
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

1968 

Nonparametric sequential detection Nonparametric sequential detection 

James Charles Fowler 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Electrical and Computer Engineering Commons 

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering 

Recommended Citation Recommended Citation 
Fowler, James Charles, "Nonparametric sequential detection" (1968). Doctoral Dissertations. 1921. 
https://scholarsmine.mst.edu/doctoral_dissertations/1921 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1921?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


NOJ\TJ?ARAJfJ.E:rRIC SEQUENTIAL :DETECTION· 

by 

J.A.MES CHA:HLES FOWLER /9'~.3 
/ 

A :OISSEHTATION 

Pre.s:ented -to) the Faculty of the Graduate School of -the 

UNIVERSITY OF 1\1ISSOURI AT ROLLA 

In PartiaL Ful.:fillment of the Requirements :for the :Degree 

LOCTOR OF PHILOSOPHY 

in 

ELECTRICAL ENGINEERllqG 

1.968 
:134479 

~.713£~ 
(/. AUVJ.SOr . 

~ed\l -
-..J----. -----~--·--·~-

4Jdk~c.;__---­
cc;: DAJ~ 

-----·--·--



i 

ABSTRAC~ 

This dissertation extends the -theory of t.he Wilcoxon­

Ttiann-Vlhitney U statistic so that this statistic can be 

uGed to perform seg_uen·tial tes·ts of h3-'1?o-cheses. This 

sequential test procedure makes use of a sequential 

ranking procedure similar to t!1e one first introduced by 

PaTent. The operating-characteristic func-tion and 

average number of samples function for this nev; test are 

calculated as a function of the signal ·to noise ratio. 

The test is ·then shovm to be efficient for several for-ms 

of' alternatives with an efficiency of 95% agains-1; the 

Wald ~::ieg_uential Probability Ratio Test for a constant 

signal in normal noise~ 

Finally, -the ·t;est procedure is modified so that it 

is ca:paole of making measurements. on the channel in 

order to adapt itself to changes in the channel charac-

Jceristics. Simulation results are presen~·ed ·to show tha·t; 

this adaptive de-t;ector can operate with low :probabiliJiiY 

ot' erl"'Oro 
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CHAI-'?ER I 

IHTROJJUCTIOlf 

The detection of signals buried in noise has 

been the principle problem facing the conmmnications 

engineer since information was first transmitted to 

Jl 

a distant :point. :Detecting a signal in additive noise 

consists of examining some unknovvn \vavef'orm and deter­

mining whether the waveform. is random noise or signal 

plus random noise. Tracking distant targets by use 

of radar and the recovery of coded signals from distant 

transmitters are two examples o:f signal detection. 

There are two basic approaches to the solution 

of the signal detection :problem. The first is the 

parametric approach. The parametric detector requires 

lrn.owledge about the statistical form of the input 

noise and the form of the signal to be detected. If' 

the assumptions made about the :for:m of' the input are 

correct, this type of detector is very ef'Iicient in 

that it can detect the presence or absence of the 

given signal in a shorter time than any other type of 

detector. If, however, the assumptions as to the 

nature of the input noise are not correct or if the 

noise changes with time, it may be necessary to use 

a tJ~. e of detector which does not re~uire specific 

knmvledge o:f the input waveform. This type of detector 

is called a nonparametric detector. It is nonparametric 
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in the sense that the parameters of the distribution of 

the noise do not affect the design of the detector. 

This detector is not as efficient in specific cases as 

the parametric detector, but it is not subject to the 

restrictive assumptions associated with the parametric 

detector. 

It has been found in the case of the :par~netric 

detector, that detection ca~ be accomplished at a 

:faster rate if a sequen-tial decision process is used. 

That is, while the regular detectors examine the input 

:for a fixed length o:f time and then make a decision,; 

the sequential detector periodically t r ies to decide 

if a signal is present during the examination interval. 

Many times, the sequential detector can malre a decision 

before the examination time of the fixed length detector 

is over. 

This paper will extend the idea of sequential 

detection to include the nonpar~netric detector. The 

particLliar sequential nonparametric detector discussed 

here Ylill then be comp a red to both the reguJ.ar nonpara­

metr ic detector and the sequentia.l p a r arr.etric detector 

in severa l different vvays. After the theor y is devel­

oped, the sequential nonparametric detector v:ill be 

u s &d to detect a pulse type signa l in background noise. 

Th e sequentia l n onparamet r ic de t ector wi l l then 

be modi f ied so that it can adapt itsel.f to changes 
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in the noise or channel characteristics. After this 

adaptive process has been discussed, a simulation of 

the scheme will be made to demonstrate the ability of 

the adaptive detector in detecting a pulse type signal 

through an unknown channel. 
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C H.AJ?T ER. I I 

FO:t==I.~ULATIO:N OF THE DETECTION PHOBLErtl 

2.1 T1etection Using Fixed Sample Sizes 

Given an observed waveform x(t), it is the function 

o:f the detectoJ." to determine whether x(t) consists o:f 

signal plus noise or noise alone. The detector will 

base its decision on some function of a set of samples 

from x(t). Thus, it is also assumed that the detector 

is capable o:f sampling x(t) at t=t 1 , t 2 , ••• , tN giving 

the set of samples x 1 ,x2 , ••• ,xN where (x =x(t1 ), i=l, 

2, ••• N). The detect.ion problem can now be thought 

of as a statistical hypothesis testing problem (1). 

In hypothesis testing there are two alternatives, 

represented by the null hypothesis and the alternate 

hypothesis. The detector can be thought of as testing 

the null hypothesis (x(t) is noise alone) against 

the alterna te hypothesis ( x (t) is signa l plus noise). 

F i x ed sam1)le siz e detectors are c har a cteriz ed by 

their dichotomous decisions , i.e., either the null 

hypothesis~- noise alone, or the alternate h;ypothesis, 

s ignal plus nois e, is a ccepte d. The d ecis ion is based 

upon the fact that some function of the sample is 

greater tha n or less than some thl~eshold. This thresh­

old is pre determined by the error rate which will be 

alloV'led. There are two types of errors vv-hich can be 

made. They are c a lled Type I error and 2ype II error. 



A Type I error occuxs if the detector decides that 

a sie;nal is ]?resent when there is no signe.l present. 

Th~ probability of such an error is denoted by a, and 

it is sometimes called the probability of false alarm. 

A Type II error occurs if the detector decides that 

no signal is present when in fact a signal is present. 

The probahili ty of "'chis type of error 'Nill be denoted 

by {3, and it is sometimes called the probability of 

false dismissal. 

There are many specia l cases of the. detection 

:problem which can be obta ined by making var ious assump­

tions about the signal and noise statistics. The cas.e 

most often considered in texts and in the literature 

is that in Vlhich both the noise and signal distributions 

are knovm exactly. In this ce~se the optinum detector 

is the Ne~~~an-Pearson or likelihood detector (1,2,3). 

The Neyman-Pearson detector is optimum in the sense 

that for a given probability of Type I error, a, and 

for a given probability of T.y:pe II error, {3, the sample 

size, N, is a minimum. .As an example of a neym.an­

Pearson detector,: if the noise is a ssumed to have a 

normal distribution and the signal is a constant, the 

Neyman-Pearson det ector is the vrell knovv:n t-det ector ( 3). 

Vlhen the variance of the noise is lmmvn the statistic 

of the t-det ector is given by 



[ ~~ t - i:l N 

.2. 
J N2 - fLoJ 
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• 

When the variance o:f the noise is unlmovvn, the statistic 

o£ the t-detector is given by 

[.~ 
1=1 • 

t -

If the variance is knovm, the t-de"'cector tests the null 

hypothesis (the wavef'orm. x(t) has a normal distribution 

with :mean p.0 and variance u0 2 ) , i.e., x(t) is noise 

alone, against the alternate hYJ_Jothesis (the Ylaveform 

x( t) has a normal distl'"'i but ion with mean not equal ·to 

JLo and variance e:r0 2), i. eo, x(t) is signal :plus noise. 

The null hypothesis is accepted if t has a value below 

some preset threshold level and is rejected if t is 

above this level. The threshold level is determined 

by considering t to have a normal distribution with 

zero mean and unit variance. For the case ·when the 

variance is unknown, the detector tests the null hypoth-

esis (the wavef'orm x(t) has a normal dis-t;ribution with 

mean ~0 and ill11Dlo\vn variance), i.e., x(t) is noise alone, 

agai n st the alternate hypothesis (the waveform x(t) 

has a normal distribution with mean not equal to P..o and 

variance unknown), i.e., x(t) is signal plus noise. 
+ 
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Again the null hypothesis is accepted i£ t has a value 
__,. 

belo\v the threshold level and is rejected if' t is above 

this threshold level. Here, hmvever, the threshold 

is deterrnined by considering t to have a t-distribution 

with N-1 degrees of' f'reedom. 

The Neyman-Pearson detectors described above have 

proven to be very usef'ul in the past, but as discussed 

before, their fixed sample size is sometimes a disad-

vantage. In some cases,. for example in the phased 

array radar, it is advantageous to be able to make a 

decision as soon as possible as to the presence or 

absence of a signal in the input waveform.. In these 

cases a se~uential procedure may be used. 

2.2 Seq_uential :Oetectors 

Like the fixed sample size detector, the sequential 

detector must se..:mple the input v1eveform x( t) and decide 

whether the null hy"]?othesis (x(t) is noise alone) is 

true or the alternate hypothesis (x(t) is signal plus 

noise) is true. The sequential detector differs in 

tvvo major respects f'rom the fixed sample size detector. 

These are: 

l. The sarnple size, N, is a random variable. 

2. The detector must make one of three possible 

decisions after each sample i~ taken. 

The sequential detector m~1.st take a sample and 

_then calculate some function of this sam:ple and compare 
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it to two threshold levels. On the basis of this com-

parison, the detector decides to either accept the null 

hypothesis, accept the alternate hypothesis, or take 

another sample. The sequential detector can still make 

Type I and Type II errors as defined previously; but 

also, there may be a chance that the detector can not 

accept one of the hypotheses, and for a particular 

sample the test may not terminate. The d.esign proce­

dure for the sequential detec·tor must take ·this latter 

possibility into consideration. 

For the case ·when both the noise and signal distri­

butions are knovvn exactly, the Ol.::>timum sequential detec­

tor is the Wald detector (4). The Wald detector is 

optimma in the sense that for a given probability of 

Type I error and a given probability of Type II error 

the average number of samples required for detection is 

a minimum. After each sample, the \7ald detector :forms 

the ratio 

P(x , ••• ,xm/H 1 ) 

p ( x ' • • • 'xmf H o) 

where P(x , ••• ,Xzn\H 1 ) is the probability that the ob­

served sample occurred, given that the alternate hypoth­

esis is true, and P(x , o •• ·, ~~ H0 ) represents the prob­

ability that the observed sample occurred given that 

the null hypothesis is true. The detector then compares 
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X.m to two thresholds A and B v1ith B<A. If X. >A, H1 is m-

acceJ?ted, if' X. 11~::S, H0 is accepted, and i:f TI<X.m<A, anoth­

er sample is taken. Wald has shown that the above test 

\Vill te:nninate vvith probability one if ::S is a nonde-

creasing function of m and A is a nonincreasing fulJ:ction 

of n, where m is the number of sarn11les. A simple 

exaBple of a seQuential detection problem is shown in 

Fig. 2.1. 

2. 3 Honparametric ])etectors 

Both the Neyman-Pearson and \7ald detectors describ-

ed above are optimum in their respective ways, but there 

are several :m.aj or drawbacl(s to their impJ_ementation. 

First, there must be a good description o:f both the 

signal and noise distributions, and if either one 

changes a new detector must be designed. Second, if 

the noise is nonstationary in nature it is i~practica-

ble to try to design a Neyman-Pearson or Vlald detector 

bec2.u.se the density function of the noise is not :fixed. 

Finally, i:f the noise does not have a norm.2.l distribu­

tion it is sometimes-difficult to implement these opti-

mum deJcectors because the matheHatics becomes di:f:ficul t 

to handle •. 

The need for a more general type of detector which 

does not have some of the above drawbacks, leads to a 

consideration of nonparametric detectors. These non-

parmnetric detectors can be considered more general than 
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the parame-cric detectors in that· 2.. coDplete description 

of the signe.l and noise is not necessary. That is,, a 

given nonpe.rametric detector can be used for a large 

:family of input distributions. In the following 

cha}_)ters, such detectors \Vill "be discussed e.nd compared 

to the optimum parametric detectors. 

For fixed sa~ple size detectors the goodness cri­

teria used in the co:t:!parison of' the two detectors vtill 

be the ratio of their S<-=un:ple sizes, \Vhile the goodness 

Cl"iteria used in the comparison of tv:o sequential detec­

tors will be the ratio of the average number of samples 

necessary for each detector to operate. Thus in the 

case of the fixed srunple size detector the best detec­

tor is the one which, for a specified a, {3 and signal 

to noise ratio, req_uires the smallest number of samples. 

For the sequential detectors the best detector is the 

one which, £or a set a, {3 and signal to noise ratio, 

has the smallest average nun1ber of samples. 

The signal to noise ratio will be defined as the 

ratio of the r.m.s. value of the signa l to the r.m.s. 

value of the noise. In the following chapters f(x) is 

defined as the probability density function on x, i.e., 

the pl'"'obability of x :fa lling betv.reen x and X+~x is 

f(x)~x, and F( x ) is define d as the cuJJlulative distri­

bution or the probability that x · takes on a value less­

than or equal to x, i.e., 



X 
F(x) = jf(y)dy. 

-a> 

12 

If f(x) has a normal distribution with mean zero and 

variance one, then it will be abbreviated as f(x)-N(O,J_). 

If f(x)-N(O,l), then the CUILluJ_o.tive of' f'(x) ViilJ_ be 

denoted by <P(x). ~--I (b) will sig-nif'y the number whose 

cuuulative normal distribution, N(O,l), is b. 



CH1\P T :E:E: I I I 

D..c.;SIGN OF THE NONJ?ARJJ v:iE:I: E IC 
SEQUEE"T IAL TEST 

3.1 The Ylilcoxon-I .. Iann-Vr1litney U Test 

Th 1n ·l 11 "' ""' •t U (\"" 1" \"T U) m t · e 1/ l coxon-.~.~1ann- ~ ,nl ney 'i . '.l .r. ..Les lS 

13 

a fixed sample size nonpa:ram.etric test of hypothesis. 

Since this nonparw~etric test does not assume a form for 

the input noise, it is nece$sary for this detector to 

have a second input to act· as a comparison channel. The 

second or controlled input is a noise alone channel and 

gives the basis foJ.."' rn.c:Jring a decision about the presence 

or absence of' a si€71al in the unknown input. Thus the 

W .M. Y/ . U detector is a tv.ro sample detector and. the 

detector must be able to samp,le f'rom two dif'ferent 

input chrumels. 

V,'ilcoxon proposed an eq_uivalence test ( 5) :for 

testing if the two inputs of the detector are the same. 

The hilcoxon detector takes N s~uples from the controi. 

channel, denoted by X (x 1 , ••• ,x_r~). It then takes 1.'[ 

samples f'rom the unknovf!l channel, denoted by Y-(~ , .•. , 

yM)o The detector forms a composite sample vector Z= 

(z 1 , ••• ,zN+M) composed of theN samples from X and the 

M samples from Y. The detector now must order these 

samples so that Z 1 :$Z2 $Z3~ •• o~ ZN+Mo The Wilcoxon sta­

tistic is now defined as follows 
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N+M 
T - l: w. 

J. 
( 3.l) 

i=t 

where 

if' Zi is from X 

i:E Zi is from Y. 

The Yiilcoxon test· statistic is now seen to be the sum 

of the ranks of' the xi when they are ranked together 

with the y.. The null h:yJ?o-l:;hesis (Y is from noise 
]. 

aJ.one) is accepted if' T is larger than sorn.e c:t ... i tical 

value T and -'che alternate hY'_pothesis (Y is :fro:ra signaL. c 

plus noise) is accepted if T<T • c 

Ab.out ·the same time that Wilcoxon proposed his 

test, J:;laru"l and \7hitney proposed another :form of the 

same -'Gest ( 6). The IEann-\'!hitney detector samples from. 

the t\vo inputs and :forms the sample vectors X (x 1 , ••• , 

~) and Y=(y1 , ••• ,ylvi). The test statistic is now de­

fined as 

where 

N 
u- _}: 

J.=l 
_r 
J=l 

x .. 
J.J 

( 3.2) 



x .. -
3.J 

if x.>y. 
J. J 

if x.<y .• 
J. J 
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The detect·or accepts the null hy-pothesis (Y is from 

noise alone) if U is larger than some threshold Uc and 

accepts the alternate hypothesis (Y i·s f'roni signal plus 

noise) if U<U0 • It can be shown (see Appendix A) thait 

Since. the two statistics. are linearily related,; they 

can be considered the sa .. me. The test will oe caJ.led 

-ehe \7ilcoxon-I'i~ann-Vlhi tney U Test and the s·lJatis-'cic vv-ill. 

be defined in the same Vvay as Ii~ann and Yfhi tney defined 

their statistic, i.e., Eq. 3.2. 

From ·the definition o:f the Yf.lrJ..\7. U test it should 

be n oticed that this test can be used to detect any 

sort of difference b etween the tvvo input channels, X 

and Y, but the test is especially sensitive to differ­

ences of the form 

H0 : G(x) - F(x) . 

H 1 : G (X) - F ( x- 9) • 

That is under the null hypothesis (H 0 ) the dis·tribution 

of the Y channel,: G(x), is the same as that of' the X 



channel, F(x), v,rhile under the alternate hypothesis 

(H 1 ) the Y channel is a shift in the mean from the X 

16 

or control. channel.. This is exactly the tYJ?e of alter-

natives. found in the problem of detecting a constan-t. 

signal in additive noise. 

Under the nu~l hypothesis 

H0 : G(x) - F(x) 

the following is true 

Pr(x.>y.) - t. 
~ J 

Thus the expec·ted val11e of U is seen to be 

N 
E(U) = E( L 

i=l 

=L }':E{x .. ) 
i j lJ 

- ..;!..1\TTIJT 
- _2:1 lJ.!,'l • 

Similiari ly the v ariance of U under H0 is given by 

N M 2 H2M2 
var(U) - E( L .2: x .. ) - 4 

i=t ~ = I 
~J · 

N2wr2 

- LLLL E(x . -:XU) 4 • 
i j k 1 lJ 



It is also seen that under H0 

E(x .. ~8_) - I /4 
i~k J..J 
jt:1 

E(x .. x. 1 ) - 1/3 
j;!:l 2J J.. 

E(x. ·Xk·) - •/3 
i;tk J..J J 

E(x .. x .. ) - .l... 
lJ J.J 2• 

Then 

var(U) - m.1(N + M + 1 ) /12 • 

Under the alternate hypothesis 

u-1 : G(x) - F(x- e) 

the following can be sh.ovvn to be true 

Now define 

Q) 

P(X >Y) - /-:t:(x)F(x- 9)dx,. 
-co_ 

Y - J t:OCCx)F(x- 8)dx 
-CO 

. and also define 
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). = ~- y 
<X> lF2 (x- 8)f(x)dx 

-~a) 
J(l - F(x) )2 f(x-B)dx. 

-(() 

Then it can be seen the~t under H 1 

E(U) = YNM. 

It~ · can also be shown ( 6) that 

var(U) - NI\1 (N+n1+ l)/12 + NI~I [- >..2 (N+I£- t) + 

(X- El) (Iii- I) + (X- E2) (N- I)] • 

The following notation will now be introduced 

fl-o= E(U) under Ho 
cr2= 

0 
var(U) under Ho 

P.l = E(U) under Ha 

a2-
I - var(U) under HI • 

If the xi 's and y j ' s are independent random 

variables, u, which is defined by Eg_. 3.2, i.e., 

N M 

u - .;=L• .L xiJ.! 
-'- J=l . 

l8 

( 3. 4) 

is the sura o:f :NE ran.dom independent variabJ_es, since 



?(xi>yj) is independent of P(~>Yl) if i~k and j ¢l. 

So -l:;he cen-tral lj_n it theor em can be applied to this 
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sum of independent variables and the following holds for 

large N and :m: 

( U ;;o )~N( o, l) nnder Ho ( 3. 5) 

and 

( 3. 5) 

The fixed sample size Yl . I~i.. W. U test can now be 

set up in the following manner. Ta ke l'f samples from 

X and E samples from Y, and calcruate U a ccording to: 

Eq_. 3.2.. Now form the followin g statistic 

w = { U -fLo) 
uo • 

It can be seen that if H0 is true \Y~.l\f( 0, 1 ) a nd i:f 

.H1. is true \7~T (p..',u2) where :from Eq_. 3.4 it is k:novvn. 

that 

" fl-1 - P.o 
Jk. - ------=:.... < 0 

o-o ( 3. 6) 
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c:T/ = _5_ 
CTO < I. ( 3. 6) 

Viith the aid of Figure 3.1 the values :for the 

threshold (Y! c), a, and {3 can be calculated. From 

examination of Figure 3.1 it is seen that 

or 

The value of J3 c.an be seen to be 

or 

where p.' and I' 
cr are defined by Eq. 3.6. It is now 

:possible,;. using the above rela-t:ionshi:ps, to design 

(3.7) 

a test so that for a given a and {3 an N a nd £,~ c a n be 

found that will let the test obtain these e r ror ~rob­

abilities. 



~ P(WIH0 ) 

I 
I 

I 
:5 '>. " ), ' J . / / c -=-=---~; ______________ '-...:::.::::::;::...:.._ __ --l ..... __ 

w 

Figure 3.Jl_ W .1·1. W. U Statistic Under Each Alternative· }\) 

~ 
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The test described above is the classic2l V;ilcoxon-

Ear1n-V/hi tney U test. It has very good power against 

certain t~y-:pes o:f alternatives, and can be shovm (see 

Appendix E) to have an Assymptotic Relative Efficiency 

(A.R.E.) of 3/-r when compared to the t-tcst for detect~ 

ing shirts in means for no2~ally distributed noise • . J~ 

the case of nonnormal noise the W.::M:.W. U test can have 

an A.R.E. greater than one •. 

3.2 Sequential Viilcoxon-lriann-Ylhitney U Test 

The high efficiency of the V{ .M. \"i. U test as 

compared to the t-test for normally distributed noise 

seems to make the idea of performing it sequentially 

very attractive. The need now is to find a way to 

implement the test in a sequential manner. This paper 

will calculate the T statistic as defined by Wilcoxon 

because of the relative ease of' c<::..,lculation when com-

pared to that of the equivalent U statistic. To further 

speed the process, a sequential ranking procedure first 

devised by Parent (7) will also be used in the c8.lcu-

lations. The traditional reranking proce&ure will be 

examined first in order to facilitate the introduction 

of Parent's method .. 

Consider the observation vector Z=(z 1 ,z2 , ••• zn) 

where z., i =l ,3,5, ••• are from X and z., i=2,4, ••• 
~ ~ 

are f'rom Y. Eow in a sequentia::J.. test the :first obser-

vation is taken, and the observation vector is ranked. 
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Then the $econd observation is t2-ken, and the observa-

tion vector must be again ranked. Thus, after each 

sample is taken,= the entire observation · vector must be 

reranked before the statistic can be calculated. This 

reranking after each sample is extremely time consuming 

and thus slo·ws the detection process. The sequenti:al 

ranking procedure provides an efficient and fast way 

to preserve the inionuation- found in the ranks, with­

out reran£~ing after each sample. Let the rank of zi 

with respec-t to the sample Z=( z 1 , ••• , zi) be denoted by 

Si. FroJil this de:fini tion it can be seen that S =l, 

S =lor 2, S =1,2, or 3, etc •• If a sample o:f size N 

is taken,. and as each sample is taken Si is :found, then 

the vector S=(S 1 ,s 2 , ••• ,SN) has a one to one correspond­

ence to the ranks of the samples when they are ranked 

after the N observations ( 7). The following example 

will demonstrate this correspondence •. 

Consider the following observation vector 

X= ( 4 • 0, 2 • 0, 5. 4, 3. 2 , 4 • 7 ) • 

The seq_uen·tial rank vector f'or the above observations. 

is given by 

S= ( l , l , 3, 2 , 4 ) • 
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The r-ank vector for X can now be found in the following 

way 

82=1 

83=3 

S4 =2 

S5 =4 

Thus the rank vector is given by 

where 

x(i) - rank o:f xi in X. 

From the above example it can be seen that the idea of 

sequential ranking lends itself in a natural way to 

sequential testing. 

The vV.JYI.W. U statistic will now be calculated 

using the idea of sequentiaL ranking. Define T as the n 
value of the Wilcoxon T statistic after n samples. The 

observation vector Z=(z 1 , ••• ,zn) is again defined as 

above. That is, if i is even, z. is from Y; and if 
J. 

i is odd, zi is f'rom X. Nov1 after n samples, the 

f oll o\ving holds 
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( 3. 8) 

if zn was taken from X, and 

( 3. 8) 

if zn was taken from Y, where Sn and Sxn are defined 

as follows:: 

and 

Sn - sequential rank of zn 

-- number of samples from X which 
are larger than zn. 

Sxn can be found in two ways: 

l. The observation zn is ranlced sequentially with 

respect to the zi from X. Then this is sub­

tracted from the total number of z. from X. 
~ 

2. The observation zn is inversely ranked sequen-

tially with respect to the z. from X. That is, 
J. 

the largest value has rank l, the next value 

2,. etc •• 

The second method o:f the two mentioned above is the one 

used in the detection described in the following pages. 
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Eq~ 3.3 now becomes 

Tn- n{n+2)/8 n even 

un - ( 3.9) 

Tn- (n+l)(n+3)/8 n odd. 

The Un s.tatistic will now be used in the :following 

manner to Xmplement the se~uential test. A£ter Un ia. 

calculatedv form the :following test ratio 

P(Un jr-1, ) 
P(Un fHo) • 

Thj_s jjs a logical extension of Wald' s Sequential Proba-

·bili ty Ratio Test to the nonparametric framework, since 

by examining its: efficiency, it has been sho\m. that Un 

contains almost as much information about the shift i'n 

mean as does ·the complete sample. The fact that 

P(UniHi) is always approximately norma~ irrespective of 

·the input distribution gives much weight to the use of 

this type of nonparametric sequential test. The deci­

sions are made after each sample is taken in the fol­

lowing rr1.anner. If A and J3 are tv1o ·thresholds with :B<A 

then after each. sample, 

if ... ~J3 t H ~n accep 0 

if -rn~A accept HJ 



or 

if J3< T <A take another sample. n 

The operation of the detector has been fully defined; 
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it is now necessary to develO}) the necessary relation-

shi:ps to evaluate the performance of the detection 

scheme. The first step is to find a ·way to express A 

and J3 in tarms of 1mown constaJlts. 

If the observable data are continuous functions 

of' time 2.nd if continuous sampling is used, then the 

statistic U could be thought of as a continuous function 

o:f time.. Thus it would be possible to thi:n_l~ of T as a 

continuous function of time. TheJ."'efore, the seq_uentiai 

nonparametric test vvould ter:uine.te Y!hen T( t) = A or 

·c( t) = ]3. It is only in the case of dis<.;l~ete sampling 

thnt the inequalities T >A or T <J3 are :possibly ob-n n 

t a ined. That is, after n-l samples it is possible for 

J3< T: <A and that the inclusion of one more sample 
11.-1 

produces either Tn<J3 or Tti>A. For n large it is rea-

sona ble to assume that ·this excess over the boundary 

will be small, and :for the case of the seq_uential W.U.W. 

U test it will be assumed that the test terminates with 

Tn = A or Tn - B. Now suppose that the sequential test 

is carried out, and that af'ter n samples T = A. This n 

leads ·tio the acceptance of H1 • Thus 



P(Un jH 1 ) 

P(UnjH0 ) 
-A 
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implies the acceptance o:f H1 , . or putting it another -vvay, 

the acceptance o:f H 1 implies that 

( 3.10) 

I:f -the set of' all values _of U which lead to the acceut-n -

ance o:f H 1 is denoted by r 1 , then J~q. 3.10 is equiv-

alent to 

or 

[P(U jHJ )dUn -r n 

' 

t- f1 - Aa 

( 3.11) 

( 3.12) 

P roceeding i n an a n a logous ma nner it is found 

that t h e a ccepta nce o:f the null h ypothes is, H 0 , i mplie s .. 

(3.13) 

where r0 is the region o :f ac c eptanc e o f H0 • 3q. 3. 12 

n ow r e duc e s to 
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~ - B( I - Q). ( 3.14) 

Now looking at Eqs. 3.12 and 3.14, it is possible to 

find A and ::S a s f-Lillctions o:E the probabilities of error, 

i.e., 

A 
I- f3 

- a 

(3.15) 

B 
/3 - 1- a . 

The next lJroblem of interest is the actual calcu-

lation of Tn. This involves the calculation of P(Unl H 0 ) 

and P(Un\H 1 ). In the preceding section of the chapter, 

it was fovnd that for larg e n (Un- ~)/~ is approxi­

mately normal. The actual density for Un is difficult 

to . calculate under either the nv~l hypothesis or the 

alternate hYJ)othesis. Hovrever, for l a rge n it app roach-

es a normal distribution, therefore, for convenience, 

it 1vill be assumed that (U - p. )/c:r is normal for all n. n 
Using the above arg'UIO.ent and Eg_.. 3. 4 it can be seen 

that 

::;1nd 



e -t 

·where p.0 , P.l ,_ o-02, a nd o-12 c:.re :functions of n, i.e., 

and 

where 

1_ TTl\"' Jl- 0 = 1fl· 'W'l 

p. 1 = Y l'illl 

r:r02 = (I%1 (N+l.-~+ l) )/12 

o-12 - N1.1(N+L+ I )/l2 + 1\:E[- >..2 (N+Il-1 ) + 

(>..-E 1 )(I.~-1) + (X-E2)(H-1)] 

H - n1m:..ber of samples :from X 

1/:. - nv.mber of samples from. Y 
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and >-, Y, «1 , ana_ E 2 are defined by Eq. 3. 4. Since ol·<u02 

it can be assumed that (Un -ILl )/o-0 is a})proximately 

N(O, 1) under the alternate hypothesis. This is not 

quite true, but it will ~roduce a conservative test,. 

since the variance of (Un - p. 1 )/o-0 will actually be 

less that one. With this asswnption a.nd upon noting 

that 



N _ { n/2 

(n+ 1 )/2 

n even 

n odd 

and 

n/2 

M - { (n- I )/2 

n even 

n odd. 

It is possible to express JLo ,.. p. 1 ,; and a-02. as functions. 

o:f n, i.e., 

or 

n2.j8 n even 

JLo= {(n2 -t)/8 n odd 

~-'-• -

2. 
0"0 = 

Y~/4 n even 

{ Y(n2 - 1 )/4 n odd 

{ (n3+ n 2 )/4-8 

(n3+ n2- n - 1 )/48 

n . even 

n odd. 

The test statistic can now be vvritten as 

( 3.16) 



( 3.17) 

where f'o ,: p.. 1 , ) and cr02 are defined as above. 

The next step in the analysis o:f the sequential 

Vf . M . W. U detector is to obtain an expression :for the 

average number of samples necessary for detection. In 

order to facilitate this calculation,. the following 

definition is made 

S).n - ln Tn• 

Now the test can be restated as 

a ccept H 0 when .o,n<lnB 

accep·t H 1 when .nn>lnA 

and when ln~~<lnA take_ a nother sample. 

From Eq. 3.17 it can be seen that 

.n = ( JLr -zP.o:\ {u . _ JLa +fLo) 
n a-0 J . n 2 • 

Assume now that the test is conducted as h a s been des-

cribed p r eviously a nd t h at H 0 is true. Th en a t the 

time a decision is made n.n can either be equa l to lnA 

or ln:S. If Ho is true then .n wil l be equa l to lnJ3 . n 



(1- a)% of the time and equal t0 lnA a% o:f the time. 

Thus. the 8Arpected value of Sln (denoted by fin) when H0 

is true is given by 

33 

.nn - alnA + (l- a)lnB. ( 3.18) 

Simiiarly,~ when H1 is. true it can be argued that 

.nn - (l-,B)ln A + ,BinB • ( 3.19) 

At the same time the e.A.rpected value for Un at the time 

of decision under H0 is fLO and the expected value :for 

Un at the time of decision under H1 is~1 • Combining 

the above a nd Eqs. 3.18 and 3.19 yields 

and ( 3. 2 0) 

Substituting the values from Eq . 3.16 into E~. 3.20 

:yields under H 0 



n even 

a InA + (l- a)lnJ3::: 

odd 

and u.11.der H 1 

2 
(Y-i) n even 

(l-,B)ln A + ,B ln:S = 

Fox n large n 2-l ~ n 2 and n4 /(n3 +n2 ) ~ n, solving. for n 

in the abo.ve equations- gives an approximation for n, 

the average number of samples required for detection. 

The solution is 

-2 alnA + (l- a)ln:S 
}(Y-i)2 

under··H 0 
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n~ ( 3.21) 

2 (l-.S)lnA + ,Bln::S 

3(Y -i )2 
under H1 ~ 

Eq. J,.2I gives an approximation for the average number 



of' sampl.es :for detection as a function o:f a, 13, and 

Y., The approximations .. made in the calculations will 

become better as n gets large.. Thus for small a, 13 ,, 

and large Y the above approximatj_ons should be very 

close. 
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Now that the test has been fully designed it is 

lrnovm that i:f H0 is true the test will terminate with 

decision "Ho true" with probability l- a and with deci­

sion "H! truen with :probability a.. If H 1 is true a 

similar knowledge is available ab.out. the acceptance 

o_f' H0 and the acceptance of H 1 • The hypoi;hes.es are of 

the form 

Ho : G(x) - F(x) 

H 1 : G ( X) - F ( x- 81) • 

Therefore t > the test can be thought of as testing 

e = e = o 0 

e = e, . 

With this thought in mind,, it is now appror>riate to ask 

the following questions: l) What happens if the true 

value of 8 is not 80 or 81 ? That is, what happens if 

a mistake was made in setting u:g_ the alternate hypoth­

esis? 2) How does the test designed to test 8 = 0 



36 

against 8 = a. ' perform. Vlhen B takes on values other 

than the designed values? The operating-characteristic 

fu.nction gives a measure of' how well the test perf'orms 

under these conditions. 

The operating-characteristic function L(B) is 

defined as the probability that the test terminates 

with decision H0 when the true value of the unkno\vn 

parameter is e. Therefore, _in the case of the sequen­

tial W.Ih.W. U detector it is obvious that L(O) is equal 

to 1- a and the.t L( e1 ) is eq_ual to /3. To d.erive the 

operating-characteristic ftrnction for the sequential 

W.M.W. U detector, it is again necessary to assume 

that the excess over the "boundary at the time of deci-

s.ion is negligible. Now consider the following 

where h = h(G) is some function of e with the following 

restrictions (4) 

h( 8) ; 0 

and 
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( 3. 22) 

The existence of a uni~ue solution for h(B) has been 

proven by Wald (4). Define 

Note that g(u1111e) meets all of the re~uirements for a 

probability density function, i.e., 

g(umle) ~ o -

J g{Um/B)dUm - 1. 
r<um> · 

Therefore, Hg_ can be the hypothesis that the true 

distribution of Um is g(umla) r- and HP can be the hypoth­

esis that the true distribution of Um is p(Um\8). ~hus 

it is now possible to :formulate a sequential tesi;. of 

hypothesis H-n against H ,, \Vhere the upper threshold 
~ g . 

is Ah and the lower threshold is Bh. After ·the mth 

sample the test is 



if 

if 

g(Um 8) S Bh 
p(Um f)) 

g(UID 8) > Ah: 
p(Um 8) -

acce:p.-t ~ 

take another sample. 

Following a procedure E?imilar to that used in the 

development of' Eq. 3.15, iii can be shovm that 

~ 
1 -a 

and 

I -/3 
ca ~ 

Solving the above for l ·-a yields 

l- a -
• 

The above is by definition L ( (}) '· thus 
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L(9) 
Ah - l - Ah :Bh 

( 3. 23) - • 



Now it becomes necessary to solve for h(8) in order 

to get an expression for L(B). 
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The exact solution of Eq. 3.22 for h is very diffi­

c:ul t since the distribution for Un is not 1movm exactly. 

However, an approximation can be obtained if the normal 

assumption is used. That is 

Instead of' carrying along the variable 9,, in this case 

it will be equivalent to carry the variable fL since f' 

is directly related to Yand thus al sa to 8. Now Eq. 

3. 22 becomes 

co 
h 

_::~,._ (U- 1-Lo)2 
-2 e cr0 

2 
1 _l(u P.) 

,j'2Ti cr e 2 cro dU - l. 

Reducing the above yields 

It is known that the above integral is equal to l i:£ 

the exponent can be written as .a perfect square. This 

implies that 



or that if h #- 0 

h _ fkt +P-o - 2 P. 
fl-J- JLo • 

If Y1 ." y 0 andY are defined by 

Then Y0 
:t 

- 2 

1-'1 = Ya n 2 /4 
JLo= Yon2/4. 

and 

From the above it can b.e seen -'t~hat 

for y ~ )j + t 
2 • 

h- - 2Y 
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( 3. 24) 

It is now necessary to find L(Y) for the case when 

Y = Yj ; t . :By examining Eq. 3.23 it can be seen thail 

lim. L(Y) :ts indeterminate. However, the application 
h- '0 
of L'Hospital's rule yields 



or 

lim L( y) 
h-o 

:tim L ( :y) -
h-o 

InA_ 
ln(A/B) 

4l 

( 3. 2 5) 
• 

Now Eq_. 3.25, )".24, and 3o23 are combined to 

obtain the operating-characteristic function for the 

sequential W.M.W. U detector 

- ]. 

>I +t-2 [' -:Jr, -t 
Y, ±t-2 

[ @] Y. -i 
1-a] I 

L(Y) ~ 

l • 

A typical plot of L(Y) is shovr.n in Fig. 3.2. 

Y¢ t ± -it 
2 

y = 'I+ i 
2 

F-.nowledge of the operating-characteristic function 

net only gives an important index of performance for 

the sequential detector,, but also allows the calculation 

of a more general £or.m for the determination of the 

average number o£ necessary samples. I£ n(a) is defined 



-~ -....J 
I 
I 

0.4+ 
I 

o.2 

-{------. - ~- !---· 
0.5 

Figure 3.2 

y 

Operating-Che...racteristic Function for 
the Sequential W .r~r . W. U Detector 

42 
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as the average nur.n.ber of' sa..":lples necessary :for termina-

tion of' the test. when the true value of 8 = 8, then 

Eq. 3.21 gives. an expression for n( 80 ) and n(81 ). It 

is now possible with the use of' the operating-charac­

teristic function to calculate n( 8) for any 8. 

Again consider 

n -n 
JL1 +fLo~ 

2 J. 

The probability that the test terminates w.ith accept-. 

ance of H0 is now given by L(8) and the probability of 

acceptance of H1 by l - L(8). Thus using the argument. 

which precipitated Eg_. J.l8 it can be seen that nn 

can now be expressed as. 

!ln - [l - L(e)] lnA + L( 9)lnB ( 3. 2 5) 

A~ the time of decision the expected value for Un can 

be expressed as 

This leads to the relationship 
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Again using the definitions of the ~-'sinE~. 3.26 
J. . . 

and making the same assumptions that were made in the 

derivation of E~. 3.21, the value of n(Q) becomes 

n(9) -
lnA + L(9')ln:B 

Since Y and fJ are directly related, the above wi~l be 

written as 

n(Y) - ( 3. 27) 

for 

y ¢ X +t 
2 • 

As· in the case of the expression of L( Y), there is an 

indeterminate form of the above when Y = )j' 2 i . 

Through a very lengthy deve~opment, Wald (4) was able 

to show that the value for n( Y) when Y = )'j; -;;- can 

he approximated in the following manner 

where A and JI are defined in Eg_. 3.15, and where the 

expectation is conditional on Y .. The above now becomes 



or 

2 
( ILJ - J.Lo) l A 1· B 

CT2 - - n n • 
0 

Substituting in the above :for the value o:f J.Lt and fLO, 

and making the customary assumptions, yielda 

n(Y) -
-J n A J n:B 
3{ Y -:'1...)2 

I - 2 • 

Y== )'J + t 
2 

The final e:x:pression for n(Y) can now be written aa· 

n(Y) ~ 

2 ftl-L( Y)) ln(1 ;B) + L(Y)lnG-~)} 
3 ( Ya -fa- ) [ 2 y -· ( 11 +t)] 

2 
3()J -t) • 

TypicaL values for n(y) appear in Fig. 3.3. 

The sequential W .Til. W. U detector h a s been fairly 
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well analyzed now, since the average number of samples 

:function ( n( y) ) gives the average n1.unber of samples 

to make a decision under all :possible conditions. 



Figur·e 3. 3 

y 

Average. Number o:f Sar..11:ples Function :for 
the W.D.W. U Detector 
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Fua~thermore, the operating-characteristic function 

describes, under all possible conditions, the average 

number of decisions in favor of the null hypothesis and 

also the a1ternate hypothesis. 

3. 3 Efficiency Of The Sequential Yl.I:I.W. U Test 

In the preceding section a thorou~1 development 

o:f the test procedure along ·with the development of 

several O}Jerating cha:racter.istics for the sequential 

W.M.W. U test was presented. In this section the oper­

e~ting characteristics will be compared to those of the 

fixed sample size W .Iv! . \'/ . U detector in hopes of getting· 

an idea of how the se~uential detector compares to this 

other detector •. 

The comparison to be discussed here is one of 

c~mparing the eXJ?ected number of S8.J1lples :for the sequen­

tial detector to the number of samples necessary :for 

the fixed s a mpl·e size Vf . M. Vi . U detector, ea ch detecting 

the same error probabilities. If the seg_uential detec­

tor is to be considered good, it must have a sma ller 

e r 2ected number of s amples t han is n eed e d by the :fixed 

sample size detector. The f'igu <"e of' merit used in the 

comparis on is c a lled the perc entage o:f savings o:f the 

s equentia l d etector . The percent age o f saving s i s 

defined by 
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(3.29) 

where PSi is the :percentage of savings given Hi is 

true,, n( 8i) is the average number of s2.1nples needed by 

the sequential detector given H., and n is the number 
~ s 

of samples necessary for the fixed sample size detector 

to operate with the perscribed error rate. 

rraking ns to be the number of' sam1)les necessary 

for the fixed sar.n.:ple size Y/ .K. v;. U detector, and n( 8.i) 

as the average number of samples needed by the sequen­

tial W.IA.W. U detector, then PSi will give an estimate 

of how much savings in time is incurred by changing 

to a sequential test. From section l of this chapter, 

it was found that 

and 

Q = <l>(Vl ) c 

(w - P:) 
{3 = l - <P c u' 

{see Eq_._ 3. 7). Using the inverse function defined in 

Chapter II,, the above becomea 
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w - ~-•(a) 
c 

w - fL" c:p-'(l - {3 ). 
(3.30) 

Q -u" 

Using the approximation that o-0 ~ o-1 , and using the 

:fact. that p! = P.,o:.- fL~, Eq_. 3. 30 can be rewritten as 
0 

We - <P-l( a) 

We + fLo- fLI = <%>-I (l - {3 ) • 
a-o 

Simplifying the above yields 

-I ci> (a). 

Using the values of J.Lo' <£> , . and JLt given in Eq. 3.I6, 

the above becomes: 

n even 

( -1 I 12 
<I> (l-[3) - (f)- (a )J _ 

3( i-Y'! 

n odd. 

Making the approximations. that n 2 -l ~ n 2 and that n 3 + n 2~ 

n 3 the expression for n becomes: 
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( 3. 31) 
• 

Now using Eq. 3.31 and Eq. 3.21 it is possible 

to calculate PS0 and PS1 • Performing the indicated 

calculations yields 

- 100 1 + (1- .l3)ln B] o/o 

and ( 3. 32) 

2 [C l-.B)1n A + a ln B] o;0 

(<P x 1-.B > - cp-1< a >]2 • 

Fig •. 3. 4 and Fig. 3. 5 give plots of PS0 and PS1 

as a :function of a and f3 •. It is interesting to note 

that PS. (as given in Eq. 3.32) is not a function of 
J. 

the signal to noise ratio. This is easy to understand, 

in thaii: both detectors operat.e by using the S$llle statis­

t .ic. Thus the signal to noise ratio or equivalently y 

should affect both in the same manner, indicating that 

the difference in srurrple sizes is due to the different 

decision rules. 
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CHAPTER IV 

SEQUENTIAL IJE,'TECTION OF CONSTANT SIGl~ALS 

4.l Detection O:f. A Constant Signal In No:r:mal Noise 

The optimum detectors discussed in Chapter II are 

usually designed for detection in normally distributed 

noise. So in order to be able to compare the sequen­

tial nonparametric detector to an optimum detector it 

is necessary to analyze the performance of the sequen-
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tial detector in normally distributed noise.. The alter-

ne.ti ves are of the f'orm 

Hca : G(x) = q,(x) 

H 1 : G (X) = <l> ( x- 9) 

where <l>(x) is the cunrulative nor.Bal distl"'ibution. For 

this case the Wald sequential probability ratio statis-

tic is given by 

A = y- x m 

where y and x are the means of the Sc·m:ples dravm from 

the Y population and the X population respectively. If 

x,.., N( o, cr 2 ), then the decision rv~e can be shov'rn to be 

(8) 



if accept H1 

if' accept H0 

4cr2 n 4o-2 n 
and if -elnB +28<>...£·-elnA + 2() take another 

sample-

Using the above rule,, it is possible to show ( 8) thai± 

the average number o:f. samples necessary :for detection 

is given by 
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-8a2 [ (1-/3) 
9 2 aln a- + (l- a)ln~] H0 true 

(4.1) 

~0: [Cl-Jl)ln{'-;;B) + /3ln {f-a)] H1 true. · 

Eq_ •. 4.1 now gives an expression for the number of 

samples necessary for the Wald detector. If a sililar 

expression can be found :for the sequential W .M .• W. U 

detector, the two detectors can be compared in 

efficiency. 

Eq_.. 3. 21. gives the necessary form for n for the 

sequential W .M.. W. U detector~ but the parameter Y must 

be found as a function o:f 8 before the actual compar­

ison can take place, it is also needed before the detec­

t-or can be used to detect the signal described above. 



The definition for y is given by Eq. 3.4, i.e., 

Q) 

Y == P(x>y) - J :f(x)F(x-e)dx. 
-<X) . 

Rewri iring the above into a more basic f'orm yields 

f Q') X-() 
Y (8) - J f(t )f'(x)dtdx. 

-<0-Q) . 

Taking the derivative with respect to 8, the above 

becomes 

For this case 

f(x) 

(X) -J :f(x-9)f'(x)dx. 
-en 

l 
= ./27f 

--Ja-x2 e • 

Using the above in Eq. 4.2 produces 

Y /.( 8) # J <X> __ :t,_x2 _.,:J~ ( x- 8)2 = e 2 e 2 dx -co .. 

- -1 J co - (x - .11.:.2 '2 - 482 
·-~ e I e dx 

-<0 

92 
-1 --=.J27re 4 • 
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{4.2) 
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Thus 

Y(8) = 1 - ~) (4.3) 

where <Z>(x) is the cumulative normal. Fig. 4.1 is a 

:plot. of Y( 6) as a function of 8. 

Using the above inform.ation,: it is now possible 

to compare the average number o:f samples :for the sequen-· 

tial w.n.w. u detector. ])efine the percentage loss as 

PL- 100(1- nwJ%~ 
n 

(4.4) 

That is, the percentage loss is a measure o:f the loss.' 

due to the use of the nonp8,ra..:metric seg_uential detector 

instead of the optimum parametric detector. Using EQo 

4.1, 4. 3, 3.21, and 4.4 iii is possi1:>le to evaluate PL, 

i.e., 

PL - lOO l -
12 ~- ~~)]2 

82 
c1. Jv• (4.5) 

The above eg_uation can novr be evaluated as a func·tion 

of 9 {See Fig. 4.2). Here it is interesting to note 

that PL is not a :function of a, f3 , or the true hypoth-
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esis, Hi o In the tvro detectol..,S compared, the decision 

rules were the same, the only di:f:ference comes in the 

fact that Un does not contain all o:f the information 

available in the sample, so then the loss comes about 
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by using an inef'f'icient statistic, not an ineff'icient 

decision rule. Also note the £act that for high signal 

to noise ratios the Yiald detector is much better than 

the sequential W .Ifl. W. U dete.ctor. This occurs because 

the ranks o:f the samples do not contain inforJ.Llation 

as to the amount o:f spread in the observations. The 

W .III. W. U statistic has the same value whether xi< yj 

by lO ·units or l m1it. Thus while the W.I~I.W. U statis­

t .ic is no.JG as efficient for eA.'"tremely high signal to 

noise ratios, in the areas of interest, however, it is 

very good. 

Now that the detector has been analyzed and 

compared in several resnects to other detectors, i-t­

will be used to actually detect a constant si@'lal in 

normally distributed noise. The noise Vlill be assumed 

to have a normal distribution with zero mean and unit 

variance. The value o:f the constant signal will b.e 8. 

Thus the signal to noise ratio as de:fined in Chapter II 

is also equal to 9. The detector \Vill now operate ill:. 

the following manner. First an estimate will be obtain-

ed for the signal to n oise ratio. Once this has been 

obtained Y is found :from Fig. 4.1. The next step is 
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to calculate the tlu:·esholds from the desired a and f3. 

The detector will then take a sample from the X distri­

bution, calculate Tn and compare it to the thresholds. 

If another sample is needed the detector will sample the 

Y distribution and again calculate Tn anti compare it to 

the thresholds. The detector will continue this :process 

until one of the hypotheses can be accepted. 

This problem was sim.u..l~ted on an I.B.M. 360 

computer. The X distributio~ was generated as N(O,l), 

while the Y distribution was generated as H(9,1) if 

Hr was true and as N(O,l) if Ho was true. The flow 

chart for the simulation program is shovm in Fig. 4.3. 

This chart shows how the detection process was simulated 

by the computer. Fig. 4. 4 and 4. 5 plot two typical 

resu~ ts for Tn as a function o:f n and show how the final 

t .ermination occurs as the statistic crosses the thresh­

old. The simulation was carried out 2000 times with 

H0 true and 2000 times with H1 true. The results of 

this simulation are summarized in Table I. 

In addition to actually simulating the experiment, 

the computer kept a record o:f how many samples were 

needed for dete-ction each time a decision was made. 

With this record it is possible to get an idea o:f how 

the number of samples :function is distributed. The 

results. are }?lotted in Fig. 4.6 and 4.7. It is useful 

to note that while the average number of samples for 
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TABLE I 

STI'.'lULATION IN NORMAL :NOISE 

H0 TRUE HI TRUE 

alpha 0.10 0.10 

beta 0.10 0.10 

theta 1.00 1.00 

number 
of times 1863 114 
H0 accepted 

number 
of times 137 1886 
HI accepted 

simulated 0.069 alpha 
I 

simulated 
beta 

0.057 . 

average 
21.85 nur..1ber o:f 22.00 

samples 
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detection, ii, is greater than the mode, indicating a 

long tail on the distribution, the tail has extremely 

small values by the time it gets to the n~~ber of 

samples needed by the fixed sample size test, ns. This 

is a good property in that the sequential detector will 

make a decision be£ore the fixed s~~le size detector 

a large percentage of the time. It has been seen from 

Fig. 3. 4 and 3. 5 that for a= /3 = 0.1 the savings of the 

sequential detector is abou.t -60%,. thus the seq_uential 

de-tector will, on the average:t! make ±t-s decision twice 

as £ast as the fixed sample size detector. 

4.2 Detection Of' A Constant Signal In Nonnormal Noise 

In some a:pplie;ations it is not possible to make 

the assv.l!lption that the noise is normally distributed. 

If' this is the. case it is sometimes useful to assume 

that the noise has a Cauchy distribution. If a variable 

x has a Cauchy distribution then 

f'( x) - l/(l + x 2 ) -<O<x<CO 
• 

Fig. 4,8 presents a comparison of the Cauchy distri­

bution and the normal distribution with zero mean and 

unit var:Lance. From Fig •. 4. 8, it is possible to see 

t .hat the Cauchy noise has much more . power associated 

with it because it does not go to zero as fast as the · 

normal noise. Theoretically the variance f'or the Cauchy 
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distribution is infinite, but this distribution can 

be used to approximate noise with large finite :power 

to a better degree than can the normal distribution. 
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Again before the detector is used, it is necessary 

. to obtain an est·imate of Y( 8). For the case where the 

noise is distributed according to a Cauchy distribution 

Eq. 3.4 becomes 

. co . 
Y(8) - J f(x)F(.x-e)dx. 

--w 

where 

f'(x) - l/(l + x 2 ) 

and 

F(x) - ~ - ; tan 1(x) • 

.A:n explicit expression for Y was not found, however, by 

using numel~ical integration Y(B) v1as found. The results. 

are p lotte d in Fig. 4.9. 

Using the ab ove results to set Y, the compute r 

wa s again used to simulate the detection problem; 

however, this time Cauchy n oise was u sed. The resu~ ts. 

o f · 2000 simulations of H0 and 2 000 simulations of H1 

are shown in Table II. 
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TABLE II 

RESULTS OF Vi .I~~ . Yi. U TIETECTOR 

Sif'.TIJLATION IN CAUCHY FOISE 

Ho THUE H, TRUE 

alpha o.lo O.lO · 

beta o .. lo O.lO 

theta 1.75 l-75 

number ' 
o:f tjmes 1860 l88 
Ho accepted 

number 
o:f times l40 l8l2 
HI accepted 

simulated 0.070 alpha 

simulated 0.094 heta 

average 
number CU::f 23.10 24.9l 
s amples 
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The det·ection process described · in the above 

sections makes use o:f the fact that· the signal to noise 

ratio vras lmovm exactly and thus Y couid be calculated. 

I:f!. Y is not knovvn or ce.nnot be calcuJ..ated, it can be 

seen :from the O}Jerating-characteristic curves (Fig. 3. 3) 

that if a conservative estimate for Yis assumed, i.e., 

assume Y larger than what the· true value is expected 

to -be,. the detector will operate with a lower error 

rate than if the true value were used, but the number 

of samples needed for detection will be greater than 

would be necessary if the -true value o:f Y were used •. 



CHAPTER V 

ADAPTIVE SEQUENTIAL DETECTION 

USING THE W .1~ . W. U TI:ETECTOR 

73 
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the system, and use this knowledge to help make deci­

sions are c a lled adaptive systems. Such systems are 

necessarily suboptimum in that if no apriori knowledge 

is assumed the detector caTI..not operate with maximum 

efficiency. These systems can, however, with good 

measurements, approach the optimum system. 

Consider the following system. In the signalling 

int·erval the transmitter sends either s(t) or 0 (no 

signal) over ·the channel. The sequential Vl.M. W. U 

detector then samples the signal and when Tn crosses 

one of the thresholds it makes a decision. The proba­

bility of' error for such a scheme is given by 

where L( Yt) is the operating-characteristic evaluated 

at. the true value of Y denoted by Yt• 

If' the designed value of Y ( Yd) is greater than 

Yt' PE will be less than ~~(a +/3) (the PEwhen 'Yd = Yt). 

However,: the number o:f samples for detection will be 

greater than the number which occurs if' Yd - Yt. If 

Yd> Yt' PE will be greater than l( a + ~). 

A reasonable solution for this problem is to have 

the detector measure 1' in some way and use this knowi­

edge to e..dapt the detection process to account for this 

measured Y. One way to do this is to change the value 



of Y each time the alternate h:y-pothesis is accepted, 

the new value of Y being taken as the value observed 

during the detection interval. This method is reason-

able, but since there is error in any measurement, it 

is sometimes better to use several measurements rather 
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than one. Proceeding along this line, it is reasonable 

to average the value of Y observed in the K previous 

intervals where H1 was accep~ed. While the use of K 

observation intervals to estimate Y im:plies. that Yd 

will not :follow changes in the true value of Y as fast 

as when K = 1, it is also not as subject to measurement 

error as when K = l. So if the channel varies slowly 

and remains essentially constant during several obser­

vation inijervals, it is bette+ to use this averaged Y. 

If the probability of signal ·(s) is i and i:f the channel 

is essentially constant over 2K observation in-'Gervals, 

then the detector can use K estimates in calculating Y. 

The sequential W.M.W. U detector calculates a 

s .tatistic (U) which is directly related to Y. Since 

where 

X •• 
1J 

u =I ~ x .. 
l J lJ 

if x. < y .• 
J_ J 



"" An estima-te of Y, say Y, can be calc.ulated by 

4U 
n2 

n even 

""' y -

4U n odd 
- 1 

The analytical analysis of a system like the one 

described above would be extremely dif:ficul t. For 
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this reason it will not be attempted, instead a ~.1onte 

Carlo simulation will be used to analyze the operation. 

A random number generatoF will determine if H 0 or HI is. 

true. If H 0 is true both san:ple populations will be the 

same. If' H, is true then P(x>y) will be Yt• The 

detector will then operate on the input populations and 

make its decision. ·whenever H1 is accepted, the detec­

tor will nodify Yd using the average of the previous 
...... 

K Y' s. The sinulation will count the n1...1r1her of errors 

made after the system has settled dovm (approximately 

2K signal intervals) and determine PE vs. Y for several 

values of K •. 

One problem in any s~ulation like this is a 

starting value for >d_· To demonstrate the stability 

"" of this system the first K values of ~ will be sampled 

from a uniform density over the in.lcerval (0, t). The 
1 

flow chart for the sim.ulation is given in Fig. 5.1, 



yes 

sample Y 

set A, 
B, and 

~ 

sample X 

sample X 

calculate 
-rn 
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Figure 5.1 Flow Chart for Adapt ive Sequen-cial Detection 



and a copy of the sinm~ation program is shor.rn in 

Appendix c. The results of the simulation are sho~vn 

in Table III. 
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TABLE III 

RESULTS OF ADAPTIVE 

W .JVI . W. U SII'.illLATION 

l 2 5 

O.l968 o. 22 58 O.l939 

O.l406 O.l028 0.07l4 

o. 0703 o. ·o827 o. 04-49 
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0.0854 
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CH.A.PT ER VI 

CONCLUSIONS 

In this paper the design of an adaptive se~uential 

nonparametric detector was fully developed. First, it 

was shmvn that with the use of a se~uential ra~ing· 

:procedure it is possible to adapt the V:ilcoxon-Mann-

Whitney U statistic to a se~uential testing scheme. It 

was then argued that since the statistic used for the 

test. is distribution free the new sequential test is 

also distribution free, i.e., the test statistic does 

not depend upon the distribution of the noise. Once 

this had been fotmd it then became possible to develop 

the form of the operating-characteristic function and 

the average number of samples function. ~ith these 

two functions it is possible to completely describe the 

operation of the detector under any noise conditions. 

The detector was then compared to the fixed sample 

size detector using the same statistic, and it was 

found that on the average the sequential detector needs: 

half as many samples for detection as the fixed sam:ple 
\ 

size detector. The sequential nonparametric detector 

was then compared to the optimum parame-tric detect.or 

for the case of normal noise. In this comparison it 

wa s found that the nonparametric detector had very 

little loss in ef'ficiency :for small or moderate signal 

to noise ratios. 
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The sequential nonparametric detection process 

was then simulated on the computer, and it was found 

that the detector could operate at low error rates for 

given signal to noise ratios. Finally, the detector 

was modified so that it could make its ovm measurements 

of the pertinent· channel characteristics and adapt 

itself to these changing characteristics. Again the 

problem was simulated on the computer, and it was found 

that this adaptive detector can operate vvith low error 

rates. 

Thus it has been shovm that even though the detec­

~~r described here is nonparametric in nature it could 

operate \vith little loss in e:fficiency when compared to 

the optimum detector. Also, since the detector is 

nonparametric, it can operate over a :full range of noise 

distributions with out any modi:fication, while the 

optL~mn detector must be changed each time the noise 

changes. This versatility coupled with the relatively 

small loss in efficiency makes the idea of using a 

sequential nonparametric detector extremely practical 

Vihen there may be a question as to the exact form of 

the noise or signal plus noise. 



where 

then 

APPEHTIIX A 

PROOF OF EQUIVt~ill~CE OF THE WILCOXON 

AND MANN-WHITNEY STATISTICS 

The de:finition of' T is given in Eq. 3.1, i.e.r. 

N+M 
T - .r 

~=I 

i 

wi -

0 

w. 
]_ 

i:f 

if 

z. 
~ 

is from X 

z. is from Y. 
]_ 

If all of the xi's are less than all of the y j 's 

T - H(N+I)/2 

where N is the number of x.•s. 
~ 

\1hen one yj is less than one of the xi's the rank 
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of that xi is increased by one, while the rest are left 

the same. Thus :for this case 

T - l + N(N+l)/2. 
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Each time a y. :preceeds an x. the rank of ·thaJG x. is 
J ~ l 

increased by one. So ~f NY is the number of times a 

yj preceeds an xi then 

T - NY + N(N+l)/2. (A.l) 

:But N is the same as U. This c s.n be seen by examining y, 

Eg_. 3. 2, i. e. ,! 

u-

where 

x .. -
lJ 

N 
2: 

i=l 

M 
r 

j=l 
x .. lJ 

if' x. < y .• 
l J 

Thus U can be thought of as the number of times a y j 

p.receeds an xi. Then Eg_. A.l becomes 

T - U + N(N+l)/2 

o.r 

U - T - N(N+l)/2~ (Ao2) 



APJ?ENJJIX B 

A.R.E. OF W.M.W. U TEST AGAll~ST t-TEST 

The asymptotic relative efficiency (A.R.E.) of 

one test as compared to another is defined as :follows 

(9,10): Given two detectors, each with the same a and 

~' the first with sample size N and the second with 

sample size N*, then the A.R.E. of the second with 

respect to the first is 

A.R.E. = llffi (N/N*) 
n- (J) 

where 8 is the signal to noise ratio. 

Denote the test statistics by t 1 and t 2 • Now 

make the :following definitions 

E .. - E(t.,H.) i 1,2 J.J ]. J -
j - l,2 

]) .. - var(ti! Hj) J.J 

and 

e= o. 

Now for the t-test ·with two populations: 



t -- y x. 

If the alternate hypothesis is of the form 

then 

and 

G(x)-F(x-e) 

"">j' 
. ..r.. II 

- 0 

- 8 

cr.2 
X 

N 

2 
+ i 

M 

whe-re 0'2 and .... z are the variances o:f the X and Y 
- X '"'y 

populations respectively. For the case considered 

here o: 2 = o: 2 = cr~ I:f. m. is the first value of r 
X y ~ 

su ch that 

then it can be seen tha t in the ca se of the t-test 
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thus 

Now assume tha-'G 

Then :for t 

since IT+I.I - n then 

For the W.M.W. U test 

t x .. 
l..J 
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(B.l) 



where x .. is defined in Eq. 3.2. From Eg_. 3.4 and 3. 5 
l.J 

co - J f'(x)F(x- B)dx. 
-Q) 

Now it can be seen that 

a:> 
-_};"1JI J :f( x) f'( x- 8) dx 

-Q) 

or 

Thus m2· =l, and from Chapter III it is knovm that 

var ( t 2 0) - l\1J:I'I ( N +1•1 + l ) /12 • 

Then 
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~i( 8.) 
lim 

n-ro 
~ I 

Ef.li(O) 
- l (:B.2) 

~ 

and 

l . ]J.l 
J..Ill ~ - l (B.J) 

n-ro Dio 

-then 

I 

A.R.E. lim ( ~2)-a; 
n-co 1 

if m 1 = m.2 and 8 1 = 82 • From examination of the means. 

and variances,: it is seen that "'Ghe aoove regulari·ty 

conditions (Eg_. ~.2 ctlld :B. 3) hold so the A.R.E. :is 

given by 

A.R.E. 

Stnce f(x) is a no:::rwal distribu-'Gion the aoove becomes 

A.R.E. 
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2 

- l2 CT2 

A.R.E. - 3/.,. • (B.4) 



APPENDIX C 

PROGRAM I;ISTIHG 

A program listing £or the adaptive sTiro~ation 

problem follows •. 
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c 
C THEStS PROGRAM JAMES FOWLER 
C ADAPTIVE Sl~ULATION 
C SIMULATION OF WMW-U SEQUENTIAL TEST 
C ALPHA= TYPE I fRROR 
C BETA= TYPE II ERROR 
C NT= NUMAER OF TIMES SIMULATION OCCURS 
C Cl=l.O IMPLIES H(ll TRUE 
C Cl=O.O IMPLIES H(O) TRUE 
C TA= TEST STATISTIC 
C GA= PtX > Y) 
C U= MANN-WHITNEY U STATISTIC 
C T= WILCOXON T STATISTIC 
C XCI)= SAMPLE OF X IF I ODD 
C X(l}= SAMPLE OF Y IF I EVEN 
C SGMA2= VARIANCE OF U UNDER H(O) 
C SGM2A= VARIANCE OF U UNDER H(l) 
C ZOI= U - MEAN OF U UNDER H(O) 
C Zl!= U - MEAN OF U UNDER H(l) 
C XG{Il= STORAGE OF PREVIOUS ESTIMATES OF GAMMA 
C IH= RECORD OF TRUE HYPOTHESES Al\!0 DECISIONS 
C K= NUM8ER OF INTERVALS USED TN FINDING GAMMA 
C ?ED= DESIGNED PROBABILITY OF ERROR 
C PESS= SIMULATED STEADY STATE ERROR 
C AVNS= AVE~AGE NUMBER OF SAMPLES 
C AVNSS= STEADY STATE AVERAGE NUMBER OF SAMPLES 
C ERR= NUMRER OF ERRORS 
C ERRSS= NUMBER OF ERRORS AFTER 2K TRIALS 
C MOOfiJ=O I EVEN 
C MDO(l)=l I 000 
C IF TAU> A ACCEPT H(l) 
C IF TAU < B ACCEPT H(OJ 
c 
C RANOZ: GENERATES A GAUSSIAN VARIABLE 
C G( ll= GAUSSIAN CUMULATIVE 
C EACH INCREMENT IN l CORRESPONDS TO 0.01 UNITS 
C Gf360}: CORRESPONDS TO G{O.OJ 
C GE= EST[MATE OF GAMMA 
c 

DIMENSION X(900),S(900) 
DIMENSION XG(l0l,TH(l000) 
DIMENSION G(720) 
MOO{I)=-((I/2l+CI/2)-1) 
REAO(l 7 10l)ALPHA,BETA 
REAO(lyl03){G(l),l=360,719J 
REAO(l.l02)NT,TH 
RfAD{l,l02)K 
DO 2 1=1,35<} . 
J=720-I , 

2 G(f)=l•O-G(J) · 
C INITIALIZE RANDOM NUMBER GENERATOR 

IX=l371897 
THl=TH/1.414214 
NTH=ClOO.O*THlJ 
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GA=l.O-G(NTH+360) 
A=(l,O-BETAJ/AlPHA 
B=RETA/£1.0-ALPHA) 

C WRITE HEADINGS 
WR!TE(3,104)B,A 
W~ITE(3,113)ALPHA,BETA,NT 

WRITE(3,115)TH,GA 
XNT=NT 
T2K=2*K 
XK=K 

C INITIALIZE COUNTERS 
AVNS=O.O 
ERR=O.O 
ERRS·S=O. 0 
AVNSS=O.O 
GE=O.O 

C 03TAIN STARTING VALUE FOR GAMMA 
NNN=l 
00 32 I=l,K 
CALl RANOU(IX,IY,Yl 
IX= IV 
XG (I l=O. 5*Y 
NNN=NNN+l 

32 GE=GE+XG(l)/XK 
XN2K=O.O 
00 3 LL=l,NT 

C DECIDE WHICH HYPOTHESIS IS TRUE 
C 1\ l L RAN DU ( I X , t Y , Y ) 
IX=IY 
"JCl=fO.SO+YJ 
IF(LL-T2Kl33,34,34 

34 XN2K=l.O 
33 CONTINUE 

C INITIALIZE VARIABLES 
C=O.O 
Cl=NCl 
lOI=O.O 
Zli=O.O 
SGMAZ=O.O 
SGM2A==O.O 
U-=0.0 
T=l.O 
S(lJ = l.O 
TA= 1.0 

C GENERATE FIRST SAMPLE 
X{l)=RANOZ(Ol 
C=Cl-C 

C GENERATE REST OF SAMPLES AS NEED ED 
oo 4 J =z,qoo 
X<Jl=C*TH+RANOZIO) 
CN=O.O 
CX=O.O 

C CALCULATE S(J) 
00 5 I = l,J 
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IF{XCI)-X{J))7~7y9 
7 C~'J=CN+ 1. 0 

GO TO 5 
9 XX=MODCI) 

CX=CX+XX 
5 CONTINUE 

SlJJ=CN 
C CALCULATE T AND U 

XX=MOO(J) 
T=T+{XX*SlJ) J+CX 
C=Cl-C 
XNX=(J+l J/2 
U=T-(fXNX*lXNX+l.0))/2.0) 
J2=MOO(J) 
IF{J2)11711,10 

10 CONTINUE 
C J IS 000 

NM=(J-1)/2 
X~Ml=NM 
X NM 2= "JM+ 1 
GO TO 13 

11 CONTINUE 
C . J IS EVEN 

NM=J/2 
XNMl=NM 
XNM2=NM 

13 CONTINUE 
C CALCULATION OF TA 

XNM=NM 
XJ=.J 
ZOI=U-0.50*XNMl*XNM2 
Zli=U-GE*XNMl*XNM2 
SGMA2={XNMl*XNM2*{XNMl+XNM2+l.Oll/l2.0 
SGM2A=SGMA2 
ZO=ZOT/(SQRT(SGMA2)J 
Zl=Zll/(SQRT(SGM2AJ) 
Z02=Z0**2 
Zl2=Zl**2 
TA=EXP(O.SO*CZ02-Z12J) 

C COMPARE TA TO THRESHOLDS 
IFlB-TAJ15,16,16 

16 CONTINUE 
C ACCEPT H(O) 

XXJ=J 
ND=O 
AVNS=AVNS+XXJ 
AVNSS=AVNSS+XNZK*XXJ 
GO TO 31 

15 IF(A-TAJ17,17,4 
17 CONTINUE 

C ACCEPT H(l) 
XXJ=J 
ND=l 
.AVNS=AVNS+XXJ 
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AVNSS=AVNSS+XNZK*XXJ 
GO TO 31 

4 CONTINUE 
C CAN NOT MAKE A DECISION 

N0=2 
AVNS=AVNS+lOO.O 
AVNSS=AVNSS+lOO.O*XNZK 

31 CONTINUE 
C RECORD DECISION 

IH(Lll=lO*NCl+NO 
C RECORD MISTAKES 

IF(NC1-N0)36,37,36 
36 ERR=ERR+l.O 

ERRSS= ER RSS +XN2K 
37 Cf1NTTNUE 

C ~OOIFY ESTIMATE OF GAMMA 
IFCND-1).38,3CJ,38 

39 GE=Gf-(XGlK)/XK) 
KMl=K-1 
00 40 II=l.,KMl 
IIl=K-II 

40 XGCIIl+l)=XG{IllJ 
XG(l)=(4eO*U1/tXXJ**2J 
GE=GE+t XG( 1 l /XK J 
NNN=NNN+l 

38 CONTINUE 
3 CONTINUE 

C . CALCULATE ERROR RATES 
XNTl=XNT-T2K 
PE=ERR/XNT 
PESS=ERRSS/XNTl 
AVNS=r\VNS/XNT 
AVNSS=AVNSS/XNTl 

C WRITE RF.SULTS 
WRITE(3,118lK 
WRITE(3.,ll6)AVNS,AVNSS 
WRITE(3,117)PE,PESS 
WRITEC3 7 120) 
WRITE(3.,ll9)(JH(LLJ,LL=1,NTJ 

101 FORMAT{4El&.8l 
102 FORMAT(5X,I6,El5.8,T6) 
103 FORMAT(l0F7.5) 
104 FO~MAT{1Hl/5X, 1 ACCEPT H(OJ IF TA < B'/5X,'ACCEPT', 

1 1 HCl) IF TA > A',/5X,'TAKE ANOTHER SAMPLE IF •, 
2'B < TA < A'/SX,'B =',Fl0.4/SX,'A =',Fl0.4/) 

111 FORMAT(5X,lOI6J 
113 FORMAT(/5X~'THfORETICAL ALPHA=',F6~4,/5X, 

l'THEORETJCAL BETA =• ·,F6.4,/5X,'NUMBER OF TIMES', 
2' EXPERIMENT IS REPEATED =',I6,/5X,•PROBABILITY•, 
3' OF H(O) = 1/?',/) 

115 FORMAT(/SX,'SIGNAL TO NOISE RATIO =',F8.4,/5X, 
l'P{X > Y) =1 ,F6.4/) 

116 FORMAT(//SX,•AV. NO. OF SAMPLES =',F8.3,/5X, 
2 1 S.S~ AV. NO. OF SAMPLES =',F8.3,/5X,/) 
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~ . 0 • 

11? FORMATC//SX,'P. OF ERROR =',F7.4,/5X, 
l'S.S. P. OF ERROR = 1 ,F7.4,/SX,/) 

118 FORMAT(//SX,'MEMORY LENGTH OF ADAPTER =',13,/t 
119 FORMAT(2513) 
120 FORMAT(lHl,/5X,'DETECTlON DECISIONS AND CORRECT•, 

1' VALUES',/SX,'l=H(l) O=HCO) 2=NO DECISION', 
?./5X,'FIRST NUMBER= XHITTED SIGNAL 1 ,/5X, 
3 1 SECOND NUMBER= RECVO SIGNAL',/) 

STOP 
ENO 
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