
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

1970

Heuristic algorithms for the generalized vehicle dispatch problem Heuristic algorithms for the generalized vehicle dispatch problem

Leland Ray Miller

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Mathematics Commons

Department: Mathematics and Statistics Department: Mathematics and Statistics

Recommended Citation Recommended Citation
Miller, Leland Ray, "Heuristic algorithms for the generalized vehicle dispatch problem" (1970). Doctoral
Dissertations. 2185.
https://scholarsmine.mst.edu/doctoral_dissertations/2185

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2185?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

HEURISTIC ALGORITHMS FOR THE GENERALIZED

VEHICLE DISPATCH PROBLEM

by

LELAND RAY MILLER, 1938-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

l.n

MATHEMATICS

1970

Advisor

T2391
111 pages
c . I

11

ABSTRACT

A heuristic algorithm , called the sweep algorithm ,

1s developed for the vehicle dispatch prob l em with d istance

and load constraints for each vehicle . A mathematical

development and a step procedure for the sweep algori thm

is given . Also g1 ven are eight proble ms and their sol

utions derived by the sweep algorithm . The solutions

for this algorithm are compared with solutions from

other vehicl e dispatch algorithms , and the sweep algorithm

is found to g ive better r esults for almost every probl em .

Various modi fications are also presented for the sweep

algorithm.

A mathematical formulation 1s g1ven for the vehicle

dispatch problem with arbitrary cost funct ions at each

location . A branch and bound algorithm is developed ,

which yields an optimal solution for the problem with one

server .

lll

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation

to Dr. Bi l l y E . Gi llett for his aid in the select i on of

th i s thesis subject and his guidance in the preparation

of th i s dissertat i on .

The author also wishes to express his thanks to

his wife and family for their understand i ng , encouragement ,

and sacrifices during these years o f graduate study .

iv

TABLE OF CONTENTS

Page

ABSTRACT ii

ACKNOWLEDGEMENTS• iii

LIST OF ILLUSTRATIONS vi

LIST OF TABLES v i i

I. INTRODUCTION 1

II . REVIEW OF LITERATURE 3

A. Traveling Salesman Problem 3

1 . Complete enumeration 3

2. Dynamic programming 4

3 . Branch and bound algorithm 5

4 . Integer programming 10

5 . Partitioning !!

6 . R- optimal 12

B. Vehicle Dispatch Problem 16

1 . Conversion into traveling salesman

prob l em 17

2. Savings approach 19

3 . R-optimal 20

4 . Hayes ' algorithm 22

III . VEHICLE DISPATCH PROBLEM 27

A. Mathematical Development of Sweep Algorithm 27

B. Sweep Algorithm Procedure 37

c·. Modifica tions of Sweep A~gorithm 49

v

Table of contents (continued) Page

IV. GENERALIZED VEHICLE DISPATCH PROBLEM Sl

A. Mathematical Formulation of the Problem Sl

B. Branch and Bound Algorithm 53

V. EXPERIMENTS AND RESULTS 59

VI. SUMMARY, CONCLUSIONS, AND FURTHER PROBLEMS 63

BIBLIOGRAPHY 6 6

VITA .. 68

APPENDICES 7 0

A. Sweep Algorithm Computer Program 70

B. Example Problems Using Sweep Algorithm 84

C. Branch and Bound Algorithm Computer

Pro gram 1 0 l

VJ.

LIST OF ILLUSTRATIONS

F~gures Page

1. Branches of a tree 6

2. Distance matrix 8

3 . Distance matrix with smallest element subtracted from

each row 8

4. Distance matrix with smallest element subtracted from

each column 8

5~ Tour with three removable links l3

6. A~gmented distance matrix 18

7. Tour before and after joini~g two locations 21

8. Determining outside points 24

9. Determini~g score for point z 2 5
1

10. Examples for A,X,Y,_ and Q ••••••••••••••••••••••••••••• 31

11. Example of a vehicle dispatch problem 40

12. Initial tour 40

13. Tour after one iteration 41

14. Tour after three iterations 41

15. Five locations with two and three routes 46

16. P-sect dispersernent and unassigned points 49

17. Complete tree for a four-location problem 54

Vll

LIST OF TABLES

Table Page

I. Comparisons of Vehicle Dispatch Algorithms 60

I. INTRODUCTION

There exist many problems that fall into the general

category of vehicle dispatch problems; however, there

does not exist a simple algorithm which will solve these

problems. These problems assume that each of N customers

has a given location and demand, and that each location

must be serviced by a server. The objective is to determine

the minimum number of servers and the routes for each

server, so that the total distance that the servers travel

is a minimum. Each server is also subject to a load and a

distance constraint.

Examples of the problem arlse ln the delivery of

people or commodities such as bread and furniture. These

problems assume a known demand. Examples of the problem

also arise in scheduling routes such as those for school

busses and refuse trucks, where people or commodities are

picked up.

It lS usually very difficult to determine an exact

optimal solution for a problem involving many locations,

due to the large number of possible routes that must be

examined. Hence, heuristic algorithms have been developed

which yield solutions which are hopefully close to an

optimal solution. One objective of this paper is to

determine a good heuristic algorithm for the vehicle dis

patch problem.

A special case of the vehicle dispatch problem is

l

the traveling salesman problem. This case occurs if

there are no load and distance restrictions for the servers.

Hence, one server is able to meet all the requirements of

the customers. The review of literature presents several

algorithms for the traveling salesman problem and how they

are generalized for the vehicle dispatch problem.

The vehicle dispatch problem can be generalized to

include arbitrary cost functions at each location. This

creates an additional cost which must be minimized. An

example is the scheduling of delivery trucks where a

commodity must be delivered in a given time period. This

paper presents an exact algorithm which solves the general

ized vehicle dispatch problem for one server.

2

II. REVIEW OF LITERATURE

A. TRAVELING SALESMAN PROBLEM

If there is only one server with no constraints and

no arbitrary cost functions, then the vehicle dispatch

problem becomes the well-known traveling salesman problem.

This problem lS that of finding a permutation,

i 2 , i 3 , ·· ·, lN of the integers 2 through N, so that the

N-1
quantity a 1 . + L (a. .) +a. 1 is a minimum. The

l2 k=2 lklk+l lN

element a .. could represent either the distance or the
l]

time of travel from location ito location j.' The name

given to the problem is derived from the application of

a salesman who wishes to visit N - 1 cities, starting from

and returning to his home, by means of the shortest route.

This problem was first posed by Hassler Whitney in 1934 [1].

1. Complete Enumeration

There exist a finite number of routes for the salesman,

namely (N- 1)!. Therefore, it is theoretically possible

to solve the problem by calculating the distance for each

of the routes and selecting the route with the minimum

distance. However, even for ten locations the number of

possible routes is very large, which makes it impossible

for a computer to calculate all the distances in any

reasonable length of time. For this reason, ~lgorithms

have been developed which reduce the calculation time.

3

2. Dynamic Programmi~g

Dynamic programming was applied to the problem in

two articles , each developed independently of the other .

4

One is by Held and Carp [2], and the other is by Bel l man [3].

The procedure for dynamic programming 1s as follows:

Let N denote the number of locations and a .. the distance
l.J

from location ito location j .

For any subset, S, of {2, 3 , ···, N} and pES , let

C(S, p) represent the minimum distance for starting from

location one, visiti~g all cities in S, and ending at

location p . Then a recursive formulation can be given

by the following equations:

If n(S) = 1 , then C({p} , p) = a 1p for all p E S .

If n(S) > 1, then C(S, p) =min [C(S- p , m) +a] .
mES-p mp

In these equations, n(S) is the cardinality of set S and

S-p denotes the set S with the element p omitted . These

equations provide a method for calculating C(S , p) induct-

ively, first with n(S) = 1 , then with n(S) = 2 , and up to

S = {2, 3, · ··, N} . The minimum distance of a complete

tour , including the return to location 1 is

min
pE: { 2 , 3 • • •

' '
N}

[C({ 2 , 3 , ... , N}, p) + ap1 J.

The route which yields this minimum distance is obtained

by a 11 backward 11 proce dure. The p
1

which gave the minimum

value for C({2, 3, ·· · , N}, p 1) + a 1 is the last location
pl

on the route. The p 2 which minimizes C({2 , 3 , · · ·, N}

{p1 } , p 2) is the next-to- the- last location on the r o u te .

By continuing this procedure until n (S) = l, the route

that minimizes the total distance is obtained .

The algorithm requires a large amount of core storage

which restricts the size of the problem. Bellmore a nd

Nemhauser [4] were a b le to solve a 15- location probl em

using auxiliary stor~ge .

3. Branch and Bound Algorithm

Th e branch and bound algorithm is also an e xact

procedure , in that if a solution lS obtained it is a route

which produces the minimum total distance . The algorithm

has been known to solve a 68- location problem ; however, it

does not propose to solve al l problems of this slze within

a rea sonable time limit . Two papers that have been present

ed which employ the branch and bound method are Shapiro [5]

and Little , Murty, Sweeney , and Kare l [6] .

The basic method of the algorithm is to divide the set

of all tours into smaller subsets and to calculate a lower

bound for all the tours in the subset . A tree is built

with nodes which represent the subsets of tours . Each node

is a subset of the node from which it branches. For

e x ample , referring to f~gure l , node A represents the set

of all tours . Node B represents t he set of all tours whi ch

cont a i n the l i nk i to J · Node C represents t h e set of a ll

5

6

A

D

Figure 1. Branches of a tree

tours which do not contain the llnk ito j. Node D

represents the set of all tours containing the links 1. to

j and k to m.

A method similar to the assignment problem is used

to calculate lower bounds for each node. The distance

matrix, M, is a matrix such that m .. denotes the distance
l]

from location ito location j. The lower bound for node A

is calculated from the distance matrix using the following

theorem: If a constant, h, is subtracted from each element

of a row of the distance matrix, then the distance of any

tour under the new matrix is h less than under the old.

Let r. be the smallest element in row i (i = 1, 2, N)
l

of the distance matrix. The new distance matrix is obtained

b b . f 1 . h .th f y su tract1.ng r. rom every e ement 1.n t e 1. row or
l

i = 1, 2, ···, N. The same procedure is used for the

columns where c. is the smallest element in column i
l

N
(i = 1, 2, .. ·, N). The lower bound is ~ (r. +c.).

. 1 l l
1.=

Consider the distance matrix for a five-location

problem in figure 2. The numbers 2, 2, 1, 2, and 1 are

subtracted from rows 1 through 5 respectively, which gives

the distance matrix in figure 3. The number 1 is sub-

tracted from columns 1 and 3, which yields the distance

matrix in figure 4. The sum of the numbers subtracted

from the rows and columns provides the lower bound for

node A, which in this example is 10.

7

8

1 2 3 4 5

1 00 3 3 2 8

2 3 00 6 4 2

3 8 6 00 1 4

4 3 2 6 00 4

5 4 1 8 2 00

Figure 2. Distance matrix

1 2 3 4 5

1 00 1 1 0 6 (2)

2 1 00 4 2 0 (2)

3 7 5 00 0 3 (1)

4 1 0 4 00 2 (2)

5 3 0 7 1 00 (1)

Figure 3 . Distance matrix with smallest element
subtracted from each row

1 2 3 4 5

1 00 1 0 0 6

2 0 00 3 2 0

3 6 5 00 0 3

4 0 0 3 00 2

5 2 0 6 1 00

(1) (1)

Figure 4 . Distance matrix with smallest element
subtracted from each column

The link i to j for node B is obtained by choosing a

zero in the new d~stance matrix, which ~ill provide the

largest lower bound for node c. This i5 accomplished by

placing oo in a zero slot, and calculating the lower bound

by adding the smallest element in that row, the smallest

element in that column, and the previous lower hound. In

figure 4, there are 8 zeroes that need to be considered.

The link (1,3) provides a lower bound of 10 + 3, since

there is a zero in column 4 of row 1 and a three in row 2

of column 3. Likewise, the link (1,4) provides a lower

bound of 10 + 0. After all zeroes are checked, (1,3) and

(2,5) both are found to provide the greatest bound for C,

namely 13 .

The link (i,j) which produces the greatest lower bound

for node C will be the link used in node B. The lower

bound for node B is obtained by omitting row i and column
N N

9

j and calculating E rk+ E ck' where again, rk is the smallest
k=l k=l
k;ii k;ij

element in row k , and ck ~s the smallest element in column

k .

Branching is continued from the node with the smallest

lower bound until all links are used. The lower bound of

the last node is the total distance for that particular tour

and provides a bound for all other tours. Branching from

a node ceases if the lower bound for the node is greater

than the smallest bound obtained from the completed tours.

Care must be taken in selecting the link i to j so

as to prevent a subtour . Infinity is placed in the· slot to

prevent this. For example, if (a,b) and (b,c) are two

links in previous nodes, then links (a,c) and (c,a) are

assigned a distance of infinity.

Computing time varies with each problem, depending

on whether a good lower bound which will eliminate many

branches is determined at first.

4. Integer Programming

Bellmore and Nemhauser [4] state a theorem which shows

that the traveling salesman problem can be set up as a

0 - 1 integer linear-programming problem. The theorem

is as follows:

LetS, S be a partition of the integers i = 1, 2, ···, N.

An optimal tour can be found by solving the integer linear

program;
N

mln z = r
j=2

j-1
r a .. x ..

i=l l] l]

subject to;

1. x .. = 0,1 Ci = 1,2,···, j-1; j = 2,3,···,N),
l]

2. r
ie: s

r x .. > 2 for all nonempty partitions
je: s l]

(S, S) such that if (S,S) is considered, then

(S, S) is not.

x .. = 0 if the link (i,j) 1s not in the tour, and
l] /

x .. = 1 if the link (i,j) lS in the tour.
l]

The disadvantage in finding an optimal tour by integer

10

programming 1s that it requires many variables and many

inequalities. Hence, again, the program is only suitable

for small N. Several modifications to linear programming

have been given with fewer variables and inequalities.

Martin [7] claims to have solved a 42-location problem.

However, other articles, [2] and [8], have reported dis-

couraging results with integer programm.ing.

All four of the previous algorithms are exact proc-

edures, and since they are inadequate for a problem with

a large number of locations, methods have been devised to

give solutions which compare favorably to the exact

solution. Several of these methods are iterative in that

they improve initial tours.

5. Partitioning

Held and Karp [2], used partitioning with dynamic

programming. This 1s an iterative procedure, which uses

an initial tour. The initial tour is partitioned into u

ordered sets, each consisting of locations which occur

successively in the initial tour. By treating each part-

ition as a location, a u-location traveling salesman

problem is created.

(j 1 ,] 2 , ···, jq) are two ordered sets of a partition,

then the distance between the two ordered sets is a. .
lp]l

If u is not too large, then the u-location problem can be

solved by an exact scheme. The solution will have placed

11

each ordered set into the best position, which will have

equaled or improved the initial route. In essence, the

ordered sets are moved about to produce a better solution.

12

Different partitions may be used to produce different

solutions. Held and Karp defined two types of partitioning,

local and global. In a local partition, each of the ordered

sets, except one, consists of a single element. This

determines the best tour over a local part of the partition.

A global partition takes each ordered sets nearly equal in

SlZe.

Held and Karp used dynamic programming to solve the

sub-traveling salesman problem. They presented several

good results on locations of size 42, 20, 48, and 36.

6. R - optimal

Another iterative scheme which uses an initial tour

is r-optimal. Lin [9] defines a tour to be r-optimal if

it is impossible to obtain a tour with smaller distance by

replacing any r of its links by any other set of r links.

Figure 5 illustrates 3 links being removed in an 8 loc

ation problem. The three removable links are a, b, and c.

Two of the routes which can then be formed are 1, 2, 3, 6,

4, 5, 8, 7, 1; and 1, 2, 3, 8, 5, 4, 6, 7, 1.

Lin discovered from experimenting that r = 3 gives

excellent results with small computation time compared to

r = 4. Since all 3-optimal routes are also 2-optimal, he

restricted his algorithm to 3-optimal routes.

2
X

Figure 5.

1
X

, /

a"
,

,"_---; x-- a

' ' ' ' ' a
' ' \

\

4

/
/

, , ,

s'

I
I

I
I

I I

I c

I "'
/

,('

I
I

7

_..:x.

' ' '~
' ' ' ' ' b ' _x ----- 5 ---

Tour with three removable links

13

X

Lin proved a theorem which he used as a basis for his

algorithm in produci~g 3-optimal tours. It is as follows :

A tour is 3- optimal if and only if no section of k con

secutive locations in the tour can be removed and reinsert

ed (as is , or inverted) between any two consecutive remain

ing locations to produce a tour with less total distance.

14

He modified the 3-optimal procedure in two ways . First,

he started with an initial tour and then proceeded to find

a 3-optimal tour by successively placing k consecutive

locations (k = 1, 2, · · ·, N) between two other consecutive

locations. As soon as he found an improvement , he took

this new tour and started the procedure over again , after

first rotating the locations to the next consecutive

locations. The algorithm stops if no improvement can be

made by placing k consecutive locations between any two

other consecutive locations .

This program took a relatively short time on a

computer , so Lin modified it a second way by calculat ing

m 3-optimal solutions from m random initial tours . The links

that were common to all m 3-optimal tours were then removed ,

with the premise that any link common to all m 3-optimal

tours will also be a link in an optimal tour. This reduces

the number of locations, and hence, the size of the pro-

blem. The procedure is then repeated . (Lin does not say

what he would do if there were no common links).

Bellmore and Nemhauser [4] stated in their summary of

the traveling salesman problem that they would use dynamic

prograrnmlng if the number of locations were less than or

equal to 13. For symmetric problems up to 40 locations,

they recommend the branch and bound algorithm. Then for

problems which can not be solved by exact schemes, they

suggest Lin's 3-optimal algorithm.

15

B. VEHICLE DISPATCH PROBLEM

The vehicle dispatch problem is a generalization of

the traveling salesman problem. The difference between

the two is that the vehicle dispatch problem may use more

than one salesman, and may also have restrictions on the

distance that each salesman may travel. The problem may

also be applied to a fleet of trucks which must deliver

products to various locations when there are restrictions

on the number of miles traveled by a single truck and a

load capacity for a single truck.

A mathematical formulation of the problem is as

follows:

Given;

l.

2 •

3 •

A set of N locations including the depot,

A distance matrix A= (a ..) which specifies the
l]

distance between location i and location],

A demand vector Q = (q.) which specifies the
l

demand at location 1,

4. The truck capacity C,

5. The maximum mileage L that a truck may travel.

To determine; M routes Ci11 , i 12 , ···, llk; 1 21 , i 22 , '
1

i 2 k ; ••• ; 1 Ml ' iM 2 '
2
k" J

1. L q. < C for J =
1 l.

p= JP

, iMk) such that
M

1, 2, ... M (load constraint),

16

k--1
J

2. D. = L: a. . + a. . < L,
J p=l 1jp1J.p+l 1.k 1.1

J j J

(distance constraint)

M
so that L:

j=l
D. (total distance) 1s a minimum, where

J

ijl 1s the depot, and every location 1s visited once and

only once.

1. Conversion into Traveling Salesman Problem

Christofides and E~lon [10] presented a procedure to

transform the vehicle dispatch problem into a traveling

salesman problem with certain constraints. They augmented

the distance matrix with M artificial depots. All of them

have the same location, with infinity assigned to the

distance between two depots to prevent traveling from one

depot to another. This is illustrated in figure 6.

The number of artificial depots augmenting the

distance matrix will begin with a small number and increase

by one until there exists a feasible solution. Christ
N

ofides and Eilon suggest the lower bound of [I q. 1] + 1
i=l 1 c

N
for the first value of M since M·C > L: q ..

-i=l 1

In building the route, using a traveling salesman

algorithm, a check must be made after each location is

added to the route, to see if the distance constraint or

the load capacity is violated between two artificial

depots.

17

18

M
00 00

all al2 alN . . .
00 00

all al2 alN . . .
M

00 . . . 00
all al2 . . . alN

all a11· . . all all al2 . . . alN

a21 a21· . . a21 a21 a22 . . . a2N

Figure 6. Augmented distance matrix

Christofides and Eilon used the branch and bound

algorithm by Little et al. [6] on several problems. They

concluded that this method was inadequate because it

could not solve a problem with more than 20 locations,

since both the computation time and memory - space re

quirements became exhaustive. Bellmore and Nemhauser [4].

have reported solutions to problems of size 40.

This procedure is an exact algorithm in that it yields

an optimal solution. It is the only exact ~lgorithm for

the vehicle dispatch problem known to the author. Vehicle

dispatch problems that have a practical application are

too large to be solved by means of any known exact

algorithm. Hence,heuristic procedures have been developed

to handle these large problems.

2. Savings Approach

The vehicle dispatch problem was first presented by

Dantzig and Ramser [11] in 1959. The method they employed

to solve the problem has become known as the sav1ngs

approach. Clark and Wright [8] modified the method 1n an

article in 1964 and restricted the load capacity to the

same quantity for each vehicle. Gaskell [12] and Christ

ofides and Eilon [10] also gave modifications of the

savings approach.

The algorithm begins by linking each location with

one vehicle and then returning to the depot. Links are

then joined to eliminate vehicles by means of the "savings"

19

20

equation, s .. = a 1 . +a. -a ... This quantity represents
l] l l] lJ

the amount saved by joining location ito location j.

(See figure 7.) The depot is represented by 1. The

total distance for the two vehicles before they are joined

+ After the two locations are joined for

one route, the total distance lS a 1 j + aij +ali' Hence the

-a ...
l]

The largest savings, s .. , is selected and checked to see if
l]

the constraints are satisfied after locations i and j are

joined. If the link i to j is feasible, it is added.

Otherwise another link is considered. The solution is ob-

tained when no more links can be added.

Tillman and Cochran [13] further revise Wright and

Clark's algorithm by checking the next largest savings

after the pair of points is joined. The sum of the two

savings is calculated. The second step proceeds as the

first, only taking the second largest savings first. A

new sum is then calculated. The above procedure is repeat-

ed for the third highest savings, the fourth highest sav-

ings, etc., until all feasible savings have been included.

The largest sum, after linking the pair of points, is then

used.

3· R-optimal

Christofides and Eilon [10] introduce the implementing

X i

1

0~.,_~---~
a 1 j ~ x J

1
0

X j

Figure 7. Tour before and after joining two locations

21

of the 3-optimal algorithm to the dispatch problem . They

add artificial depots similar to the way the depots are

added in the method described 1n section A. After generat

ing a random tour, they find a 2-optimal tour. This tour

is then used as an initial tour for the 3-optimal al

gorithm. The constraints are checked after a better tour

has been generated. The distance and demand constraints

are checked between each two successive depots . If the

constraints are satisfied, then three more links are

cha~ged until a better tour cannot be formed by changing

three links .

It appears from Christofides and Eilon's algorithm

that they do not use Lin's algorithm [9] to generate a

3-optimal tour. Rather, they use Lin's definition of a

3-optimal tour: A 3-optimal tour is a tour that cannot be

improved by removi~g 3 links and replacing them by 3 other

links . However, they do use the method proposed by Lin,

which starts a new search for the 3-optimal tour as soon

as a better tour is determined.

The conclusion reached by Christofides and Eilon is

that the 3-optimal algorithm gives better routes than the

savi~gs method. Christofides and Eilon did not include

the distance constraint in the 3-optimal algorithm.

4 . Hayes' A~gorithm

Hayes [14] developed a heuristic approach for the

vehicle dispatch problem in much the same way that a dis -

22

patcher would dispatch his fleet of trucks. He first es-

timates the number of routes that he will need and then

picks the same number of outside points. The first outside

point is the point furthest from the depot. The other

outside points are those obtained by maximizi~g the quan
r

tity,a. 1 · TI a .. , over all locations i that are notal-
1 k=2 Jk1

ready outside points, and where jk are outside points and l

is the depot. This is illustrated in f~gure 8. The

23

algorithm then chooses one outside point, and adds locations

to this point until a tour has reached either a distance or

a demand restriction. Then a new outside point is chosen

and the remaining points serve as candidates for the next

tour. The points are added to the tour according to a

score which is assigned to each point. This score is com-

prised of a variety of different values;

a)

b)

c)

d)

Its demand, Q.,
1

Its distance from the depot, ail'

Its distance from the line joining the outside

point and the depot, d.,
l

Its distance to the nearest unassigned point, f ..
1

These values are shown in figure 9, where x represents the

assigned points, o represents the outside point, and z

represents the unass~gned points.

The score for a location is a linear combination of

these quantities, with the coefficients of Qi' ail' and

f. being positive and the coefficient of d
1
. n~gative;

1 .

0
1

Figure 8. Determining outside points

24

z

z

Figure 9.

a
l

0

X

z

Determining score for point z.
l

25

X

a point will be added to a route if Q., a.
1

, and f. are
~ ~ ~

large and d. ~s small. Hayes does not advocate any partie
~

ular values for the coefficients. However, he did run

some tests on several problems. The location with the

largest score is selected and then the constraints are

checked. If the constraints are satisfied, thenthe loc-

ation is added to the route. If one of the constraints

is not satisfied, the location with the next largest score

~s examined. After two attempts to add a location, the

route is closed and a new outside point is chosen. The

algorithm is complete when all locations are assigned.

If more outside points are needed, thenthe unassigned

location whose distance from the depot is the greatest,

lS assigned as an outside point.

It is difficult to compare Hayes' method with other

algorithms, since he did not give any results using the

method. Also the method used to obtain the values of the

coefficients is vague.

26

III. VEHICLE DISPATCH PROBLEM

A. MATHEMATICAL DEVELOPMENT OF SWEEP ALGORITHM

The purpose of this chapter is to present the mathe

matical foundations for the vehicle dispatch problem and

the sweep algorithm.

DEFINITION 1. The vehicle dispatch location problem

(VDLP) is a set of integers, S = {1, 2, ···, N}, containing

at least two elements; two positive real numbers, C and

D; and the following functions:

a) Q(I), a positive real valued function defined on

S', where S' = S- {1},

b) A(I,J), a real valued function defined on S X S,

c) X(I) and Y(I), two real valued functions defined

on S,

which satisfy the following constraints:

d) Q(I) < C for all IE S',

e) A(I,J) > 0 for all I and J E S except I = J,

f) A(l,I) + A(I,l) 2 D for allIES',

g) A(I,I) = 0 for all I E S.

27

In the vehicle dispatch problem the set S represents the

N locations with l as the depot. Q(I) represents the de

mand for location I, and A(I,J) represents the distance

between locations I and J. X(I) and Y(I) are the rect

angular coordinates for location I. C and D represent the

load and distance capacities respectively for each vehicle.

DEFINITION 2. SUM(P) = L Q(I) for all PCS' .
Ie: p

DEFINITION 3 . DIST(P) = Min [A(l , ~(1)) +
~e: Per(P)

n(P)~~~~--~~
i~ 2 A(~(i-1), a(i)) + A(~(n(P)) , l] for all Pe S ' where Per(P)

is the set of all permutations of elements of P and n(P) is

the cardinality of P .

DIST(P) is the minimum distance for traveling through

all locations in P , starting and ending at 1.

DEFINITION 4 . An(I) = arctan((Y(I) - Y(l))/(X(I) - X(l))

where -n<An(I) < 0 if Y(I) - Y(l) < 0 , and 0 < An(I) < TI

if Y(I) - Y(l) > 0, for all Ie:S'.

Let us assume that the locations (elements of S ')

are arranged so that An(I) < AnCI+l) . (If there exists an

I and a J such that An(I) = An(J) then I<J if A(l,I)<A(l , J) .

This determines a unique ordering).

DEFINITION 5. A P- sect is a nonempty set, P , of

elements such that

a) Pe S',

b) I f I e: P, J e: P, K e: S', and I<K<J, then Ke:P,

c) If N ~p then either SUM(P V {L+l}) > C or

DIST(P U {L+l}) > D where L is the L.U.B . for P,

d) SUM (P) < C,

d) DIST(P) < D.

DEFINITION 6. E is a dispersement if and only i f

E = {P
1

, P 2 , ···, Pk} such that

28

a) P. n P . = ~ for all i = 1, 2,
l J

... ' k ; j = 1, 2 , ·· · ,k ;

and i '/. j ,

b) U P. = S'.
i=l,···,kl

Pk} is a P-sect dis-

persement if and only if P. ls a P-sect for i = 1, 2, · · ·, k,
l

and E is a dispersement.

DEFINITION 8. The P-sect P
2

follows P
1

if and only if

there exists an I £ P
1

such that I + 1 £ P
2

, where P
1

C S' .

THEOREM 1. A P-sect dispersement for a VDLP exists

and is unique.

PROOF. To prove existence, we construct a disperse-

ment whose elements are P-sects. Let P - {2 3 · ·· I }CS'
1 - ' ' ' 1

such that conditions c,d, and e of definition 5 are satis-

fied. P1 ~ 0 since 2 £ S' by definition of VDLP statements

d and e. Therefore P1 is a P-sect. If I 1 = N, then the

theorem is complete in that there is only one set in the

dispersement. If r 1 < N, then let P 2 = {I1+l,I1+2,·· ·,I 2}cS'

such that conditions c,d, and e of definition 5 are satis-

fied. Hence P 2 is a P-sect. Likewise define P3 ,P 4 ,···,Pk

until Pk con!ains N. E = {P1 ,P 2 ,· ··,Pk} is a P-sect dis

persement since each P. is a P-sect, the P.'s are disjoint,
l l

and every element in S' is in a P-sect.
~

To show uniqueness it is sufficient to show that the

construction of the P.'s is unique. Since 2 £ S' it must
~

be in one of the Pi's. P1 was constructed so as to contain

2. Now P1 cannot contain any more elements by definition 5

statements d and e, and it cannot contain any fewer elements

by definition 5 statement c. Hence P1 is uniquely deter-

29

mined. Likewise P2 ,P 3 , ·· ·, Pk are uniquely determined.

Therefore the construction of each P. is unique and hence
l

the P-sect dispersement for a VDLP lS unique.//

DEFINITION 9. Let 8 = {P1 ,P 2 , ... , Pk} be a disperse

ment. The total distance of 8,(TD(8)), is defined to be
k

TD(8) = ~ DIST(P.).
. 1 l l=

DEFINITION 10. A dispersement, 8 = {P1 ,P 2 ,···,Pk} is

an optimal dispersement if and only if TD(8)< TD(R) where

R is any dispersement.

There exists a VDLP such that the P-sect dispersement

is not an optimal dispersement. This can easily be

verified by the following example:

Let S = {1,2,3,4,5}, C = 2, and D = 15. Let the functions

X(I), Y(I), Q(I)andA(l,J) be defined according to figure 10.

By examining the functions it is easy to verify that con-

ditions d,e,f, and g of definition 1 are satisfied. Hence,

it is a VDLP. Examination of all the XCI) and Y(I) values

reveals that An(M) ~ An(M+l), forM= 1,2,3 and 4.

Let P
1

= {2,3} and P2 = {4,5}. 8 = {P1 ,P 2 } lS a dis

persement and the total distance for e is:

TD(8) = DISTCP
1

) + DIST(P 2) = (1+4+5) + (6+4+3) = 23.

8 is the P-sect dispersement.

Another dispersement is e1 = {T1 ,T 2 } where T1 = {2,5}

and T = {3,4}. The total distance for e1 is:
2

TD(8
1

) = DIST(T
1

) + DIST(T 2) = (1+2+3) + (5+1+4) =

Since TD(8)>TD(81), the P-sect dispersement is not an

16.

30

31

I l 2 3 4 5

l 0 l 5 6 3

2 l 0 4 5 2

A=
3 5 4 0 l 5

4 6 5 l 0 4

5 3 2 5 4 0

I 1 2 3 4 5

X(I) 0 1 5 5 1

Y(I) 0 0 1 2 2

Q(I) 1 1 1 1 1

Figure 10 . Examples for A,X,Y , and Q

32

optimal dispersement.//

In an application involving the vehicle dispatch

location problem we desire to find an algorithm which will

produce an optimal dispersement. However, for large N

this becomes exceedingly difficult. Hence,we are satisfied

with a dispersement with total distance close to the total

distance of an optimal dispersement. Since a P-sect

dispersement is not necessarily an optimal dispersement a

P-sect dispersement is changed so as to minimize the total

distance. This leads to the definition of a modified P-sect.

DEFINITION 11. Let {P1 , P 2 ,···, Pk} be a dispersement

and let Pi+l be a P-sect. P! 1s a modified P-sect of P. if
l l

and only if Pi=<PiU{M})-{K} where M is the Q2 and K the Q1

SUM(Pi)~D where Pi+l is the P-sect that follows Pi. If

THEOREM 2. In definition 11, {P1 ,P 2 ,···, Pi-l' Pi,

Ti+l' Pi+ 2 ,···, Pk} is a dispersement where Ti+l=(Pi+lU{K})-{M}

PROOF: If Pi= Pi' then {P1 ,···, Pi, Ti+l' .. ·, Pk} is a

dispersement s1nce {P
1
,··· ,Pk} is a dispersement.

If Pi~ Pi' then each of the sets of {P1 ,···Pi,Ti+l'···,

Pk} are disjoint and every element in S' is in at least one of

the sets, since just two elements of the two sets were inter-

changed, and since {P1 , P2 , ·· ·,Pk} is a dispersement.

Hence , the set {P1 , · · ·,Pi,Ti+l' ··· ,Pk} is a dispersement.//

By modifying one set at a time , beginning with P
1

,

a dispersement can be completely modified. Let {Pi, T2 ,

P3 , · · ·, Pk} be the dispersement with Pi the modified

P-sect of P
1

, and T
2

=<P
2

-{M}) v {K}if P1 ~Pi and T
2

=P
2

other

wise . Then let P2 be the modified P- sect of T
2

with

T
3

= (P
3

- {M}) u {K} if T
2

~ P2 and T
3

= P
3

otherwise .

Continuing this process through Pk- l the dispersement

{Pi,· ·· ,Pk-l'Tk} is obtained. This dispersement is called

the modified dispersement of the P- sect dispersement

THEOREM 3. TD({P1 ' , P 2 ', · ·· , Pk- l', Tk})<TD({P1 ,

' Pk})

PROOF. By definition ll a P-sect is only changed if

the sum of the two DIST values of each set is decreased .

Hence , by the definition of the total distance of a dis-

persement, the total distance of the modified dispersement

is less than or equal to the total distance of the P-sect

dispersement.//

There may exist a dispersement for which the total

distance can be improved by exchanging one location in P

with two locations in the P-sect which follows P . This

leads to the definition of a second modified P-sect.

ment and Pi+l a P- sect that follows Pi. Then P . '' is
1

33

34

called a second modified P-sect of Pi ~f and only if

P. ''= (P .V {M}U {L}) ~{K} where M is the Q2 , L the Q
3

and K
~ ~ .

the Q1 such that

H = DISTCCPiU{Q 2} U {Q~})~{Q 1 })+ DIST(((pi+l0 fQ 1 }) - {Q 2})-{Q 3})

is a minimum for all Q1EPi' Q2ePi+l' and Q3EPi+l and with
. .

DIST(P, ") < D, SUM(P, I)' < D.
~ - ~ -

If H ~ DIST(Pi) + DIST(Pi+l)' then Pi' ' =

THEOREM 4. In definition 12,

p •.
~

{P1 ,P2,· · ·,Pi-l'Pi '', Wi+l'pi+ 2 ,· · ·,Pk} is a dispersement

where wi+l =CCPi+lU{K}) - {M})-{L} if Pi' I '#pi' otherwise

wi+l = Pi+1·

PROOF . If Pi"= Pi' then {P1 ,· · ·, Pi"' Wi+l'·· ·,Pk}

is a dispersement since {P1 ,P2 ,·· ·, Pk}is a dispersement.

If P. ' 1 '# P., then each of the sets of
~ ~

{P1 , ·· · ,Pi'', Wi+l'·· ·, Pk} are disjoint and every element

~n S ' is in at least one of the sets, since just two elements

of Pi were exchanged for one element of Pi+l and since the

set {P1
,P2 , ... ,Pk} is a dispersement . Hence,

{P1 , ·· ·, Pi'', Wi+l' ·· ·, Pk} is a dispersement . //

By determining the second modified P- sect beginning

with P1
, it is possible to completely determine the second

modification of a dispersement. Let {P1 '', W2 ,P3 ,···,Pk}

be the dispersement with P1
11 the second modified P- sect

of P
1

and w2 = CCP2 U {K}) - {M}) - {L} if P1 =P1 '' and w2=P2 other-

w1se . Then let P2
1 1 be the second modified P- sect of

W2 with W3 =CCP 3V{K})-{M})~{L} if W
2

= P
2

1 ' and w
3

= P
3

otherwise . Continui~g this through Pk-l we obtain the

followi~g dispersement : {P1 ' ',P2 ' ',· · · , Pk-l 1 1
, Wk} .

This d i spersement i s called the second modified disperse-

THEOREM 5. Tb { p ' ' p I I • • • p ' I w }) < l) 2) ' k-l) k

is the second modified dispersement and {P
1

' ,P 2 ', ···,

Pk_1 ', Wk} is the modified dispersement of the P-sect

dispersement {P1 , P2 , · · ·, Pk}.

PROOF. First note in definition 12 that Q2 may equal

Q3 . Hence,K may equal L. But this implies that all

possibilities of switching one location of P. with one
1

location in Pi+l are considered .

definition for a modified P-sect .

This however , is the

Hence, DIST(P . ') +
1

DIST(Ti+l) > DIST (Pi'') + DIST(Wi+l) . Therefore, the

total distance of a second modified dispersement is

less than or equal to the total distance of a modified

dispersement.//

COROLLARY l. TD({P 1 1 P ' ' ·· · Pk_1 ' ' , Wk}) <
l ' 2 ' '

PROOF. This follows immediately from theorems 3 and

5.//

35

Examples of a vehicle dispatch location problem can be

given for which the second modified dispersement is not

an optimal dispersement.

36

37

B. SWEEP ALGORITHM PROCEDURE

The mathematical development in the previous section

provides the basis for the sweep algorithm. The locations

are partitioned into a P-sect dispersement and then into

a second modified P-sect dispersement. Corollary 1 assures

us that a second modified P-sect dispersement has a total

distance less than or equal to the total distance of a

P-sect dispersement. A second modified P-sect dispersement

may be obtained by rotation the X and Y axes counterclock

wise so that the first location will become the last loca

tion, the second location will become the first location

and so forth. This process of rotating the X and Y axes is

continued until a new P-sect dispersement cannot be generated.

Each time, the total distance of the second modified P-sect

dispersement is calculated. The minimum of these total

distances provides a good heuristic solution for the vehicle

dispatch problem.

The algorithm begins with location 2 and then adds

locations 3,4, ... to the route. Recall that the locations

were renamed according to the size of the polar coordinate

angle; location 1 has the smallest angle; location 2 has

the next largest angle, and so forth. This is called the

forward procedure. A second method begins with location N

and adds locations N-1, N-2, ... to the route. This pro

cedure is called the backward procedure. In most cases

the two procedures produce different routes.

A disadvantage of the algorithm is that a traveling

salesman problem must be solved many times in order to

determine a second modified P-sect. This is necessary 1n

order to determine the location which is to be eliminated

from the route, and the locations which are to be added to

the route. Hence, in the sweep algorithm these locations

are determined heuristically by the following procedure:

The location to be deleted from the route is obtained

by minimizing a function of the radius, R(I), and the

angle, An(I), of each location in the route. This provides

a location that is both close to the depot and also close

to the next route. A function of R and An, which seems

to work very well, is R(I) + An(I) · AVR, where AVR is

the average of the radii for all locations. For a modi

fied P-sect, the location, I, which is augmented to the

route, is the location nearest to the last location that

was added to the route. For the second modified P-sect, the

other location added to the route is the location nearest

to location I. Choosing these locations in this manner

may not give the best locations. However, it provides a

very fast scheme for selecting the locations, compared

to the use of other algorithms, which require solving the

traveling salesman problem many times.

If one or two locations are added to the route by

this scheme, then the next location is also checked to see

if it can be included 1n the route. This process of adding

one or two locations and deleting another location continues

until no improvement is found. Hence, an iterative scheme

38

1s established. Figure ll illustrates this scheme with an

example of 21 locations and all possible paths between the

locations. For example, it is impossible to go directly

39

from location 4 to location 10. Let the distance between two

adjacent houses be l, then A(l,2) = 5, A(2,3) = 1, A(2,6) = 2,

A(4,10) = 5, and so forth. Also, let each location have a

demand of l and let the load capacity be 10. The backward

sweep would first assign the locations 21, 20, 19, 18, 17,

16, 15, 14, 13, and 12, since each location is selected

according to the value of the angle in polar coordinates.

These locations are circled in figure 12. This route has a

distance of 18.

The iterative scheme then selects location ll and

deletes location 15, which is shown in figure 13. By

applying the iterative scheme two more times, locations

10 and 7 are augmented to the route, while locations 19

and 18 are eliminated. This provides a total distance of

16. This is shown in figure 14.

Another variation involves checking the J + 2 locat

ion, where J is the last location added to the route. If

the distance and load constraints are satisfied, then the

J+2 location is added to the route. This variation will

always yield the same number of or fewer routes. However,

it may produce a dispersement with greater total distance.

Taking these two variations two at a time gives

four possibilities. All four of these possibilities are

used in the sweep algorithm.

40

21-17----14-12-11

I I
20-16 13-10-7

I I
19-15-9 6 5

I I
18 8 4-3 2

I
1

Figure 11. Example of a vehicle dispatch problem

-t--11

~' ----:7

I
--5

I
---2

1

Figure 12. Initial tour

41

~-10-7

I
--6--5

I
--4-3--2

1

Figure 13~ Tour after one iteration

19-+---15--9---6 --5

I I
18 8--4--3--2

I
1

Figure 14. Tour after three iterations

The followi~g step procedure for the sweep a~gorithm

presents the forward procedure and does not check the J + 2

location . We shall assume the notation used in the mathe-

matical development , and also that we have a VDLP. Instead

of relabeling the locations, we will let K(I) denote the

location with the th
I la:r-gest a~gle . Fortran logic is used

in explaining the step procedure.

STEP 1.

Evaluate the polar coordinates for each location with

the depot at (0 ' 0) . Let An(I) represent the angle and R(I)

the radius for location I.

STEP 2 .

Determine K(I) for I= 1 , · · ·, N such that An(K(I)) is

less than or equal to An(K(I+l)) .

STEP 3 .

Begin the first route with J = 2 and SUM= Q(K(2)).

STEP 4.

Increment the angle by making J = J + 1.

STEP 5 .

If SUM+ Q(K(J))>C , then go to step 7 .

STEP 6 .

A~gment the route with location K(J) by maki!"lg

SUM : SUM + Q(K(J)). If J = N, then go to step 16. If

J -f N, then go to step 4 .

STEP 7 .

Calculate the minimum distance , Dl , for the route,

42

by means of a traveling salesman algorithm. Check the

distance constraint. If the distance capacity is exceeded

then eliminate K(J-1) from the route. Make SUM=SUM-QCKCJ-1))

and J = J-1. Check the distance constraint again. Continue

this procedure until the distance constraint is satisfied.

STEP 8.

43

Determine JJX so that K(JJX) is the nearest location to

K(J-1) and not in a route. Find JII so that KCJII) is the

nearest location to K(JJX) and not in a route. Likewise

determine I so that R(K(I)) = An(K(I))·AVR is a minimum for

all locations in the route. Let KII denote this I. Determine

the minimum distance, D2 , for the route with K(JJX) added to

the route and K(KII) deleted from the route.

STEP 9.

If D
2

< D and the load constraint is satisfied, then

go to step 11. Otherwise go to step 10.

STEP 10.

Record the route and start a new route by setting

SUM= Q(K(J)). Go to step 4.

STEP 11.

Evaluate the mlnlmum distance, D3 , for starting at 1,

traveling through locations K(J), K(J+l),···, K(J+4) and

ending at K(J+5). Determine the distance, D4 , for traveling

through the same locations, except eliminate K(JJX) and inject

K(KII). If K(JJX) is not K(J), K(J+l),···, or K(J+4), then

go to step 10. If n
1

+ D3 < n2 + D4 then go to step 13.

Otherwise go to step 12.

STEP 12.

Place K(JJX) 1n the route and remove location K(KII).

Go to step 4.

STEP 13.

Evaluate the m1n1mum distance, D5 , for the route with

K(JJX) and K(JII) substituted for K(KII). If K(JJX) and

K(JII) are not K(J), K(J+l), ···,or K(J+4), then go to step

10. If D5 < D and the load constraint is satisfied then go

to step 14. Otherwise go to step 10.

STEP 14.

Determine the minimum distance D
6

for starting at 1;

traveling through locations K(J), K(J+l),···, K(J+4); and

ending at K(J+5), with K(JJX) and K(JII) excluded and K(KII)

included. If D1 + D3 < D5 + D6 , then go to step 10. Other

wise go to step 15.

STEP 15.

Place K(JJX) and K(JII) in the route and eliminate

K(KII) from the route. Go to step 4.

STEP 16.

Evaluate the minimum distance for the route and check

the distance constraint. If not satisfied, then go to step

17. If satisfied, then that set of routes is complete.

Check to see if another set of routes is needed. If no

more are needed, then go to step 19. Otherwise go to

step 18.

STEP 17.

Delete one from the route. (J = J- 1.) Go to step 10.

44

STEP 18.

Increment the angle by one location (i.e . start with

K(3) for the second set of routes .) Go to step 2.

STEP 19.

Stop.

Bellmore and Nemhauser have tested several algorithms

for the traveling salesman problem and have reported that

Lin's 3-optimal did as well, if not better than, other

a~gorithms [4] . Hence, the 3-optimal algorithm was used in

the sweep algorithm to determine the sequence of locations

which yiel ds a minimum distance for each route.

An algorithm is also needed to determine the minimum

distance of traveling thro~gh locations K(J), K(J+l), .. . ,

K(J+4); starti~g with 1 and ending at K(J+5). This is not

a traveling salesman problem, in that it does not begin or

end at the same location. Hence , Lin ' s 3-optimal algorithm

does not apply . In chapter IV, section B, a branch and

bound algorithm is used with arbitrary cost functions at

each location. This algorithm can easily be modified to

determine the minimum distance of a location problem which

does not begin and end at the same location. Therefore, it

was used in the sweep algorithm.

The sweep a~gorithm is a heuristic procedure which

attempts to minimize the number of servers and the total

45

cost. Contradictory as it may seem, minimizing the number of

routes does not necessarily minimize the total cost.

can best be shown by the example given in figure 15.

This

Let

46

Figure 15. Five locations with two and three routes.

47

location 1 be the depot at the origin, and the coordinates

of the four locations be a follows: location 2 at (-2,2)

with demand 20; location 3 at (-4,4) with demand 20; location

4 at (4,2) with demand 40; and location 5 at (0,-5) with

demand 40. Let theload limit for the servers be 60. It is

possible to construct two routes that will service all four

locations, namely routes 1,4,2,1 and 1,5,3,1. This yields

a total distance greater than the three routes: 1,2,3,1;

1,4,1; and 1,5,1. Hence, an optimal solution may not

have the minimum number of routes.

48

C. MODIFICATIONS OF SWEEP ALGORITHM

There are various ways 1n which the sweep algorithm may

be modified. Several of these variations were tested and

have produced better solutions on particular problems. Four

modifications which have been considered are as follows:

1. In the sweep algorithm, the location, K(JJX),

which replaces a location already in the route, is the

location closest to the last location in the route. Figure

16 shows that this procedure may not yield the best location .

Let X represent the locations of a route , Z represent the

depot and 0 represent the unassigned locations. Since

location 6 is the last location in the route and location

8 is the closest location to 6, the sweep algorithm selects

location 8 for K(JJX). However, from figure 16 it is

seen that location 7 is a better choice for K(JJX) .

Location 7 may be chosen by first requiring R(I)

to be large, where I is a location in the route, and then

making K(JJX) theM which minimizes A(I,M), where M is

an unassigned location. A suggested lower bound for R(I)

is AVR•(0 . 7), where AVR is the average of the R(K)'s for all

K = 2,3, ·· ·, N.

2 . Step 8 in section B uses a function of Rand Q

to determine the location to be delete¢ from a route .

Several functions were used, but none were found to be

superior in all cases. The function R(I) + Q(I)·AVR gave

better overall results than other functions that ~ere used .

3
X

4
X

2
X

6
X

5
X

1
z

7
0

8
0

9
0

11
0

10
0

Figure 16. P-sect dispersement and unassigned points

49

3. Steps 11 and 14 in the sweep algorithm may also

be modified to include more locations than K(J+S). This

will always provide the same or better solutions. How

ever, as soon as more locations are used, then more time

is needed to calculate the minimum distance to traverse

the locations.

4. The sweep algorithm examines the second modified

P-sect to see if it provided a savings in the total distance.

Likewise, a third modified P-sect might also be checked.

This involves changing three locations not in the route with

one location in the route. Other combinations might also be

examined by such means as interchanging two locations for

two other locations, or interchanging three locations for

two locations. Again the difficulty with checking these

possibilities is that it requires many computations since

a traveling salesman problem must be solved each time.

Examples can be given where these combinations can provide

a better solution. However, the problems that were solved

did not reveal this. (See appendix B).

50

IV. GENERALIZED VEHICLE DISPATCH PROBLEM

A. MATHEMATICAL FORMULATION OF THE PROBLEM

The vehicle dispatch problem with arbitrary cost

functions is a generalization of the vehicle dispatch

problem and lS defined as follows:

Given;

1. {1,2,·· ·, N}, the set which represents N locations,

2. A .. , the time to travel from location ito location
l]

J '

3. f.(s.), an arbitrary cost function assigned to
l l

location i where s. is the time that location i
l

was serviced by a server,

4. Q., the demand for location l,
l

5. g(t), a cost function which gives the cost to

travel for a length of time t.

The problem is to determine the number of routes and

the locations for each route so as to minimize the total

cost and still satisfy a time and a load constraint for

each server.

A mathematical formulation of the problem lS as follows:

Determine M finite sequences, p. 1 ,p. 2 ,· ··,p.k for
l l l •

l

i = 1,2,···,M, such that

M ki
= L { L [f (s)] + g(s +
i=l j=2 Pij Pij . pik.

l

TC A)}
p.k P·1 l . l

l

51

j-1
is a minim.um, ~7hare s - ~

~' . ·p • ' '"' H A , for which the
Pt,q Pi' q+l ~] q=l

following constraints are satisfied:

1. {p •• I i = 1,2,···, M and j = 2,3,···,k.}=
lJ l

2 •

{2,3, .. •,N},

Pij ~ pkr for all i, k, j>l, and r>l except for

i = k when j = r; pil = 1 for all i,
ki-1

3, r (A) + A < D. for all i,
j=2 PijPi,j+l pik.Pil l

l

k,-1
l.

4. r Q < c. for all i.
i=2 Pij l

The sequence pil' pi 2 ,· ·· ,pik. represents the route
l

52

for server i. The jth location that server i serves is P···
l]

TC represents the total cost for all M servers, and s is
p •.
l]

the total time that server i travels through location p ...
lJ

The third constraint restricts server i to a time D. to
l

complete the route. The fourth constraint restricts the

total demand for server ito c ..
l

B. BRANCH AND BOUND ALGORITHM.

Let us assume that the ·number of servers is one and

that there are no constraints. This problem is then a

generalization of the traveling salesman problem in that

there is a cost function at each location. Mathematically

53

the problem may be stated as follows: Given are A .. , f.(s.), J.]].].

g(t) and Q .. Determine a permutation,
].

that
N

TC = g(s + A 1) + L f (s)
PN PN i=2 P· P·].].

i-1
where s = L A

P· q=l PqPq+l].

p 2 ,p 3 ,···,pN' such

J.S a mJ.nJ.mum for all permutations, p2 ,p 3 ,···,pN' of the

set, {2,3,· ·· ,N}.

The branch and bound algorithm can be applied to this

problem, but it differs from the algorithm given by Little,

et al., in two ways [6]. First, each node represents a

location instead of a link, and second, the bound is deter-

mined only after a route is completed. These two mod-

ifications are necessary since the total time, s ,
pi

through location p. is needed in order to obtain the value
N).

. <#' "
of . the ~~ost function of location p .. Hence, the algorithm

].
,..

begins at the depot and branches to one of the remaining

locations. Figure 17 shows all possible branches for a

four-location problem.

After one branch is determined, the total cost for

that branch, including returning to the depot, is cal-

54

Figure 17. Complete tree for a four-location problem

culated. This cost serves as a bound until another total

cost is calculated which is less than the bound. Then

this cost becomes the bound. Assuming that f.Cs.) > 0
l. ~ -

and si ~ O, for all i, and g(t) ~ 0, for all t ~ 0, then a

55

branch can be terminated whenever its total cost exceeds the

bound. Putting these restrictions on the functions is not

too limiting, since applications will normally have these

restrictions.

Another restriction, which in turn aids the algoritm,

is to require the functions to be monotonic increasing.

This permits the algorithm to back off one node before

continuing on a different branch, whenever the total cost

exceeds the bound. This is the essence of the following

theorem.

THEOREM 6.

If f
2 Cs 2), f

3
Cs

3
),···,fN(sN) and g(t) are monotonic

increasing functions, A .. + A.k > A.k,
~] J - ~ y

E = g(s) + E f.(s) > B
Py i=2 J. Pi

where B is a positive real number, and p 2 ,p 3 ,···,pN is a

permutation of the set{2,3,· ·· ,N}, then
z

F = g(s) + E f.(s) > B where r 2 , r 3 ,·· ·, rN is a per-
rz . 2 J. r. -

1.= l.

mutation of the set {2,3,··· ,N} and r.=p. for all i<y and
. 1 1. ~]-

r =p . (As before s = E A).
z Y Pj i=l pipi+l

PROOF.

P2 ,p 3 ,··· ,pN' and r 2 ,r3,··· ,rN are permutations of the set

{2,3,··· ,N} and p. = r. for all i<y. Hence, z _> y and
J... J...

consequently k > 0. The method of proof is mathematical

induction on k.

If k = 0, then p = r and hence E = F. Then it
y y

follows that F < B since E<B.

Assume that the theorem is true for k = k', i.e. F < B

Now let k = k 1 +l. Then z
k 1 +y+l

= k'+l+y and hence,
k 1 +y k 1 +y+l

F' = g(s)
rk 1 +l+y

+ E f.(s)
. 2 J... r. l..= J...

= g(E A)+ E f.(s).
. 1 r.r.+l . 2 J... r. J...= J... J... l..= J...

From

F I =

this it follows that:
k 1 +y-2
g(E A +A +
i=l riri+l rk'+y-2rk'+y-l

A)
rk' +y-1 rk I +y

k'+y-1
+ E f.(s) + fk' (s)+fk 1 + +l(s)and also

i=2 J... ri +y rk 1 +y Y rk'+y+l

since Aij + Ajk 2 Aik and fi and g are monotonic increasing

functions, we then have;

k 1 +y-2 k 1 +y-l
fl> g(L A +A) + E f.(s) +

i=l riri+l rk 1 +y-2rk 1 +y i=2 J... ri

f 1
(s +A) = G.

k +y+l rk'+y-lrk 1 +y-lrk'+y+l

But G is the value ofF for a permutation that has k=k'.

Hence, its value is less than or equal to B since the

theorem J...S true for k = k'. Therefore, F' > B and the

theorem J...S proved via mathematical induction.//

56

The branch and bound algorithm can be modified by

using different criteria to select the next location. One

method is to choose the location which maximizes the value

f . (T) - f.(t) where tis the time that the next location
1. l

wi ll be visited , and T is the time that the las t location

will be visited. This will increase the possibi l ity for a

location with a large increasing cost function to be se l-

ected first, whi l e a location with a constant cost function

will be selected last . The disadvantage of this procedure

is that T is not known until the route is comp l eted. How-

such as ever , estimates
N

[((2/3) l:
i=l

l:
j>i

2 A ..)/(N- N)] · 2 · CN + 1)
1.]

can be used for symmetric A matrices .

The following i s a s t ep procedure for the branch and

bound algorithm for one server and arbitrary cost functions:

Let ACI,J) denote the time of travel from location I to

location J and f(I,t) denote the cost function for location

I at time t .

STEP 1.

Begin the accumulated distance and time , D(l , l) = 0

and T(l,l) = 0. Set I =
N

number. Let z=[((2/3)l:
i=l

STEP 2 .

1 and Bound equal to large

E A ..)/ CN 2 - N)] · 2· (N + 1).
j >i l]

Set I = I + 1 and calculate T(I,J) and D(I , J), the

total time and cost of t he route from depot 1 to location

J , where J is the Ith route. Do this for all J not already

assigned.

57

STEP 3.

If D(I,J)> Bound, for any unassigned J, go to step 5.

STEP 4.

Select J such that H(I,L) = F(J,Z)- F(J,T(I,J)) is

a minimum for all J not assigned. If there are no un

assigned J's,then go to step 5. Otherwise go to step 8.

STEP 5.

Set I = I - 1. If I = 1, then go to step 11.

STEP 6.

Find L such that HCI,L) is a minimum for all un

assigned L. If there are no unassigned L's, then go

to step 5.

STEP 7.

Set IT(I) = L. Go to step 9.

STEP 8.

Set IT(I)= J.

STEP 9.

If I is less than N, then go to step 2.

STEP 10.

Calculate the total time and cost to return to 1 for

the route IT(K) forK= 1,2,· ·· ,N. If the total cost lS

less than Bound then set Bound equal to the total cost.

Print out the route. Go to step 5.

STEP 11.

Stop.

58

V. EXPERIMENTS AND RESULTS

The sweep algorithm was used to solve eight vehicle

dispatch problems. Appendix B contains the details of

these problems. Problems one through four were proposed

by Gaskell [12]. All four of these problems have a load and

a qistance constraint for each server, and an additional

distance of ten units for each location. Christofides and

Eilon's 3-optimal algorithm [10] does not apply to these

problems, since it does not solve problems with distance

constraints. The results of Gaskell's savings approach are

compared with the four variationsof the sweep algorithm in

Table I. Problem one has 22 locations, including the depot.

All four of the variations of the sweep algorithm were able

to schedule all of the locations in 4 routes. Two of these

had a total distance that was less than the distance given

by the savings approach.

Problem two was the only example in which the algorithm

did not provide a smaller total distance than the savings

approach. Again all the variations had the same number of

routes as the savings approach, namely 5. The best answer

of 956 was only 0.5% greater than the solution given by the

savings approach.

The sweep algorithm gave better results on problems

three and four~ In problem four, the sweep algorithm was

able to reduce the number of routes from 5 to 4, when the

J + 2 location was checked after each route was formed.

59

Number Gaskell's Christofides Sweep A~gorithm
Problem 0f Savings and Eilon's not che"king J+2 checking J+2
Number Locations Aooroach 3-optimal Forward Backward Forward Backwar d

l 22 598 589 608 602 592
R=4 R=4 R=4 R=4 R=4

2 23 949 969 956 962 995
R=5 R=5 R=5 R=5 R=5

3 30 963 945 885 980 885
R=S R=5 R=4 R=5 R=4

4 33 839 851 842 854 817
R=5 R=S R=S R=5 R=4

5 51 585 556 574 553 575 546
R=6 R=S R=5 R=5 R=S R=S

6 76 900 876 896 906 865 88 4
R=lO R=lO R=ll R=ll R=lO R=lO

7 101 887 863 878 85 4 871 862
R=8 R=8 R=8 R=8 R=8 R=8

8 251 5907 5962 5794 5911
R=26 R=26 R=25 R=25

TABLE I

Comparisons of Vehicle Dispatch Algorithms

Best
Solut i on

586
R=4

956
R=5

885
R=4

817
R=4

524
R=5

865
R=lO

854
R=8

5794
R=25

0'>
C>

Hence, a greater savings was obtained. Problems five, six,

and seven were posed by Christofides and Eilon [10]. These

problems do not have a distance constraint for the server,

nor do they have an additional distance for the locations.

At least one of the variations of the sweep algorithm

provided a solution which was better than the 3-optimal and

the savings approach. In problem six, checking the J + 2

location was necessary to reduce the number of routes from

11 to 10, and consequently produce a smaller total distance.

The real test for a vehicle dispatch algorithm is its

ability to solve a problem involving many locations. Problem

eight, in appendix B, has 250 locations and this problem

was easily solved by the sweep algorithm.

The sweep algorithm modifications presented in

chapter III, section C, were also used. Only two lmprove

ments were determined out of the eight problems. These were

problems one and five. Their results are included under

"Best Solution" in Table I and also in Appendix B.

The disadvantage of the sweep algorithm in solving

large problems is the time required to solve the traveling

salesman problem. If the number of locations for each route

remains approximately the same, then the time to solve the

vehicle dispatch problem becomes linear with the number of

locations. Other algorithms have an exponential growth

rather than linear. Hence, the sweep algorithm is capable

of solving larger problems.

Problem eight required approximately 15 minutes of

61

computer time, including compiling and execution time on

an IBM 360/50. In many cases, the cost for computer time lS

inexpensive compared to the savings in the total cost that

a better route may produce. For example, if the total

distance for the routes of a school bus were reduced by

25 miles, then this would provide a larger savings in total

cost for one year than the cost for a few minutes of computer

time.

The problems solved in the appendix defined distance

between two points to be /(X. - x.9 + (Y. - Y.)2. However,
l J l J

the sweep algorithm can be used on other distances.· In an

application such as the school bus routing, the distance

between all locations and the rectangular coordinates for

each location must be given. The sweep algorithm uses

the same procedure as before, except A(I,J) is now

defined according to the actual geographic distance rather

than the straight line distance between two locations.

The branch and bound algorithm presented in chapter IV,

section B, is an exact scheme. It does have the disadvan-

tageofrequiring a large number of calculations for problems

with many locations. A ten-location problem with ten cost

functions was solved by the algorithm in 10 minutes on an

IBM 360/50. The time required to solve a problem depends

upon the cost function which determines the lower bound.

If a good lower bound is determined on the first route, then

more branches can be eliminated, and hence, fewer calculations

are required.

62

VI . SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS

There are many problems that can be classified as

vehicle dispatch problems . However , the a~gorithms pre

sented in chapter II are. generally not satisfactory for

practical problems, since these problems usually involve

many loca tions . The purpose of this thesis is to develop

an algorithm for solving a large problem.

The sweep algorithm is a heuristic pr ocedure for the

vehicle dispatch problem. The basic procedure of the

a~gorithm is to ~ggregate a set of locations into a P-sect

dispersement . Then each of these P-sects are examined to

see if one or two locations of a P-sect can be switched

with one location of another P- sect so as to reduce the

total distance. In chapter III, section A, it was shown

that a second modified P- sect dispersement has a total

distance which is less than or equal to the total distance

of a P- sect dispersement. The sweep algorithm heuristically

63

produces a second modified P-sect dispersement. The elements

of a modified P-sect are the elements of a route. A travel-

ing salesman a~gorithm is used to determine the sequence of

locations which will yield the least distance in the route .

Four sets of routes are developed by the followi~g procedures:

1 . Augment the routes by means of the forward procedure

and not check the J + 2 location.

2 . A~gment the routes by means of the forward pro

cedure and check the J + 2 locatio n.

3. Augment the routes by means of the backward

procedure and not check the J + 2 location.

4. Augment the routes by means of the backward

procedure and check the J + 2 location.

The algorithm is then repeated with the X - Y axes

rotated counterclockwise so that the first location is in

the last route. The solution given by the sweep algorithm

ls the dispersement which gives the smallest total distance.

The sweep algorithm was shown to give better solutions

than the savings approach in 6 out of 7 problems, and better

solutions than the 3-optimal on all 3 problems which Christ

ofides and Eilon proposed. The sweep algorithm was also

able to solve a large problem involving 250 locations.

A mathematical formulation of the vehicle dispatch

problem with arbitrary cost functions and a branch and bound

algorithm which solves the problem for one server were

developed. A theorem proved in chapter IV, section B, per

mits the branch and bound algorithm to solve problems in

volving 10 locations.

The vehicle dispatch proolem may be generalized into

several unsolved problems, which also have practical

applications. One generalization is a vehicle dispatch

problem with more than one depot. This is applicable to

the routing of school busses in a school system which has

more than one school. Another generalization is the problem

to determine the number of depots necessary to minimize the

total cost to serve a set of locations. This could be

64

65

used to determine the number of factories needed to

deliver their commodity to a set of stores . Neither of these

problems has been solved.

The branch and bound algorithm has the disadvant~ge of

requiring a la~ge number of calculations for la~ge problems.

Therefore , heuristic approaches are needed to solve larger

problems .

The branch and bound a~gorithm was also restricted to

only one server. Hence , there does not exist an algorithm,

exact or heuristic , which will solve the generalized vehicle

dispatch problem with arbitrary cos~ functions and with

more than one server .

66

BIBLIOGRAPHY

1. flood, Merrill M., "The Traveling Salesman Problem,"
Operations Research, Vol. 4, 1956, p. 61-75.

2. Held, M. and Carp, R. M. , "A Dynamic Programming
Approach to Sequencing Problems," J. Soc.
Ind. and Appl. Math., Vol. 10, 1962, p. 196-210.

3. Bellman, R., "Dynamic Programming Treatment of the
Traveling Salesman Problem," J. Assn. for
Computing Machinery, Vol. 9, 1962, p. 61-63.

4. Bellmore, M. and Nemhauser, G. L., "The Traveling
Salesman Problem: A Survey," Operations Re
search, Vol. 16, 1968, p. 538-558.

5. Shapiro, D., "Algorithms for the Solution of the
Optimal Cost Traveling Salesman Problem," Sc.
D. Thesis, Washington University, St. Louis, 1966.

6. Little, J. D. C., Murty, K. D., Sweeny, D. W., and
Karel, C., "An Algorithm for the traveling Sales
man Problem," Operations Research, Vol. 11,
1963, p. 972-989.

7. Martin, G. T., "An Accelerated Euclidean Algorithm
for Integer Linear Programming," Recent Advances
in Mathematical Programming (R. L. Graves and P.
Wolfe, eds.), 1963.

8. Clark, G. and Wright, J. W., "Scheduling of Vehicles
from a Central Depot to a Number of Delivery
Points, " Operations Research, Vol. 11, 1963,
p. 568-581.

9. Lin, Shen, "Computer Solutions of the Traveling
Salesman Problem," Bell Syst. Tech. J. , Vol. 44,
1965, p. 2245-2269.

10. Christofides, N. and Eilon, S., "An Algorithm for the
Vehicle Dispatching Problem, " Operational Re
search Quarterly, Vol. 20, 1969, p. 309-318.

11. Dantzig, G. B. and Ramser, J. H., "The Truck Dis
patching Problem," Operations Research, Vol. 12,
1959, p. 80-91.

12. Gaskell, T. J., "Bases for Vehicle Fleet Scheduling, 17

Operational Research Quarterly, Vol. 18, 1967,
p. 281-295.

13. Tillman, F. A. and Cochran, H., "A Heuristic Ap
proach for Solving the Delivery Problem,"
Journal of Industrial Engineering, Vol. 19,
1968, p. 354-358.

14. Hayes, Robert, "The Delivery Problem," Carnegie Inst.
of Tech., Graduate School of Industrial
Administration, Management Sciences Research
Report No. 106, 1967.

15. Kolesar, P. J., "A Branch and Bound Algorithm for
the Knapsack Problem," Management Science,
Vol. 13, 1967, p. 723-735.

16. Lawler, E. L. and Wood, D. E., "Branch and Bound
Methods: A Survey," Operations Research, Vol. 14,
1966, p. 669-719.

17. Crees, G. A., "A Method for Solving Traveling
Salesman Problems," Operations Research, Vol. 6,
1958, p. 791-812.

18. Karg, Robert L. and Thompson, Gerald L., "A
Heuristic Approach to Solving Traveling Salesman
Problems," Management Science, Vol. 10, 1963, p. 225-
248.

19. Greene,Joseph, "A Coordinate Oriented Algorithm for
the Traveling Salesman Problem," Ph.D. Thesis,
University of Missouri-Rolla, Rolla, Missouri,
1970.

67

VITA

Leland Ray Miller was born on May 20, 1938, in

Wooster, Ohio. He received his secondary education

at Pandora-Gilboa High School in Pandora, Ohio. After

attending Ohio Northern University at Ada, Ohio, for one

year, he completed three years at Bluffton College

in Bluffton, Ohio, whereupon he received his Bachelor of

Science degree with a major in mathematics.

From September 1960 to June 1964, he taught mathe

matics at fostoria Public High School in Fostoria, Ohio.

During the summer of 1961 he was granted a N.S.F. fellow

ship to attend a Mathematics Institute at Kent State

University. In August of 1964, he received his Master

of Arts Degree in Mathematics at Bowling Green State

University, under a N.S.F. Sequential Institute. The

following year he was granted a N.S.F. Academic Institute

for Mathematics Supervisors at Bowling Green State Univer

sity, whereupon he received his Specialist Degree in

Mathematics Education.

He taught at Bluffton College from 1965 to 1968

where he was Assistant Professor of Mathematics. During

the summers. of 1967, 1968, and 1969, he was granted a

N.S.F. fellowship to attend a Computer Science Institute

at the University of Missouri-Rolla. He has been employed

as Instructor of Mathematics at· the University of Missouri

Rolla from September 1968 to the present time.

68

69

On August 24, 1963 he was married to the former

Judith E. Bowers of Beaverdam, Ohio. They have two children,

Craig and Kristen.

APPENDIX A

SWEEP ALGORITHM COMPUTER PROGRAM

The computer program uses the following variables.

N

c

- number of locations including the depot

- load capacity for each vehicle

XD - distance constraint for each vehicle

XLD - additional distance per location

X(l), Y(l) -rectangular coordinants for the depot

Q(I) - demand for location I

X(I), Y(I) -rectangular coordinants for location I

A(I,J) - shortest distance from location I to

location J

The following data are required for each data set.

First data card;

columns 1 - 5

columns 6 - 15

columns 16- 25

columns 26- 35

N

c

XD

XLD

Data for cards 2 through N+l

columns l - 10

columns 11- 20

columns 21- 30

X(I)

Y(I)

Q(I)

IS

Fl0.2

Fl0.2

Fl0.2

Fl0.5

Fl0.5

FlO. 5

70

C SWEEP ALGORITHM FOR THE VEHICLE DISPATCH PROBLEM

C FORWARD PROCEDURE

C A(I,J) IS DISTANCE FROM LOCATION I TO LOCATION J

C C IS THE LOAD CAPACITY

C XD IS THE DISTANCE CONSTRAINT

C XLD IS ADDED DISTANCE PER STOP

COMMON A(101,101), IROUT(101)

DIMENSION X(101), Y(101), Q(101), R(101), S(101),

1 SS (101), MK(101), NT(101), KK(101),K(101)

READ (1,255) N, C,XD , XLD

255 FORMAT (I5 , 3F10.2)

AVQ = 0
DO 1 I = 1 , N

AVQ = AVQ + Q(I)

1 READ (1,256) X(I), Y(I), Q(I)

256 FORMAT (3F10 . 5)

AVQ = AVQ/(N-1)

XX = X(1)

YY = Y(1)

KLN = 1
KV = 0

C CHANGE TO POLAR COORDINATES WITH DEPOT AT ORIGIN

WRITE (3,200)
200 FORMAT (I 1 I , 18X, 'X(I) I' 7X, 'Y(I) I , sx , ' DEMAND ' ,4X,

1 'RADIUS ' , 4X, ' ANGLE')

RMAX = 0 .

SUMR = 0 .

DO 2 I = 2 , N

R(I) = SQRT((X(I) - XX)**2 + (Y(I) - yy) -1:* 2)

S(I) = ATAN2(Y(I) - YY , X(!) - XX)

SUMR = SUMR + R(I)

WRITE (3,257) I , X(I), Y(I), Q(I), R(I), S(I)

257 FORMAT (8X,I3,5(4X,13F10 . 3))

IF(RMAX - (R(I))) 66,2,2

66 RMAX = R(I)

71

2 CONTINUE

AVR = SUMR/(N-1)

DO 81 I = 1,N

DO 81 J = I,N

A(I,J) = SQRT ((X(I) - X(J))**2 + (Y(I) - Y(J))**2)
81 ACJ,I) = A(I,J)

K(1) :: 1

K(N+1) = 1

MM :: 1

C ARRANGE LOCATIONS IN ASCENDING ORDER

21 J = N

SUMD = 0.

DO 67 I = 2,N

KCI) = I

67 SS(I) = S(I)

5 XMAX :: -1000000.

DO 3 I = 2,J

IF(SS(I) - XMAX)3,3,4

4 XMAX :: SS(I)

II = I
3 CONTINUE

IB = K(II)

KCII) = K(J)

KCJ) = IB

B = SS(II)

SS(II) = SS(J)

SS(J) ::: B

J = J - 1

IF(J-2) 6,6,5

6 CONTINUE

C FORMING THE FIRST

11 J = 2

M = 1

KCECK = 0

Nl = 0

ROUTE

72

N2 = 0

LX = 0

JJ = 2

SUM = Q(K(2))

WRITE (3,201) MM

201 FORMAT (///30X,'ROUTES NUMBER ',IS)

WRITE (3, 258) (K(I), I = 2,N)

258 FORMAT (40I3)

MM = MM + 1

12 J = J + 1

45 IF (SUM+ Q(K(J)) -C) 13, 13,14

13 SUM= SUM+ Q(K(J))

KCECK = 0

792 IF(J-N) 12,27,27

14 CONTINUE

714 JJJ = J - 1

C CHECKING NEXT LOCATION

C FINDING TWO NEAREST POINTS

328 F = 1000000.

DO 40 I = JJ,JJJ

EFG = R(K(I)) - S(K(I)) * AVR

IF (F - EFG) 4 0, 4 0, 4 8

48 F = EFG

KII = I

40 CONTINUE

RX = 100000000.

DO 346 I = 1,4

JX = J - I

IF(JX .LT.2) GO TO 346

IF(R(K(JX))/AVR- .7) 346,346,347

347 J5 = J + 5

IF (JS - N) 363, 363,364

364 JS = N
363 DO 348 II = J,JS

IF (A(K(JX),K(II)) - RX) 349,348,348

73

349 RX = A(K(JX), K(II))

JJX = JX

JII = II
348 CONTINUE

346 CONTINUE

C CHECK THE MODIFIED P-SECT DESPERSEMENT
IF(KCECK .GT. 0) GO TO 374

KOUNT = 1
DO 320 I = JJ,JJJ
KOUNT = KOUNT + 1

320 IROUT(KOUNT) = K(I)

IROUT(1) = 1

IROUT(KOUNT+1) = 1
CALL TRAVS (KOUNT,DIST)

716

374

335

334

43

44

322

324

DIST = DIST + (KOUNT - 1) *XLD
IF (DIST . GT . XD) GO TO 76

DO 716 I = 1,KOUNT
KK(I) = IROUT(I)

SUMQ = SUM
CONTINUE

IF(RX .GT. 100000.) GO TO 75

RRX = R (K (J I I))

JIX = JII
DO 334 I = J,JIX
IF(R(K(I)) - RRX) 334,334,335

RRX = R(K(I))

JII = I
CONTINJE
IF(SUM + Q(K(JII)) - Q(K(KII))

JY = 5
IF (JY-(N-JJJ)) 324,322,322

JY = N - JJJ
JZ = JY + 1

IF (KCECK . EQ . 1) GO TO 375

DO 321 I = 2,JZ

- C)

74

44, 44,75

321 IROUT(I) = K(JJJ+I-1)
IROUT(1) = 1
CALL BTS (JY, DIST2)

375 CONTINUE

KCECK = 0

IF (JII - JJJ + 1 .GT. JY) GO TO 443
DO 332 I = 2,JZ

332 IROUT(I) = K(JJJ+I-1)
IROUT(1) = 1
IROUT (JII-JJJ+l) = K(KII)
CALL BTS (JY, DIST3)
KOUNT = 1

DO 331 I = JJ,JJJ
KOUNT = KOUNT + 1

331 IROUT(KOUNT) = K(I)

IROUT (1) = 1
IROUT (KOUNT+1) = 1
IROUT(KII - JJ + 2) = K(JII)
CALL TRAVS (KOUNT,DIST1)

DIST1 = DIST 1 + (KOUNT - 1) * XLD
IF (DIST1 .GT. XD) GO TO 443
EFG = AVR * (Q(K(JII)) - Q(K(KII))) I AVQ
IF (EFG+DIST + DIST2 - DISTl - DIST3) 443,443,326

326 DIST = DIST1
DO 717 I = 1, KOUNT

717 KK(I) = IROUT(I)

SUMQ = SUM

JJ1 = JJJ - 1
SUM = SUM+ Q(K(JII)) - Q(K(KII))
JI = K(KII)

DO 51 I = KII,JJ1
51 K(I) = K(I+1)

IF (JII .NE. JJJ + 1) GO TO 274

K(JJJ) = K(JJJ + 1)

75

K(JJJ + 1) = JI
GO TO 275

274 K(JJJ) = K(JII)

K(JII) = JI

275 J = J - 1
DIST2 = DIST3
KCECK = 1
GO TO 12

C CHECK THE SECOND MODIFIED P-SECT DISPERSEMENT

443 MAX = 1000000
IF(JS - J .LT. 3) GO TO 75

DO 420 I = J,J5
IF (I - JII) 421,420,421

421 IF (MAX- A(K(I) , K(JII))) 420,422,422

422 JKK = I
MAX = A(K(I),K(JII))

420 CONTINUE
IF (SUM + Q(K(JII)) + Q(K(JKK)) - Q(K(KII)) . GT. C)

1 GO TO 75

KOUNT = 1

JZ = 6

IF(JII - JJJ + 1 .GE. JZ) GO TO 75

IF(JKK - JJJ + 1 .GE. JZ) GO TO 75

IF(JZ - (N -JJJ + 1)) 435,436,436

436 JZ = N - JJJ
435 DO 431 I = 2,JZ

IF(! . EQ . JKK - JJJ + L) GO TO 431

KOUNT = KOUNT + 1

IROUT(KOUNT) = K(JJJ + I - 1)

431 CONTINUE
IROUT(JII - JJJ + 1) = K(KII)

IROUT(1) :: 1

JT = KOUNT - 1
CALL BTS (JT,DISTS)

KOUNT = 1

76

DO 430 I = JJ,JJJ

KOUNT = KOUNT + 1
IROUT(KOUNT) = K(I)

430 CONTINUE

IROUT(1) = 1

K.OUNT = KOUNT + 1

IROUT(KOUNT + 1) = 1
IROUT(KII - JJ + 2) = K(JII)
IROUT(KOUNT) = K(JKK)
CALL TRAVS (KOUNT,DIST4)

DIST4 = DIST4 + (KOUNT - 1) *XLD

IF(DIST4 . GT . XD) GO TO 75
IF (DIST + DIST2 - DIST4 - DIST5) 75 ,4 33,433

433 DIST = DIST4

DO 718 I = 1, KOUNT

718 KK(I) = !ROUT(I)
SUM = SUM+ Q(K(JII)) + Q(K(JKK)) - Q(K(KII))

SUMQ = SUM
M5 = JJJ + 4

JI = K(KII)
JM = K(J)
IF(KII . EQ . JJJ) GO TO 794

JJ1 = JJJ - 1
DO 434 I = KII,JJ1

434 K(I) = K(I+1)

K(JJJ) = K(JII)

JJJ = JJJ + 1

K(JJJ) = K(JKK)

K(JKK) = JI
IF(JII .EQ. J) GO TO 793

K(JII) = JI

K(JKK) = JM

GO TO 793

794 K(J) = K(JII)

K(KII) = K(JKK)

77

c

c

JJJ = JJJ + 1
K(JII) = JM
K(JKK) = JI

793 CONTINUE

KCECK = 2
GO TO 12

DELETING ONE FROM ROUTE
76 JJJ = JJJ - 1

KOUNT = KOUNT - 1
J = J - 1

SUM = SUM - Q(K(J))
GO TO 328

ACCEPTING THE ROUTE
75 SUMD = SUMD + DIST

KT = JJJ - JJ + 2
WRITE (3,719) M, SUMQ,DIST ,(KK(I) ,I=1, KT)

719 FORMAT(/' ROUTE ' . IS ,' HAS LOAD ' , F10 . 2 , ' WITH
1 DISTANCE ', Fl0.2 ,' IS ' /28(1X,I3))

LX = 0

M = M + 1
SUM = Q(K(J))

JJ = J
20 IF(KLN-1) 30,31,30
31 IF (KV-KOUNT) 32 , 30 , 30

32 KV = KOUNT
30 CONTINUE

IF (J-N) 12 , 27 , 27

27 KOUNT = 1

JJJ = J
IROUT(1) = 1
DO 82 I = JJ , J
KOUNT = KOUNT + 1

82 IROUT(KOUNT) = K(I)
IROUT(KOUNT + 1) = l
CALL TRAVS (KOUNT, DIST)

78

DIST = DIST + (KOUNT - 1) * XLD
IF(DIST - XD) 83,83,97

97 J = J + 1
GO TO 76

83 CONTINUE
WRITE (3,719) M,SUM,DIST,(IROUT (I), I = 1 ,KOUNT)
SUMD = SUMD + DIST
WRITE (3,84) SUMD

84 FORMAT(//'TOTAL DISTANCE IS',F15.5)
C INCREMENT THE ANGLE ONE LOCATION

KLN = 2
IF(MM -KV) 61,50,50

61 XMIN = 100000000.
DO 62 I = 2,N
IF (S(K(I)) - XMIN) 63,62,62

63 XMIN = S(K(I))
MI = K(I)

62 CONTINUE
S(MI) = 3.14529 - ABS(S(MI)) + 3.14529
GO TO 21

50 CONTINUE
521 CONTINUE

STOP

END

SUBROUTINE TRAVS (N,DIST)
COMMON A(101,101), K(101)
DIMENSION KK(101), KKK(l01)

C 3 OPT FOR TRAVELING SALESMAN

Nl = N + 1

DO 34 I = 1, Nl
34 KKK(I) = K(I)

51 IF(N-3) 54,54,53

53 Nl = N l

N3 = N - 3

79

5 DO 12 KOUNT = 1,N
DO 3 2 IK = 1 , N 3

K1 = IK + 1

DO 32 IJ = K1,N1

D1 = A(K(IK),K(IJ+ 1)) + A(K(1) , K(IJ))

D = A(K(l) , K(IJ+l)) + A(K(IK) , K(IJ))

IF (D1 - D) 6 , 6 ,7

6 IA = 8

D = D1

GO TO 17

7 IA = 2

17 IF(D+A(K(IK+1),K(N))-A(K(1),K(N))-A(K(IK),K(IK+1)) -

1 A(K(IJ),K(IJ+1)) + .001) 9,32 , 32

32 CONTINUE

IB = K(N)

N1 = N - 1

DO 13 I = 1 ,Nl

13 K(N-I+1) = K(N-I)

K(1) = IB

12 CONTINUE

GO TO 2

9 DO 19 I = 1,N

19 KK(I) = K(I)

IJ2 = IJ+2

K1 = IK+1
K(N) = KK(IJ+1)

KO = 0

IF(IJ2 - N) 36 ,36, 37

36 DO 20 I = IJ2, N

KO = KO + 1

20 K(KO) = KK(I)

37 DO 21 I = K1,IJ

KO = KO + 1

21 K(KO) = KK(I)

K(N) = KK(IJ+l)

80

IF(IA - 8) 18 , 15 ,18
15 DO 22 I = 1 , IK

KO = KO + 1
22 K(KO) = KK(!)

GO TO 14

18 DO 25 I = 1 , IK

KO = KO + 1

25 K(KO) = KK(IK+1-I)

14 CONTINUE

DO 35 I = 1,N

35 KKK(!) = K(I)

GO TO 5
2 CONTINUE

54 CONTINUE

DIST = A(KKK(N),KKK(1))

DO 30 I = 2, N

30 DIST = A(KKK(I -1) , KKK(I)) + DIST
RETURN

END

SUBROUTINE BTS (N,BOUND)

COMMON A(101 , 101), K(101)

DIMENSION MM(10,10), T(10,10~ IT(10), KK(10)

C BRANCH ALGORITHM FOR DETERMINING MINIMUM DI STANCE OF A

c ROUTE BEGINNING AT

22

21

DO 21 I = 1 , N

DO 22 J = 1 , N

MM(!,J) = 0
IT(I) = 0

IT(N+1) = N+1

T(1 , 1) = 0

IT(1) = 1

BOUND = 100000 .

JJ = 1

I = 1

1 I = I + 1

1 AND ENDING AT K(N)

81

II = I - 1

DO 25 L = 1,II

IF (IT(L)) 25,25,26

26 MM(I,IT(L)) = 1

25 CONTINUE

12 DX = 100000.

DO 2 J = 2,N

IF (MM(I,J) .EQ. 1) GO TO 2

T(I,J) = T(I-1, JJ) + A(K(JJ), K(J))

IF (T (I, J) . GT. BOUND) GO TO 8

IF(DX .LT. T(I,J)) GO TO 2

DX = T(I,J)

KZ = J

2 CONTINUE

IF(DX .GT. 10000J GO TO 24

11 IT (I) = KZ

JJ = KZ
MM(I,JJ) = 1

IF(I.LT. N) GO TO 1

GO TO 28

24 I = I - 1

IF (I .EQ. 1) GO TO 13

DX = 100000.

DO 27 L = 2 ,N

If (MM(I,L) .EQ. 1) GO TO 27

IF (T(I,L) .GT.DX) GO TO 27

DX =T(I,L)

JJ = L

27 CONTINUE

DO 29 L = 1,N
29 MM(I+1,L) = 0

IF (DX .GT. 10000) GO TO 24

IT (I) = JJ

MM (I,JJ) = 1
IF (I. LT. N) GO TO 1

82

28 I = I + l
T(I,l) = T(I-1 ,JJ) +A(K(JJ), K(I))
IF (T(I,1) .GT. BOUND) GO TO 24

J = 1

BOUND = T(I,1)

IF (N+1 - I) 36,35,36

3 5 D:o 3 4 L = 1 , I

34 KK(L) = K(IT(L))

36 CONTINUE

8 IT(I) = J

GO TO 24

13 DO 342 I = 1,N

342 K(I) = KK(I)

RETURN

END

83

APPENDIX B

EXAMPLE PROBLEMS USING SWEEP ALGORITHM

NO .

2

4

6

8

10

12

14

16

18

20

22

X

151

130

163

161

163

128

129

164

147

129

139

y

264

254

247

242

236

231

214

208

193

189

182

DETAILS OF PROBLEM 1

Q

1100

800

2100

800

500

1200

1300

900

1000

2500

700

NO.

3

5

7

9

11

13

15

17

19

21

NUMBER OF LOCATIONS IS 22

X

159

128

146

142

148

156

146

141

164

155

DEPOT CO- ORDINATES ARE X = 145 Y = 215

LOAD CAPACITY IS 6000

DISTANCE CAPACITY IS 200

ADDITIONAL DISTANCE PER LOCATION IS 10

y Q

261 700

252 1400

246 400

239 100

232 600

217 1300

208 300

206 2100

193 900

185 1800

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE

ROUTE 1 IS

1 14 20 22 18 15

ROUTE 2 IS

1 16 19 21 17 11 13

ROUTE 3 IS

1 10

ROUTE 4 IS

8 6 3

1 13 11 12 5

THE TOTAL DISTANCE IS

2 7

4

584.60

9

84

85

DETAILS OF PROBLEM 2

NO. X y Q NO . X y Q

2 29S 272 12S 3 301 2S8 84

4 309 260 60 s 217 274 sao
6 218 278 300 7 282 267 175

8 242 249 350 9 230 262 1SO

10 249 268 1100 11 256 267 4100

12 26S 2S7 225 13 267 242 300

14 2S9 265 250 15 315 233 sao
16 329 2S2 150 17 318 252 100

18 329 224 250 19 267 213 120

20 27S 192 600 21 303 201 sao
22 208 217 17S 23 326 181 7S

NUMBER OF LOCATIONS IS 23

DEPOT CO-ORDINATES ARE X = 266 y = 235

LOAD CAPACITY IS 4SOO

DISTANCE CAPACITY IS 240

ADDITIONAL DISTANCE PER LOCATION IS 10

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE

ROUTE 1 IS

1 19 20 22

ROUTE 2 IS

1 21 23 18 15

ROUTE 3 IS

1 13 7 2 3 4 16 17

ROUTE 4 IS

1 11 14

ROUTE 5 IS

1 12 10 6 5 9 8

THE TOTAL DISTANCE IS 956.40

86

DETAILS OF PROBLEM 3

NO. X y Q NO. X y Q

2 218 382 300 3 218 358 3100
4 201 370 125 5 214 371 100

6 224 370 200 7 210 382 150

8 104 354 150 9 126 338 450

10 119 340 3 o·o 11 129 349 100

12 126 345 950 13 125 346 125

14 116 355 150 15 126 355 150

16 125 355 550 17 119 357 150

18 115 341 100 19 153 351 150

20 175 363 400 21 180 360 300

22 159 331 1500 23 188 357 100

24 152 349 300 25 215 389 500

26 212 394 800 27 188 393 300

28 207 406 100 29 184 410 150

30 207 392 1000

NUMBER OF LOCATIONS IS 30

DEPOT CO-ORDINATES ARE X = 162 y = 354

LOAD CAPACITY IS 4500

DISTANCE CAPACITY IS 240

ADDITIONAL DISTANCE PER LOCATION IS 10

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE

ROUTE 1 IS

1 19 24 11 12 13 18 10 9 22

ROUTE 2 IS

1 23 3 6 5 2 7 4 21

ROUTE 3 IS

1 27 29 28 26 25 30

ROUTE 4 IS

1 15 16 14 8 17 20

THE TOTAL DISTANCE IS 885 . 30

87

DETAILS OF PROBLEM 4

NO. X y Q NO. X y Q

2 298 427 700 3 309 445 400
4 307 464 400 5 336 475 1200
6 320 439 40 7 321 437 80
8 322 437 2000 9 323 433 900

10 324 433 600 11 323 429 750
12 314 43 5 1500 13 311 442 150
14 304 427 250 15 293 421 1600

16 296 418 450 17 261 384 700

18 297 410 550 19 315 407 650

20 314 406 200 21 321 391 400

22 321 398 300 23 314 394 1300

24 313 378 700 25 304 382 750

26 295 402 1400 27 283 406 4000

28 279 399 600 29 271 401 1000

30 264 414 500 31 277 439 2500

32 290 434 1700 33 319 433 1100

NUMBER OF LOCATIONS IS 33

DEPOT CO-ORDINATES ARE X = 292 y = 425

LOAD CAPACITY IS 8000

DISTANCE CAPACITY IS 240

ADDITIONAL DISTANCE PER LOCATION IS 10

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE

ROUTE 1 IS

1 30 29 17 28 27

ROUTE 2 IS

1 15 18 26 25 24 23 21 22 20 19

ROUTE 3 IS

1 13 6 7 8 9 10 11 33 12 14 16

ROUTE 4 IS

1 32 31 4 5 3 2

THE TOTAL DISTANCE IS 817.30

88

DETAILS OF PROBLEM 5

NO. X y Q NO. X y Q

2 37 52 7 3 49 49 30

4 52 64 16 5 20 26 9

6 40 30 21 7 21 47 15

8 17 63 19 9 31 62 23

10 52 33 11 11 51 21 5

12 42 41 19 13 31 32 29

14 5 25 23 15 12 42 21

16 36 16 10 17 52 41 15

18 27 23 3 19 17 33 41

20 13 13 9 21 57 58 28

22 62 42 8 23 42 57 8

24 16 57 16 25 8 52 10

26 7 38 28 27 27 68 7

28 30 48 15 29 43 67 14

30 58 48 6 31 58 27 19

32 37 69 11 33 38 46 12

34 46 10 23 35 61 33 26

36 62 63 17 37 63 69 6

38 32 22 9 39 45 35 15

40 59 15 14 41 5 6 7

42 10 17 27 43 21 10 13

44 5 64 11 45 30 15 16

46 39 10 10 47 32 39 5

48 25 32 25 49 25 55 17

so 48 28 18 51 56 37 10

NUMBER OF LOCATIONS IS 51

DEPOT CO-ORDINATES ARE X = 30 y = 40

LOAD CAPACITY IS 160

NO DISTANCE CAPACITY

ADDITIONAL DISTANCE PER LOCATION IS 0

89

DETAILS OF PROBLEM 5 (Continued)

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE
ROUTE 1 IS

1 48 5 18 43 20 41 42 14 19
ROUTE 2 IS

1 47 6 50 11 40 34 46 16 45 38 13

ROUTE 3 IS

1 12 3 30 22 17 51 35 31 10 39

ROUTE 4 IS

1 49 27 32 29 4 37 36 21 23 2 33

ROUTE 5 IS

1 7 15 26 25 44 8 24 49 28

THE TOTAL DISTANCE IS 524.60

90

DETAILS OF PROBLEM 6

NO. X y Q NO. X y Q

2 22 22 18 3 36 26 26

4 21 45 11 s 45 35 30

6 55 20 21 7 33 34 19

8 50 50 15 9 55 45 16

10 26 59 29 11 40 66 26

12 55 65 37 13 35 51 16

14 62 35 12 15 62 57 31

16 62 24 8 17 21 36 19

18 33 44 20 19 9 56 13

20 62 48 15 21 66 14 22

22 44 13 28 23 26 13 12

24 11 28 6 25 7 43 27

26 17 64 14 27 41 46 18

28 55 34 17 29 35 16 29

30 52 26 13 31 43 26 22

32 31 76 25 33 22 53 28

34 26 29 27 35 50 40 19

36 55 50 10 37 54 10 12

38 60 15 14 39 47 66 24

40 30 60 16 41 30 50 33

42 12 17 15 43 15 14 11

44 16 19 18 45 21 48 17

46 so 30 21 47 51 42 27

48 so 15 19 49 48 21 20

50 12 38 5 51 15 56 22

52 29 39 12 53 54 38 19

54 55 57 22 55 67 41 16

56 10 70 7 57 6 25 26

58 65 27 14 59 40 60 21

60 70 64 24 61 64 4 13

62 36 6 15 63 30 20 18

64 20 30 11 65 15 5 28

66 50 70 9 67 57 72 37

DETAILS OF PROBLEM 6 (Continued)

NO. X Y Q NO . X Y Q
68 45 42

70 50 4

72 59 5

74 27 24

76 40 37

30

8

3

6

20

NUMBER OF LOCATIONS IS 76

69 38

71 66

73 35

75 40

DEPOT CO- ORDINATES ARE X = 40 Y = 40

LOAD CAPACITY IS 140

NO DISTANCE CAPACITY

ADDITIONAL DISTANCE PER LOCATION IS 0

33 10

8 11

60 1

20 10

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE

ROUTE 1 IS

1 4 25 19 56 26 51 33 45

ROUTE 2 IS

1 13 73 32 40 10 41 18

ROUTE 3 IS

1 27 59 11 39 66 67

ROUTE 4 IS

1 36 15 60 12 54 8

ROUTE 5 IS

1 35 14 55 20

ROUTE 6 IS

9 47 68

1 5 46 16 21 58 28 53

ROUTE 7 IS

1 49 48 37 70 72 61 71 38

ROUTE 8 IS

1 76 31 75 22 62 29 69

ROUTE 9 IS

1 74 2 44 43 65 23 63 3

ROUTE 10 IS

6 30

1 52 17 50 24 57 42 64 34 7

THE TOTAL DISTANCE I S 865 . 70

91

92

DETAILS OF PROBLEM 7
NO. X y Q NO. X y Q

2 41 49 10 3 35 17 7

4 55 45 13 5 55 20 19

6 15 30 26 7 25 30 3

8 20 50 5 9 10 43 9

10 55 60 16 ll 30 60 16

12 20 65 12 13 50 35 19

14 30 25 23 15 15 10 20

16 30 5 8 17 10 20 19

18 5 30 2 19 20 40 12

20 15 60 17 21 45 65 9

22 45 20 ll 23 45 10 18

24 55 5 29 25 65 35 3

26 65 20 6 27 45 30 17

28 35 40 16 29 41 37 16

30 64 42 9 31 40 60 21

32 31 52 27 33 35 69 23

34 53 52 ll 35 65 55 14

36 63 65 8 37 2 60 5

38 20 20 8 39 5 5 16

40 60 12 31 41 40 25 9

42 42 7 5 43 24 12 5

44 23 3 7 45 11 14 18

46 6 38 16 47 2 48 l

48 8 56 27 49 13 52 36

50 6 68 30 51 47 47 13

52 49 58 10 53 27 43 9

54 37 31 14 55 57 29 18

56 63 23 2 57 53 12 6

58 32 12 7 59 36 26 18

60 21 24 28 61 17 34 3

62 12 24 13 63 24 58 19

64 27 69 10 65 15 77 9

66 62 77 20 67 49 73 25

68 67 5 25 69 56 39 36

93

DETAILS OF PROBLEM 7 (Continued)
NO. X y Q NO. X y Q

70 37 47 6 71 37 56 5
72 57 68 15 73 47 16 25
74 44 17 9 75 46 13 8
76 49 11 18 77 49 42 13
78 53 43 14 79 61 52 3
80 57 48 23 81 56 37 6

82 55 54 26 83 15 47 16

84 14 37 11 85 11 31 7

86 16 22 41 87 4 18 35

88 28 18 26 89 26 52 9

90 26 35 15 91 31 67 3

92 15 19 1 93 22 22 2

94 18 24 22 95 26 27 27

96 25 24 20 97 22 27 11

98 25 21 12 99 19 21 10

100 20 26 9 101 18 18 17

NUMBER OF LOCATIONS IS 101

DEPOT CO- ORDINATES ARE X = 35 y = 35

LOAD CAPACITY IS 200

NO DISTANCE CAPACITY

ADDITIONAL DISTANCE PER LOCATION IS 0

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE

ROUTE 1 IS

1 93 38 99 101 15 39 45 92 86

94 60

ROUTE 2 IS

1 14 95 96 98 88 43 44 16 58

42 23 74 3 59

ROUTE 3 IS

1 41 22 73 75 76 57 24 68 40

26 56 5

ROUTE 4 IS

1 54 27 13 55 25 30 81 69 4

78 77 29

94

DETAILS OF PROBLEM 7 (Continued)

ROUTE 5 IS

1 80 79 35 36 72 66 67 21 52 10 82

34 51

ROUTE 6 IS

1 28 70 2 71 31 33 91 64 65 12 63

11 89 32

ROUTE 7 IS

1 53 8 83 49 20 50 37 48 47 9 46

84 19

ROUTE 8 IS

1 90 61 6 85 18 87 17 62 100 97 7

THE TOTAL DISTANCE IS 854.5

95

DETAILS OF PROBLEM 8

NO. X y Q NO. X y Q

2 -99 -97 6 3 -59 so 72

4 0 14 93 5 -17 -66 28

6 -69 -19 5 7 31 12 43

8 5 -41 1 9 -12 10 36

10 -64 70 53 11 -12 85 63

12 -18 64 25 13 -77 -16 50

1l~ -53 88 57 15 83 -24 1

16 24 41 66 17 17 21 37

18 42 96 51 19 -65 0 47

20 -47 -26 88 21 85 36 75

22 -35 - 54 48 23 54 -21 40

24 64 -17 8 25 55 89 69

26 17 - 25 93 27 -61 66 29

28 -61 26 5 29 17 - 72 53

30 79 38 8 31 -62 - 2 24

32 - 90 -68 53 33 52 66 13

34 -54 -50 47 35 8 -8'1 57

36 37 -90 9 37 - 83 49 74

38 35 - 1 83 39 7 59 96

40 12 48 42 41 57 95 80

42 92 28 22 43 - 3 97 56

44 - 7 52 43 45 42 -15 12

46 77 -43 73 47 59 -49 32

48 25 91 8 49 69 -19 79

so -82 -14 79 51 74 -70 4

52 69 59 14 53 29 33 17

54 -97 9 19 55 -58 9 44

56 28 93 5 57 7 73 37

58 -28 73 100 59 - 76 55 62

60 41 42 90 61 92 40 57

62 -84 -29 44 63 - 12 42 37

64 51 -45 80 65 - 37 46 60

66 -97 35 95 67 14 89 56

96

DETAILS OF PROBLEM 8 (Continued)

NO . X y Q NO. X y Q

68 60 58 56 69 - 63 -75 9

70 -18 34 39 71 -46 - 82 15

72 -86 -79 4 73 - 43 -30 58

74 -44 7 73 75 - 3 -20 5

76 36 41 12 77 - 30 -94 3

78 79 -62 8 79 51 70 31

80 - 61 - 26 48 81 6 94 3

82 - 19 - 62 52 83 - 20 51 99

84 - 81 37 29 85 7 31 12

86 52 12 50 87 83 - 91 98

88 - 7 -92 4 89 82 -74 56

90 -70 85 24 91 - 83 - 30 33

92 71 - 61 45 93 85 11 98

94 66 -48 4 95 78 - 87 36

96 9 -79 72 97 -36 4 26

98 66 39 71 99 92 -17 84

100 - 46 - 79 21 101 -30 -63 99

102 - 42 63 33 103 20 42 84

104 15 98 74 105 1 -17 93

106 64 20 25 107 -96 85 39

108 93 -29 42 109 - 40 -84 77

110 86 35 68 111 91 36 50

112 62 - 8 42 113 -24 4 71

114 11 96 85 115 - 53 62 78

116 - 28 -71 64 117 7 - 4 5

118 95 - 9 93 119 - 3 17 18

120 53 -90 38 121 58 -19 29

122 - 83 84 81 123 - 1 49 4

124 - 4 17 23 125 - 82 - 3 11

126 -4 3 47 86 127 6 - 6 2

128 70 99 31 129 68 - 29 54

1 3 0 - 94 - 30 8 7 131 - 9 4 - 20 17

97

DETAILS OF PROBLEM 8 (Continued)

NO. X y Q NO . X y Q
132 -21 77 81 133 64 37 72

134 - 70 -19 10 135 88 65 50

136 2 29 25 137 33 57 71

138 -70 6 85 139 - 38 -56 51

140 -80 -95 29 141 - 5 - 39 55

142 8 -22 45 143 -61 - 76 100

144 76 -22 38 145 49 -71 11

146 -30 -68 82 147 1 34 50

148 77 79 39 149 -58 64 6

150 82 - 97 87 151 -80 55 83

152 81 -86 22 153 39 - 49 24

154 -67 72 69 155 -25 -89 97

156 -44 - 95 65 157 32 - 68 97

158 - 17 49 79 · 159 93 49 79

160 99 81 46 161 10 -49 52

162 63 -41 39 163 38 39 94

164 -28 39 97 165 - 2 -47 18

166 38 8 3 167 -42 - 6 23

168 -67 88 19 169 19 93 40

170 4 0 27 49 171 -61 56 96

172 43 33 58 173 -18 -39 15

174 -69 19 21 175 75 - 18 56

176 31 85 67 177 25 58 10

178 -16 36 36 179 91 15 84

180 60 -39 59 181 49 - 47 85

182 42 33 60 183 16 - 81 33

184 -78 53 62 185 53 -80 70

186 -46 -26 79 187 -25 -54 98

188 69 -46 99 189 0 - 78 18

190 -84 74 55 191 -16 16 75

192 - 63 - 14 94 193 51 - 77 89

1 94 -39 61 13 195 5 97 19

196 - 55 39 19 197 70 -14 90

98

DETAILS OF PROBLEM 8 (Continued)

NO . X y Q NO . X y Q
198 0 95 35 199 -45 7 76

200 38 -24 3 201 50 -37 11

202 59 71 98 203 -73 - 96 92

204 - 29 72 1 205 -47 12 2

206 -88 -61 63 207 -88 36 57

208 - 4 6 - 3 so 209 26 - 37 19

210 -39 -67 24 211 92 27 1 4

212 -80 - 31 18 213 93 - 50 77

214 -20 - 5 28 215 -22 73 72

216 - 4 - 7 49 217 54 -48 58

218 -70 39 84 219 54 - 82 58

220 29 41 41 221 -87 51 98

222 - 96 -36 77 223 49 8 57

224 - 5 54 39 225 - 26 43 99

226 - 11 60 83 227 40 61 54

228 82 35 86 229 - 92 12 2

230 - 93 - 86 14 231 -66 63 42

232 -72 - 87 14 233 -57 -8 4 55

234 23 52 2 235 - 56 -62 18

236 - 19 59 17 237 63 -14 22

238 - 13 38 28 239 - 19 87 3

240 44 - 84 96 241 98 - 17 53

242 - 16 62 15 243 3 66 36

244 26 22 98 245 - 38 - 81 78

246 70 - 80 92 247 17 -35 65

248 96 - 83 64 249 - 77 80 43

250 -14 44 50

NUMBER OF LOCATIONS I S 250

DEPOT CO - ORDINATES ARE X :: 0 y = 0

LOAD CAPACITY IS 500

DISTANCE CAPACITY IS 310

ADDITIONAL DISTANCE PER LOCATION IS 0

99

DETAILS OF PROBLEM 8 (Continued)

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE

ROUTE 1 IS

1 97 74 199 19 138 229 54 66 174 55 205
ROUTE 2 IS

1 113 28 218 84 207 221 37 184 196

ROUTE 3 IS

1 59 151 107 190 231 171 3 9

ROUTE 4 IS

1 191 126 149 27 10 151:t 249 122 90

ROUTE 5 IS

1 164 65 194 102 115 168 14 204 225 70

ROUTE 6 IS

1 178 83 58 215 236 158 250 238

ROUTE 7 IS

1 119 123 44 224 226 11 43 239 12 242 63

ROUTE 8 IS

1 136 39 57 169 104 114 81 195 198 243 147

ROUTE 9 IS

1 4 85 40 67 48 56 18 176 177 234 16

ROUTE 10 IS

1 220 137 227 79 25 41 128 202 33 76

ROUTE 11 IS

1 244 52 160 148 68 60 163 53 17

ROUTE 12 IS

1 133 98 30 61 159 135 172 182

ROUTE 13 IS

1 7 166 86 106 211 42 111 110 21 228 170

ROUTE 14 IS

1 223 93 179 118 112 38

ROUTE 15 IS

1 45 24 49 144 15 108 241 99 175 197 237

ROUTE J.6 IS

1 23 121 129 46 213 188 94 162 180 201 200
117

100

DETAILS OF PROBLEM 8 (Continued)

ROUTE 17 IS

l 127 181 51 95 152 248 89 78 92 47 217
64

ROUTE 18 IS

1 26 209 145 185 150 87 246 153

ROUTE 19 IS

1 193 219 120 240 36 157 247 142

ROUTE 20 IS

1 105 8 161 29 183 96 35 88 189 5 165

ROUTE 21 IS

1 82 155 77 156 116 146 187 173

ROUTE 22 IS

1 216 22 139 210 100 71 109 245 101

ROUTE 23 IS

1 73 32 72 230 2 140 140 203 232 143 69
235 34

ROUTE 24 IS

1 20 80 206 222 130 62 91 212 134 6

ROUTE 25 IS

1 214 167 208 31 125 131 50 13 192 186

THE TOTAL DISTANCE IS 5794.10

101

APPENDIX C

BRANCH AND BOUND ALGORITHM COMPUTER PROGRAM

The computer program uses the following variables.

N - number of locations including the depot

A(I,J) - time to travel from location I to location J

IT (I) I th 1 . . h · - ocatlon ln t e route

F(I,S) - cost function for location I at time S

The following data are required for each data set.

First data card

columns 1 - 80 N free format

Remaining data cards

columns 1 - 80 ((A(I, J),I=l,N),J=l , N) free format

102

C BRANCH METHOD FOR ARBITRARY COST FUNCTION WITH ONE SERVER
C A(I,J) IS TIME FROM LOCATION I TO LOCATION J
C F(I,S) IS THE COST FUNCTION FOR LOCATION I

22

21

DIMENSION A(10,10),MM(30,30),IT(30),T(30,30),D(30,30)
1, G(30,30), XL(SO)

READ, N

DO 21 I = 1,N

DO 22 J = 1,N

MM(I,J) = 0.
IT(I) :: 0 .

D(1,1) = 0

T(1,1) = 0

IT (1) :: 1

IT(N+1) = 1

BOUND :: 100000000.

READ,A
C OBTAIN ESTIMATE FOR THE TOTAL TIME FOR THE OPTIMAL ROUTE

K :: 0

SUM = 0

JJ = N - 1

DO 40 I = 1,JJ

II = I + 1

DO 40 J = II,N

K = K + 1
40 SUM = SUM + A(I,J)

TIME = SUM *2./3.*CN+1) I K

DO 41 I = 2,N
41 XL(I) :: F(I,TIME)

C CALCULATE TOTAL COST FOR THE I TH LOCATION OF THE ROUTE

JJ = 1

I = 1

1 I = I + 1

II = I - 1

DO 25 L = 1,II
IF (IT(L)) 25,25,26

26 MM(I,IT(L)) = 1

25 CONTINUE

12 DX = -100000000.

DO 2 J = 2,N

IF (MM(I,J) .EQ. 1) GO TO 2

T(I,J) = T(I-1,JJ) + A(JJ,J)

E = F(J,T(I,J))

D(I,J) = D(I -1, JJ) + E + A(JJ,J)

IF(D(I,J) .GT. BOUND) GO TO 8

G(I,J) = XL(J) - E

IF (G(I,J) .LT. DX) GO TO 2

DX = G(I,J)

KK = J

2 CONTINUE

C CHECK IF THERE ARE MORE LOCATIONS TO CONSIDER

IF (DX .LT. -10000000.) GO TO 24

11 IT(I) = KK

JJ = KK

MM(I,JJ) = 1

IF(I.LT. N) GO TO 1

GO TO 28

C CONTINUE IN A DIFFERENT BRANCH

24 I = I - 1
IF (I .EQ. 1) GO TO 13

DX = -100000000.

DO 27 L = 2 ,N

IF (MM(I,L) .EQ.1) GO TO 27

IF (G(I,L) .LT.DX) GO TO 27

DX = G(I,L)

JJ = L

27 CONTINUE

DO 29 L = 1,N

29 MM (I + 1,1) = 0
IF (DX .LT.-10000000.) GO TO 24

IT(I) = JJ

103

MM(I,JJ) = 1

IF(I .LT. N) GO TO 1

C CALCULATE NEW BOUND

28 I = I + 1

T(I,1) = T(I-1,JJ) + A(JJ,l)
D(I,l) = D(I-l,JJ) + A(JJ,l)

IF(D(I,1) .GT . BOUND) GO TO 6

BOUND = D(I,1)

GO TO 6

8 IT (I) = J

6 WRITE (3,30) (IT(J), J = 1,I)

30 FORMAT (/lX,11Il0)
WRITE (3,31) (D(J,IT(J)), J = 1,1)

31 FORMAT (1X,11F10 . 2)

GO TO 24

13 STOP

END

104

	Heuristic algorithms for the generalized vehicle dispatch problem
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078
	Page0079
	Page0080
	Page0081
	Page0082
	Page0083
	Page0084
	Page0085
	Page0086
	Page0087
	Page0088
	Page0089
	Page0090
	Page0091
	Page0092
	Page0093
	Page0094
	Page0095
	Page0096
	Page0097
	Page0098
	Page0099
	Page0100
	Page0101
	Page0102
	Page0103
	Page0104
	Page0105
	Page0106
	Page0107
	Page0108
	Page0109
	Page0110
	Page0111

