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ABSTRACT 

A new computer-aided design program to assist in 

the initial phases of logical design is described. The 

program, intended for use via an on-line remote terminal, 

will allow the designer to study and experiment with design 

alternatives during the initial creative design phases. 

An ALGOL-like language is used for specifying the system 

being designed. In addition to simulating the design, 

the program allows the user to perform on-line design 

changes, reorganize data and generate timing diagram 

information. 
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I. INTRODUCTION 

The basic concepts and some of the details of an 

interactive computer-aided design program to assist logical 

designers in the initial phases of design are described. 

It differs from most other design aid programs in that it 

is interactive and usable by the designer in the initial 

creative and study phases of the design process. The 

system will also be useful for instruction and experimenta

tion in digital system design. 

The Interactive Digital Design Assistance Package 

(IDDAP) is intended to be used via a remote terminal. After 

entering a description of the contemplated design, the user 

can request any of several forms of assistance. Based on 

the resulting information displayed by the computer, the 

designer may make modifications to the original description 

and then again call upon the computer for assistance. The 

designer thus interacts with the computer to obtain a work

able solution to his design problem. 

Other computer programs have been developed for a 

variety of design tasks. The design language used to 

communicate with these programs may also serve as a vehicle 

for creative thought, and the resulting description can 

serve as a useful form of documentation. The design 

language selected for use in IDDAP has the familiar 
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ALGOL-like structure. It is essentially the language 

proposed by Chu to formally describe digital systems. 

Although descriptions at all levels of complexity 

are possible, interactive use is generally inefficient for 

very large design problems. One large class of design 

problems at an intermediate level is the design of inter

face units. Other problems appropriate for interactive 

design include the design of sub-units, such as a floating 

point arithmetic unit, and special purpose computers. 

The present version IDDAP is not particularly well suited 

to the study of a large computer nor for such detailed 

studies as critical race or hazard analysis. 

Computer-assisted design has been used to perform 

simulation and optimization (minimization), conduct race 

and fault analysis, synthesize logic equations and state 

tables, and to provide documentation such as logic diagrams 

and wiring lists. Only a few of these functions are 

relevant to the initial phases of the design process. 

However, there are several forms of assistance peculiar to 

this phase of design which have received little attention 

in the past. Besides simulating the described digital 

system, IDDAP also provides, upon request, a variety of 

other presentations such as cross reference lists and 

description reorganizations. The interactive approach is 

itself an important form of assistance; the user can make 

on-line design changes and can exercise more control over 



the simulation process than would be possible in a 

batch-mode environment. 

3 
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II. REVIEW OF THE LITERATURE 

Prior work in the area of computer-aided design of 

digital systems may be conveniently discussed by consider

ing each of the languages developed for expressing digital 

designs. Not all of the proposed forms of describing 

digital systems have actually been used for communication 

with computer-aided design programs. Each form to be 

discussed, however, shows at least some potential as an 

input language. Many of the languages in their original 

form make use of graphic symbols which are difficult or 

impossible for common computer input/output equipment. For 

use as an input language, straightforward substitutions are 

or could be made. 

A. Iverson Notation 

Also known as A Programming Language (APL)[lJ, Iverson 

Notation was originally developed as a general purpose 

problem solving language. Its ability to handle vectors, 

arrays, and other complex structures in a concise, elegant 

fashion makes it a powerful language. A description in 

Iverson Notation consists of three parts: a main program, 

"system programs", and "defined operations". System programs 

describe activities occurring concurrently with the main 

program such as input/output and interrupts. Conceptually, 

the defined operations are subroutines which may be used by 
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the main program or other defined operations. Statements 

in the main program and in the defined operations are 

executed in sequence except when altered by a transfer 

statement. Thus, parallel operations are as difficult to 

express as in other general-purpose languages such as 

FORTRAN. 

Use of Iverson Notation has proceeded along three 

paths. In its original form, Iverson Notation has been 

used to describe IBM's System/360[ 2 ] and as a notational 

tool in discussing computer architecture[3J. A conversa-

tional remote terminal version, consisting of the arithme

tic and mathematical functions, has been developed[ 4 ,5J. 

The ALERT[ 6 ,?J system makes use of another subset of 

Iverson Notation to obtain the Boolean equations from a 

high level description depicting the architecture of a 

proposed digital system. An important aspect of ALERT is 

that it automatically generates any intermediate registers 

or control logic which may have been implied by the high-

level description. 

The unusual symbols of Iverson Notation, when 

converted for the purposes of ALERT, make the language 

appear much less strange. With the added conventions for 

defining names of logic signals and units, the language 

begins to resemble other ALGOL-like languages. Reducing 

a formal Iverson description such as that of the IBM 

System/360 into a form suitable for ALERT involves, among 
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other things, replacing the semi-graphical representation 

of conditional branching with the familiar IF expPession 

THEN action form. 

The ALERT system was written for batch-mode operation 

on the IBM 7094. Its primary purpose is to produce the 

final logic design which it presents as gate-level logic 

diagrams or Boolean equations. ALERT is but one part of 

a series of automated design programs used at IBM. One 

of the programs uses the output of ALERT to simulate the 

system being designed. If design errors are found as a 

result of using the simulator, then presumably the designer 

has the choice of modifying the Boolean equations produced 

by ALERT or correcting the original Iverson description 

and using ALERT again. 

The remote-terminal version of APL, while not support-

ing some of the bit-string operations, can be (has been) 

used to simulate digital designs[SJ. 

B. Programming Language/One 

Like Iverson Notation, Programming Language/One (PL/1) 

is intended to be a general problem-solving language. Due 

to its ability to handle bit (and character} strings in a 

straightforward fashion, it also is suitable for describing 

digital systems. No computer-aided design programs have 

been specifically written to use PL/1 as the input language. 

However, the PL/1 compiler itself may be used to process 

the description of a digital system and thus to obtain a 



simulation of the system being designed. The central 

processing unit of the ILLIAC rv[ 9 J and the sec 650, a 

small general purpose computer[lOJ, have been described 
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in PL/1. Use of general purpose languages points up the 

fact that the design need not be reduced to gate-level 

specification before testing the design through simulation. 

The Conversational Programming System (CPS) is 

essentially a version of PL/1 for use on a remote terminal. 

Interactive simulation of a digital description is thus 

possible, again without any special software effort oriented 

toward digital design. 

c. Digital Design Language 

Digital Design Language (DDL), proposed by Duley and 

Dietmeyer[ll], is a high level language suitable for 

describing the organization and operation of large digital 

systems. DDL is comparable to CDL in its generality, 

conciseness and preciseness. Although its flexibility is 

impaired by its rigid modular organization, such an approach 

may be desirable, especially for complex systems. 

System descriptions in DDL are arranged in a strict 

hierarchical fashion. Each module is described in terms of 

other modules of successively lower levels. Modules at the 

lowest level specify detailed operations at the functional 

or logic-gate level. Only the statements at the lowest 

level resemble ALGOL-like statements. Otherwise, a system 
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description resembles an outline with each "outline heading" 

naming a module to be described by what follows. 

Duley and Dietmeyer[l2 ] have defined the operations 

required for a computer-aided design program to convert 

descriptions in DDL into Boolean and next-state equations. 

The work on the software system was reported to be in 

progress and may now be completed. 

D. Register Transfer Language 

Appearing in various forms[ 13 ~ 14 ~ 15 ] Register Transfer 

Language (RTL) is fairly close to hardware and deals with 

modules at the register and gate levels. It is not well 

suited to the description of large, complex systems, but 

its ALGOL-like structure and clear concise means of defining 

control and timing make it attractive for designs of inter

mediate complexity. Although some efforts were made[l 4J 

to provide automated analysis and synthesis available in 

this language, no apparent progress has been made within 

the last six years. 

E. Computer Design Language 

Y. Chu has suggested a formal means of describing 

digital systems through Computer Design Language (CDL)[l 6 J. 

His language resembles Register Transfer Language but is 

more concise and precise. As in RTL, parallel operations, 

timing, and control are all easily expressible. The 

language is to a great extent independent of hardware 
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technology and can be used to express either synchronous 

or asynchronous designs. The designer is free to organize 

his description in such a manner as to emphasize either 

the control, the sequencing, or the modular aspects of 

his design. 

A description in CDL consists of two parts: state-

ments giving names to hardware units and ALGOL-like state-

ments describing the interaction of hardware units. 

Modules may be defined in terms of these ALGOL-like 

statements. Reference to such modules in other statements 

permits the designer to indicate hierarchical structures. 

A description of the SCC 650 has been formulated[l 7 ] 

in CDL. McCurdy and Chu have developed a translator 

which converts a CDL description into a set of Boolean 

equations[lBJ. Their translator is written in MAD, and 

in order to simplify the programming effort, the CDL 

description input "was transliterated into one with a 

fixed format and written also in MAD language". 

F. Design Oriented Language 

Rouse describes the Design Oriented Language 

(DOL}[l9J, a semi-graphical language intended to clarify 

the sequencing and control of complex digital systems. 

A form similar to CDL is used for the description of 

blocks at the lowest level. 

The same design philosophy which underlies DOL 

was used by Rouse as the basis for the organization of a 
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comprehensive simulation program[ 20 J. That program is 

capable of performing in-depth simulation at the module 

and/or gate level. It includes capabilities for taking 

into consideration unequal time delays, indeterminate 

logic signals, the effect of faults and the possibility 

of races. The input description consists of fixed format 

lists of each module or gate type with its fan in and fan 

out, together with appropriate control cards. Efficient 

use of this simulator would appear to require that the 

design already be complete and, at least in principle, 

correct. 

G. Other Automated Digital Design Efforts 

In addition to the above, computer-aided design 

efforts at the computer-system level and at the gate level 

have gone on. 

A number of programs are available to assist in the 

design and evaluation of computer systems. Computer Descrip

tion Language (CDL1)[ 2l] is oriented toward specifying 

overall attributes such as speed, cost, compatibility, 

etc., in a formal manner. SODAS[ 22 ] (System Oriented 

Design and Simulation) is a simulation language which 

includes the means of specifying the behavior of both the 

hardware and software of a system. 

At the opposite extreme, a number of programs using 

more or less fixed-format input describing state tables 

or logic gate connections exist for a variety of purposes. 



11 

These include simulation, simplification, synthesis, 

hazard and race analysis, fault analysis, and diagnostic 

test generation[ 23 - 2 7J. 

H. Summary and Comparison 

Rouse[l9] makes a comprehensive comparison of APL, 

CDL, DDL, and RTL, including a single example expressed in 

each language. Using a different example, Pottinger[l7] 

has expressed it in each of the languages APL, CDL, and 

RTL. 

Disregarding the use of a left arrow, right arrow, 

or equals sign, and other symbol conventions, statements 

at the lowest level in each design language resemble 

ALGOL-like statements. Ignoring the differences in symbol-

ism, the available languages are nevertheless distinct in 

their abilities to express features such as parallel 

operation, timing and control, and hierarchical structure. 

Both CDL and DDL have these features. The main difference 

is that DDL places the hierarchical structure prominently 

while in CDL the control is usually, but not necessarily, 

more prominent. The general problem solving languages 

(APL and PL/1) do not provide satisfactory methods for 

specifying parallel operations or for specifying timing 

or control logic. 

With the exception of the general problem solving 

languages, none of the reported efforts have included 

simulation at an early stage in the design process, and 
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none are used interactively to provide design assistance 

during the initial design phases. Direct simulation of 

designs in DOL, CDL, RTL, or DOL have not been possible 

heretofore. Simulation has involved manual translation 

into fixed format or the use of simulators operating on 

the output produced by synthesis programs available for 

some of these languages. Thus, despite the large number 

of efforts to provide designers with languages to formulate 

designs and efforts to reduce such descriptions to the 

level of Boolean expressions, the designer is still left 

with no adequate form of assistance to create a correct 

description in the first place. 

The familiarity of ALGOL-like structures and the 

ability to clearly express control and parallelism has led 

to the choice of CDL as the description language for this 

work. Further justification for this choice is based on 

the ease with which others[ 28 , 29,30] have learned to use 

IDDAP. A few additions to COL have been made based on 

experience gained using CDL and on features found in other 

languages. 
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III. SYSTEM DESCRIPTION OF IDDAP 

The block-diagram in Figure 1 describes the overall 

structure of IDDAP. The block labeled MESSAGE HANDLER is 

a small sub-program which is responsible for all communica

tion between IDDAP and the user. During the development 

of IDDAP, the Message Handler used the system card-reader 

and line printer for input and output. By replacing this 

single program with another version, IDDAP could be made 

to communicate with any connected input/output devices. 

Specifically, an Assembler Language program was used to 

communicate with an IBM 2741 terminal via IBM's Basic 

Telecommunication Access Method {BTAM} software. The block 

labeled USER therefore refers to whatever input/output 

device is currently in use for communication with IDDAP. 

DESCRIPTION 

TRANSLATOR 

SUPERVISOR 

MESSAGE 

HANDLER 

SIMULATOR 

USER 

Figure 1. IDDAP System Block Diagram 
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The Supervisor's function is to invoke the Descrip

tion Translator or the Simulator and perform other requested 

operations. Upon the initial entry, the Supervisor 

automatically invokes the Description Translator. There

after, the Description Translator may be invoked for the 

purpose of changing or updating the description or to 

start a new description from the beginning. Once invoked, 

the Description Translator remains in control until the 

supervisory mode is explicitly requested by the user. 

Upon the user's request, the Supervisor invokes the 

Simulator. At or before requesting simulation, the user 

specifies details of how the simulation is to be performed. 

Once the Simulator is entered, the user has only limited 

control over IDDAP. At regular intervals, the length of 

which may be set by the user or by default, the Simulator 

will ask whether or not it should continue with the 

simulation. A negative response returns control to the 

Supervisor at which time the user is again in full control. 

Operation normally consists of the following steps. 

1. The user enters statements describing his design. 

After each statement IDDAP will type the next line 

number if the previous statement was free of errors. 

If the statement contained an error, IDDAP responds 

with a diagnostic message and then retypes the previous 

line number. As each statement is entered, entries are 

made in appropriate internal tables. This data will be 

used later to perform the tasks which the user requests. 
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2. Upon completion of the description, the super

visory mode is entered. Although the user may now call 

upon IDDAP to perform any of the available functions, 

the usual sequence would be to issue commands necessary 

to prepare for simulating his design. These could 

include initializing selected logic signals, indicating 

the expected number of iterations, and stating whether 

or not waveforms are to be plotted. 

3. After specifying the constraints for the simula

tion, the user may instruct IDDAP to begin simulating. 

The simulation will be carried out based on the data in 

some of the tables which were formed as the user entered 

his description. Certain errors which were undetectable 

earlier may occur while simulating the design. Such 

errors result in a return to the supervisory mode 

accompanied by a diagnostic message. 

4. Following a period of simulation, IDDAP will 

again be in the supervisory mode. Based on the results 

of the simulation, the user may request that the 

Description Translator be reentered for the purpose 

of making changes to his description. In order to help 

isolate problems, the user may instead request cross

reference information. In order to facilitate the study 

of his description, the user may request that his descrip

tion be reorganized according to specified control 

variables. Eventually the user will probably wish to 
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return to steps two or three. If utterly confounded, he 

can return to step one and start from the beginning. 

5. At the end of a design session with IDDAP, the 

user may wish to save some of his work or produce hard

copy versions. These options are also included in the 

Supervisor. 

As has already been suggested, communication with 

IDDAP can be divided into two categories, description 

statements and control commands. These two categories 

are further sub-divided in the next section which describes 

the means of communicating with IDDAP in detail. 
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IV. COMMUNICATING WITH IDDAP 

In the discussion to follow, square brackets [ ] are 

used to denote optional items. The notation [ ]••• means 

that the item(s) contained inside the brackets may be 

repeated zero or more times. Italics will be used to repre

sent categorical items which are to be replaced by specific 

items in actual statements. 

The terms "name" and "constant" are used in the discus

sion of both description statements and control commands. A 

name is a string of alphanumeric characters with no inter

vening blanks. The first character must be alphabetic and 

only the first eight characters are significant. A constant 

may be specified as a decimal, binary, octal, or hexadecimal 

integer as indicated by the absence of a suffix, the suffix 

character B, the suffix character K, or the suffix character 

X, respectively. The first digit of a constant must be 

numeric. The letters A through F are used for the hexa

decimal digits 10 through 15. 

Comments and/or blanks may be inserted anywhere that 

a non-alphanumeric symbol ~s allowed. A comment must be 

enclosed in dollar signs, e.g., $THIS IS A COMMENT$. 

A. Description Statements 

The description of a digital system for IDDAP consists 

of two types of statements. The first type is defining 
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statements used to assign names to flip-flops, registers, 

combinational logic outputs, and so forth. The second type 

of statements resemble executable ALGOL-like statements and 

serves to specify how the various logic components are to 

interact. 

1. Type-One Statements 

Defining statements have the following general form 

.type. name[quaZifiaations] [,name [quaZifiaations] ]••• 

The type is enclosed in periods and may be abbreviated by its 

first three letters. It refers to the kind of hardware 

being named. Valid types are REGISTER, SUBREGISTER, MEMORY, 

INPUT, CLOCK, DECODER, TERMINAL, and NETWORK. If a valid 

type was in effect on the preceding line, then .type. can be 

omitted if the current line defines items of the same type. 

Two additional type-one statements, .LABEL. and .END., 

do not define logic components. A label may be defined for 

the convenience of the user in referring to points within 

the description. The .END. statement is used to mark the 

end of the description and also causes a return to the 

supervisory mode. 

In the following discussion the Zength/position 

specification referred to has the form ([n1 - ] n 2 ). If n 1 

is omitted, then n 2 is the length in bits and one-origin 

indexing is assumed. That is, the bits are assumed to be 

numbered in left-to-right order from 1 to n 2 • When n 1 is 

specified the bits are numbered n 1 to n 2 in left to right 
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order and the length is n 2 - n1 + 1. The current implemen

tation restricts the length to a maximum of 32 bits. 

Negative-origin indexing is not allowed. The maximum value 

of n 2 is 999, and n 1 must be less than or equal to n 2 . 

A register, input, and clock are all defined in the 

same manner. The main difference between them is a 

conceptual one. A register is usually thought of as a 

memory device consisting of one or more bits. An input 

is usually regarded as a signal whose source is external 

to the system and whose value cannot be changed by the 

system itself. One may think of a clock as a device 

internal to the system but which cannot be affected by 

operations within the system. 

The current implementation makes no distinction 

between these three types, but an appropriate selection is 

an aid to documentation. In many cases it is convenient 

to have some statements which assign values to inputs or 

control clocks in order to make the description self-

contained and operable in a continuous or iterative fashion. 

Statements assigning values to inputs may be viewed as 

representing an abbreviated description of the external 

device supplying those inputs. 

The defining statement for these three types has 

the following form 

.REGISTER . 

. INPUT. name[length/position] [,name[length/position] ]••• 

.CLOCK. 
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The name and length/position are as described above. 

Omission of the length/position specification is equiva-

lent to specifying name(l). 

The form used to specify a subregister is the same 

as for a decoder but they denote quite different items. 

Their general form is 

.SUBREGISTER. 

.DECODER. name= base-name[length/specification] [, ]••• 

The length/position specifies the portion of base-

name which is to be associated with the name being defined. 

If a subregister is being defined, reference to name will 

in effect be a reference to the indicated bits of the base. 

A decoder is a combinational logic network having n inputs 

and 2n outputs. All 2n outputs are 0 (or False) except the 

one corresponding to the binary encoding of the inputs. A 

reference to a decoder output requires a numeric suffix to 

n specify one of the 0 through 2 -1 decoder outputs. Thus, 

for a decoder, length/position defines which n bits of the 

base are being decoded by name. In both cases, if the 

length/position specification is omitted, then the entirety 

of base-name is assumed to be specified. 

A memory definition has the form 

.MEMORY. name(n 1 ,n2 > [,name(n 1 ,n 2>J••• 

The number of bits per word is given by n 1 , and n 2 specifies 

the total number of words. Both must be simple integer 

constants. zero-origin indexing is assumed for memory words. 

Individual bits cannot be referenced directly. 
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For the current implementation the total memory 

defined cannot exceed 128 words. Memories declared under 

a single .MEMORY. heading will be assigned sequential 

locations in real memory. Subsequent use of .MEMORY. will 

cause the simulated memories to overlay memories previously 

defined. 

Thus for the definitions 

.MEMORY. 

.MEMORY. 
A(ni, 16), B(nj, 32) 
Z(nk, 32) 

references to A(l7), B(l), or Z(l7) in simulated memory all 

refer to the same position in real memory. 

The declaration of a terminal includes a logic expres-

sion specifying the function to be performed. It has the 

form 

.TERMINAL. name = expression 

The rules for expressions are discussed in the next 

sub-section. 

The heading .NETWORK. name[Zength/position] is used 

to specify a more complex logic module having any number of 

outputs. Following the line on which the network is named, 

as many type-two statements as are needed may appear. All 

the rules given below for type-two statements apply to the 

body of a network's description. The group of statements 

describing a network are terminated by the appearance of 

a statement beginning with a .type. 



2. Type-Two Statements 

Type-two statements have the general form 

[[condition prefix]:] unit1 [,unit 2 ]••• [@] 
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The condition prefix controls the operations in the 

remainder of the statement as well as the operations in 

all subsequent statements up to the next statement 

containing a condition prefix. The condition prefix con

sists of one-bit logic signals connected by asterisks (*) 

and optionally preceded by not-signs. All of the items 

in the condition prefix must be true before the operations 

controlled by it can take place. A colon alone may be 

used to introduce unconditional operations. When the 

operations under control of a condition prefix do take 

place, they all occur simultaneously. The .type. used for 

defining names and the condition prefix have one important 

property in common; each continues in effect for subse

quent lines of the description until the appearance of 

another .type. or condition prefix. 

The units of the statement are ALGOL-like structures 

of one of the following types: 

1. An assignment statement of the form 

identifier = expression 

2. An IF statement of the form 

IF expression THEN action 

where action may consist of one or more units of any 

type other than an IF statement. All units following 
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the THEN up to the end of the statement are regarded as 

a group whose operations are under control of the IF 

clause. 

3. A transfer statement of the form GO TO label-name. 

This statement does not represent any logic but may be 

used to assist the designer in formulating control and 

to cause iteration. 

4. A statement of the form DO network-name which 

is conceptually similar to the CALL subroutine-name 

statement in most algorithmic languages. 

The optional at-sign (@) at the end of the statement 

may be used to indicate that the statement is to be 

continued on the next line. There is no specific limit to 

the number of such continuation lines. 

Expressions in IDDAP are identical in form to 

expressions in other algorithmic languages. The symbols 

* and + are used to denote the operations of logical AND 

and inclusive OR, respectively. For multi-bit operands, 

these logical operations are applied bit for bit. For 

operands of unequal length, the shorter is extended on the 

left with zeros, and the result has the length of the 

longer. The prefix not-sign <~> may be used in an expres

sion in the same way that a prefix minus sign is used 

in other algorithmic languages. The relational operators 

>, <, and = all have the usual meaning. The result of 

any of these comparison operations is a one-bit inter

mediate logic signal. 
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All other available operations are specified with 

keywords enclosed in periods. Those operations include 

ADD, SUBTRACT, MULTIPLY, DIVIDE, REMAINDER, LSHIFT, RSHIFT, 

LCIRCULATE, RCIRCULATE, CONCATENATE, COUNT, XOR (exclusive

or) , and DISPLAY and may all be abbreviated by their first 

three letters. 

The ADD, SUBTRACT, MULTIPLY, DIVIDE, and REMAINDER 

operators enable the user to perform integer arithmetic. 

For addition and subtraction, the 2's-complement form of 

negative numbers is assumed. The built-in operands .CRO. 

and .OVF. may be referenced to ascertain if there was a 

carry into the position to the left of the left-most bit 

or if overflow occurred. The operands of MULTIPLICATION, 

DIVISION, and REMAINDER are assumed to be positive 

integers. The .REMAINDER. operator gives the value of its 

left argument modulo its right argument. 

For the shift operations, LSHIFT, RSHIFT, LCIRCULATE, 

and RCIRCULATE, the first letter (L or R) denotes left or 

right. The operand or expression following the shift 

operator specifies the number of bit positions that the 

left operand is to be shifted. 

Use of the .XOR. operator yields the exclusive-or 

of its operands. 

The .CONCATENATE. operator provides the means of 

specifying a composite register whose length is the sum 

of its operand's lengths. 
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The .COUNT. operator is similar to the .ADD. operator 

except that .CRO. and .OVF. are unaffected. 

The .DISPLAY. is not a logical operator but is a 

means of causing the simulator to display intermediate 

results during the course of simulation. Syntactically, 

it functions like the equals sign in an assignment state

ment. The left operand is an integer in the range one 

through sixteen which specifies the arithmetic base in 

which the operand or expression on the right is to be dis

played. Specifying one for the base results in the display 

of either the word "TRUE" or "FALSE". As an illustration of 

the use of .DISPLAY., the statement 8 .DISPLAY. ACCUM in 

Example 2 of Chapter V causes the value of the register 

ACCUM to be printed in base-8 (Octal) . 

The term "identifier" used in the preceding discus

sion refers to either a simple name or a qualified name. 

Names of multi-bit structures other than decoders may be 

qualified using parenthesized subscript notation consisting 

of a specification of the form "(aonstant 1 - aonstant 2 )" 

or of the form "(position-expression)". The first form 

can be used to reference a multi-bit subsection while the 

second form is useful for referencing a varying bit position. 

Memory references are always qualified using the second 

form to specify a memory word. Names may also be quali

fied with a numeric suffix attached without intervening 

blanks. For a decoder reference, the suffix is mandatory 

and refers to one of the 0 through 2n - 1 output lines. 



For other multi-bit structures, the suffix refers to a 

one-bit signal according to the bit position numbering 

defined for that name. 
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In addition to the statements already discussed, the 

description translator also recognizes five one-character 

commands. The first of these is the break ( ) which 

causes an immediate return to the supervisory mode without 

formally ending the description. The other four are edit

ing characters which can be used to control the current 

line number and to make corrections during the entry of 

a description. 

Entering a slash (/) will decrement the line count 

by one without affecting any previously entered statements. 

Typing an equals sign (=) reestablishes the statement 

stored at the current line number and advances the line 

count by one. If the statement at the current line is 

uncertain, a question mark (?) may be typed to have that 

line displayed without reestablishing it or changing the 

line count. After displaying the line, the user may enter 

a new statement to replace that line or type an appropriate 

edit character. An ampersand (&) may be typed to indicate 

that the next statement to be entered is to be inserted 

ahead of the statements beginning at the current line. 

B. Control Commands 

An additional set of statements is used for communi

cating with the supervisor. These control commands are 
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relatively simple and are of fixed format requiring little 

punctuation other than intervening blanks. With the few 

exceptions noted, the command words may be shortened to 

their three (or more) leading letters. The control 

commands listed below are arranged approximately in the 

order that one might normally use them. 

DESCRIPTION 

The description translator is invoked for the purpose 

of entering a ~ description. 

SET [name= constant]••• 

The logic unit "name" will be set to the value 

specified by the constant prior to simulation. 

LOOP number 

This command allows the user to specify the maximum 

number of iterations which will take place before 

the simulator will ask whether or not to continue 

with the simulation. 

WAVES [n name ]••• 

This command indicates that during simulation 

information necessary to produce waveform timing 

diagrams is to be gathered. The optional list 

specifies that the logic signal name is to have its 

th waveform plotted as the n waveform on the page. 

Default is to plot the first fifteen names defined 

in the order of their definition. A slash (/) may 

be entered in place of name to specify that the nth 
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th 
through 15 lines are not being used. The numbers n 

need not appear in order, and any lines not specified 

will remain as they were. 

NOWAVES 

This command indicates that waveforms will not be 

needed (abbreviated NOWAV). 

CLOCKED name 

The simulation is to be run in "clocked mode" 

controlled by the logic signal name. 

NOCLOCK 

This command specifies that no signal is to be used as 

a "clock", and is the default condition (abbreviated 

NOCLO) . 

DEFINE number 

The current values of all logic signals will be 

stored for later use. The three such sets of values 

which may be stored are identified by the number 

(1, 2, or 3) specified. The values of the logic 

signals are left unchanged. 

ESTABLISH number 

The set of values stored by use of a DEFI~E command 

are used to re-initialize the logic signals. The 

number (1, 2, or 3) indicates which set is to be 

used. The set of values stored is left unchanged. 

In the discussion of the following three commands, 

point refers to a position in the description. It may be 
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either a line number or the name of a label, terminal, or 

network. For these commands the following defaults apply: 

1. If no points are specified, the first line and 

last line are assumed for point1 and point2 respectively. 

2. If only point2 is specified, a comma must be used 

in place of point1 and point1 is assumed to be line one. 

3. If only point 1 is specified and is a terminal or 

network, then point 2 is assumed to be the next state

ment after the end of the terminal or network definition. 

Otherwise, point 2 is taken to be the last line. 

SIMULATE [point 1 J [point 2 J 

Simulation will begin at point1 and continue up to 

but not including point2 • If point1 does not refer 

to a terminal,network, or type-two statement, then 

simulation begins at the next type-two statement 

which is not a part of a terminal or network defini

tion. If point2 is never reached, a return to the 

supervisory mode will occur if the .END. statement is 

reached, or when the user gives a negative response 

to the simulator's question, "Shall I Continue?". 

LIST [point 1 J [point 2 J 

Description statements between the limits indicated 

will be listed. 
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CHANGE point 

The description translator is invoked for the purpose 

of making changes. The current line number will be 

as specified by point. 

DISPLAY WAVES 

The information accumulated for waveforms will be 

displayed. Note that if the buffers for this display 

become full during the course of simulation, wave

forms will automatically be displayed, and simulation 

resumed. 

DISPLAY [base] name [name]••• 

The values of the named items will be displayed in 

the base specified. The base may be any integer from 

one through sixteen. If base is omitted, decimal is 

assumed. 

DISPLAY FLOAT mantissa exponent 

UPDATE 

The value of the integer mantissa will be multiplied 

by two raised to the two's complement integer 

exponent, and the result will be displayed as a 

floating point decimal number with decimal exponent. 

This command causes any projected values of logic 

signals to become the current values. 

REFERENCE text 

A list of statement numbers will be printed in which 

text appears. Text cannot be longer than 20 characters. 
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REORGANIZE/ [ text / ]••• 

The description will be reorganized as follows: 

1. All logic-defining statements in their original 

order will appear first. 

2. All groups of statements for which the first (or 

next) text is contained in the controlling 

condition prefix (provided these statements have 

not already been included) • 

3. Repeat number 2 until the list of texts is 

exhausted. 

4. All remaining statements. 

Any labels or comments are moved along with the 

statement which they precede. Note that if no texts 

are listed the effect is to merely collect all 

defining statements together at the beginning of the 

description. 

ARRANGE [line-number]••• 

The description will be arranged in the order 

specified in the line-number list. Any lines not 

included in the list will follow the specified lines. 

FINISHED 

Used to sign off. The terminal will become inactive. 

In addition to the above listed commands, the follow

ing software debugging and installation-dependent hard

copy options are included. These commands cannot be 

abbreviated. 
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TRACE number 

PUNCH 

DUMP 

Number may be an integer from zero through five. 

Zero specifies that no program check-out information 

is to be printed and is the normal default value. 

Numbers one through five specify successively more 

print-outs. The information is printed on the System 

Line Printer. 

A copy of the description will be punched on cards. 

Causes a listing of all IDDAP's internal tables to 

be printed on the system line-printer. This action 

also occurs prior to an abnormal termination. 

COPY / NOCOPY 

If COPY was last invoked, then the user's entries 

are copied on the system line-printer. If NOCOPY 

was last invoked, then no such copying occurs. 

SYSREAD 

This command allows the user to read in cards which 

were submitted in batch-mode. If a card contains a 

control command, the command will be displayed on 

the user's terminal before being acted upon. If the 

user enters an equals sign, the command will be 

processed. Any other entry causes IDDAP to discontinue 

reading cards and to request a control command from 

the terminal. 
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c. Simulator Output 

Communication with the simulator itself is limited. 

The simulator will display values as directed by the 

.DISPLAY. statements imbedded in the description and may 

display waveforms if the buffers for accumulating waveform 

information become full. The only input from the user 

is his response to the question "Shall I Continue?" to 

which he answers "Y" or "N". A negative answer ( "N") 

results in a return to the supervisory mode. 
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V. USING IDDAP 

The approach taken in this chapter is to present 

specific examples illustrating important features and 

general rules of IDDAP. In each sample dialogue, the 

computer's response is the first thing on each line. If 

a user's entry is required, an underbar (_) is the last 

character typed by the computer, and the user's response 

follows. 

A. Fundamental Concepts 

The first example represents a complete, although 

short, design session with IDDAP. Future examples will 

not always represent complete design sessions, but will 

consist of plausible segments of a longer session. 

For the first example, the design objective is to 

use a control signal Q to control the transfer of one 

register into another. Specifically, if the control signal 

is one (or true) the ACCUM register is to be copied into 

the INDEX register. If Q is zero, the opposite transfer 

is to occur. 

In the dialogue for Example 1, the first line defines 

the two 12-bit registers ACCUM and INDEX. Since line two 

contains neither a .type. nor a condition prefix, the 

.REGISTER. from line one continues in effect. Thus Q is 

defined to be a register and, since no length is explicitly 



Example 1: 

1_.REGISTER. 
2_ 
3_. LABEL. B1 
4_ Q: 
5_ -.Q: 
6_. END. 

**_SET ACCUM 
**_SIMULATE B1 

• • • 

ACCUM(12), INDEX(12) 
Q 

INDEX = ACCUM 
ACCUM = INDEX 

= 0 INDEX = 5 

**_DISPLAY ACCUM 
ACCUM = 0005 

**_DISPLAY 2 ACCUM INDEX Q 
ACCUM = 000000000101 
INDEX = 000000000101 
Q = 0 

**_FINISHED 
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Q = 0 

specified, it is a one-bit register. It would also have 

been correct to have placed Q in the first statement. 

The label defined in line 3 is not essential, but 

provides a convenient reference point for use later in the 

example. 

The condition prefix in line 4 is Q. Therefore, the 

transfer of ACCUM into INDEX will occur only if Q is one. 

Since the condition on line 5 is ~Q, the indicated transfer 

occurs only if Q itself is zero. 

The .END. in line 6 denotes the end of the descrip-

tion. IDDAP enters the supervisory mode and indicates 

that it is ready for a control command by typing "** _". In 

response, the user's first command is to initialize each 

of the registers. 
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The next control command instructs IDDAP to begin 

simulating the design at the statement labeled Bl. Since 

no end-point is specified, simulation will proceed up 

to the end statement. In this example the same effect 

could be achieved by specifying simply SIMULATE. Specify

ing either SIMULATE Bl 6 or SIMULATE 4 6 would also produce 

the same effect. 

After the simulation, ACCUM is displayed and seen 

to contain the correct result. Since no base was specified, 

decimal was assumed. The second DISPLAY command illustrates 

the capability to present results in other bases, in this 

case Binary. The command FINISHED was typed to sign-off. 

The second example is similar to the first. A six

bit register has been added and if that register contains 

the value three, then when Q is zero the two registers are 

to be interchanged. This situation calls for simultaneous 

(or parallel) transfers of data between the two registers. 

The first line of Example 2 is the control command 

requesting that the description translator be entered. 

This command is needed except for the first design descrip

tion of the session. 

The description follows the pattern of Example 1. 

In this example all four registers are defined in a single 

statement. A misspelling in line 2 resulted in the error 

message. On the second attempt, line 2 was entered 

successfully. 
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Example 2: 

**_DESCRIPTION 
1_.REGISTER. ACCUM(12), INDEX(12), Q , 8(6) 
2_ Q: INDES • ACCUM 

ERROR 115, IN TEXT INDES= -- Identifier Is undefined 
2_ Q: INDEX • ACCUM 
3_ -Q: ACCUM • INDEX $DO THIS ANYWAY!$ 
4_ IF 8•3 THEN INDEX • ACCUM 
5_. END. 

**_SET ACCUM•15K INDEX•23K Q=l 8•0 
**_SIMULATE 

• • • 
**_DISPLAY 8 ACCUM INDEX 

ACCUM • 0015 
INDEX • 0015 
**_CHANGE 5 

5_& 
5_ : 8 .DISPLAY. INDE *** IGNORED *** 

: 8 .DISPLAY. ACCUM, 8 .DISPLAY. INDEX 
6_ -

**_LIST 
1 .REGISTER. ACCUM(12), INDEX(12), Q , 8(6) 
2 Q: INDEX = ACCUM 
3 -Q: ACCUM = INDEX $DO THIS ANYWAY!$ 
4 IF 8•3 THEN INDEX • ACCUM 
5 : 8 .DISPLAY. ACCUM, 8 .DISPLAY. INDEX 
6 .END. 

**_SET ACCUM•134K INDEX•35K Q•O 8=3 
**_SIMULATE $IT SHOULD EXCHANGE THE REGISTERS$ 

ACCUM • 0035 
INDEX • 0134 
••• 
** 

When Q is zero, the transfer of Index into ACCUM 

occurs regardless of the value of B. Note the comment to 

this effect enclosed in dollar-signs. 

Since line 4 contains no colon, it is under control 

of the condition prefix of the prior line, line 3. Since 

all operations under a single condition prefix occur 

simultaneously, if at all, a favorable comparison between 
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B and the constant 3 will cause the other half of the 

transfer required to exchange the contents of ACCUM and 

INDEX. 

The end statement ends the description and causes a 

return to the supervisor which in turn requests a control 

command. The end statement also serves to end the last 

condition-prefix-block of the description. In general, a 

condition-prefix-block is ended by either another condi

tion prefix or the .type. of a defining statement. 

To test the design just described, the first control 

command following the description initializes the 

registers preparatory to issuing the simulate command. 

Upon completing the simulation (indicated by "•••") 

the user directed IDDAP to display the value of the 

registers, which are correct for the initial values 

specified. Probably realizing that further testing was 

needed to verify the design completely, the user chose to 

make the displaying of the results automatic. 

The next sequence of entries resulted in the change 

necessary to automatically display the results. After 

the description translator was reentered using the CHANGE 

command, the entry of the ampersand (&) specifies that 

the following line is to be inserted ahead of what was 

formerly in line 5. If the colon had been omitted on the 

new line then the results displayed would be those values 

prior to the performance of the other operations in the 



39 

containing condition-prefix-block. The underbar (_) entry 

returns control to the supervisor. 

One of the features included in the message handler 

allows the user to delete the line being typed. He does 

this by pressing the "ATTENTION" key. When the attention 

key is depressed, the message handler replies with 

"*** IGNORED ***" and then allows the user to reenter the 

statement on the next line. 

After listing the revised description, the user 

proceeded to again initialize the registers and to simulate 

the design. This time the results were automatically 

printed. 

B. Clocked Simulation 

For the two examples discussed above, there was no 

signal acting as a clock to synchronize transfers. Upon 

completion of each condition-prefix-block all signals 

which had been specified to change acquired their new 

values simultaneously. If a clocked simulation is 

specified, then instead of signals acquiring their new 

values at the end of each block, the signal designated as 

the clock is examined. Only if the clock-signal has been 

specified to change will the signals acquire their new 

values. If the clock-signal is not about to change then 

any other changes remain pending until the clock finally 

changes. 
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Descriptions of clocked mode systems will usually 

contain a statement like line 2 of Example 3. Example 3 

may be thought of as the description of a clock which 

changes state every time the simulation of the descrip-

tion is iterated, provided A is one. Figure 2 shows one 

possible hardware configuration which could correspond 

to the description in Example 3. The input signal A in 

Example 3 and Figure 2 may be thought of as an ON/OFF 

switch for the clock. The fact that B was defined as a 

CLOCK is important only for documentation purposes. Both 

A and/or B could just as well have been defined as 

registers. 

t---t SEI' 

Flip
Flop 

t---1 CLEAR 

B 

Figure 2. Logic Diagram of the Circuit Described in 
Example 3 



Example 3: 

**_DESCRIPTION 
1_. INPUT. A 
2_.CLOCK. B 
3_.LABEL. FIRST 
4_ A: B • .. 8 
5_ : GO TO FIRST 
6_. END. 

**_CLOCKED B 
**_WAVES 1 A 2 B 3/ 
**_LOOP 5 
**_SET A=1 
**_SIMULATE 

SHALL I CONTINUE? N 
• • • 
**_SET A•O 
**_SIMULATE 

SHALL I CONTINUE? N 
• • • 
**_DISPLAY WAVES 

A 

B I l_l l_l 

** 
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The preparation for the simulation of this descrip

tion illustrates several of the control commands not 

used before in this chapter. That this is to be a 

clocked simulation, clocked by B, is specified in the 

first control command following the description. The 

next corrnnand states that a waveform timing diagram is to 

be presented. The list following the command WAVES states 

that A and B are to be presented on lines 1 and 2 respect-

ively, and that lines 3 through 15 are not being used. 
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The maximum number of iterations is set by the LOOP 

command. Thus, after the simulate command, the simulation 

will be iterated five times before the message "Shall I 

Continue?" is printed. The negative reply "N" returns 

control to the supervisor in order to change the value 

of A. 

After the second simulation, the command to display 

the waveforms was given. If the waveforms' buffers had 

become full during the simulation, they would have auto

matically been displayed and the simulation would continue. 

The fact that the waveforms reflect only the first 

simulation consisting of five half-cycles is a result of 

specifying clocked mode. Since the clock was turned off 

in the second simulation, nothing happened and no additions 

to the waveforms were made. 

Example 4 illustrates a somewhat more sophisticated 

example of clocked mode simulation. In it, an up/down 

counter described in lines 7 and 8 is controlled by the 

statements in lines 9 and 10. If UP is initially one and 

the counter is initially zero, it will count up until 

statement 9 causes it to reverse and count down. When 

the count reaches zero going downward, statement 10 will 

not cause further iteration. 

Since the LOOP command was not issued, the loop size 

is ten by default. Thus the user responds Y (for yes} to 

the simulator's first "Shall I Continue?" message. 



Example 4: 

**_DESCRIPTION 
!_.REGISTER. COUNTER(3) 
2_.1NPUT. UP 
3_.SUBREGISTER. B3=COUNTER(3), B2=COUNTER(2) 
4_ Bl=COUNTER(1) 
S_.TERMINAL. DOWN =~up 
6_.LABEL RPT 

WARNING 142, IN TEXT LABEL -- TERMINATING 
7_ UP: COUNTER = COUNTER .ADD. 1 
8_ DOWN: COUNTER • COUNTER .SUB. 1 
9_ : IF COUNTER•6 THEN UP = 0 

II II 
• 
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INSERTED 

10_ IF ~(DOWN•CCOUNTER=O)) THEN GO TO RPT 
11_. END. 
**_WAVES 1 UP 2 B3 3 82 4 81 5/ 

SAVE WAVES IN BUFFER? N 
**_SET UP=l COUNTER•O 
**_SIMULATE 

SHALL I CONTINUE? Y 
• • • 
**_DISPLAY WAVES 

UP L. __________ _ 

B3 _I L_l L_l L_l ~I L_l L 

B2 L_ 

Bl L. __ _ 

**_CLOCKED COUNTER 
**_SIMULATE *** IGNORED *** 

SET UP=1 COUNTER•O 
**_SIMULATE 

SHALL I CONTINUE? Y 
• • • 
**_DISPLAY WAVES 

UP L. ________ _ 

B2 _ I_L_I_L_I L. __ _ 

Bl L. ______ _ 

l_l ,_, 
'-
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The first simulation, and hence the first part of 

the waveforms, are in non-clocked mode. The second simula

tion was performed in clocked mode, clocked by changes in 

the counter's value. The discontinuity in the waveform 

for UP is a result of changing its value externally to 

the simulator by use of the SET command. 

C. Additional Features 

Although an exhaustive treatment of each type of 

statement and control command discussed in Chapter III is 

impractical, a few deserve illustration. The ability to 

specify rather complex operations as terminals is illus

trated in Example 5. 

Threshold gates may be indicated by making use of 

the relational operators greater than (>) and less than(<). 

Example 5 illustrates such use in what may be regarded as 

a crude description of a neuron. The output A responds 

immediately if the neuron's input, IN, is greater than 

two. It responds only once for every two time-increments 

during which its input remains one. 

The 24-bit register SEQUENCE is used to provide a 

series of inputs by shifting it two places to the right 

after each iteration. 

The use of networks apart from the use of the DO 

statement is possible, but together they may be used to 

represent a digital system in a modular fashion. Example 6 



Example 5: 

**_LIST 
1 .INPUT. SEQUENCE(24) 
2 .SUBREGISTER. IN = SEQUENCE(23-24) 
3 .REGISTER. A, B, CLK 
4 .TERMINAL. THRESH! = IN> 0 
5 THRESH2 = (IN .ADD. B) > 1 
6 .LABEL. NEURON 
7 CLK: B = THRESH! 
8 IF THRESH2 THEN A = 1 
9 -eLK: A • 0 

10 IF A=l THEN 8 = 0 
11 : CLK = ... CLK 
12 CLK: SEQUENCE = SEQUENCE .RSHIFT. 2 
13 IF SEQUENCE>O THEN GO TO NEURON 
14 • END. 
**_SET SEQUENCE=Ol0101011011100101010000B 
**_DISPLAY 4 SEQUENCE 

SEQUENCE= 111123211100 
**_CLOCKED CLK 
**_WAVES 1 CLK 2 IN 3 8 4 A 5/ 
**_SIMULATE NEURON 

SHALL I CONTINUE? Y 
SHALL I CONTINUE? Y 
••• 
**_DISPLAY WAVES 
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CLK I l_l l_l l_l l_l l_l l_l l_l l_l l_l l_l l_l I_ 

------- -- --------I N 

B l_l l_l l_l l_l l_l 

A ______ I l __ l l_l l_l l __ l I __ 

** 

illustrates such a modular structure for a memory control 

module. 

The overall objective of this design example was to 

allow the CPU of a small computer to access memory without 



Example 6: 

**_DESCRIPTION 
!_.REGisters. INSTRUCTion(8), DATA(8) 
2_.SUBregister. OPCODE=INSTRUCTion(l-4) 
3_ ADDRESS=INSTRUCTion(5-8) 
4_.REGister. MEMBUF(l6), LOCATION(3), SAME 
5_.MEMory. MEMORY(l6,8) 
6_.REGister. READ, TIMMER(3) 
7_.TERmina1. WRITE= ~READ 
8_.DECoder. T = TIMMER 
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9_ $The description of the memory module follows.$ 
lO_.NETwork. ACCESS 
11_ T2: IF LOCATION=ADDRESS(1-3) THEN SAME=1 
12_ T1: SAME=O 
13_-sAME•T3: MEMORY(LOCATION) • MEMBUF $Rewrite old $ 
14_ $ location $ 
15_-sAME•T4: LOCATION•ADDRESS(l-3) 
16_-sAME•T5: MEMBUF•MEMORY(LOCATION) $Get new words$ 
17_ WRITE•T7: IF ADDRESS(4)•1 THEN MEMBUF(9-16)=DATA 
18_ IF ADDRESS(4)•0 THEN MEMBUF(l-8)•DATA 
19_ READ•T7: IF ADDRESS(4)•1 THEN DATA•MEMBUF(9-16) 
20_ IF ADDRESS(4)=0 THEN DATA•MEMBUF(1-8) 
21_ $ End of memory module description $ 
22_.TERmlnals. LDA•(INSTRUCTion=6) 
23_ LOX•(INSTRUCTion•2) 
24_ STA•(INSTRUCTion•3) 
25_ STX= INSTRUCTion=! 
26_.LABel. CPU $This is the computer module$ 
27_ : DO ACCESS 
28_ T1: READ=1 
29_ IF STA THEN OATA=ACCUMULAtor 

ERROR 115, IN TEXT LATOR; -- Identifier is undefined 
29_.REGister. ACCUMULAtor(8), INDEX(8) 
30_T1: IF STA THEN OATA=ACCUMULAtor 
31_ IF STX THEN DATA=INDEX 
32_ T2: IF STA+STX THEN READ=O 
33_ 17: IF LOA THEN ACCUMULATOR=DATA 
34_ IF LOX THEN INDEX•DATA 
35_ TO: $Get next Instruction. To be designed later. $ 
36_ TIMMER = TIMMER .COUnt. 1 
37_ IF -cTIMMER=O) THEN GO TO CPU 
38_.END. 

having to know in advance the details of the memory actually 

in use. 

For the purposes of this example, a CPU is postulated 

which has a word size of eight bits and which has only 
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four instructions. Those instructions are Load Accumulator 

(LDA) , Load Index (LDX) , Store Accumulator (STA) and Store 

Index (STX). The memory module in this example has 16-bit 

words and is to be used in such a way as to avoid unnecessary 

stores and fetches. The use of comments in this example 

should make it self-explanatory. 
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VI. THE SOFTWARE FOR IDDAP[3l] 

The overall structure of IDDAP was discussed in 

Section III and illustrated in Figure 1. The purpose of 

this section is to provide further details on the programs 

which make up the Interactive Digital Design Assistance 

Package. Except for the use of Assembler Language for 

the Message Handler, all programs were written in PL/1 

and were run on a Model 360/50 IBM Computer. 

There are three main programs corresponding to the 

blocks in Figure 1 labeled SUPERVISOR, DESCRIPTION 

TRANSLATOR, and SIMULATOR. In addition, a number of short 

subprograms are used by all three main procedures to 

perform frequently needed operations. 

The supervisor is the main procedure and is shown 

diagrammatically in Figure 3. Its function is to inter

pret and act upon control commands. 

The initializing which the supervisor performs on 

its first entry includes assigning values to the various 

arrays. It also includes initialization of the remote 

terminal. The first communication must be a message from 

the user which is a part of the initialization process. 

That message is mt processed. 

Having completed the initialization, the supervisor 

invokes the description translator which responds by 

typing "1 " -- the number of the first line. 
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When control is returned to the supervisor, the user 

may issue any of the available control commands. The 

first alphanumeric string in the control command is 

obtained using the external function subprogram NEXT_ID. 

The supervisor then proceeds to "sift" through a number 

of IF statements until it finds the one corresponding to 

the command given. This process is shown in an abbreviated 

fashion in Figure 3. This method of determining which 

control command was given makes it a simple matter to add 

new control commands to the repertoire. After the command 

has been identified and the associated operations per

formed, a new control command is requested. 

Due to use of the CHANGE command, it may be necessary 

to invoke the description translator in order to reprocess 

the description. If this reprocessing is necessary, it 

occurs without explicit knowledge of the user other than 

a pause of less than 0.1 seconds per line of description. 

It is possible that a change to the description may result 

in an error in some part other than that which was 

changed. If such an error occurs, the user will be 

informed and invited to correct the error. If reprocessing 

is necessary, it must be carried out prior to any commands 

which may depend on the description being correct, 

consistent and complete. Thus, if the command is not the 

DESCRIPTION, CHANGE, or LIST command, a check is made to 

determine if reprocessing is necessary. 
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The description translator, Figure 4, is invoked by 

the supervisor. The organization may be thought of as 

having three main parts along with statements to determine 

the type of structure being processed. The three main 

parts are represented by the blocks labeled PROCESS TYPE-ONE 

STATEMENT, PROCESS CONDITION PREFIX, and PROCESS TYPE-TWO 

STATEMENT. 

The block which translates type-two statements is 

the most complex portion of IDDAP. It applies the prece

dence rules, analyzes syntax and context of the statement, 

and generates entries in the "M-table". TheM-table 

represents the operations specified in the description in 

a form close to machine language and is the primary table 

used during simulation. 

The simulator, Figure 5, is actually two nested 

procedures. The external, outer procedure is invoked by 

the Supervisor. After a small amount of initialization, 

the inner procedure is invoked. In order to perform 

each operation, the current value(s) of the operand (or 

operands) are first obtained. · If an operand is a terminal 

or network then the inner procedure recursively invokes 

itself. When the inner procedure is recursively invoked 

to evaluate a terminal or network, the activity previously 

in progress is temporarily suspended. Upon return from a 

recursive entry, the suspended activities are resumed as 

though they had never been interrupted. 
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Having obtained values for the operands (perhaps 

through recursive calls) the simulator proceeds to find 

the block of code corresponding to the current operator 

and to perform the indicated operation. 

Following the simulation of a group of statements 

headed by a condition prefix, the simulator checks to see 

if the projected values of logic signals should become 

the current values. If the simulator is not operating in 

clocked mode it performs this "updating". If clocked 

mode was specified, then it compares the current and 

projected values dE the signal designated as the clock. 

If the clock's value is to be changed, then updating takes 

place. The simulator then proceeds to search for the next 

satisfied condition prefix. 

Besides the normal return to the supervisor at 

the user-specified point, three abnormal returns are 

possible. If the .end. statement is reached unexpectedly 

or if a serious error occurs, the immediate return is 

accompanied by a diagnostic message. 

Whenever a GO TO statement is encountered, the 

simulator checks to see if it transfers control to an 

earlier part of the description. For each such backward 

transfer of control, the loop counter is incremented. If 

the number of loops exceeds the maximum number of loops 

specified, the simulator asks the question "Shall I 

Continue?". A negative response to this question is the 



55 

third way in which an immediate return to the supervisor 

may occur. An affirmative reply allows simulation to 

continue normally and resets the number of loops to zero. 

A number of relatively small separately-compiled 

subprograms are used by the three main programs. The 

function o·f each is discussed in the following paragraphs. 

The three subroutines NEXT_ID, NEXTNUM, and NUMBER 

are contained in the procedure called NXTITEM. When an 

identifier is expected, the function subprogram NEXT ID 

is used to extract that identifier from the statement 

being processed. The returned value is the alphanumeric 

character string starting at the next position after the 

position to which the scan pointer (CI) is currently 

pointing. On exit, the scan pointer is left pointing to 

the last alphanumeric character of the identifier. 

Another function subprogram, NEXTNUM, is called when a 

constant is expected. Its function is similar to NEXT ID 

except that it returns an integer constant instead of a 

character string. An additional entry point, NUMBER, may 

be referenced if the constant begins at, instead of after, 

the position indicated by the scan pointer. 

The function IDCODE# is used to identify an alpha

numeric string. The argument of this function is a 

character-string whose position in the name-table is to 

be found. If the character-string argument is found, the 

returned value is a positive integer indicating the 



identifier's location in the name-table. Otherwise the 

value -1 is returned. 

56 

All diagnostic messages are handled by a subprogram 

having three entry points. The ERO_RET entry is used to 

pass a label establishing a common return point for the 

ERROR entry. If the subprogram is entered at the ERROR 

entry, it sets E_FLAG, an external logical variable, to 

one. Entry at the WARN entry point does not affect E_FLAG. 

For entry at either ERROR or WARN, an integer argument is 

passed denoting the code number of the diagnostic message 

to be printed. From either the ERROR or WARN entry points, 

the following takes place: The diagnostic message is 

printed according to the number passed as the argument. 

Then, if E_FLAG is one it exits to the label specified by 

the prior invocation of ERO RET. Otherwise, it makes a 

normal return to the next statement following the invoking 

statement. 

A fairly simple subprogram, DIS_WAV, exists to display 

the waveform data accumulated during simulation. This 

program may be called automatically by the simulator if 

the buffers become full, or it may be called at the request 

of the user by the supervisor. 

Most, but not all, communication passes through a 

subprogram called GASOB. In addition to requesting and 

subsequently receiving an entry from the user, it also 

performs some preliminary processing of the user's 

response. This processing involves removing comments and 
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unnecessary blanks, and placing a terminator symbol, a 

semicolon, at the end of the user's text. Both the 

original entry and the processed version are made avail

able to IDDAP in the form of external character-string 

variables. GASOB utilizes the MESSAGE HANDLER to perform 

the actual communication between IDDAP and the user. 

Finally, a subroutine exists to convert the internal 

form of a signal's value to a character string. This 

function is invoked with three parameters giving the signal's 

current value, the user-defined length in bits, and the 

desired arithmetic base in which the value is ultimately 

to be displayed. The returned value is a character string 

representing the value in the specified base. The length 

of the resulting character string is just sufficient to 

contain the largest possible value expressible with the 

indicated number of bits when converted to the requested 

base. 



58 

VII. CONCLUSION 

Fast execution and small memory storage requirements 

were not the main goal of IDDAP. The convenience to the 

user was considered more important. However, the speed of 

execution and the memory requirements do have an effect on 

its usefulness and efforts were made to write efficient 

programs. Both the memory requirements and speed of IDDAP 

compare favorably with other similar design-aid programs. 

The package presented here runs in a 130 K byte

partition of memory and does not require any external bulk 

storage nor does it involve the use of overlay techniques. 

The approximate storage requirements may be broken down 

as follows: 

IDDAP object code 59 K bytes 

PL/1 library routines 

Static array storage 

Allowance for dynamically 

allocated storage 

Total 

22 K bytes 

28 K bytes 

20 K bytes 

129 K bytes 

By elimination of program debugging statements and reduction 

of the maximum number of description statements to 100, the 

core requirements could be reduced to less than 100 K bytes. 

The execution speed is of course highly problem 

dependent. For "average" description statements the 
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description translator requires approximately 0.1 seconds 

per statement. Rouse[ 20] gives an example of the simulation 

of an oscillating NAND gate with a fan-out of 20 for which 

he gives the simulation times for 95 oscillations. Those 

times ranged from about five seconds to fifteen seconds 

depending on the "mode" of simulation. A similar example 

using IDDAP required twelve seconds for 95 oscillations in 

non-clocked mode, and ten seconds in clocked mode. 

In simple descriptions of fewer than 20 statements, 

the user would scarcely be aware of delays due to processing. 

For descriptions ranging from 100 to 200 statements, 

noticeable waiting periods of five to thirty seconds would 

not be surprising. 

This version of IDDAP should not be regarded as the 

ultimate form of assistance to creative design. The 

addition of a synthesizer to reduce the formal description to 

the hardware level is just one additional option which could 

be added. 

Presently, IDDAP is unable to accommodate more than 

a single user at a time. Thus, another improvement would 

be to enable multiple users to be using IDDAP concurrently. 

This feature along with several of the other features found 

in general-purpose interactive systems would result in more 

economical and efficient use. 

The largest amount of time devoted to this project 

was spent writing and debugging the programs. The most 

difficult part, however, was in deciding what features 



60 

should be made available. For example, the decision to 

represent most of the operators as keywords enclosed in 

periods was a compromise between several criteria which 

were felt to be important. The use of special symbols 

would have made the language more concise and easier to 

process, but more difficult to learn and to use. The 

decision to enclose the keywords in periods avoids the 

necessity of having reserved words, and allowing three

letter abbreviations provides some conciseness. 

It is felt that the system described here offers 

concrete, convenient, useful help to designers in formula

ting, studying, and testing digital designs. By enabling 

the designer to interact with the computer in a suitable 

language IDDAP offers this assistance during the critical, 

creative, initial phases of the design process. 

The formal description of a digital system along with 

the simulation results, especially waveform-timing

diagrams, also provides valuable documentation for the 

system being designed. 
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