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ABSTRACT

The results of an investigation of the effect of an
integral disk on the torsional elastic stiffness of an
axisymmetric shaft are presented. Various configurations
of disk diameters and widths on a shaft of specified
diameter were investigated, using a finite element method
of calculation verified by experimentation., The finite
element method is presented for the elastic solution of
a general axisymmetric body under all possible axisymmetric
load conditions, The axisymmetric body is idealized as
an assemblage of triangular cross-sectioned torii repre-
senting both the normal and shear properties, The elastic
stiffness is used to obtain the equilibrium equations of
the assemblage, which are solved for displacements of the
structure, The experimental work included the design of
the torsional testing apparatus, specimens, and the exper-
imental technique, The results indicate the effectiveness
of an integral disk in resisting torsional deflection for
the various shaft configurations., An approximate method of
finding the stiffness of disks for aluminum shafts is also

presented,



iit

PREFACE

Accurate prediction of the deflections of structures
under load is of vital design significance. Recently
developed high strength materials have allowed designers
to reduce the size of load carrying members to a point
where in many cases, deflections and vibrational char-
acteristics dictate the design limit rather than stress
levéls. Only with accurate stiffness or flexibility
information can design criteria such as natural frequencies
and interference distances be satisfied., The problem of
torque carrying shafts has long been an area of concerm to
engineers, but the interest has been in finding the stress
state rather than deflections, This is particularly true
for work on shafts with abrupt diameter changes, where the
efforts have been directed toward finding the stress state
in the transition fillet,

This presentation is devoted to an evaluation of the
flexibility of a shaft with one or more integral disks,
which introduce abrupt diametef changes in close proximity,
Included in the presentation are two approaches to the
problem; a numerical technique usable for calculating
the displacemént field of any axisymmetric solid, and
an experimental apparatus usable for accurate twist

measurements,
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NOMENCLATURE AND LIST OF SYMBOLS

The following symbols are used in this presentation,
The prime (') indicates a quantity associated with the

local coordinate system.

u, v, w

u'y, v', w'

i’

footnote symbol

matrix of dimensions r X s
dolumn matrix(vector)

transpose of a matrix

inverse of a square matrix
superscript denoting a quantity
associated with a particular
element

global coordinates

local coordinates

global coordinates of a spatial
point indicated by i

local coordinates of a spatial
point indicated by i

generalized global displacements
generalized local displacements

generalized global displacements
of a spatial point indicated by i

generalized displacement vector
in global coordinates

generalized displacement vector
in local coordinates

vector of constants for displace-
ment expansion of an element

displacement expansion coordinate
matrix for spatial point
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[3]
{e}
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[c]
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xii

displacement expansion coordinate
matrix for the i-th node

generalized displacement expansion
coordinate matrix for one displace-
ment of a spatial point

generalized displacement expansion
coordinate matrix for one displace-
ment of the i-th node

nodal displacement vector

nodal displacement vector for the
i-th node

nadal displacement vector in local
coordinates

element of nodal displacement vector

matrix of global coordinate para-
meters for an element

matrix of global coordinate para-
meters in a displacement direction

matrix of local coordinate para-
meters for an element

element of the inverse coordinate
matrix

generalized displacement field
matrix of an element

normal engineering strains

shear engineering strains

1 X 6 null vector

strain field vector of an element

initial strain field vector of
an element

strain-displacement field matrix
of an element

strain interpolation matrix of an
element
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normal engineering stresses
shearing engineering stresses
stress field vector of an element
modulus of elasticity

Poisson's ratio

shearing modulus of elasticity
elastic constants

volume of an element
cross-sectional area of a ring element
elasticity matrix of an element
global stiffness matrix

global stiffness submatrix

element of the global stiffness
matrix

element load vector due to initial
strains

element load vector due to body
forces

element load vector due to surface
forces

element load vector due to node loads

initial strain interpolation
constants

body force matrix
material density
angular velocity
longitudinal acceleration

surface load vector
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surface load interpolation constants

angle of element boundary to 'r!'
axis

distance along a surface

generator of the exterior boundary
of an element

concentrated load vector on the
i-th node

load matrix for assembled structure
reduced stiffness matrix

element of reduced stiffness matrix
substitution load vector

element of substitution load vector
angle of twist

applied torque

polar moment of inertia

generator of boundary over a length
of a shaft

transformation matrix
transformation submatrix
area integral

line boundary constants



CHAPTER 1
INTRODUCTION

The original interest in torsional load carrying
shafts with abrupt changes of diameters arose from the
need to know the maximum stress in a filletted shaft,
and indeed much interest is still shown in this important
problem, The work in this area has progressed along sev-
eral avenues since the general mathematical equations
for torsion in a solid of revolution were defined, The
classical equations are well known and are found in most
elasticity texts(l-3).* Because of the importance of a
knowledge of stress levels for design, the efforts of
investigators have been directed toward this end,

The first significant work on the solution of the
equations was done by Willers(4), who used a graphical
integration technique to obtain the solution for stepped
and collared shafts, Approximate analytical solutions
were found for given shapes of stepped shafts by Sonntag
(5), which give an evaluation of the surface stresses,

A continuation of the process for solving the equations
implicitly has led to a solution for some other special
geometries(6-7), but these are quite limited,

*Numbers underlined and in parentheses refer to listings
in the Bibliography,



As the interest in the area grew, several experimen-
tal techniques were found to evaluate these stresses,
including both analogic experimental solutions and direct
evaluation, Usable electrical analogs of the torsional
stress problem were found by Jacobson(8) in terms of
electrical potential, and a less difficult method was
utilized by Thum and Bautz(9) to evaluate stresses in
various shapes, Both methods have difficulties in pro-
viding a practical complete analogy, which limits their
general use, Experimental determinations of the stress
concentrations for various shapes were found by Wiegand
(10), and these results agree with the values of Sonntag
(5). These values are in common use and have appeared
in many English language books, subh as that by Peterson
(11). With the introduction of three-dimensional bhoto-
elastic materials and the accompanying experimental
techniques required, it was shown by Frocht(l2) that this
method was applicable to finding stress states due to
torsion in solids of revolution,

The use of numerical techniques for the solution of
shafts in torsion was begun with the work of Thom and
Orr(l3). They applied the finite difference procedure to
obtain solutions for surface stresses of stepped and
collared shafts, The use of finite difference techniques
has continued to be developed and improved, Later

formulations are given by Southwell(l4).



‘The finite element displacement method for linear
structures and solids is now well established, Since
the work of Turner, et al,(15), the effort in this area
has been considerable, Several texts(16-17) furnish
extensive references to this work, A number of finite
element programs are available for use on two-dimensiocnal
problems, One is given by Zienkiewicz(l7) and others are
available through government ageneiés, such as Sass II(18).
Several programs are also available for complete three-
dimensional structures and solids, No programs are
currently available which treat the axisymmetric body
vhen it is loaded in torsion, except the complete three-
dimensional programs which require considerably more
computational effort to use than is necessary,

Little attention has been devoted to the problem
of the deflection of the variable diameter shaft, Some
solutions of deflections of these geometries are available,
by Timoshenko(3), but only for smooth shapes, The
techniques for their solution are about the same as those
for the stresses, but they have not been applied,

This presentation is devoted to evaluation of the
stiffness of integral disks on shafts, The two abrupt
diameter changes in close proximity give a drastic varia-
tion from a smooth geometry and have considerable effect
on the stiffness, The present available evaluation of

this deflection is that of the cylindrical shaft in torsion



which does not take into account the diameter changes,
It is apparent from the stress levels in a stepped shaft
that some of the material in the disk portion is lightly
loaded and contributes little to the stiffness,

The means of analysis implemented is to use the finite
element method to evaluate thg displacements, This method
is used rather than either the analytical or the finite
difference approach for several reasons. An analytical
approach would require the solution of a non-linear bound-
ary value problem, With difficulties found by others in
the solutions for stepped shafts, the solution for a shaft
with disk is indeed formidable, The use of finite differ-
ence techniques would require either a very fine grid or
a number of grid size transitions, thus requiring consid-
erable computationalieffort. A finite element method is
developed herein for this general shaft geometry, and
provides not only for solutions of this geometry, but also

provides a general formulation for axisymmetric solids,



CHAPTER 11
REVIEW OF FINITE ELEMENT CONCEPTS

The finite element concept views a continuous
structure or body as an assemblage of structural "elements"
or subregions which are interconnected at a discrete number
of points or nodes, A true continuum would require an
infinite number of nodes, but an approximate model is
possible with a limited number of nodes, Enforced on
each element is a restricted displacement field which
is a linear combination of preselected displacement pat-
terns or "shape functions", which are functions of the
generalized coordinates, Thus, the displacements of the
model are determined from the magnitude of the generalized
coordinates associated with the shape functions, The
displacement state of the assemblage is determined by
minimizing the total potential energy of the assemblage,
and this state is then an approximation of the true
displacement under a given set of loads,

The accuracy of this method of approximation of struc-
tural behavior depends, to a great extent, on the shape
function selected, and on the compatibility requirement
which is enforced along the boundaries between elements,
Certain minimum requirements of these shape functions
should be recognized to ensure a close approximation,

They are given by Zienkiewicz(l7) on page 22 as follows:

(i) The shape functions selected must permit rigid



body displacements without element straining,
(ii) The shape function must provide for the

continuity of the displacements thoughout

the body of the element and be able to provide

continuity between elements,

The procedure used in solving a problem by this method
first requires obtaining the stiffness properties of each
of the elements in terms of the nodal displacements., By
assembling individual elements, the stiffness properties
of the complete structure can be obtained. The analysis
is completed by the solution of simultaneous nodal point

equilibrium equations for nodal displacements,



CHAPTER 111
FINITE ELEMENT FORMULATION FOR AXISYMMETRIC ELASTIC SOLIDS

A, THE AXISYMMETRIC CONCEPT

The finite element method used is for a three-dimen-
sional axisymmetric body, This formulation allows for
all axisymmetric displacements including displacement due
to torsion, which is not included in a two-dimensional type
formulation(See Figure 1), Thus, this formulation is an
intermediate step between the analysis for two-dimensional
type axisymmetfic bodies with two allowable displacements
such as described by Zienkiewicz(l7) in Chapter 4 and a full
three-dimensional analysis with three allowable displace-
ments as deécribed by Zienkiewicz(l7) in Chapter 6.

The advantages of limiting the formulation to the
axisymmetric case of three dimensions are several, First,
this allows the elements to be in the form of rings which
are triangular cross-sections rotated about the axis of
symmetry with node lines rather than points, Using these
elements gives several times fewer nodes when the body of
interest is discretized, Secondly, when the analysis of
the element stiffness characteristic is carried out, the

axisymmetric properties allow a much easier analysis,

B, DISPLACEMENT FUNCTIONS
The allowed displacement function or "shape function"
vhich is used is a.full-quadratic expansion, This "shape

function” meets all of the requirements prescribed on



page 5 and ensures that all strains and stresses can take
any prescribed linear variation throughout the element,

The displacement variation along the element boundary
is then parabolic, Therefore, to ensure continuity of
displacement along the boundary, three nodes must be along
each side of an element. This formulation was derived by
de Veubeke(l9) and is also given by Argyris(20).

This gives the element displacement fields as
z r2 rz 2

aq + agr +agz + alor2 + @q¢TZ + alzz2 (3.1)*

<
i

2
wW = 013 + 014r + alsz + Ql6r + 0171‘2 +0182

where the alphas are constant coefficients of the poly-
nomial. The element displacement field can then be

written in matrix notation** as

{2} = {v} (3.2a)

A

*Numbers in parentheses refer to equations,

**Matrix notation will be employed throughout this
dissertation with symbolic representations defined

on page xi.- xiv,



Figure 1, A Typical Finite Element Idealization of an
Axisymmetric Solid
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or

{fe} = [Pe]la3’ (3.2b)

where [Pe] equals

po

1 r 2 2722220 0 0 0 0 0 0 0 0 0 O 0]

1 2 2

0O 0 0 0 0o O r 2 rrrzz2"0 0 O O O O

0 0000 00O0O0GOUOOTI1 r z r2rz a2

(3.2¢)

or

{e°} = [*]{"} (3.3)

The displacement of the i-th node may be expressed as

{35} =1 v} (3.4)
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and in terms of the coordinate matrix [Pe]* evaluated at

the global coordinates of the node is

B.} =[], (<)

=r;, z =24 (3.5)

The nodal displacements of all of the nodes of the

triangular element can be written as

{s}=1 °} (3.6)

therefore

(a}=1{"} (3} (3.7)

*The superscript © denoting association with an element will
be omitted in the remaining discussion,
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where the coordinate matrices [P] are evaluated at the

nodal coordinates of the indicated nodes of the element,

This can be expressed as

{8} = [c]{a} (3.8)

The displacement function coefficients may be written as

a function of the nodal displacements,

{a}=[c]'{5} (3.9)
The element displacement field is written as a func-

tion of the nodal displacements of the element,

{e} = [p][c]-* {5} (3.10)

or in the form

{e} = [v]{s} (3.11)

where

[2][c]-! (3.11a)

[~]
The inverse of the nodal coordinate matrix [C] is

required, This inversion is evaluated analytically.

This inversion is shown in Appendix A,

C. STRAIN-DISPLACEMENT RELATIONS
The element displacement in the cylindrical coor-
dinate system of this formulation is given in Equation

(3,10). From this equation, the strains within the
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element are then developed in terms of the displacement
field coefficients,
The strain-displacement relations for small displace-

ments are given by Boresi(2l) on page 248 as

er=5u
r
€eg=u 19y
6 r + r 08
€ =0w
z z
(3.12)
Yrg=1du L, dv _ v
ré r 98 + r r
=0u , Ow
7rz -a-;-f'a—;
=9v , 1dw
Y8z 3z + =3

In the formulation for the axisymmetric case, the
partial derivatives with respect to the angle 8 are zero.

Therefore the strain displacement relations become
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€y Btr_:\
ee %
€5 aw
z
{‘} =1 [ = 1 I (3.13)
du ow
rz| 157 *or
Y, ov
ezJ .a-; o

The displacement field is defined by Equation (3.2b) amd

is written in the form

‘1 s . 5]
{e}={v}=1{0 F Tt (3.14)
LY !8 0 $J
where
[F]=[1 r 2z * rz 2%] (3.14a)

Therefore the element strains can be defined as
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Al
N
N

il il
AN
AN

ol
ol
QU
NLW

{<}= {a} (3.15)

ol
wia,
e
H |*o?

AN

ol

whor
b1

AN
Qe
an

ol

and written as

{<} = [e]{q} (3.16)

or using Equation (3,9), this becomes

{<} = [c][c]*{s} (3.17)

The equation is written to define strain in terms of

nodal displacements as

{<} =[8] {3} (3.18)

[8] = [&][c]"? (3.18a)

D, STRESS-STRAIN RELATIONS

The stress-strain relationships for a linearly



16

elastic isotropic material are given by Timoshenko and

Goodier(3) on page 10 as

€y = lf(crr— vog - vogy)
€g = %(—va‘r + o9 — vog)

€ 5 = %(—va‘r - vog ¥ oz)
(3.19)
Yrg=ic
rg = §°ré

_ 1
er—G°'rz

Y 6z %aﬁz

where E is the modulus of elasticity and v is Poisson's

ratio, and

G = E (3.19a)
2< I_Vs
The desired form of the equation is to have stress as a
function of the strain, Also at this point, residual
strains allowed in the formulation are entered into the
equation, Written in matrix form the strain-stress rela-

tions become
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] B 7
o, )\1 )\1 1 0 0 0
o} = L= e—e }t(3.20)
{-} o 3lo o o Xy 0 0 {e-<}
T s 0 0 0 0 Xy O
o 62 0 0 0 0 0 X,
L | .
where
Ao — ¥ A, — 1-2v A\a = __EQ-v) (3.20a)
1= %5 *2 = ey * M3 = ey

and { ﬂ,}equals residual strain vector, This equation

may be written in the form

{c} = [p]{<-<} (3.21)

E. ELEMENT STIFFNESS RELATIONS
The stiffness matrix may now be assembled using the
relationships given by Zienkiewicz(l7) on page 16 expanded

to three dimensions, The element stiffness is then

[K]=J[B]T[D][B] av (3.22)

Due to the symmetry of the formulation, this wvolume
integral may be written in terms of an area integral

as follows
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272\[[5]1'[0][3] r dA (3.23)

(]

or

[k] = 2#[c]'T [ [e]™[p][c]raa [c]™? (3.24)

since [C] is a function of only the nodal point coordin-

ates,

F. LOAD FORMULATION

The formulation for the load matrix contains four
parts; one for each of the different ways in which loads
may be applied. The four types of loading are: (1)
loads due to initial strains, (2) loads due to body forces,
(3) loads due to distributed surface forces, and (&)
loads due to concentrated loads at the nodes. Each of
these loadings are treated separately,.

Nodal forces are required to balance initial strains
such as may be caused by previous plastic flow or temper-
ature changes, The formulation for these loads in two-
dimensions is given by Zienkiewicz(l7) on page 16 and in

three-dimensions becomes

{F}‘o =vf [8]%[p] {<o} av (3.25)

As in the case of the element stiffness matrix, this can

be written in terms of area integrals and becomes

{r}, = _2"‘{[‘3]T[D]{'o} r dA (3.26)

This equation. can also be rewritten as was the element
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stiffness matrix to remove the matrices which are not a
function of the coordinates from the integral, The

equation becomes

(k. = 2l [ (Dol {e} ran 32>

The initial strain matrix remains in the integral because

I

the strain is able to take a linear form in the element
when the shape function is prescribed as a full quadratic
expansion, Each initial strain component is defined as

being in the form

€, 1= & + byr + 2 (3.28)

With the form of the initial strains defined, the matrices
under the ' integral can be expanded into individual terms,
The terms are evaluated using the same integrals as used
for the element stiffness matrix. These are given in
Appendix C,

The formulation for loads due to body forces allows
for body forces due to rotation around the axis of symmetry
and acceleration along the axis of symmetry., These con-
stitute distributed loads which cause internal work,

Again using the formulation of Zienkiewicz(l7) on page

16 converted to three dimensions, the equation becomes
{F}p=\;[ [3]™{s} av (3.29)

where the body load matrix {p } defined in terms of angular

acceleration w, linear acceleration in the z-direction A,,
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and the element density , is

{p} =40 } (3.30)

As with the distributed load matrix, some terms may be
removed from within the integral and the integration
done in the form of an area integral, The equation

becomes

{r}, = zw[c]'u&[ [P])™{p} = aa (3.31)

Again the matrices under the integral are expanded and
evaluated using the area integrals in Appendix C and the
appropriate constants,

Distributed surface forces are allowed along any
boundary of an element which is also a boundary of the
structure. The three types of forces are those normal
to the surface and two tangential to the surface, The
directions on the tangential loads are such that one
results in loads in the r and z directions and the other
results in loads in the 6§ direction, All three loads are
linearly distributed along the surface, These surface

loads are expressed as



Figure 2. Typical Distributed Surface Forces on an

Element Boundary
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S, = d5 +d.s

T 6

where s is the distance along the surface. Using the
geometric relations shown in Figure 2, the distributed

surface load matrix is
'(dl + dps) sinp + (ds + dgs) cosr.B1

{s} =1, + a,9) b (3,33)

.(dl + dzs) cosfB + (dS + dés) sin B

The load equation for these forces is the same form as
the equation for body loads except that the forces are
only on the surface so that integration is only along the
area, The load equation due to surface loads becomes

(), = [ W75} e (3.3

A
Using the same procedures as in the case of body loads

this equation becomes

{F}, = 2#[c|T [ [8]*{s} r as (3.35)
S
The matrices under the integral are expanded and

each term is evaluated using the integral forms given

in Appendix D,

The fourth form of loads are concentrated loads at



Figure 3,

Typical Concentrated Loads at a Node
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the nodes, The three directional concentrated loads are
ring loads in the r-, 6-, and z-directions, as shown in

Figure 3, These loads on the i-th node are expressed as

(R ]
Rri

{Re} = {Rgit (3.36)

R

zi
Since these loads are applied at each node of the element

the load matrix due to concentrated loads becomes

{F}r=< ' (3.37)

G. MATRIX ASSEMBLY*
The assemblage of the stiffness and load matrices
to form the complete nodal equilibrium equations in gov-

erned by the equation

*In the following sections the superscript € indicating
a quantity associated with an element will again be
shown.
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[<]{a} ={r},, + {}, + {=}, + {e}, (3.38)

where

F, =3 F: (3.38a)

and the i and j each indicate a degree of freedom and the
sunmation is over all elements of the structure.

Since each node has three-directional components,
therefore three degrees of freedom, three indices are asso-
ciated with each node which correspond to the three equil-
librium equation of the node, For a structure with *L!?
nodal points, there are 3L degrees of freedom, giving the
overall stiffness matrix of the structure dimensions of
[3L X 3L]. The indices are associated with the node in
the following manner; index number (N X 3 - 2) indicates
r-direction, (N X 3 - 1) indicates g -direction, and (N X 3)
indicates z-direction where 'N' is the number associated
with the node,

Each element stiffness matrix [K]e has only six
nodes included and must be expanded to include all the
nedes of the structure before assembling the overall stiff-
ness matrix [K]. This is done using the formulation of
indicés above and inserting zeroes for all the terms
associated with nodes not on the element, In the expanded
form, each element stiffness is assembled(added) into the

overall stiffness matrix according to Equation (3,38a),
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The load portion {F} of the equilibrium equation requires
both the addition indicated in Equation (3.38) and the
assemblage over all elements of the structure, This
is accomplished by summing first all of the element load
matrices and then assembling the resulting matrices
into an overall load matrix, The assemblage is controlled
by the same index number as was used in the stiffness
assemblage,

The overall nodal equilibrium equation is then

expressed as

[x]{3} ={q} (3.39)

where

{o} = {F}eo + {r}, + {r}, + {F}, (3.39a)

This expression is the system of equations which describes
the nodal displacements, It is noted that a constant
value of 27 appears in all the evaluations of these
matrices, except {F}r which is due to concentrated loads,
Therefore all the terms in Equation (3,38) are divided by
27 to simplify the calculations,

When assembling the overall stiffness, two modifi-
cations were made in order to conserve fast access compu-
ter storage, The first modification utilizes the symmetry

of the elastic stiffness matrix, Only the upper half
triangular portion of the stiffness matrix must be stored,
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The second modification bands the stiffness matrix by
restricting the maximum difference of the nodal number-
ing system within an element, This bandedness is possible
because the equation index is associated with the node
number, All elements of the stiffness matrix outside the
band are zero and therefore need not be stored, The non-
Zero elements of the stiffness matrix are then stored
such that the diagonal elements form the first column of
the matrix storage form, The bandedness then permits
the exclusion from storage, of all the elements outside
the prescribed band width, An element of the stiffness

matrix was stored using the transformation

kiy = kpn (3.40)

where

(3.40a)
n=3-1+1
and where i and j are indices of the stiffness matrix, and

m and n are indices of the storod form,

H., MODIFICATIONS DUE TO BOUNDARY CONDITIONS

Certain modifications to the overall stiffness matrix
and overall load matrix are necessary due to the boundary
conditiens imposed on the structure, There are two types

of conditions which must be met,
The first conditiom is that displacements in the
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angular and radial directions must be zero along the
axis of symmetry, The angular requirement is imposed
to eliminate a displacement around the axis at a zero
valued radius, The radial requirement is necessary to
ensure continuity at the axis,

The second condition is that a displacement may be
specified for any node or any node direction., This dis-
pPlacement must be specified in the input information
defining the structure, There must be some combination
of nodal displacements specified to prevent rigid body
motion of the structure,

The method of imposing both of these conditions on
the overall stiffness and load matrix is the same so only
one procedure is outlined, The known displacement is
inserted into the overall stiffness in such a manner that
the energy conditions of the overall system of equations
is retained and that the equation containing the known
nodal disﬁlacemont will yield the prescribed value when
the system of equations is solved, The modification is
done in two parts, The first part is to modify the equa-
tion for the node imposing the prescribed displacement,
The energy due to the displacement of the node is sub-
tracted from the load element of the equation, This is
evaluated by mul;iplying the known nodal displacement
by the element of the nodal stiffness equation which
indicates the load &t the node due to a displacement of

this node, Then this same element is set equal to one
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and all other elements of that nodal stiffness equation
are set to zero, as they cannot influence its displace-
ment, The second part of the modification is to adjust
the load element of all of the other nodal displacement
equations to reflect the known displacement, This is
accomplished by subtracting from the load element of each
of the nodal displacement equations, the value of the
known displacement multiplied by the element of the nodal
stiffness equation which indicates the load on the affected
nodal equation due to the known node displacement, Then
this stiffness element is set to zero since its effect

was transferred to the load portion of the equation,

I. EQUILIBRIUM EQUATION SOLUTION

The nodal displacement equilibrium equation given
as equation (3,38) contains a symmetrical positive-de-

finite stiffness matrix and two column matrices and is

[x]{s}={a} (3.0

The technique applied to solve for the displacement matrix
is the "Cholesky Method" as given by Fox(22)., This method
was used on the modifie& matrix forms which are described
in the section Matrix Assembly,

A short review of the "Cholesky Method" is described
in terms of the particular equations to be solved. The

stiffness matrix [K] is reduced such that
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[x] = [£]"[x] (3.42)
where [L] is non-zero only in the upper half triangular
matrix. From this, the elements of the reduced matrix
[L] are defined in general indices i and j as

i-1

r=1

|
13-1 ) &

(3.43)
(kg ~ 5 )
1 = _1 k - 1 1
ij T ij el ri ‘rj
ii

Only the upper half triangle of [K] is stored., Also, only
the upper half triangle of [L] is non-zero and must be
retained., Therefore, [L] is shifted in the same manner
as [K], as was outlined in Matrix Assembly, and is given

as

iy = lgn (3.44)

where the stored indices m and n are

8
[
[ e

(3.45)
n=3j-1+1

With this shift, the elements of [L] are defined by
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m-1
= 2 V2
Lol = (lﬁnl - rzz:l lr, m-r+l)
(3.46)
1 (k- 3, )
Lon = E;I- Knn — 321 lr, m-r+l 1r, mén-r

An element of the stiffness matrix [K] is not required
for calculation except when evaluating the reduced
stiffness matrix [L]. Therefore, this storage area is
released at the completion of the procedure,

The next step in the solution is the forward sub-
stitution for the stiffness matrix [K] defined in Equation
(3.42) into the equilibrium equation given in Equation
(3.41), The result is

[e]™[z]{s}={q} (3.47)

Then letting a new substitution load matrix {Y} be de-

fined as

{r} = [£]{3} (3.48)

the equilibrium equation becomes

[L]T{Y} = {o} (3.49)

From the equilibrium equation the elements of the sub-

stitution load matrix {Y} are defined in general indices
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i-1
vy = i_1__(c11— r§1 1.y ¥r)

(3.50)
ii

This equation is converted to the storage indices defined
in Equation (3.45) and becomes

m-1

Ym = -1# (qm - rz-:l lr, m-r+l yr) (3.51)
An element of the load matrix {Q} is required for cal-
culation only when an element of the substitution matrix
{Y} of the same row is evaluated, Therefore, the storage
is released for use by the element of the substitution
matrix {Y}.

The last step of the solution is the back substitu-

tion procedure, Equation (3,48), which defines the sub-
stitution matrix {Y} is solved for the displacement matrix

{8}-whose elements in general indices become

83 =1 (yy— 2 1,.8_) (3.52)
i 111 ( i r=i+l ir "'r

where s is the total number of equations, This equation
is also converted to storage indices by Equation (3,45)

and becomes

s
Sm = Ii-;(ym - r§m+1 ln, r-m+1 8m) (3.53)
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From the equation it is seen that an element of the
substitution matrix {Y} is required for calculation only
for the element of the displacement matrix'{S} of the same
row, so the storage location is released for use by the
displacement matrix {8} element,

In order to conserve fast access or core computer
storage space, the equilibrium equations were not solved
by operating on the equation with all elements in core
storage, Instead, the overall stiffness matrix [K] vas
broken up into submatrices to form a column matrix at
the time of assembly, These submatrices were stored in
magnetic disk storage, All submatrices were generated
before the solution procedure began.

The procedure of solution was to move the first sub-
matrix into core storage, and perform the manipulations
indicated in the reduction procedure, These were carried
out only for the elements of the submatrices. Then, the
forward substitution procedure was done for the same sub-
matrix, ‘The reduced form of the stiffness was then placed
into disk storage., The elements of the reduced stiffness
were also retained in core for use in the next step.

The next stiffness submatrix was loaded into the core area
formerly occupied by the first stiffness submatrix and

the reduction and forward substitution repeated for this
submatrix, The reduced elements were placed into locations

occupied by the reduced elements of the previous step,
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This was acceptable, due to the order in which the
elements of the previous reduction were required for
evaluation of the new reduced elements, This process
proceded from one submatrix to the next until the whole
system of equations had been reduced and the forward
substitution completed.

The back substitution process was started in the
last submatrix on the last equation, The procedure was
performed on subsequent equations thru to the first
equation of the submatrix, Then the next submatrix was
returned from disk storage, and the procedure progressed
in the same manner, This process was repeated until all
equations had been back substituted, The solution for

. the displacements was then complete,

J. THE PROGRAM

The computer program for the axisymmetric three
dimensional solid was written to solve a general
structural problem of this form, This requires that the
program have the capability to solve complex problems
without requiring an unreasonable amount of fast access
computer storage, Another requirement is that the solution
does not require an excessive amount of computer time, The
program was written so that the fast access storage require-
ment can be fairly easily changed to fit the computer
system available without requiring a limitation on the

simé of the problem capability., This is done by using
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some form of bulk storage, preferably disk storage. The
program has not been optimized in many respects, but many
aspects of the program are written to conserve computer
time, The program was executed on the University of
Missouri - Rolla computer system, which is an IBM 360,
Model 50, with IBM Model 2314 Disk Storage, The program
does not require the total storage capability of this
system, but does require 252 K core storage and one disk
drive unit,

The program was written in "FORTRAN" Language(23)
and is in two job steps in order to make a maximum use
of the available core storage, The first step is the
generation of the displacement equilibrium equations from
the input data, The input data required is an abbreviated
form of the information describing the structure under
investigation. The remainder is generated by the program
on the basis of the input information, From this data
the equilibrium equations are generated, The equations
and all the structure déscription information are then
placed in disk storage, The second step retrieves the
stored information and performs the process of solution,
The displacement solutions are then used to evaluate their
associated strains and stresses, The form of output of
the desired information is controlled by the second step.

The program outline is given in Figures 4 thru 8,



K. COMPUTATION EFFORT

The total solution time depends, of course, on the
number of elements employed in the descretization of the
structure and, even more significantly, on the number of
nodal points, The number of nodal points determines the
total number of equations contained in the equilibrium
equation system, Typical computational times for the
various structures studied, which does not include the
time required for the compilation of the "FORTRAN"

language, are given below,

NUMBER NUMBER COMPUTATION AVERAGE TIME
of of TIME PER NODE
NODES ELEMENTS (minutes) (minutes)
227 96 6,27 0.0276
249 102 7.53 0.0302

305 128 10,52 0.0345

36
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Read Input Data

Generate Additional Structure Data

|

Check Structure Data

y

Select Node(in sequence)

Find Element With Selected Node

T

Generate Element Stiffness(see Figure 8)
[ ‘
Evaluate Element Loads Due to Initial Strain

T

| Evaluate Element Loads Due to Body Forces 4

Evaluate Line Integrals Along Element Boundaries

l

Evaluate Element Loads Due to Surface Loads A

|

Evaluate Element Loads Due to Node Loads
l A

Agsemble Element Stiffness Submatrix

into Overall Stiffness Matrix <Z>

T
CRefer to{l, Figure 5 ) d\{D

Figure 4, Program Outline for the Axisymmetric Finite
Element Method -- Step One
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(Refer toA, Figure 4)

@ 1 CRefer to V¥V, Figure D

Assemble Element Loads Due to All Types

Loads into Overall Load Matrix 4

|
Check Condition -. All Elements With

no

Selected Node Are Completed
. |yes .
Modify Overall Stiffness Submatrix by

Boundary Conditions on Selected Node I\

[
Check Condition «« Overall Stiffness

no

Submatrix Complete

|yes
Modify Overall Stiffness Submatrix by

Boundary Cenditions on Subsequent Nodes \

i
Store Overall Stiffness Submatrix on Disk

1

Check Condition -~ All Nodes Completed | no
|yes

Store Structure Data on Disk

|

Store Overall lLoad Matrix on Disk

l
Refer to Second Step, Figure 6

Figure 5, A Continuation of the Program for the Axi-
Symmetric Finite Element Method -~ Step One



Read Structure Data From Disk

. |
Read Overall Load Matrix From Disk

<

Read Stiffness Submatrix From Disk(in sequence)

Reduce Stiffness Submatrix
]
Forward Substitute Stiffness Submatrix

Store Reduced Stiffness Submatrix on Disk

Check Condition -- All Stiffness

no

A 4

Submatrices Reduced
yes

Back Substitute Last Reduced Submatrix

4

Read Reduced Submatrix From Disk

(in reverse sequence)
|
Back Substitute Reduced Submatrix
I )
Check Condition -- All Reduced

no

Submatrices Completed
’ l yes
C;Refer to ', Figure {L)

Figure 6., Program Outline For the Axisymmetric Finite
Element Method -- Step Two
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Write Displacements

Select Element(in sequence)

|
Read Inverse Nodal Coordinate Matrix From Disk
{

Evaluate Strain-Displacement Matrix[B]

Evaluate Strains

1

Write Strains of Nodes of Element(optional)

|

Evaluate Material Properties of Element
T .

Evaluate Stresses at Nodes of Elements

1

Write Stresses at Nodes of Elements

|
Check Condition -- All Elements Completed no

[ yes
Sort Stresses by Node Due to Element

Write Stresses by Node

&

Figure 7., A Continuation of Program Outline For the

Axisymmetric Finite Element Method -- Step
Two
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Transform Nodal Coordinate Matrix [C]

of Element to Local Coordinates

r

Evaluate Inverse Nodal Coordinate Matrix

r

Transform Inverse Nodal Coordinate Matrix

to Global Coordinates to Form [C]'l

Figure 8,

—
Store [C]"1 on Disk
1
Evaluate Material Properties for Element
[

Evaluate Area Integrals for Element
|
Evaluate [, [c®]T[¥] [c®] aa
] T
Premultiply by [C]'IT

!

Postmultiply by [C]-IT

Outline of Element Stiffness Generation

41



42

L. STRUCTURES INVESTIGATED AND RESULTS

Three structural geometries were studied by the finite
element method, Two structural geometries corresponded
to extremes of the experimental specimen geometries tested.
A third specimen geometry was in the middle of the test
specimen group,

The geometry used for the finite element analysis
was not.the complete geometry of the experimental test
section, but a geometry which can be translated to a
form suitable for comparison, The first geometry was
simply a stepped shaft section in which the shaft was
extended far enough away from the step portion so that
its stresses and displacements were that of a simple
shaft, The second and third geometries used were samples
of the shaft across the disc section, Again they were
extended to the point of a simple shaft,

The discretized structures and the flexibility of

each are given in Figures 9, 10, and 11,



2.0" DIAMETER

0.5" DIAMETER

Axis of Symmetry |

FLEXIBILITY — 0.42953 x 10~ * radians / inch - pound

Figure 9, Discretized Step Shaft, 0.5 to 2,00 Inch Diameter

£y



.0" DIAMETER

0.5" DIAMETER

Axis of Symmetry =

FLEXIBILITY — 0.88978 x 10™* radians /inch - pound

Figure 10, Discretized Disked Shaft, 0,5 to 1,00 Inch Diameter, 1,0 Inch Width

7Y



0.75" DIAMETER

0.5" DIAMETER

Axis of Symmetry '

FLEXIBILITY — 0.84589 x 10~* radians/ inch- pound

Figure 11, Discretized Disked Shaft, 0.5 to 0.75 lnch Diameter, 0,125 Inch Disk Width

SY
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CHAPTER 1V
EXPERIMENT

A, TORSION TEST MACHINE

The precision torsion test machine was designed and
built as part of this research for the University of
Missouri - Rolla, The machine is designed for the test-
ing of relatively small specimens(two feet long) and is

capable of applied torques up to 600 inch-pounds,

1., TEST FRAME

The frame is designed to hold the test specimen axis
in the vertical position, to facilitate the angular measure-
ments and to provide the rigidity needed to apply the loads,
Since the specimen holders isolate the specimen from flexure
of the frame, an extremely rigid frame is not required,

The entire frame stands on a three point contact
with the floor, allowing vertical aligmment of the frame,
This alignment is used in conjuction with the angular

measurement,

2, SPECIMEN HOLDERS

In designing the specimen holders, it was necessary
to consider an attachment method which allowed transmission
of the applied torque while minimizing any transmitted
bending or axial load, This &% accomplished with flexible
Hooke Joints and a longitudinal slip joint between the

frame and the specimen,
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The upper frame unit is rotationally and axially
fixed, with a flexible joint between the upper frame and
the specimen, A one inch hexagonal socket on the flexible
Joint is used to clamp the specimen, The lower frame unit
is both a specimen holder and the support for applying
the torque, The loading shaft through the lower unit is
supported by two ball bearings and has a flexible joint
with a hexagonal socket at the upper end, The hexagonal
socket engaged the specimen and slippage is allowed in the
axial direction, The lower end of the loading shaft is

attached to the moment arm,

3. TORQUE LOADING

The torque is applied through a moment arm attached
to the loading shaft of the lower frame unit, The force
is applied to the moment arm through a hardened ball nose
Pin in the arm, This arrangement has a measurable and
unvarying moment arm length, The pin rests against a
hardened plate on the force transducer, Both the trans-
ducer and the plate are rotatable around the axis of the
loading shaft, so that the plate remains perpendicular
to the pin, Thus, the load applied to the pin is perpen-
dicular to the moment arm and the forces sensed by the
transducer are all torque producing. The forces are
applied through rotation of the transducer assembly around
the axis of the loading shaft by advancing a swivelling

lead screw between the transducer assembly and the frame,
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B. LOAD INSTRUMENTATION

The loading torque is achieved by applying a force
on a fixed length moment arm, The force is measured by
a2 linear variable differential transformer load cell,*
with a capacity from zero to one hundred pounds, The
transducer-amplifier system* for the load cell is coupled
to a digital null voltmeter* through a secondary amplifier.
The original load sensing system has an accuracy of plus
or minus one pound, Using the digital readout arrangement
instead of the meter readout of the transducer-amplifier
unit, the accuracy is extended to plus or minus one-tenth
pound,

A calibration fixture was built in order to establish
the workable limits of the load measurement system and to
check and establish the calibration for each run., Re-
calibration is necessary because the measurement system's

temperature sensitivity becomes influential when the limits

of accuracy are extended,

C. ANGULAR DISPLACEMENT MEASUREMENT

The angular displacement of the specimen is determined
by measuring the linear displacement of a moment arm, The
optical system used is similar to that used on sensitive

galvanometers with a gas laser produced light beam,

*Commercial equipment is listed in the Equipment List
on page 112
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Figure 12, Diagram of the Angular Measurement System
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The measurement system consists of a specimen gage
with attached mirrors, a laser light source, a light beam

scanner, and a calibrated displacement gage,

1. THEORY OF OPERATION

The angle between two lines in a plane may be found
by the measurement of the two sides forming the tangent
of the angle and taking the inverse of this tangent to
find the angle, The lines, in this case, are the beam of
light from the laser projected onto a first surface mirror
and the beam reflected from this mirror, The angle formed
between these beams is twice the value of the angle be-
tween the projectted light and a line normal to the surface
of the mirror, A double angle is obtained because the
angle of incidence equals the angle of reflection on a
plane mirror.

The line of the projected beam establishes the ref-
erence from which all angles are taken, A line set at
right angles to this reference line establishes the third
gide of the right triangle, The distance measurements
are taken along these two lines, The length along the
projected beam remains constant and the length along the
third varies with the angle, This length is denoted as
the lateral distance,

The desired measurement is the angle of twist of the

specimen under various applied lcads., In order to eliminate
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the effect of the specimen holders, the angle of twist is
measured between two points on the specimen. This requires
two angular measurements for each load., Each measurement
is taken with respect to the reference line,

To obtain the two angles, two mirrors are attached
to the specimen at appropriate locations, Each mirror
requires a measurement system, To eliminate the need for
two independant and separate systems, the system is
arranged so that most of the components of the measurement
system are common to both, This is accomplished by moving
the projected beam from one mirror to the other as the
angle of each is required, To minimize the amount of
adjustment of the light source necessary to accomplish
the switching, and to have the reflected beam in each
case at about the same height, the mirrors are held in
an immediately adjacent position by the specimen gage.

The distance along the reference line is fixed and
is measured from the center of the displacement gage at
its axis to the center of the specimen, The axis of the
displacement gage forms the line along which the lateral
distance is measured, and the distance between the refer-
ence line and the reflected beam crossings of this axis
is the lateral distance. The crossing point is detected

by the light beam scanner which is mounted on the travel-

ing table of the displacement gage.
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2, SPECIMEN GAGE

The specimen gage performs several functions: (1)
provides a means of securing the gage to the test specimen,
(2) provides support for the mirrors such that they are
adjacent, and each rotatable with ité attachment points
on the specimen, (3) provides a means of controlling the
distance between attachment points, giving a constant
gage length,

The gage is made in two sections, one for each of the
two measurement systems.' Each section is in two parts
to form a split case, so that the gage can be attached
to the specimen and surround it. Each of the sections
has a set of attachment points and a mirror,

The attachment points are at the upper end of the
larger or upper section and behind the mirror in the
smaller or lower soction. Each attachment to the specimen
is.accomplished with three pins spaced around the specimen
at 120 degress, Two of the pins have a flat face on the
end which rests against the specimen, The third pin is
ground to a sharp point and is forced into the surface of
the specimen to provid§ solid attachment at a concentrated
point,

The mirrors are attached to one part of the split
case of each section. Each mirror has a 25 by 35 milli-
meter area with an aluminized front surface and is 6

millimeters thick, The mirrors rest against a foam



Figure 13,

A Photograph of the Specimen Gage
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material in the back of the holders and are held in their
respective pockets in the case by four washers positioned
at the mirror corners, This arrangement provides secure
holding and at the same time introduces no force which
can distort the mirror,

The reflecting surface of the mirror is not in line
with the axis of rotation of the specimen but set away
from the axis 0.500 inches. This causes the mirror to
translate as well as rotate with the rotation of the
specimen, The translation causes a slight foreshortening
of the fixed distance along the projected beam as the spec-
imen is rotated from a central position, The foreshortening
is very small compared to the original fixed length of
140 inches, therefore, this small error is neglected,

The upper section is constructed so that it extends
down to the area of the lower section and provides the
support for the mirror in a location immediately above
that of the lower mirror, This extension is the large
tubular part of the upper section,

Since the gage is constructed with the two sections
adjacent in the area of the mirrors, by controlling the
amount of separation between the sections at this point,
the gage length or distance betwesn the attachment points
can be controlled, This space is held constant by using
a spacer between the two sections during the mounting of

the specimen, This prevents the two gage sections from
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actually touching, The gage length is ten inches,

3. LIGHT SQURCE

The light source is a continuous wave gas laser*
which is mounted so that the beam can be easily aimed,

The laser output is 6328 angstroms, red light, con-
tinuous wave with one milliwatt power. With the optics
used, the beam has a divergence of 0,7 milliradians which
gives only a slight increase in the diameter of the beam
over the distances used.

The laser is mounted on a frame which is rotatable
in both the horizontal and vertical plane, These adjust-
ments are used to align the beam with the reference line
to accomplish the switching of the beam between the twc

mirrors,

4, DISPLACEMENT GAGE

A displacement gage is used to measure the lateral
distance from the reference beam to the reflected beam,
The gage consists of a traveling platform and the rail
upon which the platform moves, The movement of the plat-
form on the rail is measurable along the axis of the rail,

The platform of the gage is attached on the rail by

four ball bearings contained in grooves in the rail sides,

*Commercial equipment is listed in the Equipment List
on page 112



Figure 14,

A Photograph of the Displacement Gage
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The relative distance of platform travel is measured
with a gage* engaging the rail with a smooth wheel pressed
against the rail, The rail is aligned at right angles to
the reference line and the travel of the platform is
measured from a reference point at one end of the rail;

The traveling platform holds the light beam scanner,
vhich provides a means of locating the reflected beam,
The transducer of the scanner is in a holder on the plat-
form., The holder allows the scanner to be raised, lowered,
and rotated without affecting its position laterally,

thus allowing the scanner to be aimed at the light beam,

5. LIGHT BEAM SCANNER

The light beam scanner is used to find the point at
which the reflectéd beam crosses the axis of the displace-
ment gage, The unit is a modified optical power meter,*

In operation, the power meter is used to detect the
level of light input of the reflected beam, The level of
input is used to detect the amount of offset between the
center of the light beam and the center of the scanner
transducer, By returning to the same power level, the
offset is held constant and the lateral distance is varied
only by movement of the traveling platform of the displace-

ment gage,

*Commercial equipment is listed in the Equipment List
on page 112
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1t was found that the laser light beam power has an
approximate normal statistical distribution with the offset
distance, when cut off by a vertical knife edge centered
on the transducer, By selecting a reference power level
in the region of maximum slope of the power distribution
curve, a maximum sensitivity to the offset is obtained,

The power level curve is affected by the angular
aligmment of the transducer with the beam, To align
the transducer for best light signal reception, an align-
ment gage is substituted for the transducer in the
transducer holder, The alignment gage is a tube with a
translucent window in the end, The holder is maneuvered
until the beam is aligned between the knife edge and a
point on the window, After aligrment of the holder, the
transducer is replaced in the holder, and the power level
is set to the reference point by adjustment of the dis-

Placement gage,

D, TEST SPECIMENS

The test specimen material was chosen for consistent
properties, high strength, and low modulus of rigidity,
so that a maximum deflection could be obtained, The
material selected was a high strength aluminum,

The specimens were made so that each configuration
of disks could be used for several different tests,

The diameter of each disk was machined smaller after each
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test was completed, to give a new configuration for another
test, After the complete series of tests, the disks were
entirely removed, This plain rod was used to experimentally
determine the Modulas of Rigidity of the specimen.

Multiple disks were used to give a multiplying effect
to increase the discrimination, A minimum separation of
disks of two inches was used to prevent interference
in displacement patterns between the disks, This distance
was originally chosen based on interpretation of the
analogical results of Thum and Bautz(9). Analysis of
the numerical results of this investigation verified that
the distance was sufficient,

The original configuzation of each of the nine speci-
mens is given in Figure 16, The various diameters tested

for each configuration is given in Table 1,

1, MATERIAL
The material specifications for the test specimens
are:
MATERIAL High strength aluminum conforming to
A.S.T.M, Specification (24)
S1ZE 2-1/8 inch diameter, 24 inches long
PROCESS Cold Rolled
HEAT TREATMENT Solution hHeat-treated, stress relieved,
artificially age-hardened per A.,S.T.M.
Specification T-651(25)



Figure 15,

A Photograph of a Typical Test Specimen
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SPECIMEN NUMBER

NUMBER

VW 00 N o W N e

of

DISKS "A"
8.30
8.20
8.00
8.44
8,25
9.00
8,00
8.00
9.50

- N NN WwWw s e

NB"

0.125
0,250
0.500
0.750
1,000
1,500
2,000
3,000
5,000

*Disk Sompletely removed

Table 1,

Values for Test Specimen Configuration

NC"

2,30
2,20
2,00
2,44
2,25
3,00
2,00
2,00

"p-1"

2,000

2,000
2,000
2,000
2,000
2,000
2,000

DIMENSION SETS

np.2n

1.500
1,500
1,500
1,500
1.500
1,500
1,500
1,500

np.3n

1,250
1.250
1,250
1,250
1,250
1,250
1,250
1,250

"D.4"

1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000

Hp-5"

0,875
0.875
0,875
0,875
0,875
0,875
0,875
0.875
0,875

"D-6"

0,750
0.750
0.750
0.750
0.750
0,750
0,750
0.750
0.750

"D_7ﬂ

0,625
0.625
0.625
0.625
0,625
0,625
0.625
0.625
0,625

"p.8"

0.500%
0.500
0,500
0,500
0,500
0,500
0,500
0.500
0.500

29
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The minimum properties given by the manufacturer
(26) are:

YEILD POINT 73,000 pounds per square inch

ULTIMATE STRENGTH 83,000 pounds per square inch

SHEAR STRENGTH 48,000 pounds per square inch

The nominal values of material properties given by
manufacturer:

MODULUS OF ELASTICITY 10.4 X 10% pounds per square

inch

POISSON'S RATIO 0.33

MODULUS OF RIGIDITY

OR SHEARING MODULAS 6

OF ELASTICITY 3.9 X 10 pounds per square
inch

E. TEST PROCEDURE

The test was conducted in three stages, The first
stage consisted of the frame aligmment, which was necessary
only in the coriginal equipment setup or when the equip-
ment had been moved, The second stage was made up imn
two parts, the specimen mounting and the optical alignment,
This second stage was necessary at the start of each test
series, A test series constituted the complete testing
of one specimen configuration, The third stage consisted
of two parts, the load cell calibration and the test run,
Implimentation of this third stage constituted a test

segment, Three test segments made up the test series,
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The first segment was made with increasing loads, the
second with decreasing loads, and the third with increas-

ing loads,

1, FRAME ALIGNMENT

The purpose of the fraﬁe alignment was to place the
loading frame, displacement gage, and light source in the
proper relative positions,

The first step was to adjust the loading frame and the
displacement gage to a set distance and proper attitude,
The displacement gage rail was leveled by adjusting the
leveling nuts on each of the stands, A bubble type level
was used as an indicator, Next, the loading frame was
positioned along a line perpendicular to the displacement
rail so that there was approximately 140 inches between
the center position of the displacement gage(67.57 inches
from the reference) and fhe center of a test specimen
held in the loading frame, The special tape used for this
measurement was attached to the test specimen and was used
to measure the distance to the knife edge of the light
beam scanner,

By adjusting the three floor contact points of the
loading frame, the test specimen was placed in a vertical
position, A check for porpendicuiarity between the loading
frame and displacement gage was made by moving the dis-

placement gage to secondary test positions at indicated
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points of 2,57 inches and 132,57 inches. The distance to
the loading frame from these locations should be 154,35
inches., Adjustments in the relative position was made by
moving the loading frame., After each such adjustment,
the vertical position of the test specimen was realigned
and all three distances from the displacement gage to the
test specimen were remeasured and the process repeated
until the loading frame was in the proper position,

The second step was to align the light source along
the perpendicular line from the displacement gage to the
test specimen,

First, the height of the light source stand was set
so that the source was slightly above the minimum height
at the light icanner's knife edge, Then, the displace-
ment gage was set at the center position and the light
source was adjusted to the position where the back beam
from the laser was centered on the knife edge and the
forward beam was centered on the test specimen in the

loading frame,

2, SPECIMEN MOUNTING

There were two steps to the mounting of the test
specimen: the first was to install the specimen gage, and
the second to mount the specimen and the gage in the load-
ing frame.

The four parts of the gage were placed over the test
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specimen with the movable attachment points loosened.

Each of the two segments were joined with the case bolts,
The position along the specimen was established where

the lower attachment was to be made, and the gage moved
along the specimen to this point, Then, the movable attach-
ment point on the lower segment was tightened to about

five inch-pounds torqug. The attachment point of the

upper unit remained loose,

Next, the upper end of the test specimen was mounted
in the hexagonal socket of the upper loading frame unit
and the socket clamped., The lower unit of the loading
frame was moved up to engage the lower socket to the
specimen, The socket was oriented so that the moment
arm had the maximum movement possible, Before locking the
lower unit to the frame, the lower unit was aligned to a
veftical position with a bubble level,

Two major precautions were necessary during these
operations: (1) movable attachment points were checked
for sharpness before closing the specimen gage case, (2)
care was taken not to touch or otherwise get foreign

material on the mirrors of the specimen gage,

3. OPTICAL ALIGNMENT
There were two major points to be accomplished in the
alignment of the optical system, First, the specimen gage

mirrors must be set so that the reflected light beam was
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within the range of the displacement gage. Second, the
mounting of the specimen gage on the specimen was
completed,

With the light source turned on, the vertical adjust-
ment of the source was moved so that the light beam fell
on the upper mirror of the gage, The upper segment of the
gage was rotated until the reflected beam was near the
reference position of the displacement gage, The upper
segment was then locked to the specimen with approximately
twenty inch-pounds of torque on the movable attachment
point,

The light beam was then moved to the lower mirror
by adjusting the light source, and the lower segment was
loosened from the test specimen and rotated so that the
reflected beam was near the reference position of the
displacement gage. The special spacer was inserted between
the two specimen gage segments, the lower segment was
forced upward against the spacer, and then locked to the
specimen with approximately twenty inch-pounds torque
on the movable attachment points,

I1f the reflected beam from either mirror were too
high or too low for the range of the displacement gage,
slight vertical adjustments were made using the mounting

screws of the mirrors on the specimen gage,

4, LOAD CELL CALIBRATION

Careful testing required frequent recalibration of
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the load cell, The load cell required recalibration when
it had not been in use for any appreciable length of time,
Changes of calibration were due to temperature variations
and to apparent internal creep inherent in the instrument.

1t should be noted that both the load cell instrument
and the readout required a warm-up period of at least
twelve hours in order to reduce the temperature effects,
Another precaution taken was to leave the load cell in a
loaded condition only when it is required for test runs
or calibration; this reduced the inherent creep.

Calibration of the load cell was accomplished with
the cell in the calibration stand with the flat anvil
in place, During calibration, as well as during test
runs, particular precautions were taken to reduce the short
term transients of the indicated zero point after loads
were removed,

The calibration weight was loaded on the cell and
aliowed to set for five minutes, Then the load was removed,
allowing the transients to die out, Then, after about
one minute, the zero point was set on the transducer-
amplifier unit usiﬁg the digital readout, The calibration
load was then imposed on the test cell and the transients
again allowed to die Qut. The calibration was set on the
instrument for the proper load reading on the digital read-
out, This procedure was repeated several times until no

further adjustments were necessary in either the zero point
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or the calibration setting,

5. TEST RUN PROCEDURE

A test run could have been made in the direction
of increasing or decreasing load, since the test run
procedure was not altered except for the order of load
settings, Each run consisted of ten data points, taken
at evenly spaced load settings between 60 and 600 inch-
pounds applied torque(indicated loads of 10 to 100 pounds).
No test runs were made until at least one hour had elapsed
since the completion of the previous test run,
The following procedure at each data point was used,
a, Set the load at approximately the desired setting,
using the load instrumentation digital readout
and the loading arm lead screw,
b. Release the load from the test cell by engaging
the load lock-out cam on the load cell,
c., Allow the transients to die out of the load
instrumentation(approximately one minute) and
set the zero on the transducer-amplifier using
the digital readout,
d. Release the load lock-out cam, again allowing
the transients to die out, and set the load to
the desired value,
e, Mgve the beam to the lower mirror on the specimen
gage with the light source vertical adjustment,
f. Move the traveling platform of the displacement
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gage to the reference point and set the dial
indicator at zero,

Move the traveling platform to the vicinity of
the laser beam, The platform was moved carefully
so the dial gage did not slip.

Insert the aligmment gage in the transducer holder
on the platform, and move the platform until

the laser beam splits the knife edge, Center

the beam on the transducer holder by vertically
adjusting the holder, Rotate the holder until
the shadow of the knife edge falls on the refer-
ence point of the aligmment gage. Lock the
transducer holder in this position,

Replace the alignment gage with the power meter
transducer, not letting the full laser beam fall
on the transducer, Move the traveling table into
the beam path in the direction of decreasing
distance from the displacement reference to a
power level of 0,25 milliwatts,

Record the distance from the reference point using
the dial indicator on the traveling platform,
Adjust the light beam source to the upper mirror

and repeat steps g thru jJ.

General precautions which were observed during the

test run are: (1) net letting the laser beam impinge on

the power meter except when setting the displacement gage,
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(2) not making displacement gage settings when smoke or
other airborne materials may diffuse the laser beam, (3)
not allowing a load to remain on the test cell except
where required for test run or calibration, (4) not allow-
ing the test specimen to remain in the loaded state for

an unnecessarily long period of time,

F. DISCUSSIONS OF ACCURACY

The experimental apparatus was constructed so that
a high degree of accuracy was obtainable, The estimates
of the accuracy of the various devices involved, are based
on data taken in order to establish these limits, There
were two major factors that established the accuracy.

One of the major factors affecting accuracy was the
load on the specimen., The load was measured by the load
cell and sensed by a nulil voltmeter. By using standard
weights, it was established that this measurement system
was accurate to approximately plus or minus one-tenth
of a pound throughout the range used, This force acted
on a six inch moment arm, giving a torque accurate to
Plus or minus six-tenths of an inch-pound, To interpret
the effect of this error on the experimental values for
specimen flexibility, which are in terms of the displacement
in radians due to one inch-pound applied torque, the effect
was evaluated at the median value of load, The median
load was fifty pounds, producing three hundred inch-pounds

of torque, The average load error was two-tenths percent,
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The median value of the experimental result was 0,5 X
10~3 radians per inch-pound, Therefore, the effect on
the results amounted to plus or minus 1,0 X 10-6 radians
per inch-pound.

The second major measurement factor in the flexibility
measurement was the angle of deflection., This angle
was determined by measuring the lateral deflection of the
laser beam, The lateral measurement error plus the error
in offset detection of the laser was determined to be
approximately two-hundredths of an inch, Taking into
account the arm length and the double angle measurement,

-4 radians was found,

an error of approximately 7,0 X 10
Translating this error to the effect on the experimental
results when the'average load was three hundred inch-
pounds gave an error of approximately 2,0 X 10'7 radians
per inch-pound,

A maximum total flexibility error of approximately
1.2 X 10-% radians per inch-pound could result from the

load and angular measurement errors,

G. TREATMENT OF EXPERIMENTAL DATA

The data taken was analyzed in two steps. The first
step was to reduce the load and lateral distance informa-
tion obtained in the test segment to values of applied
torque on the test specimen and its angle of deflection,
The second step was to reduce these measured values to

the corresponding value for the flexibility of the test
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specimen,

The load and lateral distance data was reduced to the
applied torque and deflection values using relationships
inherent in the design of the test equipment, The applied
torque was the product of the load and moment arm of the
frame, The relative angle of deflection between the mirrors
of the specimen gage was determined by finding the angle
each made with the reference line of the setup, The angle
of mirror was determined from the geometric relationships
of the setup,

Next, the applied torque and deflection information
was reduced from each test segment to a value for the
flexibility of the shaft configuration.' The results of
each test segment was subjected to a least squares fit
using a first degree curve for the ten data points, When
all three runs were completed, the data from all three
test segments were lumped together and subjected to a
least squares fit, This value was then taken as the ex-
perimental value of flexibility. The value was the slope
of the curve representing the deflection in radians as a
function of the load in inch.pounds,

The least squares fit used was a polynomial regression
limited to first degree with the equations being solved
using the Gauss-Jordan technique, The fit of the curve
was forced on the applied torque variable because the

error in this variable was approximately five times the
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error in the angle of deflection,

The experimental test results are given for each
specimen so that the results were grouped on the same
number of disks and width of disk, but with various disk
diameters, The results are listed in APPENDIX E.
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CHAPTER V

RESULTS AND CONCLUSIONS

A, PRESENTATION OF RESULTS

The flexibility determined from the numerical and
experimental e&aluations are for a shaft-disk geometry
which includes the effects of the disk and a portion of
the basic shaft, In order to find the effect of the disk
alone, it was necessary to subtract the effect of the basic
shaft, The flexibility contribution of the basic shaft
was evaluated using the classical formula for deflection
of a cylindrical shaft in torsion, This form then lumps
all the effects of the diameter change into the disk
flexibility, The flexibilities of the disk portion are
given in Figures 17 to 25, For comparative purposes,
the value of the flexibility of the disk using the class-
ical formulation for a cylindrical shaft is also shown,
It is this value which is frequently used at present for
flexibility calculations for disks,

The graphs of flexibility show that there is a limit
beyond which an increase in the disk diameter does not
effect its flexibility, This indicates that some material
in the disk was ineffectuat in resigsting deflection and
that this material was in a very low state of stress,

The finite element calculations indicated that a low

stress existed in the disk section near the diameter change,
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The area of low stress extended back into the disk further
as the distance along a radius line increased beyond the
radius of the basic shaft, This same effect was observed
in a model shown in Figure 26 of a disk in which the
material outside a line from the fillets outward was
arbitrarily declared ineffectual in resisting twist, while
that inside was declared fully offéctive and the angle of
twist evaluated using the general form of the equation

for twist, This equation is

T d
¢ = [ 38 (5.1)

where ¢ is the angle of twist, T is the applied torque,

2 is length, Z is a generator over the length, G is the
shearing modulus of elasticity, and J is the polar moment
of inertia and is a function of the length 2z,

Using the idea of the ineffectual material, the
flexibility of the disk for various angles of the line to'
the axis of symmetry were evaluated, and the angle which
gave the best approximation for all geometries was chosen,
This angle was found to be approximately fifty-five
degrees, The flexibilities using this approximation are

also shown in Figures 17 to 25.

B. CONCLUSIONS

The integral disk on a shaft does not present the

resistance to torsional deflection that the use of
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elementary shaft theory predicts, The flexibility instead
reaches a lower bound as the diameter of the disk is
increased, which is dependent on the width of the disk.

An approximation of the flexibility of the disk can be
found by the use of an arbitrary model which excludes a
portion of the disk as indffective in resisting torsion,

A finite element method has been presented for
obtaining a numerical stress analysis of a general
axisymmetric solid, It has been demonstrated that this
method is capable of calculating displacements due to
torsion with an acceptable degree of accuracy,

Further extensions of the investigation would be of
considerable interest in two directions: first, to
investigate the effect of shaft diameter on the proposed
approximation as well as to find the effect of the material
properties on the angle of the arbitrary cut-off line,
second, to more fully develop the finite element method,

The extensions to the proposed finite element method
can be itemized as follows:

(1) Optimization of numerical calculations
(ii) Verification of numerically calculated stresses
for the various types of loading

(iii) Extension of the method to include nonlinear

material properties,
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Figure 26, Proposed Torsion Loaded Shaft Model
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APPENDIX A
FORMULATION OF THE INVERSION OF THE NODAL COORDINATE MATRIX

The inversion of the nodal coordinate matrix [Ce]
is carried out in the form of the inverse of a submatrix
and then the complete inverse nodal coordinate matrix
[Ce]°1 is reconstructed from this, The defining equation
for the nodal coordinate matrix [Ce] is given by Equation
(3.8) as

{2} = [c*]{="} (a-1)

1t is shown in Equation (3,7) that the nodal coordinate
matrix {Ce] can be written in terms of the coordinate
matrices [P:] evaluated at the node coordinates, For use
in the inversion, it is useful to expand the coordinate

matrix [P:]* evaluated at the i-th node so that

By 0 0
[,] =|8 B O (A-2)
5 5
where
[Pi] = [1 ry z; ri r 2y zi] (A-Zg)
and

*The superscript ® had been omitted throughout the re-
mainder of this discussion,
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[8]=[0 o o o o o] (a-2b)

With this form defined, Equation (A-1) is now writ-

ten as
1 5 & &7 (e ]
u 1 0l 1o
vy 0 Pl 0 a,
w1 0 0 P1 aq
4 p = ~ ~ ~ ‘ 1» (A-3)
u, PZ 0] 0 1a4
Ye L0 0 P6 ayg
L J = J

From this expression, the equation for the radial

displacement u is written as

r "~ -1
ull Pl “!11
us $3 a3
1t r=1_111 (A-4)
u, Pal | %
u.5 P5 (!5
"s) |Fe] (%6
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and a submatrix of the nodal coordinate matrix [5] is

defined by

[ws] =[&Hay oy . . . a6l (A-5a)

Similarly, the relationships for the angular and longi-

tudinal displacements become

[vi] = [E] {07 ag o o . alz}T (A-5b)
[wi] =[E{e13e14 -+ .+ a1}’ (A-5e)
where the submatrix is

= —
1 ry zq ry rlz1 Zq

[E]= . . . . . . (a-6)
1 . . . . zgj

Only this submatrix [E] need be inverted, as it is identi-
cal for all three displacements, This procedure does
require, however, the reconstruction of the whole inverse
nodal coordinate matrix [E]'l on an element by element
basis to obtain the proper form,

The inversion of the submatrix [3] is carried out in
a local coordinate system, where one axis of the local

system coincides with one boundary of the element as shown

inf?iSuro 28, This arrangemént gives the inverse of the
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submatrix [E] in a local coordinate form denoted as [E\].*
By taking advantage of all the geometric relationships,
the inverse is evaluated in a closed form. The inverse
may be written with the non-zero elements given as h, as

1 0 0 0 0 0

[E]-1= (a-7)
hgy hgy hgy hg, O hse
hgy hgy hgy hgq hgg  hgg |

e

1 into the

To transform the inverse submatrix [E']'
global coordinates, it is multiplied by the transformation

matrix [?] defined in Appendix B, Thus
(5] = [#][&] -1 (a-8)

The elements of the inverse matrix [E]'l are placed
in the proper element positions within the inverse nodal
displacement matrix [C]'1 according to the defining Equation

-1

(3.9), 1f the elements of the inverse submatrix [E] in

global coordinates are denoted as Cij’ the form of the

inverse nodal displacement matrix is shown as

*The prime (') indicates a quanity associated with the
local coordinate system,
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APPENDIX B
DERIVATION OF TRANSFORMATION MATRIX

The transformation matrix [Te] is formed between the

local and global coordinate systems such that
[2°]- = [2°] "] (3-1)

The approach is to look at the displacement field to
find the proper relationships, The local displacement
field must be transformable to agree with the global

displacement field., The equations for these are

() = (][]} (3-20)
() = [ [c] 2 oo (3.20)

Relationships must exist between the global displace-
ment field {f} and the local displacement field {f'}
and also between the global nodal displacement {8]-and the
local nodal displacement-{sq- since these are just dis-
placements in different coordinate systems, Thus the field
in the local system may be written in the global system
and compared with the original global field, Any differ-

ence will then be the transformation matrix, such that

(¢} = [][c]- o} =[] [x][e] {21 (5-3)

*The superscript ® has been omitted throughout the re-
mainder of this discussion,
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The coordinate matrix [P] may be written in expanded

form as

[#]

And the nodal

and wi. Then

gl

1}
N

0

displacements may be written as Ui, Vv

the displacement field is written as

AN

R

0

Fg‘ Fa" -1
¥ [¢)-
3] [6]1

=

(&)

P

-

(B-4)

i’

(B-5)

This displacement field may also be written in the

primed coordinate system so that

u' =

v! =

w!

FE'-

FE"

F'E'

1-1

(B-6)

The following relationships exist between the primed

and unprimed displacements
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u =u' cosB + w' sginf

v =v!

w =u' sinf + w' cospf (B-7)
u' = u cosB + w sinpf3

vt = v

w!'= -u 8inf8 + w cosf

Evaluating u in terms of the local system, this

becomes

u = [P'] [C']'l( u; cosB + w, sinfB)cosB - [P'] [C'] -1
(-uy sing + Wy cos B)sinf (B-8)

or

u [P'] [C'] 'l(ui( cos2B + sinZB) + w;(sinp cosp
-cosf sinB)) (B-8a)

Therefore, when this is repeated for v-and w it is

found that

v = [P': (c1]-1 vy (B-9)

W= [P': -C'."1 Wy

comparing this equation with Equation (B-5), it is

seen that
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Figure 27, Triangular Element With Local and

Global Coordinate Frames
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[B][e] = [F][e] (3-10)

Substituting the desired transformation from Equation

(B-1) in this equation, it becomes
[ []-1 = (F][E][er] G-11)
o
[] = [5][7] (B-11a)

which explicitly defines the transformation matrix [T].

In expanded form, this equation becomes
[1 r' zt r'2 r‘z! 2.2]___[1 r z r2 rz 22][T] (B-12)

The geometric relationships between the local and global

coordinates are
r' = (r—rl) cos B t (z—zl) singf
z' = — (r-rl) sin B + (z-zl) cos B (B-13)
r=r; + r' cas B -2' sinpB
z = zl' + r' sinfB +2' cospB

Substituting Equation (B-13) into Equation (B-12)

defines the transformation matrix ["i"].
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APPENDIX C
AREA INTEGRALS

The integrals which are evaluated have a number of
functions which must be integrated over the element area.
The list includes powers of r from the minus one power to
the fifth power, powers of z from the first to the fourth,
and various cross product terms of r and z, In order to
assist in the evaluation of these integrals, a general
approach is used,

A total area integral for the element is evaluated
by breaking it up into three sub-area integrals, 1y,

1,, and 13, shown in Figure 28 and evaluating each sep-

arately, Then the total integral 1 is
I =14 + 12 - Iq (c-1)

Each sub-integral is evaluated in a similar manner.
The line boundary of integration formed by the element

boundary is written in the form

z='r;1+'r;2r

so that the limits of integration in the longitudinal z-
direction are from zero to the line boundary. The integral
limits in the radial w»-direction are the r-coordinates
of the nodes of the line boundary,

This is repeated for each sub-integral, and the total

integral is then evaluated., This same procedure is used for
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all of the required functions and each is evaluated from
the nodal coordinates of the elements,

Two circumstances arise which must be treated separ-
ately, They occur when the two radial coordinates are
equal, and when one radial coordinate is zero when eval-
uating the area integral which contains the function r'l.
In the first circumstance, the values of n; and n, become
infinite, but the value of the integral must be zero,
Therefore, 71 and M, are set to zero and further evaluation
is omitted. In the second circumstance, it becomes nec-
essary to evaluate a term containing a logarithm of zero,
This term is evaluated using L'Hopital's rule and it is
found that in the limit the term is equal to zero,

Therefore, the term may be omitted.
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APPENDIX D
LINE INTEGRALS

The line integral is required for various functional
forms of r, 2z, and of s, the line itself, There are
various combinations of r from the zero to the fourth
power, z from the zero to the second power, and s from
the zero to the first power,

To evaluate these integrals, both r and z are trans-
formed to functions of s and the limits of s are calculated
from the node coordinates, The integrals are evaluated
in terms of the node coordinates along the boundary,

The geometric relationships between the element surface

boundaries and the coordinate systems are shown in Figure 2,
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APPENDIX E
EXPERIMENTAL RESULTS

SPECIMEN NUMBER 1

Number of disks, 4

Width of disks, 0,125 inches

DIAMETER OF DISK FLEXIBILITY X 10%
(inches) (radians per inch-pound)
1,000 4.9038
0.875 4,8873
0.750 4,8869
0.625 4,8890
0.500% 5.0059

*Disks completely removed

Table I1, Experimental Results, Specimen Number 1
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SPECIMEN NUMBER 2

Number of disks, &4
Width of disks, 0.250 inches

DIAMETER OF DISK FLEXIBILITY X 104
(inches) (radians per inch-pound)
1.500 4,7509
1.250 4,7402
1,000 4,7339
0.875 4,7349
0.750 4,7360
0,625 4,7785
0,500%* 5.0093

*Disks completely removed

Table 111. Experimental Results, Specimen Number 2
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SPECIMEN NUMBER 3

Number of disks, 4
Width of disks, 0,500 inches

DIAMETER OF DISK FLEXIBILITY X 10%
(inches) (radians per inch-pound)
2,000 4,3394
1.500 4,3527
1.250 4,3532
1,000 4,3533
0.875 4,3617
0.750 4,4100
0.625 4,5281
0.500%* 5,0045

*Disk completely removed

Table 1V, Experimental Results, Specimen Number 3
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SPECIMEN NUMBER 4

Number of disks, 3
Width of disks, 0,750 inches

DIAMETER OF DISK FLEXIBILITY X 104
(inches) (radians per inch-pound)
2,000 4,2161
1,500 4,2025
1.250 4,2062
1.000 4,2230
0.875 4,2329
0,750 4,2959
0.625 &.4522
0.500% 4,9970

*Disk completely removed

Table V. Experimental Results, Specimen Number 4
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SPECIMEN NUMBER 5

Number of disks, 3
Width of disks, 1,000 inches

DIAMETER OF DISK FLEXIBILITY X 10%
(inches) (radians per inch-pound)
2,000 3,9028
1.500 3,9012
1,250 3.9058
1.000 3,9306
0.875 3,9682
0.750 4,0617
0.625 4,2779
0.500% 5.0064

*Disk completely removed

Table VI, Experimental Results, Specimen Number 5
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SPECIMEN NUMBER 6

Number of disks, 2
Width of disks, 1,500 inches

DIAMETER OF DISK FLEXIBILITY X 10%
(inches) (radians per inch-pound)
2,000 3.8503
1.500 3.8563
1.250 3.8577
1.000 3,8915
0,875 3.9311
0.750 4,0302
0.625 4,2642
0. 500% 5.0004

*Disk completely removed

Table VII, Experimental Results, Specimen Number 6
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SPECIMEN NUMBER 7

Number of disks, 2
Width of disks, 2,000 inches

DIAMETER OF DISK FLEXIBILITY X 10%
(inches) (radians per inch-pound)
2,000 3.4460
1.500 3.4607
1.250 3.4688
1.000 3,5152
0.875 3,5764
0.750 3,7102
0.625 4,0335
0.500% 5.0106

*Disk completely removed

Table VII1., Experimental Results, Specimen Number 7
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SPECIMEN NUMBER 8

Number of disks, 2
Width of disks, 3,000 inches

DIAMETER OF DISK FLEXIBILITY X 10%
(inches) (radians per inch-pound)
2,000 2.5962
1.500 2,6171
1,250 2, 6444
1.000 2.7170
0.875 2.8081
0.750 3,0261
0.625 3.5258
0.500% 4,9801

*Disk completely removed

Table 1X., Experimental Results, Specimen Number 8
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SPECIMEN NUMBER 9

Number of disks, 1
Width of disks, 5.000 inches

DIAMETER OF DISK FLEXIBILITY X 10%
(inches) (radians per inch-pound)
2,000 2.9737
1.500 2.9948
1.250 | 3.0163
1.000 3.0841
0.875 3.1707
0.750 3.3547
0.625  3,7783
0.500% 4.9863

*Disk completely removed

Table X, Experimental Results, Specimen Number 9
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APPENDIX F
COMPUTER PROGRAM

The computer program written for this investigation
is for the elastic stress analysis of a general axisym-
metric solid, If provides for loads in four forms in
each of the three directions, The loads may be due to
(1) initial strains, (2) body forces, (3) distributed
surface forces, and (4) concentrated loads, The displace-
ments may be specified at any node, or along any boundary,

The input to the program allows several options which
permit an abbreviated form of input by having intermediate
data values calculated following a set pattern built into
the program,

Due to the storage requirements for a complex struc-
tural problem, the program not only requires a large core
storage but also some form of bulk storage, Computing
time estimates for specific¢c problems can be obtained by
referring to the discussion in Chapter 3.

The input instructions and program listings are not

included in this thesis, However, they are available from

the author,
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APPENDIX G
EQUIPMENT LIST

load Cell - Daytronics Corp., Model 52A - 100, capacity
0 to 100 pounds

Transducer-amplifier - Daytronics Corp., Model 300D - V - 71

Voltmeter - Keithley Instrument, Guarded DC Voltmeter,

Model 660 A
Laser - Spectra-Physics, Model 130C
Power Meter - Spectra-Physics, 6328 R, Power Meter

Dial Gage - Travel-Gage Corp.
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