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PUBLICATION THESIS OPTION 

The papers presented within the body of this thesis 

have been prepared in the style utilized by the American 

Society of Mechanical Engineers. Pages 1-150 will be sub­

mitted to the A.S.M.E. Journal of Dynamic Systems, Measure­

ment and Control for publication. 

Because of journal requirements, matrices and vectors 

have been denoted by placing a single wavy line below their 

corresponding symbols. Symbols designated in this manner 

will appear in bold-face type within the journal copy. 

An index and an appendix have been added for purposes 

normal to thesis writing. 
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ABSTRACT 

A "Schmidt filter" is proposed to compute an optimal 

orthonormal basis for a set of "noisy" filter input func­

tions. Procedures for determining the transfer function and 

inverse transfer function of the filter are given. 

The Schmidt filter is applied to the problem of deter­

mining mathematical models of discrete, stationary, linear, 

dynamic systems for the case where measurements may be 

corrupted by noise of unknown statistics. 

The identification problem is reconsidered for the case 

where noise and signal moments are specified. Procedures 

are given which insure unbiased, adaptive estimates of 

system order and parameters for this case. 

These theoretical propositions are applied to the 

modeling of speculative prices. The stock market is formu­

lated as a discrete, linear, dynamic system and the results 

of several simulation studies are presented. Evidence in­

dicates that certain segments of the market can be approxi­

mated by high-order linear systems computed from small 

samples and tends to refute the random walk hypothesis. 

Computer programs (written in PL/1) are presented which 

allow for efficient digital realization of the theoretical 

procedures discussed in the body of this work. 
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PREFACE 

During the last decade, mathematical analysis and simu­

lation have become common in nearly all areas of scientific 

inquiry. In fact, it may be observed that these tools have 

themselves become respected scientific disciplines. 

State space (modern) control theory is a powerful 

mathematical tool that has enabled engineers to design and 

regulate complex mechanical/electrical devices. Modern 

control theory is based upon the premise that a process can 

be described by a system of differential equations in time, 

and that such a system of equations has an equivalent rep­

resentation with respect to a single multi-dimensional 

vector space from which its 11 state 11 can be determined. 

Given the initial state of the system and a time-ordered set 

of 11 independent'' (input) variables, it is possible to pre­

dict the dependent variables (outputs) of the system for 

times defined by the input set. To date, the greatest por­

tion of work in modern control theory deals with processes 

which are describable by systems of linear differential 

equations. 

Recently, the 11 identification" problem has received 

considerable attention in the literature on automatic con­

trol. Identification involves determination of the describ­

ing equations of a process directly from input/output data. 

Work in identification has been frequently directed toward 
': '} 



systems which are linear, stationary, and possibly subject 

to random error in measurement. Occasionally, publications 

appear dealing with non-stationary systems, unknown inputs, 

and correlated noise. 

v 

Social scientists depend more and more upon mathemati­

cal methods for the detection and analysis of relationships 

within an increasingly complex and mobile societal struc­

ture. The science of econometrics, which deals with the 

quantization and analysis of economic phenomena, has long 

been a topic of considerable interest. Among the best­

known tools employed in the studies of social and economic 

phenomena are regression analysis and factor analysis, which 

are commonly directed to the problem of linear approximation. 

The identification problem in econometrics also involves the 

establishment of a mathematical model of a process from 

observed variables. 

The identification problems in engineering and social 

science are fundamentally similar. Both involve the ab­

straction of physical phenomena as a set of observable 

variables followed by a testing of hypotheses concerning re­

lationships between these variables. Furthermore, a 

thorough examination of pertinent literature reveals that 

the differences in representation and methods of analyzing 

the identification problem in the two disciplines are largely 

superficial. Surprisingly, this fact seems to have been 

obscured even though significant contributions have been 

made: in both areas. 
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Consider the problem of stock market investment. It 

has been theorized that the determinant of speculative prices 

is a set of expectations on the part of market participants 

concerning future conditions. These expectations are deter­

mined by past and current prices and other information which 

is presumed to affect future gains. Naturally, investment 

involves risk. The indicators of economic gain may change 

in the next instant -- fortunes may be gained or lost. 

Actually, we are all investors in a sense, regardless 

of whether or not we choose to participate in the stock 

market. Our activities, and hence those of our society, are 

primarily based upon expectations concerning the future over 

which we have little control. For this reason, it is the 

Author's contention that scholarly research into the area of 

speculative prices will yield benefits in the analysis of 

social processes which will far exceed any prospect for 

financial reward. 

In order for our governing bodies to cope democratically 

with the ever-increasing complexity of our society, it 

appears that we need to achieve a much greater quantitative 

understanding of the phenomena which motivate human behavior. 

While it is doubtless a great oversimplification to presume 

that the world's problems can be overcome simply by the 

study of speculative prices, this problem is a convenient 

one for investigative research. Generally, data related to 

speculative prices is easy to obtain. Also, there exists a 

"naturalJ' interest in this topic which tends to reduce the 
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barriers of communication between the sciences. 

The problems which face our society today belong to us 

all. Hence, engineering research into sociological problems, 

while somewhat rare, is not inappropriate. This thesis 

responds to a need for increased communication between the 

engineering and social science communities. The identifica­

tion problem is approached rigorously from the viewpoint of 

state space control theory. Three technical papers are first 

advanced to deal with the mechanics of the identification 

problem. Here, several new propositions are presented which 

allow for greater efficiency and increased generality of 

realization procedures for both the noise-free and noisy 

cases. A fourth paper deals with the application of the 

above propositions toward the understanding of speculative 

prices. The Appendix of this thesis contains a listing of 

computer programs which have been developed during the 

course of the Author's research. These programs have general 

applicability to the linear modeling of all processes that 

are ammenable to numerical quantification. It is hoped that 

this overall approach will motivate the interest of both the 

engineer and the social scientist. 

The Author is indebted to the University of Missouri 

and the Department of Mechanical and Aerospace Engineering 

of the University of Missouri - Rolla for supporting this 

research and for provision of the Authorts graduate assis­

tantship during its conduct. 

I am especially grateful to Dr. V. J. Flanigan, my 
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major Advisor, for his guidance, encouragement, and technical 

assistance in the preparation of this work. Drs. R. T. 

Johnson, J. S. Pazdera, c. Y. Ho, and L. K. Sieck have also 

contributed significantly to this thesis and have my sincere 

thanks. 

I reserve my deepest appreciation for my wife, Elizabeth, 

who exhibited great patience, provided continual encourage­

ment, and typed the manuscript. 

A.G.B. 
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ABSTRACT 

A SCHMIDT ORTHONORMAL FILTER 

FOR SYSTEM IDENTIFICATION 

by 

A. G. Behring 

and 

v. J. Flanigan* 

1 

A Schmidt filter is proposed to compute an optimal 

orthonormal basis for a set of "noisy" filter input functions. 

Procedures for determining the transfer function and inverse 

transfer function of the filter are given. Several inter­

esting properties of the filter are noted and applied to the 

problem of system identification. 

*The Authors are associated with the Department of Hechani­

cal and Aerospace Engineering, University of Missouri - Rolla, 

Rolla, Missouri 65401, where Mr. Behring is a Graduate Stu­

dent and Dr. Flanigan 6nember ASME) is an Associate Profes-

sor. 



NOTATION 

In this paper all bold-face capital letters denote 

matrices, Vectors are defined in column format and are 

denoted by lower case letters in bold face type. All 

scalars will be denoted by plain upper or lower case 

letters. Occasionally it will be necessary to display the 

format of a vector or matrix explicitly, e.g., 

X = 

X n 

Any exceptions to these general rules will be clearly spec-

ified in the text. 

INTRODUCTION 

2 

1 In recent years several authors [1-17] have noted the 

simplifying features of orthogonal sets of functions in 

problems of identification and optimal control. The basic 

philosophy underlying most of these investigations consists 

of an expansion of the system input set as a series of 

1Numbers in brackets denote references at the end of the 

paper .. , 
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orthogonal functions, the sum of whose additive contributions 

to the system output (system transfer function} is then de­

termined by an optimal choice of independently-adjustable 

parameters. 

Ho [18], Gopinath {19], and Budin [20] have developed 

algorithms for computing minimum-order mathematical models 

of discrete, time-invariant linear systems from input/output 

data. A central problem in the implementation of these 

algorithms (especially where the system order is unknown} 

is the determination of matrix rank (possibly in the 

presence of additive noise). Budin [20] proposes a solution 

to the problem of noise-corrupted observations using a 

modified Gaussian elimination algorithm. 

The Gram-Schmidt procedure (sometimes called ortho­

normalization due to Erhard Schmidt), Epstein [21], Drygas 

[22], for computing an orthonormal basis of a set of 

vectors is well-known in the literature of linear algebra. 

Bingulac [23] gave an original method for computing an 

orthonormal basis from a set of linearly independent func­

tions and demonstrated some apparent computational advan­

tages of his procedure over the Gram-Schmidt process. 

Several authors, including Penrose [24], Greville [25], 

Rao [26], and Mayne [27], have considered the problem of 

finding an inverse of singular matrices and have demon­

strated the utility of such a "generalized inverse" or 

"pseudo inverse" in the solution of linear systems of 

equations. Mayne !27] used the Gram-Schmidt procedure to 
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compute a pseudo inverse with allowances for computational 

round-off error that seem applicable to the noisy case. 

PROBLEM STATEMENT 

Given a "noisy" function ~(t), the problem is to define 

a linear filter with transfer function ~ to compute an 

"optimal" orthonormal basis function x(t). We also seek 

to define an "inverse filter" with transfer function s+ 

which maps ~(t) into ~(t). We then consider ~(t) to be the 

output of a linear system and proceed to exploit the unique 

features of the orthonormal basis function x(t) in the 
"' 

problem of system identification. 

BASIC DEFINITIONS 

Let X be defined as the set of real nxl vectors 
"' 

(1) 

Here x(t) is a real-valued vector func-
..., 

tion of time t. Note that both the range and domain of 

x(t) are defined by equation (1). Similarly, let Y be 

defined as the set of real pxl vectors 

(2) 

In the event that r approaches infinity, it will be assumed 

that both y(t) and x(t) are sectionally continuous. Fur-
"' "' 

ther, it will be required that ¥(t) and ~(t) exist, Vti. 



Orthogonality 

Two functions ~(t) and ~(t) as in equations {1) and 

(2) will be called orthogonal if 

5 

XY' = 0 {3) 

where 0 is the nxp null matrix. Note that the condition of 

orthogonality given by equation (3) implies that 

YX' = 0 1 (4) 

since 

YX 1 = [XY 1
] 

1
• (5) 

Now, let A be a constant mxp matrix where m and the elements 

of A are arbitrary. We now consider the orthogonality of 

functions x(t) and Ay(t), i.e., we write .... .. .. 
X (AY) I = XY I A I • (6) 

If equation (3) is satisfied, we conclude from equation (6) 

that 

X (AY} I = 0 ( 7) 

where A is arbitrary. This result significantly implies -
that x(t) is orthogonal to the function space spanned by 

y(t) and vice-versa. -

from 

If x(t} and y(t) are point functions, we compute XY' 

XY 1 
r 

= ~ X (t.) Y 1 (t.) • 
~- ~.. ~ 
~=1 

If ~(t) and t<t) are sectionally continuous functions, we 

define XY' as ,, ..... , 

XY' 

(8) 

(9} 
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Orthonormality 

We will say that the function x(t) of equation (1) is 

orthonormal if 

XX' = I (10) 
"'n 

where !n is the nxn identity matrix. It is apparent that 

the condition of orthonormality expressed by equation {10) 

implies that ~ is full rank. 

LEAST SQUARES 

Let ~ and ~ be defined as in equations (1) and (2), 

rsspectively. Let ~ be a nxp constant matrix. It can be 

shown that, e.g., Sage and Melsa I2B], that an optimal 

linear conditional estimate of ~(t) given x(t) in the sense 

• • 2 A 

of rn~n~mum mean square {~(t) l~(t)} is 
A A 

~(t) l~(t) = ~(t) 

where A is a constant matrix which satisfies 

AXX' = YX'. 

If XX' is non-singular, equation (12) yields 

A = YX' [XX I] -l. 

Also, we can demonstrate the significant result that the 

pxr matrix E defined by 

E = Y-AX 
"' 

is orthogonal to X. 

2 A 1 
Here, A minimizes { IY-AX] !Y-AX]- } 

(11) 

(12) 

(13) 

(14) 
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Using (13) and {14) we can write 

EX 1 = {Y-YX' (XX')-lX}X' (15) - :v-

or 

EX' = o. (16} 
"' 

THE SCHMIDT FILTER 

General Description 

Given the vector function ~(t) of equation (2), we 

wish to produce a vector function x(t) of equation (1) such 

that 

and 

XX' = I , 
-n 

X= SY, 

+ Y = S X. - -

"' 

(17) 

(18) 

(19) 

The linear transformation ~ of equation (18) may be consid­

ered as the transfer function of a filter (here called the 

Schmidt filter). + The linear transformation ~ may be con-

sidered as the inverse transfer function of the Schmidt 

filter (or alternately as the transfer function of a re-

storing filter). The relationship between the variables 

can be conveniently displayed as in Figure 1. 

__ x~~--s--~1 --x--~~--s+ ___ l~-x~> 

Fig. 1 Defining Relationships for the Schmidt Filter 
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We now consider some of the interesting properties of 

the filter which can be inferred directly from equations 

(17) through (19). First, if we post-multiply equation (19) 

by X' and employ equation (17), it is easy to see that 

S+ = YX'. 

From equation (20) we observe that 

SS+ = SYX'. 

Using equations (18) and (17), equation (21) becomes 

ss+ = !n· 
Using (22) we find that ~+ qualifies as a generalized in-

verse of s, Rao [26] , i.e. , -
ss+s = s, 

and 

s+ss+ = s+. 
-

The Filter Algorithm 

(20) 

(21) 

(22) 

(23) 

(24) 

For convenience, we define ~ as the set of pxl vectors 

~ = [~(t1 ),~(t2 ),~(t3 }, ••• ,~(tr)]. (25} 

We will denote the jth row of matrix~ as E., j=l,p. Let 
- -J 

X andY be defined as in equations (1) and (2), respectively, -
with meaning as shown in Figure 1. Also, we let X., 

-~ 

i=l,n denote the ith row of X andY., j=l,p denote the jth 
- -J 

row of Y. Finally, it will be convenient to let ~i' 

i=l,n denote the first i rows of X, where it should be 

noted for later analysis that 

~i~i = ~i' (26) 

where I~ .. is the ixi identity matrix. In order to initiate ..,.J:. 



the algorithm, we will assume that : 1 is non-trivial. In 

this event, we let 

lEl = ~1 

and 

~1 = ~1/ 11~111 
where 11~1 11 denotes the "norm" of ~l' given by 

1 

I IE I I = IE E' J ~ ... 1 ... 1 ... 1 

We generate successive rows of X from the relations 

E.= Y.-[Y.Z!]Z., j=2,p, i=l,n-1, 
---J ---J ---) -~ -~ 

and 

if (E.E!)/(Y.Y!)> t;., 
... J-J -J-J ---J 

9 

(27) 

{28) 

(29) 

(30) 

(31) 

where the index i always indicates the number of "currently 

defined" rows of X and £., is prespecified (see sections 
... J 

entitled Computational Error and Noise). Equations {30) 

and (31) are executed p-1 times, beginning with j=2 and 

i=l. Each time these equations have been executed, the 

subscript j is incremented by one. If the condition indi-

cated by equation (31) is true, then the (i+l)th row of X 

is defined as shown and the subscript i is incremented by 

one. If this condition is not true the subscript i is not 

incremented. 

Note that a least squares procedure, simplified by 

equation (26), has been used to compute E. in equation (31). 
. ---J 

We can therefore conclude that each E. is orthogonal to the 
-J 

function space spanned by the rows of z .. Provided that 
---~ 

~j is non-trivial, .this implies that ~j/ ll~j II should be 

included in the orthonormal matrix~' i.e., as ~i+l" 
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We can use equation (31) to re-write equation (30) as 

y. = II E. II X. +1+ IY. z! J z. 
~ J - J -1. - J -1. -1. 

(32) 

from which it is apparent that ~ is expressible as a linear 

function of X. In fact, Y = S+X, where S+ is given by 

equation (20) • 

+ However, it is not necessary to actually compute ~ 

from equation (20) because the elements of s+ have been -
defined in the process of generating the orthonormal matrix 

X. In order to demonstrate this fact, we let s: denote the 
~ -J 
jth row of matrix s+. F·rom equations (27) and (28), we can 

write the first row of S+ as -
~t = £ll~lii,O,O,O, ••• ,O], 

+ where ~l is a lxn matrix. 

Let the lxn matrix Q. (j) be defined as 
-1. 

Q . ( j ) = I 0 I 0 I 0 I ••• , 0 I I:!.J. , 0 , ••• , 0] -1. 
where fl., defined by 

J 

1:!.. = II E. II if (E . E!) I (Y. y ~) > e:. 
J -J -J -J ---J -J J 

fl. = 0, otherwise 
J 

is found in the ith column. 

(33) 

(34) 

(35) 

Now, using equations (32) and (34), we generate succes­

sive rows of s+ from the relation 

S: = [ ( Y • Z ! ) 1 0 1 0 1 0 1 o • o 1 0] +Q • + 1 ( j ) • ( 3 6 ) 
-J -J-1. -1. 

The matrix s+ is formed by executing equation (36) p-1 
~ 

times, beginning with j=2 and i=l. After equation (36) has 

been executed, the subscript i is incremented by one, only 

if 9i+l(j) is non-trivial. The subscript j is alwaxs in­

cremented by one after this decision. 
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Thus, given Y, we have computed the orthonormal matrix 

X and the inverse filters+. We now show that s can easily 

be determined. 

Using equation (31), we can write equation (30) as 

= IY.- tY. z n z. J 1 11 E. 11, 
-J -J-~ -~ -J ~i+l 

(37) 
if (E . E ~ ) I ( y . y ~ ) > E •• 

-J-J -J-J J 
+ + Lets .. , i=l,p, j=l,n denote the elements of s , and s. 
~J - -~ 

denote the ith row of S. Using (20), we note that equation 

(37) can be expressed as 

~i+l = 

Also, it is easy to see that 

X. = S.Y, i=l,n. 
-~ -~-

Let the lxp matrix U. be defined as 
-J 

U. = [O,O,O, ••• ,O,l,O, .•. ,O], 
-J 

X. 
-~ 

I liE. II· J 

where the unity element is found in the jth column. 

(38) 

(39) 

(40) 

From equations (27) and (28), it is clear that ~l can 

be expressed as 

~1 = Il,O,o,o, ... ,o]lll~1 11 = l!1111~1 ll· ( 41) 

Using equations {40) and (39), with equation (38), we have 

+ + + + x'+l = Iu.-s. 1s 1-sj 2s 2-s. 3s3- ••• -s.l..s.JYIIIE.II· (42) 
,.I. - J J ,.. ... J .... J -I. - - J 

Again, using (39), it is clear that equation (42) becomes 
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+ + + + 
= [U.-s . 18 1-s . 28 2-s . 38 3- ... -s .. 8. ]/liE ·II, 

- J J - J - J - J 1 -1 - J ~i+l 
(43) 

if (E.E!)/(Y.Y~) > e;. 
-J-J -J-J J 

The rows of ~ are generated by considering equation (43) p-1 

times, beginning with j=2 and i=l. Equation (43) is only 

executed in the event that the indicated condition is true. 

Each time the equation has been considered, the subscript j 

is incremented by one. The subscript i is incremented by 

one only following actual execution of the equation. 

We note from equation (43) that all columns of 8 -
numbered k, such that (~k~k)/(~k~k) < e:k will be trivial. 

In fact, it can be shown that exactly p-n columns of 8 will 

be trivial. This feature will be important in later anal-

ysis and deserves further consideration. We now ask the 

reader to re-examine equation (18) in view of the fact that 

certain of the columns of ~ may be zero. If the kth column 

of S is trivial, we may reason that the kth row of ~ is 

"blocked" by the filter, i.e., it has no projection into 

the vector space spanned by ~· Let B denote those rows of 

Y which are blocked in this manner and P those rows which -
are not blocked (passed) • We observe that equations (30) 

and (31) determine whether a particular row of Y is blocked 

or passed. In equation {30), E. represents that component 
-J 

of Y. which is orthogonal to z .• If E. is not significant 
-J -1 -J 

it cannot contribute to the set of basis functions x(t) -
andY. is blocked. 

-J 
From this we conclude that the space 

spanned by B is a subspace of the space. spanned by X, and 

that X and P span the same vector space, i.e., X= n-1P, 
..... 
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where J?-l is an appropriate nxn non-singular matrix. Fur­

ther, we conclude that ~ is a maximum set of linearly inde­

pendent rows of Y. -
For clarity, we restate the filter generating equations 

together as 

and 

E. = Y.-{Y.Z!]Z,, 
~J -J -J -~ -~ 

~ i + 1 = ~ j I I I~ j I I , if (~ j ~ j l 1 c! j: j > 

8 ~ = [ ( Y . Z ! ) f 0 1 0 f 0 1 • o o 1 0 ] +Q • + 1 { j ) I 
~J -J -1 -1 

~i+l 
i + 

= [u . -~s • ksk] I I IE . II , -J J - -J 
k= 

> E., 
J 

if (E . E ~ ) I (Y . y! ) > E • ' 
-J-J -J-J J 

where Q. (j) is given by equation (34) and u. is given by 
-~ -J 

equation (40) • The set of equations (44) through (47) is 

{ 4 4) 

(45) 

{46) 

( 4 7) 

executed p-1 times, beginning with j=2 and i=l. Each time 

the set of equations is executed, the subscript j is incre-

mented by one. Equations (45) and (47) are only defined if 

the indicated condition is true. Following consideration 

of equation (47), the subscript i is incremented by one, 

if the indicated condition was found to be true. 

We note, contrary to Bingulac [23] that it is not 

actually necessary to generate the orthonormal matrix ~ in 

order to determine the matrices Sands+. This fact is easy - -
to demonstrate if we let the ixp matrix T., i=l,n denote the 

-1 

first i rows of s. In this event, we write -
z. = T.Y, (48) 
.... 1 .... ~ ... 

from which Y.Z! of equations (44) and (46) becomes 
-J .... ~ 
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y . z ! = [Y . y I ] T ! • 
-J -~ -J- -~ 

(49) 

Further, we can show that 

E.E~ = Y.Y~-[Y.Y']T!T. [Y.Y 1
] 

1
• 

-J-J -J-J -J- -~-~ -]-
(50) 

Clearly, the algorithm is able to proceed exactly as in 

equations (44) through (46), with appropriate substitions 

in lieu of definition of ~ as in equation (45). 

It is evident from equations (49) and (50) that the 

filter is defined completely by transformations on the Gram 

matrix YY'. This conclusion allows extremely efficient 

digital realization of the algorithm (on the order of 25-30 

executable statements). Also, this fact leads to a straight­

forward definition of the algorithm for the problem of 

adaptive filtering, since YY 1 is easily computed as observa-

tions are added to the set. 

Finally, we state, without proof, the interesting fact 

that 

s I s = [YY I ] + ' (51) 

i.e., the matrix S 1 S is a generalized inverse of the given 

matrix YY 1
• 

COMPUTATIONAL ERROR 

In equation (31) we proposed a relation for determina-

tion of linear dependence, which we now restate as 

b = (E.E~)/(YjY~). 
-J-J - -J 

From equation (30) and the propositions of ordinary least 

squares, it appears that 

0 < b < 1. - -

(52) 

(53) 
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If b=O, we would certainly conclude that Y. is linearly de­
-J 

pendent on z. of equation (30) and should be "blocked" by 
-~ 

the filter. Likewise, if b=l, we would conclude that Y. 
-J 

should be "passed." However, computational error is present 

in any algorithm and it is quite likely in practice that 

0 < b < 1 (54} 

for any case. 

We are, therefore, forced to choose some small number 

s. such that the condition that E. be blocked is 
J -J 

b < € •• 
= J 

(55) 

Unfortunately, it is not possible to give any general rules 

for determination of s., since any such rules are related 
J 

to arithmetic precision and problem magnitude in a very 

complex way. However, we note emphatically that a choice 

of s. which is too small (e.g., zero) can lead to the result 
J 

that a vector consisting of computational error is added to 

the orthonormal set. 

The authors have been primarily concerned with the 

digital implementation of the algorithm for point functions 

using 16 digit arithmetic. For the type of problems at hand 

and for Y of order 10x100 the authors have had no problems 

for s. ::::: lo-10 • 
J 

NOISE 

In this discussion, we will assume that F is a noise--
free ''signal matrix" consisting of a set of p-vectors such 

that 



We also let ~ be a "noise matrix" consisting of a set of 

p-vectors such that 

16 

(56) 

(57) 

We allow that neither ~ nor V is known explicitly, but that 

we have observed the matrix Y, where the format of Y is 

given by equation (2) such that 

Y = F+V. (58) -
Now, we again let ~ be the output of a Schmidt filter 

and let the relationship between Y and X be indicated by 

Figure 1. 

We would like the row dimension of the orthonormal 

function ~ to be equal to n=rank(F). However, if V is -
chosen completely at random, it is quite likely that 

rank(Y) = p 

where p > n. 
= 

(59) 

(60) 

From previous discussion, however, it can be seen that 

the Schmidt filter will produce an orthonormal matrix of 

rank=p for the case where Ej' j=l,p are chosen to account 

only for round-off error. 

In view of this difficulty, there is a certain tempta­

-2 tion to choose the E. substantially larger, e.g., 10 , to 
J 

allow for approximate dependence in the sense of least 

squares. In this .way it is certainly possible to reduce the 

rank of the filter output ~· Unfortunately, it is possible, 

using this procedure, to produce an ~ such that 

rank(X) < rank{;F). We now consider this method of analysis - ... 
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and some of the problems which can arise in its wake. 

We now let 

d = (1-b) •100% (61) 

where b is given by equation (521. 

In equation (61), d can be interpreted as the percent 

of the mean-square of Y. which will be realized by the re­
-J 

storing filters+ if E. is judged as insignificant, i.e., 
- -J 

equation (55) is true. As an example, consider that we let 

s. = .Ol,Vj and performed the filtering process. In this 
J 

event, we could be sure that at least 99% of the mean square 

of each row of ! would be realized by the restoring filter, 

or that the mean square of the restoration error of Y. 
-J 

would not be greater than 1% of the mean square of Y .• 
-J 

Choices of s. in this type of analysis are generally gov-
J 

erned by what is "acceptable" to the investigator as far as 

restoration is concerned. Although this type of analysis 

is intuitively appealing, there are some disadvantages that 

must be made clear. 

First of all, "percent mean square recovery" is not 

always as good an indicator as it might seem and if this 

method of analysis is used, it is generally advisable to 

compare the "recovered function" closely with the original. 

Secondly, since the choice of sj is arbitrary, we still have 

no way of knowing whether rank(~) = rank(~} and hence 

whether or not a complete set of basis functions is repre-

sented in X. Although the authors advise that great caution ... 
be exercised in the use of this method, we are impressed by 
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its simplicity and recommend its use where signal and noise 

statistics are essentially unknown. 

In the event that sample noise and signal statistics 

are available, i.e.,~' and~~· are specified, the above 

procedure certainly is not the "best'' in a statistical sense. 

The treatment of this class of function is beyond the scope 

of the current presentation. However, this problem has been 

solved using a modified Schmidt filter and will be the topic 

of a forthcoming paper. 

SYSTEM IDENTIFICATION 

We now illustrate a novel application of the Schmidt 

filter to the problem of creating a minimum-order mathe-

matical model of a linear, discrete-time system from noise-

free operating data. The problems involved in applying this 

method to the case where observation noise of unknown sta-

tistics is present should be evident from previous discus-

sion. 

Consider the linear, discrete, autonomous 3 minimal 

realization E described by 

3 

x(k+l) = Ax(k} 

y(k) = Cx{k) -

Application of the Schmidt filter to systems with inputs 

is discussed extensively in ref. [29]. 

(62) 

(63) 
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where x(k) is a nxl state vector, ~(k) is a pxl output vector, 

and A and C are constant matrices of orders nxn and pxn, 

respectively. As usual, n indicates the "order" of the 

system and k indicates reference to the system at the begin­

ning of the kth equal interval of time. 

Equations (62) and (63) are also known as the "internal 

description" of E. We will assume, however, that our only 

knowledge of E consists of an "external description" given 

by the sequence 

Y = [~ (1) ,~ (2) ,~ (3) , ••• ,y (N+r-1)] (64) 

where the meaning of N and r will become evident later. 

Given the external description of E we wish to deter-

mine any equivalent internal description 8, defined by 

q(k+l) = Fq(k) --
and 

y(k) = ~<;!(k) 

where 
-1 

q(k) = ~ ~(k), 

F = P-lAP, 

and 

(65) 

(66) 

(67) 

(68) 

H = CP (69) 

-1 where P is any non-singular nxn constant matrix. Kalman 

[30] showed that all equivalent minimal realizations are 

completely observable. We now state .the condition of ob-

servability as 

rank(K) = n, (70) 

where 
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c -

K = ,VN>n. == (71) 

Associated with the minimal realization ~ we postulate the 

existence of the sequence of states ~, defined by 

X = [X ( 1) , X ( 2) , X ( 3} 1 ••• 1 X ( r) ] 1 r >n 1 - - - ~ 

where 

rank(X) = n. 
"' 

We can show that equations (67) and (71) imply that 

rank(W) = n -
where 

W = KX. 

( 72) 

(7 3) 

(7 4) 

( 7 5) 

The Npxl matrix ~ can be expressed as a set of px1 elemen­

tary vectors where 

(w) CAi-lx (J') 1 • 1 N · 1 . . = l.= , i J = , r. 
- l.J .., - .., 

(76) 

Using equations (62), (63), (71), (72), and (76) with (75), 

we find that 

w;:: 

~(1) ~(2) 

~(2) ~(3) 

~(3) ~{4} 

• 

• 

~ (3) 

~ (4) 

¥ (5) 

• • • ~ (r) 

• • • ~ (r+l) 

• • • ~ {r+2) 

. . . . 
• • • • 

• • • 

~ (N) ¥ (N+1) :'[ (N+2} • • • ~ (r+N-1) 

( 77) 
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where it appears that ~ is known from the external descrip­

tion. We can alternately express ~ as a sequence of Npxl 

vectors, given by 

w = r W { 1) 1 W { 2 ) 1 W { 3) I • • • 1 W (r) ] • ( 7 8) 

Let Q be a sequence of nxl state vectors of the equiv-

alent system 0, defined by -
Q = [q(l),q(2),q(3), ••• ,q{r)]. - - - - -

From equation (67), Q and X are related by 

Q = P-lx 
- - -

so apparently 

rank(Q) = n. -
Now, since W given by equation (75) is formed as a 

linear function of X, it follows that we can find a nxNP 

matrix S such that 

Q = sw. 

(79) 

( 80) 

(81) 

(82) 

We now employ the Schmidt filter to determine s and 9 with 

the rationale that Q is a basis of W. 

and 

-
For clarity in later analysis, we let 

~1 = 

~2 = 

91 = 

[w {1) ,w {2) ,w {3), ••• w {r-1)], 

[w { 2) , w ( 3} , w { 4) , .•• w (r) ] , -
[q {1) ,q {2) ,q (3) 1 •• • q (r-1)] 1 - - - -

( 83) 

{ 8 4) 

( 8 5) 

(86) 

+ The matrices ~' ~ 1 and 91 are determined by filtering ~1 1 

as shown in Figure 2. 
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~1 J I 91 J I ~1 
::,._ __ s ___ : ... ::::::::::::!:1 .. __ s_+ __ __, ... ~ ---~-....> 

Fig. 2 Use of the Schmidt Filter for System Identification 

4 We now form g2 from 

92 = ~~2· ( 87) 

Using ordinary least squares, we now determine F of equation 

(65) from 

F = 929ii919il-l. 
However, since 91 is an orthonormal matrix, equation (88) 

becomes 

(88) 

(89) 

The matrix H of equation (66) is simply equal to a sub-matrix 

of + s . .... In fact, His simply equal to the first prows of~+. 

Besides being a very convenient method of obtaining a 

minimal realization of equation (64), the algorithm results 

in a sequence of states g1 which is orthonormal. This fea­

ture can be quite valuable with respect to visual inspection 

4
since we already know q(k), k=l,r-1, we only need to deter-... 
mine Sq(r) • ....... 



23 

of results, especially in the case where additive noise is 

known to be present. Also, the coefficients of F are all 

"independently determined" in the sense of least squares 

with the results that their associated contributions to 

regression sums of squares and coefficients of determination 

are easily computed. 

As an interesting sidelight, Rowe [31] has shown that 

an equivalent "cannonical" description of the system }:; is 

given by 

~(k) = ~l~(k-1}+~2~(k-2)+~3~(k-3)+ •.• +~L~(k-L), (90} 

where L<N and the B. ,v. are constant pxp matrices. We can 
= -~ 1 

re-write equation (90) as 

where 

and 

y(k) = Bz(k-1), 

z(k-1) = 

y (k-1) 

~(k-2) 

~ (k-3) 

y(k-L) 

We now partition the matrix § into nxp block matrices 

S., i=l,N, such that 
-~ 

~ = I~l'e2'~3'"""'~NJ. 
For the case where L<N, it is easily determined from the 

(91) 

( 92) 

(93) 

( 94) 
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properties of the Schmidt filter and equation (90) that 

exactly N-L of the s. in equation (94) will be trivial. In 
-~ 

fact, it is obvious that the "first" trivial block matrix 

is ~L+l' or mathematically, 

S, ~ O,i<L+l. (95) 
-~ -
Assume that L<N. Let the pxLp matrix R be defined by 

"' 

rows numbered Lp+l through (L+l}p and columns numbered 1 

through pL of the matrix s+s. Let R be partitioned into pxp 

matrices such that 

(96) 

We now state, without proof, that the matrices B., i=l,L of 
-~ 

equation (90) are given in the sense of least squares by the 

relation 

B. = R_+l-'' i=l,L. 
-~ -:..L ~ 

(97) 

Thus, we have indicated how information obtained from 

the Schmidt filter can be used to identify the system in 

state form, as in equations (62) and (63), and in the 

"cannonical" form given by equation (90). 

CONCLUDING REMARKS 

A "Schmidt orthonormal filter" has been proposed to 

compute a set of orthonormal basis functions of a set of 

noisy filter input functions for the case where noise sta-

tistics are essentially unknown. Well-defined procedures 

have been given to compute the transfer function and in-

verse transfer function of the filter. The utility of the 

filter has been demonstrated with respect to the problem 
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of identifying discrete, linear systems of unknown order. 

As a final note, the authors submit that the problem 

of order determination and unbiased estimation of system 

parameters for the case where noise statistics are specified 

has been solved using a modified Schmidt filter algorithm. 

This problem will be discussed thoroughly in a forthcoming 

paper. 
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An orthonormal filter is used to obtain minimum-order, 

mathematical models of linear, multi-variable, discrete, 

time-invariant systems from input/output data. Some common 

problems associated with obtaining such descriptions are 

considered, including the problem of noise-corrupted obser­

vations. 
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NOTATION 

In this paper all bold-face capital letters denote 

matrices. Vectors are defined in column format and are 

denoted by lower case letters in bold face type. All 

scalars will be denoted by plain upper or lower case 

letters. Occasionally it will be necessary to display 

the format of a vector or matrix explicitly, e.g., 

X = 

xl 

x2 

x3 

Any exceptions to these general rules will be clearly 

specified in the text. 

Numbers in brackets designate references at the end 

of the paper. 

31 
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INTRODUCTION 

The foundation for much of the current activity in 

the analysis of linear, multiple input/output systems lies 

in the early work of Kalman [1]. 

Kalman [2] introduced an algorithm to compute a 

"minimal realization" of an impulse response matrix and 

showed that all such realizations are equivalent corre­

sponding to that part of a system which is controllable 

and observable. 

A new method for computing a minimal realization of 

an impulse response matrix (using Markov parameters) was 

later introduced by Ho [3]. Ho [4] extended his impulse 

response method using an indirect procedure to accommodate 

the presence of initial conditions and a selected class 

of inputs. 

Apparently the first procedure for directly computing 

a minimal realization from input/output data for the case 

of discrete time systems was introduced by Gopinath [5,6] 

using least squares. Gopinath [5] also considers the 

realization problem for systems whose inputs and outputs 

are corrupted by zero mean noise with known statistics 

and shows the resulting parameter estimates to be con­

sistent. However, the computational method suggested for 

arriving at numerical estimates of system parameters has 

proven to be undesirable in that it essentially depends 

upon the success of a trial and error procedure. 
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In a recent paper Budin [7] has reduced the original 

computational method of Gopinath to a deterministic algo-

rithm and formulated certain other labor saving features. 

During the last few years several authors have noted 

the simplifying features associated with the use of 

orthogonal functions in optimal control and identification 

problems. Among those who have considered the problem 

from this viewpoint, the works of Kitamori [8], Lubbock 

and Barker [9], Barker [10], and Roberts [11] are the 

most relevant to this paper. 

PROBLEM STATEMENT 

Let the dynamic equations E of a process be given by 

X (k+l) = Ax(k)+Bu(k) (1) -
¥(k) = Cx(k)+Du(k) (2) 

where x is a nxl state vector, u is a mxl input vector, 

and ¥ is a pxl output vector. The constant matrices A, 

B, C, and D are of order nxn, nxm, pxn, and pxm, respec-- - -
tively. As usual, the integer k indicates reference to 

the system at the beginning of the kth equal interval of 

time. 

Equations (1} and (2} are also known as an "internal" 

description of the process. We will assume, however, 

that the only knowledge of the system consist of an 

"external" description given by a sequence of correspon-

ding observations on the input ~ and output ¥· For 

reference, see Kalman [2], Ho {4], Gopinath [6], and 



Budin [7]. The problem is to determine the internal de-

scription given the external description. 

Equivalence 

Two constant, linear, discrete systems will be con-

sidered equivalent when 

1. Their corresponding state vectors are related 

by constant non-singular transformations1 

2. Their input/output descriptions are identical, 

Vk. 

Let L and ~ be equivalent systems with XEL, ~£~. 
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In particular, let 

-1 g(k) = ~ ~(k) ,Vk (3) 

where ~-l is a constant, non-singular matrix. From con­

ditions 1 and 2 of equivalence, we can now use equations 

(1), (2), and (3) to formulate 0 as: 

where 

and 

q(k+l) = ~~(k)+~~(k) 

y(k) = ~~(k)+~~(k) 

F = P-lAP, 

G = P-lB, 

H = CP. 

-

1This condition corresponds to Kalman's [2] definition 

of "strict" equivalence. 

(4) 

(S) 

(6) 

(7) 

(8) 



If two systems are equivalent, we will say that their 

state vectors are equivalent. 

Minimal Realizations 

A minimal realization ~ of ~ is a system of minimal 

dimension which duplicates the input/output (external) 

description of E where dim (A) < dim (E) • 
- - = -

Note that A -
and ~ are not necessarily equivalent. Kalman [2] gave 

the formal theorems dealing with minimal realizations of 

impulse response matrices. These theorems were later 
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extended to deal with a more general class of inputs and 

initial conditions by Ho [4], Gopinath [6], and Budin [7]. 

Kalman's principle theorems on minimal realizations can 

be summarized as: 

1. Any two minimal realizations of ~ are equivalent. 

2. A minimal realization of E corresponds only to 

that portion of E which is completely control--
lable and completely observable. 

3. All minimal realizations of ~ are completely 

controllable and completely observable. 

Identification 

Examination of pertinent literature appears to yield 

general agreement that if we were able to obtain the 

unique internal description of ~ (not one which is merely 

equivalent) the system would be identified. The above 

situation might be called identification in a "parametric" 
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sense. In the absence of constraints on parameter values, 

however, it is generally impossible to obtain such para-

metric identification, Fisher [12]. 

Identification, as used herein, will be considered 

accomplished if we are able to determine a A which is 

equivalent to E· Thus, it appears that if A is a minimal 

realization of E then ~ does not identify E unless 

dim (A)= dim (L). 
~ -
In view of the above statements, Kalman £2] implies 

that necessary conditions for system identification are 

those of complete controllability and complete observ-

ability. The condition for controllability of ~ is that 

rank (J) = n, -
where 

2 n-1 
J = [B,AB,A B, ••• ,A B]. - - -- - - - -

The candition that L is observable is that -
rank (K) = n, -

where 

c 

K = 

(9) 

(10) 

(11) 

(12) 

From (10) and (12) it is clear that these conditions 

do not depend upon any particular external description 

but are uniquely dependent upon system characteristics. 
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It happens that there are other conditions which, quite 

apart from the conditions of controllability and observ­

ability, determine the success of an attempt at identifi­

cation. Lee [13] has shown that if initial conditions 

and/or inputs are insufficient to stimulate all system 

modes within a given input/output description, the system 

is not identifiable from that description. 2 It can also be 

shown that the system input functions must possess suf-

ficient ''generality" within a given external description 

for the system to be identified from that description, 

Ho (4], Gopinath [6], and Budin [7]. A somewhat obvious 

case of this malady may occur if one or more of the system 

inputs are linearly dependent within the external descrip­

tion. An insufficient number of observations of system 

inputs and outputs can also result in failure of an iden­

tification attempt. In this paper, however, it will be 

assumed that a sufficient number of observations is avail-

able for the purpose at hand. 

Noise 

Four classes of additive noise are frequently con­

sidered in the literature on linear systems. 

The first class admits the possibility that errors in 

2Lee refers to this condition as n-identifiability. 
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measurement of input and output variables are present where 

the statistics of such errors are completely unknown. It 

can be shown that the classical method of least squares 

produces asymtotically biased estimates of system para­

meters for this case. The seriousness of such bias is, 

however, largely dependent on the particular problem at 

hand, Rowe [14]. 

The second involves the assumption that inputs and 

outputs are subject to corruption by stationary noise 

processes with known statistics. In this case, Gopinath 

[5], it is possible to show that a modified least squares 

procedure results in consistent estimates of system para­

meters. 

The third class of noise considers the possible 

presence of unknown zero mean, uncorrelated noise which 

forces the system. Under these conditions, it is possible 

to show that the least squares procedure produces biased 

parameter estimates. Rowe [14] investigates this problem 

using the method of instrumental variables. 

The fourth class assumes the presence of colored 

(serially correlated) noise, Sage and Melsa [15]. This 

class of noise also introduces asymtotic bias in the least 

squares process. Classical treatment of this problem 

involves "extension" of the system state space to include 

the noise process. 

The presence of any type of noise greatly increases 

the difficulty involved with the identification and reali-
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zation problems. In fact, under this assumption it is quite 

likely impossible to construct any realization of r much 

less identify r in the sense described above. Where noise -
is present, the identification problem has been called the 

optimal identification problem, Lee [13]. Extension to the 

terminology of optimal realization seems natural. 

The problem of noise will not be actively treated in 

this paper, however extension to the noisy case will be 

considered. Furthermore, when the presence of noise is 

admitted, it will be assumed that the noise is of the first 

type. 

LINEAR LEAST SQUARES ESTIMATION 

Consider that 

Y = [y ( 1) I Y ( 2) I Y ( 3) 1 o o • I Y (r) ] 1 - - - - (13) 

and 

X= fx(l),x(2),x(3), ••• ,x(r)] (14) - - - - -
constitute sets of r corresponding discrete time observa-

tions of ¥(k) and ~(k). Then, it can be shown, Sage and 

Melsa [15], that an optimal linear conditional estimate of 

y(k) given x(k) in the sense of minimum mean square - -
{f(k)!~(k)} is 

fCk} I~Ck) = Ax(k), 

where A is a constant matrix which satisfies 
"' 

AXX' = YX'. 

Additionally, if it so happens that 

EI~(k) j~(k)] = ¥(k) ,Vk, 

(15} 

(16) 

(17) 



where E{ } denotes the mathematical expectation, then 

~(k) l~(k) is called an unbiased estimate of l(k) given 

X (k) • -
THE SCHMIDT FILTER 
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We now assume the availability of a process, which we 

will call the Schmidt filter, described below. 

Let the matrix ~ be defined as the r-sequence of 

p-vectors 

Y = [y(l),y(2),y(3), ••• ,y(r)]. (18) - - ~ ~ -
Assume that ~ has arbitrary rank. If ~ appears as the in­

put to the Schmidt filter, the output of the filter will be 

an r-sequence of n-vectors ~' where 

X= [x(l),x(2),x{3), ..• ,x(r)], - - - - -
such that ~ is an orthonormal matrix, defined by 

xx• = I ..... n 

where !n is the nxn identity matrix and where ~ and ~ are 

related by filter-defined constant linear transformations 

s and s+ such that - .... 

and 

X = SY 

+ y = s x. -
It can be shown that S and S+ possess the properties of -
the generalized inverse: 3 

3For reference, see Penrose [16] and Rao [17]. 

(19) 

(20) 

(21) 

(22) 
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(23) 

and 

+ where S denotes the generalized inverse of S. Additionally, 
~ ~ 

for the Schmidt filter, it can be shown that 

+ SS = I • 
""n 

In the literature, e.g., Drygas [18], Lubbock and 

( 25) 

Barker [9], and Barker [10], the algorithm which generates 

~ as in equation (19) is called "orthonormalization due to 

Erhard Schmidt," or the "Gram-Schmidt orthonormalization 

procedure." Mayne {19] used the Gram-Schmidt procedure to 

compute the pseudo-inverse of a matrix with allowances for 

computational round-off error that seem to be applicable 

to the "noisy" case. 

For the sake of economy, the detailed internal struc-

ture of the Schmidt filter will not be presented here. A 

comprehensive discussion of the filter can be found in 

reference [20]. Some structural properties of the filter, 

however, are of central importance to the development that 

follows. These are: 

1. The filter is essentially an inversion-free 

linear least squares process. 

2. As the algorithm proceeds, each row of Y is 

4 considered for dependence in serial order 

4specifically, the test for dependence consists of a 
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with respect to any currently-defined rows of X. -
3. If a row of ~ is judged as linearly independent as 

in 2, the associated vector of residuals is 

divided by its norm and enters as the next row 

of x. 

4. If a row of Y is judged as linearly dependent, no 

new rows of X are formed and consideration moves -
to the next row of Y. In this event, the column -
of ~ corresponding to this row is set uniformly 

equal to zero, since this row contributes no "new" 

information to X. -
5. If the presence of "noise" is assumed and accounted 

for (see footnote 4) then equation (22) may only 

be approximately true, otherwise no approximation 

is involved. 

THE SELECTOR MATRIX 

Consider that it is desired to form a matrix N from 

certain rows of a matrix ~· This activity can be accom­

plished conveniently in a mathematical sense by pre-

multiplying ~by a so-called selector matrix, say T, and 

setting N equal to the result, i.e., 

comparison of the ratio (residual mean square/total mean 

square) to a prespecified "noise/signal ratio." 



N = TM • ... 
The structure of the selector matrix has been thoroughly 

discussed by Gopinath {6] and Budin [7]. Basically, each 
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row of ! can have but one non-zero element per row, equal 

to 1, in its columns which correspond to the selected rows 

of ~· To be useful in the following development we must 

also require that the selector matrix have a maximum of 

one non-zero element per column (i.e., no two rows of~ 

can be equal to a single row of ~} . 

STRUCTURAL RELATIONSHIPS 

The structural theorems of Gopinath {6] are now con-

sidered from a unified point of view and extended to account 

for the possible presense of passive system elements. 

We begin by assuming that E described by equations (1) 

and (2) is a minimal realization of an external description 

of a linear system ~· The extent to which E identifies 8 

will be discussed later. 

In association with the minimal realization E we now 

postulate the existence of an r-sequence of states 

X= [x(l) ,x(2) ,x(3) , ••. ,x(r)] 

where 

r>n+m 

and 

rank {X) = n. -
Since the minimal realization L is observable, we can now ... 

(26) 

( 27) 

{ 2 8) 



assume that 

rank (K) = n 1 

where 

c 

K = 

for all N such that 

N>n. 
= 

Using (28) and (29) we can show that the realization must 

satisfy the condition 

rank (KX) = n, 

where in terms of elementary pxl vectors 

[ ] C i-l ( ') ' 1 N ' 1 KX . . = --~ ~ J 1 J.= 1 ; J= 1 r. 
-- J. J - ·- -

Equation (33) can be used to show that 

KX = Z-EV 1 

where 

y(l) y(2) -
~(2) ~(3) 

~(3) ~(4) 

z = 

y {3) -
y (4) 

y (5) 

y (r) 

y (r+l) 

y(r+2) 

I 
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(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 



v = 

and 

E = 

u (1) u(2) u (3) 
~ - -
u (2) u (3) u (4) - - -
u (3) u (4) u(S) - - -

• 

u(N) u(N+l) u(N+2) - -

D 0 - "' 

CB D 
"' 

CB 

CAB 

0 

0 

D -
CB 

CAN- 2B CAN- 3B CAN- 4B - -

... 

. . . 

. . . 

. .. 

0 

• • • 0 
"' 

• • • 0 -
• • • 0 

"' 

. . . . 

u (r) 

u(r+l) -
u(r+2) 
"' 

u(N+r-1) -

0 0 

0 0 

0 0 

0 0 

D 0 0 - -
CB D 0 

CAB CB D 

, 

Now, from (32) it is evident that we can always select n 

linearly independent rows from ~~, say g, where g is an 

nxr matrix of the selected rows. Using the concept of a 
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(36) 

(37) 

selector matrix, we can symbolically represent this action 

as 

Q = TKX, ( 38) -
where T is an appropriate nxNp selector matrix. Clearly, 

however, the operation described in (38) is equivalent to 

o = P-1x, (39) ..., ..., ... 
-1 where P is a nxn non-singular matrix given by 

-1 
P = TK. (40) 
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The matrix Q can be written as 

Q = [ q ( 1) I q ( 2) I q ( 3) I • • • I q (r) ] I (41) - - - - -
where the ~(k) 1 k=l 1 r are nxl vectors. 

Using the fact that P-l is non-singular, we can write 

-1 
~(k) = ~ ~(k} ,vk. (42) 

It should be clear now from the previous discussion of 

equivalence that the ~(k) ,Vk are equivalent state vectors. 

Using (42} with equations(!) and (2) we can now proceed 

to construct an equivalent minimal realization as in equa-

tions (4) through (8). We now write~ as the sequence of 

Npxl vectors 

z = [ z ( 1} , z ( 2} , z ( 3} , ••• 1 z (r) ] , - - - - -
and y as the sequence of Nmxl vectors 

V = [v(l) ,v(2) lv(3) 1 ••• lv(r)]. - - - -
Using equations (26) 1 (34) 1 (38) 1 (43) 1 and (44) 1 we can 

write 

~(k) = T[z(k)-~~(k)], k=l 1 r. 

Substitution of equation (45) into equations {4) and {5) 

gives 

T[z(k+l)-Ev(k+l)] = FT[z(k)-Ev(k)]+Gu(k) - - -- -- --
and 

l(k) = HT[z(k)-Ev(k)]+Du(k) 1 

where F, G, and Hare defined by equations (6), (7), and - - -
(8), respectively. 

Equation (46) can be rearranged to give 

Tz(k+l) = FTz(k)-FTEv(k)+Gu(k)+TEv{k+l). 

( 43) 

(44) 

(45) 

(46) 

( 4 7) 

(48) 
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Using equations (40) and (30) with equation (6), we have 

CB 

G = T - ( 49) 

• 

Using {49), (37), and (36) with (48) we have 

CB 

Gu(k)+TEv(k+l) = T u(k)+ 

CAN-lB 
.... 

D 0 0 . . . 0 0 u(k+l) - - - .... .... .... 

CB D 0 . . . 0 0 u(k+2) - .... - .... .... 

CA
2

B CB D ... 0 0 u (k+3) - - .... .... .... 

T (SO) 

... D 

CAN- 2B CAN- 3B CAN- 4B CB D u(k+N) .... - .... .... .... 

Expansion and recondensation of (50) reveals that 

Gu(k)+TEv(k+l) = TMv*{k), (51) 

where 



TM = T 

and 

y* (k) = 

CB D 0 

CAB CB D ---
CA2B CAB CB 

CAN-lB CAN- 2B CAN- 3B -

u (k) -
u (k+l) -
u (k+2) -

u(k+N-1) 

u(k+N) -

- -

~ J v(k) 
= ~k+~)-

... 0 0 

0 0 

0 0 

' 

D 0 

CB D -

. 

The expression -FTEv(k) from equation (48) can be written 

as 

-FTEv(k) = -FTLv* (k) , 

where 

D 0 0 0 0 
"' - "' - -
CB D 0 0 0 - - - -
CAB CB D 0 0 - -

L = ' ... 
. . . D 0 0 - "' "' 

... CB D 0 - -

48 

(52) 

(53) 

(54) 

(55) 
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and v*(k) is given by (53). We can now use equations (51) 

and (54) to write 

-FTEv(k)+Gu(k)+TEv(k+l) = Rv*(k), 

where 

R = -FTL+TM. 

Substitution of equation (56) into (48) reveals that 

Tz(k+l) can be written as 

Tz(k+l) = [R,F] Q-* (k)J . 
- - Tz(k) --

Gopinath [5] was the first to determine that, given !' 
knowledge of ~ and ~ suffices to identify the system. 

w- ~*(1)l ~*(2)1 ~*(3}l···l~*(r-l)l 

- - ~~(1):-!~<2>t !~(3)~--~--:!~(r-1~ . 

(56) 

(57} 

(58) 

Let 

{59) 

Then [R,F] can be determined uniquely in the sense of least 

squares provided that 

det [WW'] ~ 0. (60) 

We will assume, for the moment, that T is known and that 

(60) is true in order to expedite further analysis (i.e., 

[R,F] is known). The task is now to show that given [R,F] - -
the realization ~ is identified in the sense described -
earlier. 

We now let 

~ = [~0'~1'~2' ••• ,~] (61) 

where the R., i=O,l,2, .•• N are nxrn constant matrices. After 
-J. 

Gopinath [6], equation (57) is now evaluated in terms of 
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the ~i (beginning with ~ and working back to ~ol and the 

results used to d.eterm.i;ne the set of equations: 

T -

T -

T 

0 
~ 

0 

Q -
0 -
D 

a 

0 

0 
rv 

D 

CB 

0 

0 

D 

CB 

= R.__ 
~-:N 

(62.1) 

(62.2) 

(62. 3) 
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D 

CB 

CAB 

T (62 .N) 

CB 

T (62.N+l) 

Now, from equations (49) and (62.N+l) it appears that 

2 N 
§ = ~o+~~l+~ ~2+ ••• +~ ~ (63) 

Thus, F and G of equation (4) are now determined. - -
The procedure for determining the matrices ~ and ~ of 

equation (5) is greatly simplified if it can be assumed 

that the matrix ~ is full rank. Assuming that this is true, 

we can conveniently let the first p columns of ! have non­

zero selection elements. In this event, the choice 

H =[I ,0], (64) 
- -P -

where I is the pxp identity matrix, satisfies equation (47) 
-P 

since 

[I ,O]T!z(k)-Ev(k)]+Du(k) = y(k)-Du(k)+Du(k) = y(k). 
-P ~ N - -- ~- - -~ -- -

Also, under the assumption that the first p columns of ! 
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are non-trivial, the matrix D is equal to the first p rows -
of the matrix given by equation (62.N). 

Further, it is now a simple matter to compute the 

equivalent sequence of states Q using equation (45). The 

vectors z(k) and v(k) are known and the matrix TE can be - ..... 

directly formed from expressions (62.1) through (62.N) 

taken in reverse order, i.e., 

D 0 

CB D 

CAB CB 0 

TE = T ,T ' • • • 'T 

• 

Thus, a minimal realization equivalent to ~ has been ob­

tained. 

We now return our consideration to determination of 

the triplet (T,R,F) in equation (58). Gopinath [5,6] de-

(65) 

termined that a choice of ! with row dimension greater than 

n leads to certain singularity of~· in expression (60). 

Also, it can be observed from (59) that any linear depen-

dence among the inputs (i.e., the first (N+l)m rows of~) 

leads to the violation of (60). In order to determine the 

triplet (!,~~~> Gopinath assumes that the system inputs are 

sufficiently "general" such that singularity of ~· depends 

only upon the choice of! as in (59). His method begins by 

assuming a system d~ension greater than n (with an asso-
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ciated T) which leads to singularity of WW'. The row 

dimensions of ~ is then successively reduced until WW' be­

comes non-singular, i.e., the row dimension of~ is equal 

to the order of a minimal realization. Determination of 

matrices ~ and ~ is then straightforward via least squares. 

For convenience, we now define t:,. as -
[}*(1)1 ':':*(2) I ':':*(3) I 1':':* (r-lj [N+l~ /::,. = - - -1- - - t - - - I · · · 1---- = - - - {66) 

~<1> I ~<2> I ~<3> I ~~(r-1) Np 

where ~(N+l)m is a (N+l)mx(r-1) matrix of input observa­

tions and/::,. is a Npx(r-1) matrix of output observations. 
-Np 

Budin [7] observed that the problem of determining the 

matrix T can be reduced to selecting a maximum number of 
"' 

linearly independent rows from t:,.N which are themselves 
"' p 

linearly independent of the rows of ~(N+l)m" In order to 

accomplish this feat, Budin employed the process of 

Gaussian elimination along with the assumption of input 

generality. 

OBTAINING REALIZATIONS 

We now present a new algorithm for computing a minimal 

realization based on structural relationships due to 

Gopinath. The algorithm is extremely simple, makes no 

assumption as to input generality, and can be applied to 

the noisy case in its present form. 

We begin by passing the matrix ~' given by equation 

(66), through a Schmidt filter to produce the orthonormal 



matrix b. and matrices s and s+ such that - -
0 = Sb., 

11 = s+e, - -
00' = I, 

and 

ss+ = I, -
in view of the earlier discussion of the Schmidt filter. 

Further, considering (66) we can write 

where 

~(N+l)m 

b. -Np 

In equation (72}, the column dimensions of the partitions 

of ~ are given by their subscripts. 

As a result of the filtering process, certain of the 
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( 67) 

( 6 8) 

(69) 

(70) 

(71) 

(72) 

columns of ~ may be zero. Recall that the appearance of 

zero columns in ~ corresponds to rejection (by the filter) 

of those corresponding rows of ~ which do not contribute 

linearly independent information to 0. Thus, rows of 

selected (not rejected) in this manner constitute a linearly 

independent set. Also, since the filter considers the rows 

in serial order, we can be sure that the rows selected (not 

rejected) by the filter from b.N , i.e., the output elements, 
- p 

constitute a maximum number of such linearly independent 

rows which are themselves linearly independent of the rows 

of ~(N+l)m' i.e., the input elements. 



It should now be clear that SN contains sufficient 
- p 

information to determine ! uniquely. In fact, the row 

dimension of the selector matrix T is given by the number 

of non-trivial columns of SN • The column position of the 
- p 

unity element in each succeeding row of T is given by the 

column number of each succeeding non-trivial column of SN - p 
(numbering the columns of SN as 1, 2, 3, • • • I Np) . 

- p 
Now, since T is determined, equation (58) can, in 
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principle, be used to solve for [~ 1 ~] in the sense of least 

squares. However, we must still be concerned that condition 

(60) is satisfied, as no assumptions concerning the class 

of u(k) have been made. In order to circumvent this dif--
ficulty, and to avoid the possibility of having to invert 

the matrix WW' , we now make maximal use of information pro-

vided by the Schmidt filter. 

Let 

A= T[z(2),z(3),z(4), ••• ,z(r)]. 
- N - - -

Using equations (66) and (73) with equation (58), it is 

clear that there exists a nx{(N+l)m+Np} matrix r (not 

necessarily unique) such that 

A = rt:.. 

( 73) 

( 7 4) 

Using the basic relationship of linear least squares (16), 

't 5 we can wr1. e 

5For the noisy case, £ becomes £ 
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r 11tJ.' = A/1' • ( 75) 

Substituting equation (68} into equation (75), the result is 

rs+ee•s+, = Ae's+'. (76) 

But, in view of equation (69), (76) becomes 

rs+s+' = Ae' s+'. 

Now, a solution for £ in the sense of least squares is 

r = A0'S 

(77) 

(78) 

which can be verified by direct substitution and noting the 

property ( 7 0) • 

The matrix r can be written as 
~ 

I = [I (N+l)m'£Np] • (79) 

Now, from equations (72) and (78}, it is clear that zero 

columns in SN will result in corresponding zero qolumns in 
- p 

rN I so that 
- p 

F = (Tr' ) ' = rN T' • 
-- Np - P-

Also, it is easy to see that 

R = I (N+ 1) m • 

Summary of Procedure 

Since the development has been somewhat lengthy, the 

necessary activity involved in obtaining a minimal reali-

zation is summarized below. 

1. Form 11 as in equation (66). -
2. Pass 11 through a Schmidt filter and obtain ~ 

and ~ as in equations (67) through (70). 

3. 

4. 

Determine T from SN as in equation (71) • 
- p 

Form ~ using equation (73). 

(80) 

(81) 
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5. Determine r = A0'S. -
6. Select [R,FJ using equations (80) and (81). 

7. Implement the realization procedure as in 

equations (61) through (65). 

Steps 1 through 7 are very easily implemented on a digital 

computer. No matrix inversion whatsoever is required. The 

only subprograms necessary are a Schmidt filter and a 

matrix multiplication routine. 

CONCLUDING REMARKS 

An algorithm for computing a minimal realization of 

the external description of a linear discrete time system 

has been presented. We now consider some of the difficulties 

which have been known to arise in a practical modeling prob-

lem including the noisy case. 

Order Determination 

It has been uniformly assumed throughout this presen­

tation that an integer N is known as in equation (35). It 

is easy to see that N directly governs the computational 

labor involved in the realization algorithm. 

In the interest of economy it has been observed, 

Budin {7], that equation (31) is not a necessary condition 

for the construction of a minimal realization. Without loss 

of generality, we can clearly define N to be the minimum 

integer such that equation (29) is satisfied. In this case, 

analysis proceeds exactly as before, but with the possi-
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bility of greater efficiency. 

Nonetheless, the problem of an appropriate selection of 

N remains. Unfortunately, there is no easy answer to this 

problem unless definite prior knowledge of system structure 

is available. Noise, and the possibility of "distributed 

lags" increase the difficulty of the problem. 

One thing is certain, namely, a choice of N that is 

too small can lead to results which are quite incorrect. 

However, this observation leads to some salvation for the 

noise-free case. If an N is chosen which is too small, it 

will be impossible to exactly realize the given input/out­

put description of a linear system. 

Adequate Observations 

The number of corresponding observations of the system 

input and output vectors is determined by the choice of N 

(see "Order Determination" above) and the number of system 

inputs and outputs. Reference to equations (66) and (73) 

indicate that we should select r such that 

r > (N+l) m+Np. 

For the case where noise is present, it is generally advis­

able to choose r considerably larger than indicated above. 

Identification 

Identification of a system simply cannot be accom­

plished (in the sense defined earlier) unless the system to 

be identified is a minimal realization (i.e., it is com-
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pletely controllable and completely observable). It is 

worthwhile to note here that a minimal realization can only 

represent those modes of the system which are excited 

during the input/output sequence. For purposes of analysis, 

modes not excited may be considered as resulting in uncon-

trollable and unobservable states. Also, as will be dis-

cussed in the next section, it is impossible to even 

identify a minimal realization unless the system inputs are 

sufficiently "general." 

Input Generality 

In previous discussions, Ho [4], Gopinath [6], and 

Budin [7], input generality was taken to be a necessary 

condition. As previously stated, our algorithm makes no 

such assumption in the computation of a minimal realization. 

However, some difficulty can be experienced under the lat-

ter specification and this will now be discussed. 

Input "generality" will be taken to mean only that 

rank [~(N+l)m] = (N+l)m, (83) 

where ~(N+l)m is defined by equation {66}. Note that the 

idea of input generality does not necessarily bear any re-

lationship to the consideration of modal excitation as dis-

cussed earlier. If the elements of u{k) are drawn at ran--
dom, then no problem exists. There is, however, an import-

ant class of inputs for which equation (83) is almost 

certainly not true. 

As an example, consider a single input/single output, 



second order system where the input is equal to a constant 

in the external description. This might correspond to an 

identification attempt using a simple step function im­

posed at time t=O. For this case, it is easy to determine 

that (83) is not satisfied. In fact, this same difficulty 

would also occur if this same system were forced by a 

discrete-valued sine function. 
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Under the above circumstances there is no algorithm 

which can successfully identify the system (even though all 

modes may be excited and the system is controllable and 

observable). However, this does not preclude the possibil­

ity of obtaining a minimal realization of the input/output 

description. It can easily be seen from equation (58) 

that this is true. 

Given an external description of a linear system, we 

can always find an ~ such that equation (58) is satisfied. 

The problem is that if equation {83) is not true, ~ is not 

uniquely specified in the sense of least squares {even 

though the algorithm described in this paper yields a suit­

able ~). Given !' each ~ which satisfies equation {58) 

results in a different minimal realization. Simple examples 

can be constructed to show that these realizations do not 

generally satisfy condition 1 of equivalence {and hence are 

not equivalent) • Thus, the implication of previous discus­

sion is that if equation (83) is not true, it is impossible 

to identify a system, even though the system is a minimal 

realization. 
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However, it can be observed from equation (58) that F, 

and hence the order of the system, are still uniquely deter­

mined. Also, recall that a minimal realization of the exter­

nal description is obtained regardless of the validity of 

(83) • Such realizations are not usually sufficient for 

purposes of optimal control, but are obviously sufficient 

for prediction if the input for future times is "consis­

tent." In any case, the realization obtained for this case 

is quite likely the best available under the circumstances. 

Noise 

For the case where input and output observations are 

corrupted by additive noise of essentially unknown statis­

tics, the Schmidt filter can be used to empirically deter­

mine system order by judicious adjustment of the specified 

''noise to signal ratios" discussed earlier. This procedure 

produces good results when the contribution of noise 

processes is "small." The particular advantage to using 

the Schmidt filter is that linear dependence is always de­

termined in the sense of mean square, as opposed to the 

more arbitrary specification required in Gaussian elimina­

tion. If noise is known to be present, we additionally 

recommend a visual inspection of the orthonormal filter 

output with the observation that the last rows of the out­

put tend to have a proportionately larger noise content. 

We note that if noise is present, the procedure de­

scribed in this paper may produce estimates of system para-
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meters which are statistically biased. However, for the 

class of noise described above, there is no procedure which 

can guarantee unbiased estimates of system parameters. 

Finally, we note that the terms "biased" and "useless" are 

not necessarily synonomous, depending upon the problem at 

hand, and let the utility of our algorithm speak for itself. 

FURTHER RESEARCH 

The Authors realize that there may be difficulty in­

volved with "knowing" both the input and output of the 

Schmidt filter simultaneously in some identification prob­

lems due to possible constraints on computer storage. Where 

this difficulty can be circumvented, we believe the approach 

presented here to be extremely valuable. We do not recom­

mend, however, that the procedure presented here be applied 

to the adaptive filtering problem since added input/output 

observations normally require complete regeneration of the 

orthonormal sequence. 

The above difficulties have led the authors to develop 

a modified algorithm, based upon the analysis presented 

here, in which it is never necessary to know the output or 

input of the Schmidt filter explicitly in order to accom­

plish the purpose at hand. Besides providing an exact 

solution for the noise free case, the modified algorithm 

yields unbiased estimates of system order and parameters 

for the case where noise statistics are known. This ex­

tremely efficient algorithm, which will be considered in a 



forthcoming publication, can also be conveniently applied 

to the adaptive filtering problem. 
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ABSTRACT 

UNBIASED LINEAR SYSTEM IDENTIFICATION 

IN A NOISY ENVIRONMENT 

by 
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v. J. Flanigan* 
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An optimal filter is proposed to compute a basis of a 

set of "noisy" filter input functions for the case where 

signal and noise statistics are specified. Procedures for 

determining the filter transfer function and the transfer 

function of a restoring filter are given. The filter is 

then applied to the problem of minimum-order mathematical 

modeling of discrete, multi-variable, dynamic systems in 

noisy environments. It is shown that the resulting esti­

mates of system order and system parameters are unbiased. 

*The Authors are associated with the Department of Mechani­

cal and Aerospace Engineering, University of Missouri - Rolla, 

Rolla, Missouri 65401, where Mr. Behring is a Graduate Stu­

dent and Dr. Flanigan (member ASME) is an Associate Profes-

sor. 



NOTATION 

In this paper all bold-face capital letters denote 

matrices. Vectors are defined in column format and are 

denoted by lower case letters in bold-face type. All 
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scalars will be denoted by plain upper or lower case letters. 

Occasionally it will be necessary to display the format of 

a vector or matrix explicitly, e.g., 

X = 

xl 

x2 

x3 

X 
n 

Any exceptions to these general rules will be clearly 

specified in the text. 

INTRODUCTION 

In an earlier paper, the Authors [1] 1 introduced a 

"Schmidt filter" to compute a set of orthonormal basis 

functions of a set of "noisy" input functions for the case 

where noise statistics were essentially unspecified. The 

novel features of the filter were then shown to be applica-

1Numbers ~n brackets designate references at end of paper. 
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ble to the problem of system identification. The method 

demonstrated in our previous paper was considered to be the 

"best available" for unspeci.fied noise, but was described 

as non-optimal in the event that noise and signal statis­

tics are known. In this paper we develop a modified Schmidt 

filter for the latter case and show how the filter can be 

used to obtain unbiased estimates of system parameters. 

The Schmidt filter algorithm is based on the well-

known "Gram-Schmidt orth.onormalization process," Epstein 

[2], also known as "orthonormalization due to Erhard 

Schmidt," Drygas [3]. The Gram-Schmidt procedure has been 

used by others working in the area of system identification, 

notably by Kitamori [4], Lubbock [5], Clement [6], Lubbock 

and Barker [7], Douce and Roberts [8], Barker and Hawley 

[9], and Roberts [10]. The most popular approach to the 

problem proposes an expansion of system inputs as a set of 

orthogonal functions. A system transfer function is then 

formed as a set of optimal, independently-determined para­

meters which most nearly approximates known operating data. 

The problem of noise has not been thoroughly considered in 

these analyses. 

The first direct method for computing a minimal reali­

zation of a linear, multi-variable, discrete system from 

input/output data was derived by Gopinath [11]. Budin [12] 

gives a much improved algorithm based on the earlier work 

of Gopinath. A central problem in the extension of either 

algorithm,to the noisy case is the determination of matrix 
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rank in the presence of additive noise - a problem that has 

not been satisfactorily solved to date. 

PROBLEM STATEMENT 

We begin by assuming the existence of real pxl vector 

functions of time f(t), v(t), and ~(t). Further, let the 

pxr matrices F, V, and Y be ordered sets which define the - - "' 

ranges and domains of ~(t), v(t), and y(t), respectively, 

such that 

and 

F = [~(t1 ),~(t2 ),~(t3 ), ••• ,~(tr)], 

V = I~<t1 ),~(t2 ),~(t3 ), ••• ,~(tr)], 

Y = I~(t1 ),~(t2 ),~(t3 ), .•• ,~(tr)], 

(1) 

(2) 

(3) 

where ti < ti+l'Vi. Similarly, let the real nxl vector 

function x(t) exist and let the nxr matrix X be defined as 

(4) 

In the event that r in equations (1) through (4) approaches 

infinity, we require that ~(t), ~(t), ~(t), and ~(t) ap­

proach sectionally continuous functions. In any case, we 

require that f(t), v(t) 1 y{t} 1 and x(t) exist, Vt .. 
- - - 1 

We will say that two functions, say x(t} and y(t), 

are orthogonal if it happens that 

XY' = 0, (5) -
which clearly implies that 

YX' = 0', (6) 
"' 

where Y and X are given by equations (3) and (4), respec-
"' ..., 

tively, and 0 is the nxp null matrix. Given (5) or (6), it .... 
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is easy to show that ~ is orthogonal to the function space 

spanned by ~' and conversely. If x(t} and l(t) are dis­

crete functions, we compute XY' from 

r 

XY' =2 
i=l 

X ( t , ) y 1 ( t ,} 1 - ~ - ~ 

whereas, if x(t) and ~(t) are sectionally continuous, we 

define XY' as 

t 

XY' = sr~(t)~' (t)dt. 

tl 

A function, say x(t), will be called orthonormal if 

XX' = I I -n 
where I is the nxn identity matrix. 

-n 
In order to illustrate the problem at hand, we let 

(7) 

(8) 

(9) 

f(t) be a noise-free "signal" function, v(t) be an "obser-

vation noise" function, and y(t) be an "observed" function, 

where the relation between f(t), v(t), and y(t) is given by 

Y = F+V. (10) 

We assume that Y is known, but that we have no explicit 

knowledge ofF or y except for the statistics FV' and VV'. 

The fundamental problem is to optimally compute a set of 

basis functions of expression (10) • We then show that the 

solution of this problem leads to unbiased identification 

of system parameters for the case where noise statistics 

are known. 
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LINEAR LEAST SQUARES 

Let Y and X be defined as in equations (3) and (4), 

respectively. Let ~ be a pxn constant matrix. It can be 

shown, e.g., Sage and Melsa !13], that an optimal, linear 

conditional estimate of y(t) given x(t} in the sense of 
"' -

. ' 2 ,.., 
m1n1mum mean square {~(t) I~Lt)} is 

('\ 

y(t) lx(t) = Ax(t), 
~ ~ ....,,.., 

A 

where A is a constant matrix which satisfies -..... 
AXX' = YX'. 

If XX' is non-singular, A is uniquely determined as 

A = YX I rxx I] - 1 . 

(11) 

(12} 

(13} 

Using {13}, it is easy to demonstrate the significant re-

su1t that the matrix E defined by 

E = Y-P, (14} 

where 

P = AX, (15} 

is orthogonal to X, i.e., 

EX' = 0. (16} 

Also, using (13}, (14), and (15), we can show that 

EP I = 0. - (17} 

From equation (14) we conclude that the function Y can be 

written as 

Y = E+P, (18) 

2 A 

Here, A minimizes { [Y-AXJ IY-AXJ ' } • 
~ ~ ~~ 



where ~ may be considered as the component of Y which is 

orthogonal to the space spanned by X and P as the ortho­

gonal projection of ! on the space spanned by X. 

THE SCHMIDT FILTER 
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The defining relationships for the Schmidt filter, de­

rived in 11], are now repeated for convenience. 

Given Y of equation (3), the Schmidt filter produces 

a function X of equation (4), where n~p, and linear trans­

formations s and s+ such that 

XX' = !n' 
X= SY, 

and 

(19) 

(20) 

(21) 

where s is the transfer function of the Schmidt filter, and 

S+ can be considered as the transfer function of a restor-

ing filter. Further, we can determine directly from (19), 

(20), and {21) that 

S+ = YX', (22) 

and 

+ SS = I . -n 
(2 3) 

It is obvious from (23) that s+ qualifies as a "generalized -
inverse" of s, Rao [14], namely, -

(24) 

and 

(25} 

Further, it is straightforward to show that the matrix s•s 
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is a generalized inverse of the Gram matrix YY', i.e., 

s ' s = [ yy ' ] + , ( 2 6 ) 

+ where [YY'] has extensive application in the area of 

linear estimation, Drygas l3J. 

We let ~ be defined as the set of pxl vectors 

~ = r: (tl) ,~ (t2) ,: (t3), ••• ,: (tr)]. (27) 

The notation ~j' j=l,p will denote the jth row of~· Also, 

we let Y., j=l,p denote the jth row of Y; x., i=l,n denote 
-J - -~ 

the ith row of X; and z,, i=l,n denote the first i rows of 
"' -~ 

x. 
Let the notation liE. II denote the "norm" of E., 

. -J -) 
defined by 

1 

IIE·II = [E.E~]~ 
-J -J-J 

(2 8) 

+ Also, we letS., i=l,n denote the ith row of S; S., j=l,p 
....... 1. - - J 

denote the jth row of S+; and s:., j=l,p, i=l,n denote the 
J~ 

elements of matrix s+. 

The Schmidt algorithm begins by assuming that the first 

row of Y is non-trivial. In this event, we let 

~1 = :11 II ~111, 
~~ = [11~1 II,O,O,O, ••• ,O], 

and 

~ 1 = [l,o,o,o, ... ,oJ/11~1 11· 

Successive rows of X, s+, and S are generated by -

> E • 1 
J 

and 

(29) 

(30) 

( 31) 

(32) 

(33) 

(34) 
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i 

~~+1 = ru.- ~s~kSkl/IIE.II I if (E.E!)/(Y.Y~) > e; •• (35) 
• -J ~ J - -J -J-J -J-J J 

k=l 

The lxn matrix 9i{j) is defined as 

9i (j) = I 0, 0, 0, •• , , 0, Aj , 0, ••• , o J , (36) 

where 

!J. • ' J 
defined by 

A. = ll~j II if (E • E j) I (Y . y! ) > E; • ' J -J- .... J-J J 
(37) 

Aj = o, otherwise, 

' found in the ith column. ~s 

The ixp matrix u. 
"-) 

is defined as 

u. = [O,O,O, ••• ,O,l,O, .•. ,O], 
-:-J 

( 3 8) 

where unity element is found in the jth column. 

The set of equations (32) through (35) is executed p-1 

times, beginning with j=2 and i=l. Each time these equa-

tions are executed, the subscript j is incremented by one. 

Equations (33) and (35) are only defined in the event that 

the indicated condition is true, where E., j=l,p is ordin­
J 

arily specified to account for small computational errors. 

Following execution of equation (34), the subscript i is 

incremented by one only if the indicated condition is true. 

From equation (32) and the discussion of least squares, 

it is clear that E. represents the component of Y. which is 
-J -J 

orthogonal to the space spanned by z .• 
-~ 

THE MODIFIED SCHMIDT FILTER 

We now consider an alternate version of the Schmidt 

filter algorithm which is extremely valuable in adaptive 
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filtering and the analysis of the noisy case. In this 

development, we show that it is never necessary to know Y 

+ or X to determine the filter pair (S,S ) , but only the Gram 

matrix of ~' defined by 

G = YY', (39) 

where ~is a pxp matrix. Let ~j' j=l,p denote the jth row 

of matrix G and gji' j=l,p, i=l,p denote the elements of 

matrix G. From (39) we notice that 

gji = ~j~l 
G.= Y.Y'. 
---J -J-

LetT., i=l,n denote the first i rows of the matrix S. 
-1 -

From previous discussion, it is clear that 

Z. = T.Y. 
-1 -1-

Using equation (42) with equation (32), we can show that 

(40) 

(41) 

{ 42) 

E . E! = y. y!- [Y. y IT! J [Y. y' T!] ' • ( 4 3) 
-J -J -J -J -J- -1 -J- -1 

Using equations (40) and (41) with (43) and (32), we have 

E.E~ = g .. -[G.T!][G.T!]' (44) 
-J-J JJ -J-1 -J-1 
+ s . = [ G . T ! , 0 I 0 '0 ' ••• '0 J +Q . + 1 ( j ) . ( 4 5) 

-J -J -1 -1 

Using equations (30), (31), (35), (44), and (45), we now 

give the complete set of filter generating equations as 

+ !.: 
~ 1 = [g{1 ,o,o,o, ... ,oJ 

!.: 
~l = [l,O,O,O, ••• ,O]/gll 

E.E! =g .. -[G.T!J[G.T!]' 
-J-J JJ -J-1 -J-J 

~+J. = [G.T!,O,O,O, ••• ,O]+Q.+l(j) 
---J-1 i -1 

~i+l = r~f·~s;k~kJ /ll~j~j II, if 
k=l 

[E .. E!] /g. . > £, , 
-J-J JJ J 

( 46) 

( 4 7) 

( 4 8) 

( 49) 

(50) 

where ~i (j) is defined by equation (36) and ~j is defined 
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by equation (38) • 

The algorithm described by equations (48) through (50) 

proceeds exactly as before except that no knowledge of Y 

or ~ is ever required. Of course, given Y, X can be readily 

computed using the filter transform s. -
The modified filter algorithm is more conveniently 

applied with a digital computer because of simplified logic 

and greatly reduced storage requirements. However, we note 

that no effort in computation is actually saved by using 

this form, since the Gram matrix of Y was not required in 

the original algorithm. In fact, the computation effort 

required is approximately equal for both versions of the 

algorithm. 

One of the most outstanding advantages of the modified 

algorithm is that it is very easily applied to problems of 

adaptive filtering since the Gram matrix YY' is easily up-

dated for added observations. Once the Gram matrix is 

defined anew, the computational effort required to recom­

+ pute S and S is practically nil using equations (46) - -
through (50). Finally, we note the interesting fact that, 

in general, there are an infinite number of functions ~ 

which produce the same Gram matrix G. Obviously, this fact 

implies that the pair (S,S+) does not ordinarily determine 

the pair (Y,X). 

The applicability of the modified Schmidt algorithm to 

the noisy case will be discussed in the next section. 
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NOISE 

Now, if Y is the sum of a signal function and a noise 

function, as in (10}, it is clear that X will also be a 

"noise-corrupted" function, since ~ is merely a linear 

transformation of Y. The implications of this observation 
~ 

are that the function X is a ''noisy basis" for the noisy 

function Y and that the row dimension of X does not neces-
~ 

sarily reflect the rank of F. There is some hope that we 

could conceivably solve the rank determination problem by 

adjusting the £. upward to allow for "approximate depen­
J 

dence," but there certainly is no guarantee that this 

empirical procedure will produce the desired results, 

especially where the contribution of the noise process V 

is large. Also, using the empirical method, it can easily 

develop that rank (~) < rank (~) in which case the set ~ 

does not contain a complete set of basis functions of F. 

It is thus clear that any results obtained in this fashion 

are purely heuristic. 

We now consider how the modified Schmidt algorithm, 

defined by equations (46) through (SO) , can be conveniently 

applied to the case where the noise and signal statistics 

are known. We show that, given ~ and the statistics ~~· and 

VV', it is possible to determine the filters Sands+ asso-

ciated with the function F. -
Using equation (10), we write 

YY' = FF'+FV'+IFV'] '+VV' (51) 
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Thus, given YY', FV', and \TV', it is trivial to compute the 
-":"": -':""' --

statistic FF' using equation (51}. Hence, we assume the 

statistic FF~ to be known. In order to apply the Schmidt 

filter to the noisy case, we now use the modified form to 

determineS and s+ based on FF'. This allows exact deter-- -
mination of rank (Fl. Further, ifF were the input to such 

a filter, then the filter output would obviously be a com-

plete set of orthonormal basis functions of F. We note, 

however, that in this case the filter ~ applied to !, which 

is known, does not ordinarily produce an orthonormal matrix 

~, although it is easy to see that~ is complete, i.e., it 

contains a complete set of linearly independent components 

of F. Further, if we consider that X is the sum of a 

"signal function" X and a "noise function" x__, i.e., 
-S ~~ 

X = X +X._ I 
- -S ~~ 

we can compute the statistics ~s~ and ~~ from FV' and 

VV' using equation (10) as 

and 

(52) 

(53) 

(54) 

We now consider the application of the above results to the 

identification of systems in noisy environments. 

THE IDENTIFICATION PROBLEM 

We direct tne reader's attention to a problem consid-

ered earlier by the Authors 11]. The distinction between 

this and the previous analysis is that we now seek to ob-
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tain an optimal solution of the identification problem for 

the case where no;ise statistics are known. Here we show 

that unbiased estimates of system order and system para­

meters are easily obtained using the modified Schmidt filter 

algorithm. 

It is important to note that the meaning of symbols 

used in this section does not necessarily correspond with 

definitions in previous sections. 

We begin by assuming that we have an "external descrip-

tion" of a minimal realization ~' where ~ is described by 

x(k+l) = Ax(k)+Bu(k) (55) 

and 

y(k) = Cx(k)+Du(k), (56) -
where x is a nxl state vector, u is a mxl input vector, and 

y is a pxl output vector. The constant matrices A, B, C, 
~ - - -
and D are of orders nxn, nxm, pxn, and pxm, respectively. 

The integer k indicates observation of the system at the 

beginning of the kth equal interval of time. We assume that 

the external description is given by the sequences 

Y = [y(l),y(2),y(3), ... ,y(N+r)] (57) - - - -
and 

U = [u(l),u(2),u(3), ... ,u(N+r)] (58) - - - - -
where the significance of N and r is shown later. The 

functions Y and u are assumed to be noise-free. 

In association w;ith the minimal realization ~ we re-

quire the existence of the sequence of states X where 

X= [x(l),x(2),x(3), ••• ,x(r)J (59) ,.. 



such that r>n+p 

and rank (X) = n. 
'V 
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(60) 

(61) 

Since all minimal realizations are observable, we require 

that 

rank (K} = n, (62) 

where3 

c 

CA --
CA2 

K = ,VN>n. (63) 

CAN 

Let the (N+l) pxr matrix W be defined as -
y (1) ~ (2) ~ (3) . . . ~ (r) 

~ {2) ~ (3) ~ (4) . . . ~ (r+l) 

y {3) y (4) y (5) . . . y (r+2) - -
w . . . (64) = . . . 

. . • 

y (N+l) y(N+2) y (N+3) . . . ~(N+r) -
and the (N+l) pxr matrix v be defined as 

3Note that the last p rows of ~ are always linearly depen­

dent on the first Np rows in the definition employed here. 



u (1) u (2) u (3) . . . u (r) - - -
u (2) u (3). u (4) . . . u(r+l) 

"' -
u (3} u t4} u (5) . . . u(r+2)-- "' -

v = . . . 
. . . 
. • . 

u (N+ll u (N+2} u (N+3l . . . u (N+r) - - -
Also, let ~~ denote the first column of W and~ denote 

last column of w. Let ~v denote the last column of v. 
Further, let the matrices ~1' ~2' and ~l be defined by 

w = [~1 1 ~] = r~'~2l 
v = ryl ,~J 

Using equations (57) through 

show that 4 

Y1 
!~2 = {R,F] ---

!~1 

( 6 3) and (66) and (6 7) , we 
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(65) 

the 

(66) 

(67) 

can 

( 68) 

where F is a nxn matrix, R is a nx(N+l)m matrix and T is a 
- -

suitable nx(N+l)p- "selector matrix." Basically, the selec-

tor matrix is allowed to have but one non-zero (unity) 

element per row and one non-zero (unity) element per column. 

The column position of each unity element of the selector 

matrix corresponds the column position of a row selected 

4The reader is directed to reference [1] for proof of this 

statement. 
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from its operand. Further, it can be shown5 that knowledge 

of the matrix (R,F) is sufficient to yield a minimal reali-

zation of the external descriptions of ~. Here, T is as-- -
sumed known, but it in fact must be determined indirectly 

from the external description.. The problem reduces to the 

selection of a maximum .. number of linearly independent rows 

of ~ which are themselves linearly independent of the rows 

of v_ This problem was solved in [1] essentially by passing ... 
the matrix 

(69) 

through a Schmidt filter to determine which rows of ~l are 

"passed" by the filter as linearly independent, leading to 

direct determination of !· Following determination of !, 

the filter transfer function and orthonormal output were 

used in an efficient manner to determine [R,F]. 

This procedure is certainly applicable to noise-free 

linear systems and is perhaps one of the best available 

where noise statistics are unknown, even though it is ack-

nowledged that parameter estimates may be biased for the 

noisy case. 

5rbid. [1] 
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A Direct Method 

The procedure developed here is based on our original 

analysis except that the procedure discussed here allows for 

much more convenient digit~l implementation, especially for 

the noisy case. 

We begin by requiring that the last p columns of the 

selector matrix T be trivial. This specification does not 

in any way restrict the analysis, since it is easily deter-

mined from equation (63) and footnote 3 that the last p rows 

of T of equation (69) will be linearly dependent on the ... 
first (N+l)m+Np rows. 

In order to implement the new method, we begin by 

passing the matrix 

E~8 
through a Schmidt filter to produce matrices ~, ~+ and 

orthonormal output g, where 

Y1 
Q = s --- (70) 

( 71) 

( 7 2) 

We now partition ~ as 

~ = I~(N+l)m'~(N+l)p] ( 7 3) 

where the column dimensions of the partitions of ~ are given 
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by their respective subscripts. We note that certain of the 

columns of ~(N+l)p may be trivial (those corresponding to 

rows of ~ which are "blocked" by the filter because of 

linear dependence} • As in our previous analysis [1], we 

formulate T based upon the occurence of non-trivial columns 

of ~(N+l}p" 
We let the non-zero selection elements of T be placed -

in the columns of T which correspond to the non-trivial 

columns of ~(N+l)p" We note from previous discussion that 

the last p columns of T are trivial after this method. As 

a result of this procedure, it is easy to show that 

S T'T - S -(N+l)p- - - -(N+l)p 
(74) 

We now form a second nx(N+l)p selector matrix T* from the 

relation 

( 75) 

In particular, we form!* by shifting the selection elements 

of T to the right by p positions. We note that the last p 

columns of T* are not necessarily trivial. Using equations 

(70) and {71), we can write 

T*W = [0 ,T*] [S+S] 
- -1 

~1 

~1 
where 0 is a nx(N+l)m null matrix. -

The matrix s+ is now partitioned as 

+ 
~ (N+l)m 
~------

+ 
~ (N+l)p 

(76) 

( 77) 

where ~~N+l)m represents the first (N+l)m rows of s+ and 
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~~N+l)p represents the last ~+l)p rows of~+. 
Using (73), {74), (75), and (77) with (76), we have 

TW - {T*S+ S T*S+ S T'] 
- ... 2 - - ':. (N+l) p,., ~+l)m'..., f". (N+l) p ... (N+l) p ... --- (78) 

~1 
where :*~~N+l)p~(N+l)m is a nx(N+l)m matrix and 

T*S+ S T' is a nxn matrix. Comparison of (78) with ..., ... (N+l)p ... (N+l)p ... 

(68) reveals that 

R = T*S+ S (79) ..., ... (N+l)p ... (N+l)m 

F = T*S+ S T' (80) ..., ... (N+l)pN(N+l)p ... 

Further, the matrix ~~N+l)p~(N+l)m is simply the matrix 

defined 

+ of s S, 

defined 

by the last. {N+l) p rows and the first (N+l) m columns 

and that the matrix ~~N+l)p~(N+l)p is the matrix 

by the last (N+l)p rows and last (N+l)p columns of 

s+s. Also, it is clear that we can substitute ~ for ~l and 

V for ~l in equation (76) and still obtain the results in­

dicated by equations (79) and (BO} • 

We now summarize the complete realization procedure as 

1. Form the matrix ZZ', where 

z = E~. (81) 

2. Use the modified Schmidt algorithm with ZZ' to 

obtain 
+ S and S • 

3. Form T from S and, hence T*. 
..., - ..., 

4. Use T and T* to select IR,FJ from s+s as in equa-- ..., ..... 

tions (79) and (80). 
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5. Use I~,~] to obtain a minimal realization of E via 

the method suggested in reference Il]. 

Ne believe this to be the mo$t general and most efficient 

realization procedure published to date. Also, we note that 

Steps. 1 through 5 are easily implemented in an adaptive 

algorithm. 

Finally, we note that all of the coefficients in the 

"external" form derived by Rowe IlS] are easily selected 

from the matrix s+s. Such an external form was determined 

from s+s by the Authors in reference [1] for the case of 

autonomous systems. Extension to the more general class of 

systems discussed in this paper is straightforward. 

Additive Noise 

We now show that the problem of additive noise does not 

affect the accuracy of or appreciably increase the computa­

tional labor involved with application of the previously 

discussed identification procedure for the case where noise 

statistics are known. 

We let z be defined exactly as in equation {81) where 

Wand v are given by equations (64) and (65), respectively. 

We let the unknown (N+l) (m+p)xr matrix~ be the noise matrix 

associated with attempted observation of ~, such that 

H = Z+n (82) 

where H is the (N+l) .(m+p) xr matrix of noisy observations • ... 
For further analysis, we require that the statistics nn' 

and Zn' be known. From equations (64) and (65), it is 
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clear that this requirement implies knowledge of an exten­

sive set of autocorrelations and crosscorrelations of sig­

nal and noise processes. 

Now, if nn' and Zl1' are known, it is trivial to compute 

ZZ' from equation (82}. It should be.clear that we can now 

use ZZ' as in the direct identification method to obtain an 

unbiased estimate of fR,F] and hence an unbiased minimal 

realization for the noisy data. 

CONCLUDING REMARKS 

The Authors have shown that unbiased estimates of 

linear, multi-variable system parameters can be obtained 

for the case where signal and noise statistics are known. 

In some respects our approach to the problem has been from 

a "deterministic" point of view in that such terms as 

"expected value," "stationary," "ergodic," etc., have not 

been introduced into the analysis. Instead, we have pre­

ferred to approach the problem from what might be called a 

"small sample" point of view. We note for this case that 

any approximations to signal and noise statistics may 

seriously bias results. In fact, it certainly can happen 

that results obtained in this manner can be worse than 

those obtained by assuming that no prior knowledge of noise 

statistics is available, for which case the original Schmidt 

algorithm might be employed. 

The Authors realize only too well that in a practical 

problem the noise and signal statistics may only be approx-
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imately specified. In some cases such approximations may 

be quite reasonable. For instance, it may be concluded that 

the noise and signal statistics are specified in the limit 

as the sample size becomes large. 6 For these cases it is 

easily deduced from previous discussion that the process 

described in this paper yields results which are "asymtot-

ically unbiased." 

Finally, we note that a modular collection of PL/1 

subroutines which allow efficient structuring of a variety 

of digital realizations (including the adaptive case) of 

the procedures described in this paper is given in [1]. 
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The mathematical analysis of security prices is traced 

from its early beginnings through the current state-of-the 

art. The concept of a multiple input/output dynamic system 

is presented from the viewpoint of modern control theory and 

examined for relevance to the simulation of speculative 

prices. An efficient procedure for obtaining adaptive reali­

zations from input/output data is briefly described. The 

stock market is formulated as a linear, discrete-time, 

multiple input/output system and the results of several sim­

ulation studies are presented. Evidence indicates that at 

least some segments of the market can be approximated by 

high-order linear systems computed from small samples and 

tends to refute the random walk hypothesis. 

*The Authors are associated with the Department of Mechani­

cal and Aerospace Engineering, University of Missouri - Rolla, 

Rolla, Missouri 65401, where Mr. Behring is a Graduate Stu­

dent and or. Flanigan (member ASME) is an Associate Profes­

sor. 
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NOTATION 

In this paper all bold-face capital letters denote 

matrices. Vectors are defined in column format and are 

denoted by lower case letters in bold-face type. All 

scalars will be denoted by plain upper or lower case letters. 

Occasionally it will be necessary to display the format of 

a vector or matrix explicitly, e.g., 

X = 

Any exceptions to these general rules will be clearly 

specified in the text. 

INTRODUCTION 

Speculative Prices 

It is generally recognized that the first mathematical 

analysis of speculative prices was undertaken by Bachelier 

[1].1 Because it reflects significantly upon the problem 

lNumbers in brackets refer to references at end of paper. 
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at hand and has particular relevance to later analysis, we 

quote a selected portion of the introduction to Bachelier's 

(1900) doctoral dissertation in which he gives his inter­

pretation of the French bond market: 

The influences which determine fluctuations on 
the Exchange are innumerable; past, present and even 
discounted future events are reflected in market 
price, but often show no apparent relation to price 
changes. Besides the somewhat natural causes of 
price changes, artificial causes also intervene: the 
Exchange reacts on itself, and the current fluctuation 
is a function not only of previous fluctuations, but 
also of the orientation of the current state •••• 

Bachelier's mathematical treatise is considered to be the 

foundation of what is referred to as the "random walk" 

hypothesis of stock price behavior. Bachelier proposed a 

model of speculative prices in which successive changes in 

price were considered as independent events, drawn from a 

Gaussian population with zero mean. In a description of 

what was later to be called a "perfect" market2 by Working 

[2], Bachelier clearly inferred that the best estimate of 

future price is always the current price. 

2The "perfect" market is one in which expectations con­

cerning future economic conditions are reflected by cur­

rent price. Expectations are in turn influenced by 

incoming information which is rapidly disseminated to 

market participants~ 
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Contrary to the propositions of Bachelier, there 

appears to have consistently been a cult of professional 

traders who believe that existing knowledge in fact sheds 

light on future market movements. This group may be further 

divided into 11 technicians 11 and 11 fundamentalists, 11 where 

the technicians believe that future prices are determined 

by the existing history of prices and the fundamentalists 

tend to examine associated information as well, such as 

profits, dividends, capital investment, etc., in hopes of 

predicting future price movements. It appears that a large 

number of the methods employed by the technicians and 

fundamentalists are highly empirical in nature (some being 

based substantially on intuition}, which is not to conclude 

that they are without value. Cowles (3], however, inves­

tigated the historical predictive performance of eleven 

financial publications and concluded that these profession­

als were powerless (on the basis of realized profit) to 

predict market movements. Unfortunately, it is likely that 

many of the methods employed by the professional forecasters 

have gone unpublished, exceptions being [4,5,6]. 

It appears that vigorous interest in mathematical 

analysis of security prices was not revived until the 1950's. 

Kendall (7] examined a wide variety of economic series, 

drawn from the British Stock Exchange, and found no sub­

stantial indications of non-randomness using methods of 

multiple regression and autocorrelation. The random walk 

hypothesis '(aras revived by a number of authors during this 
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period, including Osborne [8]. Osborne [8], in the tradition 

of Bachelier, concluded from observed data that common stock 

prices tend to follow a random walk. However, Osborne chose 

not to examine the distribution of simple price differences, 

but the distribution of differences in the logarithms of 

successive prices {logged price relatives). The adjustment 

in the data tends to "normalize" results drawn from extended 

intervals where the magnitude of price changes appears to 

vary with price. Also, the possibility of "non-positive" 

prices is conveniently excluded from consideration. Roberts 

[9] gave haunting graphical examples showing how familiar 

series of stock price data might be generated by a random 

walk model. Additional support for the random walk model 

is given by Larson [10], employing the "perfect market" 

hypothesis of Working [2] with the assumption that "new" 

information arrives at the marketplace in a random fashion. 

It is worthy of note that Larson uses a statistical test 

of:continuity as a basis for his results rather than the 

frequently-used techniques of autocorrelation and regres­

sion. The findings of Larson were later largely substan­

tiated by Samuelson [11]. 

It appears that the first substantive challenge to 

random walk proponents was issued by Alexander [12], who 

concluded that "self-supporting" trends existed in stock 

prices and proposed what he called an x percent filter to 

profitably exploit such trends. Alexander [13] described 

the essential character of his filter as: 
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Choose a percentage x, say 5%. If the average 

rises by 5%, buy, and if it declines by 5%, sell. 

Alexander [12] showed that his simple strategy yielded eye­

popping yearly profits (before commission) when applied to 

Dow Jones and Standard and Poor's Industrial closing price 

data from 1897 through 1959, from which it might be infer­

red that the random walk theory left something to be 

desired. Alexander's original work [12] drew considerable 

criticism from random walk proponents, much of which is 

reflected in works by Fama and Blume [14], and Dryden [15]. 

Accepting some of his antagonists criticisms, dealing 

primarily with the application of this filter rule, 

Alexander [13] was still able to show that his filter pro­

duced noticeable profits, although resultant yields were 

considerably reduced. Following Alexander's original work, 

several papers appeared which tended to reject the idea 

that a simple random walk model could completely explain 

observed phenomena. Osborne [16] concluded that signifi­

cant time-periodic frequencies are present in the moments 

of stock price changes, implying non-stationarity. Cootner 

[17] proposed a modified random walk model of stock price 

differences which consisted of a random walk with "reflec­

ting barriers" superimposed on a large number of short-term 

trends. Steiger [18] noted significant non-randomness in 

stock price behavior with statistical results which tended 

to support the hypothesis of Cootner [17]. Granger [19,20] 

applied the technique of spectral analysis to stock prices 
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and concluded that low frequencies (periods of 6, 12, 40 

months) are noticeably significant, while higher frequencies 

(periods of days and weeks) contribute little spectral 

power. 

A tendency has been found by various investigators in 

random walk theory for the distribution of price differ­

ences and logged price relatives to be leptokurtic (similar 

to a Gaussian distribution, but having a significantly 

"higher peak" and "longer tails") rather than normal. It 

appears, however, that the first thorough analysis of this 

phenomenon was due to Mandelbrot [21,22]. Mandelbrot pro­

posed that the observed changes in stock prices were 

actually drawn from a distribution called "stable Paretian," 

which explained the characteristics of observed frequency 

functions. Mandelbrot's hypothesis was extremely contro­

versial because of the properties of the "stable Paretian" 

distribution, which has finite mean but infinite v~iance, 

a feature which directly challenged the applicability of 

most statistical techniques previously used. The validity 

of Mandelbrot's hypothesis and the properties of the stable 

Paretian distribution were later considered in detail by 

Fama [23,24]. It is noteworthy that Press [25], in the 

tradition of random walk, concluded later that the distri­

bution of logged price relatives could be described by a 

Poisson mixture of normal distributions, which is not 

stable. 

A recent movement in the literature concerns the dis-
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tribution of individual stock price differences over 

intervals other than time, an idea actually first considered 

by Alexander [12]. Brada [26] considered the distribution 

of stock price differences taken over successive trans­

actions and found notable dependence. Brada also concluded 

that such methods result in distributions which are more 

nearly normal than the distribution of time price differ­

ences. About the same time, Niederhoffer and Osborne [27] 

also noted such dependency over transactions and observed 

a tendency for stock price reversals to cluster at integer 

prices. Elsewhere, Niederhoffer [28] also examined the 

clustering phenomenon and noted that the mechanics of stock 

trading appear to result in a tendency for stock prices to 

be concentrated at integers. Granger [29] and Simmons [30] 

tended to reconfirm the dependence-over-transactions theory 

and defend the random walk hypothesis for longer intervals. 

Simmons, however, concluded that price dependence over 

transactions is generated by the actual mechanism of 

trading, and that the underlying price change sequence is in 

fact a random walk. 

It appears to the Authors that a paper by Osborne [31] 

marks the beginning of another trend in the literature which 

we believe has yet to fully emerge. Osborne [31] viewed the 

stock market as an automatic control system and derived a 

discrete difference equation to describe its dynamics. In­

puts to the model consisted of orders to buy and sell and 

outputs of the model consisted of a sequence of stock 
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prices. While the system (black box) represented the 

mechanics of the market, a feedback loop is included to 

represent the activity of the market participants who view 

the system output and generate new orders to buy and sell. 

Although a specific model is never constructed, Osborne [31] 

evaluated the results qualitatively from the properties of 

the difference equations and found them to be "in qualita­

tive agreement with the folklore of stock trading." Later, 

Osborne [32] compared the results "expected" from the 

random walk model, the discrete model and a continuous 

differential equation model with actual price and volume 

series data using a statistical theory of "coincident 

events." "Positive agreement" with historical Dow Jones 

Industrials and New York Stock Exchange total volume data 

was found for both the random walk model and the discrete 

model for differencing intervals on the order of days and 

weeks. 

Osborne's papers are significant because they make the 

first attempt at a description of the mechanics of the stock 

market as a mathematical entity. Just as important, how­

ever, is the fact that they tend to be descriptive of the 

effects of new types of information on the outputs (e.g., 

price) of the trading mechanism. It has generally been 

recognized [21,24,25,30] that the stock market adjusts 

rapidly to new information and manifests such adjustments 

as stock price. Recently, several papers have appeared 

which at'bempt to assess the significance of certain types 



of new information on price adjustments. Although these 

publications tend to be more statistical and less mathe­

matically descriptive than the recent works of Osborne, 

they contribute an important body of knowledge to the 

understanding of the market mechanism. 

101 

Ying [33] considered the relationship between stock 

market price and volume. Using daily Standard and Poor 500 

closing price data, and NYSE total volume data, he conclu­

ded that not only are volume and price related, but that 

volume is an important indicator of future price changes. 

Ying [33], describing his findings, states: 

The relationships between stock prices and 
volumes of sales are examined with the view that they 
are joint products of a single market mechanism. The 
results found here tend to support the notion that 
any model of the stock market which separates prices 
from volumes, or vice versa, will inevitably yield 
incomplete if not erroneous results. 

Fama [34] investigated the behavior or rates of return 

on individual stocks before and after the announcement date 

of a stock split by examining regression residuals. Sum-

marizing some striking results, Fama concludes that rates 

of return (including price and dividends} tend to be high 

during the months preceding a stock split announcement, an 

effect which he attributed to "anticipation" of increased 

dividends. Using a similar statistical technique, Waud [35] 

analyzed the so-called 11 announcement effect" of Federal 

Reserve discount rate changes. Waud concluded from data on 

discount rate changes and the Standard and Poor's 500 stock 

price index that an announcement effect not only exists, 
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but that a "public consensus" exists as to what economic 

future is indicated by a discount rate increase as compared 

to a discount rate decrease. Interestingly, Waud infers 

from his results that discount rate decreases tend to be 

anticipated several days prior to the earliest announcement 

date. Unfortunately, it is not possible to determine from 

Waud 1 s results if an increase in the discount rate has a 

positive effect on expectations and vice versa, or whether 

the magnitude of a change is significant. In an interesting 

paper, Niederhoffer (36] has analyzed the effect of world 

news items (derived from headlines in the New York Times) 

upon the Standard and Poor 1 s Composite Index. Niederhoffer 

and his fellow workers classified each "important" news 

item into one of twenty categories and rated each item on 

a seven point bad-good scale with respect to its apparent 

economic news content. Niederhoffer concluded that some 

types of world news items do have significant effect on 

stock prices in the several days following their appearance. 

After a thorough examination of the mathematical lit­

erature on security prices, the Authors conclude that the 

random walk hypothesis continues to be dominant theory of 

stock price behavior (at least among academians). In fact 

it forms a basis for some of the more recent analyses of 

price adjustment [34,35] and factor analysis of economic 

series [37]• However, the Authors also note the continued 

publications of papers [38,39,40] concerning schemes of 

predicti.ng price movements. 
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While the Authors have a great deal of respect for the 

hypotheses presented in the literature, we cannot conclude 

that a satisfactory explanation of stock price behavior has 

yet been presented. We close this section with a quote 

from Bliss [41] which we find appropriate in view of our 

findings: 

•.• Furthermore, it is sometimes inferred that 
nature behaves in precisely the was which the mathe­
matics indicates. As a matter of fact, nature never 
does behave in this way, and there are always more 
mathematical theories than one whose results depart 
from a given set of data by less than the errors of 
observation ..•. 

Dynamic Systems 

We now examine a form for the representation of dynamic 

processes which has become popular during the last decade 

in the literature on automatic control. For basic reference, 

the Authors cite texts by Ogata [42] and Takahashi, Rabins 

and Auslander [43]. An advanced exposition of system theory 

is given by Kalman, Falb and Arbib [44]. 

Consider the representation of a dynamic system given 

by Figure 1. In this description, the u., i=l,m are known 
1. 

as system inputs, they., i=l,p are known as system outputs, 
1. 

and the x., i=l,n are called state variables. The number n 
1. 

is said to be the "order" of the system. The u. may be 
1. 

considered as independent (exogeneous) variables with 

respect to the system. The y. represent dependent (endoge-
1. 

nous) variables with respect to the system. Both the u. 1. 

and y. may be classed as "observables" in that they may be 
"J.. 
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measured directly (except possibly for observation error) . 

In general, the xi, which offer a complete description of 

the system at a given instant with respect to an n-dimension­

al Euclidean space, cannot be measured directly. However, 

under certain conditions (discussed later), the complete set 

can be inferred from input/output data. 

Denoting t as a reference to time, the describing equa­

tions of a system are frequently written as 

x(t) = f[x(t),u(t),t], (1) 

and 

y (t) = g[x(t) ,u(t) ,t], (2) 

where u(t) is the mxl input vector, y(t) is the pxl output 
• 

vector, x(t) is the nxl state vector, and x(t) is the time-

derivative of x(t). Equation (1) is called the state equa­

tion and equation (2) is called the output equation. Equa­

tions (1) and (2), considered as a set, are called the 

dynamic equations of the system. 

If a system is linear, equations (1) and (2) can be 

expressed as 

x(t) = F(t)x(t) + G(t)u(t), (3) 

and 

y(t) = H(t)x(t) + I(t)u(t), (4) 

where F, G, H, and I are generally time-varying matrices of 
- -

orders nxn, nxm, pxn, and pxm, respectively. A system de-

scribed by equations (3) and (4) is said to be time-varying 

(non-stationary). IfF, G, H, and I are constant matrices, 

the system is said to be time-invariant (stationary) . 
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In order to motivate the following discussion, let us 

assume that the word STOCK MARKET replaces SYSTEM in 

Figure 1. Further, assume that the input vector u(t) repre­

sents the complete set of information which influences the 

stock market. Let the output vector y(t) represent the 

complete set of observable information relative to market 

performance. An example of an input might be, e.g., the 

Federal Reserve discount rate (N.Y.), while an example of 

an output might be the price of Texaco common stock. The 

reader has doubtless already reasoned that the stock market 

is a rather abstract entity. Certainly many definitions 

could be formulated. For instance, one might theorize that 

it is appropriate to consider only the New York Exchange, 

or the American Exchange, or both taken together. In our 

analysis the choice of system inputs and outputs determines 

to a certain extent the system that is being considered. 

The class of systems defined by equations (3) and (4} 

1s quite extensive, though certainly not all-inclusive. 

Kalman [45] gives the basic theorems of controllability, 

observability and equivalence for this class. The condition 

that a system is completely observable requires that the 

complete state vector be determinable from input/output data. 

The concept of complete controllability requires, given the 

current system state, that the system can be driven to an 

arbitrarily-selected state in finite time by an appropriate 

choice of input values. Kalman [45] also demonstrated that 

any system of the form of (3) and (4) can be cannonically 
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factored into four mutually exclusive parts which are 

1. Completely controllable, but unobservable 

2. Completely controllable and completely observable 

3. Uncontrollable and unobservable 

4. Uncontrollable, but completely observable. 

Further, Kalman [45] determined the significant fact that 

the only part of a system that can be determined from in­

put/output data is that part of the system which is com­

pletely controllable and completely observable. The con­

cepts of controllability and observability seem to portend 

some interesting discussions by stock market theorists. 

Kalman's [45] definition of equivalence addresses the fact 

that the quartet (F,G,H,I) may not be uniquely defined by 

input/output data. In other words, there may be a number 

(possibly infinite) of choices of (F,G,H,I) which define a 

suitable (equivalent) input/output map. Generally, equiv­

alent systems are related by a transformation of coordinates 

in the state space. 

Frequently, a record of inputs and outputs associated 

with a system is called an "external description" of that 

system. A system of minimum order which is able to repro­

duce a specified input/output description is said to be a 

minimal realization of that external description. Minimal 

realizations are an expedient for obtaining mathematical 

models from input/output data that are suitable for purposes 

of prediction and optimal control. As such, minimal reali­

zations may not be equivalent (in the sense described 



earlier) to the system which originated an input/output 

description. For most purposes, however, the set of all 

minimal realization may be considered as equivalent. 
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The Authors emphasize that a great volume of engineer­

ing literature has been devoted to the analysis of equations 

(3) and (4). This form is an extremely convenient frame­

work for manipulations leading to determination of natural 

frequencies, controllability, observability, stability and 

policies of optimal control. Recent years have also seen 

an intensive investigation into the problem of identifica­

tion (as in economics), which is a central issue of our 

current paper. In automatic control, the identification 

problem amounts to specification of F(t), G(t), H(t), I(t), 

and x(t) in equations (3) and (4). For summaries of the 

status of identification theory in engineering, the reader 

is directed to Cuenod and Sage [46], Eykhoff [47], and 

Nieman, Fisher and Seborg [48]. 

MATHEMATICAL MODELING 

Basic Models 

case 

The model of particular concern here is the special 

of equations (3) and (4) given by
3 

3we realize that difference equations per se are nothing new 

to the economist. we use the form shown here because it is 

convenient for interpretation. 
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x(k+l) = Ax(k)+Bu{k), ( 5) 

and 

y(k) = Cx(k)+Du(k), (6) 

where it is assumed that A, B, C, and D are constant matri­

ces of orders nxn, nxm, pxn, and pxm, respectively. It can 

be shown that equations (3) and (4) reduce to (5) and (6) 

under the assumption that F, G, H, and I are constant matri­

ces and that the system inputs are able to vary only in an 

instantaneous manner at the beginnings of fixed equal length 

intervals of time. The integer index k denotes reference to 

the system at the beginning of the kth equal interval of 

time. It is important to realize that the system itself can 

be continuous and still be consistent with (5) and (6) if 

the input restriction is satisfied. If the system is 

discrete-time, but non-stationary, its dynamic equations 

are ordinarily written as 

x(k+l) = A(k)x(k)+B(k)u(k), 

and 

y(k) = C(k)x(k)+D(k)u{k), 

where the restrictions on time-variation now apply to the 

coefficient matrices as well as inputs. 

( 7) 

(8) 

Gopinath [49] gave the first direct procedure for ob­

taining a minimal realization of (5) and (6) from input/out­

put data by the method of least squares. Increased effic­

iency, generality and measurement noise were topics to be 

later considered by Budin· [50] and Behring [51]. 

Behring gave a set of PL/1 subroutines for the reali-
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zation procedure, which have the following features: 

1. Procedures are modular and can be structured for 

a number of "off-linen and non-linen applications. 

2. Realization order need not be known a priori. 

3. Updated estimates of system parameters are easily 

obtained as new input/output observations become 

available, with optional exponential weighting 

of "old 11 data. 

4. Procedures allow for sequential changes in system 

structure, such as system order and numbers of 

inputs and outputs. 

5. Highly correlated input and output variables can 

be handled conveniently. 

6. Procedures are not affected by addative measure­

ment noise if noise statistics are known. 

Relation to Previous Work 

We now give our interpretation of how the simple model 

defined by equations (5) and (6} might be used to formulate 

a realization of the stock market and examine the implica­

tions of such a model with respect to previous theory and 

results. 

Assume that the stock market is realizable as a sta-

tionary, linear dynamic system of unknown order. Let u 

represent the complete set of information which influences 

market performance, and let y represent the complete set of 

observables indicating market performance. Further, assume 
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that we can find an interval which is suitably small such 

that the discrete representation of equations (5) and (6) 

is valid. Finally, for convenience let the system given by 

equations (5) and (6) be denoted as E. 

Under the preceding assumptions our model is not con-

sistent with the random walk model proposed by Bachelier 

except for trivial cases and the assumption of random in-

puts. Examination of E reveals that current information 

does influence the expected model output at the next sample 

time. However, E is consistent with the theories of those 

who would interpret the statement that current information 

is not "sufficient" to predict future outputs, since the 

model output at the next sampling interval (k+l) is not 

determined completely by current information (k). Inci-

dentally, as noted in our introduction, Bachelier did in 

fact offer a qualitative explanation of market behavior 

(other than random walk) which has some basic similarities 

with the model submitted here. 

We also believe that experimental findings to date do 

not tend to either confirm or deny that the market can be 

represented, or at least approximated, by E. This opinion 

is based upon a supposition of high system order and many 

unknown (possibly random) inputs. Under these conditions, 

even the most powerful of current statistical tests would 

fail to determine the viability of E. 
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Output Specification 

Assume that the components of y represent individual 

stock prices. There may be some inclination, however, to 

use indices such as the Dow Jones 30 Industrials to form an 

11 artificial 11 set of outputs, say y*. Generally, there is 

no theoretical difficulty involved with this assumption as 

long as such indices are constructed as a constant linear 

weighting of individual stock prices over the interval used 

for model estimation. It can be observed from equation (6) 

that y is simply a linear function of system state x and the 

input u. Any linear combination y* of y is still a linear - -
combination of x and u. However, there is some loss of 

generality in the minimal realization obtained in this man-

ner, since if an index is used in lieu of individual stock 

prices, then those individual prices cannot be recouped from 

the model output. Also, if a restrictive index is used, 

such as the 30 Industrials, there is a possibility that the 

order of a minimal realization computed from the index y* 

and one computed using y will not be of the same order. 

This case would arise if the linear vector space spanned by 

observations on u and y* does not contain the space spanned 

by observations on u and y. However, this is no problem if 

one is simply content to obtain a realization of y* rather 

than, say, the entire stock market. The same theoretical 

propositions can be advanced for trading volumes as long as 

volumes are linear functions of x and u. In fact, in this 
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case it is possible to combine price and volume data in a 

single index and still obtain a minimal realization of that 

index. In view of the above discussion, we reject the 

proposition of Ying [33] which effectively states that any 

valid model of price must include volume simply because 

volume is a joint product of the market mechanism. Failure 

to consider all outputs or aggregation of outputs does not 

result in an inability to realize those outputs which are 

considered. 

Input Specification 

The problem of input specification is crucial. Failure 

to recognize significant inputs and/or linear aggregation of 

inputs can lead to disastrous results. Observations of 

selected inputs must span the space generated by all rele­

vant inputs, or estimates of system order, parameters and 

state will be biased. In fact, input specification error 

generally precludes the possibility of obtaining any reali­

zation. The only exception is where the set of all relevant 

inputs is a product of an autonomous linear system. Even 

though a realization can be obtained for this case, its order 

will not be minimal. 

Other Considerations 

Another problem in obtaining useful minimal realizations 

is that the state and/or input must be 
11
Sufficient" to 

excite all natural modes of the actual system at some time 
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during the interval used to estimate the realization. If 

this is not the case, a realization can still be obtained, 

but can prove to be quite inappropriate on another interval. 

Finally, a non-arbitrary distinction between the contribu­

tions of two or more inputs cannot be made if it happens 

that those inputs are linearly dependent over the interval 

of estimation. Again, a minimal realization can be ob­

tained for this case but can fail over another interval. 

These last items of discussion strongly suggest an adaptive 

model, i.e., one whose structure is updated for each "new" 

pair of input/output observations as they become available. 

SIMULATION EXPERIMENTS 

Data 

Numeric data was derived from BARRON'S [52] and the 

Federal Reserve BULLETIN [53] • Information on world events 

was selected from FACTS ON FILE [54]. 

To the Authors, the year 1968 constitutes an extremely 

interesting period in stock price history. A brief analysis 

of price data reveals that 1968 began as a bear market with 

the Dow Jones Ind~strials falling about 9% in the first 30 

trading days. After than substantial slide, followed by 

what appeared to be a 30-day period of uncertainty, the 

market became a powerful bull with the Dow Jones Industrials 

rising about 9% in the next 15 trading days. Following this 

abrupt surge, the Industrials began a slow oscillatory (and 
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sometimes uncertain) rise to a near all-time high close of 

985.21 on December 3rd. 

The year of 1968 was also a period of great unrest at 

home and abroad. Economic news was mixed, with concern for 

the value of the dollar, 10% surtax, three changes in the 

Federal Reserve discount rate, one increase in stock margin 

requirements, and the usual concern over inflation. Polit­

ically, the year 1968 was volatile. Two assasinations of 

political leaders, an announced halt in bombing, the seizure 

of a spy ship and a presidential election grasped national 

attention. 

Initial Results 

The results of our first simulation attempts discussed 

here are not displayed graphically because of space limita­

tions, but are discussed because they appear to be of some 

tutorial value. 

Our first model of the New York Stock Exchange con­

sisted of two inputs which were the Federal Reserve discount 

rate (N.Y.) and the percent stock margin requirement and 

four outputs which were the daily Dow Jones closing price 

averages: 30 Industrials, 20 Rails (now Transportation), 

15 Utilities, and 40 Bonds. From this choice the Authors 

naively hoped to obtain a linear model in the form of equa­

tions (5) and (6) which would closely approximate the 

specified indices over the interval of estimation and would 

allow re&sdl\able prediction for at least a short time beyond 
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the estimation interval. One-hundred days from the beginning 

of 1968 were used to estimate model coefficients with the 

remaining data from 1968 used to check predicted results. 

Several model orders were tried, the lowest being 4th order 

and the highest 12th. 

It was expected that the predictions yielded by the 

rnodel from day to day over the interval of estimation would 

be fairly good, since ·the coefficients would probably at 

least to some extent be biased to the interval chosen. Our 

philosophy for initial testing was instead to start the 

model on the first day of the estimation interval and make 

recursive estimates of the above indices for each trading 

day assuming only that input quantities (discount rate and 

margin) were known. The results were striking! Even the 

fourth order model followed the oscillations of the market 

indices (which happened to be fairly distinct for this 

interval) and the Authors were plainly enthusiastic. We 

then started the model at several intermediate points on the 

interval with the same result the model seemed to know 

exactly where it was supposed to go. The margin did not 

change over this particular interval, but the discount rate 

(which changed twice) seemed to be contributing significant­

ly to the quality of the model. The discount rate changes 

were both increases, the first from 4 1/2 to 5% and the 

second from 5 to 5 1/2%. In both cases the model predicted 

significant declines in all of the price indices for a 

period of.about five days, with the modes excited by these 
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changes quickly damping out, allowing the market to proceed 

on its destined path. Furthermore, comparison of predicted 

results with actual data seemed to verify predicted dynamics 

following discount rate changes. Our only misgivings were 

that the predicted industrials did not seem to be able to 

quite keep up with the great bullish rise which began about 

April 1. 

Finally we started the model on the last day of the 

estimation interval and made recursive predictions, again 

assuming knowledge of the Federal Reserve discount rate 

(N.Y.). This time the gracefu~ dynamics which the model 

displayed over the estimation interval was gone. The model 

seemed to quickly seek a level of equilibrium where it 

resided until excited later by another discount rate change 

(5 1/2 to 5 1/4%), the effects of which were dissipated 

rapidly. A quick check against actual data revealed that 

while the model generated a rather mundane performance, the 

actual stock market data continued to be oscillatory, a fact 

which led to the ultimate demise of our first modeling 

effort. Several increases in model order (from 4 through 

12) improved the ability of the model to follow data on the 

estimation interval, but did not seem to significantly add 

to its predictive quality during the later interval. 

we have stated this embarrassing result in order to 

illustrate some basic problems associated with time series 

analysis using regression methods. First, we cannot con­

clude from the above results that the model failed to 
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explain (significantly} the dynamics of the market on the 

estimation interval. This is because we cannot guarantee 

that the dynamics of the market remain constant into the 

next 100 days. From experience, however, the Authors be­

lieve that the very act of parameter estimation "defines" a 

stable trajectory in space which the model tends to approach 

regardless of where it is started on the estimation interval. 

This could at least in part explain some of the "successes" 

noted earlier. Most importantly, however, we cannot con­

clude that a linear model of the market is inappropriate. 

It was found later that a lOth order model was required to 

reasonably describe the dynamics of the bond market alone. 

It is possible that our decision to 11 SCrap" our original 

model based upon a 12th order approximation was a bit pre­

mature. However, if a linear model is indeed appropriate, 

the problem more likely is input specification. In retro­

spect, the two items of information chosen seem incapable of 

describing market adjustment phenomena completely. 

Perhaps the most important conclusion to be drawn from 

the foregoing results is the fact that a model appears to 

11 explain" the data on the interval of estimation does not 

necessarily indicate its successful use for predictions at 

a later time. We reason that the only conclusive evidence 

which can be obtained for this case is that derived from its 

performance on an independent interval. 
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Further Results 

The Authors chose to be somewhat more conservative in 

future simulation studies of the stock market and concentrate 

on more restrictive models, hoping to glean some significant 

information as to the character of speculative prices. We 

chose to examine the dynamics of the market segment defined 

by the Dow Jones 40 Bonds, again using a constant-coefficient 

linear model. As before, data from 1968 was used in the 

analysis. For the results presented here we used the 15 

Utilities closing price as the input to the system (N.Y.S.E. 

Bond Market?) that is implied (in the cannonical sense) by 

the choice of input and output. A complete set of closing 

price data for the 40 Bonds and 15 Utilities is included in 

the Appendix. 

The schematic representation of the system is shown in 

Figure 2. In Figure 2 the unity input has the effect of 

introducing a constant into the state equations and allows 

for any appropriate translation in scale among the variables. 

From their earlier investigations, the Authors noted, 

at least for the year 1968, that there was a general (al­

though sometimes rather obscure) tendency for the 15 Util­

ities to "lead" the 40 Bonds. We ask the reader to examine 

the relationship between Figures 3 and 4. Figure 3 is a 

plot of the 15 utilities (close) versus trading day for the 

first 40 trading days in our sample. Figure 4 is a plot of 

the 40 Bonds (close) for that same interval. We note that 
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the time scale for this and all succeeding plots, where 

comparison is appropriate, is identical. Observe that both 

series rise rapidly to their maximum values within the first 

15 days. The 15 Utilities reach their maximum value on day 

1-0, while the 40 Bonds do not peak until day 14. We also 

observe that the relationship between the series up until 

day 15 can be nearly approximated by a "pure delay." How­

ever, following day 15 the pure delay hypothesis is evi­

dently destroyed since the utilities drop quite rapidly 

while the bonds continue to "float" at nearly their peak 

value. There appears to be little noticeable correlation 

in the daily movements of the two series. 

Since the indices seemed to have loosely similar pro­

perties, the Authors decided to investigate their mechanical 

relationship in greater detail. From [55] the Authors ob­

served that during 1968 the 40 Bond averages were as usual 

computed as a linear weighting of 10 industrial bonds, 10 

higher grade rails, 10 second grade rails, and 10 utilities. 

A more thorough analysis revealed that of the 40 Bonds, 15 

were issued by parent firms that were also represented in 

the Dow Stock price indices (30 Industrials, 20 Rails, and 

15 Utilities). Of the 15 firms whose index representation 

overlapped into the 40 Bonds, 3 were Industrials, 9 were 

Rails, and 3 were Utilities. Thus, we were able to deter­

mine that only 7.5% of the firms represented by the 40 

Bonds had mutual representation in the 15 Utilities. Thus, 

the Authors . .tchose to investigate the model shown in 
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analysis would yield. 
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In view of earlier investigations, it was decided that 

no initial model testing would be done for the estimation 

interval itself, but that analysis would be done on the 

data drawn from a following "independent" interval. Several 

different model orders were postulated for the system shown 

in Figure 2, the lowest order model being 1 and the highest 

12. However, all subsequent graphical results are for the 

lOth order case. 

The first model was estimated from data given by 

Figures 1 and 2. This model was then started on the last 

day of the estimation interval and used to predict "into 

the future" (trading days past number 40) assuming that the 

15 Utilities index was known. Figure 5 shows the activity 

of the utilities (model input) for the next 30 trading days. 

Figure 6 shows both the predicted model output and the 

actual data (not used to condition the model in any way) for 

that same interval. We note primarily that the model tends 

to follow the actual data quite well, in fact much better 

than indicated by chance. However, we also observe that 

there is a noticeable amount of co-movement between the in­

put, output, and predicted output for this interval, war­

ranting a closer inspection of the results. Actually, the 

Authors conclude that the model does not tend to "follow" 

the utilities to a greater extent than it tends to follow 

the actual data.· This is especially evident beyond day 
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number 62 when the Utilities begin a substantial rise but 

the model "remains in the doldroms" for an additional 5 days 

and predicts (quite well, we might add} an upward swing in 

the Bonds index. 

Several orders other than 10 were used on this interval 

to check the significance of model order on results obtained 

for the independent interval. In fact, model order was 

increased from 1 through 12 by increments of one, ~ith the 

results that extremely poor results were initially demon­

strated, with each succeeding increase in model order lead­

ing (almost uniformly) to better results. Now, if model 

predictive quality were examined only on the interval of 

estimation, this result would be expected. However, results 

were examined on the independent interval, where if there 

were no basis for using a linear model, increased order 

should have little or no significance. This fact was made 

abundantly clear to the Authors in their earlier investiga­

tion. 

Feeling that some measure of significance had been dem­

onstrated by the above results, we decided to continue to 

test the modelin9 procedure on subsequent data. The manner 

in which we chose to do this was to expand both the interval 

of estimation and the interval of prediction, while continu­

ing to use a lOth order model. The reader is now asked to 

examine Figures 7 and 8. In this example, the first 60 days 

were used to estimate model coefficients and the following 

50 days· used to make predictions, again assuming the util-
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ities to be known. In this case, the predictive quality of 

the model is noticeably worse. We do note, however, that 

the model does tend to compromise the distinction between 

the utilities and bonds, which over this interval seem to be 

almost completely out-of-phase. 

Continuing in a similar manner, we used the first 80 

days to estimate the model. The following 70 days were used 

to examine simulation results, which are expressed by 

Figures 9 and 10. Examination of Figures 9 and 10 reveals 

some of the character of our discrete model. The "high 

frequency cut-off" for the model seems to be somewhat lower 

than the frequencies present in the utilities average. This 

can be clearly seen by examining corresponding data for days 

following 115, when the utilities surge upward rapidly. 

Finally, we ask the reader to examine Figures 11 and 

·12. In this case the first 100 days of our sample were used 

to estimate the model and the next 90 days to make predic­

tions. In this interval we see a phenomenon which is almost 

directly analagous to the use of a step input to determine 

system characteristics. It is from this interval that one 

can graphically determine the validity of a linear approxi­

mation to the dynamics of the bond market. We leave detailed 

analysis of these figures to the reader. 

CONCLUDING REMARKS 

Why does the model appear to offer some explanation of 

the dynamics of the bond market? The Authors are not sure 
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of the answer to this question. We need not conclude that 

the utilities control the bond market 1'n any 1 h sense, a t ough 

there is a certain temptation to do so. It has been pre­

viously noted in several quarters that speculative prices 

(including indices) adjust rapidly to new information of 

various types. In a sense then, these indices act as numer­

ic "observers" of information which otherwise would have 

little quantifiable meaning. It is simply a possibility 

that the 15 Utilities is such an observer and reflects infer-

mation which is important to future bond prices. Also, the 

Authors do not conclude that the utilities are in fact the 

only significant input to the bond market. Others, such as 

the Industrials, and Rails, were not employed in simulation 

experiments. 

The Authors are not naive enough to believe that the 

bond market is describable exactly by a linear model. How-

ever, we believe it to be of a nature which can be approxi-

mated by a high-order difference equation. In a discussion 

advocating the random walk hypothesis, Roberts [9] states 

.•• there should be great interest in the possi­
bility that, to a first approximation, stock-market 
behavior may be statistically the simplest, by far, 
of all economic time series. 

We believe that there should be great interest on the part 

of random walk theorists in the fact that results presented 

here infer that a simple linear model is able to condition 

the expected value of speculative price series. 

Why haven't the Authors conducted statistical tests of 
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residuals, listed correlation coefficients, determined 

natural frequencies, and system stability? Experience has 

led us to believe these tests are significant in a predic­

tive model only after a suitable model has been determined 

from independent interval analysis, otherwise they appear to 

be nearly meaningless. While we believe that the results 

presented here are significant, we do not believe that they 

are good enough to imply that the bond market has certain 

natural frequencies or is stable or unstable. Besides, over 

what interval does one attempt to make such determinations? 

What do the results imply for further analysis? The 

Authors have held the intuitive belief from the outset that 

the stock market is a system, which has time-varying dynam­

ics. This might imply, for instance, that a model of the 

form described by equations (7) and (8) is appropriate. Our 

thesis rests upon the basic understanding that, after all, 

the stock market is itself a result of the activities of 

people. It is no secret, for instance, that the normative 

attitudes and behavior of our society have undergone vast 

changes in just the last several years. No doubt this fact 

is reflected in stock market activity. As a simple example, 

we can cite the introduction of new technology (e.g., TV, 

digital computer, nuclear power, space travel) which has 

changed and continues to change our entire lifestyle, much 

less the structure of the stock market. This time-varying 

aspect is one which is apparently important, but one which 

is·generally neglected. by mathematical economists. The 
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tendency is to use several years of daily data for instance 

to estimate the coefficients of a simple, constant-coeffi­

cient, linear model, the objective being to obtain a "large 

sample" parameter estimates. This activity, while intuitive­

ly appealing, can yield simply erroneous results if the 

underlying process is time-varying. However, a model with 

constant coefficients, as given in equations (5) and (6), 

can be a fairly good approximation over short intervals if 

the underlying process is "slowly" time-varying. 

In view of the above reasoning, the Authors unfortu-

nately cannot guarantee that the model (or the modeling pro­

cedure) used here will yield successful results when used 

with data drawn from another sample (not attempted by the 

Authors). The work presented here can only be cited as 

"evidence" in a growing body of knowledge concerning the 

behavior of speculative prices. 

We do believe that the method used here is a powerful 

tool for time series analysis and that the results presented 

can form the basis for several interesting future investiga-

tions, even with the Authors' original model, as future data 

on significant market-affecting information becomes avail­

able. Unfortunately, even with the simple linear, time­

invariant model of the bond market presented here, there are 

many possibilities reflected by the choices of interval, 

order and inputs. 

Lastly, we are convinced that ultimate conclusions re-

garding stock market dynamics will have significant import 
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with respect to the understanding of other socio-economic 
' 

systems, which seem to display "expectations-adjustment" 

phenomena, but for which data is much harder to obtain. 

For this reason alone, further research into the under-

standing of speculative prices seems justified. 
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APPENDIX 

TABLE 1 

STOCK MARKET DATA
4 

Day 15 Utilities 40 Bonds 
Date Number (close) (close) 

12-26-67 1 126.18 74.66 
12-27-67 2 127.04 74.78 
12-28-67 3 127.84 74.84 
12-29-67 4 127.91 74.64 

1-02-68 5 129.31 74.70 
1-03-68 6 129.63 74.78 
1-04-68 7 130.75 75.05 
1-05-68 8 135.37 75.37 
1-08-68 9 135.42 75.63 
1-09-68 10 135.93 75.91 
1-10-68 11 134.87 76.13 
1-11-68 12 135.22 76.45 
1-12-68 13 134.84 76.59 
1-15-68 14 134.65 76.67 
1-16-68 15 134.33 76.64 
1-17-68 16 134.04 76.63 
1-18-68 17 133.82 76.58 

1-19-68 18 133.53 76.56 

1-22-68 19 132.35 76.40 

1-23-68 20 132.19 76.39 

1-24-68 21 131.04 76.37 

1-25-68 22 130.34 76.44 

1-26-68 23 130.24 76.44 

1-29-68 24 129.92 76.42 

1-30-68 25 129.73 76.42 

1-31-68 26 129.06 76.34 

2-01-68 27 129.76 76.26 

2-02-68 28 129.54 76.28 

2-05-68 29 129.70 76.23 

2-06-68 30 129.25 76.24 

4Data extracted from BARRON'S National Business and Finan-

cia1 Weekly [52]. Data are for successive trading days. 
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Day 15 Utilities 40 Bonds 
Date Number (close) (close) 

2-07-68 31 129.76 76.27 
2-08-68 32 129.41 76.19 
2-09-68 33 128.90 76.18 
2-13-68 34 127.88 76.26 
2-14-68 35 128.23 76.26 
2-15-68 36 128.96 76.22 
2-16-68 37 128.10 76.13 
2-19-68 38 129.22 76.22 
2-20-68 39 128.61 76.16 
2-21-68 40 128.96 76.13 
2-23-68 41 128.48 76.20 
2-26-68 42 128.45 76.23 
2-27-68 43 128.87 76.09 
2-28-68 44 128.58 76.20 
2-29-68 45 127.84 76.23 
3-01-68 46 128.36 76.19 
3-04-68 47 127.33 76.22 
3-05-68 48 126.31 76.24 
3-06-68 49 126.89 76.09 
3-07-68 50 126.44 76.10 
3-08-68 51 126.02 76.14 
3-11-68 52 125.12 76.04 
3-12-68 53 125.77 76.07 
3-13-68 54 124.81 75.93 

3-14-68 55 122.80 75.71 

3-15-68 56 123.11 75.57 

3-18-68 57 122.41 75.40 

3-19-68 58 122.32 75.49 

3-20-68 59 121.68 75.48 

3-21-68 60 121.26 75.42 

3-22-68 61 120.91 75.37 

3-25-68 62 119.79 75.42 

3-26-68 63 120.46 75.41 

3-27-68 64 121.39 75.27 

3-28-68 65 121.13 75.23 

3-29-68 66 121.58 75.07 

4-01-68 67 123.15 75.09 

4-02-68 68 122.92 75.05 

4-03-68 69 123.75 75.27 

4-04-68 70 123.53 75.26 

4-05-68 71 123.56 75.28 

4-08-68 72 123.72 75.23 

4-10-68 73 123.75 75.23 

4-11-68 74 124.27 75.21 

4-15-68 75 124.62 75.19 

4-16-68 76 124.68 75.13 

4-17-68 77 125.58 75.10 

4-18-68 78 125.83 75.06 

4-19-68 79 124.36 75.02 
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Day 15 Utilities 40 Bonds 
Date Number (close) (close) 

4-22-68 80 123.02 74.95 
4-23-68 81 123.15 74.68 
4-24-68 82 122.80 74.86 
4-25-68 83 122.60 74.89 
4-26-68 84 122.41 75.06 
4-29-68 85 122.09 75.13 
4-30-68 86 121.96 75.26 
5-01-68 87 122.12 75.26 
5-02-68 88 122.03 75.27 
5-03-68 89 122.48 75.33 
5-06-68 90 123.53 75.37 
5-07-68 91 123.53 75.37 
5-08-68 92 123.21 75.38 
5-09-68 93 123.31 75.44 
5-10-68 94 123.27 75.63 
5-13-68 95 123.27 75.22 
5-14-68 96 123.15 75.17 
5-15-68 97 123.05 75.15 
5-16-68 98 122.70 75.04 
5-17-68 99 122.57 74.94 
5-20-68 100 122.32 74.97 
5-21-68 101 122.70 74.82 
5-22-68 102 122.28 74.82 
5-23-68 103 122.57 74.77 
5-24-68 104 123.02 74.66 
5-27-68 105 122.64 74.55 

5-28-68 106 122.28 74.67 

5-29-68 107 122.09 74.76 

5-31-68 108 123.98 74.88 

6-03-68 109 123.79 74.88 

6-04-68 110 123.95 74.87 

6-05-68 111 123.91 74.91 

6-06-68 112 124.14 74.91 

6-07-68 113 124.05 74.95 

6-10-68 114 123.98 74.92 

6-11-68 115 123.98 74.94 

6-13-68 116 124.49 75.00 

6-14-68 117 125.35 75.05 

6-17-68 118 125.54 75.08 

6-18-68 119 128.51 75.09 

6-20-68 120 131.77 75.18 

6-21-68 121 133.44 75.42 

6-24-68 122 134.27 75.43 

6-25-68 123 133.50 75.48 

6-27-68 124 132.89 75.53 

6-28-68 125 132.60 75.43 

7-01-68 126 132.54 75.34 

7-02-68 127 132.60 75.54 

7-03-68 128 133.82 75.56 

7-08-68 129 134.39 75.71 
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Day 15 Utilities 40 Bonds 
Date Number {close) (close) 

7-09-68 130 134.49 75.93 
7-11-68 131 134.27 75.84 
7-12-68 132 134.71 75.81 
7-15-68 133 134.43 75.86 
7-16-68 134 134.17 75.98 
7-18-68 135 133.95 76.01 
7-19-68 136 133.28 76.05 
7-22-68 137 132.06 76.15 
7-23-68 138 132 .19 76.16 
7-25-68 139 131.55 76.24 
7-26-68 140 131.81 76.46 
7-29-68 141 131.29 76.55 
7-30-68 142 131.29 76.47 
8-01-68 143 131.23 76.67 
8-02-68 144 130.85 76.82 
8-05-68 145 130.78 76.83 
8-06-68 146 131.04 76.86 
8-08-68 147 131.45 77.00 
8-09-68 148 131.52 76.95 
8-12-68 149 131.13 76.99 
8-13-68 150 131.04 77.20 
8-15-68 151 131.01 77.19 
8-16-68 152 131.52 77.13 
8-19-68 153 132.09 77.20 
8-20-68 154 132.13 77.17 
8-22-68 155 131.10 77.13 

8-23-68 156 131.55 77.07 

8-26-68 157 131.07 77.07 

8-27-68 158 130.62 76.93 

8-29-68 159 130.02 76.87 

8-30-68 160 130.53 76.89 

9-03-68 161 130.56 76.86 

9-04-68 162 130.66 76.94 

9-05-68 163 131.45 76.97 

9-06-68 164 131.93 76.97 

9-09-68 165 131.65 76.95 

9-10-68 166 131.42 76.99 

9-12-68 167 131.26 77.01 

9-13-68 168 131.23 76.82 

9-16-68 169 131.23 76.88 

9-17-68 170 130.94 76.66 

9-19-68 171 129.98 76.76 

9-20-68 172 129.95 76.59 

9-23-68 173 129.89 76.64 

9-24-68 174 130.21 76.71 

9-26-68 175 130.56 76.62 

9-27-68 176 130.24 76.71 

9-30-68 177 130.37 76.69 

10-01-68 178 130.14 76.69 
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Day 15 Utilities 40 Bonds 
Date Number (close) (close) 

10-03-68 179 130.08 76.64 
10-04-68 180 129.86 76.68 
10-07-68 181 129.89 76.56 
10-08-68 182 129.38 76.62 
10-10-68 183 130.02 76.50 
10-11-68 184 130.18 76.48 
10-14-68 185 130.30 76.32 
10-15-68 186 130.14 76.19 
10-17-68 187 130.02 76.23 
10-18-68 188 130.85 76.30 
10-21-68 189 131.04 76.33 
10-22-68 190 130.75 76.21 
10-24-68 191 130.46 76.13 
10-25-68 192 130.62 76.09 
10-28-68 193 131.39 76.01 
10-29-68 194 130.82 76.07 
10-31-68 195 131.26 76.13 
11-01-68 196 131.33 76.17 
11-04-68 197 131.71 76.21 
11-06-68 198 131.84 76.11 
11-07-68 199 132.51 76.23 
11-08-68 200 133.56 76.13 
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Observability, 19, 32, 33, 59, 105 

Observer, 123 

Output, 3, 16, 19, 33, 37, 80 99 103 I I 

specification of, 111 
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APPENDIX 

COMPUTER SOrTWARE 

A collection of subroutines is now presented which can 

be used to implement the mathematical procedures outlined in 

the body of this thesis. These procedures (written in PL/1) 

are sufficient to generate minimal realizations of linear, 

discrete, multi-variable systems for both off-line and on­

line applications given a suitable master program. The 

reader should note that all computations are carried out in 

"double precision," having an equivalent PL/1 mode/precision 

attribute of FLOAT BINARY (53). 

In the following discussion, it will be useful to de-

fine 

U = [u(l),u(2),u(3}, ••• ,u(K)], (1) 

and 

Y = [y(l),y(2},y(3), ••• ,y(K)], (2) 

where u represents a sequence of K observed Mxl system input 

vectors and y represents a corresponding sequence of K ob­

served pxl system output vectors. Further, let 
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u (1) u (2) u (3) u(r) ... 
u (2) u {3) u (4) u (r+l) ••• 

u (3) u (4) u (5) u(r+2) . . . 
. . . 

• . . . 
• . . . 

u (NN+l) u (NN+2) u {NN+3) . . . u(NN+r) 

w = -----------------y (1) y (2) y (3) 
(3) . . . y(r) 

y (2) y (3) y (4) . . . y (r+l) 

y {3) y {4) y {5) ... y(r+2) 
. . . 

• . .. 
y{NN+l) y(NN+2) y(NN+3) y(NN+r) 

The relationship between K in equations (1) and (2} and r in 

equation (3) is 

r = K-NN. (4} 

Lastly, a sequence of r assumed Nxl state vectors X is 

defined as 

X= [x(l),x(2),x(3), ••• ,x{r)]. (5) 

"Time-wise" correspondence exists between the input, output, 

and state for observations 1 through r. In this discussion, 

the symbols M, P, and N will always refer to the number of 

inputs, outputs, and states, respectively. 

In order to implement the algorithms which follow, it 

will be necessary to select a suitable value for the scalar 

NN as in equation (3), where a particular NN reflects the 
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user's estimate of sys.tem order. A good rule of thumb is 

that NN should be chosen such that the product of NN and P 

exceeds the estimated $ystem order. For further discussion, 

see page 57 of this thesis, 

Subroutine ·GRAM 

GRAM; PROC (NN,U,Y,GM); 
DCL NN FIXED BIN; 
DCL (U(*,*) ,Y(*,*),GM(*,*)) FLOAT BIN (53); 
DCL (I,J,K,L,M,P,II,JJ,KK,LL,MM,PP,R) FIXED BIN; 
M=HBOUND(U,l); 
P=HBOUND(Y,l); 
R=HBOUND(Y,2)-NN+l; 
IF R<l THEN GO TO ER; 
GM=O; 
II=O; 
DO I=l TO NN; 

DO J=l TO M; 
II=II+l; 
JJ=II-1; 
LL=J; 
DO K=I TO NN; 

DO L=LL TO M; 
JJ=JJ+l; 
DO PP=l- TO R; 

GM(II,JJ)=GM(II,JJ)+U(J,I-l+PP)*U(L,K-l+PP); 
END; 

END; 
LL=l; 

END; 
DO K=l TO NN; 

DO L=l TO P; 
JJ=JJ+l; 
DO PP=l TO R; 

GM(II,JJ)=GM(II,JJ)+U(J,I-l+PP)*Y(L,K-l+PP); 
END; 

END; 
END; 

END; 
END; 
II==NN*M; 
DO I=l TO NN; 

DO J=l TO P; 
II=II+l; 
JJ•II ... l; 
LL=J; 



DO K=I TO NN; 
DO L=LL TO P; 

JJ=JJ+l; 
DO PP=l TO R; 
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G:M (II ,JJ) =GM (Il ,JJ} +Y (J I I-l+PP) *Y (L K-l+PP) . 
E~; ' , 

END; 
LIJ::::l; 

END; 
END; 

END; 
DO I=l TO NN* (M+P); 

DO J~l TO NN*(M+P); 
GM(J,I)=GM(I,J); 

END; 
END; 
RETURN; 

ER: PUT LIST ('INSUFFICIENT OBSERVATIONS TO COMPUTE GRAM'); 
END GRAM; 

GRAM is an efficient procedure which may be used to 

compute the Gram matrix WW' , where W is defined by equation 

(3). In order to accomplish this, a sample mainline program 

might read: 

MAIN: PROC OPTIONS (MAIN); 
DCL (NN,M,P,K,MM) FIXED BIN; 
DCL ((U,Y,GM) (1,1)) CONTROLLED BIN (53); 
DCL GRAM ENTRY (FIXED BIN, { * , *) FLOAT BIN {53) , 

(*,*} FLOAT BIN {53), 
(*,*} FLOAT BIN {53)); 

GET LIST (M,P,K,NN); 
MM={NN+l)*(M+P); 
ALLOCATE U(M,K),Y{P,K),GM{MM,MM); 
GET LIST (U,Y); 
CALL GRAM {NN+l,U,Y,GM}; 

END MAIN; 

In this example, u and Y correspond to the U and Y in 

equations {1) and {2), respectively. The scalar, NN, is 

defined as in equation (3). The arguments M,P and K cor­

respond to the earlier definitions. Here, the call to GRAM 

results· in compu-tation of GM, where GM is the Gram matrix 

WW' associ~ted, 'With (3). 



160 

It is important to note that storage for the matrix W 

itself is never required by G~M. Also, the logic of GRAM 

has been designed to take computational advantage of the 

fact that WW' is a symmetric matrix. 

Subroutine SCHMIDT 

SCHMIDT: PROC (GM,F,R,PS,NS); 
DCL (GM(*,*),F(*,*) ,R(*,*),NS(*,*)) CONTROLLED BIN (53); 

CYC: 

DCL PS (*, *) BIT (1); 
DCL ((FF,RR) (HBOUND(GM,l),HBOUND(GM,l))) BIN (53); 
DCL (A,B,C,D,E) BIN (53); 
DCL (I,J,K,L,M,N) FIXED BIN; 
PS='O'B; 
FF,RR=O; 
I=O~ 
DO J=l TO HBOUND(GM,l); 

IF GM(J,J) < l.OE-14 THEN GO TO CYC; 
DO K=l TO I; 

DO L=l TO J; 
RR(J,K)=RR{J,K)+GM(J,L)*FF(K,L); 

END; 
END; 
E=GM{J ,J); 
DO K=l TO I; 

E=E-RR(J,K)**2; 
END; 
B=E/GM (J ,J); 
IF B > NS(J,l) THEN 

DO; 
C=SQRT (E); 
RR(J,I+l)=C; 
DO K=l TO I; 

FF(I+l,*)=FF(I+l,*)-RR(J,K)*FF(K,*); 
END; 
FF(I+l,J)=l: 
FF(I+l,*)=FF(I+l,*)/C; 
I=I+l; 
PS(J,l)='l'B; 

END; 
NS(J,l)=B; 

END; 
IF I< 1 THEN PUT ~~:~OR IN SCHMIDT: GM IS TRIVIAL'); 
ALLOCATE ~ (l 

1 
HBOUND 'G,M, 1) } , R (HBOUND ( GM, 1) , I) i 

DO K;a;l TO I; . 
DO L=~. TO H~QUND LGitt_,l); 

F {K,.L) -=FF (K,L) 1 



R(L,K)=RR{L,K); 
END; 

END; 
END SCHMIDT~ 
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Procedure Schmidt is a digital realization of the 

modified Schmidt filter discussed beginning on page 75 of 

this thesis. A sample mainline program to implement SCHMIDT 

might read in part; 

MAIN: PROC OPTIONS (MAIN); 
• 

CALL GRAM (NN+l,U,Y,GM); 
NS (*, 1) =1. OE-10; 
CALL SCHMIDT (GM,F,R,PS,NS); 

END MAIN; 

Note that values for the Gram matrix GM and NS are 

specified prior to the call to SCHMIDT. Let the row dimen­

sion of GM be MM = (M+P) (NN+l) as before. Then, NS must be 

dimensioned MMXl in the calling program MAIN. The elements 

of NS correspond row-wise to the E., j=l,MM in equation so, 
J 

page 76, i.e., NS(l,l) = E1 , NS(2,1) = E2 , etc. Following 

the test indicated in equation (50), page 76, the scalar 

E .E!/g .. 
-] -] J J 

replaces the specified E. inNS. 
J 

The vector PS must be de-

clared MMXl with the attribute BIT(l) in the calling program 

MAIN. SCHMIDT will return either a one-bit or zero bit in 

each row of PS corresponding to those rows of W which are 

"passed'' or "blocked," x-espectively, by the Schmidt filter. 

Matrices F and R are generated by SCHMIDT. The matrix F is 

the reslll~Cjl~t t7ansfer function 6£ the Schmidt filter (S) , 
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while R is the transfer function of a restoring filter 

Both F and R must be given the attribute CONTROLLED in the 
calling program MAIN. However, these matrices are actually 

allocated with appropriate dimensions and assigned values 

by SCHMIDT •. 

Subroutine MULTl 

MULTl: PROC (X,Y,XY); 
DCL (X(*,*),Y(*,*),XY(*,*) FLOAT BIN (53); 
DCL (I,J,K) FIXED BIN; 
XY=O; 
DO I=l TO HBOUND (X, 1); 

DO J=l TO HBOUND (Y,2); 
DO K=l TO HBOUND (X, 2); 

XY(I,J)=XY(I,J)+X(I,K)*Y(K,J); 
END; 

END; 
END; 
RETURN; 

END MULTl; 

Subroutine MULTl is simply a procedure which is de­

signed to pre-multiply a matrix Y by a matrix X and return 

the product matrix XY to the calling program. Note that 

matrices X, Y, and XY must be allocated by the calling 

program. 

Subroutine SYSTEM 

SYSTEM: PROC (M,P,NN,PJ,PS,A,B,C,D,T); 
DCL {M,P,NN) FIXED BIN; 
DCL PJ(*,*) FLOAT BIN (53); 
DCL PS(*,*) BIT(l); 
DCL (A{*,*) ,B(*,*) ,C{*,*) ,D(*,*) ,T(*,*)) 

CONTROLLED BIN (53); 
DCL MULTl ENTRY ({*,*);FLOAT BIN (53) , (*, *) FLOAT 

BIN {53),(* 1 *) FLOAT BIN (53)); 
DCL MATOUT ENTRY (C.HA,.R (.120) VAR, (* 1 *) FLOAT BIN (53) , 

. CHAR (1) ,CHAR (1) ,FIXED BIN, FIXED BIN) ; 
DCL (I,J,K,L,N,II,JJ,KK,LL,MM,R) FIXED BIN; 



DCL Q(l,l) CONTROLLED BIN (53); 
MM=(NN+l)*(M+P); 
N=O; 
DO I=(NN+l)*M+l TO MM-P; 

IF PS(I,l) THEN N=N+l; 
END; 
IF N<l THEN PUT LIST {~ERROR IN SYSTEM: ORDER= 0'); 
ALLOCATE A(N,N) ,Q(N,(NN+l)*M); 
K=O; 
DO I=(NN+l)*M+l TO MM-P; 

IF PS(I,l) THEN 

END; 

DO; 
K=K+l; 
DO J=l TO (NN+l)*M; 

Q(K,J)=PJ{I+P,J); 
END; 
L=O; 
DO J=(NN+l)*M+l TO MM-P; 

IF PS(J,l) THEN 

END; 

DO; 
L=L+l; 
A(K,L)=PJ(I+P,J}; 

END; 

END; .. 

ALLOCATE B(N,M) ,C(N,M); 
DO I=l TO NN; 

KK=(NN+l)*M-I*M; 
DO J=l TO N; 

DO L=l TO M; 
B(J,L)=Q(J,KK+L); 

END; 
END; 
CALL MULTl (A,B,C); 
DO J=l TO N; 

DO L=l TO M; 
Q(J,KK-M+L)=Q(J,KK-M+L)+C(J,L); 

END; 
END; 

END; 
FREE C; 
ALLOCATE T(N,NN*(P+M)); 
T=O; 
KK=O; 
DO I=l TO NN*P; 

IF PS((NN+l)*M+I,l) THEN 
DO; 

KK=KK+l; 
T (.KK, I) =1; 

~D; 
END; . 
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DO I=l TO N; 
DO J=l TO NN*M; 

T(I,NN*P+J)=-Q(I,M+J)· 
END; ' 

END; 
DO I=l TO N; 

DO J=l TO M; 
B(I,J)=Q(I,J); 

END; 
END; 
ALLOCATE C(P,N),D(P,M); 
C=O; 
DO I=l TO P; 

C{I,I)=l; 
DO J=l TO M; 

D(I,J)=Q{I,M+J); 
END; 

ENO; 
FREE Q; 
RETURN; 

END SYSTEM; 
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Subroutine SYSTEM is a procedure designed to compute 

the coefficient matrices A, B, C, and D of equations ( 1) 

and ( 2), page 33, and a suitable transformation matrix T 

which allows determination of the system state given an ap­

propriate set of input/output observations. The parameters 

M, P, NN, PJ, and PS are always specified in the calling 

program. Parameter M is the number of system inputs, P is 

the number of system outputs, and NN is given by equation 

{3). Again, let MM = (NN+l) {M+P). As before, PS is a 

MMXl BIT(l) vector whose one-bits row-wise indicate the 

corresponding rows of W of equation (3) which are passed by 

a suitable Schmidt filter. The matrix PJ is defined as the 

product of matrices F and R {corresponding to s+s of the 

Schmidt filter). Matrices A, B, C, D, and T must be de­

clared CONTROLLED in the calling program, but are actually 

allocated with appropriate row and column dimensions, and 
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given values by SYSTEM. Th t i e rna r x T can be used to deter-

mine system states as follows: 

Let 

u (1) 

u (2) 

u (3) 

u{NN) 

u (2) 

u (3) 

u (4) 

• 

u (NN+l) 

u (3) 

u (4) 

u (5) 

u (NN+2) 

••• 

... 
• • • 

• • • 
. . . 
• • • 

••• 

u(r) 

u (r+l) 

u(r+2) 

u(NN+r-1) 

W* = ------------
y (1) 

y (2) 

y(3) 

y(NN) 

y(2) 

y(3) 

y (4) 

• 

• 

y(NN+l) 

y (3) 

y (4) 

y (5) 

• 

y (NN+2) 

••• 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

Y (r) 

y (r+l) 

y(r+2) 

y(NN+r-1) 

Then the matrix X of equation (5) is given by 

X= TW*. 

Subroutine SYSTEM might be implemented as shown in the 

following mainline program: 

MAIN: PROC OPTIONS (MAIN); 

CALL GRAM (NN+l,U,Y,GM); 
CALL SCHMIDT (GM,F,R,PS,NS); 
CALL MULTl (R,F,PJ)7 
CALL SYSTEM (M,P,NN,PJ,PS,A,B,C,D,T); 

• 
«'""~ 

END MAIN; 

(6) 

(7) 
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The subroutines described thus far are independent and, 

as such, can be used as modules in a.number of application 

programs, including the on-line and off-line identification 

problems. These modules, of course, must be linked by suit­

able driving routines. The following two subroutines are 

examples of such driving routines. 

Subroutine ID#l 

ID#l: PROC (U,Y,X,A,B,C,D,T,NN,NS); 
DCL (U(*,*),Y(*,*),NS) FLOAT BIN (53); 
DCL (X { * , *) I A ( * I*) I B ( * , *) , c ( * I*) , D ( * , *) , T { * , *) } 

CONTROLLED BIN (53); 
DCL NN FIXED BIN~ 
DCL {I,J,K,L,M,N,II,JJ,KK,LL,MM,P,R) FIXED BIN; 
DCL PS(l,l) CONTROLLED BIT(l}~ 
DCL { (NSS,TX,TY,GM) (1,1)) CONTROLLED FLOAT BIN (53); 
DCL SCHMIDT ENTRY((*,*) FLOAT BIN (53),(*,*) FLOAT 

BIN (53),(*,*) FLOAT BIN (53), 
(*,*)BIT(*),(*,*) FLOAT BIN (53)); 

DCL GRAM ENTRY (FIXED BIN,(*,*) FLOAT BIN (53), 
. ( *, *) FLOAT BIN (53) , ( *, *) FLOAT 

BIN (53)) ~ 
DCL MATOUT ENTRY (CHAR(l20)VAR,{*,*) FLOAT BIN (53), 

CHAR(l),CHAR(l), FIXED BIN, FIXED 
BIN); 

DCL SYSTEM ENTRY (FIXED BIN, FIXED BIN, FIXED BIN, 
(*,*) FLOAT BIN (53),(*,*)BIT(*), 
(*,*) FLOAT BIN (53), (*,*)FLOAT 
BIN (53),{*,*) FLOAT BIN (53), 
(*,*) FLOAT BIN (53),(*,*) FLOAT 
BIN (53)); 

DCL MULTl ENTRY((*,*) FLOAT BIN (53),(*,*) FLOAT 
BIN (53),(*,*) FLOAT BIN (53)); 

M=HBOUND (U,l); 
P=HBOUND (Y,l); 
R=HBOUND (Y,2)-NN; 
MM=(NN+l)*(M+P); 
ALLOCATE GM(MM,MM); 
CALL GRAM (NN+l,U,Y,GM); 
ALLOCATE NSS (MM, 1) ,PS (MM, 1); 
NSS;::NS; 
DO I=MM~P+l TO MM; 

NSS(I,l)=lO; 
END; , . . .. 
CALL SCHMIOT (GM,TX,TY,PS,NSS); 



CALL MULTl (TY,TX,GM); 
FREE TY,TX; 
CALL SYSTEM U1,P,NN,GM,l?S,A,B,C,D,T); 
FREE GM,PS,NSS; 
N=HBOUND (A,l); 
ALLOCATE X(N,R}; 
X=O; 
DO I=l TO N; 

DO J=l TO R; 
KK=O; 
DO K=l TO NN; 

DO L=l TO P; 
KK=KK+l; 
X(I,J)=X(I,J)+T(I,KK}*Y(L,K-l+J) · 

END; I 

END; 
DO K=l TO NN; 

DO L=l TO M; 
KK=KK+l; 
X(I,J}=X(I,J}+T(I,KK}*U(L,K-l+J); 

END; 
END; 

END; 
END; 
RETURN; 

END ID#l; 

Procedure ID#l is a subroutine which is suitable for 

the off-line identification of linear discrete dynamic 

systems. The parameters U, Y, NN, and NS are specified in 

the calling program. Here, u, Y, and NN are defined as 

before. The scalar NS, however, does not directly corre-
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spond to the definition given previously. Effectively, 

Procedure ID#l sets all of the Ej of equation (50), page 76, 

equal to the scalar NS specified as the last argument of 

ID#l in the calling program. In otherwords, the results 

are that all of the €. are set uniformly equal. This is not 
J 

a necessary feature, but only a simplifying one. Alterations 

to sutt ind;vidual need can easily be made, Matrices X, A, 

B, c, .: . .A;;;;a._n:d:,·'f It\U~Jt be declared CONTROLLED in the main pro-
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gram, but are actually allocated with appropriate dimensions 

and given values by ID#l or its subroutines. It is import­

ant to note that calls to subroutines GRAM,. SCHMIDT, and 

SYSTEM are issued by ID#l. 

No special provision is made for .the case of autonomous 

systems (.systems with no inputs). This case can, however, 

be easily handled with little inconvenience by dimensioning 

the matrix U as lxK, where K is defined by equation (1), 

and setting all of its elements equal to zero. The result 

will be that the elements ·Of B and D returned by ID#l will 

be uniformly zero. 

Subroutine ID#2 

ID#2: PROC (GM,U,Y,X,A,B,C,D,T,NS); 
DCL (GM(*,*),U(*,*),Y(*,*),NS) BIN (53); 
DCL (X ( * , *) I A ( * '*) , B ( * , *) , c ( * '*) , D ( * I*) IT ( * , *) ) 

CONTROLLED BIN (53); 
DCL (I,J,K,L,M,N,II,JJ,KK,LL,MM,P,R,NN) FIXED BIN; 
DCL PS(l,l) CONTROLLED BIT(l); 
DCL ((NSS,TX,TY,GM2) (1,1)) CONTROLLED BIN (53); 
DCL SCHMIDT ENTRY((*,*) FLOAT BIN (53), (*,*)FLOAT 

BIN (53), (*, *) FLOAT BIN (53), 
(*,*) BIT(*),(*,*) FLOAT BIN (53)); 

DCL GRAM ENTRY (FIXED BIN,(*,*) FLOAT BIN (53), 
(* ,*) FLOAT BIN (53), (* ,*) FLOAT 
BIN (53)); 

DCL MATOUT ENTRY (CHAR(l20)VAR,(*,*) FLOAT BIN (53), 
CHAR(l), CHAR(l), FIXED BIN, FIXED 
BIN); 

DCL SYSTEM ENTRY (FIXED BIN, FIXED BIN, FIXED BIN, 
(* ,*) FLOAT BIN (53) I (* ,*) BIT(*)' 
(*, *) FLOAT BIN (53) 1 . (*, *) FLOAT 
BIN (53) 1 (* ,*) FLOAT BIN (53), 
(*,*) FLOAT BIN (53), {*,*) FLOAT 
BIN (53)) i 

DCL MULT~ ENTRY ((*,*) FLOAT BIN (53), (*,*) FLOAT 
BIN (53) , (*, *) FLOAT BIN {53)) ; 

M=HBOUND (U,l); 
P•HBOUND (Y,l); 
MMIIIHBQUND (G~, 1) 1 



NN=MM/(M+P)-1; 
R=HBOUND (Y,2)-NN; 
ALLOCATE GM2(MM,MM); 
CALL GRAM (NN+l,U,Y,GM2); 
ALLOCATE NSS (MM, 1) , PS (MM 1) · 
NSS=NS; 1 

' 

DO I=MM-P+l TO MM; 
NSS(I,l)=lO; 

END; 
GM=GM+GM2; 
CALL SCHMIDT (GM,TX,TY,PS,NSS}; 
CALL MULTl (TY,TX,GM2); 
FREE TY,TX; 
CALL SYSTEM (M,P,NN,GM2,PS,A,B,C,D,T); 
FREE PS, NSS,GM2; 
N=HBOUND(A,l); 
ALLOCATE X (N, R); 
X=O; 
DO I=l TO N; 

DO J=l TO R; 
KK=O; 
DO K=l TO NN; 

DO L=l TO P1 
KK=KK+l; 
X(I,J}=X(I,J)+T(I,KK)*Y(L,K-l+J); 

END; 
END; 
DO K=l TO NN; 

DO L=l TO M; 
KK=KK+l; 
X(I,J}=X(I,J)+T(I,KR)*U(L,K-l+J); 

END; 
END; 

END; 
END; 
RETURN; 

END ID#2; 

Procedure ID#2 differs from ID#l essentially in that 

it is suited for on-line, or adaptive, identification prob-

lems. The same mathematical principles are used by both 

ID#l and ID#2. The parameters GM, u, Y, and NS must be 
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specified in the calling program. The scalar NS corresponds 

to its definition in IDil. The matrix GM is the Gram matrix 

ww' , where W is given by equation (3) • The matrices U and 

y ate.'ci"~fln~d by equations (1) and {2), respectively. 
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Matrices X, A, B, c, D, and T must be declared CONTROLLED 

in the program which calls ID#2, however, these matrices are 

allocated and assigned values by ID#2. In order to use ID#2 

for adaptive or on-line identification, the algorithm is 

called recursively as new input/output observations are 

added to the existing set. When ID#2 is called, it is con­

venient to consider that the matrix GM is always associated 

with the complete set of "old" observations, whereas U and 

Y represent a "new" set of K corresponding observations on 

the system input and output. Note that K must be suffi­

ciently large to compute a Gram matrix consistent with the 

choice of NN, i.e., K>NN+l. When ID#2 is called, the = 
matrix GM is immediately up-datedto include the "new" 

observations U and Y. Computation of the matrices A, B, c, 

D, and T is then based on the up-dated Gram matrix GM. The 

matrix X which is returned to the calling program is con-

sistent with the updated T and is computed as a transfer-

mation on U andY. 

In order to initiate a recursive identification scheme, 

the matrix GM can be set uniformly equal to zero. Then the 

coefficient matrices computed by the first call to ID#2 

will be based only on the first set of K observations on 

u and Y. It is important to note that the system order will 

always be estimated as zero if K for the first set of ob­

servations is less than or equal to (NN+l)M. 

considerable versatility is realized by the fact that 

successive calls to IDi2 need not necessarily reflect equal 
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numbers of added observations. Also, it is easy to see that 

an arbitrary amount of time can be allowed to elapse before 

successive updating operations consistent with specific 

modeling requirements. 

Since A, B, c~ D, and T are computed anew based on the 

updated matrix GM, it is conceivable that successive compu­

tation may yield varying estimates of system order and 

structure commensurate with input "generality" and sample 

size. A simple, but non-trivial example is where the first 

set of observations is of insufficient number to yield a 

Gram matrix of rank consistent with system order. 

Finally, it should be noted that since A, B, C, D, T, 

and X are allocated each time ID#2 is called, these values 

should be freed before the next call to ID#2 unless it is 

desired to "stack" successive allocations as is possible in 

PL/1. 
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