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ABSTRACT

This dissertation extends the thecry of the Wilcoxon-—
mannnﬁhitney U statistic so that this statistic can be
ucsed to perform seguential tests of hypotheses. This
sequential test procedure makes use of a sequential
ranking procedure similar to the one first introduced by
Parent. The operating-characteristic function and
average nunber of samples function for this new test are
calculated as a function of the signal to noise ratio.
The test is then shown to be efficient for several forms
of alternatives with an efficiency of 95% against the
Viald Sequential Probability Ratio Test for a constant
signal in normal noise.

Finally, the test procedure is modified so that it
is cepable of making measurements on the channel in
order to adapt itself to changes in the channel charac-—
teristicse. Simulation results are presented to show that
this adaptive detector can operate with low probability

of error.
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CHAPTER I
INTRODUCT ION

The detection of signals buried in noise has
been the principle problem facing the communications
engineer since information was first transmitted to
a distant point. Detecting a signal in sdditive noise
consists of examining some unknown waveform and deter-
mining whether the waveform. is random noise or signal
plus random noise. Tracking distent targets by use
of radar and the recovery of coded signals from distant
transmitters are two examples of signal detection.

There are two basic approcaches to the solution
of the signal detection problem. The first is the
'parametric approach. The parametric detector reguires
knowledge about the statistical form of the input
noisec and the form of the signal to be detected. If
the assumptions made about the form of 1the input are
correct, this type of detector is very efficient in
that it can detect the presence or absence of the
given signal in & shorter time than any other type of
detector. If, however, the assumptions as to the
nature of the input noise are not correct or if the
noise changes with time, it may be necessary to use
a type of detector which does not reguire specific
knowledge of the input waveform. This type of detector

is called a nonparametric detector. It is nonparametric



in the sense that the parameters of the distribution of
the noise do not affect the design of the detector.
This detector is not as efficient in specific cases as
the parametric detector, but it is not subject to the
restrictive assumptions associated with the parametriec
detector.

It has been found in the case of the parametric
detector, that detection can be accomplished at a
faster rate if a seguential decision process is used.
That is, while the regular detectors examine the input
for a fixed length of time and then make a decision,,
the sequential detector periodically tries to decide
if a signal is present during the examination interval.
lany times, the sequential detector can make a decision
before the examination time of the fixed length detector
is over.

This paper will extend the idea of segquential
detection to include the nonparametric detector. The
particular sequential nonparametric detector discussed
here will then be compared to both the regular nonpara-
metric detector and the sequential parametric detector
in several different ways. After the theory is devel-
oped, tThe seguential nonparametric detector will be
used to detect a pulse type signal in background noise.

The sequential nonparametric detector will then

be modified so that it can adapt itself to changes



in the noise 01 chanmel characteristics. After this
adeptive process has been discussed, a simuwlation of
the scheme will be made to demonstrate the ability-of
Tthe adapvive detector in detecting a pulse type signal

through an unknown channel.



CHAPTER IX
FOXI;ULATION OF THL DETECIION PROBLEIL

2.1 Detection Using Fixed Sample Sizes

Given an observed waveform x(t), it is the function
of the detector to determine whether x(t) consists of
signal plus noise or noise 2lone. The detector will
base its decision on some function of a set of samples
from x(t). Thus, it is elso assumed that the detector
is capable of sampling x(%) at t=t, ,t3,...,ty glving
the set of samples X ,Xy,-..,X) Where (x =x(t;), i=1,
25¢0eN). The detection problem can now be thought
of as a statistical hypothesis testing problem (1).
In hypothesis testing there are two alternatives,
represented by the null hypothesis and the alternate
hypothesis. The detector can be thought of as testing
the null hypothesis (x(t) is noise z2lone) against
the alternate hypothesis (x(t) is signal plus noise).

Fixed sample size detectors are characterized by
their dichotomous decisions, i.e., either the null
hypothesis, noise alone, or the alternate hypothesis,
signal plus noise, is accepted. The decision is based
upon the fact that some function of the sample is
greater than or less than some threshold. This thresh-
old is predetermined by the error rate which will be
allowed. There are two types of errors which can be

made. They are called Type I error and Tyve II error.



A Type I exrror occurs if the detector decides that
a signal is present when there is no signel present. |
The probability of such an error is denoted by a, and
it is sometimes called the probability of false alarm.
A Type II error occurs if the detector decides that
no signal is present when in fact a signal is present.
The probability of this type of error will be denoted
by B, and it is sometimes called the probability of
false dismissal.

There are nany special cases of the detection
problem which can‘be obtained by meking various assump-—-
tions about the signal and noise statistics. The case
most often considered in texts and in the literature
is that in which both the noise and signal distributions
are known exactly. In this case the optimum detector
is the Neyman-—Pearson or likelihood detector (1,2,3).
The Neyman-Pearson detector is optimum in the sense
that for a given probability of Type I error, a, and
for a given probability of Type II error, B8, the sanple
size, N, is a2 minimum. As an exemple of a Neyman-
Pearson detector, if the noise is assumed to have a
normal distribution and the signal is a constant, the
Neyman—Pearson detector is the well known t-detector (3).
When the variance of the noise is known the statistic

of the t—-detector is given by



When the variance of the noise is unknown, the statistic

of the t-detector is given by

Sx_ #][I\T(N - 1] 5

J=3 T‘i’

(&= -50F7 .

If the variance is known, the t-detector tests the null
hypothesis (the waveform x(t) has a normal distribution
with mean p, and varisnce o,2 ), i.e., x(t) is noise
alone, against the alternabte hypothesis (the waveform
x(+t) has a normal distribution with mean not equal to

o and variance oo2), i.e., x(t) is signel plus noise.
The null hypothesis is accepted if t has a value below -
some preset threshold level and is rejected if t is
above this level. The threshold level is determined

by considering t to have a normal distribution with

zero mean and unit variance. For the case when thé
variance is unknovmn, the detector tests the null hypoth-
esis (the waveform x(t) has a normsl distribution ﬁith
mean M, and unknown variance), i.e., x(t) is noise alone,
ageinst the altermate hypothesis (the waveform x(+)

has a normal distribution with mean not equal to u, and

variance unknown), i.e., x(t) is signal plus noise.



Again the null hypothesis is accepted if t has a value
below the threshold leéel and is rejected if t is above
this threshold level. Here, however, the threshold

is determined by comsidering t to have a t-distribution
with N-1 degrees of freedom.

The Neyman-FPearson detectors described above have
proven to be very useful in the past, bult as discussed
before, their fixed sample size is sometimes a disad-
vantage. In some cases, for example in the phased
array radar, it is advantageous to be able to make a
decision as soon as possible as to the presence or
absence of a signal in the input waveform. In these

cases & sequential procedure may be used.

2.2 Sequential Detectors

Like the fixed sample size detector, the seguential
detector must sample the input weveform x(t) and decide
whether the null hypothesis (x(t) is noise zlone) is
true or the alternate hypothesis (x(t) is signal plus
noise) is true. The sequential detector differs in
two major respects from the fixed sample size detector.
These are:

1. The sanple size, N, is a random variable.

2. The detector must make one of three possible

decisions after each sample is taken.
The sequential detector must take a sample and

then calculate some function of this sample and compare



it to two threshold levels. On the basis of this com-—
parison, the detector decides to either accept the null
hypothesis, accept the alternate hypothesis, or take
another sample. The sequential detector can still meke
Type I and Type II errors as defined previously; but
also, there may be a chance that the detector cen not
accept one of the hypotheses, and for a particular
sample the test may not terminate. The design proce-
dure for the sequential detector must take this latter
possibility into consideration.

For the case when both the noise and signal distri-
butions are knocwn exactly, the optinum seguential detec—
tor is the Vald detector (4). The VWald detector is
optimum in the sense that for a given probability of
Type I error and a given probability of Type II error
the average number of samples required for detection is
a minimum. After each sample, the Wald detector forms

the ratio

P(X ’O.Q’Xm,H])
P(x ,...,xm,HO)

where P(X ,...,xmlHI) is the probability that the ob—
served sample occurred, given that the alternate hypoth-
esis is true, and P(x ,o.;,xm|H°) represents the prob-
ability thet the observed sample occurred given that

the null hypothesis is true. The detector then compares



- to two tThresholds A and B with B<A. IF xm;A, H, is
accepted, if‘xﬂgB, Hy is accepted, and if B<xm5A, anoth-
er sample is taken. Vald has shown that the above test
will terminste with probability one if B is & nonde-~
creasing function of m and A is a nonincreasing function
of my, where m is the number of samples. A simple
example of a sequential detection problem is shown in

Fig' 2.1.

2.3 HNonparametric Detectors

Both the Neymen--Pearson and Vald detectors describ-
ed above are optinmum in their respective weys, but there
are several major drawbacks to their implementetion.
First, there must be a good description of both the
signal and noise distributions, and 1if either one
changes a new detector must be designed. Second, if
the noise is ndnstationary in nature it is impractica-
ble to try to design a Neyman-Pearson or VWald detector
beczuse the density function of the noise is not fixed.
Finally, if +the noise does not have a normel distribu-
tion it is sometimes  difficult to implement these opti-
mum Jdetectors because the mathematics becomes difficult
to handle..

The need for a more general type of detector which
dces not have some of the a2bove drawbacks, leads to a
consideration of nonparametric detectors. These non-

parametric detectors can be considered more general than
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the parametric detectors in that a complete description
of the signal and noise is not necessary. That is, a
given nonparametric detector can be used for a large
family of input distributions. In the following
chapters, such detectors will be discussed and compared
to the optimum parametric detectors.

For fixed sample size detectors the goodness cri-
teria used in the comparison of the two detectors will
be the ratio of their samplé sizes, while the goodness
criteria used in the comparison of two sequential detec-—
tors will be the ratio of the average nunber of samples
necessary for each detector to operate. Thus in the
case of the fixed sample size detector the best detec-—
tor is the one which, for a specified a, Band signal
t0o noise ratio, requires the smallest number of samples.
For the sequential detectors the best detector is the
one which, for a set a, § and signal o noise ratio,
haes the smellest average number of samples.

The signel to noise ratio will be defined as the
ratio of the r.m.s. value of the signal to the r.m.s.
value of the noise. In the following chapters £(x) is
defined as the probability density function on X, i.e.,
the probability of x falling between X and X+AX is
f(x)Ax, and F(x) is defined as the cumulative distri-
bution or the probability thet x takes on a value lessg

than or equal to x, i.e.
aq ) )
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F(x) = _Emay.

If £(x) has a normal distribution with mean zero and
variance one, then it will be abbreviated as £(x)~I(0,1).
If £f(x)~N(0,1), then the cumuletive of £(x) will be
denoted by ®&(x). & '(b) will signify the number whose

currulative normel distribution, N(0,1), is D.
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CHAFTFE IIX
DESIGN OF THE NORPARAMETRIC
SEQULETIAL TEST
3.1 The Wilcoxon-iiann-\Vhitney U Test

The Vilcoxon-llenn-Vhitney U (W.li.W. U) Test is
a fixed sample size nonparametric test of hypothesis.
Since this nonpar:metric test does not assume a form for
the input noise, it is mnecessary for this detector to
have a second input to act as a2 comparison channel. The
second or controlled input is a noise alone chamnmel and
gives the basis for nmeking a decision about the presence
or absence of a signal in the unknown input. Thus the
V.i.WWe U detector is a two sample detector and the
detector must be able to sample from two different
input channels.

Vilcoxon proposed an equivelence test (5) for
testing if the two inputs of the detector are the same.
The Wilcoxon detector takes N samples from the control
chennel, denoted by X=(X|,...,Xﬂ). It then takes I
samples from the unknown channel, denoted by Y=(¥, yes.,
ym)o The detector forms a composite sample vector Z=
(Z"""5N£M) composed of the N samples from X and the
. samples from Y. The detector now must order these

semples so thal Z,<Z3273%...27 The Wilcoxon sta-

N+M°
tistic is now defined as follows
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RN
T = ¥ wy (3.1)
i=) :
where
W { 1. Zi is from X
* o) if Z; is from Y.

"he Wilcoxon test statistic is now seen Lo be the sum
of the ranks of the Xy when they are ranked together
with the y;» The null hypothesis (Y is from noise
alone) is accepted if T is larger than some critical
value T, and the alternate hypothesis (Y is from signal.
plus noise) is accepted if T<T .

About the same time that Vilcoxon proposed his
test, Ilann and Vhitney proposed another form of the
same test (6). The Manm-Vhitney detector samples from.
the two inputs and forms the sample vectors F=(Xj|j.e.,
xN) and Y=(Y|:°°':3ﬁ)° The test statistie is now de-

fined as
U= 5§ 3 X (3.2)

where
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- J
+d 0 if X< 5

1 if xX.>y..

.= | A

The detector accepts the null hypobthesis (Y is from
noise slone) if U is larger then some threshold U, and
accepts the alternate hypothesis (Y is fromﬁsignal.plus

noise) if U<U,. It can be shown (see Appendix A) that
U=1T - 4N(N+1) (3+3)

Since the two statistics. are linearily related, they .
can be considered the same. The test will be called
the WVilcoxon-Mamn-Whitney U Test and the statistic will.
be defined in the same way as Heann and Vhitney defined
their statistic, i.e., Eg. 3.2.

From the definition of the W.M.V. U test it should
be noticed that this test can be used to detect any
sort of differcnce between the two input channels, X
and Y, but the test is especially sensitive to differ-

ences of the form

(1]

G(x) = P(x).
P(x~0).

H,

H, G(x)

That is under the null hypothesis (H,) the distribution

of the Y channel, G(x), is the same as that of the X
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chernel, F(x), while under the alternate hypothesis
(H,) the Y channel is a shift in the mean from the X

or control channel. This is exactly the type of alter-
natives found in the problem of detecting a constant
signal in additive noise.

Under the null hypothesis
Ho : G(=) = F(x)
the following is true
Pr(xi<yj) = Pr(xi>yj) = .

Thus the expected value of U is secen to be

N M
BE Z, )

i=1 J=I

E(U)

= ‘%M.I >
Similiarily the variance of U under Hy is given by

N M N2pM2
var(U) = B( S ¥ =.)° - 4

N2y1i2

F3RE PCuma) - 4

Il



It is also seen that under Ho

iflgxijxm) &L 14
521

:J;E&:’Exla *41) = 1/3
X 5750 = /3
E(xlaxla) = %’t

Then
var(U) = NMM(N + M +1) /12 .,
Under the alternate hypothesis
H, : ¢(x) = F(x-0)
the following can be shown to be true
(00
P(X >Y) = [£(x)P(x-g)dx.
o - .
Now define
ffaex)F(x— g)dx
-

and also define

1.7



A T -
(a0
-2

€ = 1/3 - “%j
e, = 1/3 - (JED- P(x))? £(x—-6)dx.

Then it can be seen that under H|

It can also be shown (6) that

var(U) = Ni(NHI+1)/12 + N [_ A (N+6—-1) +
(A— &) (@=1) + (A=) (¥-1)] .

The following notation will now be introduced

Po= E(U) undexr HO
a2 = var(U) under Hgy

2= var(U) under H,.

If the xi's and yj's are independent random

variagbles, U, which is defined by Eg. 3.2, i.e.,

is the sum of Ili random independent variables, since

(x~@)f(x)ax (3.4)
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P(X.>y.) is independent of P(Xkayl) if iz#k and j#le.
So the central 1limit theorem can be applied to this

sum of independent veriables and the following holds for

large N and M

(U-"" )um(o,t) under Hg (3.5)

and

(_._.__U ‘;_lf")_qm(o” ) under Hj. (3.5)
The fixed.sample size V.li.%. U test can now be
set uvp in the following menner. Take N samples from

X and ¥ samples from Y, and calculate U according to

Eg. 3.2. Now form the following statistic
v U - Mg
¥ = ————
( a; ) [
It can be seen that if H, is true VixN{(0,1) and if

H, is true WxN( w s0°2) where from ZEg. 3.4 it is known

that

}‘-=T<O (3.6)

and
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o= —— < .6
a < I (3.6)
Viith the aid of Figure 3.1 the values for the
threshold (Wc), a, and B can be calculated. From
exanination of Figure 3.1 it is seen that
a= P(\':<k'v’c]1jro)
or
a==¢(Wc). (3.7)
The value of B8 can be seen to be

B = P(W>V_|H,)

or
B ='—<1>(3"fsg,_’f:) o (3.7)

where p° end o’ are defined by Eq. 3.6. It is now
prossible,, using the aﬁove relationships, to design
a test so that for a given @ and 8 an N arnd i can be
found that will let the test obtain these error prob-

abilities.



Figure 3.1

Heil.W. U Statistic Under Each Alternative

e
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The test described above is the classicel Wilcoxon-—
Menn-Vhitney U test. It has very good power against
certain types of alternatives, and can be shown (see
Appendix B) to have an Assymptotic Relative Efficiency
(A.R.E.) of 3/ when compared to the t-test for detect-
ing shifts in means for normelly distributed noise. In
the case of nonnormal noise the W.M.W. U test can have

an A.R.E. greater than one. .

3.2 Seguential Vilcoxon-llann-Whitney U Test

The high efficiency of the W.ll.W. U test as
compared to the t=test for normally distributed noise
seems to make the idea of performing it sequentially
very attractive. The need now is to find a way to
implement the test in a segquential meanner. This paper
will calculate the T statistic as defined by Vilcoxon
because of the relative ease of calculation when com-
rared to that of the equivalent U statistic. To further
speed the process, a sequential ranking procedure first
devised by Parent (7) will also be used in the calcu-
lations. The traditional reranking procecdure will be
examined first in order to facilitate the introduvction
of Parent's method.

Consider the observation vector Z=(z|,zz,...zn)
where z,, i=1,3,55+.. are from X and‘zi, i=2,4, 000
are from Y. TFow in a sequential test the first obser-

vation is taken, and the observation vector is ranked.
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Then the second observation is taken, and the ohserva-
tion vector must be agein ranked. Thus, after each
semple is taken, the entire observation vector must be
reranked before the statistic can be calcuvlated. This
reranking after each sample is extremely time consuming
and thus slows the detection process. The sequential
ranking procedure provides an efficient and fast way

to preserve the information found in the ranks, with-
out reranking after each sample. Let the rank of Zy
with respect to the sample Z=(z,,...,zi) be denoted by
Sy From this definition it can be seen that S =1,

S =1 or 2, S =1,2, or 3, etcese If a sample of size N
is taken, and as each sample is taken Si is found, then
the vector S=(8,,Sz,...,5y) has a one to one correspond-
ence to the ranks of the samples when they are ranked
after the N observations (7). The following example

will denmonstrate this correspondence..

Consider the following observation vector
X=(4-.0,2.0, 5.4—,3.2,4.7).

The sequential rank vector for the above observations

is given by

S=(1’l, 3,2,4—)0
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The rank vector Tor X can now be found in the following

way

S4=2 Xp< X4 <X < X3
Sz =4 Xp<Xq< X <Xg<Xgz .

Thus the rank vector is'given by
XI. = (3319 5s234)
where
v < L "
X i) = rank of x; 1n X

From the above example it can be seen that the idea of
sequential ranking lends itself in a natural way to
sequential testing.

The W.M.W. U statistic will now be calculated
using the idea of sequential ranking. DIefine Tn as the
value of the Wilcoxon T statistic after n samples. The
observation vector Z=(z,,...,zn) is agein defined as
above. That is, if i is even, z; 1is from Y; and if
i is odad, Z4 is from X. ©Now after n samples, the

following holds
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if 2, was taken from X, and

1£ z, was taken from Y, where S, and an are defined

as follows:

S, = sequential rank of gz

n n

S = number of samples from X which

e are larger than Z e

an can be found in two ways:

1. The observation z_ is ranked sequentially with

n
respect to the z5 from X Then this is sub-

tracted from the total number of zZ; from X.

2. The observation z, is inversely ranked segquen-—
tially with respect to the z5 from X. That is,
the largest value has rank 1, the next value
2, ete..

The second method of the two mgntioned avove is the one

used in the detection described in the following pages.
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Egq. 3.3 now becomes

n
U, = (3.9)
2, - (n+1)(n+3)/8 n odd,

T - n(n+2)/8 n even

The Un statistic will now be used in the following
manner to implement the sequential test. After U, is

calculated, form the following test ratio

. = R l1,)
R0, [Ho) -

This is a logical extension of Wald's Sequential Proba-—
bility Ratio Test to the nonparametfic framework, since
by exemining its: efficiency, it has been shown that Un
contains almost as much information about the shift in
mean as does the complecte sample. The fact that
P(Uani) is always approximately normal irrespective of
the input distribution gives much weight to the use of
this type of nonparémetric sequential test. The deci-
sions are made after each sample is taken in the fol-
lowing manner. If A and B are two thresholds with B<A

then affer each: sample,

if rnSB accept Hy

s B i thA accept H,
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or
5 e B<rn<A take another sample.

The operation of the detector has been fully defined;
it is now necessary to develop the necessary relation-
ships to evaluate the performance of the detection
gscheme. The first step is to find a way to express A
and B in terms of known constants.

If the observable data are continuous functions
of time and if continuous sampling is used, then the
statistic U could be thought of as & continuous function
of time. Thus it would be possible to think of r as a
continuous function of time. Therefore, the sequential
nonparametric test would terninete when *(t) = A or
o(t) = B. It is only in the case of discrete sampling
that the inequalities rn>A or rnfB gre possibly ob;
tained. That is, after n-1l samples it is possible for
B<Fn—f<i and that the inclusion of one more sample
produces either Tth oxr rn?A. For n large it is rea-
sonable to assume that this excess over the boundary
will be small, and for the case of the sequential W.M.V.
U test it will be assumed that the test terminates with
v. = A or r_ = B. INow suppose that the seguential test

n n

is carried out, and that after n samples T, = A. This

leads to the acceptance of H;. Thus
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P(UT] IHI ) = A
P(Un |H°)

implies the acceptance of H,, or putting it another way,

the acceptance of H, implies that
B(U, [5,) = & P(U, [H,). (3.10)

If the set of all wvalues of Un which lead to the accept-
ance of H, is denoted by I'y, then Zg. 3.10 is equiv-
alent to

[e(u_ |5, )au, = & [P(u_|H,)au, (3.11)
or
1= B = Aa (3.12)

Proceeding in an analogous manner it is found

that the acceptance of the null hypothesis, H,, implies
‘[;P(UHIH, )au,, = BIFP(Unl Ho)aU, (3.13)
0 o

where Tg is the region of acceptance of Hgy. =g. 3.12

now rcduces +To
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B=23(1-a). | (3.14)

Now loolking at Igs. 3.12 and 3.14, it is possible to
find A and B as functions of the probabilities of error,

ie€4y

(3.15)

The next problem of interest is the actual calcu-
lation of r . This involves the cslculation of P(U |H,)
and P(UnIH,). In the preceding section of the chapter,
it was found that for large n (U, - p)/o is approxi-
mately normal. The actual density for Un is difficult
to- celculate under either the null hypothesis or the
alterﬁate hypothesis. waever,‘for iarge n it approach-
es a normal distribution, therefore, for convenrience,
it will be assumed that (Un - p )/o is normal for 211 n.
Using the above argument and Eq. 3.4 it can be seen
thavt
U - 2
P(U,|H) = ~——_J2'_W ol % (___________na.o}"o)

~and
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% Yy = o
P(u, |H,) = ———-—————,2'7 ol - (__.___ncl f1)

where pos gy s g2, and 02 ere functions of n, i.e.,

(o]
Fo = ‘%‘I@'I
By = YT

ol = (NH(I41i+1))/12
and

o = MI(N44+1)/12 + N[ =N (Hai-1) +
A=) (=1) + (A= ) (71=1)]

where

II = number of samples from X

I. = number of samples from Y

and A, ¥, €, and e;are defined by Eqg. 3.4. Since o2<q?
it cen be assumed that (U, ~p1)/0y is approximately
N(0,1) under the alternate hypothesis. This is not
quite true, but it will produce a conservative test,
since the variance of (U, -g)/op will actually be
less that one. Vith this assumption and upon noting

that



n/2 n even
N

(n+1)/2 .n odd
and

/2 n even
: {xl

(n-1)/2 n odd.

It is possible to express pg, @, 5 2nd qﬁ as functions

of n, i.e.,

{ n2/8 n even

(n2-1)/8 n oad

Y2 /4 n even

ro= |

Y(n2-1)/4 n odd

(n3+ n2)/48 n even

(n3+ n2- n -1)/48 n odd.

The test statistic can now be written as

( n,“ih) (___:1112)

o

or

(3.16)



v, = o (B1=0) (v, - £Ltko) (3.17)

where po 4 p, 5 2nd of are defined as above.

The next step in the analysis of the seguential
WJi.W. U detector is to obtain an expression for the
average number of samples necessary for detection. In

order to facilitate this calcuvlation, the following

definition is made

gn = .In Tno

Now the test can be restated as

accept Hgy when ,Q,ns 1nB
accept H; when Q,n21nA

and when lnBcQ.rflnA take_ another sample.

From Eg. 3.17 it can be seen that

_ (1~ Fo Hy *Ho
Assume now that the test is conducted as has been des-
cribed previously and that Hgy is true. Then at the
time a decision is made Q, can either be equal to 1nA

or InB If Hg is true then ‘Q'n will be equal to 1nB
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(1-a)% of the time and egual to 1nA a% of the time.
Thus the expected value of Qh_(denoted by”ﬁn) when Hy

is true is given by
Q, =alnA+ (1-e)lnB. (3.18)
Simitarly, when H; is. true it can be argued that

ﬁn = (1-B)InA + 8InB. (3.19)
At the same time the expected walue for Un at the time
of decision under Hy is po and the expected value for
Un at the time of decision under H, isp. Combining

the above and Egs. 3.18 and 3.19 yields

(#:O;Zﬂ(ﬁ%-.u_;)= eInd + (1-4)In3B

and _ (3o20)

Fi ~Ho _
( 0'02 )(Hz P'O) = (1-8)InA + B1n3B.

Substituting the values from ¥g. 3.16 into Eg. 3.20

yields under H,



It 2
(Sn 5 (r-%) n even
2(n°+ n

alnA + (l—a)lnB =

=3(n®- ')2 (T—-%—)Zn odd
2(n3+n%-n—1)

and under H,

4
3n (-3 )2 n even
2(n3%+4n2?) |

(1-g8)InA + B1lnB =

2
3(n®-1) (%) n oad.

2(n3+n?-n-1)

2 and n*/(n3+n?)~n, solving for n

For n large n?-1l~n
in the above equations gives an apjgroxima‘tion for 1,
the average number of samples required for detection.

The solution is

-2 alnA + (1l-a)lnB
3(r-%)°

tmder- Ho
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n =~ (3.21)

2 (1-B)1nA + BInB
3(r-%)°

under H | °

Eq. 3.2I gives an approximation for the average numberxr



of samples for detection as a function of a, B, and
Y. The approximations made in the ecalculations will
become better as n gets large. Thus for small @, B,
and large 7 the above approximations should be very
close.

Now that the test has been fully designed it is
known that if Hy is true the test will terminate with
decision "Hg true" with probability l- e and with deci-
sion "H; true" with probability ea. If H, is true a
similar knowledge is available about the acceptance
of ¥, and the acceptance of H,. The hypotheses are of

the form

Ho : G(x) = F(x)

G(x)

s

F(x—g,).

Therefore, the test can be thought of as testing

Hey
H

il
S

1

(@

L 1]
I
)
.

With this thought in mind, it is now appropriate to ask
the following questions: 1) What happens if the true
value of 8 is not 8, or'el? That is, what happens if
a mistake was mede in Setting up the alternate hypoth-

esis? 2) How doces the test designed to test g = 0
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against 9::9', perform when g takes on values other
than the designed values? The operating-characteristic
function gives a measure of how well the test performs
under these conditions.

The operating-characteristic function L(8) is
defined as the probability that the test terminates
with decision Hy when the true value of the unknown
parameter is @. Therefore, in the case of the sequen-
tial W.lI.W. U detector it is obvious that L(0) is equal
to 1- aand thet L(8,) is equal toB. To derive the
operating—characteristic function for the sequential
W.ieWe. U detector, it is again necessary to assume
that the excess over the houndary at the time of deci-

sion is negligible. Yow consider the following

h

b - (2,8
() ( P(Uz,e;) )

where h = h(g) is some function of @ with the following

restrictions (4)
n(8) ¢ 0

and
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P(U_l8,) \B |
/(.P(Uﬁllecl,) ) P(U,6)au, = 1. (3.22)

MU

The existence of a unique solution for h(8) has been

proven by Wald (4). Define

P(U_ |8 ) h(g)
g(u_le) =(P(Ui!9|o)) P(u_|8).

Note that g(UmJa) meets 211 of the requirements for a

probability density function, i.e.,

g(u,le) 2 0

[ e(uy|erau, = 1.
N um)

Therefore, Hg can be the hypothesis that the true
distribution of U is g(Um}B), and Hy can be the hypoth-
esis thet the true distribution of Uy is p(U_|e). Thus
it is now possible to formulate a sequential test of
hypothesis,gp against Hg” where the upper threshold

h h

is A™ and the lower threshold is B. After the mth

gample the test is



if < accept T
(U, 8) T
s(U, 8) ;

; 2xmL o

it P(Uﬁie) 2 A accept Hg

38

and if BP< —B—< < a® take another sample.
(U_ &)

Following a procedure similar to that used in the

development of Eg. 3.15, it can be showvm that

and

b _ 1-8

— d »

Solving the above for l-a yields

i AR 1
Ah“"Bh -

The above is by definition L(8), thus

h

AR 1
L(e) = '

FLCE

(3.23)
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Now it becomes necessary to solve for h(8) in oxrder
to get an expression for L(8).

The exact solution of Egq. 3.22 for h is very diffi-
cult since the distribution for U, is not known exactly.
However, an approximation can be obtained if the normal

assumption is used. That is
U, ~ N(Kkyo?).

Instead of carrying along the variable @, in this case
it will be equivalent to carry the variable u since H
is directly related to Yand thus alsc to 8. Now Eq.

3.22 becomes

a
[ W
1 e__%__ (U }-L, h

taf-

o o, (U= p\?
=% 2 J—z%je"(ao>dU = Lo

1 (U=po\2
7 )

%0
. >
20

Reducing the above yields

j“’ :,_1__2_[U2-2(#+(p,-po)h) +RRL( AT - #o)n]

2 o
.ﬁ e o] dU=l .

It is known that the above integral is equal to 1 if

-

the exponent can be written as.a perfect square. This

implies that



= 2 ;2 2
[#+ (- pon] = p2+(Af - po)n
or that if h # O

h = Hy+Fog—2p4
1~ Fo .

If 7 5 Yo @nd?Y are defined by

py= % n%/4
Bo= Y%n2/4.

Then 7% = % and
p = Yn?/4,
Trom the above it can be seen thaet

he Ot E 27
-y - %)

1
for )’¢—Z'—g-——2— .
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(3.24)

It is now necessary to f£ind L(7”) for the case when

X
7 = 11—1'—2—-. By examining Eg. 3.23 it can be seen that

2

i:ILjI% L(”) dis indeterminate. However, the application

of L'Hospital's rule yields



41

;T
lim L(y) = lim —— 5304
n—o h—0 A"InA - B 1nB
or
i _ In A
}_-'-'-_3;% BLY) = ln(A/B) . (3-25)

Now Eq. 3.25, 3.24, and 3.23 are combined to
obtain the operating-characteristic function for the

sequential W.M.W. U detector

7'|+-.j-'f-—27
[ Y= 4
) N4d=2 Y 10 s 7g .
|- L+
[-Bpi-% - [8]%-3
a 1-a
{7) =
1n (1 = B)/a N+ &
In (l—-a%{l--.s)/aﬂ ) y =15

A typical plot of L(Y) is shown in Fig. 3.2.

EKnowledge of the operating-characteristic function
nct ohly gives an important index of performence for
the sequential detector,, but also allows the calculation
of a more general form for the determination of the

average number of necessary samples. If n(g) is defined



L(7)
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Figure 3.2 Operating-Characteristic Function for
the Sequential W.li.W. U Detector
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as the average number of samples necessary for termina-
tion of the test when the true value of 8 = 8, then

Eg. 3.21 gives an expression for‘ﬁfﬁgj and Ezﬁ:ji It
is now possible With the use of the operating-charac—
teristic function to calculate ETET for any 0.

Again consider

S - ¥ —Fo . K+ Ho
S%J ( % )(bUn 2 ).

The probability that the test terminates with accept-
ance of Hy is now given by L(6) and the probability of
acceptance of H; by 1 - L(#). Thus using the argument
which precipitated Eg. 3.18 it can be seen that?%l

can now be expressed as

Q, = [1 - L(a)] 1nA + L(8)lnR (3.25)

At the time of decision the expected value for Un can

be exprescsed as

This leads to the relationship

(_&L:_&o_)(,,_.&t:z,t.&.q) =[1-5(6)] 104 + L(8)1nB (3.26)
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Again using the definitions of the py's in Eg. 3.26
and making the same assumptions that were made in the

derivation of Eg. 3.21, the value of n(§) becomes

T 2[1—L(8)]1 A+ L(8)InB p A=
n(8) = 3% —3) [2"13("|++%)J = ye Bt

Since Y and 8 are directly related, the above will be

written as

21 1-L(7)]1nA+ T 1 (3.27)

BT = <50n BT 27T, +5)

for
Y # Z'—é—@-“"; . |

As in the case of the expression of L(Y), there is an
indeterminate form of the above when 7 = —)J,—‘*'r;i .

Through a very lengthy development, Wald (4) was able
to show that the value for n(Y) when 7= —Z’—g—%- can

be approximated in the following manner

2
B [(F-l —2)“0) (Un _ i".!%‘i"ﬁ)] = -1nA 1nB
O
o) : _

where A and B are defined in Eq. 3.15, and where the

expectation is conditional on 7. The above now becomes
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or

m_—{m = -1nA1n3B.
[o 3

Substituting in the above for the value of p and po,

and making the customary assumptions, yields

——= _ -InAIng® _ Nk
n(y) = 3(y, - &)°. F= ==

The final expression for n(7r7) can now be written as:

2{[1_1(7}]111(-'—;@) + T(7)1n |-a)}
3% -%) [er-(n +3)]

|

—-1ln (LEE—)ln (i—_%‘—

3(% -3)® .

Typical. values for r-;(—)f_) appear in Fig. 3.3.

The sequential W.lM.W. U detector has been fairly
well analyzed now, since the average number of samples
function ( m ) gives the average nvmber of samples

to make a decision under all possible conditions. .



30+

Figure 3.3

Average Number of Samples Function for
the W,Ii.W. U Detector
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Furthermore, the operating-characteristic function
describes, under all possible conditions, the average
number of decisions in favor of the null hypothesis and

also the alternate hypothesis.

3¢3 Efficiency Of The Seqguvential W.li.W. U Test

In the preceding section a thorough development
of the test procedure along with the develcopment of
several operating characteristics for the seguential
W.ll.We U test was presented. In this section the oper—~
ating characteristics will be compared to those of the
fixed sample size V.K.V'. U detector in hopes of getting
an idea of how the segquential detector compares to this
other detector.

The comparison to be discussed here is one of
comparing the expected number of samples for the sequen-
-tial detector to the number of samples necessary Loxr
the fixed sample size V.M.W. U detector, each detecting
the same error probabilities. If the sequential detec-
tor is to be considered good, it must have a smeller
expected number of samples than is needed by the fixed
sample size detector. The figure of merit used in the
comparison is called the percentage of savings of the
sequential detector. The percentage of savings is

defined by
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n(6;)
5 —;—1—;—;-—— % (3.29)

where PSi is the prercentage of savings given Hi is
true,‘zfggi is the average number of samples needed by
the sequential detector given Hi’ and ng is the numxber
of samples necessary for the fixed sample size detector
to operate with the perscribed error rate.

Taking ng to be the number of samples necessary
for the fixed sample size W.M.W. U detectpr, and'zfagj
as the average number of samples needed by the sequen—
tial W.M.W. U detector, then PSi will give an estimate
of how much savings in time is incurred by changing

to a sequential test. From section 1 of this chapter,

it was found that
a = (I)(Wc)
and

o

RILAET

(see Eq. 3.7)e Using the inverse function defined in

Chapter II, the above becomes
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(3.30)

i

& '(1-8).

Using the approximation that oy =o; , and using the

fact that p{=-£%§iﬂ;, Eq. 3.30 can be rewritten as
X .

-1
Wc = @ (Cl)
; Fo—H1 _ &

Simplifying the above yields
Ho—H . gl1-pg) - &'(a).

Using the values of'pb; % s and p, given in Eq. 3.16,

the above becomes:

4
.. n even
n3 + n?
(slap - o' coff
&'(1-p) - &' (a)] _
3(E-rP
= 2 2
(n” 1) n odd.
nd + n® -n-1

Making the approximations that n?-1mn? and that n3+ n?x

n3 +the expression for n becomes
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L . Fla-s - &'

3.31
3(3-7Y X ( )

Now using Eg. 3.31 and XEq. 3.21 it is possible
to calculate P%, and PS; . Performing the indicated

calculations yields

PS, = 1001 + 2 le1na (1-A)1n3] %o
(4] [¢-l_(l—B) . ‘fJ-I( Q)]z

and (3.32)

_ .2 [(l-B)lnA alnIB] ] o,
PS, = 1001 + [cb“‘(l_,ﬁ) _+ <I>"(a)']2j %

rig. 3.4 and Fig. 3.5 give plots of PS,; and PS,
as a function of e and B. It is interesting to note
that PS; (as given in Eg. 3.32) is not a function of
the signal to noise ratio. This is easy to understand,
in that both detectors operate by using the same statis-
tic. Thus the signal to noise ratio or equivalently ¥
should affect both in the same manner, indicating that
the difference in sample sizes is due to the different

decision rules.
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CHAPTER IV
SEQUENTIAL DETECTION OF CONSTANT SIGNALS

4.1 Detection Of A Constant Signal In Normal Noise

The optimum detectors discussed in Chapter II are
usvally designed for detection in normally distributed
noise. So in order to be able to compare the sequen-
tial nonparametric detector to an optimum detector it
is necessary to eanalyze the .pe:c-formance of the sequen-
tial detector in normally distributed noise. The alter—

netives are of the form

G(x) = &(x)
G—(X) = @(X—Q)

H,

H,

where ®&(x) is the curwlaetive normal distribution. For
this case the Wald sequential probability ratio statis-
tic is given by

Ap =¥ - X
where ¥ and X are the means of the semples drawn from
the Y populetion and the X population respectively. If

x~N(0,92), then the decision rule can be shown to be

(8)
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2
if A, 237 Ina+ 59 accept H,

2
if kns%lnB + —1239 accept H

2 2
and if 2InB + 26 <.-4‘9—" InA + 20 +take another
8 2 n 2
: sample .

Using the above rule, it is possible to show (8) that
the average number of samples necessary for detection

is given by

-‘:%%E[a]_n(%é*) #* (1~ u)ln&é%] \HO true
n_ = (4.1)

880: [(l—,B)ln(—'iQ) + B1ln (-)Tei—a)] H, true.

Eq. 4.1l now gives an expression for the number of
samples necessaxry for the Wald detector. If a sililar
expression can be found for the sequential W.M.W. U
detector, the two detectors can be compared in
efficiency.

Eg. 3.21 gives the necessary form for n for the
sequential W.M.W. U detector, but the parameter Y must
be found as a function of 8§ before the actual compar-
ison can take place, it is also needed before the detec-

tor can be used to detect the signal described above.



The definition for

Y is given by Eq. 3.4,

@
7 = P(x>y) = fogi(x)ﬁ‘(x—e)dx.

Rewriting the above into a more basic form yields

v(8) =

Taking the derivative with respect to 8, the above

becomes

Y1e) =

For this case

D, x—- 9

f ff(t)f(x)dtdx.

...ww

10}
- ff(x-e)f(x)dx.
-

f(X) =m e .

Using the above in

Y 18)

Eq. 4.2 produces

=‘7-2-=;'7?_=-f e""ﬁxz =~ (X—Q)

o gl B

92

=7‘%—e"4 .

l.e.,

dx

92

4 dx

55

(4.2)
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Thus

7(8) = 1 - @%) | (4.3)

where $(x) is the cumulative normal. Fig. 4.1 is a
plot of 7(8) as & function of 8.
Using the above information, it is now possible
to compare the average number of samples for the seguen—

+tial W.li.W. U detector. Define the percentage loss as

PL = 100[1 -_E,:{_]%‘ (4.4)
n

That is, the percentvage loss is a measure of the loss:
‘due to the use of the nonperametric sequential detector
instead of the optimum parametric detector. TUsing Eq.
4,1, 4.3, 3.21, and 4.4 it is possible to evaluate PL,

1eCoy

12 f - @(7%)]2 o,
62 a

PI: = lOO 1 - * (4—0 5)

The above equation can now be evaluated as a function
of @ (See Fig. 4.2). Here it is interesting to note

that PL is not a function of @, 8, or the true hypoth-
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Figure 4.1

Y(8) vs. 8 for Normal Noise
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esis, Hio In the two detectors compared, the decision
rules were the same, the only difference comes in the
Tfact that Ui does not contain all of the information
available in the sample, so then the loss comes about
by uvsing an inefficient statistic, not an inefficient
decision ruwle. Also note the fact that for high signal
to noise ratios the Wald detector is much better than
the sequential W.lM.W. U detector. This occurs because
the ranks of the samples do not contain information

as to the amount of spread in the observations. The
W..W. U statistic has the same value whether xfcyj

by 10 units or 1 unit. Thus while the W.li.W. U statis-
tic is not as efficient for extremely high signal to
noise ratiocs, in the areas of interest, however, it is
very good.

Now that the detector has been analyzed and
compared in several respects to other detectors, it
will be used to actually detect a constant sigﬁal in
normally distributed noise. The noise will be assumed
to have a normal distribution with zero mean and unit
variance. The value of the constant signal will be 0.
Thus the signal to noise ratio as defined in Chapter II
is also egqual to 8. The detector will now operate in
the following manner. First an estimate will be obtain-
ed for the signal to noise ratio. Once this has been

obtained ¥ is found from Fig. 4.1l. The next step is
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to calculate the thresholds from the desired @ and B8.
The detector will then take a sample from the X.distri-
bution, calculate r, and compare it to the thresholds.
If enother sample is needed the detector will sample the
Y distribution and again calculate T, and compare it to
the thresholds. The detector will continue this process
until one of the hypotheses can be accepted.

This problem was simulated on an I.B.k. 360
computer. The X distribution was generated as N(0,1),
while the Y distribution was generated as N(9,1) if
Hy was true and as N(0,1) if Hg was true. The flow -
chart for the simulation program is shown in Fig. 4.3.
This chart shows how the detection process was simulated
by the computer. Fig.'4.4 and 4.5 plot two typical
resvlts for T, as a function of n and show how the final
termination occurs as the statistic crosses the thresh-
old. The simulation was carried out 2000 times with
Hy true and 2000 times with H; true. The results of
this simulation are sﬁmmarized in Table I.

In addition to actually simulating the experiment,
the computer kept a record of how many samples were
needed for detection each time a decision was made.

With this record it is possible to get an idea of how
the number of samples function is distributed. The
results are plotted in Fig. 4.6 and 4.7. It is useful

to note that while the average number of samples for
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RESULTS OF

TABLE I

FleoWe U IEIECTOR

SIHULATION IN NORNAL NOISE

Ho TRGE H, TRUE
alpha 0.10 0.10
beta O.;O CelQ
theta 1.00 1.00
numbexr
of times 1863 114
Ho accepted
numoer
of times 137 1886
H, accepted
simulated s v
alpha 0., 069
simulated .
Bata 0.057
average
nunber of 21.85 2200
samples
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Figure 4.6

P(n)

Simulated Density for Number of Samples

Necessary for Detection: H, True
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Necessary for Detection: H, True
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detection, n, is greater than the node, indicating a
long tail on the distribution, the tail has extremely
small values by the time it gets to the number of
samples needed by the fixed sample size test, ng. This
is a gooﬁ property in that the sequential detector will
make a decision before the fixed sample size detector
a large percentage of the time. It has been seen from
Pig. 3.4 and 3.5 thet for a=B= 0.1 the savings of the
sequential detector is about 60%, thus the sequential
detector will, on the averagey maké its decision twice

as fast as the fixed sample size detector.

4,2 Detection Of A Constant Signal In Nonnormal Noise
In some applicetions it is not possible to make
the assvmption thet the noise is normally distributed.
If this is the case it is sometimes useful to assunme
that the noise has a Cauchy distribution. If a wvariable

X has a Cauchy distribution tThen

f(x) = /(1 + x?) -m<x< ®

Fig. 4,8 presents a comparison of the Cauchy distri-
bution and the normal distribution with zero mean and
unit variance. From Fig. 4.8, it is possible to see
that the Cauchy noise has much more power associated
with it because it does not go to zero as fast as the

normal noise. Theoretically the variance for the Cauchy



e

P(x)

-Figure 4.8

Cauchy and Normal. Distributions
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distribution is infinite, but this distribution can

be used to approximate noise with large finite power

to a better degree than can the normal distribution.
Again before the detector is used, it is necessary

to obtain an estimate of Y(@8). For the case where the

noise is distributed according to a Cauchy distribution

Eq. 3.4 becomes
aga
v(8) = [f(x)F(xg)ax
-0
where
f(x) = /(1 + x2)
and

F(x) = 3 - o tar '(x).

An explicit expression for 7Y was not found, however, by
using numerical integration Y(8) was found. The results
are plotted in Fig. 4.9.

Using the above results to set 7Y, the computer
wes again used to simulate the detection problem;
however, this time Cauchy noise was used. The results
of 2000 simulations of Hy and 2000 simulations of H;

are shown in Table IT.
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TABLE ITI

RZSULTS OF VW.k.Vi. U DETECTOR

STIULATION IN CAUCHY IOISE

H0 THUE H, TRUE
alpha 0.10 0.10 -
beta 0.10 Q.10
theta 1075 1075
number \
of times 1860 188
Hy accepted
number
of times 140 1812
H, accepted
simulated
alpha 0.070 -
géﬁﬁlated 0.094
average
number af 23.10 24 .91
samples

Tk
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The detection process described in the ahove
sections makes use of the fact that the signal to noise
ratio was kmown exactly and thus Y could be calculated.
If Y is not known or cannot be calculated, it can be
seen from the operating-characteristic curves (Fig. 3.3)
that if a conservative estimate for yis assumed, i.e.,
assume Y larger than what the true value is expected
to be, the detector will operate with a lower error
rate than if the true value were used, but the number
of samples needed for detection will be greater than

would e necessary if the true value of 7 were used.
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CHAPTER V
ADAPTIVE SEQUENTIAL DETECTION
USING THE W.l.W. U DETECTOR

The VW.lI.VW. U detector described in the previous.
chapters operated on the assumption that ¥ was known.
This is tantamount to assuming a form for the density
under the alternative and asguming nowledge of the
channel over which the signal is transmitted. The
argument for the use of the sequential W.K.W. U detector
is based on the fact that no apriori ¥mowledge of the
signal is necessary. Thus some way must be found to
get rid of this restriction placed on the detector by
the need for a value for the parameter Y. It was
pointed out in the last chapter that if a conservative
value for 7Y is assumed the detector will be able to
detect the signal with values of a and B at least as
good as the ones used in the design equations. However,
since the number of samples necessary for detection
goes up with the square of the difference between ¥ and
%, the above method is inefficient in this respect.
Under these circumstances 1t seems reasonable to design
some sort of system which is capable of extracting
information about the parameter ¥ from the input signal
itself.

Systems which extract information about the channel

from the informetion bearing signal as it passes through
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the system, and use this knowledge to help make deci-
sions are called adaptive systems. Such systems are
necessarily suboptimum in that if no apriori knowledge
is assumed the detector cannot operate with maximum
efficiency. These systems can, however, with good
measurements, approach the optimum system.

Consider the following system. In the signalling
interval the transmitter sends either s(t) or 0 (mo
signal) over the channel. The sequential W.MM.W. U
detector then samples the signal and when t, crosses
one of the thresholds it makes a decision. The proba-—
bility of error for such a scheme is given by

Py = ¥a+ 3L( %),

5=
where L(?%) is the operating-characteristic evaluated
gt the true value of 7 denoted by Zt.

If the designed value of 7Y ( )a) is greater than
Yo Pp will be less than +#(a + B8) (the Py when 7y = T't)'
However, the number of samples for detection will be
greater than the number which occurs if )a = Y. i i 2
ﬁ>4,PEwﬂlbeQQ%Wm?ﬂmn%(a{BL |

A reasonable solution for this problem is to have
the detector measure 7Y in some way and use this knowlI-
edge to adapt the detection process to account for this

measured X One way to do this is to change the value
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of Y each time the alternate hypothesis is accepted,
the new value of 7 being taken as the value observed
- during the detection interval. This method is reason-—
able, but since there is error in any measurement, it
is sometimes better to use several measurements rather
than one. Proceeding along this line, it is reasonable
to average the value of 7 observed in the X previous
intervals where H, was accepted. While the use of K
observation intervals to estimate 7 implies that 7&
will not follow changes in the true value of 7 as fast
as when X = 1, it is also not as subject to measurement
error as when K = 1. So if the channel varies slowly
and remains essentially constant during several obser-
vation inbvervals, it is better to use this averaged 7.
If the probability of signal (s) is 4 and if the channel
1s essentially constant over 2K observation intervals,
then the detector can use K estimates in calculating 7.
The sequential W.I.W. U detector calculates a

statistic (U) which is directly related to 7. Since

U'=:§'§ %5 5

where
X e i 5 x>V

s B _
0 £ x5 < yj.
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An estimate of 7, say ?, can be calculated by

4U n even
n2

~

y -
40 n odd
n® - 1

The analytical analysis of a system like the one
described above would be extremely difficult. TFor
this reason it will not be attempted, instead a lonte
Carlo simulation will be used to analyze the operation.
A random nuﬁber generator will determine if Hgy or H; is
true. If Hy is true both sample populations will be the
same, If Hy is true then P(x>y) will be Y.+ The
detector will then operate on the input populations and
make its decision. Vhenever H, is accepted, the detec-
tor will modify Ya using the average of the previous
K ?"s. The simulation will count the number of errors
made after the system has settled down (approximately
2K signal intervals) and debtermine PE vs. ¥ for several
values of XK.

One problem in any simulation like this is a
starting value for )a. To demonstra‘te. the stability
of this system the first X values of 9 will be sampled

from a uniform density over the interval (0,%). The

flow chart for the simulation is given in Fig. 5.1,



start

yes

sample Y

nodify Td

Figure 5.1 TFlow Chart for Adaptive Sequential Detection



and a copy of the simvlation program is shown in

Appendix C.
in Table III.

The results of the simulation are shown

78



TABLE ITII

RESULTS OF ATAPTIVE
‘I‘v - I':'I - -zl'r . U S :B‘:IIULAT ION

P 1 2 5 10
0.6 0.1968 |0.2258 | 0.1939 | 0.1417
0.8 |0.1406 |0.1028 | 0.0714 | 0.0854
1.0 |0.0703 | 0.0827 | 0.0449 | 0.0750
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CHAPTER VI
CONCLUSIONS

In this paper the design of an adaptive sequential
nonparametric detector was %ully developed. TFirst, it
was shown that with the use of a sequential ranking
procedure it is possible to adapt the Wilcoxon-Mann-—
Vhitney U statistic to a seguential testing scheme. It
was then argued that since the statistic used for the
test is distribution free the new sequential test is
also distribution free, i.e., the test statistic does
not depend upon the distribution of the noise. Once
this had been found it then became possible to develop
the form of the operating-characteristic function and
the average number of samples function. With these
two functions it is possible to completely describe the
operation of the detector under any noise conditions.

The detector was then compared to the fixed sample
size detector using the same statistic, and it was
found that on the average the sequential detector needs:
half as many samples for detection as the fixed sample
size detector. The sequential nonparametric detector
was then compared to the optimum parametric detector
for the case of normel noise. In this comparison it
was found that the nonparametric detector had very
little loss in efficiency for smaell or moderate signal

to noise ratios.
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The seqguential nonparametric detection process
wes then simulsted on the computer, and it was found
that the detector could operate at low error rates for
given signal to noise ratios. Finelly, the detector
was modified so that it could make its own measurements
of the pertinent channel characteristics and adapt
itself to these changing characteristics. Again the
problem was simulated on the computer, and it was found
that this adeptive detector can operate with low error
rates.

Thus it has been shown that even though the detec-
tor described here is nonparametric in nature it could
operate with little loss in efficiency when compared 1o
the optimum detector. Also, since the detector is
nonparametric, it can operate over a full range of noise
distributions with out eny modification, while the
optimum detector must be changed each time the noise
changes. This versatility coupled with the relatively
small loss in efficiency makes the idea of using a
sequential nonparametric detector extremely practical
when there may be a question as to the exact form of

the noise or signal plus noise.



APPENDIX A
PROOF OF EQUIVALEKNCE OF THE WILCOXON
AND MANN-WVHITNEY STATISTICS

The definition of T is given.in Ege 301, i.e.,

5
=

i—'.
Il
e

where

4 i s Z4 is from X

'Wi =

0 G 3 4 Z; is from Y.

If all of the xi's are less than all of the yj's

then
T = N(N+1)/2

where N is the number of xi's.

82

YVhen one yj is less than one of the x.'s the rank

1

of that x, is increased by one, while the rest are left

< 4
the szame. Thus for this case

T =1 + N(N+1)/2.
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Fach time =a yj preceeds an Xy the rank of that X5 is
increased by one. So if Ny is the number of times a

yj preceeds an Xy then
T = Ny + W(N+1)/2. (A.1)

But NE is the same as U. This cin be seen by examining

Eqe 32, i.€.,

U = X
i=1 =1 1d
where
e i xi:»yj
xij =

Thus U can be thought of as the number of times a Y5

preceeds an Xy Then Eg. A.l becomes
T = U + N(N+1)/2
or

U =T - N(N+1)/2. (A.2)
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APPENDIX B
AR.E. OF W.M.W. U TEST AGAINST +t—TEST

The asymptotic relative efficiency (A.R.E.) of
one test as compared to another is defined as follows
(9,10): Given two detectors, each with the same aand
B, the first with sample size N and the second wifh
sample size N¥*, then the A.R.E. of the second with

respect to the first is
AR.E. = 1im (N/N*
lim (N/K%)
where 0 is the signel to noise ratio.

Denote the test statistics by t; and t,. Now

meke the following definitions

Eiy = E(tilﬂj) i=1,2
j = 1,2
Dy = var(’cil Hj)
and
I""I
E;(i_r)(o) - 9 ﬁ(ti 9)
6ar 8= Ol

Now for the t-test with two populations



If the alternate hypothesis is of the form

G(X) = F(X - 9)
then
Eig =0
By = 8
and
2 2
:D!al = O.X <+ crx
N i1

where "xz and of are the wvariances of the X and Y
populations respectively. Tor tThe case considered

here a-xz = o-y’- = o% If m; is the first velue of r

such that

{T)(0) # ©

then it can be seen that in the case of the t-test
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51)(0) = 1
thus
m, = 1.

TTow assume tha?t

5{"1)(0) 8,
Dio ~Ccqn . (B.1)
Then for *
Egl)(o)- _ . 1% 1 /T
N it

since '+l = n then

Cy

8, =

I

ue Q-

For the W.lil.W. U test

%:
X. s
=1 ¥



o

where Xi;j is defined in Eg. 3.2. From Z2g. 3.4 and 3.5

a
P(xi«c yj) = fmf(x)F(x-e)dx.

Now it can be seen that

IE(t,| 8 -
( 3'8 ) J -_NI:IIG;C(X)f(X—e)dK

or

w0 2
E(zl)(o) = M\E_.{o[f(x)] ax..

Thus m, =1, and from Chapter III it is kmown that
var(tz 0) = NM(N+i+1)/12.

Then

E(l)(O) - ™ -2
5 - V2B [lrx)] ax

20

(e 0]
Gy = ‘/J__Z—_{DEE(X)]z dx

I
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i _F23(8) L _
1m = B.2
n—- @ EI:.ELi(O)
and
lim P31 =1 (B. 3)
n—0o D4,
then
9
_ . Cz\3
A.R.E. = 1linm (_cf) |
n—ao
if m;, = m, and &, =3,, From examination of the means

and variances, it is seen that the above regularity
conditions (Zg. B.2 and B.3) hold so the A.R.E. is
given by

2

A.R.E. = 1202 fdif(x)]z ax | .
-

Since f(x) is a normal distribution the above becomes

© ._.E;
A.R.E. = 127 ?;%; e 77 ax
-



A.R.E.
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@ %2
2 1 L - crz 5
120 Zr%vo.e ax
(es]

3/m . (B.4)



APPERDIX C
PROGRAM LISTING

A program listing for the adaptive simuvlation

problem follows..
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A0 AN0000000OAOOA0OOOO00ONON0

g

THES IS PROGRAM JAMES FOWLER

ADAPTIVE SIMULATION

SIMULATION OF WMW-U SEQUENTIAL TEST

ALPHA= TYPE I ERROR

BETA= TYPE II ERROR

NT= NUMBER OF TIMES SIMULATION OCCURS
Cl=1.0 IMPLIES HI(1) TRUE

C1=0.0 IMPLIES H(0D) TRUE

TA= TEST STATISTIC

GA= P{X > Y}

U= MANN-WHITNEY U STATISTIC

T= WILCOXON T STATISTIC

X{I)= SAMPLE OF X IF I ODD

X{I)= SAMPLE OF Y IF I EVEN

SGMAZ= VARTANCE OF U UNDER H(O)

SGMZ2A= VARTANCE OF U UNDER HI(1l)

Z0I= U — MEAN OF U UNDER H{Q)}

Z1I= U — MEAN CF U UNDER H({1)

XG{I)= STORAGE OF PREVIOUS ESTIMATES OF GAMMA
IH= RECORD OF TRUE HYPOTHESES AND DECISIONS
K= NUMBER OF INTERVALS USED TN FINDING GAMMA
PED= DESIGNED PROBABILITY OF ERROR

PESS= SIMULATED STEADY STATE ERROQOR

AVNS= AVERAGE NUMRER OF SAMPLES

AVNSS= STEADY STATE AVERAGE NUMBER OF SAMPLES
ERR= NUMBER OF ERRDORS

ERRSS= NUMBER OF ERRORS AFTER 2K TRIALS
MOD(I)=0 I EVEN

MODI(I)=1 I ODD

IF TAU > A ACCEPT H(1)

IF TAU < B ACCEPT H{0)

RANDZ: GENERATES A GAUSSTAN VARTABLE

GlI)= GAUSSTAN CUMULATIVE

EACH INCREMENT IN I CORRESPONDS TO 0.01 UNITS
G{360): CORRESPONDS TO G{0.0)

GE= ESTIMATE OF GAMMA

DIMENSION X(900),S(900}
DIMENSION XG{10),IH{1000)
DIMENSION G(720)
MOD(YI)=—((I/2¥+{1/2)-1)
READ(1,101)ALPHA,L,BETA
READ{1,103)(G{(1),1=360,719)
READ(1,102)NT,TH
READ(1,102)K

PO 2 I=1,359

J=720-1

G(I)=1.0-G(J)

INITIALTIZE RANDOM NUMBER GENERATOR
IX=1371897

TH1=TH/1.414214

NTH=(100.0%TH1)



32

34
33

GA=1.0-G{NTH+360)
A={1.0-BETA) /ALPHA
B=BETA/{1.0—-ALPHA)
WRITE HEADINGS
WRITE(3,104)8B,A
WRITE(3+113)ALPHA,BETANT
WRITE(3,115)TH,GA
XNT=NT

T2K=2*K

XK=K

INITIALIZE COUNTERS
AVNS=0.0

ERR=0.0

ERRSS=0.0

AVNSS=0.0

GE=0.0

O3TAIN STARTING VALUE FOR GAMMA
NNN=1

DO 32 1I=1,K

CALL RANDUITIX,1IY,Y)
IX=1IY

XG(I)=0.5%Y
NNN=NNN+1
GE=CE+XG(I) /XK
XN2K=0.,0

DO 3 LL=1,NT

DECIDE WHICH HYPOTHESIS TS TRUE
CALL RANDU{IX,1Y,Y)
IX=1Y

NC1={0.50+Y)
IFILL-T2K)33,; 34,34
XN2K=1.0

CONTINUE

INITIALIZE VARIABLES
C=0.0

Ci=NC1

701=0.0

Z71¥I=0.0

SGMA2=0.0

SGM2A=0.0

U:O « 0

T=1.0

S({1)=1.0

TA=1.0

GENERATE FIRST SAMPLE
X{1)=RANDZI(O)

C=C1-C

GENERATE REST OF SAMPLES AS NEEDED

DO 4 J=2,900
X{J)¥=C=TH+RANDZ1{0O)
CN=0.0

CX*:O-O

CALCULATE S5{(J)

DO 5 I=1,J
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13

13

16

15
17

IF{X{I)-X{(J})7:7,9
CN=CN+1.0 '
GO 70O 5

XX=MOD(1I)

CX=CX+XX

CONT INUE

S{J3¥=CN

CALCULATE T AND U
XX=MOD(J)
T=T+{XX%xS(J))+CX
C=C1-C

XNX={(J+1)1/2

=T IXNXZ{XNX+1.0))/72.0)
J2=M0OD(J)
IF{J2111+411,10

CONT INUE

J IS 0ODD

NM=(J-1)/2

XNM1=NM

XNM2=NM+1

GO TO 13

CONTINUE

J IS EVEN

NM=J7/2

XNM1L=NM

XNM2=NM

CONT INUE

CALCULATION OF TA
XNM=NM

XJ=J
Z0I=U-0.50%XNM1%xXNM2
Z1I=U-GEX*xXNMI&xXNM2
SGMAZ2={XNMLIxXNM2%{ XNM1+XNM2+1.01)/12.0
SGM2A=SGMA2
Z0=Z0T/(SQRTI{SGMA2))
Z1=Z11/7(SQRT{SGM2A))
ZQ2=720%%2

Z12=71%%2
TA=EXP{0.50%{202-212))
COMPARE TA TO THRESHOLDS
IF{B-TA)15,16,16
CONTINUE

ACCEPT H(O)

XXJ=J

ND=0

AVNS=AVNS+XXJ
AVNSS=AVNSS+XNZK*XXJ
GO TO 31
IF{A-TA)17,1724%
CONTINUE

ACCEPT H(1)

XXJd=J

ND=1

AVNS=AVNS+XXJ

53



AVNSS=AVNSS +XN2K%xXXJ
GO TO 31
4 CONTINUE

CAN NOT MAKE A DECISION
ND=2
AVNS=AVNS+100.0
AVNSS=AVNSS+100.0%XN2K

31 CONTINUE
RECORD DECISION
IH{LL)=10%NCL+ND
RECORD MISTAKES
IF (NC1-ND)36,37,36

36 ERR=ERR+1.0
ERRSS=ERRSS+XN2K

37 CONTINUE _
MODIFY ESTIMATE OF GAMMA
IF(ND-1)38,39,38

39 GE=GE-(XG{K)/XK)
KM1=K-1
NO 40 II=1,KM1
I11=K-TT

40 XGL{IT1+1)=XG{(IT1)
XGUL)=14,0%U) /IXXJ*%2)
GE=GE+{XG(1) /%K)
NNN=NNN+1

38 CONTINUE

3 CONTINUE

CALCULATE ERROR RATES
XNT1=XNT—-T2K
PE=ERR/XNT
PESS=ERRSS/XNT1
AVNS=AVNS/XNT
AVNSS=AVNSS/XNT1
WRITE RESULTS
WRITE(3,118)K
WRITE(3,116)AVNS,AVNSS
WRITE(3,117)PE,PESS
WRITE(3,120)
WRITE(3,119){TH(LL),LL=1,NT)

101 FORMAT({4E16.8)

102 FORMAT(5X,16,E15.8,16)

103 FORMAT(10F7.5)

104 FORMAT{1H1/5X,'ACCEPT H(O) IF TA < B'"/5X,*ACCEPT?',

1' H(1) IF TA > A',/5X,'TAKE ANOTHER SAMPLE IF !,
298 < TA < A'/5X%X, '8 =',F10.4/5X,"A =',F10.4/)
111 FORMAT(5X,1016) ‘
113 FORMAT(/5X, *THEORETICAL ALPHA=1,F6.4,/5X,
‘ 1*THEORETICAL BETA =",F6.4,/5Xs "NUMBER OF TIMES®,

2' EXPERIMENT IS REPEATED =',16,/5X, *PROBABILITY?,

3' OF H(O) = 1/72',7)

115 FORMAT({/SX,*SIGNAL TO NOISE RATIO ='",F8.4,/75X,
1'P{X > Y) ='"2,F6.4/)

116 FORMATI({//5X,'"AV. NO. OF SAMPLES =',F8.3,/5X,
2t'S.S. AV. NO. OF SAMPLES =',F8.3,/5X,/)
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117 FORMAT{//5X,'P, OF ERROR =1;FT7.4,/5X,
1'"S.S. P. OF ERROR =',FT7.44/5X,/)

118 FORMAT(//5X, "MEMORY LENGYTH OF ADAPTER =1',13,/)

119 FORMAT({25I3)

120 FORMAT(1H1,/5X,*DETFECTION DECISIONS AND CORRECT?',
1* VALUES?',/5X,'1=H(1) O=H{( 0} 2=NO DECISIONT',
2/5X, 'FIRST NUMBER = XMITTED SIGNAL?®*,/5X,
3*SECOND NUMBER = RECVD SIGNAL',/)

STOP
END
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