
e (~r2)φ

∗
1s(~r3)C(~r13)Viβi(~r1)ξi(~r2, ~r3) 1266 1272 0.4

χ∗CWf (~r1)β
∗
e (~r3)φ

∗
1s(~r12)Viβi(~r1)ξi(~r2, ~r3) 2.147×104 2.148×104 0.05

D.3. TRANSFER.DOUBLE.CAPTURE.F

This code is nearly identical to the transfer.f code. The only change made was

to replace the He+ and H(1s) wavefunctions by an H− wavefunction. Thus, all of the

checks performed above still apply for this code, and no further testing was required.

To ensure that the H− wavefunctions were correct and properly normalized, their

squares were integrated giving 0.8676 and 0.9453 for the Hartree-Fock and Hylleraas

wavefunctions respectively.
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[85] I. Mančev, J. Phys. B: At. Mol. Opt. Phys. 36, 93 (2003).

[86] C. Sinha, S. Mukherjee, and N.C. Sil, J. Phys. B: At. Mol. Opt. Phys. 12, 1391
(1979).

[87] S. Datta and S.C. Mukherjee, J. Phys. B: At. Mol. Opt. Phys. 13, 539 (1980).



88

[88] C.R. Mandal, S. Datta, and S.C. Mukherjee, Phys. Rev. A 24, 3044 (1981).

[89] K. Dettmann and G. Leibfried, Phys. Rev. 148, 1271 (1966).

[90] P.J. Kramer, Phys. Rev. A 6, 2125 (1972).

[91] R. Shakeshaft and L. Spruch, Phys. Rev. A 8, 206 (1973).

[92] K. Omidvar, Phys. Rev. A 12, 911 (1975).

[93] G. Lapicki and W. Losonsky, Phys. Rev. A 15, 896 (1977).
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[103] Dž. Belkić, Phys. Rev. A 43, 4751 (1991).

[104] J.E. Miraglia, R.D. Piacentini, R.D. Rivarola, and A. Salin, J. Phys. B: At.
Mol. Opt. Phys. 14, L197 (1981).

[105] R. Hippler, S. Datz, P.D. Miller, P.L. Pepmiller, and P.F. Dittner, Phys. Rev.
A 35, 585 (1987).

[106] A.E. Mart́ınez, R. Gayet, J. Hanssen, R.D. Rivarola, J. Phys. B: At. Mol. Opt.
Phys. 27, L375 (1994).

[107] R. Gayet, J. Hanssen, L. Jacqui, A. Mart́ınez, R. Rivarola, Physica Scripta 53,
549 (1996).

[108] S. Ghosh, A. Dhara, C.R. Mandal, M. Purkait, Phys. Rev. A 78, 042708 (2008).
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