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ABSTRACT 

High-quality broadband seismic data recorded by the USArray and other stations 

in the southwestern United States provide a unique opportunity to test different models of 

anisotropy-forming mechanisms in the vicinity of a cratonic edge. Systematic spatial 

variations of anisotropic characteristics are revealed by 3027 pairs of splitting parameters 

measured at 547 broadband seismic stations. The western and southern edges of the 

North American craton show edge-parallel fast directions with larger-than-normal 

splitting times, and the continental interior is characterized by smaller splitting times 

spatially consistent fast directions that are mostly parallel to the absolute plate motion 

direction of North America. Except for a small area in the vicinity of the Llano Uplift in 

central Texas, no systematic azimuthal variations of the splitting parameters are 

observed, suggesting that a single layer of anisotropy with horizontal axis of symmetry 

can adequately explain the observations. Estimation of the depth of the source of the 

observed anisotropy using spatial coherency of the splitting parameters indicates that the 

observed anisotropy mostly originate from the upper asthenosphere, through simple shear 

between the partially coupled lithosphere and asthenosphere. 
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1. INTRODUCTION 

Shear-wave splitting (SWS) analysis is one of the most commonly used 

techniques in structural seismology. The two resulting splitting parameters, the 

polarization direction of the fast wave (Φ or fast direction) and the arrival time difference 

between the fast and slow waves (δt or splitting time), are respectively indicators of the 

orientation and strength of seismic anisotropy accumulated along the ray path. The P-to-S 

converted waves at the core mantle boundary (XKS, which includes SKS, SKKS, and 

PKS) are ideal for SWS analysis, due to the fact that the initial polarization direction is 

along the radial direction and thus any energy in the XKS window on the transverse 

component is an indicator of azimuthal anisotropy (Silver and Chan, 1991) (Figure 1.1). 

 

While the splitting parameters can usually be reliably determined, at the present 

time, the interpretation of the resulting splitting parameters is still an unsettled and 

debated issue. Numerous laboratory and modeling studies confirmed that lattice preferred 

orientation (LPO) of the crystallographic axes of olivine is the main cause of mantle 

anisotropy. Except for areas with extreme anomalies in temperature, pressure, and 48 

water contents, these studies suggested that the fast direction is subparallel to the LPO of 

the a-axis of olivine (Zhang and Karato, 1995; Karato et al., 2008).  
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Figure 1.1. Propogation wave path of the seismic phases used to characterize the 

mantle anisotropy. XKS phases convert at the Core-Mantle Boundary (CMB). P-

to-S converted waves at CMB including SKS, SKKS, and PKS are commonly 

used to qualify seismic anisotropy (Savage, 1996).  
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Unfortunately, there are more than one mantle processes that can lead to the LPO, 

among which the most important ones are simple shear originated from the gradient of 

flow in the asthenosphere which lead to a fast direction that is parallel to the flow 

direction, and lithospheric compression which results in anisotropy with a fast direction 

parallel to the strike of the mountain belts (Silver, 1996; Savage, 1999; Fouch and 

Rondenay, 2006; Long and Silver, 2009). Adding to this ambiguity in the interpretation 

of SWS measurements is the hypothesis that magmatic dikes in the lithosphere, when 

aligned preferably along a certain direction, can also lead to observable seismic 

anisotropy with a dike-parallel fast direction (Gao et al., 1997; Kendall et al., 2005) 

(Figure 1.2). 

 

Therefore, whether seismic anisotropy observed in a given area is lithospheric or 

asthenospheric origin (and whether it is compression origin or dike origin if it is in the 

lithosphere) is the key information needed for useful interpretation of the SWS 

measurements. Unfortunately, due to the steep angle of incidence of the XKS waves, the 

vertical resolution of the SWS technique is low.  
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Figure 1.2. Possible causes of mantle anisotropy. Top panel), Shear wave velocities in 

monocrystal of olivine. Middle panel), Cross-section of simple Asthenospheric flow; the 

fast direction is parallel to the flow direction. Lower panel), Schematic of vertical 

coherent deformation where fast directions are parallel to mountain belts (Silver, 1996). 
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To some extent, surface wave dispersion studies can resolve the depth distribution 

of seismic anisotropy (Montagner, 1998; Yuan and Romanowicz, 2010), but the 

resolution in both vertical and horizontal directions is intrinsically low. Recently, Liu and 

Gao (2011) proposed a procedure to estimate the depth of the source of anisotropy using 

spatial variation of splitting parameters. This technique requires the availability of high-

quality SWS measurements obtained at densely spaced seismic stations.  

 

As discussed below, the study area (Figure 1.3) is well sampled by stations in the 

ongoing USArray project, which has a nominal station spacing of 70 km and has 

recorded an outstanding data set for characterizing 3-D distribution of seismic anisotropy 

in the mantle beneath the study area. Another issue that can be constrained using SWS 

analysis is the degree of coupling between the lithosphere and the underlying 

asthenosphere.  
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Figure 1.3. Topographic relief map of the study area showing seismic stations used in the 

study (triangles) and major tectonic provinces. The solid blue lines separate Precambrian 

basement terranes (Thomas, 2006), and the green arrows indicate the direction of the 

absolute plate motion (APM) of the North American Plate (Gripp and Gordon, 2002). 

Example data from the two named stations (234A and 628A) are shown in Figure 3. 

SOA: Southern Oklahoma Aulacogen; LU: Llano Uplift. 
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Global scale anisotropy studies using surface waves suggested that the 

asthenosphere beneath most slow-moving continents is nearly isotropic, implying 

decoupling between the lithosphere and asthenosphere except for Australia which is the 

fastest moving continent (Debayle et al., 2005). Decoupling is also advocated by others to 

explain westward net drift of the lithosphere relative to the asthenosphere (Doglioni et al., 

2011), and to explain geoid anomalies across transform faults that separate ocean floors 

of different age (Craig and McKenzie, 1986). Most of these studies proposed the 

existence of an ultra-thin, low viscosity layer immediately beneath the lithosphere. This 

layer prevents transfer of shear stress between the lithosphere and the asthenosphere, 

leading to decoupling of the two. However, some geodynamic modeling and seismic 

anisotropy studies suggested a high-degree coupling between the two layers (Becker and 

O’Connell, 2001; Marone and Romanowicz, 2007; Bird et al., 2008). 

 

  A combination of the broadband seismic data set and the tectonic setting of the 

study area provide an excellent opportunity to address this problem. The bulk of the study 

area consists of the southeastern part of the western US orogenic zone, the southern Great 

Plains, and the transition zone between the two (Figure 1.3). Two suture zones divide the 

Proterozoic basement into three provinces, which become progressively younger 98 

toward the southeast (Thomas, 2006; Whitmeyer and Karlstrom, 2007). Major tectonic 

features include the Rio Grande Rift, the Southern Oklahoma Aulacogen, and the 

continental-oceanic transitional crust formed as a result of extension during the formation 

of the Gulf of Mexico (Mickus et al., 2009). Seismic body wave and surface wave 

tomography (van der Lee and Nolet, 1997; Yuan and Romanowicz, 2010; Burdick et al., 
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2012) suggest that the lithosphere beneath the Great Plains has a thickness of about 200-

250 km, and thins to about 125 km beneath the western US orogenic zone and beneath 

the area with transitional crust (Wilson et al., 2005; van der Lee and Frederiksen, 2005; 

Yuan and Romanowicz, 2010). 

 

1.1. Tectonic setting and previous seismic anisotropy studies 

The southwest part of the contiguous United States has experienced significant 

amount of deformation, magmatism, and extension from the Precambrian to the Cenozoic 

Era (Whitmeyer and Karlstrom, 2007; Karlstrom and Bowring, 1988). These orogenic 

events include the late 122 Proterozoic Yavapai orogeny (1.71-1.68 Ga), the Mazatzal 

orogeny (1.7-1.65 Ga), and Grenville orogeny (1.3-0.9 Ga) (Whitmeyer and Karlstrom, 

2007). During the Proterozoic, the basement of the continental crust was rapidly 

generated by the accretion of several major volcanic arcs (Hoffman, 1988; 1989; Condie, 

1982; Karlstrom and Bowing, 1988).  

 

The widespread extension which took place during the Cenozoic time (Coward et 

al., 1987) created magmatic episodes in the Tertiary Period (Baldridge at al., 1991; Balch 

et al., 1997; McMillan et al., 2000), uplifted the Colorado Plateau (Liu and Gurnis, 2010) 

and caused the rifting of the Rio Grande Rift during the Grenville orogeny (Morgan et al., 

1986; Mosher, 1998; Lawton and McMillan, 1999). In the study area, several SWS and 

other seismic anisotropy studies were conducted during the pre-USArray era. 

Consequently the spatial coverage was limited related to that presented here. A study 

conducted by Savage and Sheehan (2000) measured SKS splitting using data from the 

Colorado Plateau-Great Basin portable Array stations.  
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They observed NE-SW fast direction beneath both the Rio Grande Rift and the 

Rocky Mountains with a splitting time of 1.0 s. A mantle flow around the keel was 

proposed by Fouch et al. (2000) based on shear wave splitting observation from eastern 

US obtained from two arrays (MOMA, and NOMAD) of 22 broadband stations.  

 

Barruol et al. (1997) explained the large scale of anisotropy pattern around the 

southern margin of stable North America by asthenospheric flow that is deflected around 

the thick North American craton. Sandval et al. (1992) reported the N-S fast polarization 

direction beneath the Rio Grande Rift obtained from five temporary digital stations. 

Wang et al. (2008) have also indicated that the fast polarization directions have N to NE 

orientation within the south eastern rim of the rift. Splitting time of 1.4 s was found by 

Gok et al. (2003) in the same area with similar patterns of fast directions. 

 

Gao et al. (2008) conducted shear wave splitting measurements at permanent 

broadband stations in the south-central United States. They attributed magmatic dikes in 

the lithosphere and/or asthenospheric flow for the observed anisotropy. In the study area, 

using joint inversion surface waveform and a limited number of SKS splitting 

measurements, Yuan and Romanowicz (2010) proposed two distinct layers. The upper 

layer, which resides in the lithosphere, has a N-S fast direction, and the lower layer,which 

is in the upper asthenosphere, is dominated by NE-SW fast directions.  
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2. Data and Methods 

The study area ranges from 109◦W −90◦W and 26◦N−42◦ N. Broadband seismic 

data from all the USArray and permanent stations in the study area were requested from 

the IRIS (Incorporated Research Institutions for Seismology) DMC (Data Management 

Center). For stations on the western US orogenic zone (approximately west of 105◦ W) 

where rapid spatial variation of anisotropy is expected, we also requested data from 

portable seismic experiments. Data from most of the stations ended around early 2012. 

The cutoff magnitude for events with a focal depth _ 100 km is 5.6, and that for deeper 

event is 5.5 to take the advantage of the sharper waveforms normally associated with 

deep events. The epicentral distance range used is 120◦ -180◦ for PKS, and 84◦ - 180◦ for 

SKKS and SKS (Gao and Liu, 2009). 

 

Following the procedure of Liu (2009) (Figure 1.4), which was based on the 

minimization of transverse energy approach of Silver and Chan (1991), we resampled the 

seismograms into a uniform sampling rate of 20 sps, and band-pass filtered them in the 

frequency band of 0.04-0.5 Hz which contains most of the XKS energy. All the 

measurements were visually inspected and if necessary, data processing parameters such 

as the beginning and ending time of the XKS window, band-pass filtering parameters, 

and automatically determined ranking (Liu et al., 2008) were adjusted manually (Figure 

1.5). Figures 1.3 and 1.6 show the distribution of the stations and the events, respectively, 

and Figure 1.7- 1.19 shows examples of XKS phases and various figures associated with 

the data processing procedure.   
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Figure 1.4.  A flowchart showing the procedure for measuring, verifying, and ranking 

shear wave splitting parameters used in this study (Liu, 2009). 
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Figure 1.5. Ranking chart for the XKS splitting results. Ror is signal-to-noise ratio on the 

original radial component; Rot is signal-to-noise ratio on the original  transverse 

component. (top) For Rct/Rot _ 0.7. (bottom) For Rct/Rot > 0.7, where Rct is the S/N on 

the corrected transverse component (Liu et al., 2008). 
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Figure 1.6. An azimuthal equidistant projection map showing the distribution of 475 

earthquakes used in the study. Size of the red circles is proportional to the number of 

resulting well-defined splitting measurements. The black circles and corresponding labels 

show the distance in degree to the center of the study area. 
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Figure 1.7. Original and corrected XKS seismograms (top panels), particle motion 

patterns (middle), and the contour maps of transverse component energy (bottom) from 

stations 628A TA (A) and 234A TA (B and C). The red dot on the contour map indicates 

the optimal splitting parameters. 
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Figure 1.8. An example of SKS measurement from station 228A in area A. Original and 

corrected radial and transverse components (top panels), their particle motion (middle 

panel), and Contour map of normalized energy on the corrected transverse component (bottom panel). 

The vertical thick blue lines are “a” and “f” positions and represent the time window on 

which shear wave splitting parameters is made. The red dot in the map refers to the 

optimal shear wave splitting parameters. 
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Figure 1.9. Same as Figure 1.8 but for a SKKS phase recorded by station M27A from 

area A 
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Figure 1.10. Same as Figure 1.8 but for a PKS phase recorded by station P26A from area 

A 
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Figure 1.11. Original and corrected seismogram for SKS recorded by station M38A from 

area B 
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Figure 1.12. Same as Figure 1.11, but for SKKS recorded by station N35A from area B 
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Figure 1.13. Same as Figure 1.11, but for PKS recorded by station M35A from area B 
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Figure 1.14. Original and corrected seismogram for SKS recorded by station R41A from 

area C 
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Figure 1.15. Same as Figure 1.14, but for SKKS recorded by station V37A from area C 
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Figure 1.16. Same as Figure 1.14, but for PKS recorded by Q39A for area C 
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Figure 1.17. Original and corrected seismogram for SKS recorded by 135A from area D 
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Figure 1.18. Same as Figure 1.17, but for SKKS recorded by station 434A from area D 
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Figure 1.19. Same as Figure 1.17, but for PKS recorded by station 134A from area D 
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3. Results 

3.1. Spatial variations of resulting splitting parameter 

A total of 3027 pairs of well-defined (Quality A and B, see Liu et al., 2008 for 

details about ranking criteria) splitting parameters were obtained from 475 events at 547 

stations. Among the measurements 2238 are SKS, 406 are SKKS, and 383 are PKS 

measurements. The mean splitting time over all the measurements is 1.01±0.34 s which is 

identical to the global average of 1.0 s (Silver, 1996). For a commonly-assumed degree of 

anisotropy of 4% (Mainprice et al., 2000), the thickness of the anisotropic layer is about 

110±30 km. In the following we quantify the spatial and azimuthal variations of the 

splitting parameters. 

 

The resulting SWS parameters (Figures 3 and 4) show systematic spatial 

variations and close correspondence with the absolute plate motion (APM) direction and 

geological provinces. Fast directions observed on the western US orogenic zone and its 

transition zone with the Great Plains are dominantly N-S, while the rest of the study area 

shows mostly NE-SW fast directions (Figure 3). We divide the study area into four areas 

based on the characteristics of the SWS measurements and also on Proterozoic basement 

provinces. Area A, which contains 1388 pairs of measurements from 253 stations, is the 

east-most portion of the western US orogenic 195 zone and its transition zone with the 

Great Plains. The shear wave The mean fast directions in this area is 28±23.4◦, and the 

mean splitting time is 1.05± 0.35 s.  
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Area B is the southern part of the Yavapai province and contains 421 pairs of 

SWS measurements from 62 stations. The mean fast direction is 64±22◦, and the mean 

splitting time is 0.89 ± 0.28 s. Area C is the Mazatzal province and contains 367 pairs of 

measurements from 87 stations, and the mean splitting parameters are 57±25◦ and 

0.86±0.29 s. Area D is the Grenville province. The southern part of this area is covered 

by continental-oceanic transitional crust. This area has 851 pairs of measurement from 

145 stations. The mean splitting time of 1.15±0.36 s is the largest among the four areas, 

and the mean fast direction is 63±21◦. 

 

3.2. Fast directions 

To illustrate the spatial variation of the fast directions and to explore their 

relationship with the APM direction, we calculate the APM direction for each of the 3027 

ray-piercing points (at the depth of 200 km) based on the fixed hot-spot model of Gripp 

and Gordon (2002), and obtain the absolute difference between the two directions in the 

range of 0◦ to 90◦. The resulting differences are then spatially averaged in 1◦ by 1◦ blocks 

and resampled into a finer resolution of 0.1◦ using the grdsample function in Generic 

Mapping Tools (Wessel and Smith, 1991) for display (Figure 1.20). 
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Figure 1.20. Well-defined shear-wave splitting measurements. The orientation of the red 

bars represents the fast polarization direction, and the length is roportional to the splitting 

time. The background image shows absolute difference between the observed fast 

directions and the APM (red arrows). The dashed lines separate areas with distinct 

basement ages and/or tectonic history. 
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  The resulting image (Figure 1.20) indicates that beneath the western US Orogenic 

zone and its transition area with the Great Plains, the fast directions are almost orthogonal 

with the APM direction.  On the contrary, the fast directions and the APM are largely 

consistent beneath the Great Plains and the transitional crust, with a few exceptions.  The 

first is an area centered at (98◦W, 32◦ N) in central Texas, tectonically known as the 

Llano Uplift (Mosher, 1998). The fast directions in this area are more northerly and 

spatially vary. As discussed in the next section, this apparent deviation of the fast 

direction from the APM direction is caused by azimuthal variations of the splitting 

parameters as a result of double layer anisotropy. The second area with large deviations is 

a band along the boundary between the Yavapai and Mazatzal provinces (Figure 1.20). 

This band departs from the boundary at about 95◦ W and extends eastward.  

 

The large deviations are caused by the fact that the fast directions are spatially 

less consistent relative to the other areas of the Great Plains. The third area, although not 

as profound as the two above, is located at the south-most tip of Texas. The 

measurements in this area are more northerly than the rest of the stations on the 

transitional crust. This observation, when combined with the relatively small splitting 

times in this area (Figure 1.21) and the shape of the edge of the North American 

continent, has important significance about the flow pattern around the cratonic keel, as 

detailed in the Discussion section below. Finally, the 6 measurements at the south-most 

tip of the Rio Grande Rift are mostly E-W oriented (Figure 1.20), suggesting a possible 

termination of the N-S domain to the north. Figure 1.7A shows an example of these 

measurements. 
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Figure 1.21. Spatial distribution of splitting times. Red triangles represent seismic 

stations used in the study. Dashed lines represent boundaries between the four areas. 

Stations represented by blue triangles show systematic azimuthal variation of splitting 

parameters shown in Figure 1.22. 
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3.3. Splitting times 

The spatial distribution of splitting times shown in Figure 1.21 was produced by 

averaging the individual splitting times at the piercing points of 200 km deep in 

overlapping 1◦ by 1◦ blocks, and by resampling to a resolution of 0.1◦ for display.  The 

largest splitting times of   1.4 s are found in the vicinity of the Rio Grande Rift and in 

the area covered by transitional crust. A closer examination of the spatial distribution of 

the splitting times (Figure 1.21) suggests that the area with the largest δt values has a 

coastline that is parallel to the APM. The δt values reduce to about 1.0, s which is the 

average of of entire study area, near the western extreme of the area covered by 

transitional crust, where the coastline of the Gulf of Mexico becomes N-S. 

 

The continental interior is characterized by small splitting times of 0.7- 0.9s. The 

smallest values are located along the suture zone separating the Yavapai and Mazatzal 

provinces. Interestingly, this is approximately the same area with the largest deviations 

between the fast directions and APM (Figure 1.20). 
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4. Discussion 

4.1. Stratification of seismic anisotropy 

Azimuthal variations of splitting parameters with a  /2 periodicity is a diagnostic 

of double-layer anisotropy with horizontal axis of symmetry (Silver and Savage, 1994). 

We visually examined splitting parameters for all the 547 stations and found that only 13 

of them (see Figure 1.21 for their locations) show systematic azimuthal variations. They 

are located in the vicinity of the Llano Uplift, which is a Precambrian basement uplift in 

north-central Texas (Mosher, 1998). Figures 1.7b and 1.7c show examples of XKS data 

recorded by the same station. Significantly different shear-wave splitting parameters were 

obtained from the two events, which have different back-azimuths. We next attempt to 

grid-search the 2 pairs of splitting parameters that fit the observed data the best, using the 

approach 269 presented in Silver and Savage (1994). Because there are normally more 

than one group of splitting parameters that can fit the data equally well (Gao and Liu, 

2009), we use results from surface-wave inversion (Yuan and Romanowicz, 2010) as a 

priori constraints. 

 

 In our study area Yuan and Romanowicz (2010) reported a double-layer 

anisotropic structure. The top layer, which resides in the lithosphere and is about 150-250 

km thick, has an approximately N-S fast direction and a weak anisotropy of about 1.5%. 

This layer can result in a splitting time of about 0.6-0.8 s for a nearly vertically 

propagating XKS wave. The bottom layer has an APM-parallel fast direction (about 70◦) 

and a stronger anisotropy of about 2.5% in most part of our study area. Assuming a 

thickness of 200 km, the corresponding splitting time is about 1 s.  
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The blue lines in Figure 1.22 were computed using the above splitting parameters 

derived from surface wave inversion results (0◦ and 0.75 s for the top layer, and 70◦ and 

1.0 s for the lower layer), by assuming a XKS frequency of 0.2 Hz. Although the misfits 

are obvious, the general trends of the computed lines follow those of the observed data 

closely, especially for the fast directions. To obtain a better fit, we search the optimal set 

of parameters in vicinity of the surface-wave derived fast directions and free-varying 

splitting times, that is, (40◦-90◦, 0.0-2.0 s) for the lower layer, and (-25◦-25◦ , 0.0-2.0 s) 

for the top layer. The resulting best-fitting parameters are (60◦, 1.3 s) for the lower layer, 

and (-19◦, 0.4 s) for the top layer. The green lines in Figure 6 are computed using the 

best-fitting parameters.  

 

On the Llano Uplift and surrounding areas, the azimuthal variations of our SWS 

parameters and results from the grid-search above are in agreement with the surface-wave 

inversion results of Yuan and Romanowicz (2010). However, Yuan and Romanowicz 

(2010) also observed the existence of lithospheric anisotropy with a nearly N-S fast 

direction in the rest of our study area, and our SWS measurements do not show 

systematic azimuthal variations except for the 13 stations in the vicinity of the Plateau. 

One of the possible causes for the discrepancy could be the large difference in the 

frequency bands of the seismic waves used by the two types of studies.  

 

Surface waves have much longer period and thus are capable of detecting long-

wave features. Small-scale (relative to the wavelength) heterogeneities in anisotropic 

properties in the lithosphere are smoothed out. On the other hand, XKS waves have 
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shorter wavelength and consequently such heterogeneities can have a significant impact 

on the results. If the heterogeneities are strong enough in the form of multiple layers 

and/or dipping axis of symmetry, the effect of anisotropy as observed by XKS waves can 

be canceled out. The fact that stations on the Llano Uplift show clear two-layer 

anisotropy suggests a relatively homogeneous anisotropic structure in the lithosphere 

beneath this area. 
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Figure 1.22. Azimuthal variations of fast directions (top plot) and splitting times (bottom 

plot) for the 13 stations shown in Figure 1.21. The green lines were computed using the 

optimal splitting parameters from grid-searching under a two-layer model, and the blue 

lines were  computed using approximate splitting parameters estimated based on 

inversion of surface waveforms (Yuan and Romanowicz, 2010). 
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4.2. Estimating the depth of anisotropy beneath the study area 

Previous studies revealed that the fast polarization directions are mostly parallel 

to the APM direction or align with the strike of the geological features (Silver and Chan, 

1991; Silver, 1996). Thus the observed seismic anisotropy using SWS either represents 

lithospheric or asthenospheric origin or a combination of the two (Long and Silver, 2009; 

Savage, 1999). If the fast polarization direction is in alignment with the absolute plate 

motion, the splitting parameters will primarily reflect the asthenosphere source (Conrad 

et al., 2007). The plate motion will enhance the mineral to orient, preferably, into the 

direction of the infinite strain axes. Therefore, the fast polarization directions will be 

parallel to either the absolute plate motion shear or the mantle flow direction (Karato et 

al., 2008; Huang et al., 2011). 

 

Conversely, if the anisotropy reflects the lithospheric origin, the shear wave 

splitting observation would be expected to be parallel to the surface geological features 

(Nicolas and Christensen, 1987; Nicolas, 1993; Savage, 1999; Silver, 1996). Mountain 

belts, major faults, and extensional rifts including continental margins are good examples 

in which anisotropy will reside in the lithospheric mantle (Silver, 1996). Thus the key 

information to distinguish between lithosphere or asthenosphere origin of observed 

anisotropy is a reliable determination of the depth of the source of anisotropy. 

 

Determination of the anisotropy location is still a topic of argument in shear wave 

splitting studies. The source of anisotropy can occur anywhere at any anisotropic layer 

from the core-mantle boundary to the recording station at the surface (Gao et al., 2010; 

Barruol and Hoffmann, 1999). 
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 In this study we use the spatial variation factor approach (Gao et al., 2010; Liu 

and Gao, 2011) to estimate the depth of anisotropy. A detailed description of the 

approach (and an accompanying freely-accessible FORTRAN program) can be found in 

Gao and Liu (2012), and is briefly summarized below. The procedure is built upon the 

principle that for a given XKS ray path traveled through an interface, the distance 

between the recording station and the surface projection of the ray-piercing point at the 

interface increases for deeper interface. When multiple events from various azimuths are 

recorded by closely-spaced stations, the splitting parameters observed on the surface 

reach the highest spatial coherency if the interface is placed 344 at the true depth.  

 

In practice, the optimal depth is searched by assuming a series of depth from 0 to 

400 km at an interval of 5 km. The spatial variation factor as defined in Liu and Gao 

(2011), Fv, is computed for each of the assumed depths: 
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Where N  is the number of blocks, iM is the number of the events in each block, and ij , 

and ijt  are the fast direction and the time delay respectively.  The resulting Fv curves for 

the 4 areas are shown in Figure 1.23. Beneath the western US orogenic zone and the area 

covered by transitional crust, the depth-estimate procedure found that the main 

contribution to the observed anisotropy is originated from a depth of about 150 km, and 

beneath the Great Plains, it is in the range of 200-250 km. These values remarkably agree 

with the thickness of the lithosphere beneath the respective areas estimated using various 

seismic techniques (van der Lee and Nolet, 1997; Wilson et al., 2005; Yuan and 
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Romanowicz, 2010; Burdick et al., 2012). Such agreements suggest that the observed 

anisotropy mostly come from the top of the asthenosphere. 
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Figure 1.23. Spatial variation factors as a function of assumed depth of the source of 

anisotropy for each of the four areas. 
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4.3. Locating the edge of the North American craton 

As discussed below, the observed anisotropy patterns are largely controlled by the 

edge of the North American craton. To obtain a first-order estimate of the shape of the 

cratonic edge, we obtained and processed data from all the USArray TA stations in the 

study area, from teleseismic earthquakes (in the epicentral distance range of 30◦ − 180◦). 

The cutoff magnitude used for data requests is a function of focal depth and epicentral 

distance, as described in Liu and Gao (2010). The cut-off magnitude is determined using 

Mc = 5.2 + (De − 30.0)/(180.0 − 30.0) − Hf /700, where De is the epicentral distance in 

degree, and Hf is the focal depth in km. The vertical components are then filtered in the 

frequency band of 0.04 − 1.0 Hz. An automatic trace-selection procedure is applied to the 

filtered seismograms to select those with a strong first arrival.  

 

The procedure utilizes the ratio between the absolute maximum value in the signal 

window and the mean absolute value of a noise window before the first arrival. Those 

selected for further processing have a ratio of 4.0 or greater. For a given event, the 

waveform cross-correlation approach (VanDecar and Crosson, 1990) was used to pick the 

relative travel-time residual at each station, and the residuals for all the events at each 

station are averaged to obtain a mean residual for each of the stations.  The results shown 

in Figure 1.24 were obtained by smoothing the station averages in 1◦ by 1◦ windows and 

by resampling to a finer resolution of 0.1◦. The travel-time residuals of the first P-wave 

(including P, Pdiff and PKP) show systematic spatial variations.  

 

The peak-to-peak amplitude in the study area is about 2.0 s. Most part of the Rio 

Grande Rift has a positive anomaly of about 0.5 s, and the area covered by transitional 
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crust is characterized by overwhelmingly positive residuals of as large as 1.5 s. While the 

thick sedimentary cover in the extended areas contributes to the observed positive 

anomalies, calculations using reasonable assumptions of thickness and velocity anomalies 

of the sedimentary cover suggest that a significant amount of the travel-time delays must 

come from the mantle, most likely as a result of a thinner lithosphere relative to the 

continental interior. Seismic tomography studies suggest that the edges of cratons have a 

cone shape, dipping toward the interior at greater depth (Burdick et al., 2012; James et 

al., 2001).  

 

Therefore, there is no single definition of the edge that can represent the entire 

lithosphere. If we use the contour line of 0.25 s, which is the average residual in the study 

area, to approximately represent the edge of the lithosphere, the eastern boundary of the 

Rio Grande Rift and the northern boundary of the area with transitional crust are almost 

consistent with the cratonic edge. Note that under this definition, the south western corner 

of the craton extends beyond the US-Mexican border, into an area that has not been 

sufficiently covered by seismic stations (Figure 1.24). This is consistent with results from 

a recent P-wave tomography study using USArray data (Burdick et al., 2012). 
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Figure1.24. Spatial correspondence between shear-wave splitting times and teleseismic 

P-wave travel-time residuals. The largest splitting times (pluses) are found along the 

margins of the North American craton, while the smallest values (circles) mostly locate in 

the interior of the craton. 
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4.4. Argument against significant lithospheric contributions to observed anisotropy 

On the lithospheric scale, two anisotropy-forming mechanisms have been 

proposed (Silver, 1996). The first is LPO of olivine a-axis under uniaxial compression 

which leads to a fast direction that is perpendicular to the shortening direction, and the 

other is the presence of vertical magmatic dikes which result in dike-parallel fast 

directions. Based on a limited number of SWS measurements, some previous studies 

(Silver and Chan, 1988; Silver, 1996; Barruol et al., 1997; Gao et al., 2008) proposed a 

lithospheric origin for the observed anisotropy beneath the North American craton. As 

argued below, neither mechanism seems to be the dominant cause of the observed XKS 

anisotropy beneath the study area.  

 

Although the parallelism between the APM and most portions of the Proterozoic 

sutures makes it difficult to distinguish the contributions from the lithosphere and 

asthenosphere, several lines of evidence suggest that collisional orogenies associated with 

the suture zones did not create significant vertically coherent deformation in the 

lithosphere, for the following reasons:  

1).The suture zones are not associated with zones of large splitting times. Because the 

maximum compressional strain is expected to be found along the suture zones, if such 

strain is responsible for observed anisotropy, the splitting times in the vicinity of the 

suture zones should be greater than those in the interior of the Proterozoic provinces. This 

is not observed for either suture zones (Figure 1.21).  

 

On the contrary, the smallest splitting times in the entire study area are found in 

the vicinity of the Yavapai-Mazatzal suture (Figure 1.21). 2). the fast directions do not 
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follow the strike of the suture zones. Most part of the Mazatzal-Grenville suture is not 

parallel to the APM (Figure 1.20). Instead, its strike varies significantly. Such variations 

are not consistent with the fast directions in the vicinity of the zone, which are 

dominantly parallel to the APM. Most of the fast directions in the vicinity of the Yavapai-

Mazatzal suture also show a significant angle with the strike of the zone (Figure 1.20). 3). 

Both suture zones extend westward to the western US orogenic zone with a NE-SW or 

NNE-SSW strike (Figure 1.1), but the fast directions in the orogenic zone and its 

transition with the Great Plains are mostly N-S. 4). the splitting times do not increase 

with increased thickness of the lithosphere.  

 

Under the assumption of constant lithospheric anisotropy in the study area, areas 

with thicker lithosphere should correspond to greater splitting times. Such a positive 

correlation is not observed. In contrast, the largest observed splitting times are found 

beneath areas with extended crust on the western and southern margins of the craton, and 

the smallest splitting times are located in the continental interior where the lithosphere is 

the thickest (Figure 1.24). Due to chemical or thermal (for recent dikes) contrasts with 

surrounding rocks, vertical or near-vertical dikes in the lithosphere especially those 

associated with continental rifting and formation of passive margins can produce 

mechanical anisotropy. This mechanism was proposed as a possible cause for the 

observed seismic azimuthal anisotropy in the Baikal and East African rift zones (Gao et 

al., 1997; Kendall et al., 2005) and the north margin of the Gulf of Mexico (Gao et al., 

2008). The dikes are expected to be parallel to the rifts or margins. While such dikes can 

explain the N-S oriented fast directions in the northern half of the Rio Grande Rift, which 
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has a N-S strike, they are unlikely to be responsible for those observed on the southern 

half of the rift, because the strike of the rift turns southwestward but the fast directions 

remain N-S (Figure 1.20). In addition, N-S fast directions are observed across a wide 

zone of several hundred km away from the rift axis, and it is thus unlikely that rift-

parallel lithospheric dikes can extend this far (Figure 4). The fast directions observed on 

the transitional crust north of the Gulf of Mexico are parallel to the coastline (Figure 

1.20), and thus in principle can be attributed to margin-parallel dikes. 

 

 However, as evidenced by gravity and magnetic data (Mickus et al., 2009), the 

western margin of the Gulf of Mexico is equally magmatic, and the associated dikes are 

mostly to be oriented parallel to the coastline, which is N-S oriented. The observed fast 

directions in this area are mostly NE-SW (Figure 1.20) and thus are not consistent with a 

dike origin. The above arguments, plus the results of depth estimate using spatial 

coherency of SWS parameters (Figure 1.23), exclude an overall lithospheric origin of the 

observed anisotropy. But they do not exclude observable lithospheric contributions for 

some of the areas. One such area is the Llano Uplift. The top layer could be in the 

lithosphere and could be formed during the Mesozoic when the Northern American plate 

was moving toward the north (Yuan and Romanowicz, 2010). Some NW-SE oriented fast 

directions in the vicinity of the Southern Oklahoma aulacogen could also reflect fabrics 

in the lithosphere. 
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4.5. Asthenospheric origin of anisotropy: A preliminary model 

The evidence presented above for the lack of significant lithospheric contribution 

to the observed anisotropy, especially the results of depth estimate using spatial 

coherency of splitting parameters (Figure 1.23), suggests that most of the observed 

anisotropy has an origin in the upper asthenosphere. The anisotropic layer corresponding 

to the observed splitting times has a thickness of about 100 km, which is inconsistent 

with the existence of an ultra-thin, low viscosity layer at the base of the lithosphere. Such 

APM-parallel anisotropy in the upper asthenosphere is indicative of a certain degree of 

lithosphere-asthenosphere coupling (Marone and Romanowicz, 2007). Numerical 

modeling suggests that large viscosity difference of 8-10 orders of magnitude can lead to 

decoupling between the lithosphere and asthenosphere (Doglioni et al., 2011). Therefore 

the observed anisotropy suggests a relatively small viscosity difference between the two 

layers.  

 

Seismic anisotropy as revealed by SWS and surface waveform inversion, 

however, cannot unambiguously determine the sense of relative motion between the two 

layers, i.e., both a faster lithosphere and a faster asthenosphere can lead to the same or 

similar patterns of anisotropy, under reasonable assumptions of mantle velocity, 

viscosity, and other physical parameters. For instance, finite difference modeling of 

mantle flow around cratonic keel leads to an identical flow pattern at the up and down 

stream sides of the craton (Fouch et al., 2000). Thus other constraints, such as additional 

geodynamic modeling effort (e.g., Bird et al., 2008) that utilizes the new SWS data set 

presented here, are required to distinguish the two models. Because the two models imply 

the opposite (resistive or active driving) effects of the asthenosphere on plate motion, 
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such 4efforts are important to understand plate dynamics. Since both models can explain 

all the major characteristics of the spatial variations of the observed splitting parameters, 

in the following, we apply faster-moving lithosphere model (Figure 1.25) to explain the 

observations. 

 

They can be explained equally well by reversing the direction of the flow, i.e., a 

mantle flow moving around the keel of the craton (Fouch et al., 2000), and APM-parallel 

shear strain in the continental interior. The faster-moving lithosphere model suggests that 

beneath the western US orogenic zone and its transitional area with the Great Plains, the 

southwestward moving continental root dispatches asthenospheric flow along its edge 

(Figure 1.25). The flow moves southward and forms N-S oriented seismic anisotropy. 

This flow system turns eastward around the southwest corner of the root, which is 

beneath northern Mexico, as suggested by the nearly E-W fast directions approximately 

at (103◦W, 29.5◦ N). The strength of the flow reaches its maximum beneath the area 

covered by transitional crust north of the Gulf of Mexico, probably because the 

lithosphere beneath this area has an edge that is more vertical than other areas, and 

consequently the flow is concentrated in a narrower zone. The APM-parallel anisotropy 

beneath the continental interior can be attributed to simple shear strain originated from 

the relative movement between the base of the lithosphere and a layer with a thickness of 

about 100 km at the top of the asthenosphere. 
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Figure 1.25. Schematic diagram showing direction of flow lines in the asthenosphere 

under the assumption of a faster-moving lithosphere relative to the asthenosphere. The 

solid black arrows indicate shear-strain in the asthenosphere beneath the craton, and the 

thick dashed line represents flow around the edge of the North American craton. The 

directions are relative to the underlying asthenosphere. The red arrow shows the APM 

direction of the North American plate, and the thin red bars represent individual shear-

wave splitting measurements (Figure 1.20). The background image shows P-wave travel-

time residuals, and the white lines indicate the approximate edge of the craton. Note that 

for the alternative faster-moving asthenosphere model, the direction of the black arrows 

are reversed. 
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5. Conclusions 

Systematic spatial and azimuthal variations of shear-wave splitting parameters are 

observed beneath the southwestern edge of the North American craton and adjacent 

areas. Spatial coherency analysis of the splitting parameters suggests that the observed 

anisotropy 518 is mostly from the upper asthenosphere, implying a certain degree of 

coupling between the lithosphere and the asthenosphere. The systematic variations and 

the depth distribution of the source of anisotropy can be adequately interpreted by the 

southwestward movement of the lithosphere over a slower moving or stagnant 

asthenosphere. The root of the continent dispatches mantle flow to form strong 

anisotropy with LPO of olivine a-axis parallel to the edge of the continent. In addition, 

beneath the continental interior, shear-strain in the top layer of the asthenosphere from 

the movement of the lithosphere is the most likely source of APM-parallel anisotropy.  

 

Teleseismic P-wave travel time residuals indicate that the southwestern extreme 

of the North American craton is located in northern Mexico, an area that has not been 

investigated using broadband seismic data. A seismic experiment with USArray-

comparable station density in this area is needed to locate the edge and image the mantle 

structure. Those results, when combined with results from geodynamic modeling, are 

essential to test various models regarding continental structure and dynamics, including 

the mantle flow models presented in this study. 
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C1. An example of SKS quality A for station 130A. 
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C2. An example of SKS quality B for station 534A 
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C3. An example of SKS quality N for station O35Z 
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C4. An example of SKS quality C for station O34A 
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C5. Azimuthal variations of fast direction (top) and the splitting time delay (middle) and 

the distribution of the events and rose diagram of  measurements for TA station 134A 

demonstrate the presence of two-layer anisotropy. 
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C6. Same as C5, but for station 135A. 
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C7. Same as C5 but for station 232A. 
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C8. Same as C5, but for station 234A. 
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C9. Same as C5, but for station 332A 
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C10. Azimuthal variations of resulting splitting parameters for station on the four 

subareas (A, B, C, and D) on the area of study. 
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C12. Spatial distribution of Φ and δt. Our observation shows that the area with the largest 

splitting delay time is located near the transitional crust. 
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C14. Depth estimation for each of each of the four areas illustrated in Figure 1.3 in 

Section 1 
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Table 1.Examples of some of shear wave splitting dataset for area A used in this study 

    Station   Phase Lat Lon Φ STD OF Φ δt STD of δt BAZ Rank 

127Axx_TA SKS 32.68 -103.36 5 20.5 0.45 0.22 247.84 B 

127Axx_TA SKS 32.68 -103.36 0 20.5 0.4 0.2 247.9 A 

128Axx_TA SKS 32.62 -102.49 11 3.5 0.65 0.08 240.86 A 

128Axx_TA SKS 32.62 -102.49 5 8 0.95 0.23 246 B 

128Axx_TA SKS 32.62 -102.49 168 3.5 1.15 0.22 245.39 A 

129Axx_TA SKS 32.63 -101.87 179 11 0.55 0.2 237.79 A 

129Axx_TA SKS 32.63 -101.87 27 3.5 0.6 0.05 241.18 A 

129Axx_TA SKS 32.63 -101.87 11 15.5 0.5 0.25 250.16 A 

129Axx_TA SKS 32.63 -101.87 41 5.5 0.8 0.28 321.69 A 

129Axx_TA SKS 32.63 -101.87 21 8.5 0.45 0.08 244.73 A 

129Axx_TA SKS 32.63 -101.87 30 15 0.45 0.15 245.72 A 

227Axx_TA SKS 32.01 -103.29 16 9.5 0.7 0.15 310.96 A 

228Axx_TA SKS 32.12 -102.59 40 7 0.85 0.22 240.79 A 

229Axx_TA SKS 31.97 -101.81 25 9.5 1.4 0.38 313.41 A 

229Axx_TA SKS 31.97 -101.81 18 15 1.1 0.52 311.77 A 

229Axx_TA SKS 31.97 -101.81 9 7 0.95 0.18 250.18 A 

230Axx_TA SKS 31.89 -101.11 23 16.5 1.05 0.5 313.81 A 

230Axx_TA SKS 31.89 -101.11 27 6 1.2 0.32 312.16 A 

230Axx_TA SKS 31.89 -101.11 46 2 1.75 0.22 241.53 A 

230Axx_TA SKS 31.89 -101.11 42 3.5 1.4 0.15 248.39 A 

230Axx_TA SKS 31.89 -101.11 33 4.5 0.8 0.15 322.09 A 

527Axx_TA SKS 30.15 -103.61 9 3.5 1 0.1 310.73 A 

527Axx_TA SKS 30.15 -103.61 178 4 1.2 0.17 287.64 B 

527Axx_TA SKS 30.15 -103.61 5 12 0.65 0.18 320.8 A 

528Axx_TA SKS 30.16 -102.79 14 13 0.9 0.25 321.22 B 

529Axx_TA SKS 30.12 -102.22 16 5.5 1.2 0.22 311.47 A 

530Axx_TA SKS 30.15 -101.34 30 10 0.7 0.1 252.14 A 

530Axx_TA SKS 30.15 -101.34 58 7 1 0.13 14.88 A 

627Axx_TA SKS 29.45 -103.39 101 11.5 0.5 0.12 236.86 A 

628Axx_TA SKS 29.49 -102.89 121 5.5 0.8 0.1 237.09 B 
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  Station    Phase Lat Lon Φ STD OF Φ δt STD of δt BAZ Rank 

V28Axx_TA SKS 35.75 -102.22 5 14.5 1.15 0.38 245.58 A 

W26Axx_TA SKS 35.09 -103.77 36 6.5 1.1 0.22 236.16 B 

W26Axx_TA SKS 35.09 -103.77 12 14 0.75 0.2 320.62 B 

W27Axx_TA SKS 35.06 -103.06 179 4.5 1.3 0.22 248.03 A 

W28Axx_TA SKS 35.26 -102.21 48 11 0.65 0.23 241.16 A 

W29Axx_TA SKS 35.12 -101.65 161 5 1.3 0.33 238.14 A 

W29Axx_TA SKS 35.12 -101.65 174 11.5 0.65 0.22 241.45 A 

W29Axx_TA SKS 35.12 -101.65 11 10.5 0.75 0.2 248.05 A 

W29Axx_TA SKS 35.12 -101.65 173 9 0.95 0.28 245.01 A 

W29Axx_TA SKS 35.12 -101.65 8 17.5 0.6 0.32 245.89 A 

X27Axx_TA SKS 34.65 -103.1 14 12.5 0.55 0.12 248.01 A 

X28Axx_TA SKS 34.52 -102.2 27 13 0.7 0.23 241.11 B 

X28Axx_TA SKS 34.52 -102.2 29 9 1 0.3 316.79 A 

X28Axx_TA SKS 34.52 -102.2 9 5 1.05 0.15 247.75 B 

X28Axx_TA SKS 34.52 -102.2 8 6.5 1 0.25 298.96 A 

Y26Axx_TA SKS 33.92 -103.82 9 2.5 1.05 0.1 247.62 B 

Y26Axx_TA SKS 33.92 -103.82 17 4.5 1 0.13 243.12 A 

Y26Axx_TA SKS 33.92 -103.82 18 9.5 0.9 0.17 236.91 A 

Y26Axx_TA SKS 33.92 -103.82 6 9.5 1.05 0.18 236.03 A 

Y26Axx_TA SKS 33.92 -103.82 4 6.5 1.15 0.2 242.02 A 

Y26Axx_TA SKS 33.92 -103.82 12 4.5 0.8 0.08 240.22 A 

127Axx_TA PKS 32.68 -103.36 126 10.5 0.4 0.15 288.57 B 

230Axx_TA PKS 31.89 -101.11 46 5 0.7 0.1 340.26 B 

327Axx_TA PKS 31.37 -103.49 153 12.5 0.25 0.05 287.47 B 

327Axx_TA PKS 31.37 -103.49 17 12.5 0.55 0.12 319.54 B 

429Axx_TA PKS 30.62 -101.89 28 6.5 1.1 0.15 73.25 B 

430Axx_TA PKS 30.79 -101.24 33 12.5 0.9 0.23 73.57 B 

430Axx_TA PKS 30.79 -101.24 19 12 0.8 0.23 73.58 B 

530Axx_TA PKS 30.15 -101.34 38 2.5 1.4 0.18 291.95 B 

LTXxxx_US PKS 29.33 -103.67 85 14 0.9 0.3 316.93 B 

Y28Axx_TA SKK 33.91 -102.25 39 11 1.05 0.28 286.06 B 

Y29Axx_TA SKK 33.86 -101.67 42 8.5 0.85 0.15 276.26 B 

Z26Axx_TA SKK 33.27 -103.98 22 13 0.85 0.32 263.75 B 

Z27Axx_TA SKK 33.31 -103.21 37 9 1.1 0.38 318.58 B 

Z30Axx_TA SKK 33.29 -101.13 15 5.5 1.35 0.28 304.3 B 
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Table 2.Examples of shear wave splitting dataset for area B used in this study 

  Station Phase Lat Lon Φ 
STD of       

Φ 
δt STD of δt BAZ Rank 

N35Axx_TA SKS 40.86 -95.64 82 8.5 0.75 0.15 313.36 B 

N35Axx_TA SKS 40.86 -95.64 75 10.5 0.7 0.15 313.15 A 

N35Axx_TA SKS 40.86 -95.64 77 12.5 0.85 0.25 313.39 B 

N35Axx_TA SKS 40.86 -95.64 89 1.5 1.05 0.07 18.8 A 

N35Axx_TA SKS 40.86 -95.64 74 10.5 1.35 0.47 317.68 B 

N35Axx_TA SKS 40.86 -95.64 75 7 1.05 0.17 307.62 B 

N35Axx_TA SKS 40.86 -95.64 81 21 0.5 0.3 323.12 A 

N35Axx_TA SKS 40.86 -95.64 86 6 1.15 0.27 282.81 A 

N36Axx_TA SKS 40.82 -94.96 67 12.5 0.75 0.3 314.23 A 

N36Axx_TA SKS 40.82 -94.96 75 3.5 1.35 0.15 19.4 A 

N36Axx_TA SKS 40.82 -94.96 73 18 0.65 0.25 320.03 A 

N36Axx_TA SKS 40.82 -94.96 78 11 0.85 0.2 308.25 B 

N36Axx_TA SKS 40.82 -94.96 61 8.5 0.95 0.18 281.54 B 

N36Axx_TA SKS 40.82 -94.96 59 12.5 0.8 0.23 267.34 B 

N36Axx_TA SKS 40.82 -94.96 71 2.5 1.25 0.13 10.53 B 

N36Axx_TA SKS 40.82 -94.96 82 8.5 1.45 0.35 316.51 B 

N36Axx_TA SKS 40.82 -94.96 77 13 0.8 0.17 31.27 A 

N36Axx_TA SKS 40.82 -94.96 68 3 0.9 0.17 323.65 A 

N36Axx_TA SKS 40.82 -94.96 67 11 0.9 0.2 283.29 A 

O35Axx_TA SKS 40.27 -95.91 16 10.5 0.75 0.2 313.37 A 

O35Axx_TA SKS 40.27 -95.91 11 8 0.85 0.17 318.23 B 

O35Axx_TA SKS 40.27 -95.91 25 13.5 0.6 0.22 322.84 A 

O36Axx_TA SKS 40.13 -94.96 28 12.5 1.65 0.7 310.14 A 

O36Axx_TA SKS 40.13 -94.96 35 2.5 0.95 0.12 19.48 A 

O36Axx_TA SKS 40.13 -94.96 33 16 0.6 0.2 10.55 B 

O36Axx_TA SKS 40.13 -94.96 27 14.5 0.65 0.2 341.52 B 

O36Axx_TA SKS 40.13 -94.96 15 8 0.4 0.05 323.56 A 

P36Axx_TA SKS 39.62 -95.21 33 2 0.95 0.15 19.32 A 

P36Axx_TA SKS 39.62 -95.21 26 9 0.6 0.15 323.29 B 

Q36Axx_TA SKS 38.96 -95.46 50 9 0.9 0.25 297.89 B 

Q36Axx_TA SKS 38.96 -95.46 78 6.5 1.15 1.38 248.2 A 

N32Axx_TA SKK 40.76 -98.3 71 4 0.9 0.1 310.6 A 

N32Axx_TA SKS 40.76 -98.3 90 3.5 0.75 0.08 310.85 B 
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  Station Phase Lat Lon Φ 
STD OF 

Φ 
δt STD of δt BAZ Rank 

N32Axx_TA SKS 40.76 -98.3 77 2 1.6 0.28 265.2 A 

N33Axx_TA PKS 40.74 -97.45 64 5.5 0.95 0.17 308.51 B 

N33Axx_TA SKK 40.74 -97.45 63 3.5 1.05 0.13 311.59 B 

N33Axx_TA SKK 40.74 -97.45 65 2 1.05 0.1 311.38 A 

N33Axx_TA SKK 40.74 -97.45 58 11 1 0.23 293.68 B 

N33Axx_TA SKS 40.74 -97.45 54 6.5 0.9 0.2 298.86 B 

N33Axx_TA SKS 40.74 -97.45 65 6.5 0.95 0.17 280.01 B 

N33Axx_TA SKS 40.74 -97.45 55 4.5 1.1 0.28 311.38 A 

N33Axx_TA SKS 40.74 -97.45 56 2.5 1.15 0.08 283.1 B 

N33Axx_TA SKS 40.74 -97.45 44 6 0.75 0.12 262.24 B 

N33Axx_TA SKS 40.74 -97.45 75 12 0.5 0.1 312.51 A 

N33Axx_TA SKS 40.74 -97.45 60 5 0.9 0.12 9.73 B 

N33Axx_TA SKS 40.74 -97.45 54 4 0.75 0.08 265.73 B 

N33Axx_TA SKS 40.74 -97.45 64 4.5 1.05 0.13 8.63 B 

N33Axx_TA SKS 40.74 -97.45 51 10.5 0.7 0.2 268.91 B 

N34Axx_TA PKS 40.84 -96.5 58 4 0.9 0.15 348.91 A 

N34Axx_TA PKS 40.84 -96.5 66 3 1.15 0.13 309.66 A 

N34Axx_TA SKK 40.84 -96.5 69 5 1.05 0.15 312.32 A 

N34Axx_TA SKK 40.84 -96.5 86 3 1.65 0.23 18.03 A 

N34Axx_TA SKK 40.84 -96.5 55 12.5 0.8 0.3 257.65 A 

N34Axx_TA SKS 40.84 -96.5 77 16.5 0.65 0.25 312.32 A 

N34Axx_TA SKS 40.84 -96.5 -83 9 0.65 0.12 313.17 B 

N34Axx_TA SKS 40.84 -96.5 88 13 0.65 0.15 311.8 B 

N34Axx_TA SKS 40.84 -96.5 81 1.5 1.45 0.08 18.03 A 

N34Axx_TA SKS 40.84 -96.5 66 5.5 1 0.15 10.5 B 

N34Axx_TA SKS 40.84 -96.5 46 12.5 0.65 0.15 266.36 B 

N34Axx_TA SKS 40.84 -96.5 76 4 1.2 0.17 9.36 B 

O29Axx_TA PKS 40.13 -100.8 61 2.5 1.35 0.2 343.23 A 

O29Axx_TA PKS 40.13 -100.8 -85 9.5 0.5 0.1 304.43 A 

P34Axx_TA SKS 39.55 -96.83 62 3.5 1.05 0.12 305.85 B 

P34Axx_TA SKS 39.55 -96.83 62 8 0.95 0.2 297.05 B 

L36Axx_TA SKS 42.1 -94.67 43 5.5 1 0.2 19.52 A 

L36Axx_TA SKS 42.1 -94.67 36 7 1 0.23 10.72 A 
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Table 3.Examples of shear wave splitting dataset for area C used in this study 

  Station Phase Lat Lon Φ 
STD 

of Φ 
δt 

STD 

of δt 
BAZ Rank 

MM18xx_XA SKS 38.53 -90.57 69 7 1.15 0.25 283.29 B 

MM18xx_XA SKS 38.53 -90.57 68 4.5 1.2 0.3 260.36 A 

MM18xx_XA SKS 38.53 -90.57 57 5 0.95 0.1 284.26 A 

N38Axx_TA SKS 40.79 -93.24 75 6.5 0.8 0.12 20.92 A 

S38Axx_TA SKS 37.63 -93.91 46 16.5 0.65 0.32 282.46 A 

S39Axx_TA SKS 37.69 -93.32 89 6.5 0.5 0.12 21.23 A 

S39Axx_TA SKS 37.69 -93.32 94 10.5 0.7 0.18 308.15 A 

S39Axx_TA SKS 37.69 -93.32 76 6 0.7 0.13 282.91 A 

S40Axx_TA SKS 37.6 -92.5 45 5 0.8 0.12 21.97 A 

S40Axx_TA SKS 37.6 -92.5 77 11 0.95 0.3 281.91 A 

S40Axx_TA SKS 37.6 -92.5 77 8 0.7 0.18 12.52 B 

S40Axx_TA SKS 37.6 -92.5 52 9 0.8 0.17 283.44 A 

S42Axx_TA SKS 37.77 -90.79 36 9 1.15 0.28 284.76 A 

S42Axx_TA SKS 37.77 -90.79 44 10.5 0.85 0.25 254.39 B 

T39Axx_TA SKS 37.02 -93.38 66 8 0.8 0.15 281.06 A 

T39Axx_TA SKS 37.02 -93.38 71 12 0.7 0.18 282.52 A 

T40Axx_TA SKS 37.15 -92.52 52 5.5 0.9 0.13 22.02 A 

T40Axx_TA SKS 37.15 -92.52 59 9.5 0.75 0.12 12.53 A 

T41Axx_TA SKS 37.04 -91.76 56 15.5 0.85 0.28 283.66 A 

T42Axx_TA SKS 37.03 -91.09 33 5 1.05 0.2 284.13 A 

N38Axx_TA PKS 40.79 -93.24 62 6.5 0.95 0.23 313.44 A 

N38Axx_TA PKS 40.79 -93.24 72 4.5 0.8 0.08 302.82 A 

N39Axx_TA PKS 40.88 -92.5 56 3 1 0.1 303.63 A 

N40Axx_TA PKS 40.88 -91.58 47 2 1.65 0.22 304.58 A 

O39Axx_TA PKS 40.25 -92.54 76 7 0.45 0.1 313.87 A 

P38Axx_TA PKS 39.62 -93.53 40 13 0.5 0.15 329.9 B 

P38Axx_TA PKS 39.62 -93.53 49 4.5 0.8 0.15 301.68 A 

Q38Axx_TA PKS 38.96 -93.62 88 14 0.45 0.1 311.52 A 

Q38Axx_TA PKS 38.96 -93.62 71 10.5 0.65 0.17 299.63 B 

Q38Axx_TA PKS 38.96 -93.62 62 11.5 0.6 0.2 301.1 A 

Q38Axx_TA PKS 38.96 -93.62 63 3.5 1.3 0.35 343.02 A 
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  Station Phase Lat Lon Φ 
STD OF 

Φ 
δt 

STD of  

δt 
BAZ 

Rank 

 

R38Axx_TA PKS 38.19 -93.91 85 6.5 0.65 0.1 310.52 A 

R38Axx_TA PKS 38.19 -93.91 61 11.5 0.55 0.17 300.24 A 

R39Axx_TA PKS 38.31 -93.04 96 8.5 0.75 0.15 311.67 A 

R39Axx_TA PKS 38.31 -93.04 93 3 0.8 0.1 301.18 A 

R41Axx_TA PKS 38.3 -91.38 162 13.5 0.35 0.12 312.05 A 

R42Axx_TA PKS 38.28 -90.79 63 5.5 0.95 0.17 312.67 B 

S38Axx_TA PKS 37.63 -93.91 77 5.5 0.5 0.05 310.04 A 

S38Axx_TA PKS 37.63 -93.91 65 10 0.65 0.1 299.81 A 

S39Axx_TA PKS 37.69 -93.32 89 6.5 0.65 0.08 310.8 A 

S39Axx_TA PKS 37.69 -93.32 95 8 0.75 0.17 298.94 B 

S39Axx_TA PKS 37.69 -93.32 79 5.5 0.7 0.15 328.87 B 

S39Axx_TA PKS 37.69 -93.32 86 6.5 0.8 0.1 300.43 A 

S39Axx_TA PKS 37.69 -93.32 107 5.5 0.7 0.15 309.63 B 

S40Axx_TA PKS 37.6 -92.5 86 6.5 0.7 0.1 311.72 B 

S41Axx_TA PKS 37.59 -91.75 75 9.5 0.4 0.08 304.22 B 

S42Axx_TA PKS 37.77 -90.79 49 5.5 0.85 0.2 303.01 A 

T40Axx_TA PKS 37.15 -92.52 52 8 0.9 0.25 300.78 B 

T40Axx_TA PKS 37.15 -92.52 64 5.5 0.75 0.15 310.11 B 

T41Axx_TA PKS 37.04 -91.76 79 12 0.55 0.12 301.45 A 

V37Axx_TA SKS 35.88 -95.14 66 10 0.9 0.18 10.57 A 

W30Axx_TA SKS 35.18 -100.58 148 5.5 0.9 0.17 259.28 A 

W31Axx_TA SKS 35.19 -99.94 77 2.5 0.95 0.07 15.54 A 

W36Axx_TA SKS 35.14 -96.23 89 6.5 0.8 0.17 250 B 

W36Axx_TA SKS 35.14 -96.23 63 2 0.85 0.05 18.97 A 

W36Axx_TA SKS 35.14 -96.23 80 5 1.05 0.17 9.76 B 

S35Axx_TA SKS 37.68 -96.32 -50 17.5 0.55 0.25 249.09 A 

U33Axx_TA SKS 36.43 -98.11 81 11.5 1 0.32 8.24 B 

U34Axx_TA PKS 36.44 -97.54 89 15.5 0.55 0.2 304.87 A 

U34Axx_TA SKS 36.44 -97.54 56 20 0.55 0.3 17.6 A 

U34Axx_TA SKS 36.44 -97.54 79 3.5 0.9 0.15 8.69 B 

U35Axx_TA SKK 36.37 -96.73 48 10 1.05 0.45 337.46 A 

U35Axx_TA SKS 36.37 -96.73 68 7 0.65 0.1 18.35 A 

U35Axx_TA SKS 36.37 -96.73 65 7 0.75 0.1 9.32 A 
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Table 4.Examples of shear wave splitting dataset for area D used in this study  

 Station Phase Lat Lon Φ 
STD OF 

 Φ 
δt 

STD OF 

δt 
BAZ Rank 

V38Axx_TA SKS 35.86 -94.41 91 8 0.95 0.15 311.96 A 

V38Axx_TA SKS 35.86 -94.41 76 14 1.05 0.4 301.2 B 

V38Axx_TA SKS 35.86 -94.41 47 12 0.75 0.15 11.14 A 

V38Axx_TA SKS 35.86 -94.41 51 15 1.1 0.4 31.87 A 

V39Axx_TA SKS 35.84 -93.64 51 4 0.9 0.08 280.37 B 

V39Axx_TA SKS 35.84 -93.64 65 17.5 0.7 0.35 266.82 A 

V39Axx_TA SKS 35.84 -93.64 68 10.5 0.95 0.2 11.73 B 

V40Axx_TA SKS 35.8 -92.82 67 6 1 0.12 12.36 B 

131Axx_TA SKS 32.67 -100.39 23 4.5 0.65 0.13 310.05 A 

131Axx_TA SKS 32.67 -100.39 50 5 0.9 0.12 15.44 A 

131Axx_TA SKS 32.67 -100.39 17 10 0.7 0.13 243.81 B 

133Axx_TA SKS 32.61 -98.92 50 7 0.95 0.23 249.55 A 

133Axx_TA SKS 32.61 -98.92 58 2.5 1.4 0.2 342.7 A 

133Axx_TA SKS 32.61 -98.92 42 3.5 0.75 0.1 247.92 B 

133Axx_TA SKS 32.61 -98.92 47 4.5 0.95 0.2 246.22 A 

133Axx_TA SKS 32.61 -98.92 60 5 1.3 0.3 306.09 A 

133Axx_TA SKS 32.61 -98.92 74 11.5 0.9 0.2 306.32 B 

133Axx_TA SKS 32.61 -98.92 69 2.5 1.35 0.3 259.7 A 

133Axx_TA SKS 32.61 -98.92 45 2.5 0.8 0.08 247.27 A 

133Axx_TA SKS 32.61 -98.92 52 2 1.05 0.18 310.94 A 

133Axx_TA SKS 32.61 -98.92 59 18 0.9 0.38 309.49 A 

133Axx_TA SKS 32.61 -98.92 57 3.5 1.4 0.25 253.75 A 

133Axx_TA SKS 32.61 -98.92 65 10.5 0.9 0.2 304.45 B 

133Axx_TA SKS 32.61 -98.92 49 3 1.05 0.2 244.19 A 

133Axx_TA SKS 32.61 -98.92 51 9 0.75 0.2 249.76 A 

133Axx_TA SKS 32.61 -98.92 56 3.5 1.15 0.17 254.21 A 

133Axx_TA SKS 32.61 -98.92 67 6.5 0.95 0.28 263.21 A 

133Axx_TA SKS 32.61 -98.92 56 5 0.9 0.13 290.05 B 

133Axx_TA SKS 32.61 -98.92 67 4 1.35 0.15 7.75 A 

133Axx_TA SKS 32.61 -98.92 52 4 1.15 0.25 247.54 B 

133Axx_TA SKS 32.61 -98.92 45 3.5 1 0.18 245.51 A 

133Axx_TA SKS 32.61 -98.92 50 3 1.15 0.2 245.71 B 

134Axx_TA SKS 32.57 -98.08 34 10 0.7 0.12 249.99 A 
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   Station Phase Lat Lon Φ 
STD OF 

Φ 
δt 

STD OF 

 δt BAZ Rank 

134Axx_TA SKS 32.57 -98.08 65 6.5 1.2 0.32 260.12 A 

134Axx_TA SKS 32.57 -98.08 29 8 0.65 0.1 247.7 A 

531Axx_TA PKS 30.16 -100.55 43 5.5 1.1 0.23 292.63 B 

533Axx_TA PKS 30.07 -99.04 64 12 0.65 0.15 297.24 A 

534Axx_TA PKS 30.03 -98.48 81 4.5 0.6 0.08 287.35 A 

534Axx_TA PKS 30.03 -98.48 74 7 0.95 0.15 297.74 A 

535Axx_TA PKS 30.03 -97.57 60 11.5 0.6 0.17 288.01 B 

535Axx_TA PKS 30.03 -97.57 65 4.5 1.25 0.15 298.63 B 

536Axx_TA PKS 30.08 -97.07 73 8 1.5 0.35 287.22 B 

537Axx_TA PKS 30.08 -96.32 71 4 1.35 0.15 288.98 B 

633Axx_TA PKS 29.46 -99.18 70 9 0.85 0.18 296.47 B 

634Axx_TA PKS 29.38 -98.35 80 2 1.1 0.1 286.91 B 

634Axx_TA PKS 29.38 -98.35 60 9 1.05 0.27 289.28 B 

635Axx_TA PKS 29.39 -97.77 67 5 1.35 0.17 287.33 B 

635Axx_TA PKS 29.39 -97.77 64 3.5 1.4 0.12 289.4 B 

733Axx_TA PKS 28.72 -99.29 61 8.5 1.15 0.28 295.59 A 

733Axx_TA PKS 28.72 -99.29 39 9 0.9 0.28 288.04 B 

933Axx_TA SKK 27.61 -99.27 59 3 1.4 0.12 275 B 

934Axx_TA SKK 27.6 -98.52 47 4 1.35 0.15 275.37 B 

ABTXxx_TA SKK 32.62 -99.64 42 3.5 1.2 0.13 276.95 B 

ABTXxx_TA SKK 32.62 -99.64 44 14 0.65 0.25 245.86 B 

X37Axx_TA SKK 34.59 -95.37 78 13 0.9 0.25 310.38 B 

X41Axx_TA SKK 34.49 -92.51 42 14 0.9 0.25 343.17 B 

Y30Axx_TA SKK 33.88 -100.9 39 8.5 1.4 0.3 276.73 B 

Y30Axx_TA SKK 33.88 -100.9 28 4.5 1.5 0.3 14.79 B 

Y31Axx_TA SKK 33.96 -100.26 41 3 1.5 0.12 277.14 B 

Y32Axx_TA SKK 34 -99.44 59 4 1.2 0.12 277.65 B 

Y32Axx_TA SKK 34 -99.44 57 6.5 0.65 0.13 306.38 A 

Y32Axx_TA SKK 34 -99.44 70 18.5 0.55 0.25 306.79 B 

Y33Axx_TA SKK 34.01 -98.63 176 5 0.95 0.2 245.79 B 

Y37Axx_TA SKK 33.98 -95.62 78 8.5 1.15 0.3 238.2 B 

Y39Axx_TA SKK 33.94 -94.09 61 7.5 1.5 0.48 311.24 B 

Z31Axx_TA SKK 33.32 -100.14 32 3 1.6 0.17 276.95 B 
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