
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

1970

IDDAP -- Interactive computer assistance for creative digital IDDAP -- Interactive computer assistance for creative digital

design design

Richard Franklin Crall

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Electrical and Computer Engineering Commons

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering

Recommended Citation Recommended Citation
Crall, Richard Franklin, "IDDAP -- Interactive computer assistance for creative digital design" (1970).
Doctoral Dissertations. 2040.
https://scholarsmine.mst.edu/doctoral_dissertations/2040

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2040&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2040?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2040&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

IDDAP -- INTERACTIVE COMPUTER ASSISTANCE

FOR CREATIVE DIGITAL DESIGN

. by

RICHARD FRANKLIN CRALL, 1943-

A DISSERTATION

Presented to the Faculty of the Graduate School of

UNIVERSITY OF MISSOURI - ROLLA

in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

1970

ii

ABSTRACT

A new computer-aided design program to assist in

the initial phases of logical design is described. The

program, intended for use via an on-line remote terminal,

will allow the designer to study and experiment with design

alternatives during the initial creative design phases.

An ALGOL-like language is used for specifying the system

being designed. In addition to simulating the design,

the program allows the user to perform on-line design

changes, reorganize data and generate timing diagram

information.

ACKNOWLEDGEMENTS

I would like to express my appreciation to

Dr. Tracey for his helpful suggestions, stimulating

questions, and for his prompt careful review of this

dissertation.

I wish to acknowledge Mr. George Rhine and

Mr. Wayne Omohundro for their patience and helpful

comments while using IDDAP during its development.

iii

The Assembler Language program for communicating

with the remote terminal is the work of ~1r. John Wood.

Professor Ralph Lee and the University of Missouri -

Rolla Computer Center staff also deserve thanks for their

help and cooperation.

Most of all, I wish to thank Barb for her under

standing and sacrifice freely given throughout this work.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

LIST OF ILLUSTRATIONS

I • INTRODUCTION

II. REVIEW OF THE LITERATURE

A. Iverson Notation

B. Programming Language/One

C. Digital Design Language

D. Register Transfer Language

E. Computer Design Language

F. Design Oriented Language

iv

page

ii

iii

vi

1

4

4

6

7

8

8

9

G. Other Automated Digital Design Efforts 10

III.

IV.

v.

H. Summary and Comparison

SYSTEM DESCRIPTION OF IDDAP

COMMUNICATING WITH IDDAP

A. Description Statements

1. Type-One Statements

2. Type-Two Statements

B. Control Commands

c. Simulator Output

USING IDDAP

A. Fundamental Concepts

B. Clocked Simulation

c. Additional Features

11

13

17

17

18

22

26

33

34

34

39

44

VI.

VII.

REFERENCES

VITA

TABLE OF CONTENTS (Continued)

THE SOFTWARE FOR IDDAP

CONCLUSION

v

48

58

61

64

Figures

1

2

3

4

5

LIST OF ILLUSTRATIONS

IDDAP System Block Diagram

Logic Diagram of the Circuit
Described in Example 3

Block Diagram of Supervisor

Block Diagram of Description
Translator (IDD_TRAN)

Block Diagram of Simulator (IDD SIM)

vi

page

13

40

49

52

53

1

I. INTRODUCTION

The basic concepts and some of the details of an

interactive computer-aided design program to assist logical

designers in the initial phases of design are described.

It differs from most other design aid programs in that it

is interactive and usable by the designer in the initial

creative and study phases of the design process. The

system will also be useful for instruction and experimenta

tion in digital system design.

The Interactive Digital Design Assistance Package

(IDDAP) is intended to be used via a remote terminal. After

entering a description of the contemplated design, the user

can request any of several forms of assistance. Based on

the resulting information displayed by the computer, the

designer may make modifications to the original description

and then again call upon the computer for assistance. The

designer thus interacts with the computer to obtain a work

able solution to his design problem.

Other computer programs have been developed for a

variety of design tasks. The design language used to

communicate with these programs may also serve as a vehicle

for creative thought, and the resulting description can

serve as a useful form of documentation. The design

language selected for use in IDDAP has the familiar

2

ALGOL-like structure. It is essentially the language

proposed by Chu to formally describe digital systems.

Although descriptions at all levels of complexity

are possible, interactive use is generally inefficient for

very large design problems. One large class of design

problems at an intermediate level is the design of inter

face units. Other problems appropriate for interactive

design include the design of sub-units, such as a floating

point arithmetic unit, and special purpose computers.

The present version IDDAP is not particularly well suited

to the study of a large computer nor for such detailed

studies as critical race or hazard analysis.

Computer-assisted design has been used to perform

simulation and optimization (minimization), conduct race

and fault analysis, synthesize logic equations and state

tables, and to provide documentation such as logic diagrams

and wiring lists. Only a few of these functions are

relevant to the initial phases of the design process.

However, there are several forms of assistance peculiar to

this phase of design which have received little attention

in the past. Besides simulating the described digital

system, IDDAP also provides, upon request, a variety of

other presentations such as cross reference lists and

description reorganizations. The interactive approach is

itself an important form of assistance; the user can make

on-line design changes and can exercise more control over

the simulation process than would be possible in a

batch-mode environment.

3

4

II. REVIEW OF THE LITERATURE

Prior work in the area of computer-aided design of

digital systems may be conveniently discussed by consider

ing each of the languages developed for expressing digital

designs. Not all of the proposed forms of describing

digital systems have actually been used for communication

with computer-aided design programs. Each form to be

discussed, however, shows at least some potential as an

input language. Many of the languages in their original

form make use of graphic symbols which are difficult or

impossible for common computer input/output equipment. For

use as an input language, straightforward substitutions are

or could be made.

A. Iverson Notation

Also known as A Programming Language (APL)[lJ, Iverson

Notation was originally developed as a general purpose

problem solving language. Its ability to handle vectors,

arrays, and other complex structures in a concise, elegant

fashion makes it a powerful language. A description in

Iverson Notation consists of three parts: a main program,

"system programs", and "defined operations". System programs

describe activities occurring concurrently with the main

program such as input/output and interrupts. Conceptually,

the defined operations are subroutines which may be used by

5

the main program or other defined operations. Statements

in the main program and in the defined operations are

executed in sequence except when altered by a transfer

statement. Thus, parallel operations are as difficult to

express as in other general-purpose languages such as

FORTRAN.

Use of Iverson Notation has proceeded along three

paths. In its original form, Iverson Notation has been

used to describe IBM's System/360[2] and as a notational

tool in discussing computer architecture[3J. A conversa-

tional remote terminal version, consisting of the arithme

tic and mathematical functions, has been developed[4 ,5J.

The ALERT[6 ,?J system makes use of another subset of

Iverson Notation to obtain the Boolean equations from a

high level description depicting the architecture of a

proposed digital system. An important aspect of ALERT is

that it automatically generates any intermediate registers

or control logic which may have been implied by the high-

level description.

The unusual symbols of Iverson Notation, when

converted for the purposes of ALERT, make the language

appear much less strange. With the added conventions for

defining names of logic signals and units, the language

begins to resemble other ALGOL-like languages. Reducing

a formal Iverson description such as that of the IBM

System/360 into a form suitable for ALERT involves, among

6

other things, replacing the semi-graphical representation

of conditional branching with the familiar IF expPession

THEN action form.

The ALERT system was written for batch-mode operation

on the IBM 7094. Its primary purpose is to produce the

final logic design which it presents as gate-level logic

diagrams or Boolean equations. ALERT is but one part of

a series of automated design programs used at IBM. One

of the programs uses the output of ALERT to simulate the

system being designed. If design errors are found as a

result of using the simulator, then presumably the designer

has the choice of modifying the Boolean equations produced

by ALERT or correcting the original Iverson description

and using ALERT again.

The remote-terminal version of APL, while not support-

ing some of the bit-string operations, can be (has been)

used to simulate digital designs[SJ.

B. Programming Language/One

Like Iverson Notation, Programming Language/One (PL/1)

is intended to be a general problem-solving language. Due

to its ability to handle bit (and character} strings in a

straightforward fashion, it also is suitable for describing

digital systems. No computer-aided design programs have

been specifically written to use PL/1 as the input language.

However, the PL/1 compiler itself may be used to process

the description of a digital system and thus to obtain a

simulation of the system being designed. The central

processing unit of the ILLIAC rv[9 J and the sec 650, a

small general purpose computer[lOJ, have been described

7

in PL/1. Use of general purpose languages points up the

fact that the design need not be reduced to gate-level

specification before testing the design through simulation.

The Conversational Programming System (CPS) is

essentially a version of PL/1 for use on a remote terminal.

Interactive simulation of a digital description is thus

possible, again without any special software effort oriented

toward digital design.

c. Digital Design Language

Digital Design Language (DDL), proposed by Duley and

Dietmeyer[ll], is a high level language suitable for

describing the organization and operation of large digital

systems. DDL is comparable to CDL in its generality,

conciseness and preciseness. Although its flexibility is

impaired by its rigid modular organization, such an approach

may be desirable, especially for complex systems.

System descriptions in DDL are arranged in a strict

hierarchical fashion. Each module is described in terms of

other modules of successively lower levels. Modules at the

lowest level specify detailed operations at the functional

or logic-gate level. Only the statements at the lowest

level resemble ALGOL-like statements. Otherwise, a system

8

description resembles an outline with each "outline heading"

naming a module to be described by what follows.

Duley and Dietmeyer[l2] have defined the operations

required for a computer-aided design program to convert

descriptions in DDL into Boolean and next-state equations.

The work on the software system was reported to be in

progress and may now be completed.

D. Register Transfer Language

Appearing in various forms[13 ~ 14 ~ 15] Register Transfer

Language (RTL) is fairly close to hardware and deals with

modules at the register and gate levels. It is not well

suited to the description of large, complex systems, but

its ALGOL-like structure and clear concise means of defining

control and timing make it attractive for designs of inter

mediate complexity. Although some efforts were made[l 4J

to provide automated analysis and synthesis available in

this language, no apparent progress has been made within

the last six years.

E. Computer Design Language

Y. Chu has suggested a formal means of describing

digital systems through Computer Design Language (CDL)[l 6 J.

His language resembles Register Transfer Language but is

more concise and precise. As in RTL, parallel operations,

timing, and control are all easily expressible. The

language is to a great extent independent of hardware

9

technology and can be used to express either synchronous

or asynchronous designs. The designer is free to organize

his description in such a manner as to emphasize either

the control, the sequencing, or the modular aspects of

his design.

A description in CDL consists of two parts: state-

ments giving names to hardware units and ALGOL-like state-

ments describing the interaction of hardware units.

Modules may be defined in terms of these ALGOL-like

statements. Reference to such modules in other statements

permits the designer to indicate hierarchical structures.

A description of the SCC 650 has been formulated[l 7]

in CDL. McCurdy and Chu have developed a translator

which converts a CDL description into a set of Boolean

equations[lBJ. Their translator is written in MAD, and

in order to simplify the programming effort, the CDL

description input "was transliterated into one with a

fixed format and written also in MAD language".

F. Design Oriented Language

Rouse describes the Design Oriented Language

(DOL}[l9J, a semi-graphical language intended to clarify

the sequencing and control of complex digital systems.

A form similar to CDL is used for the description of

blocks at the lowest level.

The same design philosophy which underlies DOL

was used by Rouse as the basis for the organization of a

10

comprehensive simulation program[20 J. That program is

capable of performing in-depth simulation at the module

and/or gate level. It includes capabilities for taking

into consideration unequal time delays, indeterminate

logic signals, the effect of faults and the possibility

of races. The input description consists of fixed format

lists of each module or gate type with its fan in and fan

out, together with appropriate control cards. Efficient

use of this simulator would appear to require that the

design already be complete and, at least in principle,

correct.

G. Other Automated Digital Design Efforts

In addition to the above, computer-aided design

efforts at the computer-system level and at the gate level

have gone on.

A number of programs are available to assist in the

design and evaluation of computer systems. Computer Descrip

tion Language (CDL1)[2l] is oriented toward specifying

overall attributes such as speed, cost, compatibility,

etc., in a formal manner. SODAS[22] (System Oriented

Design and Simulation) is a simulation language which

includes the means of specifying the behavior of both the

hardware and software of a system.

At the opposite extreme, a number of programs using

more or less fixed-format input describing state tables

or logic gate connections exist for a variety of purposes.

11

These include simulation, simplification, synthesis,

hazard and race analysis, fault analysis, and diagnostic

test generation[23 - 2 7J.

H. Summary and Comparison

Rouse[l9] makes a comprehensive comparison of APL,

CDL, DDL, and RTL, including a single example expressed in

each language. Using a different example, Pottinger[l7]

has expressed it in each of the languages APL, CDL, and

RTL.

Disregarding the use of a left arrow, right arrow,

or equals sign, and other symbol conventions, statements

at the lowest level in each design language resemble

ALGOL-like statements. Ignoring the differences in symbol-

ism, the available languages are nevertheless distinct in

their abilities to express features such as parallel

operation, timing and control, and hierarchical structure.

Both CDL and DDL have these features. The main difference

is that DDL places the hierarchical structure prominently

while in CDL the control is usually, but not necessarily,

more prominent. The general problem solving languages

(APL and PL/1) do not provide satisfactory methods for

specifying parallel operations or for specifying timing

or control logic.

With the exception of the general problem solving

languages, none of the reported efforts have included

simulation at an early stage in the design process, and

12

none are used interactively to provide design assistance

during the initial design phases. Direct simulation of

designs in DOL, CDL, RTL, or DOL have not been possible

heretofore. Simulation has involved manual translation

into fixed format or the use of simulators operating on

the output produced by synthesis programs available for

some of these languages. Thus, despite the large number

of efforts to provide designers with languages to formulate

designs and efforts to reduce such descriptions to the

level of Boolean expressions, the designer is still left

with no adequate form of assistance to create a correct

description in the first place.

The familiarity of ALGOL-like structures and the

ability to clearly express control and parallelism has led

to the choice of CDL as the description language for this

work. Further justification for this choice is based on

the ease with which others[28 , 29,30] have learned to use

IDDAP. A few additions to COL have been made based on

experience gained using CDL and on features found in other

languages.

13

III. SYSTEM DESCRIPTION OF IDDAP

The block-diagram in Figure 1 describes the overall

structure of IDDAP. The block labeled MESSAGE HANDLER is

a small sub-program which is responsible for all communica

tion between IDDAP and the user. During the development

of IDDAP, the Message Handler used the system card-reader

and line printer for input and output. By replacing this

single program with another version, IDDAP could be made

to communicate with any connected input/output devices.

Specifically, an Assembler Language program was used to

communicate with an IBM 2741 terminal via IBM's Basic

Telecommunication Access Method {BTAM} software. The block

labeled USER therefore refers to whatever input/output

device is currently in use for communication with IDDAP.

DESCRIPTION

TRANSLATOR

SUPERVISOR

MESSAGE

HANDLER

SIMULATOR

USER

Figure 1. IDDAP System Block Diagram

14

The Supervisor's function is to invoke the Descrip

tion Translator or the Simulator and perform other requested

operations. Upon the initial entry, the Supervisor

automatically invokes the Description Translator. There

after, the Description Translator may be invoked for the

purpose of changing or updating the description or to

start a new description from the beginning. Once invoked,

the Description Translator remains in control until the

supervisory mode is explicitly requested by the user.

Upon the user's request, the Supervisor invokes the

Simulator. At or before requesting simulation, the user

specifies details of how the simulation is to be performed.

Once the Simulator is entered, the user has only limited

control over IDDAP. At regular intervals, the length of

which may be set by the user or by default, the Simulator

will ask whether or not it should continue with the

simulation. A negative response returns control to the

Supervisor at which time the user is again in full control.

Operation normally consists of the following steps.

1. The user enters statements describing his design.

After each statement IDDAP will type the next line

number if the previous statement was free of errors.

If the statement contained an error, IDDAP responds

with a diagnostic message and then retypes the previous

line number. As each statement is entered, entries are

made in appropriate internal tables. This data will be

used later to perform the tasks which the user requests.

15

2. Upon completion of the description, the super

visory mode is entered. Although the user may now call

upon IDDAP to perform any of the available functions,

the usual sequence would be to issue commands necessary

to prepare for simulating his design. These could

include initializing selected logic signals, indicating

the expected number of iterations, and stating whether

or not waveforms are to be plotted.

3. After specifying the constraints for the simula

tion, the user may instruct IDDAP to begin simulating.

The simulation will be carried out based on the data in

some of the tables which were formed as the user entered

his description. Certain errors which were undetectable

earlier may occur while simulating the design. Such

errors result in a return to the supervisory mode

accompanied by a diagnostic message.

4. Following a period of simulation, IDDAP will

again be in the supervisory mode. Based on the results

of the simulation, the user may request that the

Description Translator be reentered for the purpose

of making changes to his description. In order to help

isolate problems, the user may instead request cross

reference information. In order to facilitate the study

of his description, the user may request that his descrip

tion be reorganized according to specified control

variables. Eventually the user will probably wish to

16

return to steps two or three. If utterly confounded, he

can return to step one and start from the beginning.

5. At the end of a design session with IDDAP, the

user may wish to save some of his work or produce hard

copy versions. These options are also included in the

Supervisor.

As has already been suggested, communication with

IDDAP can be divided into two categories, description

statements and control commands. These two categories

are further sub-divided in the next section which describes

the means of communicating with IDDAP in detail.

17

IV. COMMUNICATING WITH IDDAP

In the discussion to follow, square brackets [] are

used to denote optional items. The notation []••• means

that the item(s) contained inside the brackets may be

repeated zero or more times. Italics will be used to repre

sent categorical items which are to be replaced by specific

items in actual statements.

The terms "name" and "constant" are used in the discus

sion of both description statements and control commands. A

name is a string of alphanumeric characters with no inter

vening blanks. The first character must be alphabetic and

only the first eight characters are significant. A constant

may be specified as a decimal, binary, octal, or hexadecimal

integer as indicated by the absence of a suffix, the suffix

character B, the suffix character K, or the suffix character

X, respectively. The first digit of a constant must be

numeric. The letters A through F are used for the hexa

decimal digits 10 through 15.

Comments and/or blanks may be inserted anywhere that

a non-alphanumeric symbol ~s allowed. A comment must be

enclosed in dollar signs, e.g., $THIS IS A COMMENT$.

A. Description Statements

The description of a digital system for IDDAP consists

of two types of statements. The first type is defining

18

statements used to assign names to flip-flops, registers,

combinational logic outputs, and so forth. The second type

of statements resemble executable ALGOL-like statements and

serves to specify how the various logic components are to

interact.

1. Type-One Statements

Defining statements have the following general form

.type. name[quaZifiaations] [,name [quaZifiaations]]•••

The type is enclosed in periods and may be abbreviated by its

first three letters. It refers to the kind of hardware

being named. Valid types are REGISTER, SUBREGISTER, MEMORY,

INPUT, CLOCK, DECODER, TERMINAL, and NETWORK. If a valid

type was in effect on the preceding line, then .type. can be

omitted if the current line defines items of the same type.

Two additional type-one statements, .LABEL. and .END.,

do not define logic components. A label may be defined for

the convenience of the user in referring to points within

the description. The .END. statement is used to mark the

end of the description and also causes a return to the

supervisory mode.

In the following discussion the Zength/position

specification referred to has the form ([n1 -] n 2). If n 1

is omitted, then n 2 is the length in bits and one-origin

indexing is assumed. That is, the bits are assumed to be

numbered in left-to-right order from 1 to n 2 • When n 1 is

specified the bits are numbered n 1 to n 2 in left to right

19

order and the length is n 2 - n1 + 1. The current implemen

tation restricts the length to a maximum of 32 bits.

Negative-origin indexing is not allowed. The maximum value

of n 2 is 999, and n 1 must be less than or equal to n 2 .

A register, input, and clock are all defined in the

same manner. The main difference between them is a

conceptual one. A register is usually thought of as a

memory device consisting of one or more bits. An input

is usually regarded as a signal whose source is external

to the system and whose value cannot be changed by the

system itself. One may think of a clock as a device

internal to the system but which cannot be affected by

operations within the system.

The current implementation makes no distinction

between these three types, but an appropriate selection is

an aid to documentation. In many cases it is convenient

to have some statements which assign values to inputs or

control clocks in order to make the description self-

contained and operable in a continuous or iterative fashion.

Statements assigning values to inputs may be viewed as

representing an abbreviated description of the external

device supplying those inputs.

The defining statement for these three types has

the following form

.REGISTER .

. INPUT. name[length/position] [,name[length/position]]•••

.CLOCK.

20

The name and length/position are as described above.

Omission of the length/position specification is equiva-

lent to specifying name(l).

The form used to specify a subregister is the same

as for a decoder but they denote quite different items.

Their general form is

.SUBREGISTER.

.DECODER. name= base-name[length/specification] [,]•••

The length/position specifies the portion of base-

name which is to be associated with the name being defined.

If a subregister is being defined, reference to name will

in effect be a reference to the indicated bits of the base.

A decoder is a combinational logic network having n inputs

and 2n outputs. All 2n outputs are 0 (or False) except the

one corresponding to the binary encoding of the inputs. A

reference to a decoder output requires a numeric suffix to

n specify one of the 0 through 2 -1 decoder outputs. Thus,

for a decoder, length/position defines which n bits of the

base are being decoded by name. In both cases, if the

length/position specification is omitted, then the entirety

of base-name is assumed to be specified.

A memory definition has the form

.MEMORY. name(n 1 ,n2 > [,name(n 1 ,n 2>J•••

The number of bits per word is given by n 1 , and n 2 specifies

the total number of words. Both must be simple integer

constants. zero-origin indexing is assumed for memory words.

Individual bits cannot be referenced directly.

21

For the current implementation the total memory

defined cannot exceed 128 words. Memories declared under

a single .MEMORY. heading will be assigned sequential

locations in real memory. Subsequent use of .MEMORY. will

cause the simulated memories to overlay memories previously

defined.

Thus for the definitions

.MEMORY.

.MEMORY.
A(ni, 16), B(nj, 32)
Z(nk, 32)

references to A(l7), B(l), or Z(l7) in simulated memory all

refer to the same position in real memory.

The declaration of a terminal includes a logic expres-

sion specifying the function to be performed. It has the

form

.TERMINAL. name = expression

The rules for expressions are discussed in the next

sub-section.

The heading .NETWORK. name[Zength/position] is used

to specify a more complex logic module having any number of

outputs. Following the line on which the network is named,

as many type-two statements as are needed may appear. All

the rules given below for type-two statements apply to the

body of a network's description. The group of statements

describing a network are terminated by the appearance of

a statement beginning with a .type.

2. Type-Two Statements

Type-two statements have the general form

[[condition prefix]:] unit1 [,unit 2]••• [@]

22

The condition prefix controls the operations in the

remainder of the statement as well as the operations in

all subsequent statements up to the next statement

containing a condition prefix. The condition prefix con

sists of one-bit logic signals connected by asterisks (*)

and optionally preceded by not-signs. All of the items

in the condition prefix must be true before the operations

controlled by it can take place. A colon alone may be

used to introduce unconditional operations. When the

operations under control of a condition prefix do take

place, they all occur simultaneously. The .type. used for

defining names and the condition prefix have one important

property in common; each continues in effect for subse

quent lines of the description until the appearance of

another .type. or condition prefix.

The units of the statement are ALGOL-like structures

of one of the following types:

1. An assignment statement of the form

identifier = expression

2. An IF statement of the form

IF expression THEN action

where action may consist of one or more units of any

type other than an IF statement. All units following

23

the THEN up to the end of the statement are regarded as

a group whose operations are under control of the IF

clause.

3. A transfer statement of the form GO TO label-name.

This statement does not represent any logic but may be

used to assist the designer in formulating control and

to cause iteration.

4. A statement of the form DO network-name which

is conceptually similar to the CALL subroutine-name

statement in most algorithmic languages.

The optional at-sign (@) at the end of the statement

may be used to indicate that the statement is to be

continued on the next line. There is no specific limit to

the number of such continuation lines.

Expressions in IDDAP are identical in form to

expressions in other algorithmic languages. The symbols

* and + are used to denote the operations of logical AND

and inclusive OR, respectively. For multi-bit operands,

these logical operations are applied bit for bit. For

operands of unequal length, the shorter is extended on the

left with zeros, and the result has the length of the

longer. The prefix not-sign <~> may be used in an expres

sion in the same way that a prefix minus sign is used

in other algorithmic languages. The relational operators

>, <, and = all have the usual meaning. The result of

any of these comparison operations is a one-bit inter

mediate logic signal.

24

All other available operations are specified with

keywords enclosed in periods. Those operations include

ADD, SUBTRACT, MULTIPLY, DIVIDE, REMAINDER, LSHIFT, RSHIFT,

LCIRCULATE, RCIRCULATE, CONCATENATE, COUNT, XOR (exclusive

or) , and DISPLAY and may all be abbreviated by their first

three letters.

The ADD, SUBTRACT, MULTIPLY, DIVIDE, and REMAINDER

operators enable the user to perform integer arithmetic.

For addition and subtraction, the 2's-complement form of

negative numbers is assumed. The built-in operands .CRO.

and .OVF. may be referenced to ascertain if there was a

carry into the position to the left of the left-most bit

or if overflow occurred. The operands of MULTIPLICATION,

DIVISION, and REMAINDER are assumed to be positive

integers. The .REMAINDER. operator gives the value of its

left argument modulo its right argument.

For the shift operations, LSHIFT, RSHIFT, LCIRCULATE,

and RCIRCULATE, the first letter (L or R) denotes left or

right. The operand or expression following the shift

operator specifies the number of bit positions that the

left operand is to be shifted.

Use of the .XOR. operator yields the exclusive-or

of its operands.

The .CONCATENATE. operator provides the means of

specifying a composite register whose length is the sum

of its operand's lengths.

25

The .COUNT. operator is similar to the .ADD. operator

except that .CRO. and .OVF. are unaffected.

The .DISPLAY. is not a logical operator but is a

means of causing the simulator to display intermediate

results during the course of simulation. Syntactically,

it functions like the equals sign in an assignment state

ment. The left operand is an integer in the range one

through sixteen which specifies the arithmetic base in

which the operand or expression on the right is to be dis

played. Specifying one for the base results in the display

of either the word "TRUE" or "FALSE". As an illustration of

the use of .DISPLAY., the statement 8 .DISPLAY. ACCUM in

Example 2 of Chapter V causes the value of the register

ACCUM to be printed in base-8 (Octal) .

The term "identifier" used in the preceding discus

sion refers to either a simple name or a qualified name.

Names of multi-bit structures other than decoders may be

qualified using parenthesized subscript notation consisting

of a specification of the form "(aonstant 1 - aonstant 2)"

or of the form "(position-expression)". The first form

can be used to reference a multi-bit subsection while the

second form is useful for referencing a varying bit position.

Memory references are always qualified using the second

form to specify a memory word. Names may also be quali

fied with a numeric suffix attached without intervening

blanks. For a decoder reference, the suffix is mandatory

and refers to one of the 0 through 2n - 1 output lines.

For other multi-bit structures, the suffix refers to a

one-bit signal according to the bit position numbering

defined for that name.

26

In addition to the statements already discussed, the

description translator also recognizes five one-character

commands. The first of these is the break () which

causes an immediate return to the supervisory mode without

formally ending the description. The other four are edit

ing characters which can be used to control the current

line number and to make corrections during the entry of

a description.

Entering a slash (/) will decrement the line count

by one without affecting any previously entered statements.

Typing an equals sign (=) reestablishes the statement

stored at the current line number and advances the line

count by one. If the statement at the current line is

uncertain, a question mark (?) may be typed to have that

line displayed without reestablishing it or changing the

line count. After displaying the line, the user may enter

a new statement to replace that line or type an appropriate

edit character. An ampersand (&) may be typed to indicate

that the next statement to be entered is to be inserted

ahead of the statements beginning at the current line.

B. Control Commands

An additional set of statements is used for communi

cating with the supervisor. These control commands are

27

relatively simple and are of fixed format requiring little

punctuation other than intervening blanks. With the few

exceptions noted, the command words may be shortened to

their three (or more) leading letters. The control

commands listed below are arranged approximately in the

order that one might normally use them.

DESCRIPTION

The description translator is invoked for the purpose

of entering a ~ description.

SET [name= constant]•••

The logic unit "name" will be set to the value

specified by the constant prior to simulation.

LOOP number

This command allows the user to specify the maximum

number of iterations which will take place before

the simulator will ask whether or not to continue

with the simulation.

WAVES [n name]•••

This command indicates that during simulation

information necessary to produce waveform timing

diagrams is to be gathered. The optional list

specifies that the logic signal name is to have its

th waveform plotted as the n waveform on the page.

Default is to plot the first fifteen names defined

in the order of their definition. A slash (/) may

be entered in place of name to specify that the nth

28

th
through 15 lines are not being used. The numbers n

need not appear in order, and any lines not specified

will remain as they were.

NOWAVES

This command indicates that waveforms will not be

needed (abbreviated NOWAV).

CLOCKED name

The simulation is to be run in "clocked mode"

controlled by the logic signal name.

NOCLOCK

This command specifies that no signal is to be used as

a "clock", and is the default condition (abbreviated

NOCLO) .

DEFINE number

The current values of all logic signals will be

stored for later use. The three such sets of values

which may be stored are identified by the number

(1, 2, or 3) specified. The values of the logic

signals are left unchanged.

ESTABLISH number

The set of values stored by use of a DEFI~E command

are used to re-initialize the logic signals. The

number (1, 2, or 3) indicates which set is to be

used. The set of values stored is left unchanged.

In the discussion of the following three commands,

point refers to a position in the description. It may be

29

either a line number or the name of a label, terminal, or

network. For these commands the following defaults apply:

1. If no points are specified, the first line and

last line are assumed for point1 and point2 respectively.

2. If only point2 is specified, a comma must be used

in place of point1 and point1 is assumed to be line one.

3. If only point 1 is specified and is a terminal or

network, then point 2 is assumed to be the next state

ment after the end of the terminal or network definition.

Otherwise, point 2 is taken to be the last line.

SIMULATE [point 1 J [point 2 J

Simulation will begin at point1 and continue up to

but not including point2 • If point1 does not refer

to a terminal,network, or type-two statement, then

simulation begins at the next type-two statement

which is not a part of a terminal or network defini

tion. If point2 is never reached, a return to the

supervisory mode will occur if the .END. statement is

reached, or when the user gives a negative response

to the simulator's question, "Shall I Continue?".

LIST [point 1 J [point 2 J

Description statements between the limits indicated

will be listed.

30

CHANGE point

The description translator is invoked for the purpose

of making changes. The current line number will be

as specified by point.

DISPLAY WAVES

The information accumulated for waveforms will be

displayed. Note that if the buffers for this display

become full during the course of simulation, wave

forms will automatically be displayed, and simulation

resumed.

DISPLAY [base] name [name]•••

The values of the named items will be displayed in

the base specified. The base may be any integer from

one through sixteen. If base is omitted, decimal is

assumed.

DISPLAY FLOAT mantissa exponent

UPDATE

The value of the integer mantissa will be multiplied

by two raised to the two's complement integer

exponent, and the result will be displayed as a

floating point decimal number with decimal exponent.

This command causes any projected values of logic

signals to become the current values.

REFERENCE text

A list of statement numbers will be printed in which

text appears. Text cannot be longer than 20 characters.

31

REORGANIZE/ [text /]•••

The description will be reorganized as follows:

1. All logic-defining statements in their original

order will appear first.

2. All groups of statements for which the first (or

next) text is contained in the controlling

condition prefix (provided these statements have

not already been included) •

3. Repeat number 2 until the list of texts is

exhausted.

4. All remaining statements.

Any labels or comments are moved along with the

statement which they precede. Note that if no texts

are listed the effect is to merely collect all

defining statements together at the beginning of the

description.

ARRANGE [line-number]•••

The description will be arranged in the order

specified in the line-number list. Any lines not

included in the list will follow the specified lines.

FINISHED

Used to sign off. The terminal will become inactive.

In addition to the above listed commands, the follow

ing software debugging and installation-dependent hard

copy options are included. These commands cannot be

abbreviated.

32

TRACE number

PUNCH

DUMP

Number may be an integer from zero through five.

Zero specifies that no program check-out information

is to be printed and is the normal default value.

Numbers one through five specify successively more

print-outs. The information is printed on the System

Line Printer.

A copy of the description will be punched on cards.

Causes a listing of all IDDAP's internal tables to

be printed on the system line-printer. This action

also occurs prior to an abnormal termination.

COPY / NOCOPY

If COPY was last invoked, then the user's entries

are copied on the system line-printer. If NOCOPY

was last invoked, then no such copying occurs.

SYSREAD

This command allows the user to read in cards which

were submitted in batch-mode. If a card contains a

control command, the command will be displayed on

the user's terminal before being acted upon. If the

user enters an equals sign, the command will be

processed. Any other entry causes IDDAP to discontinue

reading cards and to request a control command from

the terminal.

33

c. Simulator Output

Communication with the simulator itself is limited.

The simulator will display values as directed by the

.DISPLAY. statements imbedded in the description and may

display waveforms if the buffers for accumulating waveform

information become full. The only input from the user

is his response to the question "Shall I Continue?" to

which he answers "Y" or "N". A negative answer ("N")

results in a return to the supervisory mode.

34

V. USING IDDAP

The approach taken in this chapter is to present

specific examples illustrating important features and

general rules of IDDAP. In each sample dialogue, the

computer's response is the first thing on each line. If

a user's entry is required, an underbar (_) is the last

character typed by the computer, and the user's response

follows.

A. Fundamental Concepts

The first example represents a complete, although

short, design session with IDDAP. Future examples will

not always represent complete design sessions, but will

consist of plausible segments of a longer session.

For the first example, the design objective is to

use a control signal Q to control the transfer of one

register into another. Specifically, if the control signal

is one (or true) the ACCUM register is to be copied into

the INDEX register. If Q is zero, the opposite transfer

is to occur.

In the dialogue for Example 1, the first line defines

the two 12-bit registers ACCUM and INDEX. Since line two

contains neither a .type. nor a condition prefix, the

.REGISTER. from line one continues in effect. Thus Q is

defined to be a register and, since no length is explicitly

Example 1:

1_.REGISTER.
2_
3_. LABEL. B1
4_ Q:
5_ -.Q:
6_. END.

**_SET ACCUM
**_SIMULATE B1

• • •

ACCUM(12), INDEX(12)
Q

INDEX = ACCUM
ACCUM = INDEX

= 0 INDEX = 5

**_DISPLAY ACCUM
ACCUM = 0005

**_DISPLAY 2 ACCUM INDEX Q
ACCUM = 000000000101
INDEX = 000000000101
Q = 0

**_FINISHED

35

Q = 0

specified, it is a one-bit register. It would also have

been correct to have placed Q in the first statement.

The label defined in line 3 is not essential, but

provides a convenient reference point for use later in the

example.

The condition prefix in line 4 is Q. Therefore, the

transfer of ACCUM into INDEX will occur only if Q is one.

Since the condition on line 5 is ~Q, the indicated transfer

occurs only if Q itself is zero.

The .END. in line 6 denotes the end of the descrip-

tion. IDDAP enters the supervisory mode and indicates

that it is ready for a control command by typing "** _". In

response, the user's first command is to initialize each

of the registers.

36

The next control command instructs IDDAP to begin

simulating the design at the statement labeled Bl. Since

no end-point is specified, simulation will proceed up

to the end statement. In this example the same effect

could be achieved by specifying simply SIMULATE. Specify

ing either SIMULATE Bl 6 or SIMULATE 4 6 would also produce

the same effect.

After the simulation, ACCUM is displayed and seen

to contain the correct result. Since no base was specified,

decimal was assumed. The second DISPLAY command illustrates

the capability to present results in other bases, in this

case Binary. The command FINISHED was typed to sign-off.

The second example is similar to the first. A six

bit register has been added and if that register contains

the value three, then when Q is zero the two registers are

to be interchanged. This situation calls for simultaneous

(or parallel) transfers of data between the two registers.

The first line of Example 2 is the control command

requesting that the description translator be entered.

This command is needed except for the first design descrip

tion of the session.

The description follows the pattern of Example 1.

In this example all four registers are defined in a single

statement. A misspelling in line 2 resulted in the error

message. On the second attempt, line 2 was entered

successfully.

37

Example 2:

**_DESCRIPTION
1_.REGISTER. ACCUM(12), INDEX(12), Q , 8(6)
2_ Q: INDES • ACCUM

ERROR 115, IN TEXT INDES= -- Identifier Is undefined
2_ Q: INDEX • ACCUM
3_ -Q: ACCUM • INDEX $DO THIS ANYWAY!$
4_ IF 8•3 THEN INDEX • ACCUM
5_. END.

**_SET ACCUM•15K INDEX•23K Q=l 8•0
**_SIMULATE

• • •
**_DISPLAY 8 ACCUM INDEX

ACCUM • 0015
INDEX • 0015
**_CHANGE 5

5_&
5_ : 8 .DISPLAY. INDE *** IGNORED ***

: 8 .DISPLAY. ACCUM, 8 .DISPLAY. INDEX
6_ -

**_LIST
1 .REGISTER. ACCUM(12), INDEX(12), Q , 8(6)
2 Q: INDEX = ACCUM
3 -Q: ACCUM = INDEX $DO THIS ANYWAY!$
4 IF 8•3 THEN INDEX • ACCUM
5 : 8 .DISPLAY. ACCUM, 8 .DISPLAY. INDEX
6 .END.

**_SET ACCUM•134K INDEX•35K Q•O 8=3
**_SIMULATE $IT SHOULD EXCHANGE THE REGISTERS$

ACCUM • 0035
INDEX • 0134
•••
**

When Q is zero, the transfer of Index into ACCUM

occurs regardless of the value of B. Note the comment to

this effect enclosed in dollar-signs.

Since line 4 contains no colon, it is under control

of the condition prefix of the prior line, line 3. Since

all operations under a single condition prefix occur

simultaneously, if at all, a favorable comparison between

38

B and the constant 3 will cause the other half of the

transfer required to exchange the contents of ACCUM and

INDEX.

The end statement ends the description and causes a

return to the supervisor which in turn requests a control

command. The end statement also serves to end the last

condition-prefix-block of the description. In general, a

condition-prefix-block is ended by either another condi

tion prefix or the .type. of a defining statement.

To test the design just described, the first control

command following the description initializes the

registers preparatory to issuing the simulate command.

Upon completing the simulation (indicated by "•••")

the user directed IDDAP to display the value of the

registers, which are correct for the initial values

specified. Probably realizing that further testing was

needed to verify the design completely, the user chose to

make the displaying of the results automatic.

The next sequence of entries resulted in the change

necessary to automatically display the results. After

the description translator was reentered using the CHANGE

command, the entry of the ampersand (&) specifies that

the following line is to be inserted ahead of what was

formerly in line 5. If the colon had been omitted on the

new line then the results displayed would be those values

prior to the performance of the other operations in the

39

containing condition-prefix-block. The underbar (_) entry

returns control to the supervisor.

One of the features included in the message handler

allows the user to delete the line being typed. He does

this by pressing the "ATTENTION" key. When the attention

key is depressed, the message handler replies with

"*** IGNORED ***" and then allows the user to reenter the

statement on the next line.

After listing the revised description, the user

proceeded to again initialize the registers and to simulate

the design. This time the results were automatically

printed.

B. Clocked Simulation

For the two examples discussed above, there was no

signal acting as a clock to synchronize transfers. Upon

completion of each condition-prefix-block all signals

which had been specified to change acquired their new

values simultaneously. If a clocked simulation is

specified, then instead of signals acquiring their new

values at the end of each block, the signal designated as

the clock is examined. Only if the clock-signal has been

specified to change will the signals acquire their new

values. If the clock-signal is not about to change then

any other changes remain pending until the clock finally

changes.

40

Descriptions of clocked mode systems will usually

contain a statement like line 2 of Example 3. Example 3

may be thought of as the description of a clock which

changes state every time the simulation of the descrip-

tion is iterated, provided A is one. Figure 2 shows one

possible hardware configuration which could correspond

to the description in Example 3. The input signal A in

Example 3 and Figure 2 may be thought of as an ON/OFF

switch for the clock. The fact that B was defined as a

CLOCK is important only for documentation purposes. Both

A and/or B could just as well have been defined as

registers.

t---t SEI'

Flip
Flop

t---1 CLEAR

B

Figure 2. Logic Diagram of the Circuit Described in
Example 3

Example 3:

**_DESCRIPTION
1_. INPUT. A
2_.CLOCK. B
3_.LABEL. FIRST
4_ A: B • .. 8
5_ : GO TO FIRST
6_. END.

**_CLOCKED B
**_WAVES 1 A 2 B 3/
**_LOOP 5
**_SET A=1
**_SIMULATE

SHALL I CONTINUE? N
• • •
**_SET A•O
**_SIMULATE

SHALL I CONTINUE? N
• • •
**_DISPLAY WAVES

A

B I l_l l_l

**

41

The preparation for the simulation of this descrip

tion illustrates several of the control commands not

used before in this chapter. That this is to be a

clocked simulation, clocked by B, is specified in the

first control command following the description. The

next corrnnand states that a waveform timing diagram is to

be presented. The list following the command WAVES states

that A and B are to be presented on lines 1 and 2 respect-

ively, and that lines 3 through 15 are not being used.

42

The maximum number of iterations is set by the LOOP

command. Thus, after the simulate command, the simulation

will be iterated five times before the message "Shall I

Continue?" is printed. The negative reply "N" returns

control to the supervisor in order to change the value

of A.

After the second simulation, the command to display

the waveforms was given. If the waveforms' buffers had

become full during the simulation, they would have auto

matically been displayed and the simulation would continue.

The fact that the waveforms reflect only the first

simulation consisting of five half-cycles is a result of

specifying clocked mode. Since the clock was turned off

in the second simulation, nothing happened and no additions

to the waveforms were made.

Example 4 illustrates a somewhat more sophisticated

example of clocked mode simulation. In it, an up/down

counter described in lines 7 and 8 is controlled by the

statements in lines 9 and 10. If UP is initially one and

the counter is initially zero, it will count up until

statement 9 causes it to reverse and count down. When

the count reaches zero going downward, statement 10 will

not cause further iteration.

Since the LOOP command was not issued, the loop size

is ten by default. Thus the user responds Y (for yes} to

the simulator's first "Shall I Continue?" message.

Example 4:

**_DESCRIPTION
!_.REGISTER. COUNTER(3)
2_.1NPUT. UP
3_.SUBREGISTER. B3=COUNTER(3), B2=COUNTER(2)
4_ Bl=COUNTER(1)
S_.TERMINAL. DOWN =~up
6_.LABEL RPT

WARNING 142, IN TEXT LABEL -- TERMINATING
7_ UP: COUNTER = COUNTER .ADD. 1
8_ DOWN: COUNTER • COUNTER .SUB. 1
9_ : IF COUNTER•6 THEN UP = 0

II II
•

43

INSERTED

10_ IF ~(DOWN•CCOUNTER=O)) THEN GO TO RPT
11_. END.
**_WAVES 1 UP 2 B3 3 82 4 81 5/

SAVE WAVES IN BUFFER? N
**_SET UP=l COUNTER•O
**_SIMULATE

SHALL I CONTINUE? Y
• • •
**_DISPLAY WAVES

UP L. __________ _

B3 _I L_l L_l L_l ~I L_l L

B2 L_

Bl L. __ _

**_CLOCKED COUNTER
_SIMULATE * IGNORED ***

SET UP=1 COUNTER•O
**_SIMULATE

SHALL I CONTINUE? Y
• • •
**_DISPLAY WAVES

UP L. ________ _

B2 _ I_L_I_L_I L. __ _

Bl L. ______ _

l_l ,_,
'-

44

The first simulation, and hence the first part of

the waveforms, are in non-clocked mode. The second simula

tion was performed in clocked mode, clocked by changes in

the counter's value. The discontinuity in the waveform

for UP is a result of changing its value externally to

the simulator by use of the SET command.

C. Additional Features

Although an exhaustive treatment of each type of

statement and control command discussed in Chapter III is

impractical, a few deserve illustration. The ability to

specify rather complex operations as terminals is illus

trated in Example 5.

Threshold gates may be indicated by making use of

the relational operators greater than (>) and less than(<).

Example 5 illustrates such use in what may be regarded as

a crude description of a neuron. The output A responds

immediately if the neuron's input, IN, is greater than

two. It responds only once for every two time-increments

during which its input remains one.

The 24-bit register SEQUENCE is used to provide a

series of inputs by shifting it two places to the right

after each iteration.

The use of networks apart from the use of the DO

statement is possible, but together they may be used to

represent a digital system in a modular fashion. Example 6

Example 5:

**_LIST
1 .INPUT. SEQUENCE(24)
2 .SUBREGISTER. IN = SEQUENCE(23-24)
3 .REGISTER. A, B, CLK
4 .TERMINAL. THRESH! = IN> 0
5 THRESH2 = (IN .ADD. B) > 1
6 .LABEL. NEURON
7 CLK: B = THRESH!
8 IF THRESH2 THEN A = 1
9 -eLK: A • 0

10 IF A=l THEN 8 = 0
11 : CLK = ... CLK
12 CLK: SEQUENCE = SEQUENCE .RSHIFT. 2
13 IF SEQUENCE>O THEN GO TO NEURON
14 • END.
**_SET SEQUENCE=Ol0101011011100101010000B
**_DISPLAY 4 SEQUENCE

SEQUENCE= 111123211100
**_CLOCKED CLK
**_WAVES 1 CLK 2 IN 3 8 4 A 5/
**_SIMULATE NEURON

SHALL I CONTINUE? Y
SHALL I CONTINUE? Y
•••
**_DISPLAY WAVES

45

CLK I l_l l_l l_l l_l l_l l_l l_l l_l l_l l_l l_l I_

------- -- --------I N

B l_l l_l l_l l_l l_l

A ______ I l __ l l_l l_l l __ l I __

**

illustrates such a modular structure for a memory control

module.

The overall objective of this design example was to

allow the CPU of a small computer to access memory without

Example 6:

**_DESCRIPTION
!_.REGisters. INSTRUCTion(8), DATA(8)
2_.SUBregister. OPCODE=INSTRUCTion(l-4)
3_ ADDRESS=INSTRUCTion(5-8)
4_.REGister. MEMBUF(l6), LOCATION(3), SAME
5_.MEMory. MEMORY(l6,8)
6_.REGister. READ, TIMMER(3)
7_.TERmina1. WRITE= ~READ
8_.DECoder. T = TIMMER

46

9_ $The description of the memory module follows.$
lO_.NETwork. ACCESS
11_ T2: IF LOCATION=ADDRESS(1-3) THEN SAME=1
12_ T1: SAME=O
13_-sAME•T3: MEMORY(LOCATION) • MEMBUF $Rewrite old $
14_ $ location $
15_-sAME•T4: LOCATION•ADDRESS(l-3)
16_-sAME•T5: MEMBUF•MEMORY(LOCATION) $Get new words$
17_ WRITE•T7: IF ADDRESS(4)•1 THEN MEMBUF(9-16)=DATA
18_ IF ADDRESS(4)•0 THEN MEMBUF(l-8)•DATA
19_ READ•T7: IF ADDRESS(4)•1 THEN DATA•MEMBUF(9-16)
20_ IF ADDRESS(4)=0 THEN DATA•MEMBUF(1-8)
21_ $ End of memory module description $
22_.TERmlnals. LDA•(INSTRUCTion=6)
23_ LOX•(INSTRUCTion•2)
24_ STA•(INSTRUCTion•3)
25_ STX= INSTRUCTion=!
26_.LABel. CPU $This is the computer module$
27_ : DO ACCESS
28_ T1: READ=1
29_ IF STA THEN OATA=ACCUMULAtor

ERROR 115, IN TEXT LATOR; -- Identifier is undefined
29_.REGister. ACCUMULAtor(8), INDEX(8)
30_T1: IF STA THEN OATA=ACCUMULAtor
31_ IF STX THEN DATA=INDEX
32_ T2: IF STA+STX THEN READ=O
33_ 17: IF LOA THEN ACCUMULATOR=DATA
34_ IF LOX THEN INDEX•DATA
35_ TO: $Get next Instruction. To be designed later. $
36_ TIMMER = TIMMER .COUnt. 1
37_ IF -cTIMMER=O) THEN GO TO CPU
38_.END.

having to know in advance the details of the memory actually

in use.

For the purposes of this example, a CPU is postulated

which has a word size of eight bits and which has only

47

four instructions. Those instructions are Load Accumulator

(LDA) , Load Index (LDX) , Store Accumulator (STA) and Store

Index (STX). The memory module in this example has 16-bit

words and is to be used in such a way as to avoid unnecessary

stores and fetches. The use of comments in this example

should make it self-explanatory.

48

VI. THE SOFTWARE FOR IDDAP[3l]

The overall structure of IDDAP was discussed in

Section III and illustrated in Figure 1. The purpose of

this section is to provide further details on the programs

which make up the Interactive Digital Design Assistance

Package. Except for the use of Assembler Language for

the Message Handler, all programs were written in PL/1

and were run on a Model 360/50 IBM Computer.

There are three main programs corresponding to the

blocks in Figure 1 labeled SUPERVISOR, DESCRIPTION

TRANSLATOR, and SIMULATOR. In addition, a number of short

subprograms are used by all three main procedures to

perform frequently needed operations.

The supervisor is the main procedure and is shown

diagrammatically in Figure 3. Its function is to inter

pret and act upon control commands.

The initializing which the supervisor performs on

its first entry includes assigning values to the various

arrays. It also includes initialization of the remote

terminal. The first communication must be a message from

the user which is a part of the initialization process.

That message is mt processed.

Having completed the initialization, the supervisor

invokes the description translator which responds by

typing "1 " -- the number of the first line.

INITIALIZE

Invoke

L-----..1 Invoke
IDD TRAN

no

IDD TRAN t-----'
for

Reproces

List the
Descrptn

GET NEXT
CCM1AND

ERROR -
~~~Illegal 

Crnmand 

Figure 3. Block Diagram of Supervisor 

49 



50 

When control is returned to the supervisor, the user 

may issue any of the available control commands. The 

first alphanumeric string in the control command is 

obtained using the external function subprogram NEXT_ID. 

The supervisor then proceeds to "sift" through a number 

of IF statements until it finds the one corresponding to 

the command given. This process is shown in an abbreviated 

fashion in Figure 3. This method of determining which 

control command was given makes it a simple matter to add 

new control commands to the repertoire. After the command 

has been identified and the associated operations per

formed, a new control command is requested. 

Due to use of the CHANGE command, it may be necessary 

to invoke the description translator in order to reprocess 

the description. If this reprocessing is necessary, it 

occurs without explicit knowledge of the user other than 

a pause of less than 0.1 seconds per line of description. 

It is possible that a change to the description may result 

in an error in some part other than that which was 

changed. If such an error occurs, the user will be 

informed and invited to correct the error. If reprocessing 

is necessary, it must be carried out prior to any commands 

which may depend on the description being correct, 

consistent and complete. Thus, if the command is not the 

DESCRIPTION, CHANGE, or LIST command, a check is made to 

determine if reprocessing is necessary. 



51 

The description translator, Figure 4, is invoked by 

the supervisor. The organization may be thought of as 

having three main parts along with statements to determine 

the type of structure being processed. The three main 

parts are represented by the blocks labeled PROCESS TYPE-ONE 

STATEMENT, PROCESS CONDITION PREFIX, and PROCESS TYPE-TWO 

STATEMENT. 

The block which translates type-two statements is 

the most complex portion of IDDAP. It applies the prece

dence rules, analyzes syntax and context of the statement, 

and generates entries in the "M-table". TheM-table 

represents the operations specified in the description in 

a form close to machine language and is the primary table 

used during simulation. 

The simulator, Figure 5, is actually two nested 

procedures. The external, outer procedure is invoked by 

the Supervisor. After a small amount of initialization, 

the inner procedure is invoked. In order to perform 

each operation, the current value(s) of the operand (or 

operands) are first obtained. · If an operand is a terminal 

or network then the inner procedure recursively invokes 

itself. When the inner procedure is recursively invoked 

to evaluate a terminal or network, the activity previously 

in progress is temporarily suspended. Upon return from a 

recursive entry, the suspended activities are resumed as 

though they had never been interrupted. 



If error Get first 
in statement ~------------------~ or next 
then delete ~tatanent 
table entries 

PRJCESS 
TYPE-c:NE 

STATEMENT 
PROCESS 

CDIDITION 
PREFIX 

no 

no 

PROCESS 
TYPE-'IWJ 

STATEMENT 

52 

Perfonn 
line-edit 
operation 
indicated 

Figure 4. Block Diagram of Description Translator (IDD_TRAN) 



If self
called 

retun1 is to 
point ALPHA 

Recursive 
call to 
Simulator 

INITIALIZE 

Get value(s) 
of 

Operand(s) 

Operation 
is 

Perfonned 

Find the next 
Condition 

Prefix 

no 

yes 

Go to next 

Operation 

Figure 5. Block Diagram of Simulator (IDD_SIM) 

53 



54 

Having obtained values for the operands (perhaps 

through recursive calls) the simulator proceeds to find 

the block of code corresponding to the current operator 

and to perform the indicated operation. 

Following the simulation of a group of statements 

headed by a condition prefix, the simulator checks to see 

if the projected values of logic signals should become 

the current values. If the simulator is not operating in 

clocked mode it performs this "updating". If clocked 

mode was specified, then it compares the current and 

projected values dE the signal designated as the clock. 

If the clock's value is to be changed, then updating takes 

place. The simulator then proceeds to search for the next 

satisfied condition prefix. 

Besides the normal return to the supervisor at 

the user-specified point, three abnormal returns are 

possible. If the .end. statement is reached unexpectedly 

or if a serious error occurs, the immediate return is 

accompanied by a diagnostic message. 

Whenever a GO TO statement is encountered, the 

simulator checks to see if it transfers control to an 

earlier part of the description. For each such backward 

transfer of control, the loop counter is incremented. If 

the number of loops exceeds the maximum number of loops 

specified, the simulator asks the question "Shall I 

Continue?". A negative response to this question is the 



55 

third way in which an immediate return to the supervisor 

may occur. An affirmative reply allows simulation to 

continue normally and resets the number of loops to zero. 

A number of relatively small separately-compiled 

subprograms are used by the three main programs. The 

function o·f each is discussed in the following paragraphs. 

The three subroutines NEXT_ID, NEXTNUM, and NUMBER 

are contained in the procedure called NXTITEM. When an 

identifier is expected, the function subprogram NEXT ID 

is used to extract that identifier from the statement 

being processed. The returned value is the alphanumeric 

character string starting at the next position after the 

position to which the scan pointer (CI) is currently 

pointing. On exit, the scan pointer is left pointing to 

the last alphanumeric character of the identifier. 

Another function subprogram, NEXTNUM, is called when a 

constant is expected. Its function is similar to NEXT ID 

except that it returns an integer constant instead of a 

character string. An additional entry point, NUMBER, may 

be referenced if the constant begins at, instead of after, 

the position indicated by the scan pointer. 

The function IDCODE# is used to identify an alpha

numeric string. The argument of this function is a 

character-string whose position in the name-table is to 

be found. If the character-string argument is found, the 

returned value is a positive integer indicating the 



identifier's location in the name-table. Otherwise the 

value -1 is returned. 

56 

All diagnostic messages are handled by a subprogram 

having three entry points. The ERO_RET entry is used to 

pass a label establishing a common return point for the 

ERROR entry. If the subprogram is entered at the ERROR 

entry, it sets E_FLAG, an external logical variable, to 

one. Entry at the WARN entry point does not affect E_FLAG. 

For entry at either ERROR or WARN, an integer argument is 

passed denoting the code number of the diagnostic message 

to be printed. From either the ERROR or WARN entry points, 

the following takes place: The diagnostic message is 

printed according to the number passed as the argument. 

Then, if E_FLAG is one it exits to the label specified by 

the prior invocation of ERO RET. Otherwise, it makes a 

normal return to the next statement following the invoking 

statement. 

A fairly simple subprogram, DIS_WAV, exists to display 

the waveform data accumulated during simulation. This 

program may be called automatically by the simulator if 

the buffers become full, or it may be called at the request 

of the user by the supervisor. 

Most, but not all, communication passes through a 

subprogram called GASOB. In addition to requesting and 

subsequently receiving an entry from the user, it also 

performs some preliminary processing of the user's 

response. This processing involves removing comments and 



57 

unnecessary blanks, and placing a terminator symbol, a 

semicolon, at the end of the user's text. Both the 

original entry and the processed version are made avail

able to IDDAP in the form of external character-string 

variables. GASOB utilizes the MESSAGE HANDLER to perform 

the actual communication between IDDAP and the user. 

Finally, a subroutine exists to convert the internal 

form of a signal's value to a character string. This 

function is invoked with three parameters giving the signal's 

current value, the user-defined length in bits, and the 

desired arithmetic base in which the value is ultimately 

to be displayed. The returned value is a character string 

representing the value in the specified base. The length 

of the resulting character string is just sufficient to 

contain the largest possible value expressible with the 

indicated number of bits when converted to the requested 

base. 



58 

VII. CONCLUSION 

Fast execution and small memory storage requirements 

were not the main goal of IDDAP. The convenience to the 

user was considered more important. However, the speed of 

execution and the memory requirements do have an effect on 

its usefulness and efforts were made to write efficient 

programs. Both the memory requirements and speed of IDDAP 

compare favorably with other similar design-aid programs. 

The package presented here runs in a 130 K byte

partition of memory and does not require any external bulk 

storage nor does it involve the use of overlay techniques. 

The approximate storage requirements may be broken down 

as follows: 

IDDAP object code 59 K bytes 

PL/1 library routines 

Static array storage 

Allowance for dynamically 

allocated storage 

Total 

22 K bytes 

28 K bytes 

20 K bytes 

129 K bytes 

By elimination of program debugging statements and reduction 

of the maximum number of description statements to 100, the 

core requirements could be reduced to less than 100 K bytes. 

The execution speed is of course highly problem 

dependent. For "average" description statements the 



59 

description translator requires approximately 0.1 seconds 

per statement. Rouse[ 20] gives an example of the simulation 

of an oscillating NAND gate with a fan-out of 20 for which 

he gives the simulation times for 95 oscillations. Those 

times ranged from about five seconds to fifteen seconds 

depending on the "mode" of simulation. A similar example 

using IDDAP required twelve seconds for 95 oscillations in 

non-clocked mode, and ten seconds in clocked mode. 

In simple descriptions of fewer than 20 statements, 

the user would scarcely be aware of delays due to processing. 

For descriptions ranging from 100 to 200 statements, 

noticeable waiting periods of five to thirty seconds would 

not be surprising. 

This version of IDDAP should not be regarded as the 

ultimate form of assistance to creative design. The 

addition of a synthesizer to reduce the formal description to 

the hardware level is just one additional option which could 

be added. 

Presently, IDDAP is unable to accommodate more than 

a single user at a time. Thus, another improvement would 

be to enable multiple users to be using IDDAP concurrently. 

This feature along with several of the other features found 

in general-purpose interactive systems would result in more 

economical and efficient use. 

The largest amount of time devoted to this project 

was spent writing and debugging the programs. The most 

difficult part, however, was in deciding what features 



60 

should be made available. For example, the decision to 

represent most of the operators as keywords enclosed in 

periods was a compromise between several criteria which 

were felt to be important. The use of special symbols 

would have made the language more concise and easier to 

process, but more difficult to learn and to use. The 

decision to enclose the keywords in periods avoids the 

necessity of having reserved words, and allowing three

letter abbreviations provides some conciseness. 

It is felt that the system described here offers 

concrete, convenient, useful help to designers in formula

ting, studying, and testing digital designs. By enabling 

the designer to interact with the computer in a suitable 

language IDDAP offers this assistance during the critical, 

creative, initial phases of the design process. 

The formal description of a digital system along with 

the simulation results, especially waveform-timing

diagrams, also provides valuable documentation for the 

system being designed. 



REFERENCES 

1. K. E. Iverson, A Programming Language, New York, 
John Wiley and Sons, 1962. 

61 

2. K. E. Iverson, A. D. Falkoff, and E. H. Sussenguth, 
"A Formal Description of System/360, 11 IBM Systems 
Journal, Vol. 3, No. 3, pp. 198-262, 1964. 

3. H. Hellerman, Digital Computer System Principles, 
New York, McGraw-Hill, 1967. 

4. 11 APL/360 User's Manual," IBM Program Produce 
GH20-0683-l, 1969. 

5. 11 APL/360 Primer, .. IBM Program Product GH20-0689-l, 
1969. 

6. T. D. Friedman and S. C. Yang, "Quality of Designs 
from an Automatic Logic Generator," IBM Research 
Report RC 2068, April 25, 1968. 

7. T. D. Friedman and S. C. Yang, "Methods Used in an 
Automatic Logic Design Generator (ALERT) , " IEEE 
Transactions on Electronic Computers, Vol. C-18, 
pp. 593-614, July 1969. 

8. 11 The Use of APL in Teaching," IBM Manual G320-
0996-0, p. 27, 1969. 

9. P. L. Koo and D. E. Atkins, "Arithmetic Unit of 
ILLIAC III - Simulation and Logical Design," Abstract 
Number 6975, IEEE Transactions on Electronic 
Computers, Vol. C-18, p. 868, September 1969. 

10. R. F. Crall, "Description and Simulation of the 
SCC 650 Computer in PL/1," unpublished, June 1969. 

11. J. R. Duley and D. L. Dietmeyer, "A Digital System 
Design Language (DDL) , .. IEEE Transactions ~ Elec
tronic Computers, Vol. C-17, pp. 850-861, September 
1968. 

12. J. R. Duley and D. L. Dietmeyer, "Translation of a 
DDL Digital System Specification to Boolean 
-Equations, 11 IEEE Transactions on Electronic 
Computers, Vol. C-18, pp. 305-313, April 1969. 



13. 

14. 

15. 

16. 

17. 

18. 

;19. 
\./ 

20. 

21. 

22. 

23. 

62 

T. C. Bartee, I. L. Lebow, and I. s. Reed, Theory 
~Design of Digital Machines, New York, McGraw
H~ll, 324 p., 1962. 

H. Schorr, "Computer-Aided Digital System Design 
and Analysis Using a Register Transfer Language," 
IEEE Transactions on Electronic Computers, Vol. EC-
13, pp. 730-737, December 1964. 

Scientific Control Corporation, "Machine Instruc
tions 650-2," Dwg. No. A 10547C, Dallas, Texas, 
78 p., 1967. 

Y. Chu, "An ALGOL-like Computer Design Language," 
Communications of the ACM, Vol. 8, pp. 607-615, 
October 1965. -- --- ---

H. J. Pottinger, "A Formal Description of the 
SCC 650 Digital Computer," Master's Thesis, 
University of Missouri - Rolla, Rolla, Missouri, 
44 p., 1968. 

B. D. McCurdy andY. Chu, "Boolean Translation of 
a Macro Logic Design," Digest of the First Annual 
IEEE Computer Conference, Chicago;:pp. 124-127, 
September 1967. 

D. M. Rouse, "A Design Oriented Digital Design 
Language," Ma~ter's Thesis, University of Missouri -
Rolla, Rolla, Missouri, 64 p., 1969. 

D. M. Rouse, "A Simulation and Diagnosis System 
Incorporating Various Time Delay Models and Func
tional Elements," Ph.D. Dissertation, University 
of Missouri- Rolla, Rolla, Missouri, 136 p., 1970. 

c. v. Srinivasan, "CDLl, A Computer Description 
Language," Scientific Report No. 3, AFCRL-69-0322, 
Clearinghouse, Department of Commerce, 26 p., 
July 1969. 

D. L. Parnas, "More on Simulation Language and 
Design Methodology for Computer Systems," Proceedings 
of the Spring Joint Computer Conference, pp. 739-
743, 1969. 

R. J. Smith II, "Synthesis Heuristics for Large 
Synchronous Sequential Circuits," Ph.D. ~isser~ation, 
University of Missouri - Rolla, Rolla, M~ssour~, 
79 p., 1970. 



63 

24. R. J. Smith II, J. H. Tracey, W. L. Schoeffel, and 
G. K. Maki, "Automation in the Design of Asynchronous 
Se9uential Circuits," Proceedings of the Spring 
Jo1.nt Computer Conference, Vol. 32, Washington, D. C., 
Thompson, pp. 53-60, Apr1.l 1968. 

25. R. E. Marsh, "Logic Simulation Made Simple with 
LOGISIM," Abstract, IEEE Computer Group News, 
Vol. 3, No. 3, p. 70, March 1970. 

26. C. G. Hays, "Computer-Aided Design: Simulation of 
Digital Design Logic," IEEE Transactions on Elec
tronic Computers, Vol. C-18, pp. 1-10, January 1969. 

27. S. A. Szygenda, "TEGAS -A Diagnostic Test Genera
tion and Simulation System for Digital Computers, .. 
Proceedings of the Third Hawaii International 
Conference~ System Sciences, January 1970. 

28. E. L. Huelsman, 11 Design of an Asynchronous Tic 
Tac Toe Machine," Undergraduate Seminar Paper, 
University of Missouri - Rolla, Rolla, Missouri, 
18 p., May 1970. 

29. G. I. Rhine, "Design of an Interface Between the 
sec 650 Computer and an ARDS Graphics Terminal," 
Master's Thesis, University of Missouri - Rolla, 
Rolla, Missouri, expected completion date -
December 1970. 

30. w. E. Omohundro, "Design of an Interface Between 
the SCC 650 Computer and a Communications Data Set," 
Master's Thesis, University of Missouri - Rolla, 
Rolla, Missouri, expected completion date -
January 1971. 

31. R. F. Crall, IDDAP -- Program Maintenance Notes, 
Technical Report CRL 69.1, Computer Research Labora
tory, Electrical Engineering Department, University 
of Missouri - Rolla, Rolla, Missouri, August 1970. 



64 

VITA 

Richard Franklin Crall was born on December 7, 1943, 

in Lafayette, Indiana. He received his primary and 

secondary education in Flint, Michigan. He then returned 

to Lafayette, Indiana, to study Electrical Engineering at 

P~rdue University, receiving the degree of Bachelor of 

Science in Electrical Engineering in August, 1965. 

He has been enrolled in graduate school at the 

University of Missouri - Rolla since September, 1965. 

During that time he married Barbara Miller,.who also 

received her Bachelor's degree from Purdue University. 

He was a member of the staff of the Electrical Engi

neering Department at the University of Missouri - Rolla 

at the rank of graduate assistant from February, 1966, to 

June, 1967, and at the rank of instructor {one-half time) 

from September, 1967, to June, 1970. He received the 

degree of Master of Science in Electrical Engineering there 

in June, 1967. 

Upon completion of his degree he will be an assistant 

professor of Electrical Engineering at Sacramento State 

College, Sacramento, California. 


	IDDAP -- Interactive computer assistance for creative digital design
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070

