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ABSTRACT 

A heuristic algorithm , called the sweep algorithm , 

1s developed for the vehicle dispatch prob l em with d istance 

and load constraints for each vehicle . A mathematical 

development and a step procedure for the sweep algori thm 

is given . Also g1 ven are eight proble ms and their sol

utions derived by the sweep algorithm . The solutions 

for this algorithm are compared with solutions from 

other vehicl e dispatch algorithms , and the sweep algorithm 

is found to g ive better r esults for almost every probl em . 

Various modi fications are also presented for the sweep 

algorithm. 

A mathematical formulation 1s g1ven for the vehicle 

dispatch problem with arbitrary cost funct ions at each 

location . A branch and bound algorithm is developed , 

which yields an optimal solution for the problem with one 

server . 
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I. INTRODUCTION 

There exist many problems that fall into the general 

category of vehicle dispatch problems; however, there 

does not exist a simple algorithm which will solve these 

problems. These problems assume that each of N customers 

has a given location and demand, and that each location 

must be serviced by a server. The objective is to determine 

the minimum number of servers and the routes for each 

server, so that the total distance that the servers travel 

is a minimum. Each server is also subject to a load and a 

distance constraint. 

Examples of the problem arlse ln the delivery of 

people or commodities such as bread and furniture. These 

problems assume a known demand. Examples of the problem 

also arise in scheduling routes such as those for school 

busses and refuse trucks, where people or commodities are 

picked up. 

It lS usually very difficult to determine an exact 

optimal solution for a problem involving many locations, 

due to the large number of possible routes that must be 

examined. Hence, heuristic algorithms have been developed 

which yield solutions which are hopefully close to an 

optimal solution. One objective of this paper is to 

determine a good heuristic algorithm for the vehicle dis

patch problem. 

A special case of the vehicle dispatch problem is 

l 



the traveling salesman problem. This case occurs if 

there are no load and distance restrictions for the servers. 

Hence, one server is able to meet all the requirements of 

the customers. The review of literature presents several 

algorithms for the traveling salesman problem and how they 

are generalized for the vehicle dispatch problem. 

The vehicle dispatch problem can be generalized to 

include arbitrary cost functions at each location. This 

creates an additional cost which must be minimized. An 

example is the scheduling of delivery trucks where a 

commodity must be delivered in a given time period. This 

paper presents an exact algorithm which solves the general

ized vehicle dispatch problem for one server. 

2 



II. REVIEW OF LITERATURE 

A. TRAVELING SALESMAN PROBLEM 

If there is only one server with no constraints and 

no arbitrary cost functions, then the vehicle dispatch 

problem becomes the well-known traveling salesman problem. 

This problem lS that of finding a permutation, 

i 2 , i 3 , ·· ·, lN of the integers 2 through N, so that the 

N-1 
quantity a 1 . + L (a. . ) +a. 1 is a minimum. The 

l2 k=2 lklk+l lN 

element a .. could represent either the distance or the 
l] 

time of travel from location ito location j.' The name 

given to the problem is derived from the application of 

a salesman who wishes to visit N - 1 cities, starting from 

and returning to his home, by means of the shortest route. 

This problem was first posed by Hassler Whitney in 1934 [1]. 

1. Complete Enumeration 

There exist a finite number of routes for the salesman, 

namely (N- 1)!. Therefore, it is theoretically possible 

to solve the problem by calculating the distance for each 

of the routes and selecting the route with the minimum 

distance. However, even for ten locations the number of 

possible routes is very large, which makes it impossible 

for a computer to calculate all the distances in any 

reasonable length of time. For this reason, ~lgorithms 

have been developed which reduce the calculation time. 

3 



2. Dynamic Programmi~g 

Dynamic programming was applied to the problem in 

two articles , each developed independently of the other . 

4 

One is by Held and Carp [2], and the other is by Bel l man [3]. 

The procedure for dynamic programming 1s as follows: 

Let N denote the number of locations and a .. the distance 
l.J 

from location ito location j . 

For any subset, S, of {2, 3 , ···, N} and pES , let 

C(S, p) represent the minimum distance for starting from 

location one, visiti~g all cities in S, and ending at 

location p . Then a recursive formulation can be given 

by the following equations: 

If n(S) = 1 , then C({p} , p) = a 1p for all p E S . 

If n(S) > 1, then C(S, p) =min [ C(S- p , m) +a ] . 
mES-p mp 

In these equations, n(S) is the cardinality of set S and 

S-p denotes the set S with the element p omitted . These 

equations provide a method for calculating C(S , p) induct-

ively, first with n(S) = 1 , then with n(S) = 2 , and up to 

S = {2, 3, · ··, N} . The minimum distance of a complete 

tour , including the return to location 1 is 

min 
pE: { 2 , 3 • • • 

' ' 
N} 

[C({ 2 , 3 , ... , N}, p) + ap1 J. 

The route which yields this minimum distance is obtained 

by a 11 backward 11 proce dure. The p
1 

which gave the minimum 

value for C({2, 3, ·· · , N}, p 1 ) + a 1 is the last location 
pl 



on the route. The p 2 which minimizes C({2 , 3 , · · ·, N} 

{p1 } , p 2 ) is the next-to- the- last location on the r o u te . 

By continuing this procedure until n ( S) = l, the route 

that minimizes the total distance is obtained . 

The algorithm requires a large amount of core storage 

which restricts the size of the problem. Bellmore a nd 

Nemhauser [ 4] were a b le to solve a 15- location probl em 

using auxiliary stor~ge . 

3. Branch and Bound Algorithm 

Th e branch and bound algorithm is also an e xact 

procedure , in that if a solution lS obtained it is a route 

which produces the minimum total distance . The algorithm 

has been known to solve a 68- location problem ; however, it 

does not propose to solve al l problems of this slze within 

a rea sonable time limit . Two papers that have been present

ed which employ the branch and bound method are Shapiro [5] 

and Little , Murty, Sweeney , and Kare l [6] . 

The basic method of the algorithm is to divide the set 

of all tours into smaller subsets and to calculate a lower 

bound for all the tours in the subset . A tree is built 

with nodes which represent the subsets of tours . Each node 

is a subset of the node from which it branches. For 

e x ample , referring to f~gure l , node A represents the set 

of all tours . Node B represents t he set of all tours whi ch 

cont a i n the l i nk i to J · Node C represents t h e set of a ll 

5 
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D 

Figure 1. Branches of a tree 



tours which do not contain the llnk ito j. Node D 

represents the set of all tours containing the links 1. to 

j and k to m. 

A method similar to the assignment problem is used 

to calculate lower bounds for each node. The distance 

matrix, M, is a matrix such that m .. denotes the distance 
l] 

from location ito location j. The lower bound for node A 

is calculated from the distance matrix using the following 

theorem: If a constant, h, is subtracted from each element 

of a row of the distance matrix, then the distance of any 

tour under the new matrix is h less than under the old. 

Let r. be the smallest element in row i (i = 1, 2, N) 
l 

of the distance matrix. The new distance matrix is obtained 

b b . f 1 . h .th f y su tract1.ng r. rom every e ement 1.n t e 1. row or 
l 

i = 1, 2, ···, N. The same procedure is used for the 

columns where c. is the smallest element in column i 
l 

N 
( i = 1, 2, .. ·, N). The lower bound is ~ (r. +c.). 

. 1 l l 
1.= 

Consider the distance matrix for a five-location 

problem in figure 2. The numbers 2, 2, 1, 2, and 1 are 

subtracted from rows 1 through 5 respectively, which gives 

the distance matrix in figure 3. The number 1 is sub-

tracted from columns 1 and 3, which yields the distance 

matrix in figure 4. The sum of the numbers subtracted 

from the rows and columns provides the lower bound for 

node A, which in this example is 10. 

7 
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1 2 3 4 5 

1 00 3 3 2 8 

2 3 00 6 4 2 

3 8 6 00 1 4 

4 3 2 6 00 4 

5 4 1 8 2 00 

Figure 2. Distance matrix 

1 2 3 4 5 

1 00 1 1 0 6 (2) 

2 1 00 4 2 0 (2) 

3 7 5 00 0 3 (1) 

4 1 0 4 00 2 ( 2) 

5 3 0 7 1 00 (1) 

Figure 3 . Distance matrix with smallest element 
subtracted from each row 

1 2 3 4 5 

1 00 1 0 0 6 

2 0 00 3 2 0 

3 6 5 00 0 3 

4 0 0 3 00 2 

5 2 0 6 1 00 

(1) ( 1) 

Figure 4 . Distance matrix with smallest element 
subtracted from each column 



The link i to j for node B is obtained by choosing a 

zero in the new d~stance matrix, which ~ill provide the 

largest lower bound for node c. This i5 accomplished by 

placing oo in a zero slot, and calculating the lower bound 

by adding the smallest element in that row, the smallest 

element in that column, and the previous lower hound. In 

figure 4, there are 8 zeroes that need to be considered. 

The link (1,3) provides a lower bound of 10 + 3, since 

there is a zero in column 4 of row 1 and a three in row 2 

of column 3. Likewise, the link (1,4) provides a lower 

bound of 10 + 0. After all zeroes are checked, (1,3) and 

(2,5) both are found to provide the greatest bound for C, 

namely 13 . 

The link (i,j) which produces the greatest lower bound 

for node C will be the link used in node B. The lower 

bound for node B is obtained by omitting row i and column 
N N 

9 

j and calculating E rk+ E ck' where again, rk is the smallest 
k=l k=l 
k;ii k;ij 

element in row k , and ck ~s the smallest element in column 

k . 

Branching is continued from the node with the smallest 

lower bound until all links are used. The lower bound of 

the last node is the total distance for that particular tour 

and provides a bound for all other tours. Branching from 

a node ceases if the lower bound for the node is greater 

than the smallest bound obtained from the completed tours. 

Care must be taken in selecting the link i to j so 

as to prevent a subtour . Infinity is placed in the· slot to 



prevent this. For example, if (a,b) and (b,c) are two 

links in previous nodes, then links (a,c) and (c,a) are 

assigned a distance of infinity. 

Computing time varies with each problem, depending 

on whether a good lower bound which will eliminate many 

branches is determined at first. 

4. Integer Programming 

Bellmore and Nemhauser [4] state a theorem which shows 

that the traveling salesman problem can be set up as a 

0 - 1 integer linear-programming problem. The theorem 

is as follows: 

LetS, S be a partition of the integers i = 1, 2, ···, N. 

An optimal tour can be found by solving the integer linear 

program; 
N 

mln z = r 
j=2 

j-1 
r a .. x .. 

i=l l] l] 

subject to; 

1. x .. = 0,1 Ci = 1,2,···, j-1; j = 2,3,···,N), 
l] 

2. r 
ie: s 

r x .. > 2 for all nonempty partitions 
je: s l] 

(S, S) such that if (S,S) is considered, then 

(S, S) is not. 

x .. = 0 if the link (i,j) 1s not in the tour, and 
l] / 

x .. = 1 if the link (i,j) lS in the tour. 
l] 

The disadvantage in finding an optimal tour by integer 

10 



programming 1s that it requires many variables and many 

inequalities. Hence, again, the program is only suitable 

for small N. Several modifications to linear programming 

have been given with fewer variables and inequalities. 

Martin [7] claims to have solved a 42-location problem. 

However, other articles, [2] and [8], have reported dis-

couraging results with integer programm.ing. 

All four of the previous algorithms are exact proc-

edures, and since they are inadequate for a problem with 

a large number of locations, methods have been devised to 

give solutions which compare favorably to the exact 

solution. Several of these methods are iterative in that 

they improve initial tours. 

5. Partitioning 

Held and Karp [2], used partitioning with dynamic 

programming. This 1s an iterative procedure, which uses 

an initial tour. The initial tour is partitioned into u 

ordered sets, each consisting of locations which occur 

successively in the initial tour. By treating each part-

ition as a location, a u-location traveling salesman 

problem is created. 

(j 1 , ] 2 , ···, jq) are two ordered sets of a partition, 

then the distance between the two ordered sets is a. . 
lp]l 

If u is not too large, then the u-location problem can be 

solved by an exact scheme. The solution will have placed 

11 



each ordered set into the best position, which will have 

equaled or improved the initial route. In essence, the 

ordered sets are moved about to produce a better solution. 

12 

Different partitions may be used to produce different 

solutions. Held and Karp defined two types of partitioning, 

local and global. In a local partition, each of the ordered 

sets, except one, consists of a single element. This 

determines the best tour over a local part of the partition. 

A global partition takes each ordered sets nearly equal in 

SlZe. 

Held and Karp used dynamic programming to solve the 

sub-traveling salesman problem. They presented several 

good results on locations of size 42, 20, 48, and 36. 

6. R - optimal 

Another iterative scheme which uses an initial tour 

is r-optimal. Lin [9] defines a tour to be r-optimal if 

it is impossible to obtain a tour with smaller distance by 

replacing any r of its links by any other set of r links. 

Figure 5 illustrates 3 links being removed in an 8 loc

ation problem. The three removable links are a, b, and c. 

Two of the routes which can then be formed are 1, 2, 3, 6, 

4, 5, 8, 7, 1; and 1, 2, 3, 8, 5, 4, 6, 7, 1. 

Lin discovered from experimenting that r = 3 gives 

excellent results with small computation time compared to 

r = 4. Since all 3-optimal routes are also 2-optimal, he 

restricted his algorithm to 3-optimal routes. 
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Lin proved a theorem which he used as a basis for his 

algorithm in produci~g 3-optimal tours. It is as follows : 

A tour is 3- optimal if and only if no section of k con

secutive locations in the tour can be removed and reinsert

ed (as is , or inverted) between any two consecutive remain

ing locations to produce a tour with less total distance. 

14 

He modified the 3-optimal procedure in two ways . First, 

he started with an initial tour and then proceeded to find 

a 3-optimal tour by successively placing k consecutive 

locations (k = 1, 2, · · ·, N) between two other consecutive 

locations. As soon as he found an improvement , he took 

this new tour and started the procedure over again , after 

first rotating the locations to the next consecutive 

locations. The algorithm stops if no improvement can be 

made by placing k consecutive locations between any two 

other consecutive locations . 

This program took a relatively short time on a 

computer , so Lin modified it a second way by calculat ing 

m 3-optimal solutions from m random initial tours . The links 

that were common to all m 3-optimal tours were then removed , 

with the premise that any link common to all m 3-optimal 

tours will also be a link in an optimal tour. This reduces 

the number of locations, and hence, the size of the pro-

blem. The procedure is then repeated . (Lin does not say 

what he would do if there were no common links). 

Bellmore and Nemhauser [4] stated in their summary of 

the traveling salesman problem that they would use dynamic 



prograrnmlng if the number of locations were less than or 

equal to 13. For symmetric problems up to 40 locations, 

they recommend the branch and bound algorithm. Then for 

problems which can not be solved by exact schemes, they 

suggest Lin's 3-optimal algorithm. 

15 



B. VEHICLE DISPATCH PROBLEM 

The vehicle dispatch problem is a generalization of 

the traveling salesman problem. The difference between 

the two is that the vehicle dispatch problem may use more 

than one salesman, and may also have restrictions on the 

distance that each salesman may travel. The problem may 

also be applied to a fleet of trucks which must deliver 

products to various locations when there are restrictions 

on the number of miles traveled by a single truck and a 

load capacity for a single truck. 

A mathematical formulation of the problem is as 

follows: 

Given; 

l. 

2 • 

3 • 

A set of N locations including the depot, 

A distance matrix A= (a .. ) which specifies the 
l] 

distance between location i and location], 

A demand vector Q = (q.) which specifies the 
l 

demand at location 1, 

4. The truck capacity C, 

5. The maximum mileage L that a truck may travel. 

To determine; M routes Ci11 , i 12 , ···, llk; 1 21 , i 22 , ' 
1 

i 2 k ; ••• ; 1 Ml ' iM 2 ' 
2 
k" J 

1. L q. < C for J = 
1 l. 

p= JP 

, iMk ) such that 
M 

1, 2, ... M (load constraint), 

16 



k--1 
J 

2. D. = L: a. . + a. . < L, 
J p=l 1jp1J.p+l 1.k 1.1 

J j J 

(distance constraint) 

M 
so that L: 

j=l 
D. (total distance) 1s a minimum, where 

J 

ijl 1s the depot, and every location 1s visited once and 

only once. 

1. Conversion into Traveling Salesman Problem 

Christofides and E~lon [10] presented a procedure to 

transform the vehicle dispatch problem into a traveling 

salesman problem with certain constraints. They augmented 

the distance matrix with M artificial depots. All of them 

have the same location, with infinity assigned to the 

distance between two depots to prevent traveling from one 

depot to another. This is illustrated in figure 6. 

The number of artificial depots augmenting the 

distance matrix will begin with a small number and increase 

by one until there exists a feasible solution. Christ
N 

ofides and Eilon suggest the lower bound of [I q. 1 ] + 1 
i=l 1 c 

N 
for the first value of M since M·C > L: q .. 

-i=l 1 

In building the route, using a traveling salesman 

algorithm, a check must be made after each location is 

added to the route, to see if the distance constraint or 

the load capacity is violated between two artificial 

depots. 

17 
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M 
00 00 

all al2 alN . . . 
00 00 

all al2 alN . . . 
M 

00 . . . 00 
all al2 . . . alN 

all a11· . . all all al2 . . . alN 

a21 a21· . . a21 a21 a22 . . . a2N 

Figure 6. Augmented distance matrix 



Christofides and Eilon used the branch and bound 

algorithm by Little et al. [6] on several problems. They 

concluded that this method was inadequate because it 

could not solve a problem with more than 20 locations, 

since both the computation time and memory - space re

quirements became exhaustive. Bellmore and Nemhauser [4]. 

have reported solutions to problems of size 40. 

This procedure is an exact algorithm in that it yields 

an optimal solution. It is the only exact ~lgorithm for 

the vehicle dispatch problem known to the author. Vehicle 

dispatch problems that have a practical application are 

too large to be solved by means of any known exact 

algorithm. Hence,heuristic procedures have been developed 

to handle these large problems. 

2. Savings Approach 

The vehicle dispatch problem was first presented by 

Dantzig and Ramser [11] in 1959. The method they employed 

to solve the problem has become known as the sav1ngs 

approach. Clark and Wright [8] modified the method 1n an 

article in 1964 and restricted the load capacity to the 

same quantity for each vehicle. Gaskell [12] and Christ

ofides and Eilon [10] also gave modifications of the 

savings approach. 

The algorithm begins by linking each location with 

one vehicle and then returning to the depot. Links are 

then joined to eliminate vehicles by means of the "savings" 

19 



20 

equation, s .. = a 1 . +a. -a ... This quantity represents 
l] l l] lJ 

the amount saved by joining location ito location j. 

(See figure 7.) The depot is represented by 1. The 

total distance for the two vehicles before they are joined 

+ After the two locations are joined for 

one route, the total distance lS a 1 j + aij +ali' Hence the 

-a ... 
l] 

The largest savings, s .. , is selected and checked to see if 
l] 

the constraints are satisfied after locations i and j are 

joined. If the link i to j is feasible, it is added. 

Otherwise another link is considered. The solution is ob-

tained when no more links can be added. 

Tillman and Cochran [13] further revise Wright and 

Clark's algorithm by checking the next largest savings 

after the pair of points is joined. The sum of the two 

savings is calculated. The second step proceeds as the 

first, only taking the second largest savings first. A 

new sum is then calculated. The above procedure is repeat-

ed for the third highest savings, the fourth highest sav-

ings, etc., until all feasible savings have been included. 

The largest sum, after linking the pair of points, is then 

used. 

3· R-optimal 

Christofides and Eilon [10] introduce the implementing 
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0~.,_~---~ 
a 1 j ~ x J 
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X j 

Figure 7. Tour before and after joining two locations 
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of the 3-optimal algorithm to the dispatch problem . They 

add artificial depots similar to the way the depots are 

added in the method described 1n section A. After generat

ing a random tour, they find a 2-optimal tour. This tour 

is then used as an initial tour for the 3-optimal al

gorithm. The constraints are checked after a better tour 

has been generated. The distance and demand constraints 

are checked between each two successive depots . If the 

constraints are satisfied, then three more links are 

cha~ged until a better tour cannot be formed by changing 

three links . 

It appears from Christofides and Eilon's algorithm 

that they do not use Lin's algorithm [9] to generate a 

3-optimal tour. Rather, they use Lin's definition of a 

3-optimal tour: A 3-optimal tour is a tour that cannot be 

improved by removi~g 3 links and replacing them by 3 other 

links . However, they do use the method proposed by Lin, 

which starts a new search for the 3-optimal tour as soon 

as a better tour is determined. 

The conclusion reached by Christofides and Eilon is 

that the 3-optimal algorithm gives better routes than the 

savi~gs method. Christofides and Eilon did not include 

the distance constraint in the 3-optimal algorithm. 

4 . Hayes' A~gorithm 

Hayes [14] developed a heuristic approach for the 

vehicle dispatch problem in much the same way that a dis -
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patcher would dispatch his fleet of trucks. He first es-

timates the number of routes that he will need and then 

picks the same number of outside points. The first outside 

point is the point furthest from the depot. The other 

outside points are those obtained by maximizi~g the quan
r 

tity,a. 1 · TI a .. , over all locations i that are notal-
1 k=2 Jk1 

ready outside points, and where jk are outside points and l 

is the depot. This is illustrated in f~gure 8. The 
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algorithm then chooses one outside point, and adds locations 

to this point until a tour has reached either a distance or 

a demand restriction. Then a new outside point is chosen 

and the remaining points serve as candidates for the next 

tour. The points are added to the tour according to a 

score which is assigned to each point. This score is com-

prised of a variety of different values; 

a) 

b) 

c) 

d) 

Its demand, Q., 
1 

Its distance from the depot, ail' 

Its distance from the line joining the outside 

point and the depot, d., 
l 

Its distance to the nearest unassigned point, f .. 
1 

These values are shown in figure 9, where x represents the 

assigned points, o represents the outside point, and z 

represents the unass~gned points. 

The score for a location is a linear combination of 

these quantities, with the coefficients of Qi' ail' and 

f. being positive and the coefficient of d
1
. n~gative; 

1 . 
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1 

Figure 8. Determining outside points 
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a point will be added to a route if Q., a.
1

, and f. are 
~ ~ ~ 

large and d. ~s small. Hayes does not advocate any partie
~ 

ular values for the coefficients. However, he did run 

some tests on several problems. The location with the 

largest score is selected and then the constraints are 

checked. If the constraints are satisfied, thenthe loc-

ation is added to the route. If one of the constraints 

is not satisfied, the location with the next largest score 

~s examined. After two attempts to add a location, the 

route is closed and a new outside point is chosen. The 

algorithm is complete when all locations are assigned. 

If more outside points are needed, thenthe unassigned 

location whose distance from the depot is the greatest, 

lS assigned as an outside point. 

It is difficult to compare Hayes' method with other 

algorithms, since he did not give any results using the 

method. Also the method used to obtain the values of the 

coefficients is vague. 
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III. VEHICLE DISPATCH PROBLEM 

A. MATHEMATICAL DEVELOPMENT OF SWEEP ALGORITHM 

The purpose of this chapter is to present the mathe

matical foundations for the vehicle dispatch problem and 

the sweep algorithm. 

DEFINITION 1. The vehicle dispatch location problem 

(VDLP) is a set of integers, S = {1, 2, ···, N}, containing 

at least two elements; two positive real numbers, C and 

D; and the following functions: 

a) Q(I), a positive real valued function defined on 

S', where S' = S- {1}, 

b) A(I,J), a real valued function defined on S X S, 

c) X(I) and Y(I), two real valued functions defined 

on S, 

which satisfy the following constraints: 

d) Q(I) < C for all IE S', 

e) A(I,J) > 0 for all I and J E S except I = J, 

f) A(l,I) + A(I,l) 2 D for allIES', 

g) A(I,I) = 0 for all I E S. 
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In the vehicle dispatch problem the set S represents the 

N locations with l as the depot. Q(I) represents the de

mand for location I, and A(I,J) represents the distance 

between locations I and J. X(I) and Y(I) are the rect

angular coordinates for location I. C and D represent the 

load and distance capacities respectively for each vehicle. 



DEFINITION 2. SUM(P) = L Q(I) for all PCS' . 
Ie: p 

DEFINITION 3 . DIST(P) = Min [A(l , ~(1)) + 
~e: Per( P) 

n(P)~~~~--~~ 
i~ 2 A(~(i-1), a(i)) + A(~(n(P)) , l] for all Pe S ' where Per(P) 

is the set of all permutations of elements of P and n(P) is 

the cardinality of P . 

DIST(P) is the minimum distance for traveling through 

all locations in P , starting and ending at 1. 

DEFINITION 4 . An(I) = arctan((Y(I) - Y(l))/(X(I) - X(l)) 

where -n<An(I) < 0 if Y(I) - Y(l) < 0 , and 0 < An(I) < TI 

if Y(I) - Y(l) > 0, for all Ie:S'. 

Let us assume that the locations (elements of S ' ) 

are arranged so that An(I) < AnCI+l) . (If there exists an 

I and a J such that An(I) = An(J) then I<J if A(l,I)<A(l , J) . 

This determines a unique ordering). 

DEFINITION 5. A P- sect is a nonempty set, P , of 

elements such that 

a) Pe S', 

b) I f I e: P, J e: P, K e: S', and I<K<J, then Ke:P, 

c) If N ~p then either SUM(P V {L+l}) > C or 

DIST(P U {L+l}) > D where L is the L.U.B . for P, 

d) SUM ( P) < C, 

d) DIST(P) < D. 

DEFINITION 6. E is a dispersement if and only i f 

E = {P
1

, P 2 , ···, Pk} such that 
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a) P. n P . = ~ for all i = 1, 2, 
l J 

... ' k ; j = 1, 2 , ·· · ,k ; 

and i '/. j , 



b) U P. = S'. 
i=l,···,kl 

Pk} is a P-sect dis-

persement if and only if P. ls a P-sect for i = 1, 2, · · ·, k, 
l 

and E is a dispersement. 

DEFINITION 8. The P-sect P
2 

follows P
1 

if and only if 

there exists an I £ P
1 

such that I + 1 £ P 
2

, where P
1 

C S' . 

THEOREM 1. A P-sect dispersement for a VDLP exists 

and is unique. 

PROOF. To prove existence, we construct a disperse-

ment whose elements are P-sects. Let P - {2 3 · ·· I }CS' 
1 - ' ' ' 1 

such that conditions c,d, and e of definition 5 are satis-

fied. P1 ~ 0 since 2 £ S' by definition of VDLP statements 

d and e. Therefore P1 is a P-sect. If I 1 = N, then the 

theorem is complete in that there is only one set in the 

dispersement. If r 1 < N, then let P 2 = {I1+l,I1+2,·· ·,I 2}cS' 

such that conditions c,d, and e of definition 5 are satis-

fied. Hence P 2 is a P-sect. Likewise define P3 ,P 4 ,···,Pk 

until Pk con!ains N. E = {P1 ,P 2 ,· ··,Pk} is a P-sect dis

persement since each P. is a P-sect, the P.'s are disjoint, 
l l 

and every element in S' is in a P-sect. 
~ 

To show uniqueness it is sufficient to show that the 

construction of the P.'s is unique. Since 2 £ S' it must 
~ 

be in one of the Pi's. P1 was constructed so as to contain 

2. Now P1 cannot contain any more elements by definition 5 

statements d and e, and it cannot contain any fewer elements 

by definition 5 statement c. Hence P1 is uniquely deter-
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mined. Likewise P2 ,P 3 , ·· ·, Pk are uniquely determined. 

Therefore the construction of each P. is unique and hence 
l 

the P-sect dispersement for a VDLP lS unique.// 

DEFINITION 9. Let 8 = {P1 ,P 2 , ... , Pk} be a disperse

ment. The total distance of 8,(TD(8)), is defined to be 
k 

TD(8) = ~ DIST(P.). 
. 1 l l= 

DEFINITION 10. A dispersement, 8 = {P1 ,P 2 ,···,Pk} is 

an optimal dispersement if and only if TD(8)< TD(R) where 

R is any dispersement. 

There exists a VDLP such that the P-sect dispersement 

is not an optimal dispersement. This can easily be 

verified by the following example: 

Let S = {1,2,3,4,5}, C = 2, and D = 15. Let the functions 

X(I), Y(I), Q(I)andA(l,J) be defined according to figure 10. 

By examining the functions it is easy to verify that con-

ditions d,e,f, and g of definition 1 are satisfied. Hence, 

it is a VDLP. Examination of all the XCI) and Y(I) values 

reveals that An(M) ~ An(M+l), forM= 1,2,3 and 4. 

Let P
1 

= {2,3} and P2 = {4,5}. 8 = {P1 ,P 2 } lS a dis

persement and the total distance for e is: 

TD(8) = DISTCP
1

) + DIST(P 2 ) = (1+4+5) + (6+4+3) = 23. 

8 is the P-sect dispersement. 

Another dispersement is e1 = {T1 ,T 2 } where T1 = {2,5} 

and T = {3,4}. The total distance for e1 is: 
2 

TD(8
1

) = DIST(T
1

) + DIST(T 2 ) = (1+2+3) + (5+1+4) = 

Since TD(8)>TD(81), the P-sect dispersement is not an 

16. 
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I l 2 3 4 5 

l 0 l 5 6 3 

2 l 0 4 5 2 

A= 
3 5 4 0 l 5 

4 6 5 l 0 4 

5 3 2 5 4 0 

I 1 2 3 4 5 

X(I) 0 1 5 5 1 

Y(I ) 0 0 1 2 2 

Q( I ) 1 1 1 1 1 

Figure 10 . Examples for A,X,Y , and Q 
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optimal dispersement.// 

In an application involving the vehicle dispatch 

location problem we desire to find an algorithm which will 

produce an optimal dispersement. However, for large N 

this becomes exceedingly difficult. Hence,we are satisfied 

with a dispersement with total distance close to the total 

distance of an optimal dispersement. Since a P-sect 

dispersement is not necessarily an optimal dispersement a 

P-sect dispersement is changed so as to minimize the total 

distance. This leads to the definition of a modified P-sect. 

DEFINITION 11. Let {P1 , P 2 ,···, Pk} be a dispersement 

and let Pi+l be a P-sect. P! 1s a modified P-sect of P. if 
l l 

and only if Pi=<PiU{M})-{K} where M is the Q2 and K the Q1 

SUM(Pi)~D where Pi+l is the P-sect that follows Pi. If 

THEOREM 2. In definition 11, {P1 ,P 2 ,···, Pi-l' Pi, 

Ti+l' Pi+ 2 ,···, Pk} is a dispersement where Ti+l=(Pi+lU{K})-{M} 

PROOF: If Pi= Pi' then {P1 ,···, Pi, Ti+l' .. ·, Pk} is a 

dispersement s1nce {P
1
,··· ,Pk} is a dispersement. 

If Pi~ Pi' then each of the sets of {P1 ,···Pi,Ti+l'···, 

Pk} are disjoint and every element in S' is in at least one of 

the sets, since just two elements of the two sets were inter-



changed, and since {P1 , P2 , ·· ·,Pk} is a dispersement. 

Hence , the set {P1 , · · ·,Pi,Ti+l' ··· ,Pk} is a dispersement.// 

By modifying one set at a time , beginning with P
1

, 

a dispersement can be completely modified. Let {Pi, T2 , 

P3 , · · ·, Pk} be the dispersement with Pi the modified 

P-sect of P
1

, and T
2

=<P
2

-{M}) v {K}if P1 ~Pi and T
2

=P
2 

other

wise . Then let P2 be the modified P- sect of T
2 

with 

T
3 

= (P
3

- {M}) u {K} if T
2 

~ P2 and T
3 

= P
3 

otherwise . 

Continuing this process through Pk- l the dispersement 

{Pi,· ·· ,Pk-l'Tk} is obtained. This dispersement is called 

the modified dispersement of the P- sect dispersement 

THEOREM 3. TD({P1 ' , P 2 ', · ·· , Pk- l', Tk})<TD({P1 , 

' Pk}) 

PROOF. By definition ll a P-sect is only changed if 

the sum of the two DIST values of each set is decreased . 

Hence , by the definition of the total distance of a dis-

persement, the total distance of the modified dispersement 

is less than or equal to the total distance of the P-sect 

dispersement.// 

There may exist a dispersement for which the total 

distance can be improved by exchanging one location in P 

with two locations in the P-sect which follows P . This 

leads to the definition of a second modified P-sect. 

ment and Pi+l a P- sect that follows Pi. Then P . '' is 
1 
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called a second modified P-sect of Pi ~f and only if 

P. ''= (P .V {M}U {L}) ~{K} where M is the Q2 , L the Q
3 

and K 
~ ~ . 

the Q1 such that 

H = DISTCCPiU{Q 2} U {Q~})~{Q 1 })+ DIST(((pi+l0 fQ 1 }) - {Q 2})-{Q 3}) 

is a minimum for all Q1EPi' Q2ePi+l' and Q3EPi+l and with 
. . 

DIST(P, ") < D, SUM(P, I)' < D. 
~ - ~ -

If H ~ DIST(Pi) + DIST(Pi+l)' then Pi' ' = 

THEOREM 4. In definition 12, 

p •. 
~ 

{P1 ,P2,· · ·,Pi-l'Pi '', Wi+l'pi+ 2 ,· · ·,Pk} is a dispersement 

where wi+l =CCPi+lU{K}) - {M})-{L} if Pi' I '#pi' otherwise 

wi+l = Pi+1· 

PROOF . If Pi"= Pi' then {P1 ,· · ·, Pi"' Wi+l'·· ·,Pk} 

is a dispersement since {P1 ,P2 ,·· ·, Pk}is a dispersement. 

If P. ' 1 '# P., then each of the sets of 
~ ~ 

{P1 , ·· · ,Pi'', Wi+l'·· ·, Pk} are disjoint and every element 

~n S ' is in at least one of the sets, since just two elements 

of Pi were exchanged for one element of Pi+l and since the 

set {P1
,P2 , ... ,Pk} is a dispersement . Hence, 

{P1 , ·· ·, Pi'', Wi+l' ·· ·, Pk} is a dispersement . // 

By determining the second modified P- sect beginning 

with P1
, it is possible to completely determine the second 

modification of a dispersement. Let {P1 '', W2 ,P3 ,···,Pk} 

be the dispersement with P1
11 the second modified P- sect 

of P
1 

and w2 = CCP2 U {K}) - {M}) - {L} if P1 =P1 '' and w2=P2 other-



w1se . Then let P2
1 1 be the second modified P- sect of 

W2 with W3 =CCP 3V{K})-{M})~{L} if W
2 

= P
2

1 ' and w
3 

= P
3 

otherwise . Continui~g this through Pk-l we obtain the 

followi~g dispersement : {P1 ' ',P2 ' ',· · · , Pk-l 1 1
, Wk} . 

This d i spersement i s called the second modified disperse-

THEOREM 5. Tb { p ' ' p I I • • • p ' I w } ) < l ) 2 ) ' k-l ) k 

is the second modified dispersement and {P
1

' ,P 2 ', ···, 

Pk_1 ', Wk} is the modified dispersement of the P-sect 

dispersement {P1 , P2 , · · ·, Pk}. 

PROOF. First note in definition 12 that Q2 may equal 

Q3 . Hence,K may equal L. But this implies that all 

possibilities of switching one location of P. with one 
1 

location in Pi+l are considered . 

definition for a modified P-sect . 

This however , is the 

Hence, DIST(P . ' ) + 
1 

DIST(Ti+l) > DIST (Pi'') + DIST(Wi+l) . Therefore, the 

total distance of a second modified dispersement is 

less than or equal to the total distance of a modified 

dispersement.// 

COROLLARY l. TD({P 1 1 P ' ' ·· · Pk_1 ' ' , Wk}) < 
l ' 2 ' ' 

PROOF. This follows immediately from theorems 3 and 

5.// 
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Examples of a vehicle dispatch location problem can be 

given for which the second modified dispersement is not 

an optimal dispersement. 
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B. SWEEP ALGORITHM PROCEDURE 

The mathematical development in the previous section 

provides the basis for the sweep algorithm. The locations 

are partitioned into a P-sect dispersement and then into 

a second modified P-sect dispersement. Corollary 1 assures 

us that a second modified P-sect dispersement has a total 

distance less than or equal to the total distance of a 

P-sect dispersement. A second modified P-sect dispersement 

may be obtained by rotation the X and Y axes counterclock

wise so that the first location will become the last loca

tion, the second location will become the first location 

and so forth. This process of rotating the X and Y axes is 

continued until a new P-sect dispersement cannot be generated. 

Each time, the total distance of the second modified P-sect 

dispersement is calculated. The minimum of these total 

distances provides a good heuristic solution for the vehicle 

dispatch problem. 

The algorithm begins with location 2 and then adds 

locations 3,4, ... to the route. Recall that the locations 

were renamed according to the size of the polar coordinate 

angle; location 1 has the smallest angle; location 2 has 

the next largest angle, and so forth. This is called the 

forward procedure. A second method begins with location N 

and adds locations N-1, N-2, ... to the route. This pro

cedure is called the backward procedure. In most cases 

the two procedures produce different routes. 

A disadvantage of the algorithm is that a traveling 



salesman problem must be solved many times in order to 

determine a second modified P-sect. This is necessary 1n 

order to determine the location which is to be eliminated 

from the route, and the locations which are to be added to 

the route. Hence, in the sweep algorithm these locations 

are determined heuristically by the following procedure: 

The location to be deleted from the route is obtained 

by minimizing a function of the radius, R(I), and the 

angle, An(I), of each location in the route. This provides 

a location that is both close to the depot and also close 

to the next route. A function of R and An, which seems 

to work very well, is R(I) + An(I) · AVR, where AVR is 

the average of the radii for all locations. For a modi

fied P-sect, the location, I, which is augmented to the 

route, is the location nearest to the last location that 

was added to the route. For the second modified P-sect, the 

other location added to the route is the location nearest 

to location I. Choosing these locations in this manner 

may not give the best locations. However, it provides a 

very fast scheme for selecting the locations, compared 

to the use of other algorithms, which require solving the 

traveling salesman problem many times. 

If one or two locations are added to the route by 

this scheme, then the next location is also checked to see 

if it can be included 1n the route. This process of adding 

one or two locations and deleting another location continues 

until no improvement is found. Hence, an iterative scheme 
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1s established. Figure ll illustrates this scheme with an 

example of 21 locations and all possible paths between the 

locations. For example, it is impossible to go directly 
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from location 4 to location 10. Let the distance between two 

adjacent houses be l, then A(l,2) = 5, A(2,3) = 1, A(2,6) = 2, 

A(4,10) = 5, and so forth. Also, let each location have a 

demand of l and let the load capacity be 10. The backward 

sweep would first assign the locations 21, 20, 19, 18, 17, 

16, 15, 14, 13, and 12, since each location is selected 

according to the value of the angle in polar coordinates. 

These locations are circled in figure 12. This route has a 

distance of 18. 

The iterative scheme then selects location ll and 

deletes location 15, which is shown in figure 13. By 

applying the iterative scheme two more times, locations 

10 and 7 are augmented to the route, while locations 19 

and 18 are eliminated. This provides a total distance of 

16. This is shown in figure 14. 

Another variation involves checking the J + 2 locat

ion, where J is the last location added to the route. If 

the distance and load constraints are satisfied, then the 

J+2 location is added to the route. This variation will 

always yield the same number of or fewer routes. However, 

it may produce a dispersement with greater total distance. 

Taking these two variations two at a time gives 

four possibilities. All four of these possibilities are 

used in the sweep algorithm. 
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21-17----14-12-11 

I I 
20-16 13-10-7 

I I 
19-15-9 6 5 

I I 
18 8 4-3 2 

I 
1 

Figure 11. Example of a vehicle dispatch problem 

-t--11 

~' ----:7 

I 
--5 

I 
---2 

1 

Figure 12. Initial tour 
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~-10-7 

I 
--6--5 

I 
--4-3--2 

1 

Figure 13~ Tour after one iteration 

19-+---15--9---6 --5 

I I 
18 8--4--3--2 

I 
1 

Figure 14. Tour after three iterations 



The followi~g step procedure for the sweep a~gorithm 

presents the forward procedure and does not check the J + 2 

location . We shall assume the notation used in the mathe-

matical development , and also that we have a VDLP. Instead 

of relabeling the locations, we will let K(I) denote the 

location with the th 
I la:r-gest a~gle . Fortran logic is used 

in explaining the step procedure. 

STEP 1. 

Evaluate the polar coordinates for each location with 

the depot at ( 0 ' 0 ) . Let An(I) represent the angle and R(I) 

the radius for location I. 

STEP 2 . 

Determine K(I) for I= 1 , · · ·, N such that An(K(I)) is 

less than or equal to An(K(I+l)) . 

STEP 3 . 

Begin the first route with J = 2 and SUM= Q(K(2)). 

STEP 4. 

Increment the angle by making J = J + 1. 

STEP 5 . 

If SUM+ Q(K(J))>C , then go to step 7 . 

STEP 6 . 

A~gment the route with location K(J) by maki!"lg 

SUM : SUM + Q(K(J)). If J = N, then go to step 16. If 

J -f N, then go to step 4 . 

STEP 7 . 

Calculate the minimum distance , Dl , for the route, 
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by means of a traveling salesman algorithm. Check the 

distance constraint. If the distance capacity is exceeded 

then eliminate K(J-1) from the route. Make SUM=SUM-QCKCJ-1)) 

and J = J-1. Check the distance constraint again. Continue 

this procedure until the distance constraint is satisfied. 

STEP 8. 
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Determine JJX so that K(JJX) is the nearest location to 

K(J-1) and not in a route. Find JII so that KCJII) is the 

nearest location to K(JJX) and not in a route. Likewise 

determine I so that R(K(I)) = An(K(I))·AVR is a minimum for 

all locations in the route. Let KII denote this I. Determine 

the minimum distance, D2 , for the route with K(JJX) added to 

the route and K(KII) deleted from the route. 

STEP 9. 

If D
2 

< D and the load constraint is satisfied, then 

go to step 11. Otherwise go to step 10. 

STEP 10. 

Record the route and start a new route by setting 

SUM= Q(K(J)). Go to step 4. 

STEP 11. 

Evaluate the mlnlmum distance, D3 , for starting at 1, 

traveling through locations K(J), K(J+l),···, K(J+4) and 

ending at K(J+5). Determine the distance, D4 , for traveling 

through the same locations, except eliminate K(JJX) and inject 

K(KII). If K(JJX) is not K(J), K(J+l),···, or K(J+4), then 

go to step 10. If n
1 

+ D3 < n2 + D4 then go to step 13. 

Otherwise go to step 12. 



STEP 12. 

Place K(JJX) 1n the route and remove location K(KII). 

Go to step 4. 

STEP 13. 

Evaluate the m1n1mum distance, D5 , for the route with 

K(JJX) and K(JII) substituted for K(KII). If K(JJX) and 

K(JII) are not K(J), K(J+l), ···,or K(J+4), then go to step 

10. If D5 < D and the load constraint is satisfied then go 

to step 14. Otherwise go to step 10. 

STEP 14. 

Determine the minimum distance D
6 

for starting at 1; 

traveling through locations K(J), K(J+l),···, K(J+4); and 

ending at K(J+5), with K(JJX) and K(JII) excluded and K(KII) 

included. If D1 + D3 < D5 + D6 , then go to step 10. Other

wise go to step 15. 

STEP 15. 

Place K(JJX) and K(JII) in the route and eliminate 

K(KII) from the route. Go to step 4. 

STEP 16. 

Evaluate the minimum distance for the route and check 

the distance constraint. If not satisfied, then go to step 

17. If satisfied, then that set of routes is complete. 

Check to see if another set of routes is needed. If no 

more are needed, then go to step 19. Otherwise go to 

step 18. 

STEP 17. 

Delete one from the route. (J = J- 1.) Go to step 10. 
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STEP 18. 

Increment the angle by one location (i.e . start with 

K(3) for the second set of routes . ) Go to step 2. 

STEP 19. 

Stop. 

Bellmore and Nemhauser have tested several algorithms 

for the traveling salesman problem and have reported that 

Lin's 3-optimal did as well, if not better than, other 

a~gorithms [4] . Hence, the 3-optimal algorithm was used in 

the sweep algorithm to determine the sequence of locations 

which yiel ds a minimum distance for each route. 

An algorithm is also needed to determine the minimum 

distance of traveling thro~gh locations K(J), K(J+l), .. . , 

K(J+4); starti~g with 1 and ending at K(J+5). This is not 

a traveling salesman problem, in that it does not begin or 

end at the same location. Hence , Lin ' s 3-optimal algorithm 

does not apply . In chapter IV, section B, a branch and 

bound algorithm is used with arbitrary cost functions at 

each location. This algorithm can easily be modified to 

determine the minimum distance of a location problem which 

does not begin and end at the same location. Therefore, it 

was used in the sweep algorithm. 

The sweep a~gorithm is a heuristic procedure which 

attempts to minimize the number of servers and the total 
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cost. Contradictory as it may seem, minimizing the number of 

routes does not necessarily minimize the total cost. 

can best be shown by the example given in figure 15. 

This 

Let 
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Figure 15. Five locations with two and three routes. 



47 

location 1 be the depot at the origin, and the coordinates 

of the four locations be a follows: location 2 at (-2,2) 

with demand 20; location 3 at (-4,4) with demand 20; location 

4 at (4,2) with demand 40; and location 5 at (0,-5) with 

demand 40. Let theload limit for the servers be 60. It is 

possible to construct two routes that will service all four 

locations, namely routes 1,4,2,1 and 1,5,3,1. This yields 

a total distance greater than the three routes: 1,2,3,1; 

1,4,1; and 1,5,1. Hence, an optimal solution may not 

have the minimum number of routes. 
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C. MODIFICATIONS OF SWEEP ALGORITHM 

There are various ways 1n which the sweep algorithm may 

be modified. Several of these variations were tested and 

have produced better solutions on particular problems. Four 

modifications which have been considered are as follows: 

1. In the sweep algorithm, the location, K(JJX), 

which replaces a location already in the route, is the 

location closest to the last location in the route. Figure 

16 shows that this procedure may not yield the best location . 

Let X represent the locations of a route , Z represent the 

depot and 0 represent the unassigned locations. Since 

location 6 is the last location in the route and location 

8 is the closest location to 6, the sweep algorithm selects 

location 8 for K(JJX). However, from figure 16 it is 

seen that location 7 is a better choice for K(JJX) . 

Location 7 may be chosen by first requiring R(I) 

to be large, where I is a location in the route, and then 

making K(JJX) theM which minimizes A(I,M), where M is 

an unassigned location. A suggested lower bound for R(I) 

is AVR•(0 . 7), where AVR is the average of the R(K)'s for all 

K = 2,3, ·· ·, N. 

2 . Step 8 in section B uses a function of Rand Q 

to determine the location to be delete¢ from a route . 

Several functions were used, but none were found to be 

superior in all cases. The function R(I) + Q(I)·AVR gave 

better overall results than other functions that ~ere used . 
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Figure 16. P-sect dispersement and unassigned points 
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3. Steps 11 and 14 in the sweep algorithm may also 

be modified to include more locations than K(J+S). This 

will always provide the same or better solutions. How

ever, as soon as more locations are used, then more time 

is needed to calculate the minimum distance to traverse 

the locations. 

4. The sweep algorithm examines the second modified 

P-sect to see if it provided a savings in the total distance. 

Likewise, a third modified P-sect might also be checked. 

This involves changing three locations not in the route with 

one location in the route. Other combinations might also be 

examined by such means as interchanging two locations for 

two other locations, or interchanging three locations for 

two locations. Again the difficulty with checking these 

possibilities is that it requires many computations since 

a traveling salesman problem must be solved each time. 

Examples can be given where these combinations can provide 

a better solution. However, the problems that were solved 

did not reveal this. (See appendix B). 
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IV. GENERALIZED VEHICLE DISPATCH PROBLEM 

A. MATHEMATICAL FORMULATION OF THE PROBLEM 

The vehicle dispatch problem with arbitrary cost 

functions is a generalization of the vehicle dispatch 

problem and lS defined as follows: 

Given; 

1. {1,2,·· ·, N}, the set which represents N locations, 

2. A .. , the time to travel from location ito location 
l] 

J ' 

3. f.(s.), an arbitrary cost function assigned to 
l l 

location i where s. is the time that location i 
l 

was serviced by a server, 

4. Q., the demand for location l, 
l 

5. g(t), a cost function which gives the cost to 

travel for a length of time t. 

The problem is to determine the number of routes and 

the locations for each route so as to minimize the total 

cost and still satisfy a time and a load constraint for 

each server. 

A mathematical formulation of the problem lS as follows: 

Determine M finite sequences, p. 1 ,p. 2 ,· ··,p.k for 
l l l • 

l 

i = 1,2,···,M, such that 

M ki 
= L { L [f (s )] + g(s + 
i=l j=2 Pij Pij . pik. 

l 

TC A )} 
p.k P·1 l . l 

l 
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j-1 
is a minim.um, ~7hare s - ~ 

~' . ·p • ' '"' H A , for which the 
Pt,q Pi' q+l ~] q=l 

following constraints are satisfied: 

1. {p •• I i = 1,2,···, M and j = 2,3,···,k.}= 
lJ l 

2 • 

{2,3, .. •,N}, 

Pij ~ pkr for all i, k, j>l, and r>l except for 

i = k when j = r; pil = 1 for all i, 
ki-1 

3, r (A ) + A < D. for all i, 
j=2 PijPi,j+l pik.Pil l 

l 

k,-1 
l. 

4. r Q < c. for all i. 
i=2 Pij l 

The sequence pil' pi 2 ,· ·· ,pik. represents the route 
l 
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for server i. The jth location that server i serves is P··· 
l] 

TC represents the total cost for all M servers, and s is 
p •. 
l] 

the total time that server i travels through location p ... 
lJ 

The third constraint restricts server i to a time D. to 
l 

complete the route. The fourth constraint restricts the 

total demand for server ito c .. 
l 



B. BRANCH AND BOUND ALGORITHM. 

Let us assume that the ·number of servers is one and 

that there are no constraints. This problem is then a 

generalization of the traveling salesman problem in that 

there is a cost function at each location. Mathematically 
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the problem may be stated as follows: Given are A .. , f.(s.), J.] ]. ]. 

g(t) and Q .. Determine a permutation, 
]. 

that 
N 

TC = g(s + A 1) + L f (s ) 
PN PN i=2 P· P· ]. ]. 

i-1 
where s = L A 

P· q=l PqPq+l ]. 

p 2 ,p 3 ,···,pN' such 

J.S a mJ.nJ.mum for all permutations, p2 ,p 3 ,···,pN' of the 

set, {2,3,· ·· ,N}. 

The branch and bound algorithm can be applied to this 

problem, but it differs from the algorithm given by Little, 

et al., in two ways [6]. First, each node represents a 

location instead of a link, and second, the bound is deter-

mined only after a route is completed. These two mod-

ifications are necessary since the total time, s , 
pi 

through location p. is needed in order to obtain the value 
N ). 

. <#' " 
of . the ~~ost function of location p .. Hence, the algorithm 

]. 
,.. 

begins at the depot and branches to one of the remaining 

locations. Figure 17 shows all possible branches for a 

four-location problem. 

After one branch is determined, the total cost for 

that branch, including returning to the depot, is cal-
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Figure 17. Complete tree for a four-location problem 



culated. This cost serves as a bound until another total 

cost is calculated which is less than the bound. Then 

this cost becomes the bound. Assuming that f.Cs.) > 0 
l. ~ -

and si ~ O, for all i, and g(t) ~ 0, for all t ~ 0, then a 
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branch can be terminated whenever its total cost exceeds the 

bound. Putting these restrictions on the functions is not 

too limiting, since applications will normally have these 

restrictions. 

Another restriction, which in turn aids the algoritm, 

is to require the functions to be monotonic increasing. 

This permits the algorithm to back off one node before 

continuing on a different branch, whenever the total cost 

exceeds the bound. This is the essence of the following 

theorem. 

THEOREM 6. 

If f
2 Cs 2 ), f

3
Cs

3
),···,fN(sN) and g(t) are monotonic 

increasing functions, A .. + A.k > A.k, 
~] J - ~ y 

E = g(s ) + E f.(s ) > B 
Py i=2 J. Pi 

where B is a positive real number, and p 2 ,p 3 ,···,pN is a 

permutation of the set{2,3,· ·· ,N}, then 
z 

F = g(s ) + E f.(s ) > B where r 2 , r 3 ,·· ·, rN is a per-
rz . 2 J. r. -

1.= l. 

mutation of the set {2,3,··· ,N} and r.=p. for all i<y and 
. 1 1. ~ ]-

r =p . (As before s = E A ). 
z Y Pj i=l pipi+l 

PROOF. 



P2 ,p 3 ,··· ,pN' and r 2 ,r3,··· ,rN are permutations of the set 

{2,3,··· ,N} and p. = r. for all i<y. Hence, z _> y and 
J... J... 

consequently k > 0. The method of proof is mathematical 

induction on k. 

If k = 0, then p = r and hence E = F. Then it 
y y 

follows that F < B since E<B. 

Assume that the theorem is true for k = k', i.e. F < B 

Now let k = k 1 +l. Then z 
k 1 +y+l 

= k'+l+y and hence, 
k 1 +y k 1 +y+l 

F' = g(s ) 
rk 1 +l+y 

+ E f.(s ) 
. 2 J... r. l..= J... 

= g( E A )+ E f.(s ). 
. 1 r.r.+l . 2 J... r. J...= J... J... l..= J... 

From 

F I = 

this it follows that: 
k 1 +y-2 
g(E A +A + 
i=l riri+l rk'+y-2rk'+y-l 

A ) 
rk' +y-1 rk I +y 

k'+y-1 
+ E f.(s ) + fk' (s )+fk 1 + +l(s )and also 

i=2 J... ri +y rk 1 +y Y rk'+y+l 

since Aij + Ajk 2 Aik and fi and g are monotonic increasing 

functions, we then have; 

k 1 +y-2 k 1 +y-l 
fl> g(L A +A ) + E f.(s ) + 

i=l riri+l rk 1 +y-2rk 1 +y i=2 J... ri 

f 1 
(s +A ) = G. 

k +y+l rk'+y-lrk 1 +y-lrk'+y+l 

But G is the value ofF for a permutation that has k=k'. 

Hence, its value is less than or equal to B since the 

theorem J...S true for k = k'. Therefore, F' > B and the 

theorem J...S proved via mathematical induction.// 
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The branch and bound algorithm can be modified by 

using different criteria to select the next location. One 

method is to choose the location which maximizes the value 

f . (T) - f.(t) where tis the time that the next location 
1. l 

wi ll be visited , and T is the time that the las t location 

will be visited. This will increase the possibi l ity for a 

location with a large increasing cost function to be se l-

ected first, whi l e a location with a constant cost function 

will be selected last . The disadvantage of this procedure 

is that T is not known until the route is comp l eted. How-

such as ever , estimates 
N 

[((2/3) l: 
i=l 

l: 
j>i 

2 A .. )/(N- N)] · 2 · CN + 1) 
1.] 

can be used for symmetric A matrices . 

The following i s a s t ep procedure for the branch and 

bound algorithm for one server and arbitrary cost functions: 

Let ACI,J) denote the time of travel from location I to 

location J and f(I,t) denote the cost function for location 

I at time t . 

STEP 1. 

Begin the accumulated distance and time , D(l , l) = 0 

and T(l,l) = 0. Set I = 
N 

number. Let z=[((2/3)l: 
i=l 

STEP 2 . 

1 and Bound equal to large 

E A .. )/ CN 2 - N)] · 2· (N + 1). 
j >i l] 

Set I = I + 1 and calculate T(I,J) and D(I , J), the 

total time and cost of t he route from depot 1 to location 

J , where J is the Ith route. Do this for all J not already 

assigned. 
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STEP 3. 

If D(I,J)> Bound, for any unassigned J, go to step 5. 

STEP 4. 

Select J such that H(I,L) = F(J,Z)- F(J,T(I,J)) is 

a minimum for all J not assigned. If there are no un

assigned J's,then go to step 5. Otherwise go to step 8. 

STEP 5. 

Set I = I - 1. If I = 1, then go to step 11. 

STEP 6. 

Find L such that HCI,L) is a minimum for all un

assigned L. If there are no unassigned L's, then go 

to step 5. 

STEP 7. 

Set IT(I) = L. Go to step 9. 

STEP 8. 

Set IT(I)= J. 

STEP 9. 

If I is less than N, then go to step 2. 

STEP 10. 

Calculate the total time and cost to return to 1 for 

the route IT(K) forK= 1,2,· ·· ,N. If the total cost lS 

less than Bound then set Bound equal to the total cost. 

Print out the route. Go to step 5. 

STEP 11. 

Stop. 

58 



V. EXPERIMENTS AND RESULTS 

The sweep algorithm was used to solve eight vehicle 

dispatch problems. Appendix B contains the details of 

these problems. Problems one through four were proposed 

by Gaskell [12]. All four of these problems have a load and 

a qistance constraint for each server, and an additional 

distance of ten units for each location. Christofides and 

Eilon's 3-optimal algorithm [10] does not apply to these 

problems, since it does not solve problems with distance 

constraints. The results of Gaskell's savings approach are 

compared with the four variationsof the sweep algorithm in 

Table I. Problem one has 22 locations, including the depot. 

All four of the variations of the sweep algorithm were able 

to schedule all of the locations in 4 routes. Two of these 

had a total distance that was less than the distance given 

by the savings approach. 

Problem two was the only example in which the algorithm 

did not provide a smaller total distance than the savings 

approach. Again all the variations had the same number of 

routes as the savings approach, namely 5. The best answer 

of 956 was only 0.5% greater than the solution given by the 

savings approach. 

The sweep algorithm gave better results on problems 

three and four~ In problem four, the sweep algorithm was 

able to reduce the number of routes from 5 to 4, when the 

J + 2 location was checked after each route was formed. 
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Number Gaskell's Christofides Sweep A~gorithm 
Problem 0f Savings and Eilon's not che"king J+2 checking J+2 
Number Locations Aooroach 3-optimal Forward Backward Forward Backwar d 

l 22 598 589 608 602 592 
R=4 R=4 R=4 R=4 R=4 

2 23 949 969 956 962 995 
R=5 R=5 R=5 R=5 R=5 

3 30 963 945 885 980 885 
R=S R=5 R=4 R=5 R=4 

4 33 839 851 842 854 817 
R=5 R=S R=S R=5 R=4 

5 51 585 556 574 553 575 546 
R=6 R=S R=5 R=5 R=S R=S 

6 76 900 876 896 906 865 88 4 
R=lO R=lO R=ll R=ll R=lO R=lO 

7 101 887 863 878 85 4 871 862 
R=8 R=8 R=8 R=8 R=8 R=8 

8 251 5907 5962 5794 5911 
R=26 R=26 R=25 R=25 

TABLE I 

Comparisons of Vehicle Dispatch Algorithms 

Best 
Solut i on 

586 
R=4 

956 
R=5 

885 
R=4 

817 
R=4 

524 
R=5 

865 
R=lO 

854 
R=8 

5794 
R=25 

0'> 
C> 



Hence, a greater savings was obtained. Problems five, six, 

and seven were posed by Christofides and Eilon [10]. These 

problems do not have a distance constraint for the server, 

nor do they have an additional distance for the locations. 

At least one of the variations of the sweep algorithm 

provided a solution which was better than the 3-optimal and 

the savings approach. In problem six, checking the J + 2 

location was necessary to reduce the number of routes from 

11 to 10, and consequently produce a smaller total distance. 

The real test for a vehicle dispatch algorithm is its 

ability to solve a problem involving many locations. Problem 

eight, in appendix B, has 250 locations and this problem 

was easily solved by the sweep algorithm. 

The sweep algorithm modifications presented in 

chapter III, section C, were also used. Only two lmprove

ments were determined out of the eight problems. These were 

problems one and five. Their results are included under 

"Best Solution" in Table I and also in Appendix B. 

The disadvantage of the sweep algorithm in solving 

large problems is the time required to solve the traveling 

salesman problem. If the number of locations for each route 

remains approximately the same, then the time to solve the 

vehicle dispatch problem becomes linear with the number of 

locations. Other algorithms have an exponential growth 

rather than linear. Hence, the sweep algorithm is capable 

of solving larger problems. 

Problem eight required approximately 15 minutes of 

61 



computer time, including compiling and execution time on 

an IBM 360/50. In many cases, the cost for computer time lS 

inexpensive compared to the savings in the total cost that 

a better route may produce. For example, if the total 

distance for the routes of a school bus were reduced by 

25 miles, then this would provide a larger savings in total 

cost for one year than the cost for a few minutes of computer 

time. 

The problems solved in the appendix defined distance 

between two points to be /(X. - x.9 + (Y. - Y.)2. However, 
l J l J 

the sweep algorithm can be used on other distances.· In an 

application such as the school bus routing, the distance 

between all locations and the rectangular coordinates for 

each location must be given. The sweep algorithm uses 

the same procedure as before, except A(I,J) is now 

defined according to the actual geographic distance rather 

than the straight line distance between two locations. 

The branch and bound algorithm presented in chapter IV, 

section B, is an exact scheme. It does have the disadvan-

tageofrequiring a large number of calculations for problems 

with many locations. A ten-location problem with ten cost 

functions was solved by the algorithm in 10 minutes on an 

IBM 360/50. The time required to solve a problem depends 

upon the cost function which determines the lower bound. 

If a good lower bound is determined on the first route, then 

more branches can be eliminated, and hence, fewer calculations 

are required. 

62 



VI . SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS 

There are many problems that can be classified as 

vehicle dispatch problems . However , the a~gorithms pre

sented in chapter II are. generally not satisfactory for 

practical problems, since these problems usually involve 

many loca tions . The purpose of this thesis is to develop 

an algorithm for solving a large problem. 

The sweep algorithm is a heuristic pr ocedure for the 

vehicle dispatch problem. The basic procedure of the 

a~gorithm is to ~ggregate a set of locations into a P-sect 

dispersement . Then each of these P-sects are examined to 

see if one or two locations of a P-sect can be switched 

with one location of another P- sect so as to reduce the 

total distance. In chapter III, section A, it was shown 

that a second modified P- sect dispersement has a total 

distance which is less than or equal to the total distance 

of a P- sect dispersement. The sweep algorithm heuristically 
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produces a second modified P-sect dispersement. The elements 

of a modified P-sect are the elements of a route. A travel-

ing salesman a~gorithm is used to determine the sequence of 

locations which will yield the least distance in the route . 

Four sets of routes are developed by the followi~g procedures: 

1 . Augment the routes by means of the forward procedure 

and not check the J + 2 location. 

2 . A~gment the routes by means of the forward pro

cedure and check the J + 2 locatio n. 



3. Augment the routes by means of the backward 

procedure and not check the J + 2 location. 

4. Augment the routes by means of the backward 

procedure and check the J + 2 location. 

The algorithm is then repeated with the X - Y axes 

rotated counterclockwise so that the first location is in 

the last route. The solution given by the sweep algorithm 

ls the dispersement which gives the smallest total distance. 

The sweep algorithm was shown to give better solutions 

than the savings approach in 6 out of 7 problems, and better 

solutions than the 3-optimal on all 3 problems which Christ

ofides and Eilon proposed. The sweep algorithm was also 

able to solve a large problem involving 250 locations. 

A mathematical formulation of the vehicle dispatch 

problem with arbitrary cost functions and a branch and bound 

algorithm which solves the problem for one server were 

developed. A theorem proved in chapter IV, section B, per

mits the branch and bound algorithm to solve problems in

volving 10 locations. 

The vehicle dispatch proolem may be generalized into 

several unsolved problems, which also have practical 

applications. One generalization is a vehicle dispatch 

problem with more than one depot. This is applicable to 

the routing of school busses in a school system which has 

more than one school. Another generalization is the problem 

to determine the number of depots necessary to minimize the 

total cost to serve a set of locations. This could be 
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used to determine the number of factories needed to 

deliver their commodity to a set of stores . Neither of these 

problems has been solved. 

The branch and bound algorithm has the disadvant~ge of 

requiring a la~ge number of calculations for la~ge problems. 

Therefore , heuristic approaches are needed to solve larger 

problems . 

The branch and bound a~gorithm was also restricted to 

only one server. Hence , there does not exist an algorithm, 

exact or heuristic , which will solve the generalized vehicle 

dispatch problem with arbitrary cos~ functions and with 

more than one server . 
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APPENDIX A 

SWEEP ALGORITHM COMPUTER PROGRAM 

The computer program uses the following variables. 

N 

c 

- number of locations including the depot 

- load capacity for each vehicle 

XD - distance constraint for each vehicle 

XLD - additional distance per location 

X(l), Y(l) -rectangular coordinants for the depot 

Q(I) - demand for location I 

X(I), Y(I) -rectangular coordinants for location I 

A(I,J) - shortest distance from location I to 

location J 

The following data are required for each data set. 

First data card; 

columns 1 - 5 

columns 6 - 15 

columns 16- 25 

columns 26- 35 

N 

c 

XD 

XLD 

Data for cards 2 through N+l 

columns l - 10 

columns 11- 20 

columns 21- 30 

X(I) 

Y(I) 

Q(I) 

IS 

Fl0.2 

Fl0.2 

Fl0.2 

Fl0.5 

Fl0.5 

FlO. 5 
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C SWEEP ALGORITHM FOR THE VEHICLE DISPATCH PROBLEM 

C FORWARD PROCEDURE 

C A(I,J) IS DISTANCE FROM LOCATION I TO LOCATION J 

C C IS THE LOAD CAPACITY 

C XD IS THE DISTANCE CONSTRAINT 

C XLD IS ADDED DISTANCE PER STOP 

COMMON A(101,101), IROUT(101) 

DIMENSION X(101), Y(101), Q(101), R(101), S(101), 

1 SS (101), MK(101), NT(101), KK(101),K(101) 

READ (1,255) N, C,XD , XLD 

255 FORMAT (I5 , 3F10.2) 

AVQ = 0 
DO 1 I = 1 , N 

AVQ = AVQ + Q(I) 

1 READ (1,256) X(I), Y(I), Q(I) 

256 FORMAT (3F10 . 5) 

AVQ = AVQ/(N-1) 

XX = X(1) 

YY = Y(1) 

KLN = 1 
KV = 0 

C CHANGE TO POLAR COORDINATES WITH DEPOT AT ORIGIN 

WRITE (3,200) 
200 FORMAT (I 1 I , 18X, 'X(I) I' 7X, 'Y( I ) I , sx , ' DEMAND ' ,4X, 

1 'RADIUS ' , 4X, ' ANGLE') 

RMAX = 0 . 

SUMR = 0 . 

DO 2 I = 2 , N 

R(I) = SQRT((X(I) - XX)**2 + (Y(I) - yy) -1:* 2) 

S(I) = ATAN2(Y(I) - YY , X(!) - XX) 

SUMR = SUMR + R(I) 

WRITE (3,257) I , X(I), Y(I), Q(I), R(I), S(I) 

257 FORMAT (8X,I3,5(4X,13F10 . 3)) 

IF(RMAX - (R(I))) 66,2,2 

66 RMAX = R(I) 

71 



2 CONTINUE 

AVR = SUMR/(N-1) 

DO 81 I = 1,N 

DO 81 J = I,N 

A(I,J) = SQRT ((X(I) - X(J))**2 + (Y(I) - Y(J))**2) 
81 ACJ,I) = A(I,J) 

K(1) :: 1 

K(N+1) = 1 

MM :: 1 

C ARRANGE LOCATIONS IN ASCENDING ORDER 

21 J = N 

SUMD = 0. 

DO 67 I = 2,N 

KCI) = I 

67 SS(I) = S(I) 

5 XMAX :: -1000000. 

DO 3 I = 2,J 

IF(SS(I) - XMAX)3,3,4 

4 XMAX :: SS(I) 

II = I 
3 CONTINUE 

IB = K(II) 

KCII) = K(J) 

KCJ) = IB 

B = SS(II) 

SS(II) = SS(J) 

SS(J) ::: B 

J = J - 1 

IF(J-2) 6,6,5 

6 CONTINUE 

C FORMING THE FIRST 

11 J = 2 

M = 1 

KCECK = 0 

Nl = 0 

ROUTE 
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N2 = 0 

LX = 0 

JJ = 2 

SUM = Q(K(2)) 

WRITE (3,201) MM 

201 FORMAT (///30X,'ROUTES NUMBER ',IS) 

WRITE (3, 258) (K(I), I = 2,N) 

258 FORMAT (40I3) 

MM = MM + 1 

12 J = J + 1 

45 IF (SUM+ Q(K(J)) -C) 13, 13,14 

13 SUM= SUM+ Q(K(J)) 

KCECK = 0 

792 IF(J-N) 12,27,27 

14 CONTINUE 

714 JJJ = J - 1 

C CHECKING NEXT LOCATION 

C FINDING TWO NEAREST POINTS 

328 F = 1000000. 

DO 40 I = JJ,JJJ 

EFG = R(K(I)) - S(K(I)) * AVR 

IF ( F - EFG) 4 0, 4 0, 4 8 

48 F = EFG 

KII = I 

40 CONTINUE 

RX = 100000000. 

DO 346 I = 1,4 

JX = J - I 

IF(JX .LT.2) GO TO 346 

IF(R(K(JX))/AVR- .7) 346,346,347 

347 J5 = J + 5 

IF (JS - N) 363, 363,364 

364 JS = N 
363 DO 348 II = J,JS 

IF (A(K(JX),K(II)) - RX) 349,348,348 
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349 RX = A(K(JX), K(II)) 

JJX = JX 

JII = II 
348 CONTINUE 

346 CONTINUE 

C CHECK THE MODIFIED P-SECT DESPERSEMENT 
IF(KCECK .GT. 0) GO TO 374 

KOUNT = 1 
DO 320 I = JJ,JJJ 
KOUNT = KOUNT + 1 

320 IROUT(KOUNT) = K(I) 

IROUT(1) = 1 

IROUT(KOUNT+1) = 1 
CALL TRAVS (KOUNT,DIST) 

716 

374 

335 

334 

43 

44 

322 

324 

DIST = DIST + (KOUNT - 1) *XLD 
IF (DIST . GT . XD) GO TO 76 

DO 716 I = 1,KOUNT 
KK(I) = IROUT(I) 

SUMQ = SUM 
CONTINUE 

IF(RX .GT. 100000.) GO TO 75 

RRX = R (K (J I I ) ) 

JIX = JII 
DO 334 I = J,JIX 
IF(R(K(I)) - RRX) 334,334,335 

RRX = R(K(I)) 

JII = I 
CONTINJE 
IF(SUM + Q(K(JII)) - Q(K(KII)) 

JY = 5 
IF (JY-(N-JJJ)) 324,322,322 

JY = N - JJJ 
JZ = JY + 1 

IF (KCECK . EQ . 1) GO TO 375 

DO 321 I = 2,JZ 

- C) 
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321 IROUT(I) = K(JJJ+I-1) 
IROUT(1) = 1 
CALL BTS (JY, DIST2) 

375 CONTINUE 

KCECK = 0 

IF (JII - JJJ + 1 .GT. JY) GO TO 443 
DO 332 I = 2,JZ 

332 IROUT(I) = K(JJJ+I-1) 
IROUT(1) = 1 
IROUT (JII-JJJ+l) = K(KII) 
CALL BTS (JY, DIST3) 
KOUNT = 1 

DO 331 I = JJ,JJJ 
KOUNT = KOUNT + 1 

331 IROUT(KOUNT) = K(I) 

IROUT (1) = 1 
IROUT (KOUNT+1) = 1 
IROUT(KII - JJ + 2) = K(JII) 
CALL TRAVS (KOUNT,DIST1) 

DIST1 = DIST 1 + (KOUNT - 1) * XLD 
IF (DIST1 .GT. XD) GO TO 443 
EFG = AVR * (Q(K(JII)) - Q(K(KII))) I AVQ 
IF (EFG+DIST + DIST2 - DISTl - DIST3) 443,443,326 

326 DIST = DIST1 
DO 717 I = 1, KOUNT 

717 KK(I) = IROUT(I) 

SUMQ = SUM 

JJ1 = JJJ - 1 
SUM = SUM+ Q(K(JII)) - Q(K(KII)) 
JI = K(KII) 

DO 51 I = KII,JJ1 
51 K(I) = K(I+1) 

IF (JII .NE. JJJ + 1) GO TO 274 

K(JJJ) = K(JJJ + 1) 
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K(JJJ + 1) = JI 
GO TO 275 

274 K(JJJ) = K(JII) 

K(JII) = JI 

275 J = J - 1 
DIST2 = DIST3 
KCECK = 1 
GO TO 12 

C CHECK THE SECOND MODIFIED P-SECT DISPERSEMENT 

443 MAX = 1000000 
IF(JS - J .LT. 3) GO TO 75 

DO 420 I = J,J5 
IF (I - JII) 421,420,421 

421 IF (MAX- A(K(I) , K(JII))) 420,422,422 

422 JKK = I 
MAX = A(K(I),K(JII)) 

420 CONTINUE 
IF (SUM + Q(K(JII)) + Q(K(JKK)) - Q(K(KII)) . GT. C) 

1 GO TO 75 

KOUNT = 1 

JZ = 6 

IF(JII - JJJ + 1 .GE. JZ) GO TO 75 

IF(JKK - JJJ + 1 .GE. JZ) GO TO 75 

IF(JZ - (N -JJJ + 1)) 435,436,436 

436 JZ = N - JJJ 
435 DO 431 I = 2,JZ 

IF(! . EQ . JKK - JJJ + L) GO TO 431 

KOUNT = KOUNT + 1 

IROUT(KOUNT) = K(JJJ + I - 1) 

431 CONTINUE 
IROUT(JII - JJJ + 1) = K(KII) 

IROUT(1) :: 1 

JT = KOUNT - 1 
CALL BTS (JT,DISTS) 

KOUNT = 1 
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DO 430 I = JJ,JJJ 

KOUNT = KOUNT + 1 
IROUT(KOUNT) = K(I) 

430 CONTINUE 

IROUT(1) = 1 

K.OUNT = KOUNT + 1 

IROUT(KOUNT + 1) = 1 
IROUT(KII - JJ + 2) = K(JII) 
IROUT(KOUNT) = K(JKK) 
CALL TRAVS (KOUNT,DIST4) 

DIST4 = DIST4 + (KOUNT - 1) *XLD 

IF(DIST4 . GT . XD) GO TO 75 
IF (DIST + DIST2 - DIST4 - DIST5) 75 ,4 33,433 

433 DIST = DIST4 

DO 718 I = 1, KOUNT 

718 KK(I) = !ROUT(I) 
SUM = SUM+ Q(K(JII)) + Q(K(JKK)) - Q(K(KII)) 

SUMQ = SUM 
M5 = JJJ + 4 

JI = K(KII) 
JM = K(J) 
IF(KII . EQ . JJJ) GO TO 794 

JJ1 = JJJ - 1 
DO 434 I = KII,JJ1 

434 K(I) = K(I+1) 

K(JJJ) = K(JII) 

JJJ = JJJ + 1 

K(JJJ) = K(JKK) 

K(JKK) = JI 
IF(JII .EQ. J) GO TO 793 

K(JII) = JI 

K(JKK) = JM 

GO TO 793 

794 K(J) = K(JII) 

K(KII) = K(JKK) 
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c 

c 

JJJ = JJJ + 1 
K(JII ) = JM 
K(JKK) = JI 

793 CONTINUE 

KCECK = 2 
GO TO 12 

DELETING ONE FROM ROUTE 
76 JJJ = JJJ - 1 

KOUNT = KOUNT - 1 
J = J - 1 

SUM = SUM - Q(K(J)) 
GO TO 328 

ACCEPTING THE ROUTE 
75 SUMD = SUMD + DIST 

KT = JJJ - JJ + 2 
WRITE (3,719) M, SUMQ,DIST ,( KK(I) ,I=1, KT) 

719 FORMAT(/' ROUTE ' . IS ,' HAS LOAD ' , F10 . 2 , ' WITH 
1 DISTANCE ', Fl0.2 ,' IS ' /28(1X,I3)) 

LX = 0 

M = M + 1 
SUM = Q(K(J)) 

JJ = J 
20 IF(KLN-1) 30,31,30 
31 IF ( KV-KOUNT) 32 , 30 , 30 

32 KV = KOUNT 
30 CONTINUE 

IF (J-N) 12 , 27 , 27 

27 KOUNT = 1 

JJJ = J 
IROUT(1) = 1 
DO 82 I = JJ , J 
KOUNT = KOUNT + 1 

82 IROUT(KOUNT) = K(I) 
IROUT(KOUNT + 1) = l 
CALL TRAVS (KOUNT, DIST) 
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DIST = DIST + (KOUNT - 1) * XLD 
IF(DIST - XD) 83,83,97 

97 J = J + 1 
GO TO 76 

83 CONTINUE 
WRITE (3,719) M,SUM,DIST,(IROUT (I), I = 1 ,KOUNT) 
SUMD = SUMD + DIST 
WRITE (3,84) SUMD 

84 FORMAT(//'TOTAL DISTANCE IS',F15.5) 
C INCREMENT THE ANGLE ONE LOCATION 

KLN = 2 
IF(MM -KV) 61,50,50 

61 XMIN = 100000000. 
DO 62 I = 2,N 
IF (S(K(I)) - XMIN) 63,62,62 

63 XMIN = S(K(I)) 
MI = K(I) 

62 CONTINUE 
S( MI ) = 3.14529 - ABS(S( MI )) + 3.14529 
GO TO 21 

50 CONTINUE 
521 CONTINUE 

STOP 

END 

SUBROUTINE TRAVS (N,DIST) 
COMMON A(101,101), K(101) 
DIMENSION KK(101), KKK(l01) 

C 3 OPT FOR TRAVELING SALESMAN 

Nl = N + 1 

DO 34 I = 1, Nl 
34 KKK(I) = K(I) 

51 IF(N-3) 54,54,53 

53 Nl = N l 

N3 = N - 3 
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5 DO 12 KOUNT = 1,N 
DO 3 2 IK = 1 , N 3 

K1 = IK + 1 

DO 32 IJ = K1,N1 

D1 = A(K(IK),K(IJ+ 1)) + A(K(1) , K(IJ)) 

D = A(K(l) , K(IJ+l)) + A(K(IK) , K(IJ)) 

IF (D1 - D) 6 , 6 ,7 

6 IA = 8 

D = D1 

GO TO 17 

7 IA = 2 

17 IF(D+A(K(IK+1),K(N))-A(K(1),K(N))-A(K(IK),K(IK+1)) -

1 A(K(IJ),K(IJ+1)) + .001) 9,32 , 32 

32 CONTINUE 

IB = K(N) 

N1 = N - 1 

DO 13 I = 1 ,Nl 

13 K(N-I+1) = K(N-I) 

K(1) = IB 

12 CONTINUE 

GO TO 2 

9 DO 19 I = 1,N 

19 KK(I) = K(I) 

IJ2 = IJ+2 

K1 = IK+1 
K(N) = KK(IJ+1) 

KO = 0 

IF(IJ2 - N) 36 ,36, 37 

36 DO 20 I = IJ2, N 

KO = KO + 1 

20 K(KO) = KK(I) 

37 DO 21 I = K1,IJ 

KO = KO + 1 

21 K(KO) = KK(I) 

K(N) = KK(IJ+l) 
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IF(IA - 8) 18 , 15 ,18 
15 DO 22 I = 1 , IK 

KO = KO + 1 
22 K(KO) = KK(!) 

GO TO 14 

18 DO 25 I = 1 , IK 

KO = KO + 1 

25 K(KO) = KK(IK+1-I) 

14 CONTINUE 

DO 35 I = 1,N 

35 KKK(!) = K(I) 

GO TO 5 
2 CONTINUE 

54 CONTINUE 

DIST = A(KKK(N),KKK(1) ) 

DO 30 I = 2, N 

30 DIST = A(KKK(I -1 ) , KKK(I)) + DIST 
RETURN 

END 

SUBROUTINE BTS (N,BOUND) 

COMMON A(101 , 101), K(101) 

DIMENSION MM(10,10), T(10,10~ IT(10), KK(10) 

C BRANCH ALGORITHM FOR DETERMINING MINIMUM DI STANCE OF A 

c ROUTE BEGINNING AT 

22 

21 

DO 21 I = 1 , N 

DO 22 J = 1 , N 

MM(!,J) = 0 
IT( I) = 0 

IT(N+1) = N+1 

T(1 , 1) = 0 

IT(1) = 1 

BOUND = 100000 . 

JJ = 1 

I = 1 

1 I = I + 1 

1 AND ENDING AT K(N) 
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II = I - 1 

DO 25 L = 1,II 

IF (IT(L)) 25,25,26 

26 MM(I,IT(L)) = 1 

25 CONTINUE 

12 DX = 100000. 

DO 2 J = 2,N 

IF (MM(I,J) .EQ. 1) GO TO 2 

T(I,J) = T(I-1, JJ) + A(K(JJ), K(J)) 

IF ( T (I, J) . GT. BOUND) GO TO 8 

IF(DX .LT. T(I,J)) GO TO 2 

DX = T(I,J) 

KZ = J 

2 CONTINUE 

IF(DX .GT. 10000J GO TO 24 

11 IT (I) = KZ 

JJ = KZ 
MM(I,JJ) = 1 

IF(I.LT. N ) GO TO 1 

GO TO 28 

24 I = I - 1 

IF (I .EQ. 1) GO TO 13 

DX = 100000. 

DO 27 L = 2 ,N 

If (MM(I,L) .EQ. 1) GO TO 27 

IF (T(I,L) .GT.DX) GO TO 27 

DX =T(I,L) 

JJ = L 

27 CONTINUE 

DO 29 L = 1,N 
29 MM(I+1,L) = 0 

IF (DX .GT. 10000) GO TO 24 

IT (I) = JJ 

MM (I,JJ) = 1 
IF (I. LT. N ) GO TO 1 
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28 I = I + l 
T(I,l) = T(I-1 ,JJ) +A( K(JJ), K(I)) 
IF (T(I,1) .GT. BOUND) GO TO 24 

J = 1 

BOUND = T(I,1) 

IF ( N+1 - I) 36,35,36 

3 5 D:o 3 4 L = 1 , I 

34 KK(L) = K(IT(L)) 

36 CONTINUE 

8 IT( I) = J 

GO TO 24 

13 DO 342 I = 1,N 

342 K(I) = KK(I) 

RETURN 

END 
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APPENDIX B 

EXAMPLE PROBLEMS USING SWEEP ALGORITHM 

NO . 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

X 

151 

130 

163 

161 

163 

128 

129 

164 

147 

129 

139 

y 

264 

254 

247 

242 

236 

231 

214 

208 

193 

189 

182 

DETAILS OF PROBLEM 1 

Q 

1100 

800 

2100 

800 

500 

1200 

1300 

900 

1000 

2500 

700 

NO. 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

NUMBER OF LOCATIONS IS 22 

X 

159 

128 

146 

142 

148 

156 

146 

141 

164 

155 

DEPOT CO- ORDINATES ARE X = 145 Y = 215 

LOAD CAPACITY IS 6000 

DISTANCE CAPACITY IS 200 

ADDITIONAL DISTANCE PER LOCATION IS 10 

y Q 

261 700 

252 1400 

246 400 

239 100 

232 600 

217 1300 

208 300 

206 2100 

193 900 

185 1800 

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE 

ROUTE 1 IS 

1 14 20 22 18 15 

ROUTE 2 IS 

1 16 19 21 17 11 13 

ROUTE 3 IS 

1 10 

ROUTE 4 IS 

8 6 3 

1 13 11 12 5 

THE TOTAL DISTANCE IS 

2 7 

4 

584.60 

9 
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DETAILS OF PROBLEM 2 

NO. X y Q NO . X y Q 

2 29S 272 12S 3 301 2S8 84 

4 309 260 60 s 217 274 sao 
6 218 278 300 7 282 267 175 

8 242 249 350 9 230 262 1SO 

10 249 268 1100 11 256 267 4100 

12 26S 2S7 225 13 267 242 300 

14 2S9 265 250 15 315 233 sao 
16 329 2S2 150 17 318 252 100 

18 329 224 250 19 267 213 120 

20 27S 192 600 21 303 201 sao 
22 208 217 17S 23 326 181 7S 

NUMBER OF LOCATIONS IS 23 

DEPOT CO-ORDINATES ARE X = 266 y = 235 

LOAD CAPACITY IS 4SOO 

DISTANCE CAPACITY IS 240 

ADDITIONAL DISTANCE PER LOCATION IS 10 

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE 

ROUTE 1 IS 

1 19 20 22 

ROUTE 2 IS 

1 21 23 18 15 

ROUTE 3 IS 

1 13 7 2 3 4 16 17 

ROUTE 4 IS 

1 11 14 

ROUTE 5 IS 

1 12 10 6 5 9 8 

THE TOTAL DISTANCE IS 956.40 
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DETAILS OF PROBLEM 3 

NO. X y Q NO. X y Q 

2 218 382 300 3 218 358 3100 
4 201 370 125 5 214 371 100 

6 224 370 200 7 210 382 150 

8 104 354 150 9 126 338 450 

10 119 340 3 o·o 11 129 349 100 

12 126 345 950 13 125 346 125 

14 116 355 150 15 126 355 150 

16 125 355 550 17 119 357 150 

18 115 341 100 19 153 351 150 

20 175 363 400 21 180 360 300 

22 159 331 1500 23 188 357 100 

24 152 349 300 25 215 389 500 

26 212 394 800 27 188 393 300 

28 207 406 100 29 184 410 150 

30 207 392 1000 

NUMBER OF LOCATIONS IS 30 

DEPOT CO-ORDINATES ARE X = 162 y = 354 

LOAD CAPACITY IS 4500 

DISTANCE CAPACITY IS 240 

ADDITIONAL DISTANCE PER LOCATION IS 10 

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE 

ROUTE 1 IS 

1 19 24 11 12 13 18 10 9 22 

ROUTE 2 IS 

1 23 3 6 5 2 7 4 21 

ROUTE 3 IS 

1 27 29 28 26 25 30 

ROUTE 4 IS 

1 15 16 14 8 17 20 

THE TOTAL DISTANCE IS 885 . 30 
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DETAILS OF PROBLEM 4 

NO. X y Q NO. X y Q 

2 298 427 700 3 309 445 400 
4 307 464 400 5 336 475 1200 
6 320 439 40 7 321 437 80 
8 322 437 2000 9 323 433 900 

10 324 433 600 11 323 429 750 
12 314 43 5 1500 13 311 442 150 
14 304 427 250 15 293 421 1600 

16 296 418 450 17 261 384 700 

18 297 410 550 19 315 407 650 

20 314 406 200 21 321 391 400 

22 321 398 300 23 314 394 1300 

24 313 378 700 25 304 382 750 

26 295 402 1400 27 283 406 4000 

28 279 399 600 29 271 401 1000 

30 264 414 500 31 277 439 2500 

32 290 434 1700 33 319 433 1100 

NUMBER OF LOCATIONS IS 33 

DEPOT CO-ORDINATES ARE X = 292 y = 425 

LOAD CAPACITY IS 8000 

DISTANCE CAPACITY IS 240 

ADDITIONAL DISTANCE PER LOCATION IS 10 

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE 

ROUTE 1 IS 

1 30 29 17 28 27 

ROUTE 2 IS 

1 15 18 26 25 24 23 21 22 20 19 

ROUTE 3 IS 

1 13 6 7 8 9 10 11 33 12 14 16 

ROUTE 4 IS 

1 32 31 4 5 3 2 

THE TOTAL DISTANCE IS 817.30 
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DETAILS OF PROBLEM 5 

NO. X y Q NO. X y Q 

2 37 52 7 3 49 49 30 

4 52 64 16 5 20 26 9 

6 40 30 21 7 21 47 15 

8 17 63 19 9 31 62 23 

10 52 33 11 11 51 21 5 

12 42 41 19 13 31 32 29 

14 5 25 23 15 12 42 21 

16 36 16 10 17 52 41 15 

18 27 23 3 19 17 33 41 

20 13 13 9 21 57 58 28 

22 62 42 8 23 42 57 8 

24 16 57 16 25 8 52 10 

26 7 38 28 27 27 68 7 

28 30 48 15 29 43 67 14 

30 58 48 6 31 58 27 19 

32 37 69 11 33 38 46 12 

34 46 10 23 35 61 33 26 

36 62 63 17 37 63 69 6 

38 32 22 9 39 45 35 15 

40 59 15 14 41 5 6 7 

42 10 17 27 43 21 10 13 

44 5 64 11 45 30 15 16 

46 39 10 10 47 32 39 5 

48 25 32 25 49 25 55 17 

so 48 28 18 51 56 37 10 

NUMBER OF LOCATIONS IS 51 

DEPOT CO-ORDINATES ARE X = 30 y = 40 

LOAD CAPACITY IS 160 

NO DISTANCE CAPACITY 

ADDITIONAL DISTANCE PER LOCATION IS 0 
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DETAILS OF PROBLEM 5 (Continued) 

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE 
ROUTE 1 IS 

1 48 5 18 43 20 41 42 14 19 
ROUTE 2 IS 

1 47 6 50 11 40 34 46 16 45 38 13 

ROUTE 3 IS 

1 12 3 30 22 17 51 35 31 10 39 

ROUTE 4 IS 

1 49 27 32 29 4 37 36 21 23 2 33 

ROUTE 5 IS 

1 7 15 26 25 44 8 24 49 28 

THE TOTAL DISTANCE IS 524.60 
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DETAILS OF PROBLEM 6 

NO. X y Q NO. X y Q 

2 22 22 18 3 36 26 26 

4 21 45 11 s 45 35 30 

6 55 20 21 7 33 34 19 

8 50 50 15 9 55 45 16 

10 26 59 29 11 40 66 26 

12 55 65 37 13 35 51 16 

14 62 35 12 15 62 57 31 

16 62 24 8 17 21 36 19 

18 33 44 20 19 9 56 13 

20 62 48 15 21 66 14 22 

22 44 13 28 23 26 13 12 

24 11 28 6 25 7 43 27 

26 17 64 14 27 41 46 18 

28 55 34 17 29 35 16 29 

30 52 26 13 31 43 26 22 

32 31 76 25 33 22 53 28 

34 26 29 27 35 50 40 19 

36 55 50 10 37 54 10 12 

38 60 15 14 39 47 66 24 

40 30 60 16 41 30 50 33 

42 12 17 15 43 15 14 11 

44 16 19 18 45 21 48 17 

46 so 30 21 47 51 42 27 

48 so 15 19 49 48 21 20 

50 12 38 5 51 15 56 22 

52 29 39 12 53 54 38 19 

54 55 57 22 55 67 41 16 

56 10 70 7 57 6 25 26 

58 65 27 14 59 40 60 21 

60 70 64 24 61 64 4 13 

62 36 6 15 63 30 20 18 

64 20 30 11 65 15 5 28 

66 50 70 9 67 57 72 37 



DETAILS OF PROBLEM 6 (Continued) 

NO. X Y Q NO . X Y Q 
68 45 42 

70 50 4 

72 59 5 

74 27 24 

76 40 37 

30 

8 

3 

6 

20 

NUMBER OF LOCATIONS IS 76 

69 38 

71 66 

73 35 

75 40 

DEPOT CO- ORDINATES ARE X = 40 Y = 40 

LOAD CAPACITY IS 140 

NO DISTANCE CAPACITY 

ADDITIONAL DISTANCE PER LOCATION IS 0 

33 10 

8 11 

60 1 

20 10 

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE 

ROUTE 1 IS 

1 4 25 19 56 26 51 33 45 

ROUTE 2 IS 

1 13 73 32 40 10 41 18 

ROUTE 3 IS 

1 27 59 11 39 66 67 

ROUTE 4 IS 

1 36 15 60 12 54 8 

ROUTE 5 IS 

1 35 14 55 20 

ROUTE 6 IS 

9 47 68 

1 5 46 16 21 58 28 53 

ROUTE 7 IS 

1 49 48 37 70 72 61 71 38 

ROUTE 8 IS 

1 76 31 75 22 62 29 69 

ROUTE 9 IS 

1 74 2 44 43 65 23 63 3 

ROUTE 10 IS 

6 30 

1 52 17 50 24 57 42 64 34 7 

THE TOTAL DISTANCE I S 865 . 70 
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DETAILS OF PROBLEM 7 
NO. X y Q NO. X y Q 

2 41 49 10 3 35 17 7 

4 55 45 13 5 55 20 19 

6 15 30 26 7 25 30 3 

8 20 50 5 9 10 43 9 

10 55 60 16 ll 30 60 16 

12 20 65 12 13 50 35 19 

14 30 25 23 15 15 10 20 

16 30 5 8 17 10 20 19 

18 5 30 2 19 20 40 12 

20 15 60 17 21 45 65 9 

22 45 20 ll 23 45 10 18 

24 55 5 29 25 65 35 3 

26 65 20 6 27 45 30 17 

28 35 40 16 29 41 37 16 

30 64 42 9 31 40 60 21 

32 31 52 27 33 35 69 23 

34 53 52 ll 35 65 55 14 

36 63 65 8 37 2 60 5 

38 20 20 8 39 5 5 16 

40 60 12 31 41 40 25 9 

42 42 7 5 43 24 12 5 

44 23 3 7 45 11 14 18 

46 6 38 16 47 2 48 l 

48 8 56 27 49 13 52 36 

50 6 68 30 51 47 47 13 

52 49 58 10 53 27 43 9 

54 37 31 14 55 57 29 18 

56 63 23 2 57 53 12 6 

58 32 12 7 59 36 26 18 

60 21 24 28 61 17 34 3 

62 12 24 13 63 24 58 19 

64 27 69 10 65 15 77 9 

66 62 77 20 67 49 73 25 

68 67 5 25 69 56 39 36 
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DETAILS OF PROBLEM 7 (Continued) 
NO. X y Q NO. X y Q 

70 37 47 6 71 37 56 5 
72 57 68 15 73 47 16 25 
74 44 17 9 75 46 13 8 
76 49 11 18 77 49 42 13 
78 53 43 14 79 61 52 3 
80 57 48 23 81 56 37 6 

82 55 54 26 83 15 47 16 

84 14 37 11 85 11 31 7 

86 16 22 41 87 4 18 35 

88 28 18 26 89 26 52 9 

90 26 35 15 91 31 67 3 

92 15 19 1 93 22 22 2 

94 18 24 22 95 26 27 27 

96 25 24 20 97 22 27 11 

98 25 21 12 99 19 21 10 

100 20 26 9 101 18 18 17 

NUMBER OF LOCATIONS IS 101 

DEPOT CO- ORDINATES ARE X = 35 y = 35 

LOAD CAPACITY IS 200 

NO DISTANCE CAPACITY 

ADDITIONAL DISTANCE PER LOCATION IS 0 

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE 

ROUTE 1 IS 

1 93 38 99 101 15 39 45 92 86 

94 60 

ROUTE 2 IS 

1 14 95 96 98 88 43 44 16 58 

42 23 74 3 59 

ROUTE 3 IS 

1 41 22 73 75 76 57 24 68 40 

26 56 5 

ROUTE 4 IS 

1 54 27 13 55 25 30 81 69 4 

78 77 29 
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DETAILS OF PROBLEM 7 (Continued) 

ROUTE 5 IS 

1 80 79 35 36 72 66 67 21 52 10 82 

34 51 

ROUTE 6 IS 

1 28 70 2 71 31 33 91 64 65 12 63 

11 89 32 

ROUTE 7 IS 

1 53 8 83 49 20 50 37 48 47 9 46 

84 19 

ROUTE 8 IS 

1 90 61 6 85 18 87 17 62 100 97 7 

THE TOTAL DISTANCE IS 854.5 
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DETAILS OF PROBLEM 8 

NO. X y Q NO. X y Q 

2 -99 -97 6 3 -59 so 72 

4 0 14 93 5 -17 -66 28 

6 -69 -19 5 7 31 12 43 

8 5 -41 1 9 -12 10 36 

10 -64 70 53 11 -12 85 63 

12 -18 64 25 13 -77 -16 50 

1l~ -53 88 57 15 83 -24 1 

16 24 41 66 17 17 21 37 

18 42 96 51 19 -65 0 47 

20 -47 -26 88 21 85 36 75 

22 -35 - 54 48 23 54 -21 40 

24 64 -17 8 25 55 89 69 

26 17 - 25 93 27 -61 66 29 

28 -61 26 5 29 17 - 72 53 

30 79 38 8 31 -62 - 2 24 

32 - 90 -68 53 33 52 66 13 

34 -54 -50 47 35 8 -8'1 57 

36 37 -90 9 37 - 83 49 74 

38 35 - 1 83 39 7 59 96 

40 12 48 42 41 57 95 80 

42 92 28 22 43 - 3 97 56 

44 - 7 52 43 45 42 -15 12 

46 77 -43 73 47 59 -49 32 

48 25 91 8 49 69 -19 79 

so -82 -14 79 51 74 -70 4 

52 69 59 14 53 29 33 17 

54 -97 9 19 55 -58 9 44 

56 28 93 5 57 7 73 37 

58 -28 73 100 59 - 76 55 62 

60 41 42 90 61 92 40 57 

62 -84 -29 44 63 - 12 42 37 

64 51 -45 80 65 - 37 46 60 

66 -97 35 95 67 14 89 56 
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DETAILS OF PROBLEM 8 (Continued) 

NO . X y Q NO. X y Q 

68 60 58 56 69 - 63 -75 9 

70 -18 34 39 71 -46 - 82 15 

72 -86 -79 4 73 - 43 -30 58 

74 -44 7 73 75 - 3 -20 5 

76 36 41 12 77 - 30 -94 3 

78 79 -62 8 79 51 70 31 

80 - 61 - 26 48 81 6 94 3 

82 - 19 - 62 52 83 - 20 51 99 

84 - 81 37 29 85 7 31 12 

86 52 12 50 87 83 - 91 98 

88 - 7 -92 4 89 82 -74 56 

90 -70 85 24 91 - 83 - 30 33 

92 71 - 61 45 93 85 11 98 

94 66 -48 4 95 78 - 87 36 

96 9 -79 72 97 -36 4 26 

98 66 39 71 99 92 -17 84 

100 - 46 - 79 21 101 -30 -63 99 

102 - 42 63 33 103 20 42 84 

104 15 98 74 105 1 -17 93 

106 64 20 25 107 -96 85 39 

108 93 -29 42 109 - 40 -84 77 

110 86 35 68 111 91 36 50 

112 62 - 8 42 113 -24 4 71 

114 11 96 85 115 - 53 62 78 

116 - 28 -71 64 117 7 - 4 5 

118 95 - 9 93 119 - 3 17 18 

120 53 -90 38 121 58 -19 29 

122 - 83 84 81 123 - 1 49 4 

124 - 4 17 23 125 - 82 - 3 11 

126 -4 3 47 86 127 6 - 6 2 

128 70 99 31 129 68 - 29 54 

1 3 0 - 94 - 30 8 7 131 - 9 4 - 20 17 
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DETAILS OF PROBLEM 8 (Continued) 

NO. X y Q NO . X y Q 
132 -21 77 81 133 64 37 72 

134 - 70 -19 10 135 88 65 50 

136 2 29 25 137 33 57 71 

138 -70 6 85 139 - 38 -56 51 

140 -80 -95 29 141 - 5 - 39 55 

142 8 -22 45 143 -61 - 76 100 

144 76 -22 38 145 49 -71 11 

146 -30 -68 82 147 1 34 50 

148 77 79 39 149 -58 64 6 

150 82 - 97 87 151 -80 55 83 

152 81 -86 22 153 39 - 49 24 

154 -67 72 69 155 -25 -89 97 

156 -44 - 95 65 157 32 - 68 97 

158 - 17 49 79 · 159 93 49 79 

160 99 81 46 161 10 -49 52 

162 63 -41 39 163 38 39 94 

164 -28 39 97 165 - 2 -47 18 

166 38 8 3 167 -42 - 6 23 

168 -67 88 19 169 19 93 40 

170 4 0 27 49 171 -61 56 96 

172 43 33 58 173 -18 -39 15 

174 -69 19 21 175 75 - 18 56 

176 31 85 67 177 25 58 10 

178 -16 36 36 179 91 15 84 

180 60 -39 59 181 49 - 47 85 

182 42 33 60 183 16 - 81 33 

184 -78 53 62 185 53 -80 70 

186 -46 -26 79 187 -25 -54 98 

188 69 -46 99 189 0 - 78 18 

190 -84 74 55 191 -16 16 75 

192 - 63 - 14 94 193 51 - 77 89 

1 94 -39 61 13 195 5 97 19 

196 - 55 39 19 197 70 -14 90 
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DETAILS OF PROBLEM 8 (Continued) 

NO . X y Q NO . X y Q 
198 0 95 35 199 -45 7 76 

200 38 -24 3 201 50 -37 11 

202 59 71 98 203 -73 - 96 92 

204 - 29 72 1 205 -47 12 2 

206 -88 -61 63 207 -88 36 57 

208 - 4 6 - 3 so 209 26 - 37 19 

210 -39 -67 24 211 92 27 1 4 

212 -80 - 31 18 213 93 - 50 77 

214 -20 - 5 28 215 -22 73 72 

216 - 4 - 7 49 217 54 -48 58 

218 -70 39 84 219 54 - 82 58 

220 29 41 41 221 -87 51 98 

222 - 96 -36 77 223 49 8 57 

224 - 5 54 39 225 - 26 43 99 

226 - 11 60 83 227 40 61 54 

228 82 35 86 229 - 92 12 2 

230 - 93 - 86 14 231 -66 63 42 

232 -72 - 87 14 233 -57 -8 4 55 

234 23 52 2 235 - 56 -62 18 

236 - 19 59 17 237 63 -14 22 

238 - 13 38 28 239 - 19 87 3 

240 44 - 84 96 241 98 - 17 53 

242 - 16 62 15 243 3 66 36 

244 26 22 98 245 - 38 - 81 78 

246 70 - 80 92 247 17 -35 65 

248 96 - 83 64 249 - 77 80 43 

250 -14 44 50 

NUMBER OF LOCATIONS I S 250 

DEPOT CO - ORDINATES ARE X :: 0 y = 0 

LOAD CAPACITY IS 500 

DISTANCE CAPACITY IS 310 

ADDITIONAL DISTANCE PER LOCATION IS 0 
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DETAILS OF PROBLEM 8 (Continued) 

THE ROUTES DETERMINED BY THE SWEEP METHOD ARE 

ROUTE 1 IS 

1 97 74 199 19 138 229 54 66 174 55 205 
ROUTE 2 IS 

1 113 28 218 84 207 221 37 184 196 

ROUTE 3 IS 

1 59 151 107 190 231 171 3 9 

ROUTE 4 IS 

1 191 126 149 27 10 151:t 249 122 90 

ROUTE 5 IS 

1 164 65 194 102 115 168 14 204 225 70 

ROUTE 6 IS 

1 178 83 58 215 236 158 250 238 

ROUTE 7 IS 

1 119 123 44 224 226 11 43 239 12 242 63 

ROUTE 8 IS 

1 136 39 57 169 104 114 81 195 198 243 147 

ROUTE 9 IS 

1 4 85 40 67 48 56 18 176 177 234 16 

ROUTE 10 IS 

1 220 137 227 79 25 41 128 202 33 76 

ROUTE 11 IS 

1 244 52 160 148 68 60 163 53 17 

ROUTE 12 IS 

1 133 98 30 61 159 135 172 182 

ROUTE 13 IS 

1 7 166 86 106 211 42 111 110 21 228 170 

ROUTE 14 IS 

1 223 93 179 118 112 38 

ROUTE 15 IS 

1 45 24 49 144 15 108 241 99 175 197 237 

ROUTE J.6 IS 

1 23 121 129 46 213 188 94 162 180 201 200 
117 
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DETAILS OF PROBLEM 8 (Continued) 

ROUTE 17 IS 

l 127 181 51 95 152 248 89 78 92 47 217 
64 

ROUTE 18 IS 

1 26 209 145 185 150 87 246 153 

ROUTE 19 IS 

1 193 219 120 240 36 157 247 142 

ROUTE 20 IS 

1 105 8 161 29 183 96 35 88 189 5 165 

ROUTE 21 IS 

1 82 155 77 156 116 146 187 173 

ROUTE 22 IS 

1 216 22 139 210 100 71 109 245 101 

ROUTE 23 IS 

1 73 32 72 230 2 140 140 203 232 143 69 
235 34 

ROUTE 24 IS 

1 20 80 206 222 130 62 91 212 134 6 

ROUTE 25 IS 

1 214 167 208 31 125 131 50 13 192 186 

THE TOTAL DISTANCE IS 5794.10 
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APPENDIX C 

BRANCH AND BOUND ALGORITHM COMPUTER PROGRAM 

The computer program uses the following variables. 

N - number of locations including the depot 

A(I,J) - time to travel from location I to location J 

IT (I ) I th 1 . . h · - ocatlon ln t e route 

F(I,S) - cost function for location I at time S 

The following data are required for each data set. 

First data card 

columns 1 - 80 N free format 

Remaining data cards 

columns 1 - 80 ((A(I, J ),I=l,N),J=l , N) free format 
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C BRANCH METHOD FOR ARBITRARY COST FUNCTION WITH ONE SERVER 
C A(I,J) IS TIME FROM LOCATION I TO LOCATION J 
C F(I,S) IS THE COST FUNCTION FOR LOCATION I 

22 

21 

DIMENSION A(10,10),MM(30,30),IT(30),T(30,30),D(30,30) 
1, G(30,30), XL( SO) 

READ, N 

DO 21 I = 1,N 

DO 22 J = 1,N 

MM(I,J) = 0. 
IT(I) :: 0 . 

D(1,1) = 0 

T(1,1) = 0 

IT ( 1) :: 1 

IT(N+1) = 1 

BOUND :: 100000000. 

READ,A 
C OBTAIN ESTIMATE FOR THE TOTAL TIME FOR THE OPTIMAL ROUTE 

K :: 0 

SUM = 0 

JJ = N - 1 

DO 40 I = 1,JJ 

II = I + 1 

DO 40 J = II,N 

K = K + 1 
40 SUM = SUM + A(I,J) 

TIME = SUM *2./3.*CN+1) I K 

DO 41 I = 2,N 
41 XL(I) :: F(I,TIME) 

C CALCULATE TOTAL COST FOR THE I TH LOCATION OF THE ROUTE 

JJ = 1 

I = 1 

1 I = I + 1 

II = I - 1 

DO 25 L = 1,II 
IF (IT(L)) 25,25,26 



26 MM(I,IT(L)) = 1 

25 CONTINUE 

12 DX = -100000000. 

DO 2 J = 2,N 

IF (MM(I,J) .EQ. 1) GO TO 2 

T(I,J) = T(I-1,JJ) + A(JJ,J) 

E = F(J,T(I,J)) 

D(I,J) = D(I -1, JJ) + E + A(JJ,J) 

IF(D(I,J) .GT. BOUND) GO TO 8 

G(I,J) = XL(J) - E 

IF (G(I,J) .LT. DX) GO TO 2 

DX = G(I,J) 

KK = J 

2 CONTINUE 

C CHECK IF THERE ARE MORE LOCATIONS TO CONSIDER 

IF (DX .LT. -10000000.) GO TO 24 

11 IT(I) = KK 

JJ = KK 

MM(I,JJ) = 1 

IF(I.LT. N ) GO TO 1 

GO TO 28 

C CONTINUE IN A DIFFERENT BRANCH 

24 I = I - 1 
IF (I .EQ. 1) GO TO 13 

DX = -100000000. 

DO 27 L = 2 ,N 

IF (MM(I,L) .EQ.1) GO TO 27 

IF (G(I,L) .LT.DX) GO TO 27 

DX = G(I,L) 

JJ = L 

27 CONTINUE 

DO 29 L = 1,N 

29 MM (I + 1,1) = 0 
IF (DX .LT.-10000000.) GO TO 24 

IT(I) = JJ 
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MM(I,JJ) = 1 

IF(I .LT. N ) GO TO 1 

C CALCULATE NEW BOUND 

28 I = I + 1 

T(I,1) = T(I-1,JJ) + A(JJ,l) 
D(I,l) = D(I-l,JJ) + A(JJ,l) 

IF(D(I,1) .GT . BOUND) GO TO 6 

BOUND = D(I,1) 

GO TO 6 

8 IT (I) = J 

6 WRITE (3,30) (IT(J), J = 1,I) 

30 FORMAT (/lX,11Il0) 
WRITE (3,31) (D(J,IT(J)), J = 1,1) 

31 FORMAT (1X,11F10 . 2) 

GO TO 24 

13 STOP 

END 

104 


	Heuristic algorithms for the generalized vehicle dispatch problem
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078
	Page0079
	Page0080
	Page0081
	Page0082
	Page0083
	Page0084
	Page0085
	Page0086
	Page0087
	Page0088
	Page0089
	Page0090
	Page0091
	Page0092
	Page0093
	Page0094
	Page0095
	Page0096
	Page0097
	Page0098
	Page0099
	Page0100
	Page0101
	Page0102
	Page0103
	Page0104
	Page0105
	Page0106
	Page0107
	Page0108
	Page0109
	Page0110
	Page0111

