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ABSTRACT 

By utilizing a geometrically centered pulsed source internal 

to a large (B~ ~ 0.002) cylindrical HzO system, the neutron flux 

was measured as a function of position and time. A least square 

fit of the data yielded the fundamental and five higher decay 

constants and amplitudes of the thermal neutron flux. Symmetrical 

and enhanced neutron densities were obtained as a result of the in-

ternal source. Long waiting times were unnecessary and data acqui-

sition was accelerated. 

The decay constants were found to be independent of position, 

pulse width, counting time and rates, method of normalization, or 

waiting time. The decay constants were related to the bucklings by 

an analysis of the amplitudes without variance of the size of the 

system. 

This method gives ~av = (4759 ~54) 
-1 sec 

0.0897) x 104 cm2 /sec, L = (2.79 ± 0.05) em, 

and a mean neutron lifetime of (210 ~ 2.4) ~sec. 

D
0 

= (3.70~4 ~ 

(323 ± 3) mb, 
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I. INTRODUCTION 

There has bc.en a plethora of literature on and about pulsed 

neutron techniques and applications during the last decade. Review 

articlc.s (1,2,3,4,10,19,2~,26) are numerous and well cover tht stat~ 

of the art, results, and advances achieved. This work is an addition 

to this body of description and is intended as a basic coordination 

of fundamental ideas. No thermalizing medium is required as a re­

sult of the source being located directly in the medium being inves­

tigated. In addition, th~ symmetrically located source does not re­

quire a large amount of shielding and produces a symmetric neutron 

density. Higher modes were utilized to obtain the diffusion para­

meters rather than volume or geometrical changes. This eliminated 

the necessity of waiting until the higher modes decayed away and the 

consequent loss of information or counting statistics. The counting 

acquisition time and total number of counts in time was increased. 

The common technique utilized is to create a short source or 

burst of fast neutrons either outside or at the boundary of the 

medium to be investigated. (2,26) By using a thermalizing medium 

or waiting a sufficient length of time, the asymptotic fundamental 

decay of the thermal neutron density may be investigated. (2) In 

the present work, the source was located centrally in the medium be­

ing investigated and the lowest six of the decay modes were considered. 

Initially the fast neutrons lose energy through scattering for a 

period called the slowing down time. The second phase of moderation, 

called thermalization is where the neutrons lose energy until a state 



2 

of thermal equilibrium is attained with the moderating m<'dium. In 

this &tate, a space distribution is achieved, asymptotic in time 

and energy, 

To de::;cribe the neutron population with a differential equation, 

one turns to the Boltzmann equation in the diffusion approximation 

for an isotropic, bare, homogeneous medium for thermal energies. 

-D(E)V2':!!(E,-;,t) +I: (E)':!!(E,;,t) 
a 

= _.!:. d 'I! c E • r. t > 
v d t 

[ 1] 

Since sufficient time has elapsed from the initial pulse, there is 

no source term for the downscatter or input of fast neutrons. As-

suming that the thermal flux is space and energy separable, one then 

can express: 

'I! (E,r,t) = 1j; (E)N(r,t) [ 2) 

and further that 

N(r,t) [ 3] 

Equations[l) to [3] are valid under the following assumptions: 

1. The flux is finite over all space and time. 

2. The axial and radial first derivatives of the flux at the 

axial and radial centerlines are zero. 

3. Sufficient time has elapsed to establish a thermal flux (13). 

4. The diffusion approximation is valid. 

S. The thermal lifetime is long compared to thermalization time. 

6. The flux vanishes at the extrapolated boundaries. 

Three and five are good assumptions for large hydrogenous sys-

tems. One, two, and six were verified experimentally, and four is 

valid where boundaries and sources are excluded or avoided. 



The expressions [2,3] yield 

/\lm = 1\ + D B
2 

o o lm 

where the buckling B~ is obtained from 

yielding 

The amplitude term has been expressed as a form of 

A cos lnz J (a: m!:.) (23) 
lm H o R 

where 

A
0 

= ~av or infinite decay constant 

D
0 

= diffusion coefficient = vD 

H = extrapolated height 

R = extrapolated radius 

Q:m =root of the zero-order Bessel function, J 0 

1 = 1, 3, 5, 

m"' 1, 2, 3, 

3 

l4] 

[5] 

[ 6) 

The diffusion cooling from [4] and all subsequent terms may be elim-

inated due to the small value of the buckling in the present work. 

During the period of thermal diffusion, the energy spectrum and the 

thermal space distribution are considered constant with a time de-

crease in amplitude. This investigation considered the higher har-

monies present in the thermal flux following the burst of fast neu-

trans and after the die-away of the source and epi-cadmium contri-

butions. 

Equation 4 gives the )\
0 

or v~a as the z~ro buckling intercept, 

D0 or diffusion co~fficient as the slope at zero, and C0 , the 



diffusion cooling from the least square~ fitting of the ~ vs. B2 

curvt:. The diffusion length is obtained by the distance along thl· 

B2 axis at the extrapolated (~ = 0) point. The prt~ent work con-

4 

siders the various bucklings inherent in the higher modes. The re-

sultant decay con~tants of averages of many spatial points were 

plotted with respect to the associated bucklings. Various recipes 

are employed using the various decay con~tants to obtain the diverse 

time relationships of therrnalization of the system considered. 

will be given utilizing the present obtained decay values. 

These 

The ''waiting" times recommended (ll) to eliminate higher harmon-

ics were disregarded in this work as was an associated thermalizing 

medium, i.e., the medium employed to thermalize the source neutrons 

prior to entering the medium being investigated. The ''waiting time11 

for conventional experiments would be of the order of milliseconds 

or larger while in this work, the waiting time was of the order of 

a few hundreds of microseconds. 

Least square fitting of the data was utilized to obtain ampli-

tudes and decay constants. Eight terms were considered. The ampli-

tudes were found to be comparable in magnitude for six decay con­

stants, which is in opposition to current considerations (7). As a 

direct result of the ''elimination'' of waiting time, the total count 

rate for a given period of time is enhanced considerably. Further 

enhancement of the data is achieved by being able to consider data 

with good ratios of peak channel to background counts even for a 

much shorter data acquisition time. 
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Higher modes were obtained in both radial and axial directions 

(7) in contrast to previous work (11). This method of higher mode 

analysis appears to be more precise being tedious only in the time 

required for computer analysis. The six decay constants were found 

to be independent of pulse width, repetition rate, number of points, 

number of harmonics, or the position of the detector. The internal 

neutron source improved the count rate and the fundamental decay mode 

may be determined simply in elementary laboratories by this method 

without complications of data acquisition time, changes in the sys­

tem, or elaborate electronic systems. 

The inherent disadvantages of small systems and/or large ther­

malizing systems have been eliminated in this work. The fitting of 

the data was by least squares analysis rather than Fourier analysis; 

reasonable and rather agreeable results have ensued. The centrally 

located source produces a symmetric neutron density that facilitates 

analysis. 



II • APPARATUS 

The equipment used in this experiment may be broken down into 

two categories; the generator with tank and the data acquisition 

system. These will be described in the following sections. 

A. GENERA TOR AND TANK 

b 

The generator was a model A-1250 positive ion accelerator by 

Kaman Nuclear (9). This unit could produce a neutron yield of 2.5 

x 10
11 

neutrons/second in continuous mode. The drift tube assembly 

was such (68 em) that the target could be located in the center of 

the tank assembly. The generator was mounted on a dolly enabling 

the operators to adjust the height to position thL tank receiver 

tube or to remove the drift tube and target assembly from the tank 

for repairs or inspection. 

A sheet metal "track" was built to guide the generator system 

in and out of the shielding well and receiver tube. This restricted 

the dolly motion so that the target would be positioned correctly 

in the tank and to eliminate damage to the drift tube and target 

assembly. A movable motor driven shielding cart was designed and 

built to mobilize the shielding directly behind the generator to 

facilitate maintenance and access to the generator. Layouts of 

these devices appear in figures 1 and 2. 

The pulse width and repetition rate of the generator and multi­

channel analyzer was regulated at the console of the generator. The 

pulse which triggered the generator also started the time sequenced 

mode of the multichannel analyzer. The pulse rate and duration were 
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varied to check results. While pulsing with a duty cycle around 1 

per cent, the beam current was less than 10 ~amp time averaged. 
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Figure 4 is an oscilloscope trace of the "pulse" of the gener­

ator as seen by the operator. This was obtained (6) by viewing the 

target current by an oscilloscope. The die away of the pulse during 

all operations regardless of the pulse width remained less than 20~ 

seconds. 

Figure 1 gives a schematic cross section of the generator and 

tank. The tank is almost a right circular cylinder (R = 24 in., H 

water~ 50 in.). The tank receiver tube for the drift tube and tar­

get assembly were constructed at the UMR Technical Services shop as 

was the detector traverse mechanism. The traverse mechanism allowed 

accurate locations of the detector with respect to the center of the 

tank. It could be operated manually or by use of an electric drive 

mechanism either horizontally or vertically. 

The traverse or positioning mechanism (figure 2) could be man­

ually moved in any particular radial direction and due to the optimal 

motion imparted to the detector, was invaluable in the collection of 

data along a 45° line. 

The tank was surrounded by a two inch thick layer of boric acid. 

The boric acid was placed in commercial plastic bags which were packed 

around the tank and were held in position by aluminum sheets strapped 

around the tank. It was observed empirically that the thermal flux 

directly outside this shielding during generator operation was the 

same as the background when the generator was off, thus creating a 

zero boundary. 
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The tank was filled with water from the UMR reactor pool. The 

water was mechanically filtered and continuously run through an ion 

filter indigenous to the system tank. This water was periodically 

cycled into the reactor filter system and replaced from the reactor 

pool to maintain purity. The constancy of the water temperature 

(22.40 ~.05 C0 ) was probably due to the volume of the system, loca­

tion in the reactor bay area, and the proximity of tons of shielding. 

B. DATA ACQUISITION SYSTEM 

Figure 3 is a block schematic of the detection and storage sys­

tem used. Starting with the detector, through to but not including 

the analyzer, there is a twin system set up but only one side was 

used for data acquisition. 

The detector was selected to minimize active and overall volume 

and the need for a long length. It was a proportional BF3 thermal 

neutron detector with a one inch active length, sensitive volume of 

1 cm3 , and a diameter of 5/16 inch (Reuter-Stokes RSN-1055). The 

detector positions were sufficiently far from the source to preclude 

significant radiation damage effects from the source. The two pre­

amplifiers were Hewlett-Packard 5554A's. These pre-amplifiers have 

a time constant of one microsecond and were found to be excellent 

operational devices. The signal was then amplified by an ORTEC 485 

amplifier. The input to the analyzer is thus separated by selective 

voltage amplification and the utilization of the analyzer threshold 

(-10 volts) as a discriminator. 
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The multichannel analyzer was a RIDL 34-27 series Scientific 

Analyzer system with a model 24-2 400 word memory. The analyzer was 

operated in the time sequenced mode (multi scaler operation). This 

arrangement of the analyzer gave a maximum count capacity of (105 - 1) 

with a maximum pulse repetition rate of one megacycle. The system re­

sponded to pulses with a resolution time of one microsecond. A model 

54-6 time base generator was used to control channel dwell and start 

the analyzer upon reception of the trigger pulse from the console of 

the generator via the Gate Generator (Berkeley, BNC) Model CT-2. The 

switching time between channels was 12.5 microseconds with the system 

being able to count one count during this interval. 

In addition, the data being stored or previously stored could be 

inspected by use of a RIDL Model 52-56 display oscilloscope. The 

data was output either on an IBM model 44-15 typewriter or on a Tally 

model 44-15 tape punch, or as was the usual case, both. 

Figures 4, 5, 6, 7, 8, and 9 are oscilloscope traces of the out­

puts of the various devices listed previously. 
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III. EXPERIMENTAL PROCEDURES 

A. PREPARATIONAL PROCEDURES 

The characteristic operational voltage of the flux probe detec-

tor was periodically checked utilizing the entire sybtem. The multi-

channel dwell time was set and by periodically advancing the voltage, 

the characteristic detector curve could be displayed on the analyzer 

oscilloscope in segment form. A Pu-Be neutron source was used to 

check the plateau of the neutron counter as well as the channel-wisE 

response of the multichannel analyzer. The opera tiona 1 plateau did 

not change during the entire time of data acquisition. The trigg<:r 

pulse was utilized, with the neutron generator off, to start the 

multichannel and check the input to each channel. The system was 

allowed to count the constant source for long periods of time to as­

sure uniform deposition of pulses in each channel. 

An amplification check was periodically performed to assure a 

minimum amplification necessary to eliminate noise and background 

with the Pu-Be source removed and sufficient counts with the source 

present. Problems of spurious electrical pulses affecting isolated 

channels in the analyzer were encountered. These channel 11 jumps" 

were eliminated from the data and an averaged value of the adjacent 

channels was substituted before the data was analyzed. Apparently 

there are stray fast voltage changes in the supply voltage to the 

analyzer that are random. In addition, changing scale during data 

acquisition introduces jumps. No data run was utilized with over 

two spurious channels and only six of these were acceptable; that is, 
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the jump was sufficiently large to demonstrate that it was spurious. 

The water temperature did not vary appreciably over the period 

of the measurement. This was determined by checking r£gularly. The 

purity remained between 3 to 5 megohms centimeter. With each set of 

data taken, such as a sweep across the tank, a normalization run was 

taken close to the source to assure a fairly uniform output of the 

generator for a given time duration of count. This was in addition 

to the observable output of the generator at the console and on the 

oscilloscope just as a check against the magnitude of the output both 

during the bare run and the cadmium cover run. This also allowed a 

magnitude check of the peak to background ratio. 

During initial trial runs, the pulse width was varied from 3 

microseconds to fifty microseconds. A pulse width of 35 to 50 micro­

seconds gave satisfactory counting statistics for the counting times 

used and at any distance from the source. Runs were consequently 

made at both widths. At pulse widths of from 3 to b microseconds, 

two "peaks" were observed. These could more properly be called two 

distinct decays. Initially, the detecting, storing, or generator 

system was su~pect, however, these hopes were dashed when the detec­

tor position was varied and the peaks were found to be dependent on 

position. Close to the source, the first peak was predominant and 

the second was not observed. At large distances from the source, 

the first decay was "gone11 and the second shape was left. The two 

decay shapes appeared visually to have very strikingly similar shapes. 

The frequency of pulsing was varied to determine that overlap was not 
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occurring. Channel dwell time was varied but this duality persist~d. 

Another detector, another system (utilization of the analog system 

of the analyzer), checks on the off time of the generator were per­

formed and tried, however, with negative results of elimination. 

In an abortive attempt to credit this phenomena to rate dependence 

of the detection system, a pulse generator was substituted for the 

detector and with operational settings the same, the system was 

found to be rate independent to 40,000 cts/sec. The flux range of 

the detector is 10 to 106 n/cm2 -sec. With up to fifty microsecond 

pulse width, the counting statistics did not reach these levels in 

channels used for decay analysis. After these investigations, it 

was found that a pulse width of thirty-five to fifty microseconds 

not only gave better counts at large distances but also 11 overdrove" 

the existence of the two decays. Figure 10 is an oscilloscope photo 

of the counts in the multichannel on a 5 K scale with a detector dis­

tance of 5 inches. This was a 15 minute run at 14 eye/sec. with a 

pulse width of 3.5 ~sec. and a total generator trace pulse die-away of 

< 20 ~sec. 

B" OPERATIONAL PROCEDURES 

Twenty minute runs were selected &ince this gave a ratio of cor­

rected peak channel to background ratio of from 100 to about JU de­

pending on the relative po&ition of the detector from the source (10
4 

uncorrected). 25 cycles per second pulse repetition rate was arbi­

trarily chosen to allow die out of the background and to maximize 

the counts obtained. Thus 0.0375 seconds elapsed between end of count 
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FIGURE 10: ANOMALOUS DECAY CURVE 
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and the initiation of a new pulse. The multichannt:l dwell time was 

12.5 microseconds with 12.5 microseconds between channels, giving 

0.0025 total count time for 100 channels. One hundred channels wf·r(: 

used for a bare detector run and the next hundred were used for a 

cadmium covered detector run. This process was followed for the last 

two hundred channels of the 400 and then the data stored was output. 

Two hundred channels could have been used for each run; however, no 

additional information would be obtained. JS and 50 microsecond 

pulse width runs were taken so as to compare amplitudes. The gate 

was set for no delay and the gate start pulse width was set arbitrar­

ily to 10 microseconds. 

The detector locations were chosen arbitrarily to obtain a fair 

representation of the amplitude map across the core and no attempt 

was made to reduce the effects of any harmonics. A few mean free 

paths distance was maintained for separation between the detector 

and both the source and boundaries when points were chosen close to 

either. Otherwise, there was no discrimination on selection of posi-

tion of the detector. All sweeps, except one, were made from the 

source out to the boundary. The detector would be positioned, a bare 

20 minute run would be made. Then the cadmium cover would be placed 

over the detector and the epi-cadmium 20 minute run would be com­

pleted; then the cadmium cover would be removed and the detector 

would be repositioned for the next run. 

There was sufficient time lapse between sweeps of the target by 

the deuterium beam to allow one of the principal causes of background 
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to die out. This is tht= time varying portion due to creation of neu-

trans by the generator during the off target time and by room return 

of fast and intermediate neutrons. The oth~r principal background 

is th~ steady state, which is relatively constant. Both backgrounds 

were relatively small with respect r.o the channel contents and were 

treated as a constant. The epi-cadmium measurements were subtracted 

from the total counts thus effectively eliminating the epi-cadmium 

room return to the detector. 

To avoid possible end-effects near the water-air interface at 

the top of the tank, data points were not taken close to the surface. 

Furthermore, the possibility of room returns near the top of the tank 

appeared small. This was checked by locating the detector near the 

top of the tank. A 200 channel run did not display any unexpected 

variations for long periods of counting. The channel contents dropped 

to the steady state background relatively quickly with no channels 

past 13 containing appreciable counts above statistical background. 
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IV. DATA ANALYSIS 

For the various runs, the detector was placed at a given position 

in the system and a decay curve was obtained both for a bare detector 

run and a cadmium covered run. Table I lists the various group runs. 

The background encountered was relative to the position of th~ 

detector; however, since the raw data taken were relative also, it did 

not adversely affect the results. Figures 8 and 9 are oscilloscope 

photos of typical sets of data accumulated in the multichannel. The 

counts in the background channels, the last 50 channels of the data 

sequence, decreased as the detector was moved away from the source. 

The raw data count was thus shifted down in magnitude as the detector 

position from the source was increased as may be seen in figures 8 

and 9. These were data sets at distances of 5, 7, 9, 11 inches re-

spectively. Each four hundred channels covers two data sets. After 

being output and converted onto computer cards, the raw data were 

then adjusted by normalizing for those runs where the amplitudE of 

the output of the generator was not relatively equivalent. 

data were then "dead time" corrected by the relation 

' where CJ 

c = 

count rate recorded 

T = deadtime of BF3 counter 

The raw 

In this work, the response dead time was 1 ~sec, the channel 

width was 12.5 ~seconds, and the overall effect of this factor was 

rate independent over the utilized range of channels except for 



Direction 

radial 

radial 

radial 

radial 

axial 

axial 

45° radial 
and axial 

45° radial 
and axial 

TABLE I 

DISCRIPTION OF DATA SETS 

Detector Positions 

90° to left of source 
tube--same plane 

90° to right of source 
tube--same plane 

180° from source tube--
same plane 

180° from source tube--
same plane 

180° from source tube 

180° from source tube 
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Pulse Widths 

50 IJ.Sec. 

50 IJ.S€C. 

35 IJ.SeC 

(for reproducibility) 

50 IJ.Sec 

50 IJ.Sec 

35 IJ.Sec 

(for reproducibility) 

50 IJ.Sec 

50 IJ.Sec 

(for reproducibility) 
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positions very near the source. 

The counts obtained with the cadmium covered detector were sub-

tracted from the counts obtained with the bare detector to obtain 

the "corrected" thermal counts. Channels 50 to 100 (the last half 

of the corrected thermal sequence channels) were then averaged to 

obtain a background and then subtracted. 

The resultant counts in the first 100 sequence were then util-

ized in the Los Alamos Least Squares Program (12,15) to obtain the 

decay constants and amplitudes. This program is a non-linear least 

square fit of a function y = f(Xi, ~) where the n observations of 

yare the dependent variables and the x's are the independent ones. 

The program minimizes 

N 

Q = L wi [Yi- f (Xli ... xmi; ~ 
i=l 

The weights W. used 
~ 

in this case were l/Y.
112 

and one. 
~ 

This program 

has been utilized (7,14) for die-away decay analysis of the form 

K 
y = L 

j=l 

The end channel of the sequence was arbitrarily required to have 

zero counts with the first channel used selected by the contamination 

of the harmonics present in the analysis. Initial computer runs 

started in the eighth to the thirteenth channel. With subsequent 

runs it was found that the 11 contamination11 of the highest amplitudes 

and decay constants (nonsensical results) could be eliminated by 

moving out in time, i.e. (starting in the thirteenth channel) in-

creasing the starting channel number. The amplitudes and decay 
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constants "contaminated" are characterized by very large decay con-

stants and arbitrary amplitudes. As the starting time is increased, 

these decay constants get smaller and the amplitudes "firm up". The 

first six decay constants were readily apparent no matter what start-

ing channel was used. The seventh was found by this method and the 

eighth was neglected due to the large amount of computer time re-

quired to converge the large number of points on a large decay con-

stant. The results on the seventh and eighth will be given, although 

the confidence is small. Most data sets consisted of several decades 

of channels and very large amounts of computer time was utilized 

(over 100 hours). 

The program was allowed to iterate for 96 iterations and then the 

"trends" were accelerated and the data submitted again with the "im-

proved" guesses. If an amplitude or decay constant changed appreci-

ably, then there might be a corresponding fluctuation in one or more 

of the other parameters, during initial runs. During final runs, an 

intentional fluctuation would be corrected by the program. 

Initially sixteen terms were chosen, i.e. 

However, this number was reduced to six by combining two or more terms 

with similar Ai's. This was found to be erroneous and two more terms 

were re-introduced later. With less than six terms, the program 

ceased to iterate. The equation became, using the average values of 

the decay constants: 
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y(p,T) = A,e-297345T + A
2

(p)e-15087T + AlJ l(~)e-8689T 
, 

+A (p)e-5055T +A (p)e-4834T 
3,1 1,1 

Initial guesses were made by plotting the data and extracting 

calculated guesses of amplitudes and decay constants. 

As was previously mentioned, there were some channels with spur-

ious counts. These channels were averaged by taking the channels on 

each side. Figure 10 displays this channel "jump" by the obvious 

channels that definitely do not "fit" the curve. At the conclusion 

of data acquisition, it was found, while photographing the oscillo-

scope traces, that counts could be added in a channel by changing 

the scale while acquiring data. It was fortuitous that the operators 

and experimenter were not in the habit of changing the scale. 

The counts in the peak channels varied around 5 x lo4 to 105 ac­

cording to position and counts in channel 100 were around 102 to 101 . 

Counts in the cadmium covered runs varied from 104 in the peak channel 

to usually 101 in the last channel. Counts in the channels used for 

harmonic analysis were in the 103 to 10
4 

range for the first channels 

to zero to 15 in the last channels used. 
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V. DESCRIPTION OF DATA ANALYSIS 

Initially, hand plots of data sets yi~lded guesbes fur d~cay 

constants and amplitudes. These were then utilized in the Ltast 

Squares (12,15) program and iterations btgan. The multiple mode 

phase of the data is the most difficult to analyze by hand; how~ver, 

almost any reasonable value will suffice provided a small amplitud£ 

is used. None of the parameters were fixed during initial computer 

runs and it was empirically found that convergence is accelerated 

if no restrictions are placed on either the amplitudes or decay 

constants. In fact, if amplitudes or decay constants are fixed un-

til convergence or test criteria is reached and then the parameters 

are allowed to vary, significant changes in value may be observed. 

As a result of these findings, all values obtained were found by not 

restricting the program or any parameters. A data set was consider~d 

as converged if after a large number of iterations, no change was 

observed in all the numbers after the first digit of thE decay con­

stants. A small value for the test criteria enabled the program to 

iterate down to small magnitude changes. 

The starting channel was selected entirely on an economic and 

time basis. The two higher modes were the only parameters affectE'd 

by the starting channel or the weight. Channel thirteen (325 ~sec.) 

was finally adopted as the starting channel since the largest mode 

was greatly affected by the starting channel and the n£xt highest 

mode appeared to be only slightly affected. This was found by chang-

ing the starting channel after convergence of a data set and observing 
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the parameter changes after convergence occurred again. The weight 

1/2 
factor (1/y ) was selected so as to give as small a relative weight 

difference related to the magnitude of the counts. This factor was 

selected; however, the values of the two highest decay constants were 

the only ones significantly affected when a different value was used. 

-1 
The largest decay constant found (297345 sec )was not only a 

function of starting channel but also of position. As the starting 

channel decreased, the magnitude also decreased. In addition, as 

the distance from the source is increased, the validity of this value 

decreases because of the weight factor and the relative decrease in 

counts in the first few channels for constant magnitude or time data 

acquisition runs. 

The next highest decay mode was not a direct function of position; 

however, the associated amplitude was as expected. The relative dis-

persion of values found was sufficiently large to preclude any confi-

dence in the values. The amplitudes became negligible as the distance 

from the source increased. As a result, it was impossible to assign 

indices identifying the decay mode and buckling. The value obtained 

for the slope would require very large indices associated with the 

buckling. 

During initial computer runs, a number of decay constants appeared 

similar and were eliminated by summing amplitudes. It was found later 

that some of those eliminated were necessary for proper amplitude iden-

tification. The order of modes converging was consistently found to 

have decay constants of 2.9 x 105 , 15087, 8689, 4834, 5436, and always 
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last was a value around S200. Amplituoc identification of this valuP 

indicated an index of one in the axial direction, a two in the radial 

plane, and a 3,2 in the 45° direction. Two values eliminated during 

initial computer runs were around 5100 to ~340. Two additional decay 

terms were inserted into the program with values of 5200 and the three 

resulting values were consequently found of 507~, 53UO, and 505~. 

Upon insertion of the two extra terms, the other amplitudes and 

decay constants did not change. The amplitude of the 5200 decay con-

stant broke down and "divided" into the amplitudes of the other in­

serted terms. Convergence was relatively quick and the varianc~ and 

other statistical parameters of the data sets so changed were improved. 

Not all data sets were changed since the other amplitudeb and decay 

constants were not affected. 

A comment should be made on the consistence and pers is tenc t.' of 

the 8689 decay constant during computer analysis. Intentiona 1 per-

turbations of the input value were corrected more quickly by the pro-

gram for this decay mode than for any other parameter. Perturbing 

the highest decay mode was not corrected by the computer program and 

as a consequence of this and other indications mentioned, there i& 

no validity to the value of the highest. 

The obtained amplitudes were plotted and compared to theoretical 

amplitudes (2,3,22) to obtain one index in the axial direction, the 

second in the radial plane, and the 45° results were used for veri-

fication. 

The computer output gave the last iteration value every 96 itera-

tions. These values were compared to the input values and trends were 
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asserted. A value would be increased or decreased according to th~ 

value shown and the change in magnitude. The data sets converged 

from the outside positions inward with the points close to the source 

converging last. Some data sets were run as many as two hundred 

times. The axial data sets were run first and as data acquisition 

continued, these values of amplitudes and decay constants were in-

put to the radial and 45° data sets as initial values or guesses. 

All parameters were free and not fixed to allow the program to changt 

signs or magnitudes as necessary. As a consequence of tht above, the 

changes in amplitude for a given position changed drastically for 

different directions. This assisted in reducing foreknowledge or 

bias on the part of the programmer. 

Final values of the decay constants were then averaged over all 

data sets. The distributions were statistically 

2:::\· 
average 1 1 , median root mean square 

deviation 

deviations 

N 

~
r-~-(-f.--. --)_--)~2-

1 1 nave 
N-1 

, variance 

4 (:\i -"-ave) , and the mean deviation 
1 

analyzed for the 

~~1. (:\i )2 , standard 
N 

, sum of the 

The 

average values of the decay constants were then utilized to obtain 

the desired parameters. 

The amplitudes of various runs for a given direction set were 

normalized to obtain equivalent magnitudes. Averages were then taken 

for a given position for the multiple runs of a given position. These 

steps were performed for the amplitudes of each decay constant for the 



31 

for the axial, radial, and 45° direction. The values obtained were 

then normalized to the largest value and plotted to obtain maximum 

and minimum values and for the distances where the sign of the ampli-

tude changed. These plots were then compared to theoretical plots to 

obtain the index numbers of the respective decay constants. The com-

puter code appeared to be not as sensitive as could be desired for 

the amplitudes. Perturbations of the decay constants would be quick­

ly corrtcted; however, amplitude changes were not always consistent. 
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VI. SOURCE EFFECTS AND NORMALIZATION 

Test runs were made for a given location of the detector with 

parameter changes of the source. It was found as a result, that the 

shape in time of the data was constant; however, the amplitude changed. 

This may be demonstrated also for various detector positions by 

comparing the oscilloscope photos of different data sets (figures 8, 

9). The shapes remained constant; however the amplitude and back­

ground varied as a result of position and source intensity. By using 

channels 50 to 100 of a 100 channel run to average background, the 

necessity of maintaining accurate normalization relations was reduced. 

The background, as well as the amplitude, was a function of the 

distance from the source. A measure of the background was also a 

measure of the amplitude. When the background was subtracted, the 

amplitudes were to some degree corrected for source variations. It 

was assumed that the detectors were point detectors and did not per­

turb the system. The runs made with a normalization detector and 

scaler reinforced these conclusions by the time change in data acqui­

sition and the subsequent changes in the background for a given count. 

The amplitudes were very similar after background corrections. The 

tail of the die-away exists after 50 channels and a portion of this 

is included in the background. The only loss of information would 

be with respect to the fundamental mode; however, since it is the 

most persistent and smallest, this loss is negligible. There were no 

large discrepancies between or among runs that were normalized by 

either total data acquisition time or total counts in a normalizing 

scaler system. 
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VII. RESULTS AND CONCLUSIONS 

A. GENERAL RESULTS AND CONCLUSIONS 

The diffusion parameters obtained by this method are listed in 

Table II along with a few pertinent values from other works. The 

differences between measured and calculated parameters are so fre­

quent and diverse in articles and books that a comprehensive listing 

would be confusing and unnecessary. The second and third works listed 

(11,17) also considered higher harmonics. The higher modes were not 

considered in these works to obtain diffusion parameters. Fourier 

analysis was utilized and the source was located outside the medium. 

Comparison values listed were very similar, the present work obtained 

a slightly improved value of the diffusion length L. The fourth is 

given as a earlier work and as a reference for buckling size. All 

errors listed were derived assuming maximum error possibilities. 

Tables III and IV give a compendium of the values found and cal­

culated in obtaining the diffusion parameters. The largest percentage 

errors are associated with the slope value D0 • The maximum high and 

maximum low values given were obtained by considering that the errors 

were cumulative and that the maximum deviations were occurring simul-

taneously to give the greatest possible errors. The minimum high and 

low values given considered more feasible standard deviation errors. 

The error and % error values were obtained utilizing the maximum cal­

culations. The errors established are probably maximized beyond 

probability however being conservatively taken. The decay periods 



TABLE II 

DIFFUSION PA~\METER RESULTS 

Buckling L:aV Do L H Neutron Mean 
Method Geometry -2 sec -1 104 cm2 /sec 0 (mb) Lifetime clsec R~'ference Tange em em a 

Pulsed Cy lind rica 1 0.002 to 0.1 4 759!.54 3.7084t0.~~7 2. 7~0.05 32 3±.3 210!_2 .4 Prest-nt Work 

Pulsed Slab 0.014 to 0.59 4768±.24 3. 7503!0.366 2.83±.0.02 325+2 21 0+1 (11) Lopez 
& BeystPr 

Pulsed SpherE' 0.0/96 to O.J7 4767+68 3.8570+u. 736 2.86+0.03 323!.4. 7 ----- (17)Nasser - - & Murphy 

Pulsed Slab 0. 006 to 0 .Old ---- 3.dSOQ!U.8Uu 2.85!0.05 328!.8.0 213+4 ( 2 1 ) Scott ( t "~ 1 

.;_. 



TABLE III 

ANALYSIS RESULTS 

Maximum Minimum Maximum Minimum 
Quantity Value High Value High Value Low Value Low Value Error lo Error Units 

A 1 1 4834.391 4900.39 4863.30 4768.39 4805.48 +66.0 1. 3 7 sec-l 
' 

2 
0.0023548 0.002395 0.002315 cm-2 

B 1 1 +0.00004 1.71 
' 

A 3,1 5055.117 5126.12 5063.17 4984. 12 5047.07 ±Jl. 0 1.41 sec- 1 

2 
B 3,1 0.0072932 0.0074126 0. 0071766 j:O. 0001194 1. 65 cm-2 

A 1 2 5078.363 5149.36 5082.70 5007.36 5074.02 +71. 0 1.40 sec - 1 

' 
2 cm-2 

B 1 2 0.009772 0.009943 0.0096057 j:0.000171 1. 74 
' 

A 3,2 5300.004 5373.00 5308. 77 5227.00 5291.23 ±.73. 0 1.38 
-1 sec 

2 0.014711 0.0149602 0.014467 +0.002188 1.50 cm-2 
B 3 2 

' 
A 5,1 5436.598 5510.60 5463.24 5362.60 5409.96 ±. 74.0 l. 36 sec -1 

2 
B 5,1 0.017171 0.0174476 0. 0168992 ±.0.000276 l. 61 cm-2 

A 13,1 8689. 778 8783.78 8711.44 8595.78 8668. 12 +94.0 1.09 sec -1 

B
2 

13, 1 0.10606 0.10707 0.10404 ±.0.00163 1. 91 cm-2 

Ao 4759.765 4813.722 4764.832 4708.199 j:54.0 1.14 sec· 1 
w 

37358.67 cm2s ec -1 
lJ' 

Do 3 7084.23 37855.13 36.87.06 +897 2.42 



TABLE IV 

CALCULATIONAL RESULTS 

Ca lcula tt::>d Maximum Maximum Maximum Maximum 
Quantity By Value High Value Low Value Error I. Error Units 

L2 0o/Ao 7. 79 8.04 7.52 :t_0.27 3.4 7 em2 

L w 2. 79 2.84 2.74 :t_O.OS 1. 83 em 

-B 2 f.. /D 0.128 0.133 0. 124 :t_O.OOS 3. 91 em-2 
0 0 0 

0 th D0 /220000 0. 169 0.172 0.164 :t_0.005 2.96 em 

DM D0 /248200 0.149 0.153 0.146 +0. 005 3.36 em 

Lath "0 /22 0000 0.0216 0.0219 0.0214 +0.0003 l. 39 em- 1 

LaM (10/248200 0.0192 0.0194 0.0190 +0. 0002 l. 05 em-1 

f,TRth 3D0 /220000 0.506 0.516 0.494 +0.01 l. 9 7 em 

f-TRM 3D0 /248200 0. 44ti 0.458 0.437 +0. 011 2.46 em 

To 1 /t-o 210. 1 212.4 207.7 +2 .4 1.4 llSee 

T1 1 11t-,1 1 206.9 209. 7 204.1 +2.8 l. 35 u.s ee 
) ) 

TJ, 1 111 3 1 197.8 200.6 195.1 +2.8 1.42 >JSee 
) 

T1 2 111
1 2 

1%.9 199. 7 194.2 +2.8 1.42 JSee 
) 

' 
T3,2 l/ f 3 2 18d. 7 191.3 186.1 +2.6 l. 39 ,.1see 

I w 

T5 I 1 11 
.> 5' l 

183.9 185.5 181.5 +2.4 l. 31 J.SEe ~ 

Tl3 1 1/tlJ 1 115. 1 116.3 113. d +1.3 1.13 J.See 
I I 
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emphasize the significance of a waiting time when applicable and thfC 

difficulties of obtaining a pure fundamental mode. The Maxwellian 

velocity (VM = 2.482 x 105 em/sec) (19) was used for the calculations 

of the parameters as well as the standard 2.2 x lo-5 em/sec value. 

Discrete modes were found which are rather close in value. If 

sufficient waiting time was not taken, an experimenter might indeed 

obtain a weighted average eigenvalue rather than a true eignvalue (as 

8). A waiting time of up to 50 fundamental decay periods as has been 

suggested (11) would more than suffice to eliminate or suppress higher 

harmonics. 

In addition the largest term (2.97 x 105 sec- 1 ) appeared to be 

an arbitrary amplitude and a decay constant existing above a given 

value for a particular position and starting channel. A fixed value 

5 -1 was not confirmed but any computer value above 2.85 x 10 sec would 

suffice to produce iterations. Any value less or omission would re-

duce the iterations to shambles and the program would cease to iter-

ate. The statistical accuracy and confidence in this term is small; 

however, the term would indicate a sort of "continuum" (as 5,22) or 

an arbitrary eigenvalue. An indication of an incapacity on the part 

of the computer analysis is more probable; however, the preceeding 

conclusion is more interesting. 

The equation Aln = Ac + (n2 - l)D0 B~ (11) for calculating higher 

modes was found to be well within statistical accuracy for two higher 

modes (1,2;3,2) using the two lower modes (1,1;3,1). 
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A symmetrical neutron density was obtained by locating the source 

in the medium being investigated. The perturbation of the density at 

the source due to the source tube appeared small. The drift tube was 

steel and apparently the scattering produced in the back direction 

compensated in part for the void. No dependence of results on detector 

position or waiting time for the harmonics reported and used was ob-

served. The higher mode amplitudes were of the same order of magni-

tude as th~ fundamental. The computer analysis did indicate a re-

duction in amplitude and a subsequent loss in analysis sensitivity as 

a function of position for the two highest terms considered. The 

amplitude and decay constant of the highest term was a function of 

position and starting channel also. 

With the source located inside the medium, the amount of shield-

ing r~quired is reduced considerably. At low duty cycles, it is even 

possible for the experimenter to reposition the detector without shut-

ting off the neutron generator and thus maintain as closely as possible 

the previous source conditions. 

Neither diffusion hardening or cooling was observed in the results. 

The latter was absent as a result of the size of the system. The ab-

sence of hardening of the spectrum may be due in part to the location 

of the source and source tube, and to the short times involved. The 

utilized data covered a maximum range of one to six mean thermal life-

times. The source tube may have introduced sufficient cooling to off-

set any hardening. 

2 Figures 12 and 13 are plots of Aij versus Bij plots with figure 

13 displaying the five lower points for clarity. 
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B. LABORATORY APPLICATION 

By not being as sensitive to extrapolation distances, distance 

measurements, normalization calculations, accurate water heights, 

container perturbations, or not requiring an excess of electronic 

data acquisition equipment or an inordinate amount of time to ac­

quire data, (14) this technique is ideally suited for student labor­

atories. By locating the source in the tank, the acquisition and 

statistics of the data is enhanced whereas the amount of shielding 

required is reduced. The large system is advantageous in that in 

conjunction with other equipment, it may also be used for other ex­

periments such as Fermi age, diffusion length, spectra, etc. In one 

lab period, sufficient measurements and data could be taken in the 

axial direction to obtain the majority of reactor parameters. Given 

sufficient instructions and experience with the computer program, 

the data could be analyzed in a minimum amount of time. Thus one 

laboratory experiment would develop a significant number of reactor 

parameters. 
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APPENDIX I 

STATISTICS 

The computer program (12,14) used to calculate th~ amplitude~ 

and decay constants also calculated certain statistical measures of 
N 

the fit. The weighted variances [Variance~~ Wi(Y-Ycalculated)!/ 
~1 

(N-(Number of Parameters))] were found to be proportional to position 

due to the significantly higher counts recorded at positions near~r 

the source. The unweighted sum of squares of the deviations ran from 

103 for points close to the sourcP out to about 101 . The standard 

deviation of the Kth parameter was never greater than .5%. The fitt~d 

function compared to the input data was about one unit in the second 

to the third place. For all data sets, the standard deviation of thL 

predicted mean varied between 10-2 to one as the minimum and maximum 

found on any data set. Tables V and VI list thE diverse statistical 

parameters calculated from the distributions of the decay constants. 

Two different programs were utilized to calculate the fit of 

the decay constants to the bucklings. Both gave the same values 

down to the decimal point. One program calculated the degree of the 

polynomial that gave the best fit as well as other statistical para-

meters. A first degree polynomial gave the best fit for the six 

points as well as for combinations of lesser numbers of points. ThE 

average per cent error of the points was 0.38%. The variance, using 

five degrees of freedom, was 992.317. This would give a standard de-

viation for the decay constants of 31.6 which is closer to the stan-

dard deviation values found from the distributions than the~ values 

assumed for the errors. 



Ef.,-i 1 N 
-,--

Average Va 1ue No. In Indices 
Decay Sampling rn,n 

Constant 

297345.060 51 (?,?)no 
confidmce 

15087.691 51 (?,?)no 
confiden~ 

8689.778 51 (13,1) 

5436.598 51 (5' l) 

5300.004 13 (3 '2) 

5078.363 13 ( 1 '2) 

5055.117 13 (3' 1) 

4834.391 51 ( l' 1) 

TABLE V 

STATISTICAL RESULTS 

it<:d E(Aj -"ave) il{(Ai-Aave>2 
N-l N-l 

Root Mean Mean Standard 
Square Deviation Deviation 

298052.750 16688.60 20758.30 

15095.957 58.06 91.86 

8689.778 14.20 21.66 

5436.652 2l. 58 26.64 

5300.008 6.74 8. 77 

5078.363 3.37 4.34 

5055.125 6.83 8. 05 

4834.469 21.82 28.91 

E(A·-?::p )2 
1 1 ve 

N-l 

Variance 

4.309 X 108 

8439.18 

469.26 

709.93 

76.9 

18.81 

64.83 

835.73 

2;. (t-.cf--ave) 
1 

Sum of 
Deviations 

-2.063 

-0.082 

-l.Ol6 

-1.035 

-0.02 7 

-0.059 

-0.059 

-0.910 

~ 
(7 



TABLE VI 

STATISTICAL RESULTS 

Average Va 1ue Mean Deviation Fraction of Times Fraction of Times Median Numbers 

Decay Standard Deviation Deviation> Std. Dev. Dev. > 2a Within 

Constant -a to +a 

297345.060 0.80 M- = 0.314 ;1 = 0.0393 ---- 32 

1508 7. 691 0.63 J = 0.157 _l = 0.0195 
51 

---- 40 

8689. 778 0.65 H- = 0.216 :sf= 0.118 8684.169 36 

5436.598 0.81 
15 51= 0.288 2 -5T - 0. 0393 5429.626 32 

5300.004 0. 77 
3 IT= 0.23 rl = 0.077 5302 .401 10 

5078.363 0. 78 1; "" 0. 23 ti"' 0.077 5078.605 12 

5055.117 0.85 __i = 0. 308 
13 

0 -IT- o. o 5055.738 13 

4834.391 0. 75 
10 = 0 195 ~ = 0.0393 4832. 784 37 5T . 51 

.j:--
'-.) 
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The errors associated with the decay constants were assumed to 

be the square root of the value since the distributions were slightly 

sharper than a Pois~on (15,23). This would give a maximum error since 

all the values fell within plus or minus this value. Throughout thE, 

error analysis, the maximum errors were assumed in obtaining all quan-

tities. This then gives an upper bound for errors on all values 

found or calculated. These maximum and minimum values were input to 

the program to find the maximum and minimum values of Ao and D
0 

as 

well as to attempt to find minimum errors. A large variety of com­

binations of the maximum deviations of the bucklings, considering a 

half cEntimeter variation in the radius and a centimeter variation 

in height, and the maximum deviations of the decay constants were 

least square fitted. The results are given in Tables III and IV. 

In some cases no minimum errors were found or the values were 

so close that no value was listed. Variations of height and radius 

up to one inch were then fitted, assuming the decay constants were 

correct. These results fell within the maximum errors found. The 

assumption above of the worst possible world does not give exceed-

ingly large errors for the parameters calculated. 

greater than normally calculated errors. 

These errors are 

No analysis was attempted on the amplitudes since computer out-

puts suggested a certain lack of sensitivity inherent to the ampli­

tudes in points from 30 centimeters on out in any direction in the 

system. Regardless of the method of normalization, magnitude values 



could be varied after convergence with iteration changes occurring 

very slowly in points removed from the source. The crossings and 

maxima and minima locations were considered in the identification 

and description. 

Table VII enumerates a set of data corrected by subtracting 

cadmium covered detector data and background. The first channel 

listed is channel thirteen. These data were taken at a radial dis-

tance of sixteen inches with a repetition rate of 25 cycles/sec 

with a 50 ~sec pulse width. The channel immediately following 

the last channel given in the table contained thirteen counts and 

consequently it and all succeeding channels were eliminated. 
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Time ( sec) 

0.3313E-03 
0. 3563E-03 
0.3813E-03 
0 .4063E-03 
0 .4313E-03 
0.4563E-03 
0.4813E-03 
0.4563E~03 

0 .4813E-03 
0.5063E-03 
0.5313E-03 
0. 5563E-03 
0.5813E-03 
0. 6063E-03 
0.6313E-03 
0.6563E-03 
0.6813E-03 
0.7063E-03 
0. 7313E-03 
0.7563E-03 
0. 7813E-03 
0.8063E-03 
0.8313E-03 
0.8563E-03 
0.8813E-03 
0. 9063 E-03 
0.9313E-03 
0.9563E-03 
0. 9813E-03 
0. 1006E-02 
0.1031E-02 
0.1056E-02 
O.lOBlE-02 
0.1106E-Ll2 
0 .1131E-02 
0. 1156E-02 
0.1181E-02 
O.l206E-02 
0.1231E-02 
0.125bE-02 
0.128lE-02 

TABLE VII 

CORRECTED DATA SET 

Channel Count 

5661. 77 
4762.45 
4269.70 
3824-.68 
3223.15 
2801.4 7 
2710.27 
2801.47 
2710.27 
2267.23 
1986.27 
2208.84 
1544.54 
1342.54 
1252.04 
1121.48 

86 7. 54 
821.42 
630.69 
562.87 
565. 74 
506.29 
455. l3 
394. 05 
430.30 
2 71.36 
2 70.4 7 
296.85 
178.97 
177. 78 
136.8 7 
100.15 
119.72 
113.30 
94.04 
83.76 
70.59 
74.62 
78.68 
41.84 
87.86 
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APPENDIX II 

RECOMMENDATIONS 
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For data acquisition, it would be recommended to use a higher 

cycling rate of about thirty-five or forty cycles per second. Thus 

more data would be taken in an equivalent time. It appears redun-

dant to analyze any data except that taken in the vertical plane con­

taining the source tube. All necessary information may be obtain£d 

in this plane and flux perturbations caused by the source tube might 

be introduced in other directions. Data normalization would be im­

proved by utilizing either a cadmium covered detector or a fast neu­

tron detector to normalize each run to a given number of counts, i.e., 

60,000. This normalizing detector should be located on the tank wall 

in the source plane on the extremity of the radial line of the source 

tube. This detector connected to a single channel scaler was used 

during final data runs and improved statistics at data points far re­

moved from the source. As the target foil becomes 11 used," the normal­

ization by any other method will become more difficult. With a fast 

neutron detector, the location could either be the one mentioned pre­

viously or be at the point where the drift tube enters the tank. The 

difficulty with this location would be the neutrons created during 

the "off" of the generator; however, the total count could be increased 

accordingly. 

The height of the water was approximately twice the radius of the 

tank. If at all possible, any additional work should change the 
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height to as large a difference as possible from a simple multiple 

of the radius. The pulse of source neutrons would not then arrive 

at the closest boundary faces at virtually the same time. Any scat­

tering effects and room return neutrons would be further reduced in 

time. 

For data analysis, the amplitudes should be initially input at 

a positive 5 x 104 value. The decay constant guesses may be obtained 

from graphing various channel portions of any of the data sets. As 

iterations proceed, any terms of the expansion that have amplitudes 

that are consistently low (102 or leos) over all space may be elim­

inated without hesitation. Any term that is very slow to converge or 

appears inconsistent should be duplicated in the expansion. This is 

an empirical observation as a result of the experience with the decay 

constant of value 5200. Introducing duplicate terms will either cause 

convergence or an additional term should be introduced. Persistence 

and patience are required if large amounts of data are to be analyzed. 

Data points need not be too close together to obtain an adequate map­

ping of lower decay mode amplitudes. 

The convergence of the data should also be more restrictive on 

the amplitudes. Additional computer time to improve amplitudes would 

not effect decay constant values but would assist in index identifica­

tion. Some information might be gained by computer analysis of the 

fast data taken with the cadmium covered detector or a fast neutron 

detector. 

A known code was used in this instance; however, the program was 

general and not specific for this situation. The development of a 
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computer program with acceleration techniques would be advantageous. 

It would also be of interest to repeat a similar experiment with 

fuel in the system. Basic reactor parameters could be measured under 

more advantageous conditions of symmetry. Reactivity, lifetimes, ab­

sorption cross sections, and diffusion areas could be obtained. Homo­

geneity and change of parameters with loadings could be studied. Other 

parameters could be considered and measured by varying the loadings, 

voiding the centers of fuel, the implacement of black or grey rods 

in either a water or a water fuel system, the introduction of other 

reactor materials, or by the construction and insertion of special­

ized energy detectors of unusual shape. 

The "energy trapping'' or delayed decay phenomena should be fur­

ther investigated to determine causes, cross sections or channels, 

or the related times required to establish a given asymptotic flux. 

The observed anomalous decay may be due to one of four causes. Equip­

ment, group velocity, 14 Mev source neutron decay and established 

flux decay, or finite time required to establish an asymptotic flux 

at a given position may be responsible. Many questions related to 

this problem could be resolved by performing the same experimental 

steps only with graphite or another material as the moderator. 
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APPENDIX III 

BUCKLINGS AND AMPLITUDES 

For the buckling calculations, the height of the tank was con-

sidered as the extrapolated height of the tank of water. The void 

at the center was then corrected for as well as the aluminum fuel 

plates at the bottom of the tank, the tube walls, and the tank walls 

by 

where ATR(Aluminum) = 10.3 em 

AtR(Steel) = .875 em 

~R(HzO) = .434 em 

d(extrapolation) = .71 ~R 

The values were calculated from information in ANL-5800 (20) and 

as a result the height was 126.44 em and the radius was 57.7 em. In 

addition, the bucklings were calculated for a possible error of ~0.5 

em in radius and the height ~1.0 em. These extremes were utilized in 

the calculation of maximums and minimums of the parameters. As a re-

sult of these findings, most of the above calculations could be elim-

inated in a student laboratory on a large system. The height and 

radius were then input to a computer program to calculate B2 from: 

B~. = (in/H)2 + (a(j)/R)2 
~J 

where the a(j)'s are the zeroes of J 0 • 

The equation Aij = (cos i*z J 0 (a (j)r/R))/p was used to calcu-

late theoretical amplitudes to identify the associated decay constants 



with th~ i,j bucklings using the &ign changes rather than absolute 

magnitudes, where J == (r2 + z2). Figures 13 and 14 are plots of 
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the total amplitude versus position for the axial and radial direc­

tions for various times after the initialization of the source pulse. 

Both plots display a l/p2 shape (ll) as a result of the attenuation 

in the medium of the point source. The manufacturer (9) suggests 

that the source appears as a point source at a distance of eleven 

centimeters from the target. No data sets were completely analyzed 

at any distance closer than five inches in the medium. 

The amplitudes and the total neutron density in the radial source 

plane were symmetric in the three directions considered. There was a 

slight deviation from expected magnitude near the source tube; how­

ever, this was minimized by not taking data at positions in the close 

proximity of the tube (figures 16, 20, 21, 22, 23). Figures 15 through 

24 are plots of theoretical amplitudes modified by l/p2 and experimen­

tal data points for the amplitudes of interest. The data displayed 

for the radial direction was taken along the diameter of the source 

tube. 

Some general relationships are readily apparent. The majority 

of the plots appear shifted up in magnitude and away or out in posi­

tion. This appears more pronounced in figure 23. The points rela­

tively close to the source (ll em) are scattered in magnitude as in 

figure 20. The negative portions are either suppressed or "raised" 

as in figure lti for the majority of the plots. Figure 21 was the 

only plot where the converse was true. For the lowest mode, all 
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plots displayed a small "hump" about half way between the source and 

the boundary. This position would roughly correspond to the optimum 

position at the center that most experimenters utilize. The ampli-

tude plots would indicate a reinforced amplitude or constructive in-

terference at the region of the midpoint. The plots in general, es­

pecially for the lowest and the highest modes, fit the (cos ~ J
0 

(a(j)r/R))/p
2 

plots better than any other function. Except for fig-

ures 21, 23, 24, all other plots or amplitude identification was 

straight forward and did not require interpretation. 

Figures 15 through 18 are the four modes in the axial direction. 

Figure 16 is the lowest mode (I=l). A deviation from the theoretical 

shape may be seen at points close to the distance at which the source 

appears as a point source and a smaller hump about halfway between 

the source and the boundary. Figure 16, the second mode (1=3), dis-

plays these deviations again. The magnitude of the data points be-

yond midpoint of the system have a probable error of ~ 10%. Figures 

17 and 18 demonstrate the overall increase in magnitude and shift of 

the sign changes away from the source. 

The radial amplitudes (figures 19, 20, 21) display the scatter-

ing of amplitudes near the source with figure 20 showing the hump 

near midpoint. In figure 21, the negative amplitude is greater than 

the solid line indicative of the expected values. Figures 22, 23, 

and 24 of the 45° direction display the characteristics of the other 

plots. The fundamental (figure 22) has the scatter in magnitude near 
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the source and the added magnitude at the midpoint. Figure 23 dis­

plays the extreme plot where the amplitudes are increased in magni­

tude and the sign change positions are shifted away from the source. 

In Figure 24, the positive amplitudes are enhanced while the nega­

tive amplitudes are suppressed. 



5H 

ONE INCH PER SCALE DIVISION 

FIGURE J3. ToTAL RELATIVE llMPLilUDE VERsus fu<IAL PosiTION 
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331 fLSEC 

ONE INCH PER SCALE DIVISION 

FIGURE 14. ToTAL RELATIVE ~PLiniDE VERsus RADIAL PosiTION 
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