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ABSTRACT 

This dissertation proposes a new methodology for modeling and predicting 

network traffic.   It features an adaptive architecture based on artificial neural networks 

and is especially suited for large-scale, global, network-centric systems.  Accurate 

characterization and prediction of network traffic is essential for network resource sizing 

and real-time network traffic management.  As networks continue to increase in size and 

complexity, the task has become increasingly difficult and current methodology is not 

sufficiently adaptable or scaleable.  Current methods model network traffic with express 

mathematical equations which are not easily maintained or adjusted.  The accuracy of 

these models is based on detailed characterization of the traffic stream which is measured 

at points along the network where the data is often subject to constant variation and rapid 

evolution.  The main contribution of this dissertation is development of a methodology 

that allows utilization of artificial neural networks with increased capability for 

adaptation and scalability.  Application on an operating global, broadband network, the 

Connexion by Boeing® network, was evaluated to establish feasibility.  A simulation 

model was constructed and testing was conducted with operational scenarios to 

demonstrate applicability on the case study network and to evaluate improvements in 

accuracy over existing methods. 
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1. INTRODUCTION 

1.1. OVERVIEW 

The world has become increasingly complex and the trend is accelerating.  This is 

especially true for large-scale networks and global communication systems.  The 

emergence of network empowered SoSs (system-of-systems), often called NCSs 

(network-centric systems), is a good example.  These network empowered NCSs tend to 

be large in scale, complex in nature, global in scope, and constantly evolving.  As a 

result, different aspects of NCSs, such as behavior, characteristics, and architectures, are 

extremely difficult to model. 

Modeling network traffic typifies the difficulty.   It’s a great challenge to model 

something so dynamic and subject to change.  Yet accurate knowledge of network traffic 

is essential to the design and operation of the network.  During the design phase, and for 

expansion planning, models are used to simulate the traffic stream and predict future 

needs.  This allows for accurate sizing of the network.  During the operational phase, 

models are used to predict future data rates based on real-time data.  This allows for 

efficient and timely QoS (quality of service) management.  In both cases accuracy is 

vital. 

It’s the complex, dynamic nature of network traffic that makes the modeling task 

so difficult.  Traffic characteristics vary according to location on the network, 

applications in use, and time or date of measurement.  Unforeseen evolution of network 

technology results in continuous change, forcing constant updates to model parameters.  

In addition, the unpredictable behavior of users contributes significant amounts of 

uncertainty.  
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Computationally intelligent adaptive modeling techniques are needed in order to 

capture the dynamically changing and constantly evolving features of these large-scale 

complex systems.  Currently methodology for modeling network traffic is not sufficiently 

adaptable or scalable.  Simulations based on ANNs (artificial neural networks), with the 

ability to adapt, generalize, and model non-linearities, have the potential for significant 

improvements in accuracy and ease of maintainability. 

 

1.2. PROBLEM DEFINITION 

1.2.1.  Increasingly Complex Systems.  Complexity in systems exists when it  

becomes impossible or difficult to define or predict the overall characteristics or behavior 

of a system based on characteristics, behavior, and relationships between individual 

elements [Moffatt, 2004; Smith, 2006].  Large-scale global networks are a good example 

of complex systems.  Even a thorough understanding of the individual elements within 

the network does not lead to an easy understanding of the system behavior as a whole.  

This creates special challenges when it comes to developing accurate architectures and 

models. 

Take the human body as an example of a complex system, as illustrated in Figure 

1-1.  Scientific research has lead to entire fields of study based on various biological 

systems of the human body - such as the cardiovascular system, the respiratory system, 

the nervous system, the reproductive system, the skeletal system, the digestive system, 

the muscular system, and others.  Much is known and documented about the 

characteristics, form, and function of these individual biological systems, yet knowledge 

of individual systems does not allow one to view the human person as a whole and 
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predict or understand human behavior.  No two humans are alike and no two humans 

react, learn, or grow in the same manner. 

 

 

 

 

 

 

 

 

 

Figure 1-1  Complex Systems 

 

 

In the modern technology oriented society of today, man-made systems are 

continuing to grow more and more complex.  The advent of the global Internet has 

fostered the growth of complexity by facilitating the flow and availability of information 

in previously unforeseen quantities, enhancing the capability of humankind to learn and 

create, leading to rapid growth in all fields of scientific endeavor.  The importance of 

information cannot be over estimated.  As it is often stated, “Information is power,” 

[Alberts and Hayes, 2003a]. 

Although the ready availability of information has led to the development of 

increasing complex systems, the abundance of information has not made it easier to 
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model these systems.  On the contrary, the complexity of systems has grown to the point 

where the task of modeling and understanding large-scale system behavior has become 

too vast and complex a task for the human mind to encompass in all its variety, detail, 

complexity, and unpredictability. 

According to Edward Smith, “In reality, we must deal not just with a complex 

system but with a complex adaptive system, one that not only changes unpredictably, but 

also adapts to its external environment in similarly unpredictable ways, [Smith, 2006].” 

1.2.2.  Emergence of Network-Centric Systems.  Along with the growth of  

complexity in systems, the growth of the Internet and large-scale networks has provided 

the emergent technology necessary for the development and deployment of truly large-

scale, network enabled systems, called SoSs (system-of-systems).  A SoS is composed of 

components which are large independent systems in and of themselves.  A NCS 

(network-centric system) is a type of SoS oriented towards providing network services. 

These large NCSs have become an increasing dominant factor in world affairs, for 

both military operations and commercial endeavors.  Major General Dale Meyerrose, 

director of NORTHCOM (Northern Command) and NORAD (North American 

Aerospace Defense Command), says, “Net centricity is the future … the next set of 

change agents [Meyerrose, 2004].”  Carl O’Berry, vice president of network-centric 

architectures at Boeing, cites Joint Vision 2020 calling for all systems to have the ability 

to operate as nodes in a global environment, [O’Berry, 2005]. 

Take a modern battle group as an example of an NCS, illustrated in Figure 1-2 

[from Dagli and Miller, 2003].  This battle group might include field troops, tanks, 

artillery, aircraft, helicopters, satellites, and more.  It would also include logistics support, 
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medical support, communication units, command structure, press units, intelligence 

gathering units, and transportation units.  It might include allied coalition units from the 

armies of foreign nations.  A network allows all these units in the battle group to operate 

as a SoS through use of a common information grid and a networked flow of information.  

This flow of information allows for shared awareness, collaboration, interoperability, and 

self-synchronization.  The method of operation shifts from platform centric to network 

centric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2  Network-Centric Battlegroup 
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These features, although very desirable, make for extreme difficulty when trying 

to develop or model the architecture with conventional non-adaptive techniques.  When 

feature are constantly changing and adapting and evolving, a model that doesn’t change 

or adapt or evolve will soon become outdated and soon become woefully inadequate. 

1.2.3. Complex Network Traffic.  Network traffic on an NCS typifies the  

problem.  Network traffic is complex and constantly changing and evolving; 

consequently, very difficult to model.  Figure 1-3 illustrates the variability exhibited by 

even a simple set of eighteen individuals in a short six minute span of network traffic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eighteen Users on Average

Figure 1-3  Internet Data Traffic on an NCS 
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Network traffic on a large NCS is likely to be different for various systems of the 

SoS.  For example, data traffic to and from an F-15 fighter jet is likely to have vastly 

different characteristics than data traffic between infantry soldiers or data traffic for an 

Apache helicopter.  Network traffic would also be different depending upon the situation.  

For example, an M1A2 Abrams tank would likely have moderate steady state traffic 

while in cruise operations moving towards the battlefield and heavy high bursty traffic 

while engaged in combat. 

As the networks evolve and new applications and technology become available, 

new protocols also result in changing traffic characteristics.  Emergent capabilities arise 

as users learn and develop new techniques and uses for available services and for any 

number of evolving features. 

All of this makes accurate modeling extremely difficult, yet it is of utmost 

importance.  One of the primary uses of these models is to predict network needs to allow 

capacity planning for sizing of the network. 

The task is similar to the supply and demand scenario faced by electrical power 

companies.  They have a wide variety of different users, all with unique demand 

characteristics, from the small individual household to the large industrial factory.  To 

supply the power they tend to have a variety of electrical sources - hydroelectric, 

petroleum, nuclear, natural gas, coal, solar, etc.  Demand varies over time with peaks and 

lulls, but outages are not looked upon kindly.  The problem facing the electrical company 

is how much capacity is needed, or how big to make the electrical grid so that all the 

demand is met with the most cost effective means.  Everything depends upon accurate 

demand modeling and precise prediction of usage.  Figure 1-4 [from PPRP, 2005] 
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illustrates with a typical load profile, this one from Maryland in the Delmarva peninsula 

service area. 

 

 

 

 

 

 

 

 

 

 

Figure 1-4  Power Load Profile 

 

 

The same need for accurate capacity modeling exits with regards to network 

traffic on a large NCS.  There is a wide variety of different types of users with a 

multitude of possible applications and physical devices.  The data bandwidth flow, or 

load, varies over time and there is strong motivation not to be undersupplied, which 

would cause loss of link and/or degradation of the QoS (quality of service).  The problem 

is how much capacity, or how big to make the pipe over which the data traffic must flow.  

Everything depends upon accurate capacity modeling and precise prediction of usage.  

Figure 1-5 illustrates with a projected bandwidth load profile for the CBB NCS. 
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Figure 1-5  Bandwidth Demand 

 

 

Unfortunately, despite the increasingly volatile nature of network data traffic, the 

capacity modeling algorithms of today are not adaptable or scaleable enough to deal with 

network traffic variability, evolution, and uncertainty. 

 

1.3. ADAPTIVE MODELING WITH COMPUTATIONAL INTELLIGENCE 

An adaptive architecture is proposed as the means to address these problems.  

Fortunately, a set of intelligent computing methodologies, known collectively as CI 

(Computational Intelligence), has arisen with the advent of computers in response to the 

difficulty of modeling and analyzing extremely complex systems and incredibly large 

amounts of data.  CI has successfully been applied to many fields and applications, such 

as data mining, pattern recognition, prediction, association, machine learning, 

optimization, noise filtration, logic and reasoning, neuroscience, and robotics.   CI 

methodologies are useful for addressing difficulties of complexity, non-linearity, 
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generalization, imperfect data, changing data, immense quantities of data, and system 

evolution.  CI methodologies are especially valuable in addressing problems when the 

scope of complexity extends beyond the capabilities of the human mind and it becomes 

hard to foresee potential solutions or predict emergent capabilities.  CI includes fields 

such as fuzzy logic, artificial neural networks, and genetic algorithms.  

Large NCSs stand to benefit greatly from an adaptive architecture based on CI.  

Since a large NCS is constantly changing and evolving, and tends to be too complex for 

human control, it stands to reason that architectures and models need to change and 

evolve also, or in other words, to adapt. 

 

1.4. RESEARCH OBJECTIVES 

The objective of this research was to examine the feasibility and develop an 

adaptive architecture based on ANNs for modeling network traffic on large-scale NCSs 

for increased adaptability, scalability, and accuracy in predicting network demand.  An 

adaptive ANN model was developed for and applied to the CBB broadband network.  

System output consists of time-history bandwidth traces defining the capacity needs of 

the network.  As the NCS expands, changes, or adapts, the ANN model is re-trained and 

updated to allow adaptation in response to the evolving NCS. 

 

1.5. CONNEXION BY BOEING CASE STUDY 

CBB (Connexion by Boeing) was chosen as the case study for an NCS for three 

reasons.  First, and most important, it has all the characteristics and features of a large-

scale, complex, global, broadband NCS.  Second, CBB network data was made available 
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to UMR (University of Missouri – Rolla) for the research project.  Third, mobile aircraft 

Internet data traffic, such as that provided by CBB, is new territory.  Mobile aircraft 

Internet data traffic has never before been made available for academic research and 

presented an excellent opportunity for original investigation in an emerging field. 

The CBB network provides two-way, high-speed, broadband Internet data 

services for commercial airline passengers through shared broadband satellites in geo-

synchronous orbit.  Network control is managed through a network operations center 

which monitors service usage to increase or decrease capacity in order to maintain QoS 

as user demand fluctuates.  Figure 1-6 illustrates the overall CBB Block 1 operational 

architecture (DoDAF OV-1).  Section 6 of this dissertation gives a more detailed 

description of the CBB NCS. 
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1.6. METHODOLOGY 

Three major activities were undertaken to accomplish the objectives of this 

research project, as shown in Figure 1-7.  Things were not so simple as to merely take an 

existing non-adaptive architecture, replace the capacity algorithm with an adaptive ANN 

capacity predictor, and call it good.  A methodology for extracting, evaluating, and 

transforming network data into a condition compatible with ANN simulation had to be 

developed.  This was accomplished in step 1 through use of a rigorous data mining 

process.  Step 2 involved development of an ANN bandwidth predictor and it’s 

incorporation into a bandwidth capacity simulation.  Step three involved simulation 

testing to confirm feasibility and compare accuracy against existing methodology.  
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Figure 1-7  Dissertation Methodology 

 

 

1.7. CONTRIBUTIONS TO LITERATURE 

There are several contributions resulting from this Ph.D. dissertation research 

project conducted through the University of Missouri – Rolla. 
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• A data mining methodology for decomposing network traffic data into a 

form compatible with computationally intelligent simulation techniques. 

• Data extraction algorithms and processes for the CBB network.  These 

processes allow users to extract network data from multiple data 

warehouses for trending analysis and research on network characteristics.  

The processes could be adapted for use on other similar networks.   

• Decomposition of CBB network traffic into flight route bandwidth traffic 

traces.  These traffic traces were used for ANN simulation and also for 

evaluation of flight and user characteristics. 

• An adaptive architecture that uses computational intelligence for modeling 

network traffic.  The architecture uses artificial neural networks and was 

demonstrated on an operating network. 

• A working ANN model that predicts network traffic traces for the CBB 

case study network.  Input vectors were composed of selected flight 

attributes.  The output vector was composed of points on the time history 

of a bandwidth traffic trace.  The network was composed of two hidden 

layers with 39 neurons each, an input layer with 10 attributes, and an 

output layer with 17 neurons. 

• An adaptive simulation architecture that utilizes the ANN bandwidth 

predictor.  The simulation models operational scenarios with user selected 

flights, flight routes, and satellite coverage areas.  Network data is used as 

inputs and the simulation predicts satellite transponder needs using the 

ANN bandwidth predictor. 
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1.8. SECTION ORGANIZATION 

Section 1: Introduction to the research topic - the problem to be addressed, a 

proposed solution, and contributions to literature. 

Section 2:  Literature review of network-centric systems – their importance, basic 

characteristics, examples, and applicability to this research project. 

Section 3: Literature review of the Internet and capacity modeling techniques – 

development, basic features, techniques, and applicability to this 

research project. 

Section 4: Literature review of artificial neural networks – algorithms and 

applications and applicability to this research project. 

Section 5: Literature review of data mining - techniques and applications and 

applicability to this research project. 

Section 6: Description of the CBB global NCS - the case study NCS used to 

provide data for this research project.  Includes a description of the 

CBB capacity simulation for modeling and predicting network traffic. 

Section 7: Data mining CBB network traffic and the development of bandwidth 

traffic traces to enable ANN based simulation. 

Section 8: Development of the ANN based bandwidth predictor and the results of 

simulation testing to establish the feasibility of using ANN based 

simulation.  Includes a comparison against existing methods. 

Section 9: Conclusion. 

 



 15

2. NETWORK-CENTRIC SYSTEMS LITERATURE REVIEW 

2.1. RELEVANCE OF NCS TO THIS RESEARCH 

The goal of this research project was to investigate the feasibility of using 

computational intelligence for modeling network traffic on a global NCS (Network-

Centric System) to allow accurate and adaptable prediction of bandwidth demand for the 

NCS.  Network enabled systems are becoming more and more common.  Networks 

provide the enabling technology that allows large-scale endeavors for many military and 

commercial applications.  These NCSs, constantly changing and evolving because of 

their very nature, are driving the need for adaptive architectures such as the ones 

investigated and proposed in this dissertation. 

Due to the complex and evolutionary nature of NCSs, and the likely probability of 

widespread use in the future, the need for adaptive architectures that can change and 

evolve has become critical.  The adaptive architecture proposed by this dissertation was 

developed in an effort to study and define ways to address the special needs of NCSs, 

which were described in this section. 

Carl O’Berry, as the newly appointed chairman of the executive committee of an 

international consortium formed to promote network-centric operations, said, “I can think 

of no system or user that wouldn’t benefit from having the ability to participate on a 

global network,” and “it is my prediction that NCO will eventually involve every domain 

in our lives, forever [O’Berry, 2005].” 

The literature review in this section includes: 1) an overview of what Network-

Centric Systems are, including a brief description of systems, the importance of 

networking, the flow of information within a NCS, domains of operation, the global 
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information grid, and some challenges and issues, 2) a description of several architecture 

frameworks, focusing primarily on the DoD Architectural Framework, and 3) a review of 

successful examples of NCSs, including the CBB case study. 

 

2.2. CHARACTERISTICS OF NETWORK-CENTRIC SYSTEMS 

An NCS is a system oriented towards providing network services.   The world is 

evolving from the Industrial Age to the Information Age and the driving force behind this 

evolution is the ability of computers and networks to facilitate the flow of vast quantities 

of information.   David S. Alberts, Director of Research at OASD-C3I (Office of the 

Secretary of Defense) said, "Information Technology is the DNA of the Information Age 

– the fundamental building block of dominant competitors [Alberts et al., 2002a]." 

The value of information has long been recognized as vital to the success of 

nearly all aspects of human endeavor.  This is equally true in business or military 

environments.  Vice Admiral Arthur K. Cebrowski of the U.S. Navy postulates that "We 

are in the midst of a revolution in military affairs (RMA) unlike any seen since the 

Napoleonic Age, [Cebrowski and Garstka, 1998]."  He quotes Admiral Jay Johnson, 

Chief of Naval Operations, calling this change "a fundamental shift from what we call 

platform-centric warfare to something we call network-centric warfare," and says "it will 

prove to be the most important RMA in the past 200 years [Cebrowski and Garstka, 

1998]." 

Research into the development of new processes and enabling technology to 

facilitate the move towards network-centricity is accelerating.  Many of the definitions 

and characteristics are still evolving and will continue to evolve with time; however, 
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there is little doubt net-centric capability will be the driving force of the future for large 

scale multi-national and multi-organizational systems.  "Although the broad tapestry of 

network-centric concepts is still emerging, there is clear evidence that a shift to network-

centric operations has begun, [Alberts et al., 2002a].” 

2.2.1.  System Concepts.  To understand the concept of NCS it is important to  

first have good working definitions of different types of systems, from small to large, 

from simple to complex, from homogeneous single purpose systems to large system-of-

systems that are composed of multiple independent acting systems. 

2.2.1.1 Systems.  The generally accepted definition of a system is any  

assemblage of components that results in capabilities or functions not available from the 

individual components by themselves.  A system is a collection of components that 

operate together to accomplish some purpose.  The INCOSE (International Council of 

Systems Engineering) definition of a System contained in the SEBoK (Systems 

Engineering Book of Knowledge) Guide is, "A construct or collection of different 

elements that together produce results not obtainable by the elements alone [Leibrandt, 

2004]."  It further clarifies that the value of the system is typically created by the 

relationship of how the parts are connected [Leibrandt, 2004].  A systems engineer is 

someone who will “define, develop, and deploy systems, [Sage and Armstrong, 2000; 

Shared, 1996; Swift, 2003a].”  Systems engineering is used through all phases of the 

program life-cycle, from design and development, through integration, and including 

verification and validation [Sheared and Herndon, 1996; Swift, 2003b]. 
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2.2.1.2 Complex systems.  A simple system can be easily defined and  

understood, regardless of the size of the system.  The characteristics and behavior can 

typically be deduced from the characteristics of the components.  A complex system is 

one in which the behavior of the overall system cannot easily be understood or deduced 

from the characteristics of the components.  The interaction of the components produces 

behavior not present in the components by themselves [Moffat, 2004]. 

This resultant behavior is called emergent behavior and is a natural product of 

complex systems.  Emergent behavior, properties, and characteristics emerge from the 

synergy of parts and their interactions [McConnell, 2000; McConnell, 2001].  Because of 

emergent properties and behaviors, it becomes important to have architectures that can 

model change and adapt. 

An example of a complex system is an ecological system - such as a woodland 

area.  These complex ecological systems have a wide variety of components ranging from 

bacteria life, to insect life, to plant life, to animal life, and are hosted by a constantly 

changing environment.  As the different parts interact, the behavior of the woodland 

system as a whole is hard to predict based on the actions of the individual parts alone.  

New emergent behavior constantly appears resulting in continuously unpredictable 

change.  Another example is the economic system of a modern industrial country.  There 

are a multitude of components – businesses, manufacturing, supplier, consumer, service, 

sales, etc.  The components interact on a continuous basis and are constantly changing 

and evolving and being driven by external forces like taxes, competitors, customers, 

regulations, and others.  The system is complex, always changing, and extremely hard to 

model or understand. 
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2.2.1.3 System-of-Systems.  There are many different definitions of a SoS  

(system-of-system).  Simple early definitions of a SoS revolved around size and 

complexity of the overall system and geographic distribution.  Some argued that any 

large system could by definition be called a SoS simply by defining its individual 

subsystems as systems in and of themselves or by saying the capabilities of the whole are 

greater than the sum of the individuals [Arnold and Brook, 2001; Roe, 1999].  An 

example presented by Kaffenberger is an orchestra.  If all components work in tune the 

performance can be much larger than the sum of the individual performers alone 

[Kaffenberger and Ruedige, 2001]. 

Another definition describes a SoS as a system made up of interdependent 

systems which must be evaluated as a whole and that evolve over time.  This evolution of 

the individual systems could be self evolution, joint evolution, or emergent evolution 

[Carlock et al., 2001; Chen and Clothier, 2003]. 

Another definition of a SoS, first proposed by Mark Meier of Aerospace 

Corporation, describes a SoS as a large collaboration of systems with two main 

characteristics.  The first main characteristic is that a SoS is composed of individual 

systems capable of operating by themselves for their own purposes, such that if any of 

these individual systems were disconnected, the SoS would continue to operate with or 

without them.  The second main characteristic is that the individual systems have their 

own separate management and operate towards their own purposes rather than the 

purpose of the whole [Maier, 1999].  Future references to a SoS in this dissertation will 

be based on this definition. 
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Thomas Sanders, system-of-systems engineering study chairman of the USAF 

scientific advisory board, describes SoS engineering in a report on the subject as, “The 

process of planning, analyzing, and integrating the capabilities of a mix of existing and 

new systems into a system-of-systems capability that is greater than the sum of the 

capabilities of the constituent parts.  This process emphasizes the process of discovering, 

developing, and implementing standards that promote interoperability among systems 

developed via different sponsorship, management, and primary acquisition processes 

[Sanders, 2005].” 

Some good examples of this type of SoSs are integrated air defense systems, the 

Internet, and intelligent transport systems [Maier, 1999].  Another good example is the 

state of Washington's public education system.  Each individual school district is a large 

system in and of itself.  Each school district operates separately and under its own 

management.  The individual school districts set their own educational goals, collect 

taxes, hire teachers, pick textbooks and courses to teach, build school buildings, conduct 

maintenance, operate cafeterias, run buses, and set their own policies.  Individual school 

districts could operate independently if required.  However, the benefits to students in 

Washington are greater because of the overall state school system.  Students have the 

ability to transfer between school districts, are taught according to state educational 

standards, have state certified and trained teachers, and receive recognition of graduation 

credentials statewide. 

2.2.2. Importance of Networks.  The power of an NCS is based on the use and  

application of networks and it’s the growth of network and computer technology that has 

provided the emergent capabilities necessary to allow for the powerful NCS systems of 
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today and the future.  Starting from mainframe computers, society has experienced rapid 

development to PCs (personal computers), then to client-servers, to the Internet, and now 

to network-centric computing [Alberts et al., 2002a] 

The Boeing SARM (strategic architecture reference model) defines a network as 

"A collection of data processing products that are connected by communication media for 

information exchange between locations [Jones et al., 2003].”  Metcalfe's Law states that 

the power or value of a network increases exponentially as the square of the number of 

nodes [Alberts et al., 2002a].  Figure 2-1 illustrates this concept.  The network’s potential 

for value rises exponentially as the size of the network expands. 
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Figure 2-1  Power of Networks 

 

 

However, in a NCS, it's not about the network but how the network is used.  A 

successful NCS must translate the power of the network and information into operational 

capability through increased reach, shared awareness, and improved collaboration 
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[Alberts et al., 2002b].  To accomplish this the NCS will seek to go beyond the properties 

of a system and achieve the properties of a network [Alberts, 2003b]. 

2.2.3. Flow of Information.  The importance of information cannot be  

overstated.  The DoD (Department of Defense) Joint Vision 2010 and 2020 both 

specifically focus on the power of information as an enabler of combat power for the 

future [Alberts, 2003b].  It has also been repeatedly stated that, "Information is power," 

[Alberts and Hayes, 2003a]. 

Sun Tzu and Carl von Clausewitz both recognized the importance of information 

on the field of battle [Alberts and Hayes, 2003a].  Sun Tzu said, "Know the enemy and 

know yourself; in a hundred battles you will never know peril.  When you are ignorant of 

the enemy but know yourself, your chances of winning or losing are equal.  If ignorant of 

both your enemy and yourself, you are certain in every battle to be in peril."    Carl von 

Clausewitz said, "The general unreliability of all information presents a special problem: 

all action takes place, so to speak, in a kind of twilight … like fog … The commander 

must work in a medium which his eyes cannot see, which his best deductive powers 

cannot always fathom; and which, because of constant changes, he can rarely be 

familiar." 

2.2.3.1 Traditional flow of information.  The traditional process for passing  

information can best be described as a "push" process.  The burden was upon the owner 

of the information to identify interested parties and then determine and implement a 

means to provide the information to those parties [Alberts and Hayes, 2003a].  The 

military provided information to identified parties through commands, intelligence, or 

doctrine [Alberts, 2003b]. 
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Decision making was based on the OODA (observe, orient, decide, act) loop.  The 

first two steps in the OODA loop can be called situational awareness.  The first step in 

the OODA loop is observe, the collection of information on the environment and 

competitors.  The second step is orient, the processing, analysis, and dissemination of that 

information and also information about your own condition.  The third step is decide, 

determining a course of action.  Finally, the fourth step is called act, putting the decision 

into action [Potts, 2004]. 

2.2.3.2 Network-centric flow of information.  In a world equipped with the  

global Internet and the ability for almost anyone to create their own web pages and 

information portals and to post whatever information they desire, processes for the flow 

of information are evolving from a "push" process to a "pull" process.  The burden is 

shifted from the owner of the information trying to identify where to push his 

information, to the receiver where interested parties identify sources of desired or needed 

information [Alberts and Hayes, 2003a]. 

Decision making is more effective in this type of environment.  In a robust NCS 

you have improved information sharing.  This leads to a higher quality of information 

and shared situational awareness.  This enables collaboration and self-synchronization 

and enhances sustainability and speed of action.  The end result is a dramatic increase in 

effectiveness [Potts, 2004]. 

2.2.3.3 Information superiority.  The DoD in Joint Pub 2-13 defines  

information superiority as "The ability to collect, process, and disseminate an 

uninterrupted flow of information while exploiting and/or denying an adversary's ability 

to do the same [Alberts et al., 2002a; Shelton, 2000]."  This is accomplished by getting 
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the "right information to the right people at the right time in the right form while denying 

an adversary the ability to do the same [Alberts et al., 2002b]."  The DoD Joint Vision 

claims information superiority should be at the core of every military activity and is the 

key enabler of victory [Shelton, 2000].  Information superiority is not just confined to 

military operations and systems.  Business operation and enterprises are equally as 

dependant upon information and the business that obtains information superiority is in a 

position to out perform and even dominate competitors. 

Information superiority is achieved and a competitive advantage is obtained from 

exploiting the three dimensions of information superiority.  These dimensions are 

relevant information, timely information, and superior information, as illustrated in 

Figure 2-2 [adapted from Alberts et al., 2002a].  
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Figure 2-2  Dimensions of Information Superiority 
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The ability to use information is also undergoing a profound change.  Alberts 

describes this based on the principles of richness and reach [Alberts et al., 2002b].  

Richness is an aggregate measure of the quality (content, accuracy, timeliness, 

relevance).  Reach is an aggregate measure of how that information is shared.  In the past, 

during the Industrial Age, there was an inverse relationship between the two because of 

technological limitations with sharing.  The richer the information the less reach, the 

more the reach the less richness.  Now, with the Information Age, the greater ability to 

disseminate information coincides with greater richness in information available for 

extraction.  Figure 2-3 illustrates the change. 
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Figure 2-3  Information Usability 

 

 

2.2.4. Domains of Operation.  There are three domains of operation within  

network-centric operations - the information domain, the physical domain, and the 

cognitive domain.  The physical domain can be thought of as reality.  It includes the 
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environment and all physical things, both your systems and other systems, whether a part 

of the system or factors affecting the system.  The information domain is where 

information is developed and shared.  This includes the network.  The Cognitive Domain 

is where the thinking takes place.  This includes perceptions, awareness, understanding, 

beliefs, values, sense making and decision making [Alberts et al., 2002b].  Figure 2-4 

illustrates the relationship of how these domains interact. 
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2.2.5. Desired Characteristics.  Operating within these domains there are  

several desirable characteristics that enhances and/or evolve naturally from efficient 

network-centric systems.  These include shared awareness, collaboration, 

synchronization, self-synchronization, and interoperability. 

2.2.5.1 Shared awareness.  This is a state in the cognitive domain when two  

or more are able to develop a similar awareness of a situation [Alberts et al., 2002b].  

Shared awareness is one of the key benefits of network-centric operations and is also a 

critical factor if the benefits of the network are to be realized.  Without shared awareness 

the systems are not able to operate towards mutually beneficial goals or objectives. 

2.2.5.2 Collaboration.  This is a state in the cognitive domain where two or more  

plan together towards a common goal [Alberts et al., 2002b].  Now that the shared 

awareness has been developed, collaboration can take place to develop plans for the 

implementation of the goals and objectives. 

2.2.5.3 Synchronization.  This is a state in the physical domain where two or  

more act together [Alberts et al., 2002b].  Now that the shared awareness and 

collaboration have been achieved, this is the capability for joint action on those goals and 

objectives, as is illustrated in Figure 2-5 [adapted from Alberts et al., 2002b]. 
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2.2.5.4 Self-synchronization.  Self-synchronization is one of the most useful  

features that arises from network-centricity.  It is the ability for individual units to self-

organize at the unit level, from the bottom up, rather than commanded synchronization 

which flows from the top down.  An excellent description of self-synchronization is given 

by Vice Admiral Cebrowski of the USN, "Self-synchronization is the ability of a well-

informed force to organize and synchronize complex warfare activities from the bottom 

up ... self-synchronization is enabled by a high level of knowledge of one's own forces, 

enemy forces, and all appropriate elements of the operating environment.  It overcomes 

the loss of combat power inherent in top-down command directed synchronization 

characteristic of more conventional doctrine and converts combat from a step function to 

a high-speed continuum [Cebrowski and Garstka, 1998]." 

In order to enable self-synchronization, Alberts proposes four conditions that 

must be present [Alberts and Hayes, 2003a]: 

 

• Clear understanding of purpose 

• High quality information and high level of shared awareness 

• Competence at all levels 

• Trust in the information and all parties involved 

 

2.2.5.5 Interoperability.  Interoperability is an essential characteristic of  

network-centric operations and systems.  The Boeing SARM defines interoperability as 

the ability of elements or systems to provide services to and services from other elements 

or systems in order to increase effectivity [Jones and Sizelove, 2003].  The DoD Joint 
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Vision 2020 calls interoperability a mandate for joint forces and defines it as “the ability 

of systems, units, or forces to provide services to and accept services from other systems, 

units, or forces and to use the services so exchanged to enable them to operate effectively 

together [Shelton, 2000].” 

Carl O’Berry claims its “critical that all industry begin to design systems that 

have the ability to interoperate [O’Berry, 2005].”  He describes it like DNA, the coding 

inherent in every cell of the body that allows it to join and interact with other cells within 

the body’s network [O’Berry, 2005]. 

2.2.6. Global Information Grid.  The concept of a GIG (global information  

grid) was developed by the DoD as a means for achieving information superiority.  "The 

GIG is a single, secure grid providing seamless end-to-end capabilities to all warfighters, 

national security, and support users [Logan, 2003]." 

Moffat foresees the GIG as "a distributed environment that includes all types of 

computers situated at locations all around the world as appropriate with varying needs for 

power, environment, and space.  This distributed environment will be integrated via a 

transport layer that enables these processors to exchange information, dynamically share 

workloads, and cooperatively process information on behalf of (and transparent to) users.  

The GIG will make information and related services available to any and all connected 

entities (nodes) that are ‘net ready’.  Competitive market mechanisms will ensure that 

users have access to the information and services that they want when, where, and how 

they want it [Moffat, 2004]." 

The Boeing SARM defines the GIG as "a globally interconnected, end-to-end set 

of information capabilities, associated processes and personnel for collecting, processing, 
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storing, disseminating, and managing information on demand to users, policy makers, 

and support personnel [Jones and Sizelove, 2003]. 

2.2.7. Challenges and Issues.  There are many issues and challenges to  

overcome and address when developing, deploying, operating, and evolving large 

network-centric systems.  Some familiar categories are complexity, trustworthiness, 

interoperability, management, information overload, and accounting for evolutionary 

growth. 

2.2.7.1 Complexity.  Network-centric systems are usually large scale and  

globally dispersed.  They are frequently system-of-systems.  Interdependencies and 

interfaces are not easily understood and the functionality has greater degrees of 

complexity. 

2.2.7.2 Trustworthiness.  Network-centric systems must address the same  

trustworthiness issues as any system or component, only on a much larger and much 

more complex scale.  These include quality, reliability, availability, survivability, and 

maintainability. 

2.2.7.3 Interoperability.  Network-centric systems face the added challenge  

of having all components and systems interoperate with a host of other components and 

systems.  Legacy systems are frequently included which may not have been designed or 

built to the same requirements or standards. 

2.2.7.4 Management.  Network-centric systems face a multitude of management  

difficulties stemming from geographically dispersed, developed, designed, and fielded 

systems.  The management team is usually multi-service or multi-company, may be 
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multi-national, and is usually geographically dispersed.  Management is forced into more 

of a participative mode rather than a directive mode. 

2.2.7.5 Information overload.  The most commonly cited potential problem with  

Network-centric systems is the potential for information overload [Potts, 2002].  

However, this may not be as big a problem as expected.  With a global network the 

individual is responsible for pulling the information needed rather than having 

information pushed at them [Alberts and Hayes, 2003a].  With network technology the 

shift has gone from an information push to an information pull environment. 

A tank in a valley will not necessarily be overwhelmed by detailed information 

about the entire battlefield.  The individual tank need only pull required information, such 

as detailed information about the valley in which it is situated, less information about the 

next valley (enemy movements, strike coordinates), and even less but key information 

about the entire battlefield (retreat or advance of supporting forces). 

2.2.7.6 Evolutionary growth.  The Network-centric system must make  

allowances for growth on an evolutionary basis.  Nothing will ever be static and 

everything will always be in a state of flux and change.  Emergent capabilities and 

functions are sure to arise and propagate.  The potential for confusion and error is great, 

but it is the capability for evolutionary growth that forms the real power of network-

centric system. 

 

2.3. ARCHITECTURE FRAMEWORKS 

An architecture, simply put, is a way of describing something and an architectural 

framework is a common set of rules for how to describe it.  An architecture framework 
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could be likened to a set of building codes that all the architects must adhere to in 

designing and constructing their own buildings in order to use the infrastructure of a city 

[O’Berry, 2005].  It’s a common approach.  It allows all the pieces to fit and work 

together.  It allows for order within the prescribed universe.  For SoSs and NCSs a 

architecture framework is essential. 

An architecture, according to the DoD integrated architecture panel, 1995, based 

on IEEE STD 610.12, is "the structure of components, their relationships, and the 

principles and guidelines governing their design and evolution over time [DoDAF, 

2003]." 

According to Cebrowski, an architecture needs to "provide sufficient information 

to assure that component systems will fit into the architecture, while simultaneously 

trying to avoid over specifying the architecture and overly constraining the system 

designers [Cebrowski and Garstka, 1998]." 

An architecture framework provides guidance for the development of 

architectures to ensure interaction and interoperability among systems.  Different 

approaches that can be taken, such as structured analysis concepts [Wagenhals et al., 

2000] or object oriented concepts [Bienvenu et al., 2000]. 

2.3.1. DoD Architecture Framework.  The DoDAF (Department of Defense  

Architecture Framework) was developed to define "a common approach for DoD 

architecture description, development, presentation, and integration for both warfighting 

operations and business operations and processes [DoDAF, 2003].  "The initial impetus 

for the Framework came from the Defense Science board, who determined in the early 

1990s that one of the key means for ensuring interoperable and cost effective military 
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systems is to establish comprehensive architectural guidance for all of DoD [Sowell, 

2000].” 

There are four main components of the DoD Architecture Framework - 

architecture views, products and data, universal guidance, and common references.  The 

three architecture views, as illustrated in the DoDAF figure displayed in Figure 2-6 below 

[from DoDAF, 2003], are the operational architecture view, the systems architecture 

view, and the technical architecture view. 
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Figure 2-6  DoD Architecture Framework Views 

 

 

2.3.2. Other Architecture Frameworks.  Other architectures frameworks of  

note are the Zachman Framework, the Federal Enterprise Architecture Framework, and 

the Treasury Enterprise Architecture Framework.  Also of interest was the formation in 

September 2004 of the Network-Centric Operations Industry Consortium dedicated to the 

promotion and development of an industry wide network-centric framework. 
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2.3.2.1 Zachman Framework.  The Zachman Framework is based on describing  

an enterprise in a matrix format.  Columns represent various aspects of the enterprise and 

rows represent different views.  It provides the opportunity for detailed analysis via a 

variety of different views to allow for the development of a comprehensive architecture 

[Sowell, 2000]. 

2.3.2.2 Federal Enterprise Architecture Framework.  The Federal Enterprise  

Architecture Framework provides guidance on architecture for multi-organizational 

functional segments of the federal government.  The architecture is divided into a 

business view and a design view.  The business view is divided into sections for data, 

applications, and technology [Sowell, 2000]. 

2.3.2.3 Treasury Enterprise Architecture Framework.  The Treasury  

Enterprise Architecture Framework is based on the Zachman Framework matrix with 

rows and columns.  The columns are condensed into four views – infrastructure view, 

organizational view, information view, and functional view.  The rows are organized into 

four perspectives - planner perspective, owner perspective, designer perspective, and 

builder perspective. 

 

2.4. EXAMPLE NCS’ 

"In the commercial sector, dominant competitors have developed information 

superiority and translated it into a competitive advantage by making the shift to network-

centric operations.  They have accomplished this by exploiting information technology 

and co-evolving their organizations and processes to provide their customers with more 

value.  This co-evolution of organization and process is being powered by a number of 
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mutually reinforcing, rapidly emerging trends that link information technology and 

increased competitiveness [Alberts et al., 2002a]." 

2.4.1. Manufacturing.  The Boeing 777 commercial airplane program and  

Dell® computers [Alberts et al., 2002a], both introduced and used new network-centric 

information systems for inventory control and were able to translate the results into 

increased productivity, reduced production time, and reduced inventory. 

2.4.2. Retail.  Wal-Mart® with precision retailing was able to use network- 

centric systems based on shared information throughout a common network to facilitate 

and speed the supply chain differential and implement flow-through logistics to deliver 

products to the right stores at the right times based on up to date information about 

customer purchases and re-supply availability throughout the chain.  The chain from 

suppliers to warehouses to the stores to the shelves and finally, to the consumers evolved 

into a vast integrated operation empowered by a network-centric precision retaining 

process [Alberts et al., 2002a; Cebrowski and Garstka, 1998] [Byrnes, 2005]. 

2.4.3. Air Traffic Control.  ATC (air traffic control) is rapidly developing into  

one large nation-wide NCS using net-centricity to enable rapid information sharing on the 

location of all air traffic and to make surveillance data available to all ATC organizations 

and also outside agencies, such at the Department of Homeland Security and also the 

military.  “The next generation of U.S. air traffic control will have to be network-centric 

to enable data to move freely from one system to the next and across organizational 

boundaries, say ATC specialists [Hughes, 2006]. 
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2.4.4. Financial.  Capitol One® successfully put into operation a network-  

centric system for tracking and modifying consumer credit limits, which managed 

operational risk, focused on the market, and then aligned credit limits accordingly 

[Alberts et al., 2002a].  Several Financial Services businesses have greatly improved 

productivity and customer services by implementing network-centric systems.  Some 

examples are Charles Schwab®, E*Trade®, and Deutsch Morgan Grenfell® [Alberts et al., 

2002a; Cebrowski and Garstka, 1998] 

2.4.5. Connexion by Boeing.  CBB is an excellent example of a commercial  

profit oriented NCS.  CBB is a complex, large-scale, global NCS oriented towards 

providing network services to its airline customers, military customers, individual 

passengers, and any other users that tie into the system.  Section 6 of this dissertation 

provides a detailed description of the CBB system and its operation. 

2.4.6. Military Strategy.  One of the most successful users of NCSs has been  

the U.S. military.  The DoD has gone so far as to adapt the philosophy of network-

centricity as the future growth engine for all new systems and the basis of military 

strategy, procurement, development, and operations for the future. 

The strategic concept of NCW (network-centric warfare) has evolved based on 

NCSs.  NCW involves strategic planning centered around network based systems rather 

than platform based systems.   The military takes into consideration all three domains 

(cognitive, information, and the physical), when developing military strategy and tactical 

plans.  

A good example of NCW strategy is that described by David Potts in describing 

the transition of command control to the Information Age [Potts, 2004], which involves 
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many elements and all three domains.  Battlespace monitoring takes place in the physical 

domain and involves the collection, storage, transmission, and display of data.  

Awareness is in the cognitive domain and involves the recognition and filtration of 

pertinent data.  Understanding follows awareness and involves the understanding of the 

significance of the data given the circumstances.  Sensemaking is in the cognitive domain 

and involves making sense of the data, its applicability, how it can be used, and what 

steps to take.  Command intent is communication to subordinates on actions to take.  

Battlespace management is action on the information and cognitive domains to pass 

information to carry out command intent.  Synchronization is attempting to carry out 

command intent on the physical domain.   Figure 2-7 [from Smith, 2003] illustrates the 

relationship of the elements involved in NCW strategic thinking and implementation. 
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EBO (effects based operations) is another doctrine of military theory that has 

emerged with the enhanced capabilities provided by NCSs.  EBO focuses on actions and 

their links to behavior rather than just targets and the infliction of damage.  According to 

the information superiority working group sponsored by the Office of the Secretary of 

Defense, EBO is "a coordinated set of actions directed at shaping the behavior of friends, 

foes, and neutrals in peace, crisis, and war [Smith, 2003]." 

The scope of EBO is considerably larger than traditional military tactical strategic 

thinking and the capability is highly dependent upon network-centric capabilities.  

According to Edward Smith of the CCRP (Command and Control Research Program), 

"We can tap the technologies and thinking of network-centric operations to provide the 

four key ingredients of successful effects based operations: options, agility, coordination, 

and knowledge [Smith, 2003]." 

An example of the constraints placed on the military when considering EBO can 

be seen in the following scenario during Operation Iraqi Freedom.  “In Najaf, American 

forces faced some 2,500 Sadr militiamen with the resistance centered on the Najaf 

cemetery and the Shrine of the Imam Ali, the holiest place in Shi’I Islam.  Because U.S. 

officers knew that damaging the shrines would inflame opinion in Iraq and worldwide 

against the Americans, both were declared exclusion areas despite the fact that they 

served as a tactical advantage to Sadr’s men, who used them as refuges and secure fire 

bases from which to mortar U.S. forces [Smith, 2006].” 

 

 



 39

2.5. SECTION SUMMARY 

This section on network-centric systems provided the background on the 

importance of network-centricity, gave evidence of the potential power of NCSs, and 

described the characteristic features of an NCS.  A description of systems was given, both 

simple and complex, and also a description of system-of-systems.  Then the importance 

and power of the network was described.  Next the flow of information in a NCS was 

compared to traditional flows of information.  The domain of operation in a NCS was 

described and several features were examined, including shared awareness, collaboration, 

interoperability, synchronization, and self-synchronization.  Then the importance of the 

global information grid was examined.  Several issues and challenges facing NCS were 

then discussed, which actually provide opportunities for enhanced effectiveness when 

properly addressed.  Architecture frameworks were addressed next, with emphasis on the 

DoD Architecture Framework.  Other frameworks, such as the Zachman Framework 

were touched on also.  Finally, several examples of successful NCS were reviewed; 

including Connexion by Boeing, which was used as the case study for this dissertation. 

Due to the complex and evolutionary nature of NCSs, and the likely probability of 

widespread use in the future, the need for adaptive architectures that can change and 

evolve has become critical.  The adaptive architecture proposed by this dissertation was 

developed in an effort to study and define ways to address the special needs of NCSs, 

which were described in this section. 

The following section (Section 3) contains a literature review of network 

(Internet) theory, which is the medium through which the data and information that 

empowers NCSs flows.  It also contains a literature review of network capacity modeling 
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techniques and methods.  An evaluation of the applicability and accuracy of these 

modeling techniques when applied towards NCSs, along with shortcomings and 

advantages, is also evaluated. 
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3. THE INTERNET AND CAPACITY MODELING LITERATURE REVIEW 

3.1. RELEVANCE OF THE INTERNET TO THIS RESEARCH 

The global Internet provides the medium over which NCS network traffic flows.  

All NCSs must use some type of network to convey data to and from platform nodes and 

the Internet provides the GIG through with which most NCSs operate.  In order to model 

data traffic on an NCS, a good understanding of how the Internet operates and of current 

modeling techniques, theory and research, is  needed.  Also an understanding of  the 

short-comings of non-adaptive Internet traffic models as technology moves into the age 

of highly-adaptive, evolving NCSs with constantly changing network traffic 

characteristics.  The need for adaptive modeling techniques then becomes clear. 

The literature review in this section includes: 1) an overview of the Internet, 2) 

reference architectures like the OSI model and TCP/IP model,  3) an explanation of data 

encapsulation, 4) traffic management theory, including resource allocation, and 5) 

capacity modeling.  This last section on capacity modeling is very important.  It includes 

information on the difficulty of Internet capacity modeling and describes current 

techniques, like fractional Brownian motion and Kelly’s equation.  This section also 

contains a detailed description of the capacity modeling methods and simulation used by 

CBB, along with advantages and disadvantages; and last, a description of current 

academic research activities and their applicability to NCSs. 

 

3.2. OVERVIEW OF THE INTERNET  

The Internet is a global network interconnecting millions of computers in a 

common information grid.  The Internet is the vehicle that has ushered in the Information 
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Age by allowing global interconnection of the world.  The impact to business and all 

facets of life has already been tremendous and the change has just begun.  Bill Gates, 

founder of Microsoft®, says, “Business is going to change more in the next ten years than 

it has in the last fifty [Gates, 2005].”  Bill Clinton, former president of the United States 

lamented that, “When I took office, only high energy physicists had ever heard of what is 

called the World Wide Web … now even my cat has its own page [INS, 2005].” 

Internet use continues to experienced phenomenal growth in the number of users, 

the amounts of data being transmitted, and in generated revenue.  As of the start of 2005, 

in the United States of America alone there were 293,271,500 recorded users.  This is 

68.8% of the population and the growth rate since 2000 has been 111.5%.  For the world 

as a whole, there were 817,447,147 recorded users at the start of 2005.  This is 12.7% out 

of a world population of 6.4 billion and the growth rate since 2000 has been 126.4% 

[INS, 2005].  Figure 3-1 shows the growth of Internet usage over the past 10 years from 

16 million at the end of 1995 to 817 million at the end of 2004. 

Besides this phenomenal growth in the number of users, the volumes of data 

flowing through the Internet have experienced even greater growth rates and it’s 

predicted that the volume of traffic worldwide will nearly double annually over the next 

five years, from 180 petabits every day to 5,175 petabits per day by the end of 2007.  

This amounts to downloading and sharing information equivalent to the entire Library of 

Congress more than 64,000 times per day [Hong, 2004]. 

Besides the growth in users and volumes of data, there has also been dramatic 

exponential growth of revenue generated over the internet.  Figure 3-2 illustrates the 

growth from .008 billion dollars in 1994 to 1,234 billion dollars in 2002 [Hong, 2004]. 
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Figure 3-1  Internet Growth Over the Past Ten Years 
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Figure 3-2  Growth in Internet Generated Revenue 

 

 

3.2.1. Computer Networks.  A network is a system that provides connectivity  

between computers for the transfer of data.  It is a collection of computer hosts and 

associated communication equipment all tied together for the transmission of 
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information.  Networks tend to have sources and destinations, transmitters and receivers, 

and a communication medium to carry the data. 

There are many kinds of networks as you go from small to large to global.  A 

HAN (home area network) is typically confined to one individual house.  A LAN (local 

area network) and is a small network usually belonging to one building or campus and 

extends up to 1 km.  A MAN (metropolitan area network) usually belongs to a city and 

typically extends up to 10 km.  A WAN (wide area network) is anything larger, and can 

be global in reach.   

A collection of interconnected networks is called an internetwork or an internet 

with a small ‘i’.  Nodes that implement the network are called switches and nodes that 

use the network are called hosts.  The Internet is designated with a capital ‘I’ when 

referring to the entity that composes the vast global collection of networks in use by 

people throughout the globe.  Figure 3-3 illustrates the differences between a network, an 

internet, and the Internet. 
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Figure 3-3  Networks and the Internet 
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3.2.2. The Internet.  The Internet is not simply a large network, but is a vast  

collection of networks that use common protocols and provide common services 

[Tanenbaum, 2003].  It was first created as a DoD project by DARPA (Defense 

Advanced Research Projects Agency) wanting to develop a secure communication 

network that could survive nuclear attack.  The resulting product was called the 

ARPANET (Advanced Research Projects Agency Network).  Initially only selected 

universities and the DoD were connected but soon other countries and universities were 

creating their own networks patterned after the ARPANET.  In the 1980s the DNS 

(domain name system) was created to organize domains and IP (Internet protocol) 

addresses.  Eventually everything was interconnected and the network infrastructure was 

handed over to industry where it has evolved into the Internet of today. 

 

3.3. REFERENCE ARCHITECTURES 

To reduce complexity the Internet was designed in layers.  This allows the 

decomposition of the Internet into manageable components and provides for a modular 

design.  Each level is defined as an abstraction.  Peterson defines it in this way, “The idea 

of an abstraction is to define a unifying model that can capture some important aspect of 

the system, encapsulate this model in an object that provides an interface that can be 

manipulated by other components of the system, and hide the details of how the object is 

implemented from the users of the object [Peterson and Davie, 2003].”   

A protocol is the agreement of rules on how different entities within a layer 

communicate among themselves.  The main elements of a protocol are syntax, semantics, 

and timing.  Syntax includes details about the physical communication structure and 
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format.  Semantics includes information about how to control the communication.  

Timing includes information about the flow of information. 

Architectures were developed to describe the rules and agreements for layering 

the Internet.  There are two common reference architectures - the OSI model and the 

TCP/IP model. 

3.3.1. OSI Reference Architecture.  The OSI (open systems interconnection)  

reference architecture was based on a proposal by the ISO (International Standards 

Organization) as the first step towards international standardization of the protocols 

defining rules for various layers of the Internet [Tanenbaum, 2003].  It was based on rules 

for connecting open systems for communication with other open systems and has seven 

layers.  Figure 3-4 illustrates the seven layers of the OSI architecture.  Each layer 

represents a different abstraction and has a different function.  The goal is to minimize 

communication between layers and reduce complexity.  Designers writing software that 

operates within one of the layers need not be concerned with protocols of other layers but 

only with the protocols of the layer within which their software or application operates. 

3.3.1.1 Physical layer.  The purpose of the physical layer is to transmit the  

raw bits of data over a physical link.  It is often called a bit pipe.  It operates by 

converting data into waveforms at the source and then reconverting at the destination.  

Design issues involve mechanical and electrical interfaces and the physical transmission 

medium. 

3.3.1.2 Data link layer.  The purpose of the data link layer is to act as an  

interface between the network and the physical medium.  It is often called a packet pipe.  

It collects the data into frames, transmits them sequentially, and performs error detection 
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and flow control.  Design issues involve confirming reliability, regulating traffic, and 

controlling access. 
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Figure 3-4  Seven Levels of the OSI Architecture 

 

 

3.3.1.3 Network layer.  The purpose of the network layer is routing of the  

packets from source to destination.  Routes can be static and fixed or they can be 

dynamic and constantly changing.  The process can be as simple as looking at a 

destination, consulting a table, and forwarding.  Or it could involve a process to map a 

route for each group of packets which could be different for fragmented portions of the 

same data.  Design issues involve congestion and interconnection between networks. 
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3.3.1.4 Transport layer.  The purpose of the transport layer is message  

control.  It is concerned with process to process, the exchange of data between end 

systems.  It splits data into smaller units if necessary, accounts for different types of 

hardware, passes data to the network layer, and ensures the message is correctly re-

assembled.  Design issues involve losses, duplications, and quality of service. 

3.3.1.5 Session layer.  The purpose of the session layer is the establishment  

of identity.  It allows users on different machines to establish sessions with each other.  

Design issues involve dialog control and management. 

3.3.1.6 Presentation layer.  The purpose of the presentation layer is control  

of the format of the data being sent.  It is concerned with the actual information rather 

than the bits being sent.  Design issues involve formatting, compression, and encryption. 

3.3.1.7 Application layer.  The purpose of the application layer is providing  

the means for various application programs to use the network.  Examples are browsers, 

email, chat, streaming media, and file transfer. 

3.3.2. TCP/IP Reference Architecture.  The TCP/IP (transmission control  

protocol / Internet protocol) reference model was the one used for the original 

ARPANET, predecessor of today’s Internet, which is in widespread use today.  Like the 

OSI model, the TCP/IP model is also based on layers and encapsulation and standard 

protocols; however, the TCP/IP model has fewer layers than the OSI model, the protocols 

tend to cross multiple layers at times, and the network layer can only support 

connectionless routing.  Figure 3-5 illustrates the TCP/IP layers. 
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Figure 3-5  TCP/IP Model Architecture 

 

 

3.4. DATA ENCAPSULATION 

Encapsulation describes the means by which the Internet passes information.  The 

body of the message being sent is called a payload.  This payload reaches the first layer 

and is framed or encapsulated with a header and sometimes a footer.  The header and 

footer contain information for protocol control, error detection, and address information. 

The encapsulated data, with the header and footer from the first level, goes to the 

next level and another header and/or footer gets added and the data is again encapsulated.  

This process repeats as the data goes through all seven layers and gets encapsulated at 

each layer. 

Finally, the message reaches the destination.  To get there, the bottom layer 

unencapsulates the outer most layer and receives information vital to the operation of that 

layer.  The message goes to the next layer for another unencapsulation and so on until the 

final payload message is stripped free.  In this way each layer receives the information it 

needs for the operations that it is concerned with.  Figure 3-6 [adapted from Tanenbaum, 

2003] illustrates encapsulation and unencapsulation of data. 
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Figure 3-6  Encapsulation 

 

 

3.5. TRAFFIC MANAGEMENT 

3.5.1. Flow Control.  Flow control is performed by the receiving device in an  

effort to limit or eliminate congestion.  Congestion occurs when a switch has so many 

packets queued up waiting for output that it has to start dropping packets.  This forces the 

sending device to perform re-transmissions.  Different protocols use different methods to 

perform flow control. 

3.5.1.1 Request reply.  A common but simple method is the request and reply  

method.  The sender sends a message and must then wait for a reply or acknowledgement 

before another may be sent.  This method is not the most efficient. 
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3.5.1.2 Sliding window.  Another common method is the sliding window  

method.  The receiver has a buffer where it can store messages that have not yet been 

processed.  The window is the remaining space in the buffer and slides smaller as the 

buffer fills up.  As long as the window is big enough, the sender can keep sending 

messages without waiting for the associated acknowledgements.  As the receiver 

processes the messages it slides the window larger. 

3.5.2. Error Control.  A vital function of the Internet is to ensure the  

message, in its final form, is received by the host without error.  There are several 

methods employed for error control and often retransmissions are required.  One common 

but simple method, according to various schemes, the sender inserts bits and the receiver 

checks for these bits to see if any errors have been made during transmission.  If it finds 

an error then a retransmission is required.  The request reply and sliding window flow 

control methods are also good for error control.  They work on the basic premise that if 

acknowledgements are not received then retransmit. 

3.5.3. Resource Sizing.  Resource sizing is an important aspect of Internet  

traffic management.  This has to do with sizing of the physical devices for the 

transmission of data.  This includes the size of switches and buffers, sending and 

receiving devices, and also the transmission link or physical medium.  Types of links 

include twisted pair wire, coax cable, optical fiber, and satellite transmission. 

For CBB, a key resource question was that of satellite transponder management.  

CBB uses satellite links between customer aircraft and the ground stations where 

connectivity to the Internet is made.  The size of the pipe provided to the customer is a 

function of the number of satellite transponders that have been leased to provide service 
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for a specified area.  In order to make accurate determinations of how many transponders 

to lease, CBB must have accurate capacity models to forecast how big the network pipe, 

in this case number of satellite transponders, must be. 

Depending upon the peak number of aircraft flying within a particular region, 

CBB leases enough transponders to provide the required service.  Figures 3-7 through 3-9 

illustrate how the pipe size in a region can be grown to accommodate more aircraft by 

adding more transponders. 

 

 

 

 

 

 

 

 

Figure 3-7  Single Transponder Coverage 

 

 

As the business grows and more aircraft become equipped with CBB systems and 

more customers on the aircraft use the service, the demand for bandwidth grows, 

outstripping the capability of a single transponder.  The size of the network must grow 

and additional transponders are leased to meet increased demand, as illustrated in Figure 

3-8. 

 



 53

 

 

 

 

 

 

Figure 3-8  Additional Transponders 

 

 

As the business grows further the demand for bandwidth grows, exceeding the 

capability of all the transponders on a given satellite. The size of the network must grow 

further and additional satellites are leased to meet increased demand, as illustrated in 

Figure 3-9. 

 

 

 

 

 

 

 

 

 

Figure 3-9  Additional Satellites 
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3.5.4. Performance.  There are three measurements of network performance.   

These are bandwidth, latency, and the delay-bandwidth product, as illustrated in Figure 3-

10.  Bandwidth can be though of as the width of a hollow pipe.  Latency is the length of 

the hollow pipe.  Delay-bandwidth product is the volume of the hollow pipe. 
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Figure 3-10  Network Performance Pipe 

 

 

3.5.4.1 Bandwidth.  Bandwidth, also called throughput, is the width of the  

network pipe, the data rate or channel capacity, and is measured in bits per second.  It is 

the number of bits that can be transmitted over the network in a certain period of times.  

“It is sometimes useful to think of bandwidth as how long it takes to transmit each bit of 

data.  On a 10-Mbps network, for example, it takes 0.1 microseconds to transmit each bit 

[Peterson and Davie, 2003].” 

3.5.4.2 Latency.  Latency, measured in time, is the delay in the signal, how  

long it takes a message to travel the length of the network.  Latency is typically expressed 

in terms of RTT (round trip time).  Latency is composed of three components – 
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propagation time, transmission time, and queuing time.  Propagation time is a function of 

the speed of sound, which varies according to the medium, like copper wire or optical 

fibers.  It is a measure of how fast one single bit can travel the given distance.  

Transmission time is the size of the pipe divided by the bandwidth.  It is a measure of the 

time it takes to transmit a unit of data and is a function of the network bandwidth and the 

size of the packet.  Queuing time accounts for delays in the network. 

3.5.4.3 Delay-bandwidth product.  The delay-bandwidth product is simply the  

delay (in seconds) times the bandwidth (in bits per second).  The product is the capacity 

of the pipe from the sender to the receiver and back (in bits) [Tanenbaum, 2003].  This is 

a measure of the total size or capacity of the pipe.  Large delay times can be compensated 

for by expansion of bandwidth.  Limited bandwidth capability can be compensated for by 

reductions to delay factors, like reducing congestion. 

3.5.5. Quality of Service.  QoS (quality of service) is a measure of the user  

experience.  From the user’s point of view, good QoS is a function of transaction speed, 

size capability, availability, and reliability.  According to Weibin Zhao of Columbia 

University, “We define QoS as providing service differentiation and performance 

assurance for Internet applications [Zhao et al., 2002].”  

 

3.6. CAPACITY MODELING 

Accurate modeling of network traffic is essential to the design and operation of 

large-scale networks.  During network design, and for upgrade considerations, models are 

used to simulate the traffic stream and predict future needs.  This allows for accurate 

sizing of the network.  During operations, models are used to predict future rates based 
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on real-time data.  This allows for efficient and timely QoS management.  This 

dissertation research deals with the first case, which is modeling network traffic for 

simulation and prediction of network demand to allow for efficient and accurate sizing of 

the network. 

3.6.1. Difficulties in Modeling Internet Traffic.  Modeling Internet traffic,  

with all of its size and variety, is extremely challenging, and there is still no general 

consensus as to the best and most effective method.  It is especially difficult to develop 

and maintain a model that can provide reliable and accurate representation when the 

traffic is constantly changing and evolving.  Yet this is exactly the environment in which 

a large-scale NCS has to operate, an environment that is vast, constantly changing, and is 

often different at various points on the network. 

Current methods model network traffic through mathematical equations 

representing effective bandwidth.  These models express network traffic as a function of 

fractional Browning Motion, based on theories developed by Ilkka Norros [Norros, 

1995].  The accuracy of these models is dependent upon measured data characteristics, 

which are often not very accurate themselves [Cleveland and Sun, 2000; Li et al., 2004; 

Qian et al., 2004], are difficult to collect and correctly characterize [Bregni, 2004; 

Cleveland and Sun, 2000;  Floyd and Kohler, 2003; Fomenkov et al., 2004; Li et al., 

2004; Park et al., 2005; Qian et al., 2004; Yousefi’Zadeh, 2002], are subject to constant 

change, and vary according to time, circumstance, and location [Bianchi et al., 2004; 

Brownlee and Claffy, 2002; Li et al., 2004; Qian et al., 2004; Rodriques and Guardieiro, 

2004; Swift and Dagli, 2007c]. 
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In addition to all these difficulties, the vast amounts of data flowing over even the 

smallest of networks make it difficult to perform meaningful capture and analysis of 

enough data to provide statistically correct characterization of the whole.  Many 

researchers argue against even trying to come up with all encompassing models for 

global networks [Floyd and Kohler, 2003], challenge conventional assumptions about the 

basic nature of Internet traffic [Bianchi et al., 2004; Cao et al., 2001; Cleveland and Sun, 

2000; Floyd and Kohler, 2003; Fomenkov et al., 2004; Rodriques and Guardieiro, 2004; 

Swift and Dagli, 2007b], or expound on the enormous difficulties of accurately modeling 

something so complex [Bregni, 2004; Cleveland and Sun, 2000; Floyd and Kohler, 2003; 

Fomenkov et al., 2004; Li et al., 2004; Park et al., 2005; Qian et al., 2004; 

Yousefi’Zadeh, 2002]. 

Compounding this problem, network service providers tend to regard all data 

collected through their service as proprietary trade secrets and guard against free 

dissemination [Park et al., 2005].  This greatly limits the availability of data to 

researchers and modelers. 

Marina Formenkov of CAIDA (Cooperative Association for Internet Data 

Analysis) states, “Internet traffic is the result of interaction among millions of users, 

hundreds of heterogeneous applications, and dozens of sophisticated protocols.  The 

technical components of the Internet are complex in themselves, and they are augmented 

by a general unpredictability and diversity of the human components [Fomenkov et al., 

2004].” 

“We wouldn’t recommend trying to construct a single model of the global Internet 

… Researchers should instead concentrate on modeling properties relevant to their 
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research, and finding valid simplifications or abstractions for other properties [Floyd and 

Kohler, 2003].” 

“Internet traffic data are ferocious.  Their statistical properties are complex and 

databases are very large.  The protocols are complex and introduce feedback into the 

traffic system.  Added to this is the vastness of the Internet network topology.  This 

challenges analysis and modeling [Fomenkov et al., 2004].” 

Many basic assumptions are made to construct the models and these assumptions 

are often called into question by others.  Examples of some typical model assumptions 

are:  assumptions of how Internet traffic flows work, assumptions that traffic flows live 

for a long time and transfer a lot of data, assumptions on simple topologies, assumptions 

that there is only one congested link in a traffic flow, assumptions about sharing of RTTs, 

assuming most data traffic is one-way, and assuming reverse-path traffic is rarely 

congested.  “All of these modeling assumptions affect simulation and experimental 

results, and therefore our evaluations of research.  But none of them are confirmed by 

measurement studies, and some are actively wrong [Floyd and Kohler, 2003].” 

Add to this the difficulty in measuring and recording and evaluating Internet data.  

It is extremely difficult to understand and characterize something that you cannot 

measure.  “The lack of good measurements, lack of tools for evaluating measurement 

results and applying their results to models, and a lack of diverse and well-understood 

simulation scenarios based on these models are holding back the field [Floyd and Kohler, 

2003]. 

The modeler is faced with the overwhelming task of continuously performing data 

collection and constantly conducting detailed analysis in order to capture changing 
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characteristics throughout all portions of the network.  Values measured and derived from 

data collected at a point in Amsterdam might be totally different from data collected in 

nearby Paris, or especially in far away Hong Kong.  Data collected on users during work 

hours could be different from data collected on users at night or on weekends.  Data from 

teenagers could have different characteristics from adults, data from men compared to 

women or to children, and from engineers compared to accountants or librarians.  Data in 

January compared to July could be different.  Data on web-surfers or emailers might be 

different from people viewing media clips or from multi-tasking users.  Data collected 

one day could be entirely out of date by the following year, or month, or perhaps even the 

next day.  The potential for variety is endless [Swift and Dagli, 2007c].  

Modeling based upon computing techniques employing artificial intelligence, 

especially those with the capability for self-learning and self-adaptation, would not only 

save modelers countless hours in re-sampling and updating parameters, but would tend to 

be significantly more accurate. 

3.6.2. Internet Traffic Data Sources.  There are three major sources of  

Internet Traffic Data for use in the development of models and an innumerable host of 

independent point sources [Hong, 2004]. 

The NLANR is the National Laboratory for Applied Network Research.  Its 

primary goals are “to encourage the creation of Internet traffic metrics … to create a 

collaborative research and analytic environment … to foster the development of 

advanced methodologies and techniques for: traffic performance and flow 

characterization, simulation, analysis, and visualization [NLANR, 2005].” 
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CAIDA is the Cooperative Association for Internet Data Analysis.  It’s goals are 

“to encourage the creation of Internet traffic metrics … to create collaborative research 

and analytic environment in which various forms of traffic data can be acquired, 

analyzed, and shared … to foster the development of advanced methodologies and 

techniques for traffic performance and flow characterization, simulation, analysis, and 

visualization [CAIDA, 2005].” 

The SLAC NMTF is the Stanford Linear Accelerator Center Network Monitoring 

Task Force.  Its primary goals are to act as a focus group for energy sciences sites in the 

area of network monitoring, share network monitoring information, and determine what 

tools and applications are needed [SLAC, 2005]. 

CBB was used as the source of data for this case study instead of these terrestrial 

sources.  Using CBB allowed the analysis of data sets representing all locations on an 

operating NCS rather than just traffic flowing by a few selected nodes on the Internet. 

3.6.3. Current Modeling Techniques – History and Development.  The first  

step in modeling Internet traffic is an understanding of the basic characteristics of the 

traffic stream [Cleveland and Sun, 2000] and most modeling techniques of today express 

network traffic as a function of fractional Brownian motion, which was first proposed by 

Ilkka Norros of Finland in 1994 [Norros, 1995].   This methodology is based on two key 

assumptions: self-similarity and long range dependence.   

Will E. Leland discovered the self-similarity characteristic of Internet traffic in 

1993 [Crovella and Bestavros, 1997; Leland et al., 1994].  Up until then, Internet traffic 

was modeled as a Poisson process and all analysis was based on the Poisson or Markov 

modulated distributions.  The Poisson methods assumed characteristic burst lengths, 
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which allowed the traffic to be smoothed by averaging over long time scales.  However, 

as actual data became more available, measurements of Internet traffic indicated this was 

not the case [Gong et al., 2005; Park et al., 2005].  It was found that measured traffic 

displayed significant amounts of burstiness along different scales and perhaps even an 

intensification of burstiness as the number of sources increased, contrary to what was 

then the common perception.  Figure 3-11 illustrates [from Leland et al., 1994] the 

burstiness typically found in early network traffic, as published in the paper by Will 

Leland [Leland et al., 1994]. 

 

 

 

 

 

 

 

 

 

Figure 3-11  Burstiness in Internet Traffic 

 

 

Self-similarity means the same shape is exhibited over varying ranges of scale.  

The classical example used to illustrate this feature is the well known fractional called the 

Sierpinski triangle [Connors, 2005].  The same shape is maintained as the scale expands 
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or contracts.  Figure 3-12 [from Connors, 2005] illustrates the relationship in scale of 

Sierpinski triangles, which are self-similar. 
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Figure 3-12  Sierpinski Triangles 

 

 

Self-similarity for Internet traffic is typically expressed by examining segments of 

traffic on a time-history at varying scales.  To be self-similar, the traffic would have to 

exhibit the same burstiness at varying scales.  For example, Internet traffic for an airline 

flight that is bursty over the entire flight would also be bursty to the same degree over a 

one hour segment of the flight, then again over a one minute segment from the previous 

segment, over a one second segment, and so forth.  Oznur Ozkasap and Mine Caglar of 

Istanbul, Turkey, give a good definition within the domain of network traffic, “Self-

similarity can shortly be described as the scale invariance of the bursty behavior, 

observed ubiquitously in the network traffic [Ozkasap and Caglar, 2006].” 
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After Leland’s discovery of the self-similar characteristic of Internet traffic, 

Norros developed his methodology by quantifying the burstiness of the traffic.  “Traffic 

sources are bursty, i.e. they are not transmitting continuously but have silent or low-

activity periods alternating with periods of high activity [Norros, 1995].”  Figure 3-13 

illustrates the burstiness of traffic.  This plot is for the one-way traffic of only fifty users 

and is averaged over 1 second intervals. 
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Figure 3-13  Bursty Internet Traffic for 50 Users 

 

 

Ilkka Norros proposed aggregating and modeling Internet traffic by relating it to 

fractional Brownian motion [Li et al., 2004; Norros, 1995], and this is the most common 

method for modeling network bandwidth still in use today [Bianchi et al., 2004].  Ilkka 

Norros described his model as “an abstract model for aggregated connectionless traffic, 

based on the fractional Brownian motion [Norros, 1995].”  Norros said, “Insight into the 
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parameters is obtained by relating the model to an equivalent burst model [Norros, 

1995].”  He also said, “It is a self-similar model [Norros, 1995]” and “Internet traffic is 

self-similar [Norros, 1995].” 

The second most common type of models are based on theories and equations 

developed by Frank Kelly of England [Kelly, 1991].  He developed stochastic based 

mathematical equations for aggregating and modeling Internet traffic [Kelly, 1991; Li et 

al., 2004].  Kelly felt that traffic has distinct sources and effective bandwidth must be 

associated with each source and the queue can limit the number of sources served so that 

their effective bandwidths sum to less than the capacity of the queue [Kelly, 1991]. 

A lesser group of methods is based on D-BIND (deterministic bounding interval-

length dependant) theory proposed by Edward Knightly of the United States [Knightly 

and Shroff, 1997; Knightly and Zhang, 1997].  His method is based on quality of service 

admission controls. 

Current research in the field is directed mostly towards improvements and 

enhancements to these methods in an attempt to add flexibility and adaptability to the 

models as Internet traffic becomes more and more diverse and unpredictable [Bianchi et 

al., 2004; Bregni, 2004; Brownlee and Claffy, 2002; Li et al., 2004; Qian et al., 2004; 

Rodriques and Guardieiro, 2004].  

Other models include the on-off models, Gaussian models, leaky bucket, Poisson 

models, probabilistic models, Markovian models, other fractional Brownian motion 

models, D-BIND, and S-BIND [Qian et al., 2004; Baldi et al., 2003; Li et al., 2004, 

Knightly and Zhang, 1997; Knightly and Shroff, 1997] .  Much research has come out of 

Bell Labs® on modeling the non-stationary characteristics of Internet traffic explaining 
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that certain traffic (packet and connection) characteristics tend locally toward Poisson 

where other time series characteristics (packet sizes, transferred file sizes, and connection 

round trip times) tend toward independent [Cleveland and Sun, 2000; Cao et al., 2001; 

Cao et al., 2002a; Cao et al., 2002b].” 

Returning to the most common type, Fractional Brownian motion models are 

founded on the assumptions of self-similarity and long-range dependence.  Early 

experimental measurements tended to validate self-similarity [Bregni, 2004].  This was 

especially true for bursty Internet traffic composed mostly of web-surfing [Bianchi et al., 

2004], the most common use of the Internet at the time.  The more bursty the traffic, then 

the closer it comes to approximating pure Brownian motion. 

According to Wei-Bo Gong of the University of Massachusetts [Gong et al., 

2005], “Fractional Browning motion (fBm) is an example of a self-similar process.  A 

process X(t) is said to be an fBm if the increment process is normally distributed with 

mean zero and variance t2H.  The covariance of the process is described by 

 

( ) ( )[ ] ( HHH tststXsXE 222

2
1

−−+= )                                            (3.1) 

 

where H is the self-similarity parameter.” 

For the network traffic, self-similarity implies consistency over varying time sets.  

“In a self-similar random process, a dilated portion of a realization (sample path) has the 

same statistical characterization as the whole. ‘Dilating’ is applied on both amplitude and 

time axes of the sample path [Bregni, 2004].” 
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Long range dependence, or long memory, is defined as a slow decay in 

correlations.  With regards to Long-Range Dependence, Norros said, “The degree of the 

short-term predictability of the traffic model is clarified through an exact formula for the 

conditional variance of a future value given the past [Norros, 1995].”  In other words, 

“Long-Range Dependence is a long-memory model for scaling observed in the limit of 

largest time scales [Bregni, 2004].”  

Network traffic bandwidth is typically expressed in terms of capacity,C , defined 

as the maximum rate for data transfer.  At a given instant of time, t , a link is either 

transmitting at capacity or is idle.  The capacity of the network path, consisting of 

links, , is defined as [Angrisani et al., 2006]: N NLL ...1
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where , are link capacities and the values are percentages of link 

utilization [Angrisani et al. 2006]. 

NCC ...1 )()...(1 tutu N

A mathematical expression, based on assumptions of self-similarity and fractional 

Brownian motion, is derived.  The following Norros based equation, as used by the CBB 

network, illustrates one such example for modeling capacity [Erramilli and Couch, 2001; 

Swift, 2004b]: 
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where      ( ) ( )( )HH HHH −−= 11κ                                                              (3.4) 

 

  = Mean Bit Rate (bps) m

  = Peakiness (bps) a

 ε  = Cell Loss Rate 

 B  = Buffer Size (bits) 

 H  = Hurst Parameter 

  = Capacity or Effective Bandwidth (bps) C

 

Arrivals of packets or bits are correlated over long periods of time.  The 

correlations are modeled as Gaussian noise.  The mean bit rate, , is the mean bit rate 

per user.  The peakiness, , or variance coefficient, is closely related to the variance of 

traffic and is a measure of the magnitude of fluctuations in the traffic.  The cell loss rate, 

m

a

ε , is a constant sized for the system to be modeled.  The buffer size, B , is derived from 

the peak capacity of the system and the maximum queuing delay.  The Hurst parameter, 

H , is a measure of the rate of decay of correlations.  The three parameters, , , and m a

H , together make up a measure of the self-similarity of the aggregate traffic. 

Five general difficulties arise when applying this methodology to complex, large-

scale, global networks.  First, the accuracy is dependant upon exact characterization of 

the traffic stream which is usually not very accurate [Cleveland and Sun, 2000; Li et al., 

2004; Qian et al., 2004].  Second, the derived mathematical expression cannot be 

assumed to apply throughout all segments of the network [Swift and Dagli, 2007c].  

Third, it becomes a tremendous challenge to collect, evaluate, and constantly update 
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measured data for input to the model [Bregni et al., 2004; Cleveland and Sun, 2000;  

Floyd and Kohler, 2003; Fomenkov et al., 2004; Li et al., 2004; Park et al., 2005; Qian et 

al., 2004; Yousefi’Zadeh, 2002].  Some of the input values are difficult to extrapolate 

from the data, especially self-similarity and long-range dependence parameters such as 

the Hurst parameter and other self-similar characterizations [Bregni, 2004].  Fourth, the 

data is in a state of constant change and evolution [Bianchi et al., 2004; Brownlee and 

Claffy, 2002; Li et al., 2004; Qian et al., 2004; Rodriques and Guardieiro, 2004].  Fifth, 

the traffic must be self-similar, which may not be a good assumption for today’s traffic 

[Rodriques and Guardieiro, 2004; Swift and Dagli, 2007b]. 

These models are based on regularity and do not support non-regularities [Bianchi 

et al., 2004], are based on self-similarity which may not hold as true today as in the past 

[Rodriques and Guardieiro, 2004; Swift and Dagli, 2007b], and are dependent on 

accurately estimating statistical quantities of the traffic to characterize self-similarity, 

such as the Hurst parameter, which is very difficult to accurately measure and is subject 

to change [Bregni, 2004; Park et al., 2005]. 

3.6.4. Model Under Evaluation.  The CBB network simulation utilizes the  

Norros equation described above in Equation 3 and 4 above to simulate Internet data 

traffic on the CBB network and predict network demand. 

3.6.4.1 Advantages.  There are three advantages gained when using the Norros  

fractional Browning Motion model:  1) widespread acceptance, 2) ease of modeling, and 

3) accurate bursty traffic approximation. 

Widespread acceptance is important; it indicates a proven methodology with less 

risk.  Ease of modeling is important too.  All that is required is a few lines of software 
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code to implement the mathematical equation.  The difficulty comes in determining good 

input parameters that correctly characterize the traffic all through the network, but 

implementation of the algorithm is easy.  Accurate bursty traffic approximation is also 

important and fractional Browning motion gives a good estimation of bursty traffic; 

unfortunately, there has been a trend away from bursty traffic as more steaming media 

applications come on-line [Swift and Dagli, 2007b]. 

3.6.4.2 Disadvantages.  Section 3.6.1 describes the disadvantages in great  

detail.  These problems are especially acute when trying to model network traffic on 

large-scale NCS systems.  It becomes a difficult task to determine the parameters for 

initial input to the Norros equation and them continuously monitor for changes and 

update.  Accurately determining traffic characteristics to estimate self-similarity and 

long-range dependence, such as the Hurst parameter, are especially difficult [Bregni, 

2004].  The current CBB simulation uses the same characteristics globally and some of 

the parameters are based on terrestrial statistics due to the lack of sufficient, accurate, 

network data.   

The trend away from self-similarity can possibly best be explained by the 

changing nature of Internet traffic.  In the past it was estimated that web-surfing, which 

tends to be very bursty, accounted for over 95% of the traffic.  Today there are more and 

more peer-to-peer applications that have more constant mean-to-peak variance in data 

rates.  These applications are not bursty in nature and tend to consume high percentages 

of the available network bandwidth.  Even though these new less bursty applications are 

becoming more and more common and comprise a greater percentage of the traffic each 
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year, little is known about the traffic characteristics of these low bursty, high delay 

sensitive, applications [Qian et al., 2004]. 

Studies from the Pew Research Institution have found a major shift in user habits 

among Americans since the advent of higher speed broadband.  These users, estimated at 

roughly 21% of Internet users now, tend to engage in multiple activities when on the 

Internet [Horrigan and Rainie, 2005].  An example would be a user that is web surfing at 

the same time they are listening to streaming audio music and also engaging in Internet 

chat.  Surveys show these users are 3.5 to 4.75 times more likely to use steaming media, 

such as watching a video clip, listening to live music, or watching a movie, and 2.8 to 5.5 

times more likely to do downloading of games, video, pictures, music, or movies, in a 

given day [Horrigan and Rainie, 2005]. 

The trend is away from highly bursty web-surfing traffic.  New applications are 

appearing on a regular basis.  Interactive gaming, for example, is becoming more and 

more prevalent.  Another example is the production, uploading, downloading, and 

viewing of amateur video clips.  Approximately 16% of users have gone online to view 

web-cam images [Rainie, 2005b], 27% say they have downloaded either music or video 

files [Madden and Rainie, 2005], and 29% have downloaded podcasts from the web 

[Rainie and Madden, 2005a].  In addition, users of today are just as likely to go online to 

view web based classes or training as to download music [Horrigan and Rainie, 2005].  

Many of the major universities archive class lectures for later viewing and some even 

broadcast live. 

Figure 3-14 was taken from a data sample of 65 users with an average of 18 active 

at one time.  The figure illustrates the great variety in usage patterns between different 
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individuals.  Some have very bursty traces and others have fairly constant data rates for 

considerable spans of time. 

 

 

Eighteen Users on Average 

 

 

 

 

 

 

 

 

 

Figure 3-14  Individual Internet Traces 

 

 

3.6.5. Direction of Research.  Current research is applied towards improving  

upon existing methods based upon fractional Browning Motion, such as those postulated 

by Norros Theory, Kelly’s Equations, or D-BIND Theory. 

One proposal involves a different way of computing Brownian Motion.  “Instead 

of computing mono-fractional Browning motion we compute multi-fractional Browning 

motion by using a time dependant Holder function instead of the Hurst parameter.  The 
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value of the Holder exponent at a given time indicates the degree of traffic burstiness 

[Bianchi et al., 2004].”  

Another proposal involves using different profiles for TCP (transmission control 

protocol) and UDP (user datagram protocol) when calculating the Hurst parameter.  It 

also proposed working at the flow level so the fractal nature of Internet traffic can be 

ignored when computing Hurst parameter and a simple Poisson shot-noise process 

[Rodriques and Guardieiro, 2004]. 

Another proposal involves using a unified model rather than one model for each 

traffic flow as per Kelly’s equation.  It investigated use of dynamic weighted round robin 

scheduling [Li et al., 2004]. 

One proposal suggested that instead of D-BIND (deterministic bounding interval-

length dependent) method, using a confidence-level based statistical S-BIND traffic 

model for inputs to a hybrid gamma H-BIND algorithm.  This method may be good for 

both low and high bursty traffic [Qian et al., 2004]. 

Another proposed use of MAVAR (modified Allan variance) to estimate the 

power-law spectrum and thus the Hurst parameter, instead of log-scale diagram 

techniques based on wavelet analysis.  The MAVAR is a well-known time-domain tool 

originally studied for frequency stability characterization [Bregni, 2004]. 

Another proposal involved characterization based on flows rather than size.  

Current methods center around network elephants, which are large file transfers, and 

network mice, which are small volume transfers.  A new method was proposed based on 

streams, either Dragonflies or Tortoises.  Dragonflies composed 45% of Internet traffic in 

his studies, lasting less than 2 seconds, and carried 50-60% of data.  Tortoises last longer 
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than 15 minutes but only compose 2% of Internet traffic, yet they too carry 50-60% of the 

total data on a link [Brownlee and Claffy, 2002]. 

The major goal of these research efforts is an attempt to improve upon existing 

Internet traffic modeling techniques, or an attempt to make them applicable to more than 

one condition or environment at a time.  The direction of research is indicative of a 

generally well understood need to make Internet traffic models more flexible to change 

and different types of traffic.  An adaptive model would do just that. 

Research into the use of ANNs for modeling network traffic centers around real-

time network QoS management, sampling to predict data rates as they occur [Tong et al., 

2004; Yousefi’Zadeh, 2003].  This is the type not under investigation by this study which 

is instead concerned with prediction of demand for resource sizing.  These network 

management modeling methods depict network traffic as a time series: 

 

        X = (xi: I = 0, 1, 2…)                                                              (3.5) 

 

Given the current and past observed values of Xi, the model is used to predict a 

future value.  Most of this research, due to the changing complexity of the Internet when 

viewed as a whole, restricts the data under investigation to a single application, such as 

studies investigating use of ANNs to model MPEG (moving picture experts group) video 

streams [Bhattacharya et al., 2003; Chang and Hu, 1997; Doulamis et al., 2000; Doulamis 

et al., 2003] or to model traffic queuing delays [Yousefi’Zadeh, 2002]. 
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Research into the use of ANNs for modeling and simulating network traffic to 

determine resource sizing needs, expressing the traffic as composite bandwidth, as 

described in this paper, is largely unexplored. 

 

3.7. SECTION SUMMARY 

This section on the Internet and capacity modeling provided the background on 

how the Internet works, which is the medium through which NCS data flows to achieve 

network-centricity.  It also gave a description of the two most common Internet 

architecture models, the OSI and the TCP/IP.  Then encapsulation was described to 

provide understanding of the type of data being used for this research project and also 

details on traffic management which included performance parameters and QoS. 

This section also provided background on capacity modeling.  The problems 

encountered when modeling something as vast and complex as the Internet were 

described.  Then current modeling techniques were presented, along with advantages and 

disadvantages, and also research into improvements and enhancements.  Greater detail 

was given to the Norros model using fractional Brownian motion which is the model 

currently employed by CBB. 

Since current models tend to be self-similar and non-adaptive, it is becoming 

more and more difficult to accurately model global systems that are network-centric, 

complex, changing, and evolving.  This defines the need for an adaptive model based on 

computationally intelligent modeling techniques. 

The following section (Section 4) contains a literature review of artificial neural 

network modeling techniques which form the vehicle for modeling used in this 
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dissertation research project.  After reviewing in previous sections the nature of NCS 

systems and the networks that enable them, and how traffic is modeled on those 

networks, the next section discusses artificial neural networks, the method of 

computational intelligence uses by this dissertation research project for adaptive 

modeling of NCS network traffic. 
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4. ARTIFICIAL NEURAL NETWORK LITERATURE REVIEW 

4.1. RELEVANCE OF ANNS TO THIS RESEARCH PROJECT 

As systems become more and more complex, it became impossible for designers 

to conceptualize and develop solutions without computing software tools.  As these 

systems developed further levels of complexity, with the advent of the Internet and SoSs 

and NCSs, they developed dynamic characteristics, experience constant change, and 

often display unforeseen emergent characteristics and behaviors.  These added levels of 

complexity are driving the need for computationally intelligent software tools. 

ANNs (artificial neural networks) are a form of computational intelligence used 

for pattern recognition or data classification and subsequently for prediction.  They 

perform well in mediums where non-adaptive algorithms have difficulty, such as 

modeling non-linearities, generalizing to account for faulty input data, data mining, data 

compression, and signal processing for difficult situations such as voice recognition and 

image processing [Franklin, 2003].   The power of the ANN derives from its ability to 

learn (the means of adaptation) and to generalize [Haykin, 1999; Sohn and Dagli, 2003a].  

They are well suited for the challenge of modeling network traffic, especially traffic from 

highly complex NCS systems where traffic characteristics are constantly evolving and are 

difficult to model with conventional means. 

The literature review in this section includes: 1) an overview of typical ANN 

architecture, in particular the perceptron type neural network that was used in this 

dissertation research, 2) a description of alternative types of neural networks and also 

genetic algorithms, and 3) a review of successful example applications in the use of 

ANNs. 
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4.2. OVERVIEW OF ARTIFICIAL NEURAL NETWORKS 

Neural networks, also known as artificial neural networks or neurocomputing, are 

biologically inspired intelligent computing techniques that can be used very effectively 

for classification.  Unlike traditional computing techniques which simply process 

information, neural networks learn and adapt in a manner similar to the human brain.  

Neural networks are based on the following assumptions [Ham and Kostanic, 2001], 

[Fausett, 1994]: 

 

• Information processing occurs at nodes called neurons 

• Signals are passed between neurons over connection links 

• Each connection link has an associated weight 

• Each neuron applies an activation function 

 

For this study a simple feed-forward perceptron neural network with back-

propagation learning was used.  This type of neural network is fairly simple and easy to 

implement.  Other more complex types of neural networks were considered, but the gains 

in accuracy did not justify the added complexity.  The perceptron proved entirely 

capable.  In an operational environment, as long as performance is satisfactory, the 

simpler the better. 

4.2.1. Biological Construction.  The human brain is made up of basic cellular  

units called neurons.  These neurons have synapses and dendrites.  The dendrites are 

extensions of the neurons that connect to other neurons and allow for the passage and 

amplification of electrical pulses or brain signals.  The synapses are stops that either halt 
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the signal by remaining dormant or else fire to allow passage of a signal to other neurons.  

All together they form a network that selectively allows electrical pulse signals to travel 

about the brain. 

“When a connection (dendrite) is very strong, the importance of the neuron from 

which this connection comes has an important role in the network, or on the other hand, 

when a connection is very narrow, the importance of the neuron from which the 

connection comes from is less high.  Through this process the neural network stores 

information in the pattern of connection weights [Franklin, 2003].” 

For ANN models, the neurons are simulated by nodes and connections.  The 

nodes simulate the function of a synapses by use of an activation function which sums the 

inputs from connecting nodes and only fires if the total signal exceeds a threshold 

according to the properties of the activation function.  The dendrites are simulated by 

connections between nodes with weighting that mimics the strength of the dendrite.  The 

ANN structure, composed of a network of activation function nodes and weighted 

connections, is very similar to the brain with neurons consisting of synapses and 

dendrites. 

Training of the neural network simulates learning in the human brain.  The brain 

learns by perceiving the environment and storing information in memory.  The ANN 

learns by training patterns passed through the network causing memory through adjusting 

weights on the network connections. 

4.2.2. Basic Neural Network Structure.  Pioneers in the development of ANN  

techniques started with Warren S. McCulloch and Walter Pitts who developed the 

McCulloch-Pitts neuron based on the neuron of a brain, but without learning.  Then 
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Donald Hebb developed the first learning process based on information stored in the 

weights of networks.  Then Frank Rosenblatt developed the perceptron neural network 

with adaptive behavior.  Then Bernard Windro developed the adaline.  Webos developed 

the back-propagation algorithm for training.  Amari developed recurrent networks.  

Finally, John Hopfield started the age of modern neural networks with his publication on 

the applications and capabilities of neural networks for pattern recognition [Ham and 

Kostanic, 2001]. 

The basic perception feed-forward neural network with back-propagation learning 

is arranged with an input layer, then hidden layer or layers, and finally, an output layer.  

The neural network learns through training data sets.  An example neural network, a basic 

feed-forward perceptron with two hidden layers, is shown in Figure 4-1.  It has four 

attributes in the input vector, two hidden layers with activation functions, and an output 

layer with two elements in the output vector.  

 

 
Neurons with 
Activation 
Functions

Connections
with
Weights

First
Hidden
Layer

Second
Hidden
Layer

Output 
Layer

Output
Vector

Input
Vector

Neurons with 
Activation 
Functions

Connections
with
Weights

First
Hidden
Layer

Second
Hidden
Layer

Output 
Layer

Output
Vector

Input
Vector

 

 

 

 

 

 

 

Figure 4-1  Feed-Forward Perceptron Neural Network 
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Simple scalar weighting is applied to the network connections and activation 

functions are used at the nodes instead of biological thresholds.  The most common type 

is the sigmoid activation function [Franklin, 2003], Equation 4.1.  Other functions include 

the hard limit activation function, the linear transfer function, the log-sigmoid activation 

function, and the tangent-sigmoid activation function [Demuth and Beale, 2001, Ham and 

Kostanic, 2001]. 

 

xe
Y −+
=

1
1

                                                                                    (4.1) 

 

4.2.3. Back-Propagation Learning.  Neural networks learn and adapt through  

learning algorithms.  The most common means is through back-propagation.   The 

training data is passed through the system which then back-propagates to determine 

errors and then adapts by adjusting weights. “Back propagation performs a gradient 

descent in the solution space to reach a global minimum – the theoretical solution with 

the lowest possible error – along the steepest vector of the error surface [Sohn and Dagli, 

2003a].”  Once the errors become small enough to meet specified criteria, the neural 

network can operate without the back-propagation and be used for data classification or 

pattern recognition. 

The basic process involves computing the error signal by comparing ANN output 

to the known values.  The error signal is simply the output signal of output neurons minus 

a target output.  The error signal is used to drive corrective adjustments to the weights of 

the connection leading to each neuron to bring that neuron’s output signal closer to the 

target.  The process is repeated until the error signal falls within the limits of a defined 
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parameter or else reaches steady state.  Figure 4-2 illustrates the calculation of the error 

signal.  Equations 4.2 through 4.6 show the calculation process for updating the weights 

on the network connections [Ham and Kostanic, 2001; Haykin, 1999; Sohn and Dagli, 

2003a]. 
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Figure 4-2  Error Signal 
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The input is the same as the target:   Xk(n) = Tk(n)                         (4.2) 

 

The error is the target minus the output:   Ek(n) = Tk(n) – Yk(n) (4.3) 

 

Typical minimizing function:   ζk (n) = 0.5Ek
2(n)                         (4.4) 

 

Adjustment to the weight:   ΔWk (n) = ηEk (n)Xk (n)                         (4.5) 

 

Updated value of the weight:   Wk (n+1) = Wk (n) + ΔWk (n) (4.6) 

 

There are two types of learning for neural networks.  The first is called supervised 

learning, which is the process described in back-propagation, where solution training sets 

are supplied and error signals are determined to adjust the weights.  The second is called 

unsupervised learning, where the network is not provided any training sets and must 

develop its own solutions based on dependencies within the data [Ham and Kostanic, 

2001, Haykin, 1999]. 

 

4.3. OTHER TYPES OF NEURAL NETWORKS 

There are several other types of neural networks besides the standard feed-

forward perceptron.  These include counter-propagation neural networks, radial basis 

function neural networks, Kohonen self-organizing map neural networks, genetic 

algorithms, and hybrids. 
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4.3.1. Counter-Propagation Neural Networks.  Counter-propagation neural  

networks function as a bi-directional look-up table which maps in both directions 

between the input and output vector patterns when in training.  It has a big advantage 

over the feed-forward perceptron neural network in speed of convergence during training 

because of the bi-directional update of the weights.  A disadvantage is that is requires 

more neurons to achieve the same level of accuracy. 

Figure 4-3 [adapted from Sohn and Dagli, 2003a] illustrates the basic structure for 

a simple counter-propagation neural network which maps both ways.  The neurons in the 

cluster layer receive inputs from both X and Y input vectors and output to X and Y 

output vectors. 
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Figure 4-3  Counter-Propagation Neural Network 
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Counter-propagation neural networks are often used in place of feed-forward 

perceptron neural networks in cases where speed of the training becomes an issue.  

Sometimes they are used as prototypes and then later replaced with feed-forward 

perceptron neural networks. 

For the CBB traffic modeling case of performing classification, the basic feed-

forward perceptron neural network was selected over a counter-propagation neural 

network because there was no reason to suspect the ability to generalize might be a 

problem and for simplification purposes. 

4.3.2. Radial Basis Function Neural Networks.  Radial basis function neural  

network operates differently but are also well suited for both classification and pattern 

recognition and prediction.  The radial basis function neural network has only one hidden 

layer.  Instead of iteratively comparing the networks prediction for each sample with the 

actual known output, a radial basis function neural network computes Euclidean distance 

between the input vector and the center of basis functions of neurons in the hidden layer.   

Figure 4-4 [adapted from Sohn and Dagli, 2003a] shows the structure for a basic radial 

basis function neural network. 

This type of neural network would probably work just as well as a feed-forward 

perceptron.  The radial basis function neural network tends to have a simpler architecture 

in that it contains only one hidden layer but they often require more neurons in the hidden 

layer than the feed-forward perceptron neural network.  Because they only need one 

hidden layer they are often easier to design and to train.  They work best with lots of 

training vectors and are not as well suited to larger applications. 
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Figure 4-4  Radial Basis Function Neural Network 

 

 

For the CBB traffic modeling case the basic feed-forward perceptron neural 

network was chosen over the radial basis function neural networks because of the variety 

of potential categories.  With the radial basis function network a large number of training 

vectors for each and every category is required and this would increase data collection 

requirements. 

4.3.3. Kohonen Self-Organizing Map Neural Networks.  The SOM (self- 

organizing map) was developed by Professor Teuvo Kohonen of the Academy of Finland 

[Kohonen, 1989].  This is a clustering technique that uses unsupervised neural network 

algorithms.  Like other types of neural networks, the SOM has the ability to learn from its 

environment and adapt.  The output is a topological map of features.  In the SOM every 

input is mapped to every neuron.  Figure 4-5 illustrates a SOM structure [adapted from 

Ham and Kostanic, 2001]. 
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The main use of SOM neural networks is to develop clusters or categories that 

might not be obvious to the observer.  The key advantage is that the output does not have 

to be known beforehand and no target variables are needed.  SOM neural networks are 

also useful for mapping a multi-dimensional data into two dimensions which is easier to 

visualize. 
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Figure 4-5  Mapping of Neurons in a Kohonen SOM 

 

 

For a given input set or vector the SOM finds the closest vector in the weight 

matrix.  The SOM then finds all weight vectors within a specified range and updates only 

those vectors within that range.  Then another input is run through the network.  This 
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continues with decreasing learning rates and range until the network converges.  Figure 

4-6 illustrates the convergence [adapted from Ham et al., 2001]. 
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Figure 4-6  Convergence of Mapping in a Kohonen SOM 

 

 

The SOM learns both the distribution and the topology of the input vectors.  The 

neurons can be arranged in different topologies, such as gridtop, hextop, or random.  The 

topology is reduced as the network converges.  Upon completion of training, the SOM 

can categorize inputs onto the topology [Fausett, 1994, Ham and Kostanic, 2001; Swift 

and Dagli, 2004a]. 
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For the CBB traffic modeling case, the basic feed-forward perceptron neural 

network was chosen over the SOM neural networks because of the ready availability of 

well defined outputs that could be used for supervised learning and because the 

simulation model was based on classification and prediction rather than clustering or 

mapping, which is the main function of a SOM neural network. 

4.3.4. Other Techniques.  Some other methods that can be used for  

classification and prediction include decision trees, genetic algorithms, K-means, 

Bayesian classification, fuzzy logic, and others.  When looking at the different types of 

classification methods one has to not only consider accuracy but also ease of 

implementation, computational speeds, robustness in the face of noise, scalability, and 

interpretability. 

4.3.5. Genetic Algorithms.  Genetic algorithms are evolutionary algorithms  

that use biologically derived techniques such as inheritance, mutation, natural section, 

and crossover.  Candidate solutions are called individuals or chromosomes.  The solution 

state of individuals is typically encoded as a binary valued string where each bit 

represents a gene and the vector or string represents a chromosome.  The optimization 

algorithms act on a population of individuals to cause evolution towards a better solution 

through natural selection of the fittest.  The evolution starts from a population of 

completely random chromosomes.  Each evolution is called one generation.  The fitness 

of the population is evaluated.  Based on fitness some individuals are selected.  The 

chromosomes of the individual are modified by mutation or recombination, and a new 

population of offspring is formed.  This new population is then acted on during the next 

generation or iteration of the algorithm in a similar manner.  Termination conditions 
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include things like – a fixed number of generations, a chromosome satisfies minimum 

criteria, computing time limit reached, or successive iterations not producing better 

results [Ham and Kostanic, 2001; Li et al., 2005; Sohn and Dagli, 2003a].  Figure 4-7 

[adapted from Sohn and Dagli, 2003a] illustrates the flow. 
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Figure 4-7  Genetic Algorithms 
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It is very possible that genetic algorithms would be a useful tool for the CBB 

traffic modeling case and would be as good as neural networks.  Genetic algorithms are 

known for rapidly locating good solutions even for difficult search spaces.  However, 

there would be several difficulties to overcome.  Genetic algorithms do not operate well 

on dynamically changing data sets.  They tend to converge towards early solutions which 

may not be valid for later data.  This would be a problem with the complex CBB case 

where the complexity of data requires multiple large data sets to cover all the possibilities 

and the initial data fed into the system might be region by region rather than a global mix.  

New techniques for solving this short coming include increasing genetic diversity to 

prevent early convergence by increasing the probability of mutation or by injecting 

random elements into the gene pool called random immigrants.  Another difficulty lies in 

determination of the fitness function.  Genetic algorithms cannot solve the problem if 

there is no way to effectively judge the fitness of an answer.  For the CBB traffic model 

case, which is global, it is hard to visualize a single good fitness function, which cannot 

be a simple mathematical function but needs to in some way represent performance 

relating to the real problem [Ham and Kostanic, 2001; Li et al., 2005; Sohn and Dagli, 

2003a]. 

4.3.6. Evolving Critical Neural Network Architectures.  The evolving  

critical neural networks architecture developed by Dr. Sunghwan Sohn involves the use 

of multiple feed-forward neural networks and also genetic algorithms [Sohn and Dagli, 

2003a].  The neural networks are connected by way of a basic schema for combining 

outputs [Li et al., 2005; Sohn and Dagli, 2003a, Sohn, 2003b] as seen in Figure 4-8 

[adapted from Sohn and Dagli, 2003a]. 
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Figure 4-8  Hybrid of Neural Networks and Genetic Algorithms 

 

 

Genetic algorithms are used to find an optimized feature subset and to find an 

optimal network architectures and for combining.  Using genetic algorithms the 

individual neural network is independently translated into a network structure, and then 

trained by back-propagation with a fitness measure.  In the combining phase all the 

individual or selected individual networks in the last generation are used as sub networks 

and aggregated to determine a final result.  Crossover is used to exchange architecture 

elements between neural networks.  Mutation changes feature selection and links 

[Ahmed, et al., 2004, Li et al., 2005; Sohn and Dagli, 2003a].  Figure 4-9 [from Sohn and 

Dagli, 2003a] illustrates a genetic algorithm architecture. 
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Figure 4-9  Evolving Critical Neural Networks 

 

 

This type of evolving neural networks architecture would add several features that 

would be valuable in accommodating changes in flight or customer behavior. 

 

• More adaptable 

• Easier to set up 
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• Greater accuracy 

• More robust 

• Greater scalability 

 

There are some limitations.  Genetic algorithms in Dr. Sohn’s evolving neural 

network architecture require long learning times when trying to optimize the neural 

network architecture.  With large data sets or large neural networks the time required for 

obtaining convergence could become excessive [Ahmed, et al., 2004, Li et al., 2005; 

Sohn and Dagli, 2003a]. 

This type of evolving critical neural network architecture would have a better 

application for modeling Internet traffic in an operational setting.  It could prove valuable 

in the case where you are monitoring the traffic real-time and trying to adjust the capacity 

on a real-time basis.  In this case the real-time traffic might be quite similar to the stock 

market, with a predicable component and a non-predictable component.  It would take 

some research to tell.  If it was, then using this adaptive critical neural network 

architecture with reinforcement learning might be advantageous over conventional 

trending or statistical methods. 

 

4.4. SUCCESSFUL APPLICATIONS OF ANNs 

“The field of neural  networks is now extremely vast and interdisciplinary, 

drawing interest from researchers in many different areas such as engineering (including 

biomedical engineering), physics, neurology, psychology, medicine, mathematics, 

computer science, chemistry, and economics [Ham and Kostanic, 2001].” 
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4.4.1. Electronics and Communications.  Neural networks have been  

successfully used for code sequence prediction, integrated circuit layout, failure analysis, 

voice synthesis, translation, vision systems, image and data compression, and automated 

information services [Demuth and Beale, 2001]. 

4.4.2. Entertainment.  Neural networks have been successfully used for  

animation and special effects, speech recognition, and text to speech synthesis [Demuth 

and Beale, 2001]. 

4.4.3. Financial.  Neural networks have been successfully used for loan  

appraisals, mortgage screening, bond ratings, credit analysis, insurance policy 

applications, market analysis, bond ratings, to identify abnormal credit card activity, and 

for advise when trading on the stock market [Demuth and Beale, 2001; McNellis, 2005]. 

4.4.4. Manufacturing and Design.  Neural networks have been successfully  

used for manufacturing process control, machine diagnostics, inspection systems, quality 

analysis, maintenance analysis, robotics, [Demuth and Beale, 2001]. 

4.4.5. Medical.  Neural networks have been successfully used for breast  

cancer analysis, EEG (electro-encephalogram) and ECG (electro-cardiogram) analysis, 

and prosthesis design [St. Clair et al., 2000]. 

4.4.6. Military.  Neural networks have been successfully used for weapon  

steering, target tracking, sensor recognition, noise suppression, and signal and image 

identification [Demuth and Beale, 2001]. 
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4.4.7. Transportation.  Neural networks have been successfully used for  

aircraft autopilot control systems, flight path simulation, aircraft and automobile fault 

detection, automotive consumer warranty analysis, and truck routing and scheduling 

systems [Demuth and Beale, 2001]. 

4.4.8. Novelty Applications.  One study demonstrated the effectiveness of  

using neural networks to automate the detection of rail defects to reduce problems 

associated with rail maintenance [St. Clair et al., 2000]. 

Another study demonstrated a neural network method for classifying signal 

modulation types.  This allows a receiver to autonomously choose among modulation 

types in order to extract the correct information from a signal [Shull and St. Clair, 2000]. 

Another study demonstrated how a Kohonen self-organizing map could be 

applied something as common as individual yard care [Swift and Dagli, 2004a].  Data 

was collected on the health of the yard by splitting up the grassy areas into a grid.  The 

grass was rated in the following characteristics: length of grass, density of grass, presence 

of clover or dandelion weeds, presence of moss, and the color of the grass.  Figure 4-10 

[from Swift and Dagli, 2004a] illustrates the lawn grid and the development of the input 

attributes. 

The SOM developed its own classification categories and a topology map.  The 

output was information a lawn care provider could use to tailor application of expensive 

yard care products, such as: water, fertilizer, lime, weed killer, and moss out.  Figure 4-11 

[from Swift and Dagli, 2004a] illustrates the mapping. 
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Figure 4-10  Lawn Grid for a SOM Neural Network 
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Figure 4-11  Topology Mapping from a Kohonen SOM 
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4.4.9. Fields of Research Emphasis.  Editors for the Neural Networks 

Journal, the official journal of the INNS (International Neural Network Society), the 

ENNS (European Neural Network Society), and the JNNS (Japanese Neural Network 

Society), discuss topics of particular interest in Special Issues.  In 2005 there were five 

special issues:  1) applications of learning and data-driven methods to earth sciences and 

climate modeling, 2) brain mechanisms of imitation learning, 3) advances in self-

organizing maps, 4) neurobiology of decision making, and 5) brain and attention.  In 

2007 there were four special issues:  1) echo state networks and liquid state machines, 2) 

computational intelligence in earth and environmental sciences, 3) advances in neural 

networks research, and 4) consciousness and brain [Grossberg et al., 2007].  The 

application of neural networks for modeling network traffic bandwidth for traffic as a 

whole has been mostly unexplored. 

 

4.5. SECTION SUMMARY 

This section on artificial neural networks provided the background on the 

importance and use of ANNs, the type of computational intelligence used in this 

dissertation research project.  It gave a description of the structure of ANNs, relationship 

to the human brain, and learning methods.  Particular attention was given to feed-forward 

perceptron ANNs, the type used in this research.  Other types of ANNs, such as counter-

propagation, radial basis function, Kohonen self-organizing maps, genetic algorithms, 

and evolving critical neural networks were also described. 

Because network traffic on large-scale NCSs is so complex and subject to change, 

mathematical algorithms are not adaptive or scalable enough to maintain accuracy.  This 
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defines the need for adaptive modeling techniques based on computational intelligence, 

such as ANNs, with the ability to adapt through learning and to generalize, allowing for 

greater accuracy in prediction of network bandwidth needs. 

The following section (Section 5) contains a literature review of data mining 

techniques which form an integral part of this dissertation research project.  After 

reviewing in previous sections the nature of NCS systems and the networks that enable 

them, and how ANNs operate, the next section evaluates data mining, the means by 

which network traffic data can be evaluated to see if an adaptive ANN system could be 

deployed. 
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5. DATA MINING LITERATURE REVIEW 

5.1. RELEVANCE OF DATA MINING TO THIS RESEARCH PROJECT 

In order to model or build a computationally intelligent ANN model for network 

traffic on a global NCS, an initial first step involves extracting the necessary data and 

transforming it into a form compatible with ANN simulation techniques. 

The data mining process was used in this research project to not only obtain, 

transform, and evaluate the data; but also to extract knowledge from the data and to 

develop relevant input vectors for use in training and operating the ANN.  The ability to 

successfully categorize the data, not only gives the ability to vary the traffic model, but 

also to evolve the model as the NCS evolves. 

The literature review in this section includes: 1) an overview of data mining, 2) a 

description of the data mining process, 3) a description of important tools, techniques, 

and algorithms, and 4) a review of successful example applications in the use of data 

mining, including the CBB case study.   

 

5.2. OVERVIEW OF DATA MINING 

Data mining is a process for the discovery of new information from large data 

sources.  Data mining is typically used in situations where the evaluation of information 

would be too complicated or extremely time consuming via conventional means and 

which, for all practicable purposes, render human analysis nearly impossible.  Data 

mining emerged as a discipline with the growth of databases technology capable of 

storing vast quantities of data.  

 



 100

KDD (knowledge discovery in databases) is sometimes used as a name for the 

same process as data mining, since the purpose of data mining is not merely to mine or 

extract data, but to also to analyze that data for the development of knowledge.  Some 

literature differentiates between the two, referring to KDD as the entire process and data 

mining to the modeling step only, but for the purposes of this dissertation they will be 

considered the same. 

Usama Fayyad, a recognized early pioneer and expert in the field of data mining, 

co-chair of the First International Conference on Knowledge Discovery and Data Mining 

in 1994, 1995, and 1996, editor-in-chief of the journal, Data Mining and Knowledge 

Discovery, said, "Knowledge Discovery in Databases (KDD) and Data Mining are 

concerned with the extraction of high-level information (knowledge) from low-level data 

(usually stored in large databases) [Fayyad, 1997].”  It has also been described by 

recognized experts as “The nontrivial extraction of implicit, previously unknown, and 

potentially useful information from data [Frawley et al., 1992].” 

As society entered the knowledge age scalability became a problem.  The 

technology for collecting and storing data, mostly through advances in database 

technology, has far outpaced traditional methods of data analysis based mostly on human 

interaction.  Although databases provide lookup capabilities for the extraction of specific 

information, the ability to understand and analyze is beyond the scope of database 

programs [Fayyad et al., 1996a]. 

Han and Kamber claim, “The major reason that data mining has attracted a great 

deal of attention in the information industry in recent years is due to the wide availability 
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of huge amounts of data and the imminent need for turning such data into useful 

information and knowledge [Han and Kamber, 2001].” 

 

5.3. DATA MINING PROCESS 

The entire data mining process can be described in a series of steps.  First is 

selection, resulting in target data, then preprocessing, resulting in preprocessed data, then 

transformation, resulting in transformed data, then data mining, resulting in patterns and 

or models, and finally, interpretation/evaluation, resulting in knowledge.  Figure 5-1 

illustrates the entire process [Fayyad et al., 1996b]. 
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5.3.1. Selection.  This is the first and possibly most important step in the  

entire process.  In the selection step relevant data is extracted from the source.  According 

to the Two Crows Corporation® data mining document [Two Crows, 1999] there are two 

keys to success in data mining.  The first is understanding the problem you are trying to 

solve and the second is using the right data. 

A mistake in the selection can totally skew results.  If important relevant 

information is not included in the selection, then the results would be inconclusive or 

invalid.    Conversely, if extraneous information is included in the selection, then the 

process becomes larger and more expensive than needed, and the results could also be 

inconclusive or invalid. 

The key to selection is a goal or purpose.  The user must have an idea of the 

expected outcome.  There are two types of outcomes, descriptive and predictive [Ham 

and Kostanic, 2001].  Descriptive outcomes involve identifying and determining 

applicable characteristics and patterns from the data.  Predictive outcomes involve using 

the patterns and characteristics to predict future behavior. 

5.3.2. Preprocessing.  Preprocessing, also called cleaning, is a preparatory  

step where the selected data is manipulated to remove errors and inconsistencies in the 

data set.  A major source of error is noise, usually introduced by the data collection 

system.  True noise, different from outlier data, has no relationship to the actual data 

being collected and should be filtered out as much as possible.  A good example would 

be background noise generated by the device motors of a tape recorder.  Suspect or 

inconsistent data must also be addressed.  A smaller, but purer data set is better than a 

larger data set with erroneous information.  Erroneous data would include any data 
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outside the normal which would indicate errors or inappropriate information.  Examples 

might be atypical situations, such as fault conditions, or atypical environmental inputs.  

Preprocessing also includes filling in missing values or throwing out incomplete sets. 

5.3.3. Transformation.  Transformation is preparation of the data set for use  

by the analysis tools.  This includes activities such as smoothing, aggregation, 

generalization, normalization or attribute/feature construction.  Smoothing is typically 

done by binning.  Aggregation, or data reduction, is combining data.  Generalization is 

replacing with higher level concepts.  Normalization is scaling.  Attribute/feature 

construction is adding additional attributes [Han and Kamber, 2001]. 

5.3.4. Data Mining.  The data mining step involves the use of analytical data  

tools to evaluate the data sets and extract and organize relevant information.  There are 

intelligent methods and statistical methods.  The intelligent methods include machine 

learning tools such as C4.5 decision trees and also neural networks.  The statistical 

methods include tools that perform correlation, regression, and clustering. 

5.3.5. Interpretation and Evaluation.  The data mining process does not  

replace the need for interpretation and evaluation.  Data mining is merely a powerful tool 

that improves the capabilities of the analysis but does not remove the need for a skilled 

analysis [Two Crows, 1999].  During this step the results of the data mining is turned into 

knowledge.  One key aspect of this step is presentation of the results in a way that 

successfully conveys the knowledge learned in a manner that is informative and easy to 

understand. 
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5.4. DATA MINING TOOLS AND ALGORITHMS 

There are many kinds of tools that can be used for data mining and they fall into a 

variety of categories [Ham and Kostanic, 2001]:  There is descriptive, where you 

determine data characteristics or features.  There is association analysis, where you 

develop association rules and determine support and confidence for outcomes.  There is 

classification and predictions, where you describe and predict.  There is cluster analysis, 

where you group.  There is outlier analysis, where you determine objects that don't 

comply with general behavior.  There is evolution analysis, where trends are evaluated 

over time.  There is interestingness, where you evaluate understandability, validity, 

usefulness, and novelty. 

There is a great variety of tools available for each of these categories and the key 

is to know what is available and the types of results each can provide.  The following 

sections provide a brief description of some of the most useful tools available. 

5.4.1. CRISP-DM.  The CRISP-DM (cross-industry standard process for  

data mining) approach can best be described as a methodology.  It represents an attempt 

to define a cross industry standard process for data mining.  The user is lead through a 

hierarchical process, from the top level to the bottom level, in building a model to 

perform data mining.  The following paragraphs define the CRISP-DM methodology for 

setting up a data mining project [Chapman et al., 2000]. 

Top level data mining tasks are organized into phases.  The phases are as follows:  

1) Business understanding - what are the objectives and requirements from a business 

perspective, 2) Data understanding - the collection and evaluation of the data, 3) Data 

preparation - preparation of the data, 4) Modeling - use of a tool or tools for automated 
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analysis, 5) Evaluation - testing validity of the model, and 6) Deployment - using the 

model and also presentation of results.  Figure 5-2 [from Chapman et al., 2000] illustrates 

the CRISP-DM phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2  CRISP-DM Top Level Phases 

 

 

The second level is called the generic level, where all the top level phases are 

broken down into specific tasks general enough to cover all the possible situations.  The 

third level is called the specialized level, where action tasks are developed to accomplish 
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each of the second level general tasks.  The fourth level is called process instance, where 

a record of the actions, decisions and results of an engagement are recorded. 

5.4.2. WEKA.  The Weka software collection is composed of machine  

learning algorithms for data mining.  Weka was developed at the University of Waikato 

in New Zealand.  Weka stands for Waikato environment for knowledge analysis.  The 

program is freely available on the World Wide Web at 

http://www.cs.waikato.ac.nz/ml/weka/ [Witten and Frank, 2000]. 

5.4.3. C4.5 Decision Tree.  The decision tree is an attribute based  

classification method.  The C4.5 program generates a decision tree to perform the 

function.  Each data set falls through the decision tree and takes a path that ends in a 

class.  The decision tree is self-generated based on a determination of highest gain paths.  

There are only two components to a decision tree.  The first component is a decision 

node.  At the decision node a test is performed on a single attribute.  One path or another 

is then taken depending upon the outcome.  The second component is a leaf.  This is the 

end of a particular path and is the resulting class of the data being tested [Quinlan, 1992].  

Figure 5-3 illustrates a fictional decision tree based upon polling data about voter 

characteristics comparing potential candidate the person would vote for.  The tree could 

be written in logical statements as follows: 

 

if age < 25 

   if not employed then vote for B 

   else if employed 

      if in school none then vote for B 

 

http://www.cs.waikato.ac.nz/ml/weka/
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      if in school part time then vote for A 

      if in school full time then vote for B 

else if age > 25 

   if not male then vote for B 

   else if male 

      if owns < 10K stock then vote for B 

      else if owns > 10K stock then vote for A 
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Figure 5-3  Voter Preference Decision Tree 
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From the decision tree a classification category is produced.  A sample set run 

through the decision tree will yield the number of cases reaching each node and the 

number of classification errors at the node. 

5.4.4. Principle Component Analysis.  PCA (principle component analysis)  

is a data compression method.  The object of PCA is to reduce the dimensionality of the 

data set while still capturing the variability.  PCA projects a data set onto a smaller 

dimension space with highly independent attributes.  The process consists of capturing 

principle components by determining the largest eigenvector of the covariance matrix.  In 

most cases a small number of principle components can capture 90% or more of the 

variance [Hand et al., 2001]. 

5.4.5. Regression.  Regression techniques are a statistical method of  

evaluating data.  Regression techniques include linear regression, linear least squares, 

polynomial regression, exponential regression, and logistic regression.  Regression is 

often used for data sets with complicated attributes.  The method tries to determine the 

relationship between independent variables by means of a function.  Outputs include the 

goodness fit, linearity, homoscedasity, analysis of variance, and probabilities [Burden and 

Faires, 2004; Gillett, 1976]. 

5.4.6. Apori Approximation.  Apori approximation is used for pruning.  This  

method counts the items to determine large groupings.  Next it counts pairs and again 

determines large sets.  Then it counts triplets and on and on.  Every subset of a frequent 

item set has to also be frequent, if not it is dropped [Ham and Kostanic, 2001].   
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5.4.7. Artificial Neural Networks.  ANNs were previous described in Section  

4 of this dissertation.  The feed-forward perceptron ANN with back-propagation training 

is the type of ANN selected for this dissertation research project to use for modeling NCS 

network traffic.  It was chosen over other types of ANNs, like counter-propagation, radial 

basis function, Kohonen self-organizing maps, genetic algorithms, and evolving critical 

ANNs, mainly because of its simplicity and ease of use.  The perceptron type of neural 

network proved capable of performing the required tasks so the more complicated ANNs, 

even though more efficient in some applications, were not necessary. 

5.4.8. K-Means.  This is a clustering algorithm based on statistical equations.   

K equates to the number of clusters or groups.  The algorithm determines clusters so that 

the centers of the clusters are as widely separated as possible [Ham and Kostanic, 2001]. 

 

5.5. SUCCESSFUL APPLICATIONS OF DATA MINING 

There have been many successful applications of data mining tools, techniques, 

and processes. This has been especially true in recent years when the use of data mining 

has grown beyond the domain of computer scientists, statisticians, and business analysts 

[Kohavi and Provost, 2001]. 

Kohavi proposed five criteria that could be applied to a project to evaluate the 

potential for successful application of data mining [Kohavi and Provost, 2001]: 

 

• Data with rich descriptions 

• Large volumes of data 

• Controlled and reliable data collection 
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• Ability to evaluate results 

• Ease of integration with existing processes 

 

5.5.1. Text and Graphics Applications.  Much research has gone into the  

development of text searching tools for data mining.  A entire subfield called text data 

mining has emerged to develop tools and techniques [Baldi et al., 2003; Castillo and 

Serrano, 2003; Hearst, 1999; Zheng et al., 2003].  A follow up application was to apply 

data mining techniques to graphics search engines based on vectors like those found in 

CAD (computer aided design) drawings [Fisher and St. Clair, 2001].  Data mining is also 

being applied to other forms of multimedia, such as:  MPEG, videos, audio recordings, 

photos, and others [Petrushin et al., 2003].  Each application under development tends to 

spin off a multitude of other application uses.  For example, video data mining uses have 

moved from the produced commercial data sources, such as news videos, recordings, and 

movies, to private individual data sources, such as webcams, surveillance videos, and 

home recorded videos [Petruchin et al., 2003]. 

5.5.2. Electronic Commerce.  Electronic commerce has emerged as an  

important field that benefits greatly from the use of data mining techniques [Kohavi and 

Provost, 2001; Menasce and Virgilio, 2000].  One of the main reasons is that the data 

from electronic commerce is so easily collectable, and there is so much more information 

to be mined compared to live commerce, and the results have direct application to the 

businesses involved. 
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5.5.3. Web Content.  Data mining is being successfully applied to evaluate the  

effectiveness of web content and also to provide tools for search engines to use [Baldi et 

al., 2003; Chau et al., 2002; Menon and Dagli, 2003; Scime, 2004].  This has become 

increasing important as the types and structure of web pages proliferates. 

5.5.4. Fraud Detection.  Data mining has been also been successfully  

employed in the use of fraud detection.  Techniques of back-propagation neural networks, 

Bayesian analysis, and C4.5 algorithms have all been used [Phua et al., 2003].  This is a 

valuable application for insurance and credit card companies. 

5.5.5. Geospatial Information and Mapping.  Data mining is also being used  

to evaluate geospatial information being collected by advanced technology for remote 

sensing and surveying.  These data mining tools have the ability to automatically 

transform masses of geographic data into useful information [Buttenfield et al., 2000]. 

5.5.6. Network-Centric Systems.  Large-scale network-centric systems, by  

their very nature, tend to produce large amounts of data that are conductive to the 

application of data mining techniques.  NCSs are dependent on the continuous flow of 

these large amounts of data to all the various units throughout the system.  Being able to 

analyze, categorize, and understand this data is essential to the development, operation, 

and management of the NCS.  The CBB NCS is a good example. 

5.5.7. Connexion by Boeing NCS.  Data mining techniques proved very  

effective in the evaluation process of analyzing data flowing through the CBB system.  

The amounts of data being collected on a daily basis were beyond the scope of evaluation 

by human or statistical means.  See the next section (Section 6) for a complete description 

of how the data mining process was applied to CBB.  Comparing CBB to the five criteria 
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suggested by Kovhavi for determining if projects stand to benefit from data mining 

[Kovhavi et al., 2001]: 

 

• The header data being collected on each user transaction had a large 

variety of useful attributes for evaluation. 

• There was a tremendous amount of data being collected every day.  Files 

containing 15 minute segments of transactions were 10-250 MB each and 

contained over 65,000 lines each. 

• Network sniffers were able to collect reliable data of sufficient quantities 

for evaluation. 

• Perl and Matlab scripts were developed for evaluation and consistent 

results were produced. 

• No new data collection processes were needed. 

 

5.6. SECTION SUMMARY 

In this section on data mining the groundwork was laid for the process to be used 

in the CBB case study for extracting knowledge from raw data flowing through the CBB 

network.  A description of data mining was provided, which is the “extraction of high-

level information (knowledge) from low-level data (usually stored in large databases) 

[Fayyad, 1997].” 

Each step in the process was described, including selection, preprocessing, 

transformation, data mining, and interpretation/evaluation.  Important tools, processes, 

and algorithms of data mining were reviewed: CRISP-DM, Weka, C4.5 decision tree, 
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principle component analysis, regression, apori approximation, neural networks, and K-

means.  Successful example applications of data mining were presented. 

In previous sections the composition of NCSs, the network that enables their 

complex operations, ANNs for adaptive modeling, and now data mining for extraction 

and evaluation of the data were all reviewed.  In the following section (Section 6) the 

details of the CBB NCS used for this case study is described and then in the following 

section (Section 7) data mining techniques covered in this section are applied to the CBB 

NCS in an attempt to extract useful knowledge and prepare the data for ANN simulation. 
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6. CONNEXION BY BOEING REVIEW 

6.1. RELEVANCE OF CBB TO THIS RESEARCH PROJECT 

CBB (Connexion by Boeing) was chosen as the case study network for this 

research for a variety of reasons.  First, CBB is an excellent example of an operating, 

large-scale, complex, network-centric system.  It exhibits the power and benefits of being 

network-centric enabled.  It also faces the problems that challenge a complex NCS, one 

of which is the difficult task of building and maintaining accurate models and 

simulations.  CBB is a system-of-systems.  CBB is also an NCS, providing global 

broadband network services to its customers.  The data collection and network traffic 

capacity modeling features of the CBB system are challenged by the constant change and 

evolving characteristics of the traffic stream.  Because of all this, CBB stands to benefit 

from an adaptable architecture for modeling network data traffic such as the ANN based 

simulation proposed by this dissertation. 

Another reason CBB was chosen as the case study for this dissertation was 

because access to actual CBB network data was made available to the University of 

Missouri - Rolla for this research project.  CBB presented the unique opportunity to 

perform research on a new, previously unstudied, emerging NCS system, one that is 

typical of the future in large-scale systems dependant upon network-centricity.  It was an 

opportunity to perform research in an emerging field.  The data being investigated, 

mobile Internet data traffic, had not previously been made available for academic 

research. 

The literature review in this sections includes: 1) a review of the CBB System, 

which includes the overall architecture, 2) a description of the services provided to 
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customers, 3) a description of the major subsystems, which includes the airborne segment 

located upon the airplanes, the space segment satellites and transponders and a brief 

introduction to orbital mechanics, and also the terrestrial segment with the ground 

stations, data centers, and customer service centers, 4) a description of the CBB data 

collection system, and 5) a description of the current CBB network capacity simulation 

which is not very adaptive. 

 

6.2. OVERVIEW OF THE CBB SYSTEM 

CBB is a MISP (mobile information services provider) that was launched by the 

board of directors of the Boeing Company in February 2000 and in October 2000 CBB 

became a separate business unit of the Boeing Company.  CBB was created to address the 

market created by the connectivity needs of air travelers (business, recreational, and 

military), who in the past had been isolated from the ground while traveling.  To 

accomplish this CBB developed a global NCS to provide two-way, high-speed, 

broadband, Internet and Intranet data services for passengers and crew on CBB equipped 

aircraft. 

The CBB system provides a shared broadband satellite link that operates as a 

party-line in which users share satellite transponder links.  The network uses existing 

satellites in geosynchronous orbit, existing ground uplink/downlink stations, and existing 

DBS satellite TV networks.  Network control is managed through the CBB NOC 

(network operations center).  Figure 6-1 illustrates the overall CBB Block 1 System 

architecture. 
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Figure 6-1  CBB Block 1 Architecture 

 

 

It should be noted that CBB commercial service to airline customers officially 

ended on January 1, 2007.  However, the service is still continuing for the government 

component of the business and is called Boeing Broadband SatCom Network.  The center 

of operations is at the NOC still in Kent, Washington.  The service was discontinued for 

financial reasons and not for technical reasons.  The CBB network was up and 

operational.  All the data collected from the CBB network for this dissertation research 

project was collected prior to discontinuation of the commercial service and the 

descriptions provided in this section apply to that period of operation.  The research is 

still applicable for proving the feasibility of adaptive ANN architectures for modeling 

network traffic on large-scale global NCS, which CBB was. 
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6.3. SERVICES AVAILABLE TO CUSTOMERS 

CBB provides one group of services to the aircraft for operational purposes and 

another group of services to the passengers on-board the aircraft.  The passenger services 

can be grouped into the data services or television services. 

6.3.1. Passenger Data Services.  The CBB passenger data service operates  

similar to standard ISPs (Internet service providers) on the ground.  Depending on how 

the aircraft is configured, the passenger connects to the aircraft LAN (local area 

network), known as a CDS (cabin distribution system), via wireless connection from their 

laptop or by plugging their laptop computer into a standard RJ45 port located by their 

seat.  The passenger then opens a web browser (such as Netscape®, Microsoft Internet 

Explorer®, or Mozilla Foxfire®) and the CBB splash page, the home page portal, 

automatically opens.  A connection is placed via satellite and ground station links to the 

CBB data center which provides an ISP interface to the Internet.  The passenger also has 

the capability to connect to corporate or government Intranets through standard VPN 

(virtual private network) protocols.  Some of the standard passenger uses include: 

 

• Internet access for web-surfing 

• Access to personal and corporate e-mail accounts 

• Access to private restricted corporate Intranet files 

• Access to government/military secure nets 

• Travel and destination information 

• Airline information 

• Internet chat service 
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• File transfer protocol for sending and receiving files 

• Interactive Internet gaming 

• Streaming media services, audio and video 

• Telnet connectivity 

• Voice over IP connection 

• Video teleconferencing, for government and private jets only 

 

6.3.2. Airline Data Services.  Data services are also available to the airline for  

use in operational activities.  These services are restricted to airline crew members in the 

course of conducting official airline business.  Some of the standard airline uses include: 

 

• Scheduling 

• Weather updates 

• Cabin crew applications 

• Aircraft health monitoring 

• Flight data services 

 

6.3.3. Passenger Television Services.  Live television is also available to the  

passengers.  The CBB TV service is available by satellite link through airline 

subscription to DBS (direct broadcast satellite) TV providers (such as DirecTV® or Dish 

Network®).  Free to air television programming that resides within the CBB frequency 

bandwidth is also available.  Live TV is routed from CBB antennas and receivers to the 

aircraft IFE (in flight entertainment) system for viewing on live TV displays located in 
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various zones within the aircraft.  These zones can be configured individually for 

independent viewing of different TV channels within the zones.  Channel selection is via 

remote control or from a master control panel. 

 

6.4. AIRCRAFT SEGMENT 

The CBB trials utilized Block I hardware on the subject aircraft.  Block I aircraft 

hardware consists of three major subsystems – the AS (antenna subsystem), the RTS 

(receive and transmit subsystem), and the CS (control subsystem).  Table 6-1 shows the 

standard approximate overall weight and power consumption numbers. 

 

Table 6-1  Block I Specifications 

System Weight (lbs) Power (Watts) 

AS 350 1,800 

RTS 100 600 

CS 50 250 

Install Provisioning 450 0 

Totals 950 2,650 

 

 

Data is passed to and from the aircraft and corresponding satellite via the AS.  

Data is passed to and from the users through the RTS, CS, and Aircraft LAN or IFE.  

Figure 6-2 illustrates the Block I physical architecture for the aircraft segment. 

6.4.1.1 Receive antenna.  The receive antenna is a phased array antenna that  

receives KU-band satellite signals in the range of 11.7 – 12.2 GHz.  The antenna is 

composed of an array of steerable antenna modules. 
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6.4.1.2 Transmit antenna.  The transmit antenna is also a phased array  

antenna.  It transmits to KU-band satellites in the range of 14.0 – 14.5 GHz. 

6.4.1.3 RF converter assembly.  The RF converter assembly takes KU-band  

signals from the Receive Antenna and down converts to L-band.  The RF Converter 

Assembly also performs linear polarization. 

6.4.1.4 Rx and Tx power supply.  The receive and transmit power supply  

units take 115V, 3 phase, 400 Hz power from aircraft sources and provides power to the 

receive and transmit antenna units respectively and also to other AS units. 

6.4.1.5 Power amplifier.  The power amplifier amplifies the signal to provide  

a high power output for the transmit antenna. 
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6.4.1.6 Up converter.  The up converter receives input for transmission to the  

ground and converts the signal from the L-band range of 950-140 MHz to the KU-band 

range of 14.0-14.5 GHz. 

6.4.1.7 Antenna controller.  The antenna controller provides antenna module  

pointing.  It also performs status functions. 

6.4.1.8 Installation.  Several constraints had to be taken into consideration  

when determining antenna locations on the airplane fuselage.  Aerodynamic loads are 

most severe over the aft half of the wings.  Tail shadow constraints prevent a location aft 

of the wings.  Any existing antennas have to be evaluated to insure non-interference of 

transmissions.  The transmit signal cannot be too close to the tail or the tail might scatter 

the signal.  Radiation exposure hazards require strict adherence to a safety exclusion zone 

around the aircraft to protect maintenance and service personnel when the aircraft is on 

the ground.  Structural seams on the fuselage have to be avoided.  Finally, interior space 

constraints in the aircraft overhead must be evaluated since several associated boxes must 

be located under the antennas.  Figure 6-3 illustrates a notional example of relative 

installation locations. 

Separation constraints required a minimum of 80 inches between antennas to 

preclude transmit signals from interfering with receive signals.  Cable length restrictions 

allowed no more than 75 feet separation.  Another consideration on separation was the 

potential for fuselage bending.  The transmit antenna uses the receive antenna for 

pointing purposes and hence they must be aligned parallel to each other along the crown 

of the fuselage.  Figure 6-4 illustrates antenna size dimensions and also the separation 

requirements for the Block 1 antennas.  The antennas are placed along the aircraft 
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centerline on top of the fuselage.  A six lug antenna installation kit was developed and 

deployed specifically for the phased array antennas used by the CBB program, as show in 

Figure 6-5. 
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Figure 6-3  Antenna Locations 
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Figure 6-4  Antenna Dimensions 
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6.4.2. Receive and Transmit Subsystem.  The RTS provides signals to and  

from the AS and CS.  It is composed of a DTR (data transceiver and router) and the TV 

receivers and switches. 

The DTR contains integrated receiver decoders.  It receives L-band RF signals 

from the AS.  These signals are split and distributed with the DTR and back to the 

antenna controller.  The DTR also passes data signals to the CS for decoding and routing 

to and from the aircraft LAN. 

The TV receivers are standard COSTS (commercial off-the-shelf) television 

receivers.  They receive commercial television signals from the AS and use audio-video 
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switches to distribute live television programming to the aircraft IFE allowing for 

independent channel selection in each aircraft zone.   

6.4.3. Control Subsystem.  The CS is composed of a server and a control  

panel.  It also has associated power supply units and an electronic control unit.  The 

control panel allows aircraft personnel to choose between various data and television 

settings.  An RF remote control is also provided for ease of channel switching. 

 

6.5. SPACE SEGMENT 

The space segment is composed of leased KU-band transponders on 

geosynchronous satellites that provide relay linkage between CBB equipped airlines and 

the Ground Segment.  Figure 6-6 illustrates the relationship between the satellites and the 

ground segment. 
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6.5.1. Satellites.  The use of space based transponders allows global coverage  

on a scale not readily achievable by terrestrial based relay systems.  "The wide-area 

coverage feature combined with the ability to deliver relatively wide bandwidths with a 

consistent level of service make satellite links attractive [Elbert, 1977].”  The use of 

satellites has become increasingly common and is now considered an essential feature for 

global communication enterprises.  "Many large companies have built their foundations 

on satellite services such as cable TV, data communications, information distribution, 

maritime communications, and remote monitoring.  For others, satellites have become a 

hidden asset by providing a reliable communications infrastructure [Elbert, 1977].” 

In 1991 there were only 18 launch vehicle families in operation, almost all 

operating inside the USA (United States of America) or the USSR (Union of Soviet 

Socialist Republics).  Europe's space launch program was in its infancy.  At the end of 

2003 there were 31 launch vehicle families.  Europe and China are now major players 

alongside the USA and Russia [Isakowitz and Hopkins, 2004].  Major launch sites in the 

USA at Cape Canaveral and Vandenberg and in the former USSR at Baikonour and 

Plesetsk have been compliment by the French launch site at Kourou, the Chinese sites at 

Jiuquan and Xichang, the Japanese site at Tanegashima, the Indian site at Sriharikota, a 

new USA mobile launch platform Sea Launch Odyssey for ocean launches, and a host of 

smaller capacity vehicle sites [Isakowitz and Hopkins, 2004]. 

6.5.2. Orbital Elements.  The science of astrodynamics has it's foundation on  

Kepler's Laws, which provided the first explanation of planetary motion.  These laws 

apply equally well to satellite orbits.  Kepler's Laws are as follows [Bate et al., 1986]: 
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• Planets follow an elliptical orbit around the sun.  The sun is located at one 

of the two focus of the ellipse. 

• A line connecting a planet to the sun will sweep out equal areas from the 

orbital plane in equal amounts of time. 

• The square of the revolutionary period of a planet is proportional to the 

cube of its mean orbital distance from the sun. 

 

There are six classical orbital elements used to describe the orbit of any satellite.  

The first five orbital elements describe the orbit and the sixth pinpoints the position of the 

satellite.  Figures 6-7 and 6-8 [adapted from Bate et al., 1986] illustrate the orbital 

elements [Bate et al., 1986; Geyling and Westerman, 1971]. 
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Figure 6-7  Orbital Plane 
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Figure 6-8  Orbital Elements 

 

 

The six classical orbital elements are as follows: 

 

• a = Semi-major Axis:  Defines the size of the orbit.  The distance between 

Perigee (the point on the orbit closest to the earth) and the center of the 

orbit. 

• e = Eccentricity:  Defines the ellipticity or shape of the orbit.  Equals the 

distance from the center of the earth to apogee (the point on the orbit 

farthest from the earth) minus a, all divided by a. 

• i = Inclination:  Defines how much the orbit is inclined.  Equals the angle 

between the equatorial plane and the orbital plane. 

• n = Right Ascension of the Ascending Node:  Defines the orientation of 

the orbital plane to space.  Equals the angle between vernal equinox (a 
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vector fixed to stellar space) and the point where the orbit crosses the 

equatorial plane going north. 

• w = Argument of Perigee:  Defines the orientation of the orbital plane to 

the rotating the earth.  Equals the angle between right ascension of the 

ascending node and perigee. 

• v = True Anomaly at Epoch.  Defines the location of the satellite in the 

orbit.  Equals the angle between perigee and the satellite. 

 

Constellations are groups of satellites located in orbits at regular intervals to 

provide coordinated coverage.  CBB leases KU-band transponders to form a satellite 

constellation in geosynchronous orbits.  Satellites in geosynchronous orbits circle the 

earth once each day in circular orbits, matching the rotation of the earth at an altitude of 

19,230 nm above the surface of the planet.  This orbit allows the satellite to hang over a 

spot on the earth if the orbital plane is at the equator.  If the orbital plane is inclined, the 

ground trace becomes a figure eight curve tracing north and south around a spot on the 

earth's surface. [Bate et al., 1986; Geyling and Westerman, 1971]  Figure 6-9 [adapted 

from Bate et al., 1986] illustrates a geosynchronous equatorial orbit. 

 

 

 

 

 

Figure 6-9  Geosynchronous Orbits 
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6.5.3. Operating Frequencies and Bandwidth.  For the CBB Block I system,  

operating frequencies are in the KU-band.  Uplink frequencies from the ground to the 

aircraft range between 11.7 GHz and 12.2 GHz.  Downlink frequencies from the aircraft 

to the ground range between 14.0 GHz and 14.5 GHz. 

6.5.4. Forward Link.  The CBB leased KU-band transponders on a  

geosynchronous satellite delivers four channels of forward link data to regions on the 

earth within the coverage footprint of the satellite.   All aircraft flying within the region 

receive the shared signal through their receive antenna and filter out that portion of the 

signal destined for IP addresses on their aircraft.  Up to 5 Mbps of data can be received 

by each aircraft. 

6.5.5. Return Link.  Separate CBB leased KU-band transponders on the  

same satellite receives one channel of return link data from each aircraft to the ground.  

The signal is sent to the satellite from the transmit antenna on the aircraft.  Up to 1 Mbps 

of data can be transmitted by each aircraft. 

 

6.6. TERRESTRIAL SEGMENT 

The terrestrial segment is composed of satellite uplink/down facilities, or ground 

station gateways, which are located in Littleton in the USA, Leuk in Switzerland, 

Moscow in Russia, and Iberaki in Japan.  The terrestrial network control and customer 

service facilities are located in Irvine, California and Kent, Washington.  The main 

facilities are the network operations center, the enterprise operations center, and the data 

center.  Communication with the satellites is via RF uplink and downlink.  

Communication between the gateways and along the ground network between terrestrial 
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centers is through dedicated leasing of standard telecommunication T1 or T3 landlines.  

Figure 5-6 in Section 6-5 illustrates the architecture.  

6.6.1. Ground Station Gateways.  The ground station gateways used in the  

CBB network are privately owned facilities where CBB leases services from a supplier 

for communication routing and signal processing of data between the data center and the 

satellites.  Leasing arrangements include physical facilities, communication equipment, 

and personnel services at the gateway.  The gateway receives and transmits IP 

encapsulated data and control and status information to and from the satellites.  Space is 

provided at the gateway for leased supplier equipment and also CBB furnished 

equipment. 

6.6.1.1 CBB equipment.  At each gateway, CBB provides a GRTS (ground  

receive transmit subsystem) which operates much like a modem.  The GRTS is composed 

of the FLM (forward link modulator), the RLD (return link demodulator), and the FRD 

(forward receive demodulator).  The FLM performs data compression, encryption, error 

correction encoding, spreading, and modulation.  The RLD performs data decompression, 

decryption, decoding, despreading, and demodulation.  The FRD performs the same 

function only for a signal used for test and monitoring.  The GRTS interfaces with the 

DTR on-board the aircraft.  Also at each gateway CBB provides an NES (network 

equipment subsystem) composed of switches, routers, and firewall equipment. 

6.6.1.2 Supplier equipment.  At each gateway the supplier provides an RFS  

(RF subsystem) which transmits and receives signals to and from the KU-band satellites.  

The RFS includes ground antennas, amplifiers, up converters, down converters, and 

splitters.  The RFS receives and transmits Ku-band signals to and from the satellites, in 
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both horizontal and vertical polarization.  The RFS outputs or receives an L-band signal 

to and from the GRTS.  The supplier also provides the facility infrastructure which 

includes power, heating, ventilation, air conditioning, emergency backup systems, and 

security systems.   

6.6.2. Terrestrial Centers.  The CBB network is composed of data centers, a  

network operations center, the enterprise operations center, and the network infrastructure 

backbone.  It provides direct access to system elements and connectivity to terrestrial 

based networks around the globe.  A digital NMS (network management system) 

monitors performance of network applications and of the infrastructure servers and 

routers.  The CBB terrestrial centers interface with the public Internet, corporate VPNs 

and also government secure networks.  Figure 6-10 illustrates the physical architecture 

showing how these terrestrial centers interface with the rest of the CBB System. 

6.6.2.1 Data centers.  The main CBB data center is located at Irvine,  

California.  Regional data centers are located around the globe and provide similar 

functions as the main data center.  The data center performs data collection, data 

distribution, database management, application hosting, and network management.  

Security management is also provided, which includes activity monitoring, encryption, 

firewalls, intrusion detection.  Data is stored in the data center and accessed, forwarded, 

pulled, merged, and copied as needed to provide for customer services and network 

operations and management. 

6.6.2.2 Network operations center.  The NOC (network operations center)  

is located in Kent, Washington.  The NOC performs control and monitoring functions for 

the CBB Network. This includes configuration management, security management, fault 
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detection, and the collection of system metrics.  The NOC tracks all daily system 

activities and proxies monitoring of the entire network. 

6.6.2.3 Enterprise operations center.  The EOC (enterprise operations  

center) is located in Irvine, California.  The EOC provides content management and 

delivery services for the customer, user registration and account setup, billing functions 

and account management, a 24 hour 7 day a week customer care services for question and 

problem resolution relating to billing or technical difficulties, product support for 

hardware repair or exchange, maintenance, training, spares and directions, and also 

business operations. 
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6.7. CBB CAPACITY MODEL 

The biggest operational expense for the CBB program is incurred in the leasing of 

KU-band transponders on geosynchronous satellites.  In order to assure adequate 

coverage of CBB customer bandwidth needs these transponder leases must be procured 

well in advance.  Consequently the accurate forecast of transponders requirements can 

have significant impact on the business success of the program and is a critical factor in 

business decisions. 

Too few transponders and CBB would either have to reduce the QoS (quality of 

service) or else deny service.  Neither option is acceptable.  To reduce the QoS by a 

reduction of bandwidth to the aircraft would cause a noticeable slowing to the user and 

cause considerable customer dissatisfaction.  To deny service to regions or individuals or 

applications, would deny customers and revenue and also cause considerable customer 

dissatisfaction.  When customers do not receive the promised and paid for service, they 

are unlikely to want to repeat the experience.  No amount of advertising can compensate 

for the bad publicity ensuing from dissatisfied customers and the resultant loss of future 

customers and revenue.  

Too many transponders and CBB would be expending limited budget in a waste 

of money that could be used elsewhere.  Considering the slim profit margins most 

enterprises operate with, this could endanger the viability of the entire program. 

6.7.1. Overview.  The CBB network CSIM (capacity simulation) estimates  

the number of transponders needed to support projected customer demand.  Figure 6-11 

illustrates inputs and outputs of the CSIM utilized by CBB.  
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Figure 6-11  CBB Capacity Simulation 

 

 

6.7.2. CSIM Modules.  A variety of inputs are required for use by the CSIM.   

The input modules can be broken down as follows: airline routes, transponder coverage, 

installation plan, customer projections, user characteristics, core, and finally, 

transponder/satellite requirements. 

6.7.2.1 Airline routes.  The first module determines the location at a given  

time for all user selected airplanes or sets of airplanes as they traverse flight routes 

around the globe.  Data is derived from the OAG (Official Airline Guide®).  The OAG 
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gives the commercial airline flight schedules which can then be fed into the CSIM in 

database format.  This gives the origination and destination airports for all flights and 

also the departure and arrival times.  Flight routes can be computed so that the location of 

any airplane at any given time can be estimated and simulated.  In order to size the 

network to accommodate peak traffic, the CSIM uses the busiest week in the busiest 

month of the year, the second week in August. 

6.7.2.2 Transponder coverage.  The second module determines the location of  

KU-band satellites, transponder availability, and coverage areas.  Transponder coverage 

areas are determined by first calculating the achievable data rates for the particular 

transponder.  This is based on the satellite location, signal characteristics such as 

bandwidth and EIRP (effective isotropic radiated power), atmospheric interference, loss, 

and airplane antenna characteristics.  The signal reception area varies in strength 

according to latitude and longitude with the greater strength towards the center and a 

lessening of signal strength towards the edges.  The boundaries are then defined based on 

the area a particular transponder will support with a particular data rate.  When an 

airplane flies into the transponder service area, its antennas are configured to 

automatically point to the associated satellite for reception to or from the particular 

transponder.  When the airplane flights out of the region, it is configured to point towards 

another satellite and associated transponder.  Figure 6-12 illustrates a fleet of aircraft 

flying through a transponder coverage zone.  Figure 6-13 illustrates the coverage for 

HotBird® Satellite.  Note that the signal strength dissipates as coverage is expanded. 
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Figure 6-12  Transponder Service Coverage Area 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-13  Hot Bird Service Coverage Area 
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6.7.2.3 Installation plan.  The third module determines which of those  

airplanes have the CBB equipment installed.  Planning falls into three categories.  

Aircraft with CBB installed, aircraft on contract and scheduled for installation, and 

aircraft projected for installation. 

For installed aircraft it is simply a matter of matching the installed aircraft to the 

flight routes.  Since the OAG doesn't correlate tail numbers a Monte Carlo distribution is 

applied to all the routes of a particular airline using the same model aircraft.  For 

example, if five out of ten 747-400 aircraft in an airline's fleet have CBB installed, then 

the Monte carol routine randomly selects which five and varies it through the week. 

For aircraft with scheduled installation dates, the uncertainty goes up as plans 

often change and schedules have a tendency to slip.  For these aircraft the CSIM matches 

the schedule to airline routes as it projects out through the years.  The further out the 

year, the greater the uncertainty. 

For aircraft with marketing projected installation dates the uncertainty goes up 

considerable higher.  For these aircraft the LRBP (long range business plan) is used.  This 

is not only dependent on schedules, which may slip, but on marketing and sales, and is 

applied to airlines which CBB has not been sold too but which marketing and sales have 

on the capture plan. 

6.7.2.4 Customer projections.  The fourth module is an estimation based on  

several factors and is used to estimate how many customers are using the CBB Internet 

service at any given moment.  
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The first factor is number of seats on the aircraft.  this can easily be obtained from 

the OAG which relates the type of aircraft on a given route and knowing the seat 

configuration used by the particular airline. 

The second factor is occupancy, which is an estimation of how many of those 

seats are filled with passengers and how many are empty.  Airline occupancy tends to be 

around 80% in the worst case month of the year. 

The third factor is customers, those passengers which have signed on to use the 

CBB network data service. Again the simulation is dependant on marketing and sales 

projections.  The market penetration would be small the first year, but would tend to 

increase over the years as the CBB system matures, until a saturation level is reached.  

Then further increases in market penetration would have to be driven by new product or 

service introductions, such as VoIP or Interactive Gaming. 

The fourth factor is activity, how many of those customers are actually using the 

system at a particular moment.  Some may have the service on during the entire flight 

listening to online music and others for only a short period in order to check email.  Some 

may be active off and on, stopping during the meal service, or to take a nap, or for any 

number of reasons.  The service will typically be available once the plane reaches 10,000 

feet of altitude and will remain available until the plane starts to descend for landing and 

again crosses the 10,000 feet level.  It is assumed that the shorter the flight, the higher the 

activity factor.  If a customer signs on during a 2 hour flight they will probably use all the 

time and may have an 80% activity factor.  If they sign on during an 8 hour flight, they 

would probably do other things also and may only have a 50% activity factor.  The 
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average number of simultaneous users that are using the CBB system on a particular 

flight at a particular moment may now be calculated. 

Figure 6-14 illustrates with an example Boeing 747-400.  The airplane model has 

approximately 400 seats.  A load factor of 80% results in 320 passengers on the airplane.  

A market penetration rate of 20% results in 64 customers signing on to use the CBB 

service during the flight.  Finally, an activity factor of 25% results in an average of 16 

simultaneous users during the flight. 
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~400 Seats

Seat Load Factor  80%
320 Passengers

Penetration Rate  20%
64 Customers

Activity Factor  25%
16 Concurrent Users
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Figure 6-14  Calculation of Simultaneous Users 
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6.7.2.5 User characteristics.  The fifth module estimates the Internet usage  

characteristics of the individual users.  The key parameters are, mean bit rate, mean to 

peak variance of bit rate, and the asymmetry between the forward link and the return link, 

and self-similarity parameters like the Hurst parameter.  This is a really hard thing to 

estimate, as described in detail in Section 3.6.1., and new simulation proposed by this 

dissertation research project proposes deleting this module because of the inaccuracy of 

estimating user characteristics. 

Accuracy of these models is dependent upon measured data characteristics, which 

are often not very accurate themselves [Cleveland and Sun, 2000; Li et al., 2004; Qian et 

al., 2004], are difficult to collect and correctly characterize [Bregni, 2004; Cleveland and 

Sun, 2000;  Floyd and Kohler, 2003; Fomenkov et al., 2004; Li et al., 2004; Park et al., 

2005; Qian et al., 2004; Yousefi’Zadeh, 2002], are subject to constant change, and vary 

according to time, circumstance, and location [Bianchi et al., 2004; Brownlee and Claffy, 

2002; Li et al., 2004; Qian et al., 2004; Rodriques and Guardieiro, 2004; Swift and Dagli, 

2007c]. 

6.7.2.6 CSIM core.  The CSIM Core utilizes inputs from all the previous  

modules and performs two important functions.  First it determines how many users are 

active within any given transponder zone based on where the passengers are, the 

transponder coverage, what planes are flying, the location of the planes, how many 

people on each plane is using the service, and the user characteristics of those people.  

Second it utilizes the Norros equation developed by Ilkka Norros of Finland [Norros, 

1995] to aggregate the traffic and calculate the bandwidth needed to support demand on 

the network.  Section 4.6.4 contains a detailed description of the Norros equation uses by 
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CBB, its variables and constants, its derivation, and standard uses.  The Norros equation, 

as used by CBB, is repeated below in equations 6.1 and 6.2: 

 

( ) ( )( ) ( ) ( ) ( )HHHHH
mBaHmC 2/1/12/1/1

ln2 −−−+= εκ                          (6.1) 

 

where      ( ) ( )( )HH HHH −−= 11κ                                                      (6.2) 

 

m  = Mean Bit Rate (bps) 

a  = Peakiness (bps) 

ε  = Cell Loss Rate 

B  = Buffer Size (bits) 

H  = Hurst parameter 

C  = Capacity (bps) 

 

The output of the CSIM is the satellite and transponder requirements, which 

define the size of the network.  This output is typically shown in matrix format detailing a 

transponder count needed for each satellite.  The CSIM makes sure the number of 

transponders for a given satellite does not exceed the number of transponders available 

on that satellite and in many cases more than one satellite may be needed for a coverage 

region.  Projections are made for future years based on projected growth in the number of 

customers and in their user characteristics.  Table 6-2 is an example of how the CSIM 

output is displayed. 
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Table 6-2  CSIM Transponder Requirements Count 
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6.8. SECTION SUMMARY 

This section described the CBB global network, the NCS which was chosen for 

this case study.  This section gave a review of the CBB architecture, a description of the 

services offered, a description of the major subsystems and segments, and a description 

of the CBB capacity simulation used for modeling network traffic and predicting 

demand. 

CBB was shown to be a complex, large-scale, network-centric system whose 

main function is providing network services.  CBB exhibits much of the power and 

benefits of being network-centric but is also facing the typical problems of an NCS.  The 

data collection and capacity simulation function of CBB must deal with the typical NCS 

challenges of constant change and evolving characteristics.  The current CBB capacity 

simulation is not adaptive or scalable enough. 
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This section concludes the literature review portion of the dissertation.  The 

following section (Section 7) contains the results of the data mining study conducted with 

actual CBB network data to determine if the data could be used for ANN simulation.  The 

following section (Section 8) gives the results of simulation testing comparing an 

adaptive ANN based simulation to the current Norros equation based simulation. 
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7. DATA MINING THE CBB NETWORK 

7.1. OVERVIEW OF DATA MINING CBB NETWORK DATA 

In this section the methodology and results from data mining network traffic on 

the CBB network is presented.  Data from the CBB trials was used for development of a 

data mining methodology specific to network traffic and to validate the feasibility of 

transforming network data into a format compatible with ANN simulation methodology.  

The objective was to interpret and transform the data into a form that could be used for 

construction of a computationally intelligent simulation with adaptive capabilities.  The 

methodology developed in this section was then applied to operational network data to 

construct an ANN simulation and run validation testing and also simulation comparison 

against existing CBB modeling methodology. 

The methodology developed in this section follows the guidelines outlined in 

Section 5, which are the recognized standard steps for data mining: selection, 

preprocessing, transformation, data mining, and interpretation/evaluation, as shown 

previously in Figure 5-1 [adapted from Fayyad, 1996b]. 

The following subsections match the process steps, starting with the data sources, 

and then following with selection, preprocessing, transformation, data mining, and 

finally, interpretation/evaluation.  Each of these steps was tailored for implementation on 

the CBB network and the methodology would most likely be adaptable for data mining 

network traffic in general.  The end result is information ready for simulation testing and 

analysis.  Figure 7-1 illustrates how the standard data mining process was implemented 

by this research project on the CBB network. 
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Figure 7-1  Data Mining the CBB Network 

 

 

7.2. DATA SOURCES 

Network traffic from the CBB NCS was collected by commercially purchased 

network sniffers which were configured to monitor and collect network header traffic as 

it passed through designated points on the network.  Internet header information was 

placed into data warehouses for storage and retrieval, for presentation of statistics and 

trends, and for use in analysis and studies.   

7.2.1. Network Sniffers.  The network sniffers utilized by CBB were the  

Niksun NetVCR® units.  These are commercially available, passive, network traffic, data 

monitoring units that monitor, collect, and analyze Internet header information as it 

passes through the unit [Niksun, 2003].  The NetVCRs were placed at each terrestrial 
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ground station gateway in order to capture all data passing through the gateways going to 

or from the satellite transponders on its way to or from the aircraft.  The one used during 

the CBB trials was located at the Littleton, Colorado Ground Station.  During full-scale 

operations, units were placed at each gateway, to include Littleton, Colorado; Leuk, 

Switzerland; Moscow, Russia; and Iberaki, Japan.  The NetVCRs were configured to 

monitor, collect, and analyze real-time packet and bit rate network traffic for both the 

forward and the return links. 

7.2.2. Data Warehouses.  Data warehouses are utilized at each gateway for  

storage and retrieval of data collected by the NetVCR units.  A variety of reports and data 

cubes were developed for visualization and presentation of statistics.  This allows easy 

monitoring of the system performance, trending analysis, and gives a professional 

reporting capability for management review.  In addition to this, the raw data was also 

available for retrieval from the data warehouses for more comprehensive studies, such as 

the one conducted for this dissertation.   

7.2.3. Data Collected.  Raw header data was used in this study to analyze  

user characteristics and to build an adaptive architecture for modeling.  The header 

information from the NetVCR network sniffers is analyzed through a Niksun application 

called MakeExport®.  This application calculates relevant statistics from header 

information [Niksun, 2003].  The header statistics were then stored into the data 

warehouses.  Traffic information is collected on each and every IP transaction by every 

user throughout the entire CBB network. 

The raw data is collected by NetVCR through MakeExport in 15 minute segments 

throughout the day.  Each file of zipped data was approximately 100 KB in size during 
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the CBB trials, which was limited to only four flight routes.  This amounted to 

approximately 9.6 GB of data per day.  During the course of a month this is 

approximately 288 GB of data. 

 

7.3. SELECTION 

The first step in the data mining process was to select what, out of all this data, 

was to be analyzed and to extract that data from the source.  This results in the target 

data.  Two Crows corporation cites the proper selection of data as one of the two keys to 

success in data mining [Two Crows, 1999].  It is essential to have an idea of where you 

are going in order to make the proper selection.  The intent of this dissertation research 

project was to find a way to accurately model the traffic stream bandwidth to allow for 

accurate sizing of the network.   Enough data would need to be collected to allow for 

analysis, development of the model, and testing. 

7.3.1. Sample Selection.  Data from the CBB trials was selected for this  

initial data mining part of the dissertation study.  The CBB Block 1 antenna system and 

associated hardware were installed on two 747-400 aircraft, one belonging to Lufthansa 

Airlines (DLH) and the other to British Airways (BA).  Trials were conducted wherein 

passengers with laptops on commercial flights were provided access to the Internet 

through the CBB system.  DLH trials were conducted on Flights 418 and 419 between 

Rhein-Main Airport at Frankfurt, Germany and Dulles International Airport at 

Washington D.C., USA.  The CBB service was provided free of charge to the DLH 

passengers.  BA trials were conducted on Flight 175, 177, 112, 113 and 116 between 

Heathrow Airport at London, England and John F. Kennedy International Airport at New 
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York, USA.  Passengers on the BA flights were charged for the service, starting at 20 £ 

(about 30 dollars) per flight, although the price was varied near the end of the trial period 

to test for pricing sensitivities. 

The Lufthansa Airlines trial started on January 15, 2003 and lasted until April 18, 

2003, for a total of 94 days.  There were 155 flight legs flown for 626,000 flight miles.  

There were 1,110 hours of operational time, out of which the CBB system was 

operational 980 hours and down 130 hours.  During the trials there were 7 aircraft LRU 

(line replaceable unit) failures, several ground LRU failures, and 434 anomaly events 

logged.  Overall CBB availability was approximately 90%, airline and customer 

satisfaction was high, and the DLH trial was declared a great success.  The decision was 

made to continue with full-scale launch and Lufthansa Airlines subsequently signed a 

service agreement with CBB for the installation of CBB equipment and the provision of 

CBB service on more than 80 commercial wide body aircraft [Swift, 2004b]. 

The British Airways trial started on February 20, 2003 and lasted until March 16, 

2003, for a total of 86 days.  There were 95 flight legs flown for 328,510 flight miles.  

There were 520 hours of operational time, out of which the CBB system was operational 

478 hours and down 42 hours.  During the trial there was 1 aircraft LRU failure, 1 

preventive maintenance activity, several ground LRU failures, and 118 anomaly events 

logged.  Overall CBB availability was approximately 92%, airline and customer 

satisfaction was high, and the BA trial was also declared a great success.  During the BA 

trial passengers were charged to use the system and there were a total of 245 paying 

customers [Swift, 2004b].  Figure 7-2 illustrates the flight routes. 
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Figure 7-2  Airline Flight Routes Used During CBB Trials 

 

 

The following differences between trial conditions and later operational 

conditions must be taken into consideration when evaluating any data resulting from the 

trial: 

 

• Block 1 antenna system used during trial 

• CBB network still in development 

• Free laptop computers offered to some DLH passengers 

• No charge for service by DLH 

• Novelty of first time use 

• High level of publicity by DLH 

• Only four routes (Frankfurt to Washington DC, Washington DC to 

Frankfurt, London to New York, and New York to London) 
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• Limited passenger types (mostly German, English, and East Coast 

Americans) 

• Special FlyNet®  attendants available to assist DLH passengers 

 

Four trail routes were selected for data mining and for development of the initial 

adaptive ANN simulation.  The DLH flights were thought to be representative of where 

CBB might be in terms of customer load by 2011 and the BA flights were thought to be 

representative of where CBB might be during the initial year of operation.  During the 

trials there was enough data collected on these representative flights to be equivalent to 

10% of the entire Library of Congress. 

7.3.2. Extraction.  Each CBB equipped aircraft is assigned, by the NOC, a  

group of IP addresses.  These IP addresses are subsequently available for assignment by 

the aircraft server to individual users.  For example, the airplane used by DLH for the 

trials had the IP range of 10.255.255.1 through .254, and the aircraft used by BA for the 

trials had the IP range of 10.255.254.1 through .254.  During the trials there were only 

two airplanes used and they flew the same flight routes each day.  During operational 

services it became a more complicated matter as dozens of aircraft became equipped with 

CBB antennas and different aircraft began to fly all different routes for various days. 

Knowing the IP address of a flight, the day of a flight, and the scheduled 

departure and arrival times, a Perl® script was written to extract the Internet header traffic 

for that individual flight. 

These output files from the Perl scripts were stored in matrix format with one row 

for each IP transaction accomplished during the flight.  The files were typically 5,000 – 
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15,000 KB in size and were stored as .csv files since they exceeded the Microsoft Excel® 

limits of 66,000 lines.   Table 7-1 shows an example of just six transactions from one of 

the generated .csv files. 

 

 

Table 7-1  Parsed Transaction Data Sample 
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y of the year (start) Month (start) Day (start) Hour (start) Minute (start) Second (start) Year (end) Day of the year (end) Month (end) Day (end)
2004 146 5 25 10 7 54.20751095 2004 146 5 25
2004 146 5 25 10 7 54.02042007 2004 146 5 25
2004 146 5 25 10 7 57.04566407 2004 146 5 25
2004 146 5 25 10 7 57.08757305 2004 146 5 25
2004 146 5 25 10 7 59.96775699 2004 146 5 25
2004 146 5 25 10 7 44.24736691 2004 146 5 25
2004 146 5 25 10 8 0.7883811 2004 146 5 25

Hour (end) Minute (end) Second (end) #Start Time End Time Physical Port Source IP Dest IP Source Port Dest Port Protocol
10 7 57.54984903 1.08548E+15 1.08548E+15 sf0 216.65.241.1 193.24.35.33 34698 443(https) 6(tcp)
10 7 58.22063899 1.08548E+15 1.08548E+15 sf0 216.65.241.4 66.213.246.11 3132 80(http) 6(tcp)
10 7 58.42899799 1.08548E+15 1.08548E+15 sf0 216.65.241.4 66.213.246.11 3133 80(http) 6(tcp)
10 8 0.423316956 1.08548E+15 1.08548E+15 sf0 216.65.241.1 193.24.35.33 34700 443(https) 6(tcp)
10 8 1.527039051 1.08548E+15 1.08548E+15 sf0 216.65.241.4 66.213.246.11 3134 80(http) 6(tcp)
10 8 2.473232985 1.08548E+15 1.08548E+15 sf0 216.65.241.1 193.24.35.35 34672 2004(mailbox) 6(tcp)
10 8 2.77421093 1.08548E+15 1.08548E+15 sf0 216.65.241.254 204.153.10.199 55524 80(http) 6(tcp)

Source TO Dest TOS Source Pkts Dest Pkts Source Bytes Dest Bytes Round Trip Time Response Time Source Rexmit % Dest Rexmit %
16 0 10 9 1528 1061 0.623861 0.047013 0 0
1 0 14 18 1458 20217 0.675939 0.987019 0 0
1 0 5 5 960 532 0.551267 0.239416 0 0
16 0 8 9 1384 1061 0.58217 0.047146 0 0
16 0 5 5 977 532 0.540139 0.428999 0 0
1 0 12 10 1625 1970 0.653589 0.049362 0 0
1 0 6 4 607 750 0.582232 0.289825 0 0

Year (start) y of the year (start) Month (start) Day (start) Hour (start) Minute (start) Second (start) Year (end) Day of the year (end) Month (end) Day (end)
2004 146 5 25 10 7 54.20751095 2004 146 5 25
2004 146 5 25 10 7 54.02042007 2004 146 5 25
2004 146 5 25 10 7 57.04566407 2004 146 5 25
2004 146 5 25 10 7 57.08757305 2004 146 5 25
2004 146 5 25 10 7 59.96775699 2004 146 5 25
2004 146 5 25 10 7 44.24736691 2004 146 5 25
2004 146 5 25 10 8 0.7883811 2004 146 5 25

Hour (end) Minute (end) Second (end) #Start Time End Time Physical Port Source IP Dest IP Source Port Dest Port Protocol
10 7 57.54984903 1.08548E+15 1.08548E+15 sf0 216.65.241.1 193.24.35.33 34698 443(https) 6(tcp)
10 7 58.22063899 1.08548E+15 1.08548E+15 sf0 216.65.241.4 66.213.246.11 3132 80(http) 6(tcp)
10 7 58.42899799 1.08548E+15 1.08548E+15 sf0 216.65.241.4 66.213.246.11 3133 80(http) 6(tcp)
10 8 0.423316956 1.08548E+15 1.08548E+15 sf0 216.65.241.1 193.24.35.33 34700 443(https) 6(tcp)
10 8 1.527039051 1.08548E+15 1.08548E+15 sf0 216.65.241.4 66.213.246.11 3134 80(http) 6(tcp)
10 8 2.473232985 1.08548E+15 1.08548E+15 sf0 216.65.241.1 193.24.35.35 34672 2004(mailbox) 6(tcp)
10 8 2.77421093 1.08548E+15 1.08548E+15 sf0 216.65.241.254 204.153.10.199 55524 80(http) 6(tcp)

Source TO Dest TOS Source Pkts Dest Pkts Source Bytes Dest Bytes Round Trip Time Response Time Source Rexmit % Dest Rexmit %
16 0 10 9 1528 1061 0.623861 0.047013 0 0
1 0 14 18 1458 20217 0.675939 0.987019 0 0
1 0 5 5 960 532 0.551267 0.239416 0 0
16 0 8 9 1384 1061 0.58217 0.047146 0 0
16 0 5 5 977 532 0.540139 0.428999 0 0
1 0 12 10 1625 1970 0.653589 0.049362 0 0
1 0 6 4 607 750 0.582232 0.289825 0 0

 

 

7.3.3. Target Data.  The resulting target data was then stored in matrix  

format with each row representing an IP user transaction and each column an attribute of 

that transaction.  There was one matrix for each flight on a particular day.  Table 7-2 lists 

the attributes collected for each IP transaction, the column titles. 
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Table 7-2  Internet Traffic Transaction Attributes 
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Minute (s
 Second (sta

 

 
Destination RetransmitSecond (end)Month (end)

Source RetransmitMinute (end)Day of Year (end)

Response TimeHour (end)Year (end)

Round Trip TimeDay (end)rt)

Destination Bytes#End Timetart)

Source Bytes#Sart TimeHour (start)

Destination PacketsSecond (end)Day (start)

Source PacketsMinute (end)onth (start)

ProtocolHour (end)Day of Year (start)

Source IPDay (end)Year (start)

 
Destination RetransmitSecond (end)Month (end)

Source RetransmitMinute (end)Day of Year (end)

Response TimeHour (end)Year (end)

Round Trip TimeDay (end)Second (start)

Destination Bytes#End TimeMinute (start)

Source Bytes#Sart TimeHour (start)

Destination PacketsSecond (end)Day (start)

Source PacketsMinute (end)Month (start)

ProtocolHour (end)Day of Year (start)

Source IPDay (end)Year (start)

 

7.4. PRE-PROCESSING 

Preprocessing, also called cleaning, is a preparatory step where the selected data 

is manipulated to remove errors and inconsistencies in the data set.  It was found that 

several preprocessing actions had to be employed with the data collected from the CBB 

network. 

7.4.1. Format Manipulation for Consistency.  Different gateways used  

different formats for the data.  Some were compressed using bzip2® and others with 

gzip®.  Some placed the server designation in the title and others did not.  Some put the 

date designation at the beginning and others at the end.  The first task was to remove 

inconsistencies and put all the data titles and data in a consistent structure.  This was a 

time consuming task considering the magnitude of the data. 
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A process improvement that resulted from this study was for CBB to implement 

consistent data storage at all their gateways.  This provided considerable cost savings for 

the program. 

7.4.2. Null Flights and Null Users.  Another required task was to remove  

flights from the mix that had no users.  Then another task was to remove users from the 

mix that had no data flow.  An example was someone who signed on to view the service 

options and was given an IP address but made no off-board Internet transactions.  The 

removal of null flights and null users was accomplished by use of software filters. 

7.4.3. Overhead.  It also became necessary to remove data transactions not  

made by individual users.  These overhead transactions were made by the system for 

various health and status monitoring functions or for system server uploads.  This was 

accomplished by removing the overhead sub-addresses.  For example, on DLH 

10.255.255.1 was reserved for the DTR modem, 10.255.255.2 for the CSU, and 

10.255.255.17 for the airline portal.  That left 10.255.255.18 and up for real users. 

7.4.4. Anomalous Conditions.  It was also discovered that another source of  

data corruption was anomalous flights.  These were caused by hardware or software 

problems during the flight that would make the service unavailable to users for a period 

of time.  Also human error caused anomalous conditions, such as days where the 

attendants were late in turning on the system.  These flights were deleted since 

anomalous conditions with the equipment or service would probably cause atypical 

behavior on the part of the users.  The user might get discouraged if there were problems 

signing on and might not use the system at all even once it became available again.  Or 

the user might try to accomplish all planned tasks in a shorter available time period and 
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have higher than typical data rates.  A 95% availability number was used and any flights 

with less than 95% availability were discarded. 

7.4.5. Missing Data.  Another source of problems were with the data  

collection system which occasionally experience collection anomalies and problems.  

Any flight with gaps in the data flow was considered corrupt and was also discarded. 

7.4.6. Noise in the Data.  Filters had to be applied to eliminate noise.  There  

was noise found in two forms.  The first was data rates of small magnitude and the 

second was data rates of high magnitude but very short durations.  

 

7.5. TRANSFORMATION 

Transformation is preparation of the data set for use by the analysis tools.  It 

includes activities such as smoothing, aggregation, generalization, normalization, and 

attributes construction. 

7.5.1. Flight Profiles.  The data was in the format of transactions and there  

were over 66,000 transactions per flight.  Multiply this by the number of flights and this 

was too large a data set for meaningful analysis.  It was decided to aggregate the data into 

sample sets, still per flight, by time histories rather than by transactions.  A Perl script 

binning program was written to bin the data by number of bytes per time period of the 

day.  This resulted in a data rate time-history for the flight.  The data was also broken 

down to the individual user level so that a time-history was also collected for each 

individual user on each flight.  In addition, data was collected by application, such as web 

surfing, email, and online gaming. 
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The data was now in matrix format with each row representing a 1 second interval 

in TOD (time of day) and each column the bytes used by an individual user and also a 

column for the aggregated flight kbps, or the sum of the users. 

7.5.2. Binning Intervals.  The next task was to decide at what level to bin the  

data.  The NetVCR filters collected the data every one thousands of a second.  The CBB 

data cubes were performing calculation at the 15 minute bin size, which is the industry 

standard.  Some aggregation was necessary because of the enormity of the data, but 

binning tends to smooth out the peakiness characteristic of the data, an important 

characteristic for Internet traffic modeling.  A small study was performed to asses the 

effects of binning.  Binning intervals of 1 second, 1 minute, 5 minutes, 10 minutes, 15 

minutes and 30 minutes were assessed.  Figure 7-3 illustrates time histories for the same 

flight at different bin sizes.  Because of the dramatic loss of peakiness, bin sizes of one 

second were used for the collection of data for this research study. 

7.5.3. Time of Day Conversion.  Some flights crossed midnight or the  

International Date Line and this had to be taken into account.  For example a flight might 

depart at 17:00 GMT (Greenwich mean time) and arrive at 05:00 GMT.  The simple 

solution was to add 24 hours to the time value for any values prior to the departure time. 

7.5.4. Final Sample Set.  There were four flight routes selected from the CBB  

trials for use in developing the data mining methodology and for use in developing the 

adaptable architecture for modeling traffic.  Sample flights were taken from each of the 

four flights.  Additional operational flight routes were used in subsequent simulation 

testing to validate the model and assess accuracy and adaptability. 
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Figure 7-3  Smoothing Effects of Bin Size 

 

 

7.5.4.1 DLH 418 flights from Frankfurt to Washington D.C.  Thirty-nine  

flights on DLH 418, traveling from Germany to the United States, were selected for this 

study.  DLH Flight 418 is a day route, which departed at approximately 1:10 PM (local) 

and arrived at approximately 3:55 PM (local).  Out of the 94 days during the DLH trial, 

there were 50 days where CBB service availability was over 95%.  Flights with less than 

95% availability were not included in the study since anomalies would bias customer 

activity patterns away from the norm.  Of the 50 remaining flights there was no NetVCR 

data available on one of the days.  Once the data was plotted, an additional 10 flights 

were eliminated due to missing blocks of user activity, probably caused by DLH system 

problems or data collection anomalies.  This left 39 good flights for the study. An 
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example traffic trace is shown in Figure 7-4 for April 7, 2003.  During this flight, there 

was a total of 601 MB of data sent to the airplane over the forward link.  Average data 

flow was approximately 171 kbps.  The peak data flow (95th percentile) was 

approximately 471 kbps [Swift, 2004].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-4  Sample DLH 418 Bandwidth Trace 

 

 

7.5.4.2 DLH 419 flights from Washington D.C. to Frankfurt.  Thirty-one  

flights on DLH 419, traveling from the United States to Germany, were selected for this 

study.  DLH Flight 419 is a night route, which departed at approximately 5:55 PM (local) 

and arrived at approximately 7:35 AM (local).  Out of the 94 days during the DLH trial, 

 



 158

there were 36 days where CBB service availability was over 95%.  Flights with less than 

95% availability were not included in the study since anomalies would bias customer 

activity patterns away from the norm.  Once the data was plotted, an additional 5 flights 

were eliminated due to missing blocks of user activity, probably caused by DLH system 

problems or data collection anomalies.  This left 31 good flights for the study.  An 

example traffic trace is shown in Figure 7-5 for March 8, 2003.  During this flight, there 

was a total of 311 MB of data sent to the airplane over the forward link.  Average data 

flow was approximately 106 kbps.  The peak data flow (95th percentile) was 

approximately 296 kbps [Swift, 2004]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-5  Sample DLH 419 Bandwidth Trace 
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7.5.4.3 BA 175 flights from London to New York.  Forty-five flights on BA  

175, traveling from England to the United States, were selected for this study.  BA Flight 

175 is a day route, which departed at approximately 11:00 AM (local) and arrived at 

approximately 1:50 PM (local).  Out of the 85 days during the BA trial, usable NetVCR 

flight data was available for 45 days.  An example is traffic trace shown in Figure 7-6 for 

May 6, 2003.  During this flight, there was a total of 66 MB of data sent to the airplane 

over the forward link.  Average data flow was approximately 22 kbps.  The peak data 

flow (95th percentile) was approximately 72 kbps [Swift, 2004]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-6  Sample BA 175 Bandwidth Trace 
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7.5.4.4 BA 112 flights from New York to London.  Twenty-six flights on BA  

112, traveling from the United States to England, were selected for this study.  BA Flight 

112 is a night route, which departed at approximately 6:30 PM (local) and arrived at 

approximately 6:25 AM (local).  Out of the 85 days during the BA trial, usable NetVCR 

flight data was available for 26 days.  An example traffic trace is shown in Figure 7-7 for 

May 2, 2003.  During this flight, there was a total of 42 MB of data sent to the airplane 

over the forward link.  Average data flow was approximately 17 kbps.  The peak data 

flow (95th percentile) was approximately 71 kbps [Swift, 2004].

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-7  Sample BA 112 Bandwidth Trace 
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7.6. DATA MINING 

The first and perhaps most difficult step in developing a neural network model for 

predicting network traffic, is to explore the decomposition of available traffic data.  The 

data must be put into a format that consists of repeatable patterns which the ANN can be 

trained to recognize and predict.  In this case the patterns were to consist of time-history 

bandwidth traffic traces.  The ANN could then be trained to output vectors representing 

these traffic traces. An ANN would also have the capability to generalize for errors or 

unexpected differences in the input data, and would also have the ability to adapt through 

re-training.  Three methods of decomposition were investigated: 

 

• By individual users traffic traces 

• By application traffic traces 

• By common usage traffic traces 

 

7.6.1. Individual User Traffic Traces.  The first attempt was to try and  

decompose the data into time-history vectors based on individual user traffic traces.  

Bandwidth traces for single users were easily obtained by parsing on individual IP 

addresses.  However, two major problems surfaced and this method had to be rejected.  

The diversity between individual users was too extreme to manage, even among small 

sample sets, and the data traces of users tended to vary from day to day and were not 

repeatable.  Figure 7-8 displays a sample of the data illustrating the jumble of users 

frequently seen on Internet traffic.  Figure 7-9 illustrates further by increasing the scale.  
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Note some users are fairly steady state and others exhibit considerable peakiness.  Each 

line represents a different user. 

 

 

 Eighteen Users on Average

 

 

 

 

 

 

 

Figure 7-8  Typical Internet Traffic Trace – 0.1 hours 

 

 Eighteen Users on Average

 

 

 

 

 

 

 

Figure 7-9  Typical Internet Traffic Trace – 0.01 hours 
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Parsing out a single user also revealed changing patterns by the individual user 

even during the course of a single session.  Figure 7-10 shows a twelve hour period for 

one user during a flight and Figure 7-11 shows a 30 minute segment for the same user at 

an increased scale.  Exhibited in the data are dead times of inactivity of varying lengths, 

times of high and low burstiness, and times of sustained constant data rates.  These 

changing characteristics are due to varying activities of the user, such as times of high or 

low activity, or when using different applications, such as email, web surfing, or 

streaming media.  Therefore, in addition to each user being different, there is variance in 

usage characteristics for the same individual during a session. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single User

Figure 7-10  Single User Traffic Trace –  12 hours 
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Single User

Figure 7-11  Single User Traffic Trace –  0.5 hours 

 

 

Fuzzy logic or Kohonen self-organizing maps could possibly be used to develop 

patterns or groupings of individual users not readily discernable, but these groupings 

would have the same difficulty with changing patterns from day to day.  Since the 

individual user traffic traces were unstable and did not follow repeatable patterns, 

decomposition by individual user was rejected. 

7.6.2. Application Traffic Traces.  The next attempt at decomposing network  

data into time-history vectors was to try by application traffic traces.  These appeared 

promising since different applications, such as web surfing vs. email, have recognizably 

different characteristics and would hopefully be consistent over time and location.  For 
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example, a person doing Internet chat on a Lufthansa Airlines flight over Berlin would 

likely have similar Internet traffic characteristics with a person doing Internet chat on a 

Japanese Airlines flight over Tokyo.  The same would be true with audio streaming or 

any other application.  There were ten applications selected for parsing in an attempt to 

see if this could produce repeatable useable traffic traces.  The selected applications were: 

web surfing traffic, email traffic, FTP (file transfer protocol) traffic, VPN (virtual private 

network) traffic, news traffic, chat traffic, telnet traffic, VoIP (voice over IP) traffic, 

media traffic like streaming video or audio, and interactive gaming traffic. 

Individual IP addresses could not be used to parse out this type of Internet traffic, 

like in the previous attempt, instead parsing was based on protocol and port.  These are 

defined by the IANA (Internet Assigned Numbers Authority), and are published on the 

web.  The IANA is “dedicated to preserving the central coordinating functions of the 

global Internet for the public good, [IANA, 2004].”  The port numbers are divided into 

three ranges, the well known ports, the registered ports, and the dynamic and/or private 

ports.  A study was done to determine protocols and ports applying to each application.  It 

was recognized the choices made would not be all inclusive, but it was hoped they would 

capture at least 90% of the traffic for a given application. 

 

• Web Surfing.  There were 8 protocol port pairs chosen for characterizing 

web surfing Internet traffic.  These included ports 80, 280, 443, and 8080 

for both TCP and UDP and were titled World Wide Web for HTTP, http-

mgmt, http protocol over TLS/SSL, and http alternate [IANA, 2004]. 

 



 166

• Email.  There were 50 protocol port pairs chosen for characterizing email 

Internet traffic.  These included ports titled Simple Mail Transfer, POP3, 

Remote Mail Checking Protocol, XNS Mail, NI Mail, Mail Q, QuickMail 

Transfer Protocol, MCS Fastmail, and others [IANA, 2004]. 

• FTP.  There were 28 protocol port pairs chosen for characterizing FTP 

Internet traffic.  These included ports titled FTP Default Data, FTP 

Control, NI FTP PFTP, UTS FTP, GSI FTP, MFTP, ODETTE FTP, and 

others [IANA, 2004]. 

• VPN.  There were 12 protocol port pairs chosen for characterizing VPN 

Internet traffic.  These included ports titled PPTP, NI FTP, ISAKMP, 

Socks, and others [IANA, 2004]. 

• News.  There were 16 protocol port pairs chosen for characterizing news 

Internet traffic.  These included ports titled TAC News, Network News 

Transfer Protocol, Readnews, NetNews, NewsEdge, and others [IANA, 

2004]. 

• Chat.  There were 74 protocol port pairs chosen for characterizing chat 

Internet traffic.  These included ports titled Chat, Internet Relay Chat 

Protocol, IDEAFARM-CHAT, Instant Service Chat, Netchat, Redwood 

Chat, HotU Chat, Yo.net, PR Chat, America-Online, IRCU, OnLive, Italk 

Chat System, and others [IANA, 2004]. 

• Telnet.  There were 16 protocol port pairs chosen for characterizing telnet 

Internet traffic.  These included ports titled Telnet, SU/MIT Telnet 
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Gateway, Remote Telnet Service, SkyTelnet, TC1-Telnet, SCPI-Telnet, 

and others [IANA, 2004]. 

• VoIP.  There were 18 protocol port pairs chosen for characterizing VoIP 

Internet traffic.  These included ports titled BSQUARE-VOIP, 

h323hotstcall, MSICPP, PRP, IUA, NetIP VoIP Assessor, and others 

[IANA, 2004]. 

• Media.  There were 16 protocol port pairs chosen for characterizing 

streaming media Internet traffic.  These included ports titled MS-

Streaming, YO.net main service, IATP, ARCP, APCNECMP, and others 

[IANA, 2004]. 

• Gaming.  There were 70 protocol port pairs chosen for characterizing 

gaming Internet traffic.  These included ports titled Doom, IM Games, 

IberiaGames, GameGen1, Evolution, Compaq, TAPPI BoxNet, Redstorm, 

Netrek, GameLobby, Xbox, NetMIke, Ironstorm, Quake, GameSmith, 

Tera Base, and others [IANA, 2004]. 

 

Running individual traces by application category proved successful and the 

individual categories do make logical sense.  Figure 7-12 illustrates the traffic races for 

six of the applications.  It appears that they could be distinguishable and would probably 

hold the same characteristics throughout the network. 
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Figure 7-12  Application Traffic Traces  

 

 

Unfortunately, two major problems were recognized when evaluating 

implementation.  A considerable increase in software programming and also run time was 
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necessary to decompose the network traffic by application.  More important than this, the 

lists of which ports and protocols that go with which applications was imprecise and 

subject to change.  Because of the difficulty in defining and maintaining accurate and 

complete listings of port designations for the various applications, and recognizing the 

distinct possibility that some key ports might be missed, this method of decomposition 

was also rejected. 

7.6.3. Common Usage Traffic Traces.  The third attempt at decomposing the  

network data was to try less granularity and to investigate traffic traces of common usage 

groups.  Decomposition by similar airline flight route was selected for the subject 

network and traffic data was collected on several thousand flights for a variety of 

different routes.  Users on each aircraft have the same IP subnet addresses and traffic 

traces were obtained by matching aircraft IP subnets to published flight schedules. 

This method of decomposition was found to be acceptable.  The individual flights 

on similar flight routes were consistent from day to day and were quite distinct from each 

other.  Traffic traces were developed by taking all the flights of a particular type flight 

route, normalizing to the same start time, and then computing the average.  Some 

example plots of various sizes and shapes are shown in Figure 7-13.  Note how each is 

unique from the others.  Appendix A contains plots for the thirty standard flight routes 

used in this study. 
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Figure 7-13  Flight Route Traffic Traces 
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7.7. INTERPRETATION AND EVALUATION 

Data mining is merely a tool, although powerful, that improves the capabilities of 

the analysis but does not remove the need for a skilled analysis [Two Crows, 1999].  

During this step the data mining information is turned into knowledge.  This will be 

covered in the Section 8 through simulation development and testing. 

 

7.8. APPLICABILITY TO OTHER NETWORK-CENTRIC SYSTEMS 

The question arises as to whether or not the same data mining methodology could 

be applied to other NCSs and whether or not data traffic on other NCSs could also be 

broken down into distinct categories made up of the traffic traces of similar types of 

users. 

7.8.1. Network-Centric Battlegroup.  Consider the network-centric  

battlegroup discussed in a previous section (Section 1.2.2) as illustrated in Figure 7-14 

[from Dagli and Miller, 2003].  The same data mining methodology that was applied to 

decompose the CBB NCS’s network traffic could also be applied to decomposing the 

battlegroup’s network traffic.  Data could be collected during mock war trials or during 

previous battlegroup engagements and stored in database warehouses.  The data could be 

extracted based on IP addresses like the CBB NCS, then preprocessed and transformed as 

appropriate.  The data could then be aggregated into categories similar to the CBB NCS 

but yet unique to the battlegroup NCS.  Instead of different flight route traffic traces, the 

categories could be different military platform traffic traces.  For example, data traffic to 

and from an F-15 fighter jet is likely to have vastly different characteristics than data 

traffic between infantry soldiers, and the data traffic for an Apache helicopter is likely to 
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be even more different.  Network traffic would also be different depending upon the 

situation.  For example, an M1A2 Abrams tank would likely have light steady state traffic 

while in cruise operations moving towards the battlefield and heavy bursty traffic while 

engaged in battle.  In this manner the methodology developed for data mining the CBB 

NCS could also be applied to network-centric battlegroup.  The result would be data 

traffic traces that could be used in simulation for traffic modeling and bandwidth demand 

prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-14  Network-Centric Battlegroup 
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7.8.2. Naval Group.  Consider a navel carrier group, as seen in Figure 7-15  

[NavSource, 2007], consisting of an aircraft carrier, battleships, cruisers, submarines, 

fighter aircraft, etc.  A similar methodology could be applied to develop characteristic 

traffic traces for individual classes of ships.  During war gaming exercises planners could 

predict the network demand based on the number and type of vehicles assigned to the 

group. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-15  Abraham Lincoln Aircraft Carrier Naval Group 

 

 

7.8.3. Commercial Ventures.  There are many examples of large companies  

operating in a network-centric environment that that could use the same methodology to 

predict bandwidth needs for their networks.  These would include retail stores, banking 
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operations, trucking and other transportation companies, and in particular Internet service 

providers for cellular phones, cable and satellite television, and computers. 

 

7.9. SECTION SUMMARY 

In this section the methodology and results from data mining network traffic on 

the CBB network were presented.  Each step of the data mining process was described as 

CBB network data was selected, extracted, preprocessed, transformed, and data mined for 

relevant traffic traces.  The same methodology was then applied to operational CBB 

network traffic data to supply input data for the testing of the ANN based simulation. 

Now that a method has been developed for decomposing CBB network data into 

categories compatible with ANN simulation, the next step was to build an ANN based 

simulation and compare results to current methodology.  The following section (Section 

8.0) proposes an adaptive model for Internet traffic modeling based on artificial neural 

networks. 
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8. ANN SIMULATION 

8.1. OVERVIEW OF SIMULATION DEVELOPMENT AND TESTING 

In this section an adaptive architecture for network traffic modeling based on 

artificial neural networks is presented.  In the previous section (Section 7) a methodology 

was proposed for data mining network traffic to determine patterns in the data compatible 

with ANN simulation.  For the CBB network it was time-history traffic traces based on 

various flight route types, such as Atlantic routes, trans-Asia routes, Far East routes, etc.  

In this section ANNs are used to build a network bandwidth simulation based on these 

traffic traces.  The simulation is then used to predict network bandwidth demand. 

First the simulation is described, including the substitution of the ANN predictor 

in place of the Norros equation module.  Then the architecture of the ANN predictor is 

described.  Next the accuracy of the ANN predictor is evaluated and simulation testing 

results are presented comparing the ANN based simulation to current methodology with 

the Norros equation. 

 

8.2. SIMULATION ARCHITECTURE 

The purpose of the simulation is to predict network bandwidth demand.  This 

allows for efficient and accurate sizing of the network.  The CBB NCS network was used 

as the case study for this dissertation.  The ability to predict bandwidth demand allows for 

cost efficient leasing of transponders on geo-synchronous satellites.  This allows for cost 

effective sizing of the network.  Figure 8-1 (adapted from Swift, 2004b] illustrates a 

bandwidth trace. 
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Figure 8-1  Bandwidth Load Profile 

 

 

To predict bandwidth demand, a CBB network CSIM (capacity simulation) is 

currently used.  In the current CSIM, predicted user characteristics are the primary input.  

Other inputs are used to determine how many users are in a specified transponder region 

at any given moment and how many are using the system at that moment.  The CSIM 

uses a Norros based equation, which models Internet traffic based on fractional Brownian 

motion, to compute the bandwidth needs.  This output is then used to determine how 

many satellite transponders to lease in order to effectively size the network.  Figure 8-2 

shows a top level block diagram of CSIM inputs and outputs. 
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The proposed adaptive architecture utilizes artificial neural networks, which are a 

recognized form of computational intelligence, in place of the Norros equation.  Artificial 

neural networks are capable of learning and of generalizations.  Instead of using predicted 

user characteristics, the adaptive neural network uses actual traffic traces taken from data 

collected off the network.  Figure 8-3 shows the proposed block diagram. 
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The operational overview architecture (DoDAF OV-1) for the current CSIM 

simulation is shown in Figure 8-4.  The key input is user characteristics and the Norros 

equation is used to compute bandwidth demand for each transponder region.  Other 

inputs include airline routes so the location of aircraft at a given time are known, 

transponder coverage areas, installation plans to determine which planes are equipped 

with CBB antennas, and customer projections to determine how many users will be 

connected to the CBB network at one time.  Section 6.7 contains a complete description 

of the current CBB CSIM and discusses each of the modules and how they interface and 

the outputs and inputs. 
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There are several weakness.  One is the level of uncertainty.  Several of the input 

parameters are estimations.  Another is use of the Norros equation.  Values used for input 

to the Norros equation are difficult to obtain and are of questionable accuracy.  Also the 

Norros equation is based on self-similarity which may not hold true for modern NCSs.  

Another weakness is a lack of adaptability and scalability.  The Norros equation is held 

constant throughout the network.  In reality, network traffic varies according to location 

on the network, time of day, applications in use, user habits, and other factors.  The 

network characteristics are also constantly evolving and changing. 
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The operational overview architecture (DoDAF OV-1) for the proposed ANN 

based CSIM simulation is shown in Figure 8-5.  Bandwidth traffic traces are substituted 

as the key input parameter to the CSIM core instead of user characteristics.  These 

bandwidth traffic traces are generated by the ANN predictor.  Other inputs are still 

needed to determine which type of equipped aircraft is in a given transponder region at a 

given moment in time.  The CSIM core simply aggregates a composite value for any 

given moment of time to generate system bandwidth demand profiles. 
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Figure 8-5  Proposed CSIM Architecture 
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There are several strengths.  One is a decrease in uncertainty.  Several of the input 

parameters which were estimates are no longer required - such as user characteristics (for 

input to the Norros equation) and penetration rate projections (estimating how many of 

the available passengers will connect to the network).  Another strength is variability.  

The input profiles will be different for different regions of the globe and different types 

of aircraft and different flight durations and for several other factors.  Another strength is 

adaptability.  The neural networks will adapt to change through learning as the CBB 

system evolves. 

 

8.3. ANN Predictor 

Neural networks, also known as ANNs (artificial neural networks) or 

neurocomputing, are biologically inspired intelligent computing techniques that can be 

used very effectively for classification and prediction.  Unlike traditional techniques 

which simply process information, neural networks learn and adapt in a manner similar to 

the human brain [Ham and Kostanic, 2001]. 

This sub-section describes the ANN predictor developed for simulation modeling 

of network traffic demand.  The previous sub-section described how the ANN predictor is 

used by the overall CSIM simulation, along with other inputs, to predict network traffic 

demand.  The disadvantages of the current methodology were discussed in Section 3.  

Sub-secton 8.4 describes the development of the simulation and the integration of the 

ANN predictor into the simulation in place of the current Norros equation modules.  The 

results of simulation testing and a comparison between the ANN predictor and current 

simulation methodology are presented in Section 4 also. 
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8.3.1. Ground Rules.  There were three ground rules used in development of  

the neural network model: 

 

• Inputs for the neural network would come from values currently being 

collected by the network sniffers and data warehouses in use by CBB. 

• The neural network would have the capability for learning through real 

network data, to allow for the ability to change and adapt. 

• The output would be in a form that could be used to predict bandwidth 

demand by the simulation, which is the whole reason for modeling network 

data traffic on an NCS. 

 

8.3.2. Purpose.  The goal of the ANN predictor development effort was to  

build an ANN that could recognize flight route types from flight route attributes and then 

output corresponding bandwidth traffic traces that correctly represent the demand.  These 

flight route bandwidth traffic traces had been selected from the data decomposition data 

mining process (Section 7) and would serve as output vectors from the ANN predictor to 

the CSIM core, and also for training of the ANN.  The inputs vectors would consist of 

key attributes that would enable the neural network to accurately output the bandwidth 

traffic trace of a given flight route.  Figure 8-6 illustrates the top level block diagram.  

The outputs could then be summed by the simulation to give the predicted total 

bandwidth needed for any number of flights operating concurrently according to 

published departure and arrival schedules. 
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Figure 8-6  ANN Predictor Inputs and Outputs 

 

 

8.3.3. Input Vectors.  A study was conducted to determine key attributes that  

could be used to form the ANN input vectors.  These input attributes would have to be 

sufficient enough to allow the ANN predictor to generate a predicted bandwidth profile.  

The following criteria were used: 

 

• Contribution to model accuracy 

• Reliability 

• As few as possible 

• Easily obtainable 

 

First an IDEF analysis was performed on the CBB network examining all 

potential attributes.  IDEF stands for integrated definition methods.  According to the 

IDEF website [IDEF, 2005], IDEF is a methodology designed to help model the 

functions (activities, actions, processes, and operations) of a system or enterprise.  
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Federal Publication 183, “Integration Definition for Function Modeling (IDEF0)” 

contains the standard, which is issued by the National Institute of Standards and 

Technology after approval from the Secretary of Commerce. 

The model consists of a hierarchical series of diagrams, text, and glossary.  

Functions are represented on the diagram by boxes.  Interfaces are represented by arrows.  

Figure 8-7 [adapted from IDEF, 2005] illustrates the overall scheme. 
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Figure 8-7  IDEF Inputs and Outputs 

 

 

The first diagram in an IDEF model is the A-0 model diagram which is the top 

level context diagram.  Figure 8-8 is a top level context diagram, A-0, for the CBB 

network CSIM simulation. 
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Figure 8-8  IDEF A0 Top Level Context Diagram for CBB CSIM 

 

 

The next level diagram in the hierarchy is a child diagram of the function block 

for the top level context diagram.  This is the A0 diagram shown below in Figure 8-9. 
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The next level diagram in the hierarchy is a child diagram of function block 

number 3, which is the one labeled Compute Customer BW Demand.  This is the A3 

diagram shown below in Figure 8-10. 
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Figure 8-10  IDEF Child Diagram of Functional Block A3 for CBB CSIM 

 

 

The next level diagram in the hierarchy is a child diagram of function block 

number 2, which is the one labeled Generate Input Vectors.  This is the A32 diagram 

shown below in Figure 8-11. 
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Figure 8-11  IDEF Child Diagram of Functional Block A32 for CBB CSIM 

 

 

 

Table 8-1 contains the resultant attributes and the levels that were considered for 

each factor identified above in the A32 diagram.  Column two also contains examples 

shown in parenthesis. 
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Table 8-1  Attributes from IDEF Study 

Factor Level 

Aircraft Model Two levels, nominal, aircraft model (747), version (747-400) 

Number of Seats One level, integer (397 seats) 

Boeing or Airbus One level, binary (Boeing/Airbus) 

Wireless or Cable One level, binary (wireless/cable) 

Electrical Power One level, binary (yes/no) 

Length of Flight One level, continuous number (9:45:30 = 9.758 hours) 

Arrival Time One level, continuous number (21:45:30 = 21.758 hours) 

Arrival Location One level, nominal, major airports only (LAX) 

Departure Time One level, continuous number (12:45:30 = 12.758 hours) 

Departure Location One level, nominal, major airports only (SEA) 

Region of Globe One level, nominal, major regions only (Atlantic) 

Non-Stop One level, binary (yes/no) 

Meal Offered One level, binary (yes/no) 

Day or Night One level, binary (day/night) 

Airline One level, nominal, airline designators (United Airlines) 

Publicity One level, binary (yes/no) 

Cost One level, continuous number ($29.50) 

Age One level, integer, round to years (21) 

Male or Female One level, binary (male/female) 

Nationality One level, nominal, countries (France) 

Profession One level, integer number (yes/no) 

Military or Civilian One level, binary (military/civilian) 

Business or Leisure One level, binary (business/leisure) 

First Class or Coach One level, binary (first class/coach) 

Frequent Flyer One level, binary (yes/no) 

Payment Method One level, nominal (credit card) 

Return User One level, binary (yes/no) 

Desired Use One level, nominal, primary use only (web surfing) 
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Attributes identified through the IDEF study were examined according to the 

study criteria, pivot tables were built, and rankings by gain (Quinlin, 1992), per the 

Equation 8.1, were performed. 
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Where freq(C,T) is the number of cases in T belonging to class C and |T| is the number of 

cases in set T.  Eight key attributes were selected to form the input vectors for the ANN 

predictor as listed in Table 8-2. 

 

 

Table 8-2  Selected Attributes 

 
Number of users 

Airline 

Aircraft model (seats) 

Length of flight (total minutes) 

Departure time (local) 

Arrival time (local) 

Departure location 

Arrival location 

 

 

 

 

 

 

 

 

Note that length of flight is not the difference between arrival and departure times, 

which are a reflection of the time of day since they were calculated in local time and most 
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flights crossed multiple time zones.  Also, departure and arrival location had to each be 

broken into latitude and longitude for input to the model, which raised the total to 10 

attributes. 

After data cleaning, manipulation of format, and normalizing, the 10 attributes 

listed in Table 8-3 were combined into time-history input vectors for training the neural 

networks to perform pattern recognition and output flight route traffic traces. 

 

 

Table 8-3  Input Vector Attributes 

 Number of users 

Airline 

Aircraft model (seats) 

Length of flight (total minutes) 

Departure time (local) 

Arrival time (local) 

Departure location latitude 

Departure location longitude 

Arrival location latitude 

Arrival location longitude 

 

 

 

 

 

 

 

 

 

 

8.3.4. Output Vectors.  Output vectors from the ANN predictor are the flight  

route bandwidth traffic traces developed in the data decomposition data mining study 

described in Section 7.  These bandwidth traffic traces are input to the CSIM core for 
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aggregation and calculation of the total network’s bandwidth demand.  Thirty typical 

types of flights routes were chosen for the study to give a global representation.  The 

bandwidth traffic traces were developed by taking a composite average of all the 

collected data for those flights over the course of the study.  These time series traffic 

traces, composed of data points every second, were binned into 17 intervals of one hour 

each and normalized to equivalent numbers of users. 

Figure 8-12 illustrates by comparing the composite trace, with data points every 

second, to the derived output vectors, with points binned in hour intervals.  Figure 8-13 

illustrates for a different flight route and Figure 8-14 for a third. 
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Figure 8-12  Composite Data Binned to 1 Hour for DLH 714 
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Figure 8-13  Composite Data Binned to 1 Hour for SIA 321 
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Figure 8-14  Composite Data Binned to 1 Hour for BA 175 

 

 

Figure 8-15 illustrates a set of 6 output data sets representing flight route traffic 

traces for six long haul flights.  Each line represents a different flight route.  Notice how 

they are each distinct from the other.  Figure 8-16 illustrates for 6 mid-range flight routes 

and Figure 8-17 illustrates for 6 short range flight routes.  Individual graphs for all the 

flight routes are contained in Appendix A. 
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Figure 8-15  Output Vectors for 6 Flight Route – Long Range 
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Figure 8-16  Output Vectors for 6 Flight Route – Mid-Range 
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Figure 8-17  Output Vectors for 6 Flight Route – Short Range 

 

 

It should be noted here that the ANN predictor has a natural advantage over the 

Norros equation.  The ANN predictor outputs actual flight profiles that vary in scale 

whereas the Norros equation outputs a constant value.  This is typical of current modeling 

techniques based on mathematical equations which are not very adaptable.  Figures 8-18 

and 8-19 illustrate the Norros equation estimates compared to actual bandwidth traffic.  A 

constant value does not provide a very good representation. 
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Figure 8-18  Norros Equation Estimate – Example 1 
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Figure 8-19  Norros Equation Estimate - Example 2 
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8.3.5. ANN Structure.  A simple multi-layer feed-forward perceptron with  

back-propagation learning was used for the ANN predictor.  Table 8-4 details the 

structure of the neural network and Figure 8-20 illustrates the network structure.  Other 

types of neural networks were investigated, such as counter-propagation neural networks, 

radial basis function neural networks, Kohonen self-organizing maps, genetic algorithms, 

and evolving critical neural networks.  Some are more accurate but the added complexity 

did not justify the gain, see Section 4-3, and the simple feed-forward perceptron with 

back-propagation learning proved sufficient.  However, a second hidden layer did have to 

be added to the perceptron network structure to minimize the effects of noise as the 

number of input cases increased. 

 

 

Table 8-4  Neural Network 

Type Feed-forward perceptron 

Input Vectors 10 neurons 

First Hidden Layer 39 neurons 

Activation function Tangent-sigmoid 

Second Hidden Layer 39 neurons 

Activation function Logarithmic-sigmoid 

Output Layer 17 neurons 

Activation function Pure linear 

Training Back-propagation 

Training Algorithm Levenberg-Marquardt 

Convergence Criteria e-5 
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Figure 8-20  ANN Structure 

 

 

The feed-forward perceptron assigns activation functions to the neurons and 

weights to the network lines.  Once the perceptron has been trained through a learning 

algorithm it processes input vectors, in this case a vector of 10 flight route attributes, and 
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then generates the output vector, in this case a vector of 17 points defining the bandwidth 

traffic trace for that flight route.  Figure 8-21 illustrates the block diagram. 
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Figure 8-21  Feed-forward Perceptron 

 

 

Three activation functions were used.  Tangent-sigmoid was used on the first 

hidden layer.  It generates an output between +1 and -1 as the neuron’s net input goes 

from negative to positive infinity [Demuth and Beale, 2001].  Logarithmic-sigmoid was 

used on the second hidden layer.  It generates output between +1 and 0 as the neuron’s 

net input goes from negative to infinity [Demuth and Beale, 2001].  A linear activation 

function was used on the output layer.  It outputs the neuron’s net input without 

modification. 

Back-propagation learning involves a set of iterations.  First a training vector is 

passed through the network to determine the error between the desired output and the 

network’s output in its current state.  Then the weights on the network lines to each 
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neuron are adjusted according to a scaling factor towards lower local error.  This process 

is back-propagated through the network until all the weights are adjusted.  Then another 

training iteration takes place.  This continues until the error criteria have been reached or 

the network stabilizes.  The Levenberg-Marquardt training algorithm adjusts weights on 

network lines in the direction of the negative gradient to minimize error.  It uses the 

Jacobian matrix of first derivatives of the network errors with respect to the weights and 

biases [Ham and Kostanic, etc].  For this simulation all modules were developed with 

Matlab® version 6.0 with the Neural Network Toolbox® version 4.0 [Demuth and Beale, 

2001; Hanselman and Littlefield, 2001].   

 

8.4. PERFORMANCE EVALUATION 

ANN simulation performance evaluation consisted of two main parts.  The first 

part was accuracy testing of the ANN predictor, described in Section 8.3, for all 30 flight 

routes and then comparing output from the ANN predictor against estimates from the 

Norros equation, described in Section 6.7.2.6, Equations 6.2 and 6.2.  Details on the 

development of the Norros equation as a mathematical representation are contained in 

Section 3.6.3 and a discussion of the advantages and disadvantages in Section 3.6.4.  

Table 8-5 lists the thirty standard flight routes used for performance evaluation.  The 

chart contains flight numbers, which are in pairs to and from selected cities.  The chart 

also contains airline name and designation, origination city and designation, destination 

city and designation, departure time local, arrival time local, and the aircraft designator, 

from which the size of the aircraft and number of seats can be determined. 
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Table 8-5  Flight Routes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flight Number Airline Origination Destination Departure Arrival Aircraft

1. DLH 418 Lufthansa Airlines (LH) Frankfurt (FRA) Washington D.C. (IAD) 13:10 15:55 744
2. DLH 419 Lufthansa Airlines (LH) Washington D.C. (IAD) Frankfurt (FRA) 17:55 7:35 744

3. BA 175 British Airw ays (BA) London (LHR) New  York (JFK) 11:00 13:50 744
4. BA 112 British Airw ays (BA) New  York (JFK) London (LHR) 18:30 6:25 744

5. DLH 452 Lufthansa Airlines (LH) Munich (MUC) Los Angeles (LAX) 11:10 14:25 343
6. DLH 453 Lufthansa Airlines (LH) Los Angeles (LAX) Munich (MUC) 16:35 12:50 343

 
7. DLH 714 Lufthansa Airlines (LH) Munich (MUC) Tokyo (NRT) 15:30 10:00 343
8. DLH 715 Lufthansa Airlines (LH) Tokyo (NRT) Munich (MUC) 12:20 17:35 343

9. ANA 919 All Nippon Airw ays (NH) Tokyo (NRT) Shanghai (PVG) 9:50 11:55 777
10. ANA 920 All Nippon Airw ays (NH) Shanghai (PVG) Tokyo (NRT) 13:10 16:55 777

11. SIA 320 Singapore Airlines (SQ) Singapore (SIN) London (LHR) 12:40 19:10 744
12. SIA 321 Singapore Airlines (SQ) London (LHR) Singapore (SIN) 22:15 18:00 744

13. JAL005 Japan Airlines (JL) New  York (JFK) Tokyo (NRT) 13:30 16:20 744
14. JAL006 Japan Airlines (JL) Tokyo (NRT) New  York (JFK) 12:00 11:25 744

15. CAL 011 China Airlines (CI) New  York (JFK) Anchorage (ANC) 23:55 3:25 343
16. CAL 012 China Airlines (CI) Anchorage (ANC) New  York (JFK) 11:20 22:10 343

17. SAS 937 Scandinavian Airlines (SK) Copenhagen (CPH) Seattle (SEA) 15:35 16:35 343
18. SAS 938 Scandinavian Airlines (SK) Seattle (SEA) Copenhagen (CPH) 18:55 13:25 343

19. SAS 943 Scandinavian Airlines (SK) Copenhagen (CPH) Chicago (ORD) 15:30 17:30 763
20. SAS 944 Scandinavian Airlines (SK) Chicago (ORD) Copenhagen (CPH) 22:15 13:30 763

21. KAL 703 Korean Airlines (KE) Seoul (ICN) Tokyo (NRT) 10:20 12:35 744
22. KAL 704 Korean Airlines (KE) Tokyo (NRT) Seoul (ICN) 14:55 17:20 744

23. SIA 001 Singapore Airlines (SQ) Hong Kong (HKG) Singapore (SIN) 8:00 11:35 744
24. SIA 002 Singapore Airlines (SQ) Singapore (SIN) Hong Kong (HKG) 17:00 20:45 744

25. SIA 011 Singapore Airlines (SQ) Tokyo (NRT) Singapore (SIN) 19:10 1:00 744
26. SIA 012 Singapore Airlines (SQ) Singapore (SIN) Tokyo (NRT) 9:50 17:35 744

27. DLH 582 Lufthansa Airlines (LH) Frankfurt (FRA) Cairo (CAI) 10:00 15:00 332
28. DLH 583 Lufthansa Airlines (LH) Cairo (CAI) Frankfurt (FRA) 16:30 19:45 332

29. DLH 632 Lufthansa Airlines (LH) Munich (MUC) Riyadh (RUH) 13:55 20:25 332
30. DLH 633 Lufthansa Airlines (LH) Riyadh (RUH) Munich (MUC) 3:05 8:00 332
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The second part consisted of simulation runs with the ANN predictor loaded into 

the CSIM.  Simulation runs #1 used the CBB trial data for development of the neural 

network structure and to test feasibility as part of a concept demonstration exercise.  

Simulation runs #2 used operational data for one transponder region.  Simulation runs #3 

increased the scale to a global model.  In all cases results from the ANN based model was 

evaluated for accuracy and then compared against results from the Norros equation based 

model. 

The evaluations included models of varying scales: 1) one-on-one flight route 

comparison, 2) concept development simulation comparison, 3) a regional simulation 

comparison, and 4) a global simulation comparison. 

8.4.1. One-on-One Comparison.  Flight route traffic traces generated by the  

ANN predictor were compared against expected values and then against flight route 

traffic traces from the Norros equation.  The Norros equation outputs a constant value 

based on the length of flight and number of users.  The ANN predictor generates a 

predicted bandwidth traffic trace composed of 17 points on a time-history vector.  A 

cubic spline interpolation was used between data points for graphing purposes.  

Comparisons were made on all 30 representative flight routes.  The neural network 

outputs were significantly more accurate, not only in scale, but because they vary along 

the horizontal axis to match the actual values, whereas the Norros equation outputs a 

constant value.  Figures 8-22, 8-23, and 8-24 show three examples for various range 

flights.  Plots for all the flight routes are contained in Appendix B. 
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Figure 8-22  Generated Flight Route Traffic Traces – Comparison 1 
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Figure 8-23  Generated Flight Route Traffic Traces – Comparison 2 
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Figure 8-24  Generated Flight Route Traffic Traces – Comparison 3 

 

 

The improvement in accuracy was considerable for all 30 flight routes.  Average 

errors from the expected value for a flight route, for the Norros equation, ranged from 

39.1 to 99.5 kbps with an average of 62.7 kbps.  Average errors from the expected value 

for a flight route, for the ANN, ranged from 0 .1 to 2.6 bps with an average of 1.0 bps.  

Table 8-6 contains the statistics. 
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Table 8-6  One-On-One Comparison of Average Errors 

     Average Error (kbps) 

Flight Norros ANN 

1 58.2391 0.0001 

2 54.1722 0.0014 

3 60.2146 0.0001 

4 55.8083 0.0001 

5 48.1816 0.0001 

6 51.3295 0.0002  

7 65.8969 0.0010 

8 50.6480 0.0019 

9 85.7078 0.0017 

10 77.3187 0.0050 

11 39.0915 0.0023 

12 48.8326  0.0014 

13 42.3335 0.0004 

14 53.2897 0.0003 

15 55.0250 0.0005 

16 51.7578 0.0021  

17 57.2813 0.0008 

18 61.9477 0.0016 

19 88.7665 0.0008 

20 91.8675 0.0010 

21 87.4132 0.0015 

22 99.5353 0.0026  

23 54.1393 0.0004 

24 60.4965 0.0003 

25 42.0443 0.0002 

26 41.0144 0.0001 

27 70.1716 0.0002 

28 65.9520 0.0007 

29 82.1474 0.0006 

30 80.3793 0.0001  

Mean 62.7001 0.0010 
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8.4.2. Simulation #1 Results – Concept Demonstration.  The initial concept  

demonstration simulation was configured for four trans-Atlantic flights routes and 100 

flights.  Figure 8-25 illustrates the routes.  Each line represents two flight routes, forward 

and return.  Start times, departure and arrival locations, and flight numbers for each of the 

100 flights were loaded into the simulation. 

 

• Lufthansa Airlines DLH 418 from Frankfurt to Washington D.C. 

• Lufthansa Airlines DLH 419 from Washington D.C. to Frankfurt 

• British Airways BA 175 from London to New York 

• British Airways BA 112 from New York to London 
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Figure 8-25  Concept Demonstration Flight Routes 
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Estimated bandwidth demand was calculated for the Norros based simulation and 

the ANN based simulation.  Figure 8-26 illustrates the difference in bandwidth traffic 

traces.  The Norros equation based simulation is significantly higher than the expected 

value.  The ANN based simulation more closely follows the expected values.  Table 8-7 

contains some statistics.   
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Figure 8-26  Concept Demonstration Bandwidth Traces 
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Table 8-7  Concept Demonstration Simulation Results 

 Average
Bandwidth

(kbps)

Peak
Bandwidth

(kbps)
Actual 2,153.8 4,790.4
Norros 3,189.0 5,048.4
ANN 2,152.0 4,744.0

 

 

 

 

 

8.4.3. Simulation #2 Results – Regional Model.  The finalized simulation was  

configured to use eight operational trans-Atlantic flights routes, one transponder region, 

and 500 flights.  Figure 8-27 illustrates the routes.  Each line represents two flight routes, 

forward and return.  Start times, departure and arrival locations, and flight numbers for 

each of the 500 flights were loaded into the simulation. 

 

• Lufthansa Airlines DLH 452 from Munich to Los Angeles 

• Lufthansa Airlines DLH 453 from Los Angeles to Munich 

• Scandinavian Airlines SAS 937 from Copenhagen to Seattle 

• Scandinavian Airlines SAS 938 from Seattle to Copenhagen 

• Scandinavian Airlines SAS 943 from Copenhagen to Chicago 

• Scandinavian Airlines SAS 944 from Chicago to Copenhagen 

• Japan Airlines JAL 005 from New York to Tokyo 

• Japan Airlines JAL 006 from Tokyo to New York 
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Figure 8-27  Atlantic Region Flight Routes 

 

 

Required bandwidth demand was calculated for the Norros based simulation and 

the ANN based simulation.  Figure 8-28 illustrates the difference in bandwidth traffic 

traces.  Again the Norros equation based simulation is significantly higher than the 

expected value.  The ANN based simulation more closely follows the expected values.  

Table 8-8 contains some statistics. 

 

 

Table 8-8  Atlantic Region Simulation Results 

 Average
Bandwidth

(kbps)

Peak
Bandwidth

(kbps)
Actual 2,153.8 4,790.4
Norros 3,189.0 5,048.4
ANN 2,152.0 4,744.0
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Figure 8-28  Atlantic Region Bandwidth Traces 

 

 

8.4.4. Simulation #3 Results – Global Model.  The finalized simulation was  

re-configured to use 30 flights routes around the globe, five transponder regions, and 

3,000 flights.  Figure 8-29 illustrates the routes.  Each line represents two flight routes, 

forward and return.  Start times, departure and arrival locations, and flight numbers for 

each of the 3,000 flights were loaded into the simulation. 
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• Lufthansa Airlines DLH 418 from Frankfurt to Washington D.C. 

• Lufthansa Airlines DLH 419 from Washington D.C. to Frankfurt 

• British Airways BA 175 from London to New York 

• British Airways BA 112 from New York to London 

• Lufthansa Airlines DLH 452 from Munich to Los Angeles 

• Lufthansa Airlines DLH 453 from Los Angeles to Munich 

• Scandinavian Airlines SAS 937 from Copenhagen to Seattle 

• Scandinavian Airlines SAS 938 from Seattle to Copenhagen 

• Scandinavian Airlines SAS 943 from Copenhagen to Chicago 

• Scandinavian Airlines SAS 944 from Chicago to Copenhagen 

• China Airlines CAL 011 from New York to Anchorage 

• China Airlines CAL 012 from Anchorage to New York 

• Lufthansa Airlines DLH 714 from Munich to Tokyo 

• Lufthansa Airlines DLH 715 from Tokyo to Munich 

• Japan Airlines JAL 005 from New York to Tokyo 

• Japan Airlines JAL 006 from Tokyo to New York 

• Singapore Airlines SIA 320 from Singapore to London 

• Singapore Airlines SIA 321 from London to Singapore 

• Lufthansa Airlines DLH 832 from Munich to Riyadh 

• Lufthansa Airlines DLH 833 from Riyadh to Munich 

• Lufthansa Airlines DLH 682 from Frankfurt to Cairo 

• Lufthansa Airlines DLH 683 from Cairo to Frankfurt 

• Korean Airlines KAL 703 from Seoul to Tokyo 
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• Korean Airlines KAL 704 from Tokyo to Seoul 

• All Nippon Airways ANA 821 from Tokyo to Shanghai 

• All Nippon Airways ANA 822 from Shanghai to Tokyo 

• Singapore Airlines SIA 011 from Tokyo to Singapore 

• Singapore Airlines SIA 012 from Singapore to Tokyo 

• Singapore Airlines SIA 001 from Hong Kong to Singapore 

• Singapore Airlines SIA 002 from Singapore to Hong Kong 
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Figure 8-29  All Flight Routes 

 

 

Required bandwidth demand was calculated for the Norros based simulation and 

the ANN based simulation.  Figures 8-30 to 8-34 illustrate the difference in bandwidth 

traffic traces.  Again the Norros equation based simulation is significantly higher than the 
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expected value.  The ANN based simulation more closely follows the expected values.  

Table 8-9 contains some statistics illustrating the improvements in performance 

comparing expected values to the values from the Norros equation based simulation and 

to the ANN based simulation. 

 

 

Table 8-9  Global Simulation Results 

 Average
Bandwidth

(kbps)

Peak
Bandwidth

(kbps)
USA - West

Actual 4,717.7 7,249.4
Norros 5,945.9 9,133.4
ANN 4,717.6 7,249.4

USA - East
Actual 9,622.7 19,713.0
Norros 14,297.0 22,453.0
ANN 9,652.5 19,804.0

Mid-East
Actual 527.3 1,895.8
Norros 2,771.1 7,319.4
ANN 527.3 1,859.3
Asia

Actual 3,663.8 5,871.8
Norros 9,450.0 13,015.0
ANN 3,663.8 5,871.6

Far East
Actual 332.8 1,492.6
Norros 6,674.8 22,759.0
ANN 568.5 1,609.0

Averages
Actual 3,772.9 7,244.5
Norros 7,827.8 14,936.0
ANN 3,825.9 7,278.7
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Figure 8-30  Global Region 1 Bandwidth Traces 
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Figure 8-31  Global Region 2 Bandwidth Traces 
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Figure 8-32  Global Region 3 Bandwidth Traces 
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Figure 8-33  Global Region 4 Bandwidth Traces 
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Figure 8-34  Global Region 5 Bandwidth Traces 

 

 

8.4.5. Performance Evaluation Summary.  In all cases, both the one-on-one  

comparisons and the simulation runs, the ANN predictor demonstrated clear and 

significantly better accuracy than the Norros equation based model which is currently in 

use on the CBB NCS.  The Norros equation outputs a constant value, which is not a good 

representation, and the same Norros input parameters are used globally, due to the 

difficulty measuring data off the network and calculating difficult values such as the 

Hurst parameter.  The ANN predictor uses actual network data traffic traces, which is a 

much better representation, and is different for each flight route.  ANN adaptation can 

easily be performed by learning algorithms and re-training with new flight route profiles. 
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8.5. SECTION SUMMARY 

This section introduced the adaptive artificial neural network predictor.  A 

description of the ANN architecture was presented, including the input attribute vectors, 

the output traffic trace vectors, and the internal structure of the ANN, which was a feed-

forward perceptron with back-propagation training.  Integration of the ANN predictor 

into the CBB network capacity simulation was described.  The CSIM is used to predict 

bandwidth demand for network sizing. 

Then the results of performance evaluation testing were shown.  The feasibility of 

using the ANN was demonstrated using data off the CBB network.  The ANN predictor 

was found to be extremely accurate when compared to expected values, both for 

individual flight routes and for simulation runs with thousands of flights.  Accuracy was 

compared to the model currently in use by CBB, a mathematical representation called the 

Norros equation.  The ANN predictor was shown to be considerably more accurate. 
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9. CONCLUSION 

9.1. SUMMARY 

This dissertation research project was conducted in fulfillment of requirements for 

a Systems Engineering Ph.D. at the University of Missouri – Rolla in the Department of 

Engineering Management and Systems Engineering.  The Boeing Company participated 

by providing the network data for the research and computing resources. 

Condensed version of selected portions of this research are available in a technical 

paper presented at the Conference on Systems Engineering Research, CSER 2007, at 

Hoboken, New Jersey [Swift and Dagli, 2007a], a journal paper submitted to the 

Engineering Applications of Artificial Intelligence Journal [Swift and Dagli, 2007d], a 

journal paper submitted to the Control and Intelligent Systems Journal [Swift and Dagli, 

2007e], various peer reviewed technical conference proceedings, selected Boeing 

documents and process, and a patent application. 

An adaptive architecture is proposed for modeling network traffic on large-scale 

complex NCSs.  The CBB NCS was used as a case study for this research project to 

establish the feasibility of use on an operating NCS.  The proposed adaptive architecture 

uses artificial neural networks, a method of computational artificial intelligence.  An 

ANN predictor was developed and integrated into the CBB capacity simulation used to 

predict network bandwidth demand.  The ANN based simulation was tested and 

evaluated using actual data collected off the CBB network and compared against existing 

methodology. 

The advantages of the proposed adaptive architecture are increased accuracy and 

adaptability through computational intelligence.  Conventional means of modeling 
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network traffic are not sufficiently scaleable or adaptable.  They are dependent upon 

measured parameters off the network which are not very dependable and are subject to 

change.  They model the traffic with mathematical expressions based on fractional 

Brownian motion and are based on assumptions of self-similarity, which may hold as true 

with the network traffic of today.  With network traffic characteristics always changing 

and evolving, the need for models based on artificial intelligence is very real. 

In order to build an adaptive ANN based model for predicting network traffic, a 

necessary first step is to explore the feasibility of decomposing network traffic into 

patterns compatible with ANN based simulation.  To accomplish this task, data mining 

techniques were utilized and a methodology for decomposing Internet traffic on the CBB 

NCS case study was developed.  Decomposition by user traffic traces and also by 

application traffic traces were investigated and rejected.  Decomposition by flight route 

traffic traces was investigated and found to be acceptable.  These patterns were then 

employed in the development of the adaptive ANN architecture for modeling network 

traffic. 

The proposed ANN predictor uses a multi-layer feed-forward perceptron with 

back-propagation learning algorithms.  The input vectors are flight attributes selected 

after an IDEF decomposition of the simulation.  The output vectors are time-history 

points on the flight route bandwidth traffic traces.  

The CSIM simulates airline flights by plotting flight routes on the globe based on 

start time, departure and arrival location, and flight number.  Transponder coverage 

regions are also computed.  The current CBB CSIM utilizes a fractional Brownian motion 

based Norros equation to estimate user bandwidth needs.  The proposed ANN based 
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CSIM utilizes the ANN predictor to generate bandwidth traffic traces.  The CSIM core 

aggregates the inputs and calculates total bandwidth demand and transponder sizing 

needs. 

The ANN predictor was evaluated for accuracy and compared against current 

methodology.  The ANN predictor was shown to be highly accurate in determining 

bandwidth traffic traces that are excellent representations of actual traffic.  Feasibility of 

the ANN based architecture was demonstrated in a simulation environment with 

operational scenarios – with a small scale concept development model, with an 

operational regional model, and with a global model involving thousands of flights.  

Simulation comparisons were made against expected values and between the Norros 

equation based model and the ANN based model.  The ANN based model was 

significantly more accurate.  In addition to increased accuracy, the ANN based model has 

the capability for adaptation through learning algorithms and re-training. 

Modeling network traffic on an NCS like CBB typifies the problems encountered 

when trying to model or architect different aspects of complex, large-scale, NCS systems.  

The techniques and methodology used to develop and validate the adaptive architecture 

for CBB can also be utilized on other NCSs. 

 

9.2. CONTRIBUTIONS 

There are several contributions resulting from this Ph.D. dissertation research 

project conducted through the University of Missouri – Rolla. 
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• A data mining methodology for decomposing network traffic data into a 

form compatible with computationally intelligent simulation techniques. 

• Data extraction algorithms and processes for the CBB network.  These 

processes allow users to extract network data from multiple data 

warehouses for trending analysis and research on network characteristics.  

The processes could be adapted for use on other similar networks.   

• Decomposition of CBB network traffic into flight route bandwidth traffic 

traces.  These traffic traces were used for ANN simulation and also for 

evaluation of flight and user characteristics. 

• An adaptive architecture that uses computational intelligence for modeling 

network traffic.  The architecture uses artificial neural networks and was 

demonstrated on an operating network. 

• A working ANN model that predicts network traffic traces for the CBB 

case study network.  Input vectors were composed of selected flight 

attributes.  The output vector was composed of points on the time history 

of a bandwidth traffic trace.  The network was composed of two hidden 

layers with 39 neurons each. 

• An adaptive simulation architecture that utilizes the ANN bandwidth 

predictor.  The simulation models operational scenarios with user selected 

flights, flight routes, and satellite coverage areas.  Network data is used as 

inputs and the simulation predicts satellite transponder needs using the 

ANN bandwidth predictor. 
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9.3. FUTURE WORK 

This project utilized data mining techniques to develop useful patterns for ANN 

simulation of the CBB NCS network traffic.  This concept could be further explored by 

performing similar studies on other complex large-scale NCSs.  Additional research 

could also be performed to investigate categorizing Internet traffic in general on the 

world wide web. 

The adaptive architecture developed for this dissertation for the CBB NCS was 

based on artificial neural networks.  A feed-forward perceptron neural network was 

utilized.  Further investigation could delve into the use of hybrid methods of 

computational intelligence that include both ANNs and genetic algorithms. 
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APPENDIX A 

 

ACTUAL BANDWIDTH TRAFFIC TRACES 
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