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ABSTRACT

In this dissertation, the recently discovered concept of time scales is applied to

probability theory, thus unifying discrete, continuous and many other cases. A short

introduction to the theory of time scales is provided.

Following this preliminary overview, the moment generating function is derived

using a Laplace transformation on time scales. Various unifications of statements and

new theorems in statistics are shown.

Next, distributions on time scales are defined and their properties are studied.

Most of the derived formulas and statements correspond exactly to those from discrete

and continuous calculus and extend the applicability to many other cases. Some theorems

differ from the ones found in the literature, but improve and simplify their handling.

Finally, applications to finance, economics and inequalities of Ostrowski and Grüss

type are presented. Throughout this paper, our results are compared to their well known

counterparts in discrete and continuous analysis and many examples are given.
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1. INTRODUCTION

Two of the main objectives in mathematics are simplification and unification. In

1988, Stefan Hilger introduced the concept of time scales in his dissertation “Ein Maßket-

tenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten” [41]. In order to provide the

reader with the necessary definitions and theorems of time scales, this thesis summa-

rizes important concepts in the second section, following the books of Martin Bohner

and Allan Peterson “Dynamic equations on time scales” [22] and “Advances in dynamic

equations on time scales” [23].

The main goal of this thesis is to establish the basics of probability theory on time

scales and apply those results to finance, economics and inequalities. Thus, well known

definitions, properties and theorems for discrete, continuous and many other cases will

be unified. With the help of the Laplace transformation, the moment and cumulant gen-

erating functions are derived, setting the stage for concepts like expected value, variance,

independence and entropy.

Furthermore, uniform, exponential and gamma distributions are defined and studied

within the theory of time scales. The results are put into context with existing discrete

and continuous distributions. The time scales exponential distribution corresponds to

the known exponential distribution in the continuous and to the geometric distribution

in the discrete setting. The time scales gamma distribution has the continuous Erlang

distribution and the discrete negative binomial distribution as its counterparts. Due to

the new definition of moments on time scales, some properties of distributions do not

coincide with the ones found for discrete cases in the literature, but have the advantage

of stating an easier and more approachable result for all time scales.

Next, the basic concepts of interest rates and net present value are presented. Fi-

nancial applications also include hazard rates and the pricing of credit default swaps.

The latter has become of great interest during the last decades, due to the increased risk

of default for countries on the one hand and companies on the other. Throughout, the

theory is derived on time scales and several examples are provided.

In 1938, Alexander Ostrowski first proved a formula to estimate the absolute devia-

tion of a differentiable function from its integral mean. The so-called Ostrowski inequality
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holds and is shown in [55]

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s)ds

∣∣∣∣ ≤ sup
a<t<b

|f ′(t)|(b− a)

[
(t− a+b

2
)2

(b− a)2
+

1

4

]
.

The time scales equivalent was shown by Martin Bohner and Thomas Matthews [19].

In 1935, Gerhard Grüss introduced an inequality describing lower and upper bounds for

the difference of a the integral of the product of two functions from the product of the

integrals. As shown in [40], we have∣∣∣∣ 1

b− a

∫ b

a

f (x)g (x) dx− 1

(b− a)2

∫ b

a

f (x) dx

∫ b

a

g (x) dx

∣∣∣∣ ≤ 1

4
(M1−m1)(M2−m2),

where

m1 ≤ f(s) ≤M1, m2 ≤ g(s) ≤M2.

In [18], Martin Bohner and Thomas Matthews derived the time scales version of that

inequality.

The last sections of this thesis discuss Ostrowski type inequalities on time scales

using the previously derived properties from probability theory. Multiple inequalities

involving expected values are presented. In addition, joint work with Martin Bohner

and Adnan Tuna is given, exploring the concept of diamond-alpha theory on time scales

for Grüss inequalities. Furthermore, collaborative work with Martin Bohner and Adnan

Tuna, discussing Ostrowski–Grüss like and Ostrowski inequalities for two functions, is

provided. Finally, research together with Martin Bohner and Elvan Akın–Bohner on

Ostrowski–Grüss like and Ostrowski inequalities for three functions is presented.
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2. TIME SCALES ESSENTIALS

In 1988, Stefan Hilger introduced the theory of time scales in his Ph.D. thesis “Ein

Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten”. Since then many

authors like M. Bohner, A. Peterson, R. Agarwal and G. Guseinov have extended this

theory and various results can be found in recent books and papers. Time scales unify the

fields of discrete and continuous analysis and extend them to numerous other cases. So

one could say that unification and extension are the two main features of the time scales

calculus. Moreover, the time scales theory has an incredible potential for applications in

economics, finance, physics and biology.

This section is meant to be an introduction to time scales. Summarizing the books of

Bohner and Peterson [22, 23], basic definitions, properties and theorems will be presented,

which are needed throughout this paper. Various examples to different time scales will

be provided.

2.1. BASIC DEFINITIONS

Definition 1. A time scale is an arbitrary nonempty closed subset of the real numbers.

The most important examples of time scales are R (continuous case) and Z (discrete

case). Other examples of time scales considered in more detail in this thesis, are

qN0 :=
{
qk| k ∈ N0

}
, where q > 1

(the quantum calculus case) and

hZ := {hk|k ∈ N0} , where h > 0.

On the other hand, Q, R\Q and (0, 1) are not time scales since those domains fail to be

a closed subset of the real numbers.

Definition 2. If T is a time scale, then we define the forward jump operator σ : T→ T

by

σ(t) := inf {s ∈ T| s > t} for all t ∈ T,
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the backward jump operator ρ : T→ T by

ρ(t) := sup {s ∈ T| s < t} for all t ∈ T,

and the graininess function µ : T→ [0,∞) by

µ(t) := σ(t)− t for all t ∈ T.

Furthermore, for a function f : T→ R, we define

fσ(t) = f(σ(t)) for all t ∈ T

and

fρ(t) = f(ρ(t)) for all t ∈ T.

In this definition we use inf ∅ = supT (i.e., σ(t) = t if t is the maximum of T) and

sup ∅ = inf T (i.e., ρ(t) = t if t is the minimum of T). Moreover, this definition allows us

to characterize every point in a time scale as displayed in Table 2.1.

Table 2.1. Classification of Points

t right-scattered t < σ(t)
t right-dense t = σ(t)
t left-scattered ρ(t) < t
t left-dense ρ(t) = t
t isolated ρ(t) < t < σ(t)
t dense ρ(t) = t = σ(t)

The following example applies these first definitions to the important time scales

mentioned after Definition 1.



5

Example 1. Let us consider these four cases.

(i) For T = R, we have

σ(t) = inf {s ∈ R| s > t} = t,

ρ(t) = sup {s ∈ R| s < t} = t,

µ(t) = t− t = 0,

all t ∈ R are dense.

(ii) For T = Z, we have

σ(t) = inf {s ∈ Z| s > t} = t+ 1,

ρ(t) = sup {s ∈ Z| s < t} = t− 1,

µ(t) = (t+ 1)− t = 1,

all t ∈ Z are isolated.

(iii) For T = qN0, we have

σ(t) = inf
{
s ∈ qN0| s > t

}
= qt,

ρ(t) = sup
{
s ∈ qN0 | s < t

}
=
t

q
for t > 1,

µ(t) = qt− t = (q − 1)t,

all t ∈ qN0 are isolated.

(iv) For T = hZ, we have

σ(t) = inf {s ∈ hZ| s > t} = t+ h,

ρ(t) = sup {s ∈ hZ| s < t} = t− h,

µ(t) = (t+ h)− t = h,

all t ∈ hZ are isolated.
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2.2. DIFFERENTIATION AND INTEGRATION

Definition 3. The set Tκ for a time scale T is defined as follows: If t has a left-scattered

maximum m, then Tκ = T \ {m} and otherwise Tκ = T. In summary:

Tκ =

 T− (ρ(supT), supT] if supT <∞
T if supT =∞.

Definition 4. Let f : T → R and t ∈ Tκ. Then we define f∆(t) to be the number (if it

exists) such that for all ε > 0, there exists U = (t− δ, t+ δ)∩T for some δ > 0 such that

∣∣[f(σ(t))− f(s)]− f∆(t) [σ(t)− s]
∣∣ ≤ ε |σ(t)− s| for all s ∈ U.

We call f∆(t) the delta (or Hilger) derivative of f at t. Furthermore, f is called delta

differentiable on Tκ if f∆(t) exists for all t ∈ Tκ, and f∆ is called the delta derivative of

f .

Theorem 1. Let f : T→ R be a function and t ∈ Tκ.

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right-dense, then f is differentiable at t iff the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number, and in this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(iv) If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

Proof. See [22, Theorem 1.16].
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Theorem 2. Let f, g : T→ R be differentiable at t ∈ Tκ.

(i) The sum f + g : T→ R is differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).

(ii) For any constant c, cf : T→ R is differentiable at t with

(cf)∆(t) = cf∆(t).

(iii) The product fg : T→ R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

(iv) If g(t)g(σ(t)) 6= 0, then f
g

is differentiable at t and

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

Proof. See [22, Theorem 1.20].

Theorem 3. Let c be a constant, m ∈ N and f(t) = (t− c)m. Then

f∆(t) =
m−1∑
ν=0

(σ(t)− c)ν(t− c)m−1−ν .

Proof. See [22, Theorem 1.24].

Therefore for f(t) = t, the derivative is f∆(t) = 1 and for f(t) = t2, we get the

derivative f∆(t) = σ(t) + t.

Example 2. Let f be differentiable.

(i) If T = R, then

f∆(t) = f ′(t).

(ii) If T = Z, then

f∆(t) = ∆f(t),
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where the backward difference operator ∆ is defined as usual by ∆f(t) = f(t+ 1)−
f(t).

(iii) If T = qN0, then

f∆(t) =
f(qt)− f(t)

(q − 1)t
.

(iv) If T = hZ, then

f∆(t) =
f(t+ h)− f(t)

h
.

Definition 5. A function f : T → R is called regulated if its right-sided limits exist

(finite) at all right-dense points in T and its left-sided limits exist (finite) at all left-dense

points in T.

Definition 6. A function f : T→ R is called rd-continuous (denoted by f ∈ Crd) if it is

continuous at right-dense points of T and its left-sided limits exist (finite) at left-dense

points of T.

Theorem 4 (Existence of Antiderivatives). Let f be rd-continuous and t0 ∈ T. Then f

has an antiderivative (denoted by F ) defined by

F (t) =

∫ t

t0

f(τ)∆τ for t ∈ T. (1)

Proof. See [22, Theorem 1.74].

Therefore for rd-continuous functions f , we have

∫ b

a

f(τ)∆τ = F (b)− F (a), (2)

where F∆ = f .

Theorem 5. Let f be rd-continuous and t ∈ Tκ. Then

∫ σ(t)

t

f(τ)∆τ = µ(t)f(t). (3)

Proof. See [22, Theorem 1.75].
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Example 3. Integration for the most important time scales is done as follows. Let

a, b ∈ T and f ∈ Crd.

(i) If T = R and if f is Riemann integrable, then

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt.

(ii) If T = Z, then

∫ b

a

f(t)∆t =
b−1∑
t=a

f(t), where a < b.

(iii) If T = qN0, then

∫ qn

qm
f(t)∆t =

n−1∑
i=m

µ(qi)f(qi) = (q − 1)
n−1∑
i=m

qif(qi), where m < n.

(iv) If T = hZ, then

∫ b

a

f(t)∆t =

b
h
−1∑

t= a
h

f(th)h, where a < b.

(v) If [a, b] consists only of isolated points, then

∫ b

a

f(t)∆t =
∑
t∈[a,b)

µ(t)f(t), where a < b.

Proof. See [22, Theorem 1.79].

Theorem 6. Let f, g be rd-continuous, a, b, c ∈ T and α ∈ R. Then

(i)
∫ b
a
[f(t) + g(t)]∆t =

∫ b
a
f(t)∆t+

∫ b
a
g(t)∆t,

(ii)
∫ b
a
[αf(t)]∆t = α

∫ b
a
f(t)∆t,

(iii)
∫ b
a
f(t)∆t = −

∫ a
b
f(t)∆t,

(iv)
∫ b
a
f(t)∆t =

∫ c
a
f(t)∆t+

∫ b
c
f(t)∆t,

(v)
∫ b
a
f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b
a
f∆(t)g(t)∆t,
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(vi)
∫ b
a
f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b
a
f∆(t)g(σ(t))∆t,

(vii)
∫ a
a
f(t)∆t = 0,

(viii) if |f(t)| ≤ g(t), then∣∣∣∣∫ b

a

f(t)∆t

∣∣∣∣ ≤ ∫ b

a

g(t)∆t,

(ix) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b
a
f(t)∆t ≥ 0.

Proof. See [22, Theorem 1.77].

Definition 7. Let t ∈ C and k ∈ Z. We define the factorial function tk as follows.

(i) If k ∈ N, then

tk = t(t− 1) · · · (t− k + 1).

(ii) If k = 0, then

t0 = 1.

(iii) If −k ∈ N, then

tk =
1

(t+ 1)(t+ 2) · · · (t− k)
,

for t 6= −1,−2, . . . , k.

For all t, k ∈ C, we have

tk =
Γ(t+ 1)

Γ(t− k + 1)
.

Since the antiderivative of t is not necessarily t2

2
, we try the approach of defining

the following functions.

Definition 8. Let gk, hk : T2 → R, k ∈ N0 be defined by

g0(t, s) = h0(t, s) = 1 for all s, t ∈ T
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and then recursively by

gk+1(t, s) =

∫ t

s

gk(σ(τ), s)∆τ for all s, t ∈ T

and

hk+1(t, s) =

∫ t

s

hk(τ, s)∆τ for all s, t ∈ T.

Therefore, we have

h∆
k (·, s) = hk−1(·, s) for all k ∈ N, s ∈ Tκ

and similarly

g∆
k (·, s) = gσk−1(·, s) for all k ∈ N, s ∈ Tκ.

Moreover, we can state the properties

g1(t, s) = h1(t, s) = t− s for all s, t ∈ T

and

g2(t, s) =

∫ t

s

(σ(τ)− s)∆τ, h2(t, s) =

∫ t

s

(τ − s)∆τ.

Example 4. Let us consider the following examples.

(i) If T = R, then

g2(t, s) = h2(t, s) =

∫ t

s

(τ − s)dτ =
(t− s)2

2
.

More generally, we have

gk(t, s) = hk(t, s) =
(t− s)k

k!
.

(ii) If T = Z, then

h2(t, s) =

∫ t

s

(τ − s)∆τ =
(τ − s)(τ − s− 1)

2

∣∣∣∣t
s

=

(
t− s

2

)
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since (
(τ − s)(τ − s− 1)

2

)∆

=

(
τ 2 − 2τs− τ + s2 + s

2

)∆

=
τ + σ(τ)− 2s− 1

2

=
2τ − 2s

2

= τ − s.

More generally, we have

hk(t, s) =

(
t− s
k

)
and

gk(t, s) =
(t− s+ k − 1)k

k!
.

(iii) If T = qN0, then by [22, Example 1.104]

hk(t, s) =
k−1∏
ν=0

t− qνs
ν∑

µ=0

qµ

and thus

h2(t, s) =
(t− s)(t− qs)

1 + q
.

Table 2.2 gives a short summary of the considered topics.

2.3. EXPONENTIAL FUNCTION

Definition 9. For h > 0, we define the Hilger complex numbers as

Ch :=

{
z ∈ C : z 6= −1

h

}
and the strip

Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
,
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Table 2.2. Examples of Time Scales

Time Scale T R Z qN0

Forward jump operator σ(t) t t+ 1 qt

Backward jump operator ρ(t) t t− 1 t
q

Graininess µ(t) 0 1 (q − 1)t

h2(t, s) (t−s)2
2

(
t−s
2

) (t−s)(t−qs)
1+q

where Zh := C for h = 0.

Definition 10. For h > 0, we define the cylinder transformation ξh : Ch → Zh by

ξh(z) =
1

h
Log(1 + zh),

where Log is the principal logarithm function.

Definition 11. We define a function p : T → R to be regressive provided that for all

t ∈ Tκ

1 + µ(t)p(t) 6= 0.

The set of regressive and rd-continuous functions f : T→ R will be denoted by

R = R(T) = R(T,R).

Moreover, we define the set R+ of all positively regressive elements of R by

R+ = {p ∈ R : 1 + µ(t)p(t) > 0 ∀t ∈ Tκ} .

Definition 12. Let p ∈ R and ξh the cylinder transformation. Then we define the

exponential function by

ep(t, s) := exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T.
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Definition 13. If p ∈ R, then the first order linear dynamic equation

y∆ = p(t)y (4)

is called regressive.

Theorem 7. Suppose (4) is regressive and fix t0 ∈ T. Then ep(·, t0) is the solution of

the initial value problem

y∆ = p(t)y, y(t0) = 1

on T.

Proof. See [22, Theorem 2.33].

Definition 14. Let p, q ∈ R. We define the circle plus addition ⊕ by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ Tκ,

the circle minus subtraction 	 by

(p	 q)(t) := (p⊕ (	q))(t) for all t ∈ Tκ,

and

(	p)(t) := − p(t)

1 + µ(t)p(t)
for all t ∈ Tκ.

Theorem 8. Let p, q ∈ R and t, s, r ∈ T. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) 1
ep(t,s)

= e	p(t, s);

(iv) ep(t, s) = 1
ep(s,t)

= e	p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);
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(vii) ep(t,s)

eq(t,s)
= ep	q(t, s);

(viii)
(

1
ep(·,s)

)∆

= − p(t)
eσp (·,s) .

Proof. See [22, Theorem 2.36].

Theorem 9. Let p ∈ R and t0 ∈ T.

(i) If 1 + µ(t)p(t) > 0 on Tκ, then ep(t, t0) > 0 for all t ∈ T.

(ii) If 1 + µ(t)p(t) < 0 for some t ∈ Tκ, then

ep(t, t0)ep(σ(t), t0) < 0.

(iii) If 1 + µ(t)p(t) < 0 for all t ∈ Tκ, then ep(t, t0) changes sign at every point t ∈ T.

Proof. See [22, Theorem 2.44 and 2.48].

Example 5. Let α ∈ R be constant and t, t0 ∈ T.

(i) If T = R, then

eα(t, t0) = eα(t−t0).

(ii) If T = Z, then

eα(t, t0) = (1 + α)t−t0 .

(iii) If T = qN0, then

eα(t, t0) =
∏

s∈[t0,t)

(1 + (q − 1)αs).

(iv) If T = hZ, then

eα(t, t0) = (1 + αh)
t−t0
h .

2.4. LOGARITHM

To define an inverse function of the previously introduced exponential function on

time scales that still has most of the desired properties from the well known logarithm
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in the literature is difficult. In 2005, Martin Bohner suggested two different approaches

to the topic, see [14]. Later, Billy Jackson defined the logarithm on time scales in the

following way, compare [43].

Definition 15. Let g : T → R be a differentiable, nonvanishing function. Then the

logarithm on time scales is defined as

logT g(t) =
g∆(t)

g(t)
. (5)

Remark 1. Note that

logT ep(t, s) =
(ep(t, s))

∆

ep(t, s)
=
p(t)ep(t, s)

ep(t, s)
= p(t),

and therefore the logarithm is a left inverse of the exponential function.

2.5. DYNAMIC INEQUALITIES

Next, we consider some basic inequalities, which will be useful in the upcoming

sections.

Theorem 10 (Hölder’s Inequality). Let a, b ∈ T and f, g : [a, b] → R be rd-continuous.

Then

∫ b

a

|f(t)g(t)|∆t ≤
{∫ b

a

|f(t)|p ∆t

} 1
p
{∫ b

a

|g(t)|q ∆t

} 1
q

, (6)

where p > 1 and 1
p

+ 1
q

= 1.

Proof. See [22, Theorem 6.13].

Theorem 11 (Jensen’s Inequality). Let a, b ∈ T and c, d ∈ R. If g : [a, b] → (c, d) is

rd-continuous and F : (c, d)→ R is continuous and convex, then

F

(∫ b
a
g(t)∆t

b− a

)
≤
∫ b
a
F (g(t))∆t

b− a
. (7)

Proof. See [22, Theorem 6.17].
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2.6. SHIFT, CONVOLUTION AND LAPLACE TRANSFORM

The following definitions and examples can be found in the paper [17] by Bohner

and Guseinov.

Definition 16. Let T be a time scale, supT = ∞, t0, t, s ∈ T and t0 ≤ s ≤ t. For a

given f : [t0,∞)→ C, we call the solution of the shifting problem

u∆t(t, σ(s)) = −u∆s(t, s), u(t, t0) = f(t)

the shift of f . We denote the shift by f̂ .

Example 6. We compute the shift for the following time scales.

(i) If T = R, then the shifting problem

∂u(t, s)

∂t
= −∂u(t, s)

∂s
, u(t, t0) = f(t)

has the unique solution u(t, s) = f(t− s+ t0).

(ii) If T = Z, then the shifting problem

u(t+ 1, s+ 1)− u(t, s+ 1) = −u(t, s+ 1) + u(t, s), u(t, t0) = f(t)

has the unique solution u(t, s) = f(t− s+ t0).

(iii) If T = hZ, then the shifting problem

u(t+ h, s+ h)− u(t, s+ h)

h
=
−u(t, s+ h) + u(t, s)

h
, u(t, t0) = f(t)

has the unique solution u(t, s) = f(t− s+ t0).

(iv) If T = qN0, then the shift of f : T→ R is given by [17]

f̂(qkt, t) =
k∑
ν=0

 k

ν

 tν(1− t)k−νq f(qν),

where we use the following notation

[α] =
qα − 1

q − 1
;
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[n]! =
n∏
k=1

[k] ;

 m

n

 =
[m]!

[n]! [m− n]!
;

(t− s)nq =
n−1∏
k=0

(t− qks),

where α ∈ R, m,n ∈ N0 and t, s ∈ T.

Definition 17. Let f, g : T→ R be two functions. Their convolution f ∗ g is defined by

(f ∗ g)(t) =

∫ t

t0

f̂(t, σ(s))g(s)∆s, t ∈ T,

where f̂ is the shift of f .

The convolution on time scales has the following properties.

Theorem 12. The shift of a convolution is given by

(f̂ ∗ g)(t, s) =

∫ t

s

f̂(t, σ(u))ĝ(u, s)∆u.

Proof. See [17, Theorem 2.6].

Theorem 13. The convolution is associative, that is

(f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof. See [17, Theorem 2.7].

Theorem 14. If f is delta differentiable, then

(f ∗ g)∆ = f∆ ∗ g + f(t0)g.

If g is delta differentiable, then

(f ∗ g)∆ = f ∗ g∆ + fg(t0).
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Moreover,∫ t

t0

f̂(t, σ(s))∆s =

∫ t

t0

f(s)∆s.

Proof. See [17, Theorem 2.8, Corollary 2.9].

We now introduce the notion of the Laplace transform.

Definition 18. Assume f : T0 → R is regulated. Then the Laplace transform of f is

defined by

L{f} (z) =

∫ ∞
0

e	z(σ(t), 0)f(t)∆t

for z ∈ D {f}, where D {f} consists of all complex numbers z for which the improper

integral exists.

The following property is given in [22, Example 3.103].

Lemma 1. Assume f : T0 → R is regulated. Then

L{gf} (z) = − d

dz
L {f} (z) for z ∈ D(f),

where

g(t) =

∫ σ(t)

0

1

1 + µ(τ)z
∆τ.

Theorem 15. If f, g : T→ R are locally ∆-integrable function on T, then

L{f ∗ g} (z) = L{f} (z) · L {g} (z),

where z ∈ D(f) ∩ D(g). We will refer to this property as the convolution theorem.

Proof. See [17, Theorem 2.7].
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3. MOMENT GENERATING FUNCTION

Let a moment generating function be defined, with the help of the Laplace trans-

formation [39, p.181], as follows

MX(t) =

∫ ∞
−∞

etxf(x)dx,

where f(x) is a continuous probability density function. This function allows us to

compute the moments by

E(Xn) = M
(n)
X (0) =

dnMX

dtn
(0),

compare [11, Section 2.5].

The following definition introduces the modified Laplace transform on time scales

(see Definition 18). We assume that the time scale T0 is such that 0 ∈ T0 and supT0 =∞.

Moreover, note the slight change from Definition 18 as we replace σ(t) with t and 	z
with z in the exponential function. The main reason for this change is to derive a more

approachable formula for the moments and especially for the expected value.

L̃ {f} (z) =

∫ ∞
0

ez(t, 0)f(t)∆t.

Throughout this section, we assume that z is positively regressive and that interchanging

the order of differentiation and integration does not cause any problems.

Lemma 2. Assume f : T0 → R is regulated. Then

d

dz
L̃ {f} (z) =

∫ ∞
0

ez(t, 0)f(t)gt(z)∆t,

where

gt(z) =

∫ t

0

1

1 + µ(τ)z
∆τ.

Proof. Using [22, Example 2.42], we have

d

dz
ez(t, 0) = ez(t, 0)

∫ t

0

1

1 + µ(τ)z
∆τ.
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As interchanging the order of differentiation and integration is possible, we get

d

dz
L̃ {f} (z) =

d

dz

∫ ∞
0

ez(t, 0)f(t)∆t

=

∫ ∞
0

d

dz
ez(t, 0)f(t)∆t

=

∫ ∞
0

ez(t, 0)f(t)

∫ t

0

1

1 + µ(τ)z
∆τ∆t

=

∫ ∞
0

ez(t, 0)f(t)gt(z)∆t.

This completes the proof.

Example 7. First moment on time scales. Computation yields

d

dz
L̃ {f} (0) =

∫ ∞
0

f(t)

(∫ t

0

1∆τ

)
∆t

=

∫ ∞
0

tf(t)∆t

=

∫ ∞
0

h1(t, 0)f(t)∆t.

Example 8. Second moment on time scales. Using the usual product rule and Lemma

2, we get

d2

dz2
L̃ {f} (z) =

∫ ∞
0

ez(t, 0)f(t)g′t(z)∆t

+

∫ ∞
0

ez(t, 0)f(t)g2
t (z)∆t

=

∫ ∞
0

ez(t, 0)f(t)
[
g2
t (z) + g′t(z)

]
∆t.

As

g′t(z) = −
∫ t

0

µ(τ)

(1 + µ(τ)z)2
∆τ,

we have

d2

dz2
L̃ {f} (0) =

∫ ∞
0

f(t)

(∫ t

0

1∆τ

)2

∆t−
∫ ∞

0

f(t)

∫ t

0

µ(τ)∆τ∆t

=

∫ ∞
0

f(t)

[
t2 −

∫ t

0

µ(τ)∆τ

]
∆t

=

∫ ∞
0

2h2(t, 0)f(t)∆t.
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The last equality holds as

(
t2 −

∫ t

0

µ(τ)∆τ

)∆

= t+ σ(t)− µ(t)

= t+ σ(t)− σ(t) + t

= 2t.

Moreover,

(2h2(t, 0))∆ = 2h1(t, 0) = 2t,

and for t = 0, both expressions are 0. Equivalently, this fact could have been shown by

the string of equations

t2 −
∫ t

0

µ(τ)∆τ =

∫ t

0

t∆τ −
∫ t

0

σ(τ)∆τ +

∫ t

0

τ∆τ

=

∫ 0

t

(σ(τ)− t)∆τ + h2(t, 0)

= g2(0, t) + h2(t, 0)

= 2h2(t, 0).

More generally for an arbitrary function H(t, z), denoting by H ′(t, z) the derivative

of H with respect to z, we have

d

dz
L̃ {Hf} (z) =

d

dz

∫ ∞
0

ez(t, 0)f(t)H(t, z)∆t

=

∫ ∞
0

ez(t, 0)f(t)H ′(t, z)∆t

+

∫ ∞
0

ez(t, 0)f(t)gt(z)H(t, z)∆t

=

∫ ∞
0

ez(t, 0)f(t) [H ′(t, z) +H(t, z)gt(z)] ∆t

= L̃ {f (H ′ +Hgt)} (z).

Theorem 16. Let gt(z) =
∫ t

0
1

1+zµ(τ)
∆τ and define Hk recursively by

H0(t, z) = 1,

Hk+1(t, z) = H ′k(t, z) +Hk(t, z)gt(z), k ∈ N0.
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Then for ak = k + 1, we have

Hk+1(t, z) = ak

∫ t

0

Hk(τ, z)

1 + zµ(τ)
∆τ.

Proof. We will prove this theorem by induction. From the derivation of the first moment,

we know that H1(t, z) = gt(z), a0 = 1 and H0 = 1. Thus the claim holds for k = 0. Now,

assuming that the claim holds for k ∈ N0, we get

Hk+2(t, z) = H ′k+1(t, z) +Hk+1(t, z)gt(z)

=
d

dz
ak

∫ t

0

Hk(τ, z)

1 + zµ(τ)
∆τ + ak

∫ t

0

Hk(τ, z)

1 + zµ(τ)
∆τgt(z)

= ak

∫ t

0

H ′k(τ, z)(1 + zµ(τ))− µ(τ)Hk(τ, z)

(1 + zµ(τ))2
∆τ

+ak

∫ t

0

Hk(τ, z)

1 + zµ(τ)
∆τgt(z)

= ak

∫ t

0

H ′k(τ, z)

1 + zµ(τ)
∆τ − ak

∫ t

0

µ(τ)Hk(τ, z)

(1 + zµ(τ))2
∆τ

+ak

∫ t

0

Hk(τ, z)

1 + zµ(τ)
∆τgt(z)

= : H(t).

Now, we have H(0) = 0 and

H∆(t) =
akH

′
k(t, z)

1 + zµ(t)
− akµ(t)Hk(t, z)

(1 + zµ(t))2

+
akHk(t, z)

1 + zµ(t)
gt(z) +

ak
1 + zµ(t)

∫ σ(t)

0

Hk(τ, z)

1 + zµ(τ)
∆τ

=
ak

1 + zµ(t)
[H ′k(t, z) +Hk(t, z)gt(z)]

+
ak

1 + zµ(t)

[
−
∫ σ(t)

t

Hk(τ, z)

1 + zµ(τ)
∆τ +

∫ σ(t)

0

Hk(τ, z)

1 + zµ(τ)
∆τ

]

=
ak

1 + zµ(t)
Hk+1(t, z) +

ak
1 + zµ(t)

∫ t

0

Hk(τ, z)

1 + zµ(τ)
∆τ

=
ak

1 + zµ(t)
Hk+1(t, z) +

1

1 + zµ(t)
Hk+1(t, z)

=
ak + 1

1 + zµ(t)
Hk+1(t, z)

=
ak+1

1 + zµ(t)
Hk+1(t, z)
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as ak + 1 = k + 1 + 1 = k + 2 = ak+1. Thus

Hk+2(t, z) = ak+1

∫ t

0

Hk+1(τ, z)

1 + zµ(τ)
∆τ,

which completes the proof.

Theorem 17. Let Hk(t, z) be defined as in Theorem 16. Then

Hk(t, 0) = k!hk(t, 0).

Proof. Again, we will prove this theorem by induction. As H0(t, 0) = 1 and h0(t, 0) = 1,

the claim holds for k = 0. Now, assuming that the claim holds for k ∈ N0, we have

Hk+1(t, 0) = (k + 1)

∫ t

0

Hk(τ, 0)

1 + 0µ(τ)
∆τ

= (k + 1)

∫ t

0

k!hk(τ, 0)∆τ

= (k + 1)!hk+1(t, 0),

and the proof is complete.

Some interesting properties regarding the functions hk and gk result from here.

Corollary 1. We have

h2(t, 0) + g2(t, 0) = h2
1(t, 0).

Proof. With the Hk(t, z) as defined in Theorem 16, we have

H1(t, z) = H ′0(t, z) +H0(t, z)gt(z) = gt(z)

and

H2(t, z) = H ′1(t, z) +H1(t, z)gt(z)

= g′t(z) + g2
t (z)

= −
∫ t

0

µ(τ)

(1 + zµ(τ))2
∆τ +

(∫ t

0

1

1 + zµ(τ)
∆τ

)2

.
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Therefore

H2(t, 0) = −
∫ t

0

µ(τ)∆τ +

(∫ t

0

1∆τ

)2

= −
∫ t

0

(σ(τ)− τ)∆τ + h2
1(t, 0)

= −
∫ t

0

(σ(τ)− 0)∆τ +

∫ t

0

(τ − 0)∆τ + h2
1(t, 0)

= −g2(t, 0) + h2(t, 0) + h2
1(t, 0).

By Theorem 17, we also have

H2(t, 0) = 2h2(t, 0)

and thus

h2(t, 0) = h2
1(t, 0)− g2(t, 0),

which completes the proof of the corollary.

Remark 2. With the help of the previous results, we can define the moments on time

scales by

ET(Xk) :=

∫ ∞
0

k!hk(t, 0)f(t)∆t.

Example 9. Let T = R. Then

ER(Xk) =

∫ ∞
0

k!hk(t, 0)f(t)∆t

=

∫ ∞
0

k!
tk

k!
f(t)dt

=

∫ ∞
0

tkf(t)dt,

which corresponds to the continuous definition found for example in [11, 2.3.9] for con-

tinuous distributions with positive support.

Example 10. Let T = Z. Then

EZ(Xk) =

∫ ∞
0

k!hk(t, 0)f(t)∆t
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=
∞∑
t=0

k!

(
t

k

)
f(t)

=
∞∑
t=0

t(t− 1) · · · (t− k + 1)f(t),

which is slightly different from the discrete definition found in [11, 2.2.14], applied for

discrete distributions with positive support

E(Xk) =
∞∑
t=0

tkf(t).
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4. CUMULANT GENERATING FUNCTION

Definition 19. f is called a time scales probability density function if

1. f(t) ≥ 0 ∀t ∈ T0,

2.
∫∞

0
f(t)∆t = 1.

Definition 20. Assume f : T0 → R is a regulated time scales probability density function

and let the moment generating function be defined as

M(z) =

∫ ∞
0

ez(t, 0)f(t)∆t.

Then the cumulant generating function C(t) is the logarithm of M(z)

C(z) = logM(z).

Definition 21. Let f be a time scales probability density function of the random variable

X.

1. The expected value ET(X) is defined as

ET(X) :=
dC

dz
(0).

2. The variance VarT(X) is defined as

VarT(X) :=
d2C

dz2
(0).

Remark 3. The expected value and the variance correspond therefore with the first and

second cumulant. Moreover, the expected value matches the definition of the first moment

of a random variable on time scales.

Computation yields

ET(X) =
dC

dz
(0) =

1

M(0)

dM

dz
(0)

=
1∫∞

0
f(t)∆t

∫ ∞
0

h1(t, 0)f(t)∆t
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=

∫ ∞
0

h1(t, 0)f(t)∆t

=

∫ ∞
0

tf(t)∆t

and

VarT(X) =
d2C

dz2
(0) =

M ′′(0)

M(0)
− (M ′(0))2

M2(0)

=

∫ ∞
0

2h2(t, 0)f(t)∆t−
(∫ ∞

0

h1(t, 0)f(t)∆t

)2

.

Remark 4. Note that, as in the usual definition, we have

Var(X) = E(X2)− (E(X))2

see [39, p.51], and therefore on time scales

VarT(X) = ET(X2)− (ET(X))2 .

Example 11. For the continuous and the discrete cases, we have the following.

(i) If T = R, then

ER(X) =

∫ ∞
0

tf(t)dt

and

VarR(X) =

∫ ∞
0

t2f(t)dt−
(∫ ∞

0

tf(t)dt

)2

.

Note that, as previously mentioned, the expected value corresponds to the known def-

inition, and due to the matching definition of the second moment, also the variance

coincides.

(ii) If T = Z, then

EZ(X) =
∞∑
t=0

tf(t)
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and

VarZ(X) =
∞∑
t=0

t(t− 1)f(t)−

(
∞∑
t=0

tf(t)

)2

.

Note that the expected value is the same as the one for usual discrete distributions,

but due to the different definition of the second moment, the variance is slightly

different.

Theorem 18. Assume f : T0 → R is a regulated time scales probability density function,

then

VarT(X) ≥ −
∫ ∞

0

f(t)

∫ t

0

µ(τ)∆τ∆t.

Moreover, if X = c for c ∈ R, c ≥ 0, then the variance is minimized with value

VarT(X) = −
∫ ∞

0

f(t)

∫ t

0

µ(τ)∆τ∆t = 2h2(c, 0)− h2
1(c, 0).

Proof. We have

VarT(X) =

∫ ∞
0

2h2(t, 0)f(t)∆t−
(∫ ∞

0

h1(t, 0)f(t)∆t

)2

=

∫ ∞
0

2h2(t, 0)f(t)∆t− 2ET(X)

∫ ∞
0

h1(t, 0)f(t)∆t

+ (ET(X))2

∫ ∞
0

f(t)∆t

=

∫ ∞
0

[
2h2(t, 0)− 2ET(X)h1(t, 0) + (ET(X))2] f(t)∆t

=

∫ ∞
0

[
2h2(t, 0)− h2

1(t, 0) + (h1(t, 0)− ET(X))2
]
f(t)∆t.

As

f(t) ≥ 0

and

(h1(t, 0)− ET(X))2 ≥ 0,
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and with Corollary 1

2h2(t, 0)− h2
1(t, 0) = h2(t, 0)− g2(t, 0)

=

∫ t

0

τ∆τ −
∫ t

0

σ(τ)∆τ

= −
∫ t

0

µ(τ)∆τ,

we get

VarT(X) ≥ −
∫ ∞

0

f(t)

∫ t

0

µ(τ)∆τ∆t.

If X = c, then the entire density is distributed at c and

ET(X) =

∫ ∞
0

h1(t, 0)f(t)∆t = h1(c, 0)

∫ ∞
0

f(t)∆t = h1(c, 0) = c,

and similarly∫ ∞
0

h2(t, 0)f(t)∆t = h2(c, 0).

Therefore, we have

VarT(X) = 2h2(c, 0)− h2
1(c, 0)

and ∫ ∞
0

(h1(t, 0)− ET(X))2 f(t)∆t =

∫ ∞
0

(h1(t, 0)− c)2 f(t)∆t = 0.

This results in

VarT(X) =

∫ ∞
0

[
2h2(t, 0)− h2

1(t, 0) + (h1(t, 0)− ET(X))2
]
f(t)∆t

=

∫ ∞
0

(
2h2(t, 0)− h2

1(t, 0)
)
f(t)∆t

= −
∫ ∞

0

f(t)

∫ t

0

µ(τ)∆τ∆t

and concludes the proof of the theorem.
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Remark 5. Note that, in comparison to the classical definition of variance, the new

quantity VarT is not necessarily greater or equal to 0. Only in the continuous case is that

property necessarily achieved. Nevertheless, we get a lower bound for the variance. This

new definition will yield great advantages in the computation of variance and moments

for the upcoming new time scales distributions.

Remark 6. We have ET(X) = E(X). The relationship of VarT(X) with the classical

variance Var(X) and expectation E(X) is

VarT(X) =

∫ ∞
0

[
2h2(t, 0)− h2

1(t, 0) + (h1(t, 0)− ET(X))2
]
f(t)∆t

=

∫ ∞
0

[
2h2(t, 0)− h2

1(t, 0) + (t− ET(X))2
]
f(t)∆t

= Var(X) +

∫ ∞
0

[
2h2(t, 0)− h2

1(t, 0)
]
f(t)∆t

= Var(X) + E(2H(X)),

where H(X) has the time scales probability density function f(t) = h2(t, 0)− t2

2
.

Example 12. We apply the previous properties to different time scales.

(i) If T = R, then

VarR(X) ≥ −
∫ ∞

0

f(t)

∫ t

0

µ(τ)∆τ∆t = −
∫ ∞

0

f(t)

∫ t

0

0dτdt = 0,

and if X = c, then

VarR(X) = 2h2(c, 0)− h2
1(c, 0) = 2

c2

2
− c2 = 0.

(ii) If T = Z, then

VarZ(X) ≥ −
∫ ∞

0

f(t)

∫ t

0

µ(τ)∆τ∆t

= −
∞∑
t=0

f(t)
t−1∑
j=0

1

= −
∞∑
t=0

tf(t)

= −EZ(X),
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and if X = c, then

VarT(X) = 2h2(c, 0)− h2
1(c, 0) = 2

c(c− 1)

2
− c2 = −c.

(iii) If T = hZ, then

VarhZ(X) ≥ −
∫ ∞

0

f(t)

∫ t

0

µ(τ)∆τ∆t

= −
∫ ∞

0

f(t)

∫ t

0

h∆τ∆t

= −h
∫ ∞

0

tf(t)∆t

= −hEhZ(X),

and if X = c, then

VarhZ(X) = −hEhZ(X) = −hc.
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5. DISTRIBUTIONS

5.1. UNIFORM DISTRIBUTION

Definition 22. Let a, b ∈ T0 and a ≤ t ≤ b. Then we define the time scales probability

density function of the uniform distribution by

f(t) =


1

σ(b)−a , if a ≤ t ≤ b

0, otherwise.

Remark 7. Clearly we have f(t) ≥ 0 and

∫ ∞
0

f(t)∆t =
1

σ(b)− a

∫ σ(b)

a

∆t = 1,

and therefore f(t) is a well-defined time scales probability density function.

Theorem 19. Let a, b ∈ T0, a ≤ t ≤ b and the time scales probability density function

of X be

f(t) =


1

σ(b)−a , if a ≤ t ≤ b

0, otherwise.

Then

ET(X) =
h2(σ(b), a)

σ(b)− a
+ a (8)

and

VarT(X) = 2
h3(σ(b), 0)− h3(a, 0)

σ(b)− a
−
(
h2(σ(b), a)

σ(b)− a
+ a

)2

(9)

and

ET(Xk) = k!
hk+1(σ(b), 0)− hk+1(a, 0)

σ(b)− a
. (10)
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Proof. We have

ET(X) =

∫ ∞
0

h1(t, 0)f(t)∆t

=
1

σ(b)− a

∫ σ(b)

a

t∆t

=
1

σ(b)− a

∫ σ(b)

a

(t− a)∆t+
1

σ(b)− a

∫ σ(b)

a

a∆t

=
h2(σ(b), a)

σ(b)− a
+

a

σ(b)− a
(σ(b)− a)

=
h2(σ(b), a)

σ(b)− a
+ a,

and (8) is shown. Moreover, we have

VarT(X) =

∫ ∞
0

2h2(t, 0)f(t)∆t−
(∫ ∞

0

h1(t, 0)f(t)∆t

)2

=
2

σ(b)− a

∫ σ(b)

a

h2(t, 0)∆t−
(
h2(σ(b), a)

σ(b)− a
+ a

)2

=
2

σ(b)− a

(∫ σ(b)

0

h2(t, 0)∆t−
∫ a

0

h2(t, 0)∆t

)
−
(
h2(σ(b), a)

σ(b)− a
+ a

)2

= 2
h3(σ(b), 0)− h3(a, 0)

σ(b)− a
−
(
h2(σ(b), a)

σ(b)− a
+ a

)2

,

which is the desired equation (9). Finally

ET(Xk) =

∫ ∞
0

k!hk(t, 0)f(t)∆t

=
k!

σ(b)− a

∫ σ(b)

a

hk(t, 0)∆t

=
k!

σ(b)− a

(∫ σ(b)

0

hk(t, 0)∆t−
∫ a

0

hk(t, 0)∆t

)

= k!
hk+1(σ(b), 0)− hk+1(a, 0)

σ(b)− a
,

completing the proof of (10).

Example 13 (Continuous case). Let T = R. Then the probability density function is

f(t) =


1
b−a , if a ≤ t ≤ b

0, otherwise.
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Hence

ER(X) =
h2(σ(b), a)

σ(b)− a
+ a

=
1

b− a
(b− a)2

2
+ a

=
b− a

2
+ a =

a+ b

2
.

This is the expected value for the continuous uniform distribution that can be found in

[11, p.110]. Moreover,

VarR(X) =
2

b− a
b3 − a3

3!
−
(
a+ b

2

)2

=
2

b− a
b3 − a3

6
− a2 + ab+ b2

4

=
a2 + ab+ b2

3
− a2 + ab+ b2

4

=
b2 − 2ab+ a2

12
=

(b− a)2

12
.

This is the variance for the continuous uniform distribution, which can be found in the

literature for example in [11, p.110].

Example 14 (Discrete case). Let T = Z. Then the probability density function is

f(t) =


1

b+1−a , if a ≤ t ≤ b

0, otherwise,

which corresponds to 1
n

, where n represents the number of points having density greater

than zero. Furthermore,

EZ(X) =
1

b+ 1− a
(b+ 1− a)(b− a)

2
+ a

=
b− a

2
+ a =

a+ b

2
.

This is exactly the expected value for the discrete uniform distribution with n = b+ 1−a,

which can be found in [11, p.108]. Moreover,

VarZ(X) =
2

b+ 1− a
(b+ 1)b(b− 1)− a(a− 1)(a− 2)

6
−
(
a+ b

2

)2
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=
b3 − a3 + 3a2b− 3ab2 + 9a2 − 3b2 − 6ab− 8a− 4b

12(b+ 1− a)

=
(b+ 1− a)2 − 1

12
− a+ b

2
.

This is not exactly the variance for the discrete uniform distribution from the literature,

n2−1
12

, compare [11, p.108], due to the slightly changed definition of the variance. As

expected, we get Var(X) − E(X), as in the probability density function of 2H(X), we

have

f(t) = 2h2(t, 0)− 2
t2

2
= t(t− 1)− t2 = −t.

Now, the moment generating function will be derived for the uniform distribution

on time scales.

Theorem 20. Let a, b ∈ T0, a ≤ t ≤ b and the time scales probability density function

of X be

f(t) =


1

σ(b)−a , if a ≤ t ≤ b

0, otherwise.

Then

MX(z) =
1

z

ez(σ(b), 0)− ez(a, 0)

σ(b)− a
. (11)

Proof.

MX(z) =

∫ ∞
0

f(t)ez(t, 0)∆t

=

∫ σ(b)

a

1

σ(b)− a
ez(t, 0)∆t

=
1

z

1

σ(b)− a

∫ σ(b)

a

zez(t, 0)∆t

=
1

z

1

σ(b)− a
ez(t, 0)

∣∣∣∣σ(b)

a

=
1

z

ez(σ(b), 0)− ez(a, 0)

σ(b)− a

and (11) is shown.
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Example 15. We apply (11) to different time scales.

(i) If T = R, then

MX(z) =
1

z

ebz − eaz

b− a
.

Note that this is exactly the formula of the moment generating function of the

continuous uniform distribution, see [48, Example 10.1].

(ii) If T = Z, then

MX(z) =
1

z

(1 + z)b+1 − (1 + z)a

b+ 1− a
.

Due to the different definition of the Laplace transform and exponential function,

the moment generating function differs from the discrete case, but still follows the

same structure. In the literature, we find

MX(z) =
e(b+1)z − eaz

n(ez − 1)
,

where n equals the number of points with density different from 0, i.e., n = b+1−a,

compare [13, p.72].

(iii) If T = hZ, then

MX(z) =
1

z

(1 + hz)
b+h
h − (1 + hz)

a
h

b− a
.

The diagrams in Figure 5.1 represent the time scales probability density function

(pdf) and the time scales cumulative distribution function (cdf) for an uniformly dis-

tributed random variable, with support [1, 4]. The diagrams include continuous, discrete,

hZ (with h = 1
2
) and qN0 (with q = 1.1) time scales cases. A formal definition of the

cumulative density function will be presented in Section 6. Note that the cumulative

distribution function is equal to one at σ(4), due to the slightly different definition.
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Figure 5.1. Uniform distribution
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5.2. EXPONENTIAL DISTRIBUTION

Definition 23. Let λ > 0, 	λ be positively regressive and t ∈ T0. Then we define the

time scales probability density function of the exponential distribution by

f(t) =

−(	λ)(t)e	λ(t, 0), if t ≥ 0

0, if t < 0.

Remark 8. Note that

−(	λ)(t)e	λ(t, 0) =
λ

1 + µ(t)λ
e	λ(t, 0) = λe	λ(σ(t), 0) =

λ

eλ(σ(t), 0)
,

and therefore the time scales probability density function is equivalent to

f(t) =


λ

eλ(σ(t),0)
, if t ≥ 0

0, if t < 0.

Remark 9. Clearly, we have f(t) ≥ 0 as λ > 0 and eλ(σ(t), 0) > 0 due to the fact that

	λ is positively regressive [22, Theorem 2.44 (i)] and∫ ∞
0

f(t)∆t =

∫ ∞
0

−(	λ)(t)e	λ(t, 0)∆t

= −
∫ ∞

0

e∆
	λ(·, 0)(t)∆t

= e	λ(t, 0)|∞0 = 1,

and therefore f is a well-defined time scales probability density function. The last equality

holds, as for nonnegative, rd-continuous λ, we have

eλ(t, t0) ≥ 1 +

∫ t

t0

λ∆u = 1 + λ(t− t0), t ≥ t0,

compare [15, Remark 2], which goes to infinity for t→∞.

Theorem 21. Let λ > 0 and 	λ be positively regressive, t ∈ T0, and the time scales

probability density function of X be

f(t) =

−(	λ)(t)e	λ(t, 0), if t ≥ 0

0, if t < 0.
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Then

ET(X) =
1

λ
(12)

and

VarT(X) =
1

λ2
. (13)

Proof. Integration by parts yields

ET(X) =

∫ ∞
0

tf(t)∆t

= −
∫ ∞

0

t(	λ)(t)e	λ(t, 0)∆t

= −te	λ(t, 0)|∞0 +

∫ ∞
0

e	λ(σ(t), 0)∆t

= 0 +
1

λ

∫ ∞
0

λ

1 + µ(t)λ
e	λ(t, 0)∆t

= −1

λ

∫ ∞
0

(	λ)(t)e	λ(t, 0)∆t

=
1

λ

∫ ∞
0

f(t)∆t

=
1

λ
,

and (12) is shown. Moreover, we have

VarT(X) =

∫ ∞
0

2h2(t, 0)f(t)∆t−
(∫ ∞

0

h1(t, 0)f(t)∆t

)2

= −2

∫ ∞
0

h2(t, 0)(	λ)(t)e	λ(t, 0)∆t− 1

λ2

= −2h2(t, 0)e	λ(t, 0)|∞0 + 2

∫ ∞
0

h1(t, 0)e	λ(σ(t), 0)∆t− 1

λ2

= −2

λ

∫ ∞
0

t(	λ)e	λ(t, 0)∆t− 1

λ2

=
2

λ
ET(X)− 1

λ2

=
2

λ

1

λ
− 1

λ2

=
1

λ2
,

which is the desired equation (13).
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Theorem 22. Let λ > 0, t ∈ T0 and the time scales probability density function of X be

f(t) =

−(	λ)(t)e	λ(t, 0), if t ≥ 0

0, if t < 0.

Then the k-th moment of X is given by

ET(Xk) =
k!

λk
. (14)

Proof. This can be shown by induction. Note that ET(X) = 1
λ

by Theorem 21, so the

statement holds for k = 1. Now, assume that the statement holds for k − 1. Then we

have

ET(Xk) =

∫ ∞
0

k!hk(t, 0)f(t)∆t

= −
∫ ∞

0

k!hk(t, 0)(	λ)e	λ(t, 0)∆t

= −k!hk(t, 0)e	λ(t, 0)|∞0 +

∫ ∞
0

k!hk−1(t, 0)e	λ(σ(t), 0)∆t

= −1

λ

∫ ∞
0

k!hk−1(t, 0)(	λ)e	λ(t, 0)∆t

=
k

λ
ET(Xk−1)

=
k

λ

(k − 1)!

λk−1

=
k!

λk
.

This completes the proof of (14).

Example 16 (Continuous case). Let T = R. Then f(t) = λe−λt. This is the exact defi-

nition of the continuous exponential distribution. Also expected value ( 1
λ

), variance ( 1
λ2

)

and k-th moment ( k!
λk

) match with results found in the literature. Moreover, considering

	λ as positively regressive, gives 1 + µ(t)(	λ) > 0 and therefore 1 > 0, which is true for

all λ ∈ R. So with the initial restriction of λ > 0, we get the exact definition from the

continuous case, see [64, Section 5.2].
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Example 17 (Discrete case). Let T = Z. Then

f(t) =
λ

(1 + λ)t+1
=

λ

1 + λ

(
1− λ

1 + λ

)t
.

If we let p = λ
1+λ

, then

f(t) = p(1− p)t.

This is the exact definition of the geometric distribution, which is the discrete equivalent

of the continuous exponential function. p represents here the probability that a success

occurs. Therefore f(t) represents the probability of a success after t failures. Considering

that 	λ is positively regressive yields 1 + µ(t)(	λ) > 0 and therefore 1 − λ
1+λ

> 0 or

p < 1. So with the initial restriction of λ > 0 follows also p > 0 and we get p ∈ (0, 1),

the property from the geometric distribution. Moreover, we have λ = p
1−p and

EZ(X) =
1

λ
=

1− p
p

,

which matches exactly the property of the geometric distribution. We also have

VarZ(X) =
1

λ2
=

(1− p)2

p2
,

which slightly differs from the variance of the geometric distribution 1−p
p2

. Moreover,

EZ(Xk) =
k!

λk
=
k!(1− p)k

pk
.

For the known corresponding discrete version of the geometric distribution, see [25, 39]

applied to f(t) = p(1− p)t.

Example 18. Let T = hZ. Then

f(t) =
λ

(1 + λh)
t+h
h

=
λ

1 + λh

(
1

1 + λh

) t
h

=
1

h

[
λh

1 + λh

(
1− λh

1 + λh

) t
h

]
.

This is a new discrete distribution. Considering that 	λ is positive regressive yields

1− λh
1+λh

> 0 and therefore λh
1+λh

< 1, which is true for all λ.
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Now, a closed formula for the moment generating function for exponentially dis-

tributed random variables will be derived for all time scales.

Theorem 23. Let λ > 0 be constant, z 	 λ < 0, t ∈ T0 and the time scales probability

density function of X be

f(t) =

−(	λ)(t)e	λ(t, 0), if t ≥ 0

0, if t < 0.

Then

MX(z) =
λ

λ− z
. (15)

Proof. First, note λ > 0 implies

(z 	 λ)(t) = (z ⊕ (	λ))(t)

= z − λ

1 + µ(t)λ
− µ(t)λz

1 + µ(t)λ

=
z + µ(t)λz − λ− µ(t)λz

1 + µ(t)λ

=
z − λ

1 + µ(t)λ

and (
	λ
z 	 λ

)
(t) =

−λ
1+µ(t)λ

z−λ
1+µ(t)λ

=
λ

λ− z
.

Using this identity, we have

MX(z) =

∫ ∞
0

f(t)ez(t, 0)∆t

= −
∫ ∞

0

(	λ)(t)e	λ(t, 0)ez(t, 0)∆t

= −
∫ ∞

0

(	λ)(t)ez	λ(t, 0)∆t

= −
∫ ∞

0

(
	λ
z 	 λ

(z 	 λ)

)
(t)ez	λ(t, 0)∆t

= − λ

λ− z

∫ ∞
0

(z 	 λ)(t)ez	λ(t, 0)∆t
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= − λ

λ− z
ez	λ(t, 0)

∣∣∣∣∞
0

=
λ

λ− z
,

which is the desired property (15).

Example 19. Computation for the continuous and discrete cases yields:

(i) If T = R, then

MX(z) =
λ

λ− z
.

This corresponds to the known result for the exponential function, see [64, p.66].

(ii) If T = Z, then

MX(z) =
λ

λ− z

=

p
1−p
p

1−p − z

=
p

p− z + pz

=
p

1− (1− p)(1 + z)
.

Note that this corresponds to the structure of the moment-generating function of

the geometric distribution p
1−(1−p)ez , compare [25], again for f(t) = p(1− p)t.

(iii) If T = hZ, then

MX(z) =
λ

λ− z
.

The following three diagrams in 5.2 represent the time scales probability density

function (pdf) and the time scales cumulative density function (cdf) for an exponentially

distributed random variable with λ = 1
2
. The diagrams include continuous, discrete and

hZ (with h = 1
2
) time scales cases.
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Figure 5.2. Exponential distribution

5.3. GAMMA DISTRIBUTION

Definition 24. Let λ ∈ R, λ > 0 and define

Λ0(t, t0) = 0, Λ1(t, t0) = 1
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and then recursively

Λk+1(t, t0) = −
∫ t

t0

(	λ)(τ)Λk(σ(τ), t0)∆τ for k ∈ N.

Remark 10. Note that

Λ∆
k+1(t, t0) = −(	λ)(t)Λk(σ(t), t0) for k ∈ N.

Definition 25. Let λ > 0 and k ∈ N and t ∈ T0. Then we define the time scales

probability density function of the gamma distribution by

fk(t) =


λ

eλ(σ(t),0)
Λk(σ(t), 0), if t ≥ 0

0, if t < 0.
(16)

Moreover, we define

Fk(t) := −

(
k∑
ν=1

Λν(t, 0)

)
e	λ(t, 0).

If X is a random variable, which is gamma distributed, we write X ∼ Gam(k, λ).

Lemma 3. Let fk and Fk be as in Definition 25. Then

Fk(σ(t)) = −1

λ

k∑
ν=1

fν(t).

Proof. Using the definitions, we have

Fk(σ(t)) = −

(
k∑
ν=1

Λν(σ(t), 0)

)
e	λ(σ(t), 0)

= −1

λ

λ

eλ(σ(t), 0)

k∑
ν=1

Λν(σ(t), 0)

= −1

λ

k∑
ν=1

fν(t),

which completes the proof.
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Lemma 4. Let fk and Fk be as in Definition 25. Then

F∆
k = fk on [0,∞) , k ∈ N.

Proof. Using the time scales product rule, we have

F∆
k (t) =

(
−

(
k∑
ν=1

Λν(·, 0)

)
e	λ(·, 0)

)∆

(t)

= (	λ)(t)e	λ(t, 0)
k∑
ν=1

Λν−1(σ(t), 0)− (	λ)(t)e	λ(t, 0)
k∑
ν=1

Λν(σ(t), 0)

= (	λ)(t)e	λ(t, 0)

(
k−1∑
ν=0

Λν(σ(t), 0)−
k∑
ν=1

Λν(σ(t), 0)

)
= (	λ)(t)e	λ(t, 0) (Λ0(σ(t), 0)− Λk(σ(t), 0))

= −(	λ)(t)e	λ(t, 0)Λk(σ(t), 0)

=
λ

eλ(σ(t), 0)
Λk(σ(t), 0)

= fk(t),

which completes the proof.

Remark 11. The function fk, defined in Definition 25 is a valid time scales probability

density function. Note that, as 	λ is positively regressive, we have

λ

eλ(σ(t), 0)
= −	 λe	λ(t, 0) > 0

and inductively Λk(σ(t), 0) > 0. For k = 1, we have Λ1(σ(t), 0) = 1 > 0 and moreover,

Λk+1(σ(t), 0) = −
∫ σ(t)

0

(	λ)(τ)Λk(σ(τ), 0)∆τ

=

∫ σ(t)

0

λ

1 + µ(τ)λ
Λk(σ(τ), 0)∆τ

> 0.

Therefore fk(t) > 0 for k ∈ N. Finally, using Lemma 4, we have∫ ∞
0

fk(t)∆t =

∫ ∞
0

F∆
k (t)∆t

=

∫ ∞
0

[
−

(
k∑
ν=1

Λν(·, 0)

)
e	λ(·, 0)

]∆

(t)∆t
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= −

(
k∑
ν=1

Λν(t, 0)

)
e	λ(t, 0)

∣∣∣∣∣
∞

0

= − lim
t→∞

(
k∑
ν=1

Λν(t, 0)

)
e	λ(t, 0) + Λ1(0, 0)

= 1.

Now we apply the definition of the gamma distribution to the first three cases.

Example 20. If k = 1, then

f1(t) =
λ

eλ(σ(t), 0)
Λ1(σ(t), 0) =

λ

eλ(σ(t), 0)
.

Note that this is the exact time scales probability density function of the exponential

distribution. If k = 2, then

f2(t) =
λ

eλ(σ(t), 0)
Λ2(σ(t), 0) = − λ

eλ(σ(t), 0)

∫ σ(t)

0

(	λ)(τ)∆τ.

If k = 3, then

f3(t) =
λ

eλ(σ(t), 0)
Λ3(σ(t), 0)

= − λ

eλ(σ(t), 0)

∫ σ(t)

0

(	λ)(τ)Λ2(σ(τ), 0)∆τ

=
λ

eλ(σ(t), 0)

∫ σ(t)

0

(	λ)(τ)

∫ σ(τ)

0

(	λ)(s)Λ1(σ(s), 0)∆s∆τ

=
λ

eλ(σ(t), 0)

∫ σ(t)

0

(	λ)(τ)

∫ σ(τ)

0

(	λ(s))∆s∆τ.

Lemma 5. Let the graininess µ(t) be constant µ. Then

Λk+1(σ(t), 0) =

(
λ

1 + µλ

)k
gk(σ(t), 0).

Proof. First note that

Λk+1(σ(t), 0) = −
∫ σ(t)

0

(	λ)(τ)Λk(σ(τ), 0)∆τ

=

∫ σ(t)

0

λ

1 + µλ
Λk(σ(τ), 0)∆τ.
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This can be shown by induction. If k = 1, then

Λ2(σ(t), 0) =
λ

1 + µλ

∫ σ(t)

0

1∆τ =
λ

1 + µλ
σ(t) =

λ

1 + µλ
g1(σ(t), 0).

Therefore

Λk+1(σ(t), 0) =
λ

1 + µλ

∫ σ(t)

0

Λk(σ(τ), 0)∆τ

=

(
λ

1 + µλ

)k ∫ σ(t)

0

gk−1(σ(τ), 0)∆τ

=

(
λ

1 + µλ

)k
gk(σ(t), 0)

and the proof is complete.

Example 21. Let us consider the following time scales.

(i) If T = R, then

fk(t) = λe−λt
(

λ

1 + 0λ

)k−1
tk−1

(k − 1)!

=
λke−λttk−1

Γ(k)
.

This corresponds exactly to the definition of the density function of the continuous

gamma distribution for k ∈ N. This is also known as the Erlang distribution, see

[38, p.15]. In Figure 5.3, the probability density function and the cumulative density

function of a random variable, which is gamma distributed with λ = 1
2

for different

values of k, is presented.

(ii) If T = Z, then

fk(t) =
λ

(1 + λ)t+1

(
λ

1 + λ

)k−1
(t+ 1− 0 + (k − 1)− 1)k−1

(k − 1)!

=
1

(1 + λ)t

(
λ

1 + λ

)k
(t+ k − 1)k−1

(k − 1)!

= (1− p)tpkΓ(t+ k)

Γ(k)t!
.
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Figure 5.3. Gamma distribution (continuous case)

Note that this is equivalent to the definition of the density function of the negative

binomial distribution, where t represents the number of failures until getting k suc-

cesses, see [25, p.95]. The diagrams in Figure 5.4 represent the probability density

function and the cumulative density function of a random variable, which is gamma

distributed with λ = 1
2

for different values of k.
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Theorem 24. Let λ > 0, t ∈ T0, k ∈ N and the time scales probability density function

of X be

fk(t) =


λ

eλ(σ(t),0)
Λk(σ(t), 0), if t ≥ 0

0, if t < 0.

Then

ET(X) =
k

λ
(17)

and

VarT(X) =
k

λ2
. (18)

Proof. Using Lemma 3 and Lemma 4, we have

ET(X) =

∫ ∞
0

tfk(t)∆t =

∫ ∞
0

tFDeltak(t)∆t

= tFk(t)|∞0 −
∫ ∞

0

Fk(σ(t))∆t

=
1

λ

∫ ∞
0

k∑
ν=1

fk(t)∆t

=
k

λ
.

This completes the proof of (17). Furthermore,

VarT(X) =

∫ ∞
0

2h2(t, 0)fk(t)∆t− (ET(X))2

= −
∫ ∞

0

2h2(t, 0)

[
k∑
ν=1

Λν(·, 0)e	λ(·, 0)

]∆

(t)∆t−
(
k

λ

)2

= −2h2(t, 0)
k∑
ν=1

Λν(t, 0)e	λ(t, 0)

∣∣∣∣∣
∞

0

+

∫ ∞
0

2h1(t, 0)
k∑
ν=1

Λν(σ(t), 0)e	λ(σ(t), 0)∆t−
(
k

λ

)2

= −
∫ ∞

0

2tFk(σ(t))∆t−
(
k

λ

)2
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=

∫ ∞
0

2

λ
t

k∑
ν=1

fν(t)∆t−
(
k

λ

)2

=
2

λ

k∑
ν=1

ET(Xν)−
(
k

λ

)2

=
2

λ

k∑
ν=1

ν

λ
−
(
k

λ

)2

=
2k(k + 1)

2λ2
−
(
k

λ

)2

=
k

λ2
,

showing (18).

Example 22. We apply the expected value and variance result of Theorem 24 to the

continuous and discrete time scales case.

(i) If T = R, then

ER(X) =
k

λ

and

VarR(X) =
k

λ2
.

Those are the same results that can be found in the literature for the continuous

gamma distribution, compare [48, p.196].

(ii) If T = Z, then

EZ(X) =
k

λ
=

k
p

1−p
=
k(1− p)

p

and

VarZ(X) =
k

λ2

=
k(
p

1−p

)2

=
k(1− p)2

p2
.
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Note that the expectation matches exactly the case of the negative binomial distri-

bution, whereas the variance is slightly different from k(1−p)
p2

, see [25, p.96].

Theorem 25. Let λ > 0, t ∈ T0, k, p ∈ N and the time scales probability density function

of X be

fk(t) =


λ

eλ(σ(t),0)
Λk(σ(t), 0), if t ≥ 0

0, if t < 0.

Then we have the recursive formula for the p-th moment

ET(Xp
k) =

p

λ

k∑
ν=1

ET(Xp−1
ν ). (19)

Proof. We have

ET(Xp
k) =

∫ ∞
0

p!hp(t, 0)fk(t)∆t

= −
∫ ∞

0

p!hp(t, 0)

[
k∑
ν=1

Λν(·, 0)e	λ(·, 0)

]∆

(t)∆t

=

∫ ∞
0

p!hp−1(t, 0)
k∑
ν=1

Λν(σ(t), 0)e	λ(σ(t), 0)∆t

= −
∫ ∞

0

p!hp−1(t, 0)Fk(σ(t))∆t

=

∫ ∞
0

p!

λ
hp−1(t, 0)

k∑
ν=1

fν(t)∆t

=
p

λ

k∑
ν=1

ET(Xp−1
ν ),

which completes the proof.

Similarly as in Definition 24, we define Λ̃(t, 0).

Definition 26. Let λ ∈ R, λ > 0 and define

Λ̃1(t, 0) = 1
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and then recursively

Λ̃k+1(t, 0) = −
∫ t

0

(z 	 λ)(τ)Λ̃k(σ(τ), 0)∆τ for k ∈ N.

Remark 12. Note that

Λ̃∆
k+1(t, 0) = −(z 	 λ)(t)Λ̃k(σ(t), 0) for k ∈ N.

Lemma 6. The relation between Λk(t, 0) and Λ̃k(t, 0) is

Λ̃k(t, 0) =

(
λ− z
λ

)k−1

Λk(t, 0). (20)

Proof. This is shown by induction. Clearly the claim is true for k = 1. Now assume the

claim holds for k − 1. Then

Λ̃k(t, 0) = −
∫ t

0

(z 	 λ)(τ)Λ̃k−1(σ(τ), 0)∆τ

= −
∫ t

0

(z 	 λ)(τ)

(
λ− z
λ

)k−2

Λk−1(σ(τ), 0)∆τ

= −
(
λ− z
λ

)k−1 ∫ t

0

(	λ)(τ)Λk−1(σ(τ), 0)∆τ

=

(
λ− z
λ

)k−1

Λk(t, 0),

completing the proof.

Lemma 7. Let Λk(t, 0) and Λ̃k(t, 0) as previously defined.

[
−
(

λ

λ− z

)k
ez	λ(·, 0)

k∑
ν=1

Λ̃k(·, 0)

]∆

(t) = −(	λ)(t)ez	λ(t, 0)Λk(σ(t), 0). (21)

Proof.

[
−
(

λ

λ− z

)k
ez	λ(·, 0)

k∑
ν=1

Λ̃k(·, 0)

]∆

(t)

= −
(

λ

λ− z

)k
(z 	 λ)(t)ez	λ(t, 0)

k∑
ν=1

Λ̃k(σ(t), 0)

+

(
λ

λ− z

)k
(z 	 λ)(t)ez	λ(t, 0)

k∑
ν=1

Λ̃k−1(σ(t), 0)
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= −
(

λ

λ− z

)k−1

(	λ)(t)ez	λ(t, 0)Λ̃k(σ(t), 0)

= −	 λ(t)ez	λ(t, 0)Λk(σ(t), 0),

which completes the proof.

Now, a closed formula for the moment generating function for gamma distributed

random variables will be derived for all time scales.

Theorem 26. Let λ > 0 be constant, z	λ < 0, and t ∈ T0 and the time scales probability

density function of X be

fk(t) =


λ

eλ(σ(t),0)
Λk(σ(t), 0), if t ≥ 0

0, if t < 0.

Then

MX(z) =

(
λ

λ− z

)k
. (22)

Proof. Using the previous lemmas, we have

MX(z) =

∫ ∞
0

ez(t, 0)f(t)∆t

=

∫ ∞
0

ez(t, 0)(−(	λ(t)))e	λ(t, 0)Λk(σ(t), 0)∆t

=

∫ ∞
0

(−(	λ(t)))ez	λ(t)(t, 0)Λk(σ(t), 0)∆t

=

(
λ

λ− z

)k ∫ ∞
0

[
−ez	λ(·, 0)

k∑
ν=1

Λ̃k(·, 0)

]∆

(t)∆t

=

(
λ

λ− z

)k
Λ̃1(0, 0)

=

(
λ

λ− z

)k
.

The proof is complete.

Now, we apply the previous results to examine the chi-squared distribution with

even degrees of freedom.
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Definition 27. Let λ > 0, ν
2
∈ N and t ∈ T0. Then, we define the time scales probability

density function of the chi squared distribution by

fν(t) =


1

2e 1
2

(σ(t),0)
Λ ν

2
(σ(t), 0), if t ≥ 0

0, if t < 0,

(23)

where Λ is defined as before.

Remark 13. Note, that if X is a chi-squared distributed random variable, then

X ∼ Gam(
ν

2
,
1

2
),

where ν is an even positive integer, representing the degrees of freedom.

Theorem 27. Let X be a chi squared distributed random variable. Then

fν(t) =


1

2e 1
2

(σ(t),0)
Λ ν

2
(σ(t), 0), t ≥ 0

0, t < 0

is a proper time scales probability density function and

ET(X) = ν

and

VarT(X) = 2ν.

Proof. As X ∼ Gam(ν
2
, 1

2
), we have k = ν

2
and λ = 1

2
in Theorem 24. Therefore fν is

well defined as time scales probability density function and

ET(X) =
k

λ
=

ν
2
1
2

= ν

and

VarT(X) =
k

λ2
=

ν
2(

1
2

)2 = 2ν,

which completes the proof.
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Example 23. We apply the definition of the chi squared distribution to the continuous

and discrete time scales case.

(i) If T = R, then

fν(t) =
1

2e 1
2
(σ(t), 0)

( 1
2

1 + µ1
2

) ν
2
−1

g ν
2
−1(σ(t), 0)

=
1

2e
1
2
t

(
1

2

) ν
2
−1

t
ν
2
−1

(ν
2
− 1)!

=
e−

1
2
tt
ν
2
−1

2
ν
2 Γ(ν

2
)
.

Moreover,

ER(X) = ν and VarR(X) = 2ν.

This is the same result that can be found in the literature for the chi squared dis-

tribution, see [48, p.196].

(ii) If T = Z, then

fν(t) =
1

2e 1
2
(σ(t), 0)

( 1
2

1 + µ1
2

) ν
2
−1

g ν
2
−1(σ(t), 0)

=
1

2
(
1 + 1

2

)t+1

( 1
2

1 + 1
2

) ν
2
−1

g ν
2
−1(t+ 1, 0)

=

(
2

3

)t(
1

3

) ν
2 Γ(t+ ν

2
)

Γ(ν
2
)t!

.

Moreover,

EZ(X) = ν and VarZ(X) = 2ν.
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6. CUMULATIVE DISTRIBUTION FUNCTION

Definition 28. Let f be a time scales probability density function. Then we define

F (x) :=

∫ x

0

f(t)∆t for all x ∈ T (24)

to be the cumulative distribution function (cdf).

Definition 29. Let f be a time scales probability density function. Then we define

p(X < x) := F (x) =

∫ x

0

f(t)∆t for all x ∈ T (25)

to be the probability that X is less than a given value x.

Remark 14. Note that this definition differs slightly from the one found in [25, p.35],

as we have p(X < x) instead of p(X ≤ x). This is due to the fact that the upper bound

of the integral has density 0 in the time scales theory.

Remark 15. Note that we also have

F (x) = p(X < x) =

∫ x

0

f(x)∆x = 1−
∫ ∞
x

f(x)∆x = 1− p(X ≥ x).

Definition 30. Let A,B ⊂ T. Then, we define the conditional probability by

p(A|B) :=
p(A ∩B)

p(B)
. (26)

Lemma 8. We have∫ ∞
0

∫ ∞
σ(y)

f(x)∆x∆y =

∫ ∞
0

∫ x

0

f(x)∆y∆x. (27)

Proof. Let us define the two functions F and G by

F (z) =

∫ z

0

∫ z

σ(y)

f(x)∆x∆y

and

G(z) =

∫ z

0

∫ x

0

f(x)∆y∆x.
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Clearly F (0) = G(0) = 0 and

G∆(z) =

∫ z

0

f(z)∆y = zf(z).

Letting f(z, y) =
∫ z
σ(y)

f(x)∆x and therefore F (z) =
∫ z

0
f(z, y)∆y in [22, Theorem 1.117

(i)] and applying [22, Theorem 1.75], we get

F∆(z) =

∫ z

0

f∆z(z, y)∆y + f(σ(z), z)

=

∫ z

0

f(z)∆y +

∫ σ(z)

σ(z)

f(x)∆x

= zf(z).

Therefore F (z) = G(z) for all z ∈ T0. This completes the proof of (27).

Theorem 28. Let f be a time scales probability density function and FX be the corre-

sponding cumulative distribution function. Then we have

ET(X) =

∫ ∞
0

(1− FX(σ(y))) ∆y. (28)

Proof. Using the fact that f is a time scales probability density function and Lemma 8,

we get

∫ ∞
0

(1− FX(σ(y))) ∆y =

∫ ∞
0

(
1−

∫ σ(y)

0

f(x)∆x

)
∆y

=

∫ ∞
0

∫ ∞
σ(y)

f(x)∆x∆y

=

∫ ∞
0

∫ x

0

f(x)∆y∆x

=

∫ ∞
0

f(x)

∫ x

0

1∆y∆x

=

∫ ∞
0

xf(x)∆x

= ET(X),

which completes the proof.

The following theorem considers some basic properties of the cumulative distribu-

tion function.
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Theorem 29. Let f be a time scales probability density function and FX be the corre-

sponding cumulative distribution function. Then the following properties hold.

(i) FX(0) = 0.

(ii) FX(∞) = 1.

(iii) If x, h(x) ∈ T and x ≤ h(x), then

FX(x) ≤ FX(h(x)). (29)

Proof. To see (i) and (ii), note that

FX(0) =

∫ 0

0

f(t)∆t = 0

and

FX(∞) = lim
x→∞

FX(x) = lim
x→∞

∫ x

0

f(t)∆t =

∫ ∞
0

f(t)∆t = 1.

To see (29), note that f(t) ≥ 0 and therefore

FX(x) =

∫ x

0

f(t)∆t ≤
∫ h(x)

0

f(t)∆t = FX(h(x)).

The proof is complete.

Remark 16. Moreover, it holds, that

p(a ≤ X ≤ b) =

∫ σ(b)

a

f(t)∆t = FX(σ(b))− FX(a).

Similarly, we get

p(a ≤ X < b) =

∫ b

a

f(t)∆t = FX(b)− FX(a),

p(a < X < b) =

∫ b

σ(a)

f(t)∆t = FX(b)− FX(σ(a))

and

p(a < X ≤ b) =

∫ σ(b)

σ(a)

f(t)∆t = FX(σ(b))− FX(σ(a)).
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Note that in the original probability theory p(a ≤ X ≤ b) was given as

p(a ≤ X ≤ b) = FX(b)− lim
h↘0

FX(a− h),

where

lim
h↘0

FX(a− h) = FX(a)− p(X = a).

Due to the slightly changed definition on time scales, we need to deal with σ(a) and σ(b).

We apply the definition of the cumulative distribution function to the uniform and

the exponential distributions.

Theorem 30. Let a, b ∈ T, a ≤ t ≤ b and the time scales probability density function of

X be

f(t) =


1

σ(b)−a , if a ≤ t ≤ b

0, otherwise.

Then

F (x) =
x− a
σ(b)− a

. (30)

Proof. Using the definition, we have

F (x) =

∫ x

0

f(t)∆t =

∫ x

a

1

σ(b)− a
∆t =

x− a
σ(b)− a

,

which shows (30).

Theorem 31. Let λ > 0, t ∈ T0 and the time scales probability density function of X be

f(t) =

−	 λe	λ(t, 0), if t ≥ 0

0, if t < 0.

Then

F (x) = 1− e	λ(x, 0). (31)
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Proof. Using the definition, we have

F (x) =

∫ x

0

f(t)∆t =

∫ x

0

−	 λe	λ(t, 0)∆t = −e	λ(t, 0)|x0 = 1− e	λ(x, 0),

which shows (31).

Definition 31. Let X and Y be two random variables. We say fX,Y (x, y) is a joint time

scales probability density function if

1. fX,Y (x, y) ≥ 0 ∀x, y ∈ T,

2.
∫∞

0

∫∞
0
fX,Y (x, y)∆y∆x = 1.

Moreover, we define the joint time scales cumulative distribution function by

FX,Y (x, y) := p(X < x, Y < y) =

∫ x

0

∫ y

0

fX,Y (s, t)∆t∆s.

The following theorem considers some basic properties of the joint cumulative dis-

tribution function.

Theorem 32. Let fX,Y be a joint time scales probability density function and FX be the

corresponding cumulative distribution function. Then the following properties hold.

(i) FX,Y (x, 0) = FX,Y (0, y) = 0,

(ii) FX,Y (∞,∞) = 1,

(iii) FX,Y (x,∞) = FX(x) and FX,Y (∞, y) = FY (y),

(iv) If x, y, h1(x), h2(y) ∈ T, x ≤ h1(x) and y ≤ h2(y), then

FX,Y (x, y) ≤ FX,Y (h1(x), h2(y)).

Proof. We have

FX,Y (x, 0) =

∫ x

0

∫ 0

0

fX,Y (s, t)∆t∆s =

∫ x

0

0∆s = 0

and

FX,Y (0, y) =

∫ 0

0

∫ y

0

fX,Y (s, t)∆t∆s = 0,
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which shows (i),

FX,Y (∞,∞) =

∫ ∞
0

∫ ∞
0

fX,Y (s, t)∆t∆s = 1,

which shows (ii),

FX,Y (x,∞) = p(X < x, Y <∞) = p(X < x) = FX(x)

and similarly

FX,Y (∞, y) = p(X <∞, Y < y) = p(Y < y) = FY (y),

which shows (iii), and

FX,Y (x, y) =

∫ x

0

∫ y

0

fX,Y (s, t)∆t∆s

≤
∫ x

0

∫ h2(y)

0

fX,Y (s, t)∆t∆s

≤
∫ h1(x)

0

∫ h2(y)

0

fX,Y (s, t)∆t∆s

= FX,Y (h1(x), h2(y)),

which shows (iv).

Theorem 33. Let X, Y be two random variables with joint time scales probability density

function fX,Y (x, y). Then, we have

fX(x) =

∫ ∞
0

fX,Y (x, y)∆y (32)

and

fY (y) =

∫ ∞
0

fX,Y (x, y)∆x. (33)

Proof. To show (32), we use the cumulative density function∫ x

0

fX(s)∆s = FX(s) = FX,Y (x,∞) =

∫ x

0

∫ ∞
0

fX,Y (s, t)∆t∆s.
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Therefore

fX(s) =

∫ ∞
0

fX,Y (s, t)∆t.

Finally, (33) is shown in the same way.

Remark 17. Note that fX and fY are called the marginal time scales density functions.

Now the bivariate weighted uniform distribution is considered on time scales, see

[10, p.41] for the nonweighted version.

Example 24. Let X, Y be two random variables with joint time scales probability density

function

fX,Y (x, y) =


xy

(h2(b,a)+a(b−a))2
, if a ≤ x, y < b

0, otherwise.

Clearly as 0 ≤ a < b, we have fX,Y (x, y) ≥ 0 and moreover,

∫ b

a

t∆t =

∫ b

a

(t− a)∆t+

∫ b

a

a∆t

= h2(b, a) + a(b− a).

Therefore

∫ b

a

∫ b

a

st∆t∆s =

∫ b

a

t∆t

∫ b

a

s∆s

= (h2(b, a) + a(b− a))2,

which results in∫ b

a

∫ b

a

fX,Y (s, t)∆t∆s =

∫ b

a

∫ b

a

st

(h2(b, a) + a(b− a))2
∆t∆s

=
1

(h2(b, a) + a(b− a))2

∫ b

a

∫ b

a

st∆t∆s

=
1

(h2(b, a) + a(b− a))2
(h2(b, a) + a(b− a))2

= 1.
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So fX,Y (x, y) is a valid joint time scales probability density function. The marginal density

functions are given by

fX(x) =

∫ ∞
0

fX,Y (x, y)∆y

=

∫ b

a

xy

(h2(b, a) + a(b− a))2
∆y

=
x

(h2(b, a) + a(b− a))2

∫ b

a

y∆y

=
x

h2(b, a) + a(b− a)

and

fY (y) =
y

h2(b, a) + a(b− a)
.

The next example applies the previous result to different time scales.

Example 25. We compute the joint and marginal time scales density functions.

(i) If T = R, then

fX,Y (x, y) =
xy

( (b−a)2

2
+ a(b− a))2

=
xy

((b− a)( b−a
2

+ a))2

=
xy

((b− a)( b+a
2

))2

=
4xy

(b2 − a2)2
,

fX(x) =
2x

b2 − a2
and fY (y) =

2y

b2 − a2
.

(ii) If T = Z, then

fX,Y (x, y) =
xy

(
(
b−a

2

)
+ a(b− a))2

=
xy

( (b−a)!
2!(b−a−2)!

+ a(b− a))2

=
4xy

((b− a)(b− a− 1) + a(b− a))2

=
4xy

((b− a)(b+ a− 1))2
,
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fX(x) =
2x

(b− a)(b+ a− 1)
and fY (y) =

2y

(b− a)(b+ a− 1)
.

(iii) If T = qN0, a = qm and b = qn, then

fX,Y (x, y) =
xy

( (qn−qm)(qn−qqm)
1+q

+ qm(qn − qm))2

=
xy

((qn − qm)( q
n−qm+1

1+q
+ qm))2

=
(1 + q)2xy

((qn − qm)(qn + qm))2

=
(1 + q)2xy

(q2n − q2m)2
,

fX(x) =
(1 + q)x

q2n − q2m
and fY (y) =

(1 + q)y

q2n − q2m
.

Definition 32. We say that two random variables X and Y are independent if

FX,Y (x, y) = FX(x)FY (y),

or equivalently

p(X < x, Y < y) = p(X < x)p(Y < y).

Theorem 34. Let X and Y be two linearly independent random variables with marginal

probability density function fX and fY , respectively, and joint probability density function

fX,Y . Then we have

fX,Y (x, y) = fX(x)fY (y). (34)

Proof. We have ∫ x

0

∫ y

0

fX,Y (s, t)∆t∆s = FX,Y (x, y) = FX(x)FY (y)

=

∫ x

0

fX(s)∆s

∫ y

0

fY (t)∆t

=

∫ x

0

∫ y

0

fX(s)fY (t)∆t∆s,

and therefore (34) is shown.
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Definition 33. Let X and Y be two random variables with marginal probability density

function fX and fY , respectively, and joint probability density function fX,Y . Then the

time scales conditional probability density functions are defined as

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
, where fY (y) > 0

and

fY |X=x(y) =
fX,Y (x, y)

fX(x)
, where fX(x) > 0.

Example 26. Considering the bivariate weighted uniform distribution from Example 24,

we have

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
=

xy
(h2(b,a)+a(b−a))2

y
h2(b,a)+a(b−a)

=
x

h2(b, a) + a(b− a)

and similarly

fY |X=x(y) =
y

h2(b, a) + a(b− a)
.

Note that here the conditional density functions are equal to the marginal density func-

tions. Moreover, X and Y are linearly independent.

Theorem 35 (Markov inequality). Let a ∈ T0. Then

p(X ≥ a) ≤ ET(X)

a
. (35)

Proof. We have

ET(X) =

∫ ∞
0

tf(t)∆t

=

∫ a

0

tf(t)∆t+

∫ ∞
a

tf(t)∆t

≥
∫ ∞
a

tf(t)∆t

≥ a

∫ ∞
a

f(t)∆t

= ap(X ≥ a)

This completes the proof of (35).
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Remark 18. As we consider random variables with positive support, this version of the

Markov inequality matches exactly the one given in the literature, see [39, p.311].

Theorem 36 (Tschebycheff inequality). Let ε > 0. Then

VarT(X)− ET(2H(X))

ε2
≥ p((X − ET(X))2 ≥ ε2), (36)

where the density function of H(X) is h2(t, 0)− t2

2
.

Proof. To prove (36), just note that

VarT(X)− ET(2H(X)) = Var(X)

and

ET(X) = E(X),

where E(X) and Var(X) represent the usual expected value and variance. Then applying

the usual Tschebycheff inequality [64, p.77]

Var(X)

ε2
≥ p(|X − E(X)| ≥ ε)

yields the desired result.

Example 27. For different time scales, we derive the following inequalities.

(i) If T = R, then note that the density function of H(X) is t2

2
− t2

2
= 0, and therefore

VarR(X)

ε2
≥ p

(
(X − ER(X))2 ≥ ε2

)
= p (|X − ER(X)| ≥ ε) .

This matches exactly the Tschebycheff inequality found in [64, p.77].

(ii) If T = Z, then note that the density function of H(X) is t(t−1)
2
− t2

2
= − t

2
, and

therefore

VarZ(X) + EZ(X)

ε2
≥ p

(
(X − EZ(X))2 ≥ ε2

)
= p (|X − EZ(X)| ≥ ε) .



69

Note that, due to the new definition of the variance, this is a slightly different

Tschebycheff inequality for the discrete case, compared to the one, that is found in

the literature.
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7. FURTHER PROPERTIES AND ENTROPY

7.1. THE SUM OF INDEPENDENT RANDOM VARIABLES

Let X, Y be two independent random variables. Then the density function of Z =

X+Y can be expressed by the convolution of the density function of X with the density

function of Y . In the discrete case, we have

pZ(z) = (pX ∗ pY )(z) =
∞∑

k=−∞

pX(k)pY (z − k).

Equivalently, for the continuous case, we have

fZ(z) = (fX ∗ fY )(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx.

Proofs of these theorems can be found in any standard probability theory book, see

[39]. For the time scales equivalent, we will take a different approach. First, we will

examine some convolution properties, which will lead to a joint time scales probability

density function representing the sum of two independent random variables for certain

time scales.

Lemma 9. Let f be a time scales probability density function and F (t) =
∫ t
−∞ f(u)∆u.

Moreover, let f̂ be the shift of f and limt→−∞ f̂(t, σ(s)) = 0. Then

F̂ (t, s) =

∫ t

−∞
f̂(u, s)∆u. (37)

Proof. First, define

G(t, s) =

∫ t

−∞
f̂(u, s)∆u.

Now

G(t, t0) =

∫ t

−∞
f̂(u, t0)∆u =

∫ t

−∞
f(u)∆u = F (t),

G∆t(t, s) = f̂(t, s)
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and

G∆s(t, s) =

∫ t

−∞
f̂∆s(u, s)∆u

= −
∫ t

−∞
f̂∆t(u, σ(s))∆u

= −f̂(t, σ(s)) + lim
t→−∞

f̂(t, σ(s))

= −f̂(t, σ(s))

= −G∆t(t, σ(s)).

Therefore

G(t, s) = F̂ (t, s),

proving (37).

Theorem 37. Let fX , fY be time scales probability density functions and FZ the joint

time scales probability density function, where Z = Z(X, Y ). Moreover, let

FZ(z) = (FX ∗ fY )(z).

Then the time scales probability density function of Z is

fZ = fX ∗ fY . (38)

Proof. We have∫ z

−∞
(fX ∗ fY ) (u)∆u =

∫ z

−∞

∫ ∞
−∞

f̂X(u, σ(s))fY (s)∆s∆u

=

∫ ∞
−∞

∫ z

−∞
f̂X(u, σ(s))fY (s)∆u∆s

=

∫ ∞
−∞

∫ z

−∞
fY (s)

(
f̂X(u, σ(s))∆u

)
∆s

=

∫ ∞
−∞

fY (s)F̂X(z, σ(s))∆s

= (FX ∗ fY )(z)

= FZ(z),

completing the proof of (38).
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Example 28. For different time scales, we derive the following joint distributions, if

FZ(z) = (FX ∗ fY )(z).

(i) If T = R, then

FZ(z) = (FX ∗ fY )(z)

=

∫ ∞
−∞

FX(z − s)fY (s)ds

=

∫ ∞
−∞

(∫ z−s

−∞
fX(t)dt

)
fY (s)ds

=

∫ ∞
−∞

∫ z−s

−∞
fX(t)fY (s)dtds

=

∫ ∞
−∞

∫ z−s

−∞
fX,Y (t, s)dtds

=

∫∫
{(t,s)|s+t≤z}

fX,Y (t, s)dtds

= p(X + Y ≤ z).

So we can conclude that the unknown random variable Z is Z = X + Y .

(ii) If T = Z, then

FZ(z) = (FX ∗ fY )(z)

=
∞∑

s=−∞

FX(z − s− 1)fY (s)

=
∞∑

s=−∞

(
z−s−2∑
t=−∞

fX(t)

)
fY (s)

=
∞∑

s=−∞

z−s−2∑
t=−∞

fX,Y (t, s)

=
∑

{(t,s)|s+t+1<z}

fX,Y (t, s)

= p(X + Y + 1 < z).

So we can conclude that the unknown random variable Z is Z = X + Y + 1.

(iii) If T = hZ, then

FZ(z) = (FX ∗ fY )(z)
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=
∑
s=R∩T

FX(z − s− h)fY (s)h

=
∑
s=R∩T

 ∑
t∈[−∞,z−s−h)∩T

fX(t)h

 fY (s)h

=
∑
s=R∩T

∑
t∈[−∞,z−s−h)∩T

fX,Y (t, s)h2

=
∑

{(t,s)∈T2|s+t+h<z}

fX,Y (t, s)

= p(X + Y + h < z).

So we can conclude that the unknown random variable Z is Z = X + Y + h.

7.2. THE MEMORYLESS PROPERTY

Definition 34. Let X be a time scales random variable, t, τ ∈ T0 and τ ≥ t. Then we

say that X satisfies the memoryless property if

p(X ≥ τ |X ≥ t) = ̂p(X ≥ ·)(τ, t). (39)

Remark 19. Note that, because of

p(X ≥ τ |X ≥ t) =
p(X ≥ τ ∩X ≥ t)

p(X ≥ t)
=
p(X ≥ τ)

p(X ≥ t)
,

(39) is equivalent to

p(X ≥ τ) = p(X ≥ t) ̂p(X ≥ ·)(τ, t).

Example 29. For the continuous and the discrete cases, we have the following represen-

tations of the memoryless property (39).

(i) If T = R, then

p(X ≥ τ) = p(X ≥ t) ̂p(X ≥ ·)(τ, t)

= p(X ≥ t)p(X ≥ τ − t).

If we let s ∈ R+
0 and τ = t+ s, then

p(X ≥ t+ s) = p(X ≥ t)p(X ≥ t+ s− t)
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= p(X ≥ t)p(X ≥ s).

This is also equivalent to

p(X ≥ t+ s|X ≥ t) = p(X ≥ s),

which is the well-known memoryless property found for example in [64].

(ii) If T = Z, then we get similarly

p(X ≥ τ) = p(X ≥ t) ̂p(X ≥ ·)(τ, t)

= p(X ≥ t)p(X ≥ τ − t).

If we let s ∈ N0 and τ = t+ s, then

p(X ≥ t+ s) = p(X ≥ t)p(X ≥ t+ s− t)

= p(X ≥ t)p(X ≥ s).

This is also equivalent to

p(X ≥ t+ s|X ≥ t) = p(X ≥ s),

which is the well-known memoryless property found for example in [64].

Theorem 38. Let h : T0 → T0, h(t) > t and the time scales probability density function

of X be defined by

f(t) =

−	 λe	λ(t, 0), if t ≥ 0

0, if t < 0.

Then

p(X ≥ h(t)|X ≥ t) = e	λ(h(t), t). (40)

Proof. First note that

p(X < t) =

∫ t

0

−(	λ)(t)e	λ(τ, 0)∆τ
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= −e	λ(τ, 0)|t0
= 1− e	λ(t, 0).

Therefore, we have

p(X ≥ t) = e	λ(t, 0).

Now, we have

p(X ≥ h(t)|X ≥ t) =
p(X ≥ h(t) ∩X ≥ t)

p(X ≥ t)

=
p(X ≥ h(t))

p(X ≥ t)

=
e	λ(h(t), 0)

e	λ(t, 0)

= e	λ(h(t), t),

which is the desired memoryless property for the exponential function (40).

Remark 20. Note that, with the help of [17, Example 2.3], Theorem 38 matches the

memoryless property from (39), as for constant 	λ, i.e., constant graininess

p(X ≥ τ)

p(X ≥ t)
= ̂p(X ≥ ·)(τ, t)

= ̂e	λ(·, 0)(τ, t)

= e	λ(τ, t).

Replacing τ with h(t) gives the desired property.

Example 30 (Continuous case). Let T = R, t ∈ R and h(t) = t + s, where s ∈ R+.

Then

p(X ≥ h(t)|X ≥ t) = p(X ≥ t+ s|X ≥ t) = e	λ(t+ s, t) = e−λ(t+s−t) = e−λs.

This property is independent of t and matches exactly with the memoryless property for

the exponential distribution, found in [64, p.284].

Example 31 (Discrete case). Let T = Z, t ∈ Z and h(t) = t+ k, where k ∈ N. Then

p(X ≥ h(t)|X ≥ t) = p(X ≥ t+ k|X ≥ t) = e	λ(t+ k, t)
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=
1

(1 + λ)t+k−t
=

1

(1 + λ)k
=

(
1− λ

1 + λ

)k
= (1− p)k.

This property is independent of t and matches exactly with the memoryless property for

the geometric distribution, compare [35, p.48].

Example 32. Let T = hZ, h > 0, t ∈ hZ and h(t) = t+ hk, where k ∈ N. Then

p(X ≥ h(t)|X ≥ t) = p(X ≥ t+ hk|X ≥ t) = e	λ(t+ hk, t)

=
1

(1 + λh)
t+hk−t

h

=
1

(1 + λh)k

=

(
1− hλ

1 + hλ

)k
.

This property is independent of t and represents a memoryless property for T = hZ.

Example 33 (Quantum calculus case). Let T = qN0, q > 1 and h(t) = qkt, where k ∈ N.

Then

p(X ≥ h(t)|X ≥ t) = p(X ≥ qkt|X ≥ t)

= e	λ(q
kt, t)

=
1

eλ(qkt, t)

=
1∏

s∈[t,qkt)(1 + λs(q − 1))

=
1

[1 + λt(q − 1)] [1 + λqt(q − 1)] · · · [1 + λqk−1t(q − 1)]
.

This property is not independent of t, and therefore does not match the known definition

of the memoryless property.

Remark 21. The memoryless property in the old sense, i.e., that p(X ≥ h(t)|X ≥ t) is

independent of t, holds for all time scales with constant graininess µ. In order to get the

result for all time scales, we can redefine the memoryless property to be

p(X ≥ h(t)|X ≥ t) = e	λ(h(t), t).

A further property of the exponential distribution with constant graininess is com-

puting the probability that X1 ≤ X2 for two exponentially distributed random variables

X1 and X2.
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Theorem 39. Let the time scales probability density function of Xi be defined by

fXi(t) =

−	 λie	λi(t, 0), if t ≥ 0

0, if t < 0

for i = 1, 2 and constant graininess µ(t) = µ. Then

p(X1 ≤ X2) =
λ1(1 + µλ2)

λ1 + λ2 + µλ1λ2

. (41)

Proof. First note, that

(	λ1)⊕ (	λ2) =
−λ1

1 + µλ1

⊕ −λ2

1 + µλ2

=
−λ1

1 + µλ1

+
−λ2

1 + µλ2

+ µ
λ1λ2

(1 + µλ1)(1 + µλ2)

= − λ1 + λ2 + µλ1λ2

(1 + µλ1)(1 + µλ2)
,

and therefore by using conditional probability

p(X1 ≤ X2) =

∫ ∞
0

p(X1 ≤ X2|X1 = t)fX1(t)∆t

=

∫ ∞
0

p(t ≤ X2)fX1(t)∆t

=

∫ ∞
0

(1− p(X2 < t)) (−	 λ1e	λ1(t, 0)) ∆t

=

∫ ∞
0

e	λ2(t, 0) (−	 λ1e	λ1(t, 0)) ∆t

=

∫ ∞
0

λ1

1 + µλ1

e(	λ1)⊕(	λ2)(t, 0)∆t

= − λ1

1 + µλ1

λ1 + λ2 + µλ1λ2

(1 + µλ1)(1 + µλ2)

×
∫ ∞

0

((	λ1)⊕ (	λ2)) e(	λ1)⊕(	λ2)(t, 0)∆t

=
λ1(1 + µλ2)

λ1 + λ2 + µλ1λ2

∫ ∞
0

(
e(	λ1)⊕(	λ2)(t, 0)

)∆
∆t

=
λ1(1 + µλ2)

λ1 + λ2 + µλ1λ2

,

which completes the proof.

Example 34. For different time scales, we have the following.
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(i) If T = R, then

p(X1 ≤ X2) =
λ1

λ1 + λ2

,

which can be found in [64, p.292] with < instead of ≤. As p(X1 = X2) = 0, we get

the same result.

(ii) If T = Z, then

p(X1 ≤ X2) =
λ1(1 + λ2)

λ1 + λ2 + λ1λ2

.

(iii) If T = hZ, then

p(X1 ≤ X2) =
λ1(1 + hλ2)

λ1 + λ2 + hλ1λ2

.

7.3. ENTROPY

In information theory, the quantity entropy describes the uncertainty of a random

variable. The word itself refers to the Shannon entropy (“A Mathematical Theory of

Communication” [68]), which measures the average information one is missing if the

exact value of the random variable is unknown. As in information theory most of the

computation is done in bits, it is not surprising that we find a base 2 for the logarithm in

the definition of the entropy. In other papers and books, see [27], the natural logarithm

is used, which will be done in this thesis as well.

Definition 35. Let f be a time scales probability density function of the random variable

X. Then we define the entropy as follows

H(X) := −
∫ ∞

0

f(t) log f(t)∆t. (42)

We assume here that the integral exists.

Example 35. For different time scales, we derive the following entropies.

(i) If T = R, then

H(X) = −
∫ ∞

0

f(t) log f(t)dt.
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This matches the definition of the differential entropy for a random variable with

positive support found in [27, p.243].

(ii) If T = Z, then

H(X) = −
∞∑
t=0

f(t) log f(t).

This is the entropy of a discrete random variable, found in [27, p.14]

(iii) If T = qN0, then

H(X) = −(q − 1)
∞∑
t=0

qtf(qt) log f(qt).

Note that the time scales integral starts at 1 as this is the first possible point having

a density greater than zero in the quantum calculus case.

(iv) If T = hZ, then

H(X) = −
∞∑
t=0

hf(ht) log f(ht).

This is now slightly different from the previously defined entropy of a discrete ran-

dom variable. In time scales theory, we have an additional factor h in the definition.

Next, the entropy for different distributions will be considered. We start with the

uniform distribution.

Theorem 40. Let a, b ∈ T0, a ≤ t ≤ b and the time scales probability density function

of X be

f(t) =


1

σ(b)−a , if a ≤ t ≤ b

0, otherwise.

Then

H(X) = log(σ(b)− a). (43)
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Proof. Computation yields

H(X) = −
∫ ∞

0

f(t) log f(t)∆t

= −
∫ σ(b)

a

1

σ(b)− a
log

1

σ(b)− a
∆t

= − 1

σ(b)− a
log

1

σ(b)− a

∫ σ(b)

a

∆t

=
1

σ(b)− a
log(σ(b)− a)(σ(b)− a)

= log(σ(b)− a),

which shows (43).

Remark 22. This corresponds to the entropies for T = R and T = Z. In the first case

we have log(b − a), see [27, p.244], and in the second log n, see [28, p.440], where n is

the number of points where the density is larger than zero. However, for other isolated

time scales this result is different from the entropy of a discrete random variable, as it

depends now on the length of the interval, instead of the number of points with positive

density.

Now, the exponential distribution will be considered.

Theorem 41. Let λ > 0 be constant, t ∈ T0 and the time scales probability density

function of X be

f(t) =

−	 λe	λ(t, 0), if t ≥ 0

0, if t < 0.

Moreover, assume that µ(t) 6= 0. Then

H(X) = − log λ+

∫ ∞
0

e	λ(t, 0)
log(1 + µ(t)λ)

µ(t)
∆t. (44)

If the graininess µ(t) is constant µ 6= 0, then we have

H(X) = − log λ+
(1 + µλ) log(1 + µλ)

µλ
. (45)
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Proof. Note that

(log eλ(·, 0))∆ (t) =
log eλ(σ(t), 0)− log eλ(t, 0)

µ(t)

=
log
(
eλ(σ(t),0)
eλ(t,0)

)
µ(t)

=
log
(

(1 + µ(t)λ) eλ(t,0)
eλ(t,0)

)
µ(t)

=
log (1 + µ(t)λ)

µ(t)
.

Using this and the integration by parts formula, we have

H(X) = −
∫ ∞

0

f(t) log f(t)∆t

=

∫ ∞
0

(	λ)(t)e	λ(t, 0) log(−(	λ)(t)e	λ(t, 0))∆t

= −
∫ ∞

0

λ

eλ(σ(t), 0)
log

(
λ

eλ(σ(t), 0)

)
∆t

= −
∫ ∞

0

λ

eλ(σ(t), 0)
log λ∆t+

∫ ∞
0

λ

eλ(σ(t), 0)
log eλ(σ(t), 0)∆t

= − log λ+

∫ ∞
0

[−e	λ(·, 0)]∆ (t) log eλ(σ(t), 0)∆t

= − log λ+

[
−e	λ(t, 0) log eλ(t, 0)|∞0 +

∫ ∞
0

e	λ(t, 0) (log eλ(·, 0))∆ (t)∆t

]
= − log λ+

∫ ∞
0

e	λ(t, 0) (log eλ(·, 0))∆ (t)∆t

= − log λ+

∫ ∞
0

e	λ(t, 0)
log(1 + µ(t)λ)

µ(t)
∆t.

This proves equation (44). If µ 6= 0 is constant, then

H(X) = − log λ+

∫ ∞
0

e	λ(t, 0)
log(1 + µλ)

µ
∆t

= − log λ+
log(1 + µλ)

µ

∫ ∞
0

−	 λ
−	 λ

e	λ(t, 0)∆t

= − log λ+
log(1 + µλ)

−(	λ)µ

= − log λ+
log(1 + µλ)

λ
1+µλ

µ

= − log λ+
(1 + µλ) log(1 + µλ)

µλ
,
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which completes the proof of (45) and therefore is the conclusion of the proof of Theorem

41.

Example 36. For different time scales with constant graininess function, we have the

following.

(i) If T = R, then using the definition, we have

H(X) = −
∫ ∞

0

f(t) log f(t)dt

= −
∫ ∞

0

λe−λt log(λe−λt)dt

= −
∫ ∞

0

λ log(λe−λt)dt+

∫ ∞
0

λ2te−λtdt

= log λe−λt|∞0 − λte−λt|∞0 +

∫ ∞
0

λe−λtdt

= − log λ− e−λt|∞0
= − log λ+ 1.

Also note, that this matches the statement of Theorem 41, as we consider the limit

as µ approaches 0

H(X) = lim
µ→0
− log λ+

(1 + µλ) log(1 + µλ)

µλ

= − log λ+ lim
µ→0

(1+µλ)λ
1+µλ

+ λ log(1 + µλ)

λ

= − log λ+ 1.

This matches the definition of the differential entropy for a random variable with

exponential distribution, see [45, p.61].

(ii) If T = Z, then µ = 1 and

H(X) = − log λ+
(1 + λ) log(1 + λ)

λ

=
−λ log λ+ (1 + λ) log(1 + λ)

λ

=
− p

1−p log p
1−p + (1 + p

1−p) log(1 + p
1−p)

p
1−p

=
−p log p

1−p + log 1
1−p

p
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=
−p log p+ p log(1− p)− log(1− p)

p

=
−p log p− (1− p) log(1− p)

p
.

This is the entropy of a discrete random variable with geometric distribution, see

[44, p.210].

(iii) If T = hZ, then µ = h and

H(X) = − log λ+
(1 + hλ) log(1 + hλ)

hλ

=
−hλ log λ+ (1 + hλ) log(1 + hλ)

hλ
.

Note that, similarly to the discrete case, if p = hλ
1+hλ

or equivalently λ = p
h−hp , we

have

H(X) =
−h p

h−hp log p
h−hp + (1 + h p

h−hp) log(1 + h p
h−hp)

h p
h−hp

=
− p

1−p log p
h−hp + (1 + p

1−p) log(1 + h p
h−hp)

p
1−p

=
−p log p

h−hp + log h−hp+p
h−hp

p

=
−p log p− (1− p) log(h− hp) + log(h− hp+ p)

p
.

The next definitions and theorems unify some properties of entropy from [27], using

time scales theory.

Definition 36. Let X and Y be two random variables with density function fX and fY ,

respectively, and joint density distribution fX,Y . Then we define the joint entropy by

H(X, Y ) := −
∫ ∞

0

∫ ∞
0

fX,Y (x, y) log fX,Y (x, y)∆x∆y (46)

and the conditional entropy by

H(X|Y ) := −
∫ ∞

0

∫ ∞
0

fX,Y (x, y) log fX|Y=y(x)∆x∆y. (47)
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Theorem 42. Let X and Y be two random variables with density function fX and fY ,

respectively, and joint density distribution fX,Y . Then

H(X|Y ) = H(X, Y )−H(Y ). (48)

If X and Y are independent, then

H(X, Y ) = H(X) +H(Y ). (49)

Proof. Using Definition 36, we have

H(X|Y ) = −
∫ ∞

0

∫ ∞
0

fX,Y (x, y) log fX|Y=y(x)∆x∆y

= −
∫ ∞

0

∫ ∞
0

fX,Y (x, y) log
fX,Y (x, y)

fY (y)
∆x∆y

= −
∫ ∞

0

∫ ∞
0

fX,Y (x, y) log fX,Y (x, y)∆x∆y

+

∫ ∞
0

∫ ∞
0

fX,Y (x, y) log fY (y)∆x∆y

= H(X, Y ) +

∫ ∞
0

fY (y) log fY (y)∆y

= H(X, Y )−H(Y ),

and if X and Y are independent, then

H(X, Y ) = −
∫ ∞

0

∫ ∞
0

fX,Y (x, y) log fX,Y (x, y)∆x∆y

= −
∫ ∞

0

∫ ∞
0

fX(x)fY (y) log(fX(x)fY (y))∆x∆y

= −
∫ ∞

0

fY (y)

∫ ∞
0

fX(x) log fX(x)∆x∆y

−
∫ ∞

0

fX(x)

∫ ∞
0

fY (y) log fY (y)∆y∆x

= H(Y )

∫ ∞
0

fX(x)∆x+H(X)

∫ ∞
0

fY (y)∆y

= H(Y ) +H(X),

which completes the proof of (48) and (49).
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Definition 37. Let f and g be two time scales probability density functions. Then we

define relative entropy by

D(f ||g) :=

∫ ∞
0

f(t) log
f(t)

g(t)
∆t,

where we assume that we have 0 log 0
g

= 0 for f = 0.

Definition 38. Let X and Y be two random variables with density function fX and fY ,

respectively, and joint density distribution fX,Y . Then we define the mutual information

by

I(X, Y ) :=

∫ ∞
0

∫ ∞
0

fX,Y (x, y) log
fX,Y (x, y)

fX(x)fY (y)
∆x∆y. (50)

The previous definitions match exactly the definitions for relative entropy and mu-

tual information given in [27].

Theorem 43. Let X and Y be two random variables with density function fX and fY ,

respectively, and joint density distribution fX,Y . Then the following relationship between

mutual information and entropy holds:

I(X, Y ) = H(X) +H(Y )−H(X, Y ). (51)

Proof. Using the properties of the logarithm and marginal densities, we have

I(X, Y ) =

∫ ∞
0

∫ ∞
0

fX,Y (x, y) log
fX,Y (x, y)

fX(x)fY (y)
∆x∆y

=

∫ ∞
0

∫ ∞
0

fX,Y (x, y) log fX,Y (x, y)∆x∆y

−
∫ ∞

0

∫ ∞
0

fX,Y (x, y) log fX(x)∆x∆y

−
∫ ∞

0

∫ ∞
0

fX,Y (x, y) log fy(y)∆x∆y

= −H(X, Y )−
∫ ∞

0

fX(x) log fX(x)∆x−
∫ ∞

0

fY (y) log fY (y)∆y

= −H(X, Y ) +H(X) +H(Y ),

and (51) is shown.
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Theorem 44. Let X and Y be two random variables with density function fX and fY ,

respectively, and joint density distribution fX,Y . Then, we have

I(X, Y ) = I(Y,X) (52)

= H(Y )−H(Y |X) (53)

= H(X)−H(X|Y ) (54)

= H(X) +H(Y )−H(X, Y ). (55)

Proof. To see (52), note that fX,Y = fY,X and therefore

I(X, Y ) =

∫ ∞
0

∫ ∞
0

fX,Y (x, y) log
fX,Y (x, y)

fX(x)fY (y)
∆x∆y

=

∫ ∞
0

∫ ∞
0

fY,X(y, x) log
fY,X(y, x)

fY (y)fX(x)
∆x∆y

= I(Y,X).

Equation (55) follows from Theorem 43. Finally as

H(X, Y ) = H(X|Y ) +H(Y ),

we have

I(X, Y ) = H(X) +H(Y )−H(X, Y )

= H(X) +H(Y )− (H(X|Y ) +H(Y ))

= H(X)−H(X|Y ),

and 54 follows. Similarly, we can show (53).

Next, we consider a time scales probability theory version of the Jensen inequality.

Theorem 45 (Jensen’s inequality). Let f be a time scales probability density function.

Let g : T→ R be rd-continuous and ϕ : R→ R be continuous and convex. Then

ϕ

(∫ ∞
0

f(t)g(t)∆t

)
≤
∫ ∞

0

f(t)ϕ(g(t))∆t. (56)
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Proof. We define x0 ∈ R as follows

x0 :=

∫ ∞
0

f(t)g(t)∆t.

As ϕ is a continuous and convex function, the existence of subderivatives is guaranteed,

compare [25, p.190]. Therefore there exist a and b such that

ax+ b ≤ ϕ(x) ∀x ∈ R

and

ax0 + b = ϕ(x0).

If we let x = g(t), then

ag(t) + b ≤ ϕ(g(t)),

and we have ∫ ∞
0

f(t)ϕ(g(t))∆t ≥
∫ ∞

0

f(t) [ag(t) + b] ∆t

= a

∫ ∞
0

f(t)g(t)∆t+ b

∫ ∞
0

f(t)∆t

= ax0 + b

= ϕ(x0)

= ϕ

(∫ ∞
0

f(t)g(t)∆t

)
,

proving (56).

Example 37. For the continuous and the discrete time scales cases, we get well known

results.

(i) If T = R, then

ϕ

(∫ ∞
0

f(t)g(t)dt

)
≤
∫ ∞

0

f(t)ϕ(g(t))dt.
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(ii) If T = Z, then

ϕ

(
∞∑
k=0

f(k)g(k)

)
≤

∞∑
k=0

f(k)ϕ(g(k)).

Note that these properties in the original probability theory translate to

ϕ (E(g(t))) ≤ E (ϕ(g(t))) ,

see [25, p.190].

Next, we use the Jensen inequality to prove the information inequality.

Theorem 46 (Information inequality). Let f and g be two time scales probability density

functions. Then

D(f ||g) ≥ 0, (57)

and

D(f ||g) = 0 (58)

if and only if f = g.

Proof. Let A := {t ∈ T|f(t) > 0}. Using that the logarithm is a strictly concave function

and applying the Jensen inequality, we have

−D(f ||g) = −
∫ ∞

0

f(t) log
f(t)

g(t)
∆t

=

∫ ∞
0

f(t) log
g(t)

f(t)
∆t

=

∫
A

f(t) log
g(t)

f(t)
∆t

≤ log

(∫
A

f(t)
g(t)

f(t)
∆t

)
= log

(∫
A

g(t)∆t

)
≤ log

(∫ ∞
0

g(t)∆t

)
= log 1 = 0,
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and therefore, (57) holds. To achieve equality in (57), we need to have equality for both ≤
in the previous proof. Equality in the first estimation holds if and only if g(t)

f(t)
is constant,

say g(t)
f(t)

= c. Therefore g(t) = cf(t) and

∫
A

g(t)∆t = c

∫
A

f(t)∆t = c.

Equality in the second estimation holds if and only if∫
A

g(t)∆t =

∫ ∞
0

g(t)∆t = 1.

Now it follows that c = 1 and therefore f(t) = g(t). The proof of (58) is complete.
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8. ECONOMIC APPLICATIONS

8.1. INTEREST RATES AND NET PRESENT VALUE

Definition 39. We define the nominal rate of interest to be the interest that is paid

before accounting for effects of inflation or compounding. This interest rate is usually

given in the basic time unit (per annum). We denote the nominal rate of interest by

r. The interest rate that accounts for compounding is called effective rate of interest,

denoted by rE, and the one accounting for inflation is called real rate of interest, denoted

by rR. If i is the rate of inflation, we have

1 + rR =
1 + r

1 + i
.

Note, that this is considered after exactly one year without compounding. A common

approximation for the real interest rate is

rR = r − i,

see [42, 24].

Definition 40. Let K(t0) be the initial wealth at time t = t0 and let there be no inflation.

Then we define the wealth at time t, denoted by K(t) to be

K(t) := K(t0)er(t, t0),

and the effective interest rate over the time interval from t0 to t can be computed by

rE := er(t, t0)− 1.

Example 38. Let K(t0) be the initial wealth at t = t0.

(i) If T = R, then

K(t) = K(t0)er(t−t0)
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and

rE = er(t−t0) − 1.

(ii) If T = Z, then

K(t) = K(t0)(1 + r)t−t0

and

rE = (1 + r)t−t0 − 1.

(iii) If T = qN0, then

K(t) = K(t0)
∏

s∈[t0,t)

(1 + (q − 1)rs)

and

rE =
∏

s∈[t0,t)

(1 + (q − 1)rs)− 1.

(iv) If T = 1
m
Z, then

K(t) = K(t0)
(

1 +
r

m

)m(t−t0)

and

rE =
(

1 +
r

m

)m(t−t0)

− 1

This corresponds to periodic compounding with frequency m.

For time scales with constant graininess, similar results can be found in [42, 24].

Example 39. Let t0 = 1, t = 2, K(t0) = 100 and r = 0.05. Then, we get the following

wealths for different time scales.
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(i) If T = R, then

K(2) = 100e0.05(2−1) ≈ 105.1271.

Here the compounding is done continuously. The effective rate of interest over this

one year time period is 5.1271%.

(ii) If T = Z, then

K(2) = 100(1 + 0.05)2−1 = 105.

Here the compounding is done once a year. The effective rate of interest over this

one year time period is 5% and therefore equal to the nominal rate of interest.

(iii) If T = 1
12
Z, then

K(2) = 100

(
1 +

1

12
0.05

) 2−1
1
12 ≈ 105.1162.

Here the compounding is done monthly. The effective rate of interest over this one

year time period is 5.1162%.

(iv) If T = 1
365

Z, then

K(2) = 100

(
1 +

1

365
0.05

) 2−1
1

365 ≈ 105.1267.

Here the compounding is done daily. The effective rate of interest over this one

year time period is 5.1267%.

Definition 41. Let K(t) be the wealth at time t and let there be no inflation. Then we

define the present value at time t0, denoted by PV (t0), to be

PV (t0) := K(t)e	r(t, t0).

Example 40. Let K(t) be the wealth at t and t0 ∈ T.

(i) If T = R, then

PV (t0) =
K(t)

er(t−t0)
.
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(ii) If T = Z, then

PV (t0) =
K(t)

(1 + r)t−t0
.

(iii) If T = qN0, then

PV (t0) =
K(t)∏

s∈[t0,t)
(1 + (q − 1)rs)

.

(iv) If T = hZ, then

PV (t0) =
K(t)

(1 + hr)
t−t0
h

.

For time scales with constant graininess, equivalent results can be found in [42, 24] for

the present value.

Definition 42. Assume that µ(t) 6= 0 for all t ∈ T (?). Let K(t) be a fixed stream of

payments over a given time period T, called annuity. Then we define the accumulated

value of this annuity at time t, denoted by V (t), by

V (t) :=

∫ t

t0

K(τ)er(t, τ)

µ(τ)
∆τ. (59)

Remark 23. Note, that T = R or any continuous part of our time scale does not make

sense in the economic setting. This would mean that you constantly receive or make

payments. Therefore the accumulated value of the annuity would be infinity. This could

be fixed by letting the stream of payments equal zero for any continuous part of the time

scale. So we consider time scales where µ(t) 6= 0 for all t ∈ T. Consequently, without

loss of generality we only consider isolated points. Therefore, we can rewrite V (t) as

V (t) : =

∫ t

t0

K(τ)er(t, τ)

µ(τ)
∆τ

=
∑

τ∈[t0,t)

µ(τ)K(τ)er(t, τ)

µ(τ)

=
∑

τ∈[t0,t)

K(τ)er(t, τ).
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Example 41. Let K(t) be a fixed stream of payments, r the nominal rate of interest and

t0 ∈ T.

(i) If T = Z, then

V (t) =
t−1∑
τ=t0

K(τ)(1 + r)t−τ

= K(t0)(1 + r)t−t0 +K(t0 + 1)(1 + r)t−t0−1 + . . .+K(t− 1)(1 + r).

(ii) If T = hZ, then

V (t) =
∑

τ∈[t0,t)

K(τ)(1 + hr)
t−τ
h

= K(t0)(1 + hr)
t−t0
h +K(t0 + h)(1 + hr)

t−t0−h
h

+ . . .+K(t− h)(1 + hr)
t−t+h
h

= K(t0)(1 + hr)
t−t0
h +K(t0 + h)(1 + hr)

t−t0
h
−1

+ . . .+K(t− h)(1 + hr).

Example 42. Let us consider the following payment structure. At times t = 0 and

t = 1, we receive the amounts of 100 dollars each. From year 2 on, we receive quarterly

payments of 30 Dollars. The interest rate for the entire time is 5%. How much is the

money worth at t = 3? Solution:

V (3) =

∫ 3

0

K(τ)e0.05(3, τ)

µ(τ)
∆τ

=
∑

τ∈[t0,t)

K(τ)e0.05(3, τ)

=
∑
τ∈[0,2)

100(1 + 0.05)3−τ +
∑
τ∈[2,3)

30

(
1 +

1

4
0.05

) 3−τ
1
4

=
1∑

τ=0

100(1 + 0.05)3−τ +

3
1
4

−1∑
τ= 2

1
4

30

(
1 +

1

4
0.05

) 3− τ
4

1
4

=
1∑

τ=0

100(1 + 0.05)3−τ +
11∑
τ=8

30(1 + 0.0125)12−τ

≈ $349.81.
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Theorem 47. Assume (?). Let the stream of payments K, the interest rate r and the

graininess µ be all constant. Then we have

V (t) =
K

µ
(1 + µr)

er(t, t0)− 1

r
. (60)

Proof. First, note that as r and µ are constant, so is 	r = − r
1+µr

. Moreover, we have

∫ t

t0

er(t, τ)∆τ =

∫ t

t0

e	r(τ, t)∆τ

=
1

	r

∫ t

t0

(	r)e	r(τ, t)∆τ

= −1 + µr

r
e	r(τ, t)

∣∣∣∣t
t0

= −1 + µr

r
(1− e	r(t0, t))

= (1 + µr)
er(t, t0)− 1

r
.

Therefore

V (t) =

∫ t

t0

K(τ)er(t, τ)

µ(τ)
∆τ

=
K

µ

∫ t

t0

er(t, τ)∆τ

=
K

µ
(1 + µr)

er(t, t0)− 1

r
,

which is equation (60).

Example 43. Using (60), we get the following.

(i) If T = Z, then

V (t) = K(1 + r)
(1 + r)t−t0 − 1

r
.

This property can be found in [42, 24] for annually paying annuities.

(ii) If T = hZ, then

V (t) = K(1 + hr)
(1 + hr)

t−t0
h − 1

hr
.
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This property can be found in [42, 24] for periodically paying annuities, where hr

represents the interest rate in the period, i.e., daily, monthly or quarterly.

The accumulated value of an annuity defined in (59) considers a fixed stream of

payments, independent of the time scale in the sense that the payable amount at time

t is fixed from the beginning. That amount does not depend on the gaps between the

points in time when an amount is due. If this gap is also included in our consideration, we

can derive a time scale adjusted value, denoted by Va(t). Note that this payable amount

would be µ(t)K(t).

Lemma 10. The time scales adjusted value of an annuity is

Va(t) =

∫ t

t0

K(τ)er(t, τ)∆τ. (61)

Proof. Note that (59) holds now with µ(t)K(t) instead of K(t). Therefore

Va(t) =

∫ t

t0

µ(τ)K(τ)er(t, τ)

µ(τ)
∆τ =

∫ t

t0

K(τ)er(t, τ)∆τ,

which shows (61).

Example 44. For simplicity, let K(t) = K be a fixed, constant stream of payments, r

the nominal rate of interest and t0 ∈ T.

(i) If T = R, then

Va(t) =

∫ t

t0

Ker(t−τ)dτ

=
K

r
er(t−t0) − 1.

(ii) If T = Z, then

Va(t) =
t−1∑
τ=t0

K(1 + r)t−τ

= K(1 + r)t
t−1∑
τ=t0

(
1

1 + r

)τ
= K(1 + r)t

(
t−1∑
τ=0

(
1

1 + r

)τ
−

t0−1∑
τ=0

(
1

1 + r

)τ)
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= K(1 + r)t

(
1−

(
1

1+r

)t
1− 1

1+r

−
1−

(
1

1+r

)t0
1− 1

1+r

)

=
K(1 + r)t+1

r

(
(1 + r)−t0 − (1 + r)−t

)
=

K(1 + r)

r

(
(1 + r)t−t0 − 1

)
.

(iii) If T = hZ, then

Va(t) =

t
h
−1∑

τ=
t0
h

hK(1 + hr)
t−hτ
h

= hK(1 + hr)
t
h

t
h
−1∑

τ=
t0
h

(
1

1 + hr

)τ

= hK(1 + hr)t

 t
h
−1∑

τ=0

(
1

1 + hr

)τ
−

t0
h
−1∑

τ=0

(
1

1 + hr

)τ
= hK(1 + hr)t

1−
(

1
1+hr

) t
h

1− 1
1+hr

−
1−

(
1

1+r

) t0
h

1− 1
1+hr


=

hK(1 + hr)
t
h

+1

hr

(
(1 + hr)−

t0
h − (1 + hr)−

t
h

)
=

K(1 + hr)

r

(
(1 + hr)

t−t0
h − 1

)
.

Remark 24. Note that this time scales adjusted definition of the accumulated value of

an annuity also allows continuous consideration.

Similarly to the definition of an annuity in (59) and (61), we can define the net

present value and the time scales adjusted net present value of a stream of payments

conducted at t ∈ T.

Definition 43. Assume (?). We define the net present value of a stream of payments

K(t) by

NPV =

∫ t

t0

K(τ)e	r(τ, t0)

µ(τ)
∆τ. (62)
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Definition 44. We define the time scales adjusted net present value of a stream of

payments K(t) by

NPVa =

∫ t

t0

K(τ)e	r(τ, t0)∆τ. (63)

8.2. HAZARD RATES

In this subsection, we will be considering a component, which may be part or

even the entire system. After putting this component under some sort of stress, let X

be a random variable representing the life time or time to failure of the component.

Examples of these components could be fuses, light bulbs or more interesting in the light

of economics, credits, compare [48].

Definition 45. For the random variable X, we define the reliability R by

R(t) = p(X ≥ t). (64)

Note that we have the following equivalent expressions for the reliability:

R(t) = p(X ≥ t)

=

∫ ∞
t

f(τ)∆τ

= 1− p(X < t)

= 1− F (t).

Definition 46. For the random variable X with time scales probability density function

f and cumulative distribution function F , we define the failure or hazard function a by

a(t) =
f(t)

R(t)
=

f(t)

1− F (t)
. (65)

Remark 25. Note that

a(t) =
f(t)

1− F (t)
=

f(t)

1− p(X < t)
=

f(t)

p(X ≥ t)
,

and if X is exponentially distributed, then

a(t) =
f(t)

p(X ≥ t)
=
−(	λ)(t)e	λ(t, 0)

e	λ(t, 0)
= −(	λ)(t).
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Example 45. Applying Remark 25 to different time scales yields the following

(i) If T = R, then

a(t) =
λ

1 + 0λ
= λ,

which can be found in [64, p.289].

(ii) If T = Z, then

a(t) =
λ

1 + λ
.

(iii) If T = hZ, then

a(t) =
λ

1 + hλ
.

(iv) If T = qN0 and q > 1, then

a(t) =
λ

1 + λt(q − 1)
.

Note that for constant graininess, we have constant hazard functions, whereas this is not

necessarily true for other time scales, for example, the quantum calculus case.

Remark 26. Using the definition of conditional probability, we have

p(t ≤ X < σ(t)|X ≥ t) =
p(t ≤ X < σ(t), X ≥ t)

p(X ≥ t)

=
p(t ≤ X < σ(t))

p(X ≥ t)

=

∫ σ(t)

t
f(τ)∆τ

1− F (t)

=
µ(t)f(t)

R(t)

= µ(t)a(t),

where µ(t)a(t) represents the proportion of items failing in [t, σ(t)) among items func-

tioning before time t. Note that this property also holds for µ(t) = 0, as left and right

hand side compute to 0.



100

Remark 27. Let X represent a random variable describing the time of failure (default

event). Then the probability of surviving up to time T given survival until time t is

p(X ≥ T |X ≥ t) =
p(X ≥ T,X ≥ t)

p(X ≥ t)
=
p(X ≥ T )

p(X ≥ t)
,

and if X is exponentially distributed, then

p(X ≥ T |X ≥ t) =
p(X ≥ T )

p(X ≥ t)
=
e	λ(T, 0)

e	λ(t, 0)
= e	λ(T, t).

Theorem 48. Let X represent a random variable describing the survival time and a the

hazard rate. Then we have

p(X ≥ t) = e−a(t, 0).

Proof. First, consider the case, where µ(t) > 0. From Remark 26, we know

a(t) =
p(t ≤ X < σ(t)|X ≥ t)

µ(t)

=
p(t ≤ X < σ(t))

p(X ≥ t)µ(t)

=

∫ σ(t)

0
f(τ)∆τ −

∫ t
0
f(τ)∆τ

p(X ≥ t)µ(t)

=

(
1−

∫∞
σ(t)

f(τ)∆τ
)
−
(
1−

∫∞
t
f(τ)∆τ

)
p(X ≥ t)µ(t)

=
p(X ≥ t)− p(X ≥ σ(t))

p(X ≥ t)µ(t)

=
R(t)−R(σ(t))

µ(t)R(t)

= −R
∆(t)

R(t)
.

Therefore, we have

R∆(t) = −a(t)R(t)

and R(0) = 1, which yields the unique solution

p(X ≥ t) = R(t) = e−a(t, 0).
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If µ(t) = 0, then from the definition

a(t) =
f(t)

R(t)
=
F∆(t)

R(t)
=

lim
s→t

F (s)−F (t)
s−t

R(t)

and therefore

R(t)a(t) = lim
s→t

F (s)− F (t)

s− t
= − lim

s→t

R(s)−R(t)

s− t
= −R∆(t).

As in the first case, the claim follows.

Remark 28. Note that this result is independent from the actual distribution of X.

Example 46. Applying Theorem 48 to the continuous and the discrete cases yields the

following.

(i) If T = R, then

p(X ≥ t) = e−a(t, 0) = e−
∫ t
0 a(τ)dτ .

This can be found in the literature in [64, p.289].

(ii) If T = Z, then

p(X ≥ t) = e−a(t, 0) =
t−1∏
τ=0

(1− a(τ)).

Note, that here

a(t) =
f(t)

p(X ≥ t)
=

f(t)
∞∑
k=t

f(k)
≤ 1,

which is necessary in the discrete representation of the exponential function.

Theorem 49. Let ET(X) be finite. Then we have

ET(X) =

∫ ∞
0

R(σ(t))∆t.
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Proof. Integration by parts yields∫ ∞
0

R(σ(t))∆t =

∫ ∞
0

∫ ∞
σ(t)

f(τ)∆τ∆t

= t

∫ ∞
t

f(τ)∆τ

∣∣∣∣∞
0

+

∫ ∞
0

tf(t)∆t

= ET(X),

which completes the proof.

Remark 29. When considering economic applications, we will have changing hazard

rates over time. So it would be useful to define the exponential distribution with varying

λ. Let λ(t) > 0 and t ∈ T0. Then we define

f(t) =

−(	λ)(t)e	λ(t, 0), if t ≥ 0

0, if t < 0.

Note that this still represents a time scales probability density function, p(X ≥ t) =

e	λ(t, 0) and a(t) = −(	λ)(t). Calculation of the expected value will now not yield a nice

closed formula.

8.3. PRICING OF CREDIT DEFAULT SWAPS

The dictionary defines default as “the absence of something needed” or “failure to

do something required by duty or law” [1]. In economics and finance, default describes

the state where one party fails to fulfill its obligations according to a debt contract, which

was set up with at least one other party. The event of default can occur for example to

countries, companies and single individuals, compare [42]. In the last 25 years, several

countries in the world had to default due to different reasons. The most prominent in

recent time was Argentina in 2002, when defaulting on part of its external debt, see

[37]. One measurement of judging the solvency is the bond credit rating conducted by

credit rating agencies like Moody’s, Standard & Poor’s and Fitch. The ratings range

from AAA (S&P [71], Fitch [62]) as best rating to D describing default. In the beginning

of August 2011, S&P cut the rating of the United States of America from AAA to AA+

as a reaction to the debt crises [71]. Greece in the European Union is rated with CC

by S&P, as of August 2011, causing tremendous problems in refinancing on the bond
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markets [71]. Usually a low credit rating increases the interest rates a country has to

offer to sell bonds on the financial market.

Possible instruments in order to secure the portfolio from the event of default of

particular assets are credit default swaps (CDS). A CDS is the most fundamental credit

derivative. It is a contract between two parties, enabling the bond holding party to

isolate the default risk of the obligator (see [67]). Based on [9], we make the following

assumptions to simplify the model:

1. Default and interest rate are two independent processes.

2. Default can occur at an arbitrary t ∈ T between start and maturity of the contract.

Note that these dates are not necessarily discrete, as it was assumed in [9].

3. The default payment is paid immediately upon default.

During the term of the contract, the protection buyer pays a certain amount, depending

on the time scale, at time t ∈ T, whereas the protection seller is obligated to make a

contingent payment in the default case. The term “default” is here defined in the contract

between the two parties. That might be bankruptcy or failure of the bond/asset seller

to make an interest or the principal payment. Figure 8.1 explains the payment structure

of a CDS for a particular time scale containing the discrete points {0, 1, 3, 4, 7, 8}. The

first part shows the premium payments in case no default occurs. All payments will be

conducted at the beginning of a time period. This will coincide with the premium leg

of the credit default swap. The second part, describing the default leg, represents the

payment structure in the case default occurs. Note that here the premium payments are

paid as in the first case until the event of default. Once the event of default occurs, the

insuring party has to pay 1− δ to the protection buyer, where δ represents the recovery

rate of the underlying asset. Often these recovery rates are low (see [66]) so that the

insurance has to compensate for almost the entire amount of the asset. However, in

some cases the defaulting party might be able to pay a more substantial portion after

restructuring its debts.

First we will price the premium leg. Premium payments of the amount of Aµ(t)

are made at any point t ∈ T. The random variable X represents the time of default

with hazard rate a(t), p(X ≥ t) is the probability that the default event did not occur

until time t, T is the maturity of the CDS contract and B(0, t) is the discount factor for



104

Case 2: default

-

time

6s
0

A 6s
1

2A

6s
3

A

?

s4

1− δ

Case 1: no default

-

time

6s
0

A 6s
1

2A

6

3
sA

6

s
4

3A

6s
7

A s
8

Figure 8.1. Premium payments of a credit default swap

payments done at time t. Moreover, we know, that the risk-free discount factor is

B(0, t) = e	r(t, 0),

where r is the risk-free interest rate. Therefore, the present value of the premium leg is

PV (PL) =

∫ T

0

AB(0, t)p(X ≥ t)∆t

= A

∫ T

0

e	r(t, 0)p(X ≥ t)∆t

= A

∫ T

0

e	r(t, 0)e−a(t, 0)∆t

= A

∫ T

0

e−a(t, 0)

er(t, 0)
∆t.

If the default event is exponentially distributed and therefore a(t) = −(	λ)(t), then we

have

PV (PL) =

∫ T

0

A

eλ⊕r(t, 0)
∆t.
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Second we will price the default leg. The probability that the event of default occurs

between t and σ(t), using Remark 26, is

p(t ≤ X < σ(t)) = a(t)µ(t)p(X ≥ t) = a(t)µ(t)e−a(t, 0).

In case the default event occurs, the insuring party has to make a payment of 1 − δ.

Therefore, the present value of the default leg can be computed by

PV (DL) =

∫ T

0

(1− δ)B(0, t)a(t)e−a(t, 0)∆t

= (1− δ)
∫ T

0

e	r(t, 0)a(t)e−a(t, 0)∆t

= (1− δ)
∫ T

0

a(t)e−a(t, 0)

er(t, 0)
∆t.

If the default event is exponentially distributed and therefore a(t) = −(	λ)(t), then we

have

PV (DL) = (1− δ)
∫ T

0

−(	λ)(t)

eλ⊕r(t, 0)
∆t.

We can also compute the present value of the swap as

PV (swap) = PV (DL)− PV (PL)

= (1− δ)
∫ T

0

a(t)e−a(t, 0)

er(t, 0)
∆t− A

∫ T

0

e−a(t, 0)

er(t, 0)
∆t

=

∫ T

0

((1− δ)a(t)− A)
e−a(t, 0)

er(t, 0)
∆t,

and if X is exponentially distributed, then

PV (swap) =

∫ T

0

−(	λ)(t)(1− δ)− A
eλ⊕r(t, 0)

∆t.

Finally, if we assume the equilibrium state, where

PV (DL) = PV (PL),
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then we get a closed formula to compute the premium payments A

A =
(1− δ)

∫ T
0

a(t)e−a(t,0)
er(t,0)

∆t∫ T
0

e−a(t,0)
er(t,0)

∆t
,

and if X is exponentially distributed, then

A =
(1− δ)

∫ T
0
−(	λ)(t)
eλ⊕r(t,0)

∆t∫ T
0

1
eλ⊕r(t,0)

∆t
.

Example 47. We apply the previous derivation of the price of a credit default swap

to the continuous and the discrete time scales. The present value for the premium leg,

default leg, swap and the amount of the premium payments will be given.

(i) If T = R, then

PV (PL) = A

∫ T

0

e−rt−
∫ t
0 a(u)dudt,

PV (DL) = (1− δ)
∫ T

0

a(t)e−rt−
∫ t
0 a(u)dudt,

PV (swap) =

∫ T

0

[(1− δ)a(t)− A] e−rt−
∫ t
0 a(u)dudt,

A =
(1− δ)

∫ T
0
a(t)e−rt−

∫ t
0 a(u)dudt∫ T

0
e−rt−

∫ t
0 a(u)dudt

.

If X is exponentially distributed, then

PV (PL) = A

∫ T

0

e−rt−
∫ t
0 λ(u)dudt,

PV (DL) = (1− δ)
∫ T

0

λ(t)e−rt−
∫ t
0 λ(u)dudt,

PV (swap) =

∫ T

0

[(1− δ)λ(t)− A] e−rt−
∫ t
0 λ(u)dudt,

A =
(1− δ)

∫ T
0
λ(t)e−rt−

∫ t
0 λ(u)dudt∫ T

0
e−rt−

∫ t
0 λ(u)dudt

.
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If λ is constant, then

PV (PL) = A

∫ T

0

e−t(r+λ)dt =
A

r + λ

(
1− e−T (r+λ)

)
,

PV (DL) = (1− δ)
∫ T

0

λe−t(r+λ)dt =
λ(1− δ)
r + λ

(
1− e−T (r+λ)

)
,

PV (swap) =
(
1− e−T (r+λ)

) λ(1− δ)− A
r + λ

,

A = (1− δ)λ.

(ii) If T = Z, then

PV (PL) = A
T−1∑
t=0

t−1∏
u=0

(1− a(u))

(1 + r)t
,

PV (DL) = (1− δ)
T−1∑
t=0

a(t)
t−1∏
u=0

(1− a(u))

(1 + r)t
,

PV (swap) =
T−1∑
t=0

((1− δ)a(t)− A)

t−1∏
u=0

(1− a(u))

(1 + r)t
,

A =

(1− δ)
T−1∑
t=0

a(t)
t−1∏
u=0

(1−a(u))

(1+r)t

T−1∑
t=0

t−1∏
u=0

(1−a(u))

(1+r)t

.

These results can be found similarly in [9]. If X is exponentially distributed, then

PV (PL) =
T−1∑
t=0

A

(1 + r)t
t−1∏
u=0

(1 + λ(u))

,

PV (DL) = (1− δ)
T−1∑
t=0

λ(t)
1+λ(t)

(1 + r)t
t−1∏
u=0

(1 + λ(u))

,
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PV (swap) =
T−1∑
t=0

(1− δ) λ(t)
1+λ(t)

− A

(1 + r)t
t−1∏
u=0

(1 + λ(u))

,

A =

(1− δ)
T−1∑
t=0

λ(t)
1+λ(t)

(1+r)t
t−1∏
u=0

(1+λ(u))

T−1∑
t=0

1

(1+r)t
t−1∏
u=0

(1+λ(u))

.

If λ is constant, then

PV (PL) =
T−1∑
t=0

A

(1 + r)t(1 + λ)t
=
A(1 + r)(1 + λ)

r + λ+ rλ

(
1− 1

(1 + r)T (1 + λ)T

)
,

PV (DL) = (1− δ)
T−1∑
t=0

λ
1+λ

(1 + r)t(1 + λ)t

=
λ(1− δ)(1 + r)

r + λ+ rλ

(
1− 1

(1 + r)T (1 + λ)T

)
,

PV (swap) =

(
λ

1 + λ
(1− δ)− A

)
(1 + r)(1 + λ)

r + λ+ rλ

(
1− 1

(1 + r)T (1 + λ)T

)
,

A =
(1− δ)λ

1 + λ
.

8.4. CREDIT SPREADS

In this section, we will compare the prices of two bonds of the same structure, one

being risk-free and the other one being risky in the sense that the probability of default

is greater than zero. We already derived today’s price of a risk free zero coupon bond of

face value 1 and maturity time T by

B(0, T ) = e	r(T, 0),

where r represents the risk-free interest rate. Following [9], a compensation of c has to

be paid in order to sell a bond that is risky, i.e., that might default before time T . We

define the new interest rate of the risky bond by r ⊕ c and therefore get today’s price of
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that asset of face value 1 and maturity time T by

Brisky(0, T ) = e	(r⊕c)(T, 0).

Let X be a random variable that describes the time of default, and therefore p(X ≥ T ) is

the probability that the default event does not happen until maturity of the underlying

bond. Finally δ will again represent the recovery rate in the default case and a(t) the

hazard rate. So the fair price of a risky bond is therefore

Brisky(0, t) = p(X ≥ T )B(0, T ) + (1− p(X ≥ T ))δB(0, T )

= e−a(T, 0)e	r(T, 0) + (1− e−a(T, 0))δe	r(T, 0)

= e	r(T, 0) (e−a(T, 0)(1− δ) + δ) .

If X is exponentially distributed, then

Brisky(0, T ) = e	r(T, 0) (e	λ(T, 0)(1− δ) + δ) .

Now we derive the credit spread c in terms of the default probability. Note that

Brisky(0, T )

B(0, T )
=

e	(r⊕c)(T, 0)

e	r(T, 0)

=
er(T, 0)

er(T, 0)ec(T, 0)

= e	c(T, 0)

= e−a(T, 0)(1− δ) + δ.

If X is exponentially distributed, then

Brisky(0, T )

B(0, T )
= e	c(T, 0)

= e	λ(T, 0)(1− δ) + δ.

Using the definition of the logarithm from (5), we get for the credit spread

c = logT
1

e−a(T, 0)(1− δ) + δ
,
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and if X is exponentially distributed, then

c = logT
1

e	λ(T, 0)(1− δ) + δ
.

Usually exact hazard rates are unknown, and therefore getting a good estimate for the

default probability is achieved by using historical data, see [9]. If our time scale is

for example Z, then one could use the annual transition matrix and raising it to the

appropriate power. That matrix is published by rating agencies like Moody’s [51]. If a

bond has a particular rating right now, that matrix gives all transition probabilities to

have any other rating in one year. Most importantly it gives an estimate of defaulting

during the one year time period. Of course going from an Aaa rating to default is almost

impossible. As those probabilities are not risk neutral (see [9]), this method gives a close

estimate for the computation of the credit spread but is not a valid way of pricing risky

bonds.

Example 48. Next, we apply the previously derived results to the continuous and the

discrete time scales cases.

(i) If T = R, then

Brisky(0, T ) = e−(r+c)T ,

Brisky(0, T ) = e−rT
(
e−

∫ T
0 a(t)dt(1− δ) + δ

)
and

c = −
log
(
e−

∫ T
0 a(t)dt(1− δ) + δ

)
T

.

If X is exponentially distributed, then

Brisky(0, T ) = e−rT
(
e−

∫ T
0 λ(t)dt(1− δ) + δ

)
and

c = −
log
(
e−

∫ T
0 λ(t)dt(1− δ) + δ

)
T

.
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If λ is constant, then

Brisky(0, T ) = e−rT
(
e−λT (1− δ) + δ

)
and

c = −
log
(
e−λT (1− δ) + δ

)
T

.

Similar results can be found in [9, p.180].

(ii) If T = Z, then we have the price of a risky bond given by

Brisky(0, T ) = (1 + r + c+ rc)−T = (1 + r)−T (1 + c)−T ,

where we note that this definition is slightly different from the intuitive assumption

of just adding the spread to the risk-free interest rate. This occurs as we deal with

r ⊕ c in the time scales case. Moreover,

Brisky(0, T ) = (1 + r)−T

(
T−1∏
t=0

(1− a(t))(1− δ) + δ

)

and

c =

(
T−1∏
t=0

(1− a(t))(1− δ) + δ

)− 1
T

− 1.

If X is exponentially distributed, then

Brisky(0, T ) = (1 + r)−T

 1− δ
T−1∏
t=0

(1 + λ(t))

+ δ


and

c =

 1− δ
T−1∏
t=0

(1 + λ(t))

+ δ


− 1
T

− 1.
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If λ is constant, then

Brisky(0, T ) = (1 + r)−T
(
(1 + λ)−T (1− δ) + δ

)
and

c =
(
(1 + λ)−T (1− δ) + δ

)− 1
T − 1.
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9. OSTROWSKI INEQUALITIES INVOLVING EXPECTED VALUES

This section is motivated by the paper “Some Inequalities for Probability, Expecta-

tion, and Variance of Random Variables Defined over a Finite Interval” by N.S. Barnett,

S.S. Dragomir and R.P. Agarwal (see [12]). We will apply the definitions of previous sec-

tions in this thesis to theorems in [12], and, therefore, generalize the results for arbitrary

time scales. Throughout, multiple examples will be provided.

Definition 47. Throughout this section, let X be a random variable with support on the

interval [a, b], a, b ∈ T0, i.e., the time scales probability density function f(t) ≥ 0 on [a, b]

and f(t) = 0 elsewhere. Moreover, we use the cumulative distribution function

F (t) =

∫ t

a

f(τ)∆τ

and we have

F∆(t) = f(t).

Lemma 11 (Montgomery identity). We have

∫ b

a

p(t, s)f(s)∆s = (b− a)F (t)−
∫ b

a

F (σ(s))∆s, (66)

where

p(t, s) =

 s− a, a ≤ s < t

s− b, t ≤ s ≤ b.

Proof. Using the integration by parts formula, we have

∫ b

a

p(t, s)f(s)∆s =

∫ t

a

(s− a)f(s)∆s+

∫ b

t

(s− b)f(s)∆s

= (s− a)F (s)|ta −
∫ t

a

F (σ(s))∆s

+(s− b)F (s)|bt −
∫ b

t

F (σ(s))∆s

= (t− a)F (t)− (t− b)F (t)−
∫ b

a

F (σ(s))∆s
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= (b− a)F (t)−
∫ b

a

F (σ(s))∆s,

which proves (66).

Theorem 50. The following inequalities hold∣∣∣∣F (t)− b− ET(X)

b− a

∣∣∣∣ ≤ 1

b− a

(
(2t− (a+ b))F (t) +

∫ b

a

sgn(s− t)F (σ(s))∆s

)
(67)

≤ 1

b− a
((b− t)p(X ≥ t) + (t− a)p(X < t))

≤ 1

2
+

∣∣t− a+b
2

∣∣
b− a

,

where all inequalities are sharp.

Proof. First, using the definition of the expected value and integration by parts, we have

ET(X) =

∫ b

a

sf(s)∆s

= sF (s)|ba −
∫ b

a

F (σ(s))∆s

= bF (b)− aF (a)−
∫ b

a

F (σ(s))∆s

= b−
∫ b

a

F (σ(s))∆s.

Applying (66) leads to

∫ b

a

p(t, s)f(s)∆s = (b− a)F (t)−
∫ b

a

F (σ(s))∆s (68)

= (b− a)F (t) + ET(X)− b

and therefore

F (t)− b− ET(X)

b− a
=

1

b− a

∫ b

a

p(t, s)f(s)∆s.

Now we have∣∣∣∣∫ b

a

p(t, s)f(s)∆s

∣∣∣∣ =

∣∣∣∣∫ t

a

(s− a)f(s)∆s+

∫ b

t

(s− b)f(s)∆s

∣∣∣∣
≤

∫ t

a

|s− a||f(s)|∆s+

∫ b

t

|s− b||f(s)|∆s
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=

∫ t

a

(s− a)f(s)∆s+

∫ b

t

(b− s)f(s)∆s

= (s− a)F (s)|ta −
∫ t

a

F (σ(s))∆s

+(b− a)F (s)|bt +

∫ b

t

F (σ(s))∆s

= (t− a)F (t)− (b− t)F (t)−
∫ t

a

F (σ(s))∆s+

∫ b

t

F (σ(s))∆s

= (2t− (a+ b))F (t) +

∫ b

a

sgn(s− t)F (σ(s))∆s,

showing the first inequality of (67). As F (t) is monotonically increasing for t ∈ [a, b], we

have ∫ t

a

F (σ(s))∆s ≥
∫ t

a

F (σ(a))∆s ≥
∫ t

a

F (a)∆s = 0

and ∫ b

t

F (σ(s))∆s ≤
∫ b

t

F (σ(b))∆s =

∫ b

t

F (b)∆s = b− t.

Then

1

b− a

(
(2t− (a+ b))F (t) +

∫ b

a

sgn(s− t)F (σ(s))∆s

)
≤ 1

b− a
((2t− (a+ b))F (t) + b− t)

=
1

b− a
((b− t)(1− F (t)) + (t− a)F (t))

=
1

b− a
((b− t)p(X ≥ t) + (t− a)p(X < t)) ,

finishing the second part of (67). Finally, we have

1

b− a
((b− t)p(X ≥ t) + (t− a)p(X < t))

≤ 1

b− a
max {b− t, t− a} (p(X ≥ t) + p(X > t))

=
1

b− a

(
b− a

2
+

∣∣∣∣t− a+ b

2

∣∣∣∣) =
1

2
+

∣∣t− a+b
2

∣∣
b− a

,
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showing the last inequality of (67). To show the sharpness, let t = t1, a = t1, b = t2 and

F (t) =

0, if t = t1

1, if t ∈ (t1, t2] .

Then, on noting that

ET(X) =

∫ t2

t1

sf(s)∆s

= tF (t)|t2t1 −
∫ t2

t1

F (σ(s))∆s

= t2F (t2)− t1F (t1)− (t2 − t1)

= t1,

we have∣∣∣∣F (t)− b− ET(X)

b− a

∣∣∣∣ =

∣∣∣∣F (t1)− t2 − t1
t2 − t1

∣∣∣∣ = 1.

On the other hand

1

2
+

∣∣t− a+b
2

∣∣
b− a

=
1

2
+

∣∣t1 − t1+t2
2

∣∣
t2 − t1

=
1

2
+

∣∣ t1−t2
2

∣∣
t2 − t1

=
1

2
+

1

2
= 1,

which completes the proof of the sharpness of inequality (67).

Remark 30. Note that in the derivation of the sharpness, the function f is not rd-

continuous, thus causing problems in the proof of Theorem 50 with the integration by

parts formula. If t1 is right-scattered, there is no problem, as

f(t1) = F∆(t1) =
F (σ(t1))− F (t1)

µ(t1)
=

1− 0

µ(t1)
=

1

µ(t1)
<∞.

For t1 being right-dense, it would be necessary to use the Riemann–Stieltjes definition for

integrals on time scales, see [52]. Here the expected value would be defined as ET(X) =∫ b
a
t∆F , and a corresponding integration by parts formula holds, compare [52, Theorem

4.4].

Example 49. We apply Theorem 50 to different time scales
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(i) If T = R, then∣∣∣∣p(X ≤ t)− b− ER(X)

b− a

∣∣∣∣
≤ 1

b− a

(
(2t− (a+ b))p(X ≤ t) +

∫ b

a

sgn(s− t)F (s)ds

)
≤ 1

b− a
((b− t)p(X ≥ t) + (t− a)p(X ≤ t)) ≤ 1

2
+

∣∣t− a+b
2

∣∣
b− a

,

which corresponds exactly to [12, Theorem 6].

(ii) If T = Z, a = 0, b = n and t ∈ N0, then∣∣∣∣p(X < t)− n− EZ(X)

n

∣∣∣∣
≤ 1

n

(
(2t− n)p(X < t) +

n∑
s=1

sgn(s− 1− t)p(X < s)

)

≤ 1

n
((n− t)p(X ≥ t) + tp(X < t)) ≤ 1

2
+

∣∣t− n
2

∣∣
n

,

which is a new version of an Ostrowski type inequality in the discrete case.

Remark 31. Note that the left-hand side of (67) can be replaced by∣∣∣∣F (t)− b− ET(X)

b− a

∣∣∣∣ =

∣∣∣∣1− p(X ≥ t)− b− ET(X)

b− a

∣∣∣∣
=

∣∣∣∣b− ab− a
− p(X ≥ t)− b− ET(X)

b− a

∣∣∣∣
=

∣∣∣∣−p(X ≥ t) +
ET(X)− a
b− a

∣∣∣∣
=

∣∣∣∣p(X ≥ t)− ET(X)− a
b− a

∣∣∣∣ .
In the continuous case, we get [12, Remark 1].

Corollary 2. The following upper and lower bounds for the cumulative distribution func-

tion hold:

F (t) ≤ 1

b− t

∫ b

a

F (σ(s))

(
1 + sgn(s− t)

2

)
∆s (69)
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and

F (t) ≥ 1

t− a

∫ b

a

F (σ(s))

(
1− sgn(s− t)

2

)
∆s. (70)

Proof. Using the properties of the absolute value in the first inequality of (67), we get

the following equivalent statements

F (t)− b− ET(X)

b− a
≤ 1

b− a

(
(2t− (a+ b))F (t) +

∫ b

a

sgn(s− t)F (σ(s))∆s

)

⇔ (b− a)F (t)− (2t− (a+ b))F (t) ≤ b− ET(X) +

∫ b

a

sgn(s− t)F (σ(s))∆s

⇔ (2b− 2t)F (t) ≤ b− ET(X) +

∫ b

a

sgn(s− t)F (σ(s))∆s.

Moreover,

b− ET(X) =

∫ b

a

F (σ(s))∆s,

and therefore

F (t) ≤ 1

2(b− t)

(∫ b

a

F (σ(s))∆s+

∫ b

a

sgn(s− t)F (σ(s))∆s

)
=

1

b− t

∫ b

a

F (σ(s))

(
1 + sgn(s− t)

2

)
∆s,

showing (69). Similarly, we have

F (t)− b− ET(X)

b− a
≥ − 1

b− a

(
(2t− (a+ b))F (t) +

∫ b

a

sgn(s− t)F (σ(s))∆s

)

⇔ (2t− 2a)F (t) ≥ b− ET(X)−
∫ b

a

sgn(s− t)F (σ(s))∆s,

and therefore

F (t) ≥ 1

t− a

∫ b

a

F (σ(s))

(
1− sgn(s− t)

2

)
∆s, (71)

completing the proof of (70).

Remark 32. Note, that in the continuous setting, this result coincides with [12, Corollary

2].
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Theorem 51. We have the inequality∣∣∣∣F (t)− b− ET(X)

b− a

∣∣∣∣ ≤ M

b− a
(h2(t, a) + h2(t, b)) , (72)

where

M = sup
t∈[a,b]

f(t).

This inequality is sharp, in the sense, that the right-hand side cannot be replaced by a

smaller expression.

Proof. From (68), we know

∫ b

a

p(t, s)f(s)∆s = (b− a)F (t) + ET(X)− b

and if

p(t, s) =

 s− a, a ≤ s < t

s− b, t ≤ s ≤ b,

then ∣∣∣∣∫ b

a

p(t, s)f(s)∆s

∣∣∣∣ ≤ M

∫ b

a

|p(t, s)|∆s

= M

(∫ t

a

|s− a|∆s+

∫ b

t

|s− b|∆s
)

= M

(∫ t

a

(s− a)∆s+

∫ b

t

(b− s)∆s
)

= M

(∫ t

a

(s− a)∆s+

∫ t

b

(s− b)∆s
)

= M (h2(t, a) + h2(t, b)) ,

implying (72). To show the sharpness of (72), let F (t) = t−t1
t2−t1 , a = t1, b = t2, f(t) = 1

t2−t1

and t = t1. Then

∣∣∣∣F (t)− b− ET(X)

b− a

∣∣∣∣ =

∣∣∣∣∣t1 − t1t2 − t1
−
t2 − 1

t2−t1

∫ t2
t1
s∆s

t2 − t1

∣∣∣∣∣
=

∣∣∣∣∣−t2 −
1

t2−t1

∫ t2
t1
s∆s

t2 − t1

∣∣∣∣∣
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=
1

(t2 − t1)2

(
t2(t2 − t1)−

∫ t2

t1

s∆s

)
and

M

b− a
(h2(t, a) + h2(t, b)) =

1
t2−t1
t2 − t1

(h2(t1, t1) + h2(t1, t2))

=
1

(t2 − t1)2

∫ t1

t2

(s− t2)∆s

=
1

(t2 − t1)2

(
t2(t2 − t1)−

∫ t2

t1

s∆s

)
,

completing the proof of the sharpness.

Remark 33. Also note that we can, as previously done, replace
∣∣∣F (t)− b−ET(X)

b−a

∣∣∣ with∣∣∣p(X ≥ t)− ET(X)−a
b−a

∣∣∣ in (72).

Remark 34. As

ET(X) = b−
∫ b

a

F (σ(s))∆s,

we have∣∣∣∣F (t)− 1

b− a

∫ b

a

F (σ(s))∆s

∣∣∣∣ ≤ M

b− a
(h2(t, a) + h2(t, b)) ,

which corresponds exactly to the Ostrowski inequality on time scales in [19].

Example 50. We apply (72) to different time scales.

(i) If T = R, then

∣∣∣∣F (t)− b− ER(X)

b− a

∣∣∣∣ ≤M(b− a)

(
1

4
+

(
t− a+b

2

)2

(b− a)2

)
,

where

M = sup
t∈[a,b]

f(t),

which corresponds exactly to [12, Theorem 7].
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(ii) If T = Z, a = 0, b = n and t ∈ N0, then

∣∣∣∣p(X < t)− n− EZ(X)

n

∣∣∣∣ ≤ M

n

[(
t− n+ 1

2

)2

+
n2 − 1

4

]
,

where

M = max
0≤t≤n−1

f(t).

Corollary 3. Let a, b ∈ T0. Then we have the inequality

b−Mh2(a, b) ≤ ET(X) ≤ a+Mh2(b, a),

where

M = sup
t∈[a,b]

f(t).

Proof. First note that

ET(X) =

∫ b

a

sf(s)∆s ≤
∫ b

a

bf(s)∆s = b

and similarly

ET(X) =

∫ b

a

sf(s)∆s ≥
∫ b

a

af(s)∆s = a.

If we pick t = a in (72), then∣∣∣∣F (a)− b− ET(X)

b− a

∣∣∣∣ =
b− ET(X)

b− a
≤ M

b− a
h2(a, b),

resulting in

b−Mh2(a, b) ≤ ET(X),

and if we pick t = b, then∣∣∣∣F (b)− b− ET(X)

b− a

∣∣∣∣ =
ET(X)− a
b− a

≤ M

b− a
h2(b, a),
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resulting in

ET(X) ≤ a+Mh2(b, a).

The proof is complete.

Example 51. We apply Corollary 3 to different time scales.

(i) If T = R, then

b− M

2
(b− a)2 ≤ ER(X) ≤ a+

M

2
(b− a)2,

where

M = sup
t∈[a,b]

f(t),

which corresponds exactly to [12, Corollary 3].

(ii) If T = Z, a = 0 and b = n, then

n− M

2
n(n+ 1) ≤ EZ(X) ≤ M

2
n(n− 1),

where

M = max
0≤t≤n−1

f(t).

Theorem 52. Let f be the time scales probability density function of a random variable

X and F the corresponding cumulant distribution function. Then, we have the following

inequality ∣∣∣∣F (x)− b− ET(X)

b− a

∣∣∣∣ (73)

≤ q

1 + q
‖f‖p (b− a)

1
q

[(
x− σ(a)

b− a

) 1+q
q

+

(
σ(b)− x
b− a

) 1+q
q

−
(
−µ(x)

b− a

) 1+q
q

−
(
µ(x)

b− a

) 1+q
q

]

≤ q

1 + q
‖f‖p (b− a)

1
q

(
σ(b)− σ(a)

b− a

) 1+q
q

,
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where

‖f‖p =

(∫ b

a

fp(t)∆t

) 1
p

and 1
p

+ 1
q

= 1.

Proof. First note that, if we apply [22, Theorem 1.90] for γ ≥ 1, g1(x) = xγ, g2(t) = t−s,
then we get g∆

2 (t) = 1 and (g1 ◦ g2)(t) = (t− s)γ, and therefore

(g1 ◦ g2)∆(t) =

∫ 1

0

g′1(t− s+ hµ(t))dh

=

∫ 1

0

γ(t− s+ hµ(t))γ−1dh

≥
∫ 1

0

γ(t− s)γ−1dh

= γ(t− s)γ−1.

So we have

[(t− s)γ]∆ ≥ γ(t− s)γ−1.

Shifting t to σ(t) and integrating t from a to b yields

∫ b

a

(σ(t)− s)γ−1∆t ≤ 1

γ

∫ b

a

[(σ(t)− s)γ]∆ ∆t

=
1

γ
[(σ(b)− s)γ − (σ(a)− s)γ] .

Similarly for g1(x) = xγ, g2(t) = s− t, we get g∆
2 (t) = −1 and (g1 ◦ g2)(t) = (s− t)γ, and

therefore

(g1 ◦ g2)∆(t) = −
∫ 1

0

g′1(s− t− hµ(t))dh

= −
∫ 1

0

γ(s− t− hµ(t))γ−1dh

≥ −
∫ 1

0

γ(s− t)γ−1dh

= −γ(s− t)γ−1.
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So we have

[(s− t)γ]∆ ≥ −γ(s− t)γ−1.

Shifting t to σ(t) and integrating t from a to b yields

−
∫ b

a

(s− σ(t))γ−1∆t ≤ 1

γ

∫ b

a

[(s− σ(t))γ]∆ ∆t

=
1

γ
[(s− σ(b))γ − (s− σ(a))γ] .

Now, note that Hölder’s inequality (10) implies

|F (x)− F (y)| =

∣∣∣∣∫ x

a

f(t)∆t−
∫ y

a

f(t)∆t

∣∣∣∣
=

∣∣∣∣∫ x

y

f(t)∆t

∣∣∣∣
≤

∣∣∣∣∫ x

y

|f(t)|p∆t
∣∣∣∣ 1p ∣∣∣∣∫ x

y

1q∆t

∣∣∣∣ 1q
=

∣∣∣∣∫ x

y

fp(t)∆t

∣∣∣∣ 1p |x− y| 1q
≤

∣∣∣∣∫ b

a

fp(t)∆t

∣∣∣∣
1
p

|x− y|
1
q

= ‖f‖p|x− y|
1
q .

Shifting y to σ(y), integrating y from a to b and dividing by b− a yields∣∣∣∣F (x)− 1

b− a

∫ b

a

F (σ(y))∆y

∣∣∣∣ ≤ 1

b− a

∫ b

a

|F (x)− F (σ(y))|∆y

≤ 1

b− a
‖f‖p

∫ b

a

|x− σ(y)|
1
q∆y

=
1

b− a
‖f‖p

(∫ x

a

(x− σ(y))
1
q∆y +

∫ b

x

(σ(y)− x)
1
q∆y

)
=

1

b− a
‖f‖p

(
−
∫ a

x

(x− σ(y))
1
q∆y +

∫ b

x

(σ(y)− x)
1
q∆y

)
≤ 1

b− a
‖f‖p

q

1 + q

(
(x− σ(a))

q
1+q − (x− σ(x))

q
1+q

+(σ(b)− a)
q

1+q − (σ(x)− x)
q

1+q

)
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=
q

1 + q
‖f‖p (b− a)

1
q

[(
x− σ(a)

b− a

) 1+q
q

+

(
σ(b)− x
b− a

) 1+q
q

−
(
−µ(x)

b− a

) 1+q
q

−
(
µ(x)

b− a

) 1+q
q

]
.

As ∣∣∣∣F (x)− 1

b− a

∫ b

a

F (σ(y))∆y

∣∣∣∣ =

∣∣∣∣F (x)− b− ET(X)

b− a

∣∣∣∣ ,
the first part of (73) holds. As it can be shown easily, if x, y ≥ 0 and γ ≥ 1, then

xγ + yγ ≤ (x+ y)γ, we have

q

1 + q
‖f‖p (b− a)

1
q

[(
x− σ(a)

b− a

) 1+q
q

+

(
σ(b)− x
b− a

) 1+q
q

−
(
−µ(x)

b− a

) 1+q
q

−
(
µ(x)

b− a

) 1+q
q

]

≤ q

1 + q
‖f‖p (b− a)

1
q

[(
x− σ(a) + σ(b)− x

b− a

) 1+q
q

−
(
−µ(x) + µ(x)

b− a

) 1+q
q

]

≤ q

1 + q
‖f‖p (b− a)

1
q

(
σ(b)− σ(a)

b− a

) 1+q
q

,

finishing the proof of the second inequality of (73).

Remark 35. Note that for all time scales different from T = R, we have the more

accurate inequality∣∣∣∣F (x)− b− ET(X)

b− a

∣∣∣∣ ≤ 1

b− a
‖f‖p

(∫ x

a

(x− σ(y))
1
q∆y +

∫ b

x

(σ(y)− x)
1
q∆y

)
.

Example 52. We apply (73) to different time scales.

(i) If T = R, then∣∣∣∣p(X ≤ x)− b− ER(X)

b− a

∣∣∣∣
≤ q

1 + q
‖f‖p (b− a)

1
q

[(
x− a
b− a

) 1+q
q

+

(
b− x
b− a

) 1+q
q

]
≤ q

1 + q
‖f‖p (b− a)

1
q ,
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where

‖f‖p =

(∫ b

a

fp(t)dt

) 1
p

,

which corresponds exactly to [12, Theorem 8].

(ii) If T = Z, a = 0, b = n and t ∈ N0, then∣∣∣∣p(X < x)− n− EZ(X)

n

∣∣∣∣
≤ q

1 + q
‖f‖p n

1
q

[(
x− 1

n

) 1+q
q

+

(
b+ 1− x

n

) 1+q
q

−
(
−1

n

) 1+q
q

−
(

1

n

) 1+q
q

]
≤ q

1 + q
‖f‖p n

1
q ,

where

‖f‖p =

(
n−1∑
t=0

fp(t)

) 1
p

.

Corollary 4. Let a, b ∈ T0. Then we have the inequality

b− q

q + 1
‖f‖p(σ(b)− σ(a))

1+q
q ≤ ET(X) ≤ a+

q

q + 1
‖f‖p(σ(b)− σ(a))

1+q
q .

Proof. First note that, if we pick t = a in (73), then∣∣∣∣F (a)− b− ET(X)

b− a

∣∣∣∣ =
b− ET(X)

b− a

≤ q

1 + q
‖f‖p (b− a)

1
q

(
σ(b)− σ(a)

b− a

) 1+q
q

,

resulting in

b− q

q + 1
‖f‖p(σ(b)− σ(a))

1+q
q ≤ ET(X),

and if we pick t = b, then∣∣∣∣F (b)− b− ET(X)

b− a

∣∣∣∣ =
ET(X)− a
b− a
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≤ q

1 + q
‖f‖p (b− a)

1
q

(
σ(b)− σ(a)

b− a

) 1+q
q

,

resulting in

ET(X) ≤ a+
q

q + 1
‖f‖p(σ(b)− σ(a))

1+q
q ,

which completes the proof.

Example 53. We apply Corollary 4 to different time scales.

(i) If T = R, then

b− q

q + 1
‖f‖p(b− a)

1+q
q ≤ ER(X) ≤ a+

q

q + 1
‖f‖p(b− a)

1+q
q ,

where

‖f‖p =

(∫ b

a

fp(t)dt

) 1
p

,

which corresponds exactly to [12, Corollary 8].

(ii) If T = Z, a = 0 and b = n, then

n− q

q + 1
‖f‖pn

1+q
q ≤ EZ(X) ≤ q

q + 1
‖f‖pn

1+q
q ,

where

‖f‖p =

(
n−1∑
t=0

fp(t)

) 1
p

.

Theorem 53. Let a, b ∈ T and X be defined on [a, b). Then the inequalities

VarT(X) ≤ (b− ET(X))(ET(X)− a) ≤ (b− a)2

4
(74)

and

(b−ET(X))(ET(X)−a)−VarT(X) ≤ ‖f‖
∫ b

a

(
(b− t)(t− a) + h2

1(t, 0)− 2h2(t, 0)
)

∆t

(75)
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hold, where

‖f‖ = sup
t∈[a,b]

|f(t)|.

Proof. First note that

0 ≤
∫ b

a

(b− t)(t− a)f(t)∆t+

∫ b

a

∫ t

0

µ(τ)∆τf(t)∆t

=

∫ b

a

[
(b− t)(t− a) + h2

1(t, 0)− 2h2(t, 0)
]
f(t)∆t

=

∫ b

a

(b− ET(X) + ET(X)− t)(t− ET(X) + ET(X)− a)f(t)∆t

−
∫ b

a

(2h2(t, 0)− t2)f(t)∆t

= (b− ET(X))(ET(X)− a)

∫ b

a

f(t)∆t+ (b− ET(X))

∫ b

a

(t− ET(X))f(t)∆t

+(ET(X)− a)

∫ b

a

(ET(X)− t)f(t)∆t−
∫ b

a

(t− ET(X))2f(t)∆t

−
∫ b

a

(2h2(t, 0)− t2)f(t)∆t

= (b− ET(X))(ET(X)− a)− VarT(X),

and therefore

VarT(X) ≤ (b− ET(X))(ET(X)− a).

To show the second part of (74), note that for all α, β ∈ R, we have

αβ ≤ (α + β)2

4
.

Setting α = b − ET(X) and β = ET(X) − a completes the proof of (74). From the

derivation of (74), we have

(b− ET(X))(ET(X)− a)− VarT(X)

=

∫ b

a

[
(b− t)(t− a) + h2

1(t, 0)− 2h2(t, 0)
]
f(t)∆t

≤ ‖f‖
∫ b

a

(
(b− t)(t− a) + h2

1(t, 0)− 2h2(t, 0)
)

∆t,
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and therefore inequality (75) is shown. This completes the proof of both parts of Theorem

53.

Example 54. We apply Theorem 53 to different time scales.

(i) If T = R, then

VarR(X) ≤ (b− ER(X))(ET(X)− a) ≤ (b− a)2

4

and

(b− ER(X))(ER(X)− a)− VarR(X) ≤ ‖f‖ (b− a)3

6
,

where

‖f‖ = sup
t∈[a,b]

|f(t)|,

which corresponds exactly to [12, Theorem 23].

(ii) If T = Z, a = 0 and b = n, then

VarZ(X) ≤ (n− EZ(X))EZ(X) ≤ n2

4

and

(n− EZ(X))EZ(X)− VarZ(X) ≤ ‖f‖ n(n− 1)(n+ 4)

6
,

where

‖f‖ = max
0≤t≤n−1

|f(t)|.
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10. DIAMOND-ALPHA GRÜSS TYPE INEQUALITIES

This chapter contains material from a collaborative work with Martin Bohner and

Adnan Tuna, which appeared in 2011 in the International Journal of Dynamical Systems

and Differential Equations with the title “Diamond-alpha Grüss type inequalities on time

scales”, see [20]. We study a more general version of Grüss type inequalities on time scales

by using the recent theory of combined dynamic derivatives on time scales. In the case

α = 1, we obtain delta-integral Grüss type inequalities on time scales. For α = 0, we

obtain nabla-integral Grüss type inequalities. We supply numerous examples throughout.

10.1. INTRODUCTION

M. R. Sidi Ammi and D. F. M. Torres [7] have established the diamond-α Grüss

inequality on time scales as follows.

Theorem 54 (see [7, Theorem 3.4]). Let T be a time scale and a, b ∈ T with a < b. If

f, g ∈ C(T,R) satisfy ϕ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b] ∩ T, then∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)♦αx−
1

(b− a)2

∫ b

a

f(x)♦αx
∫ b

a

g(x)♦αx
∣∣∣∣ ≤ 1

4
(Φ− ϕ)(Γ− γ).

S. S. Dragomir [29] gave some classical and new integral inequalities of Grüss type,

for example, the following two results.

Theorem 55 (see [29, Theorem 2.1]). Let f, g : [a, b]→ R be two Lipschitzian mappings

with Lipschitz constants L1 > 0 and L2 > 0, respectively, i.e.,

|f(x)− f(y)| ≤ L1 |x− y| and |g(x)− g(y)| ≤ L2 |x− y|

for all x, y ∈ [a, b]. If p : [a, b]→ [0,∞) is integrable, then

∣∣∣∣∫ b

a

p(x)dx

∫ b

a

p(x)f(x)g(x)dx−
∫ b

a

p(x)f(x)dx

∫ b

a

p(x)g(x)dx

∣∣∣∣
≤ L1L2

[∫ b

a

p(x)dx

∫ b

a

p(x)x2dx−
(∫ b

a

p(x)xdx

)2
]
,

and the inequality is sharp.
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Theorem 56 (see [29, Theorem 4.1]). Let f, g : [a, b] → R be two integrable mappings

on [a, b] such that

|f(x)− f(y)| ≤M |g(x)− g(y)|

for all x, y ∈ [a, b]. If p : [a, b]→ [0,∞) is integrable, then

∣∣∣∣∫ b

a

p(x)dx

∫ b

a

p(x)f(x)g(x)dx−
∫ b

a

p(x)f(x)dx

∫ b

a

p(x)g(x)dx

∣∣∣∣
≤ M

[∫ b

a

p(x)dx

∫ b

a

p(x)g2(x)dx−
(∫ b

a

p(x)g(x)dx

)2
]
,

and the inequality is sharp.

In 2006, Q. Sheng, M. Fadag, J. Henderson, and J. M. Davis [69] studied a com-

bined dynamic “diamond-alpha” derivative as a linear combination of ∆ and ∇ dynamic

derivatives on time scales. The diamond-α derivative reduces to the standard ∆ deriva-

tive for α = 1 and to the standard ∇ derivative for α = 0. Since then, many authors have

established diamond-α inequalities on time scales [6, 7, 16, 36, 56]. We refer the reader

to [47, 53, 63, 70, 69] for an account of the calculus with diamond-α dynamic derivatives.

This section is organized as follows: In Section 10.2, we briefly present some general

definitions and theorems connected to the time scales calculus. Next, in Sections 10.3–

10.5, we generalize Theorem 54, Theorem 55, and Theorem 56, respectively, for general

time scales by using the recent theory of combined dynamic derivatives on time scales.

In the case α = 1, we obtain delta-integral Grüss type inequalities on time scales, while

for α = 0, we obtain nabla-integral Grüss type inequalities. In order to illustrate the

theoretical results, we supply numerous examples throughout.

10.2. GENERAL DEFINITIONS

For the general theory of calculus on time scales we refer to [3, 22, 23, 41]. We now

introduce the diamond-α integral, referring the reader to [6, 7, 36, 56] for more on the

associated calculus.

Definition 48. Let 0 ≤ α ≤ 1 and f ∈ C(T,R). Then the diamond-alpha integral of f

is defined by

∫ b

a

f(x)♦αx = α

∫ b

a

f(x)∆x+ (1− α)

∫ b

a

f(x)∇x, where a, b ∈ T.
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Theorem 57. Let 0 ≤ α ≤ 1 and f, g ∈ C(T,R). If a, b, c ∈ T and β ∈ R, then

(i)
∫ b
a
[f(x) + g(x)]♦αx =

∫ b
a
f(x)♦αx+

∫ b
a
g(x)♦αx;

(ii)
∫ b
a
(βf)(x)♦αx = β

∫ b
a
f(x)♦αx;

(iii)
∫ b
a
f(x)♦αx = −

∫ a
b
f(x)♦αx;

(iv)
∫ b
a
f(x)♦αx =

∫ c
a
f(x)♦αx+

∫ b
c
f(x)♦αx;

(v)
∫ a
a
f(x)♦αx = 0;

(vi) if f(x) ≥ 0 for all x ∈ [a, b], then
∫ b
a
f(x)♦αx ≥ 0;

(vii) if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x)♦αx ≤

∫ b
a
g(x)♦αx;

(viii)
∣∣∣∫ ba f(x)♦αx

∣∣∣ ≤ ∫ ba |f(x)| ♦αx.

Example 55. If we let T = R in Definition 48, then we obtain

∫ b

a

f(x)♦αx =

∫ b

a

f(x)dx, where a, b ∈ R.

Example 56. If we let T = Z in Definition 48 and m < n, then we obtain

∫ n

m

f(x)♦αx =
n−1∑
i=m

[αfi + (1− α)fi+1] , where m,n ∈ N0,

and where we put for convenience fi = f(i).

Example 57. If we let T = qN0 in Definition 48 and m < n, then we obtain

∫ qn

qm
f(x)♦αx = (q − 1)

n−1∑
i=m

qi
[
αf(qi) + (1− α)f(qi+1)

]
, where m,n ∈ N0.

Example 58. Let ti < ti+1 for all i ∈ N0. If we let T = {ti : i ∈ N0} in Definition 48

and m < n, then we obtain

∫ tn

tm

f(x)♦αx =
n−1∑
i=m

(ti+1 − ti) [αf(ti) + (1− α)f(ti+1)] , where m,n ∈ N0,

and from here we may obtain Example 56 by letting ti = i for all i ∈ N0 and Example 57

by letting ti = qi for all i ∈ N0.
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10.3. THE WEIGHTED DIAMOND-ALPHA GRÜSS INEQUALITY

We first extend Theorem 54 to the weighted case.

Theorem 58. Let T be a time scale and a, b ∈ T with a < b. If f, g ∈ C(T,R) and

p ∈ C(T, [0,∞)) satisfy ϕ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b] ∩ T and∫ b
a
p(x)♦αx > 0, then

∣∣∣∣∫ b

a

p(x)♦αx
∫ b

a

p(x)f(x)g(x)♦αx−
∫ b

a

p(x)f(x)♦αx
∫ b

a

p(x)g(x)♦αx
∣∣∣∣

≤ 1

4
(Φ − ϕ)(Γ − γ)

(∫ b

a

p(x)♦αx
)2

. (76)

Proof. We have

1∫ b
a
p(x)♦αx

∫ b

a

p(x)f(x)g(x)♦αx

− 1∫ b
a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx
1∫ b

a
p(x)♦αx

∫ b

a

p(x)g(x)♦αx

=
1

2
(∫ b

a
p(x)♦αx

)2

∫ b

a

∫ b

a

p(x)p(y)(f(x)− f(y))(g(x)− g(y))♦αx♦αy. (77)

Applying the two-dimensional diamond-α Cauchy–Schwarz inequality from [8, Theorem

3.5], we get

 1

2
(∫ b

a
p(x)♦αx

)2

∫ b

a

∫ b

a

p(x)p(y)(f(x)− f(y))(g(x)− g(y))♦αx♦αy


2

(78)

≤ 1

2
(∫ b

a
p(x)♦αx

)2

∫ b

a

∫ b

a

p(x)p(y)(f(x)− f(y))2♦αx♦αy

× 1

2
(∫ b

a
p(x)♦αx

)2

∫ b

a

∫ b

a

p(x)p(y)(g(x)− g(y))2♦αx♦αy

=

 1∫ b
a
p(x)♦αx

∫ b

a

p(x)f 2(x)♦αx−

(
1∫ b

a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx

)2


×

 1∫ b
a
p(x)♦αx

∫ b

a

p(x)g2(x)♦αx−

(
1∫ b

a
p(x)♦αx

∫ b

a

p(x)g(x)♦αx

)2
 .
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We also have

1∫ b
a
p(x)♦αx

∫ b

a

p(x)f 2(x)♦αx−

(
1∫ b

a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx

)2

(79)

=

(
Φ− 1∫ b

a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx

)(
1∫ b

a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx− ϕ

)

− 1∫ b
a
p(x)♦αx

∫ b

a

p(x)(Φ− f(x))(f(x)− ϕ)♦αx

≤

(
Φ− 1∫ b

a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx

)(
1∫ b

a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx− ϕ

)
.

Similarly, we have

1∫ b
a
p(x)♦αx

∫ b

a

p(x)g2(x)♦αx−

(
1∫ b

a
p(x)♦αx

∫ b

a

p(x)g(x)♦αx

)2

≤

(
Γ− 1∫ b

a
p(x)♦αx

∫ b

a

p(x)g(x)♦αx

)(
1∫ b

a
p(x)♦αx

∫ b

a

p(x)g(x)♦αx− γ

)
.

(80)

Using (79) and (80) in (78), (77) implies

∣∣∣∣∣
∫ b
a
p(x)f(x)g(x)♦αx∫ b

a
p(x)♦αx

−
∫ b
a
p(x)f(x)♦αx∫ b
a
p(x)♦αx

∫ b
a
p(x)g(x)♦αx∫ b
a
p(x)♦αx

∣∣∣∣∣
≤

(
Φ− 1∫ b

a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx

) 1
2
(

1∫ b
a
p(x)♦αx

∫ b

a

p(x)f(x)♦αx− ϕ

) 1
2

×

(
Γ− 1∫ b

a
p(x)♦αx

∫ b

a

p(x)g(x)♦αx

) 1
2
(

1∫ b
a
p(x)♦αx

∫ b

a

p(x)g(x)♦αx− γ

) 1
2

.

(81)

Applying the elementary inequality

4βγ ≤ (β + γ)2 for all β, γ ∈ R,

we can state

4

(
Φ−

∫ b
a
p(x)f(x)♦αx∫ b
a
p(x)♦αx

)(∫ b
a
p(x)f(x)♦αx∫ b
a
p(x)♦αx

− ϕ

)
≤ (Φ− ϕ)2 (82)
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and

4

(
Γ−

∫ b
a
p(x)g(x)♦αx∫ b
a
p(x)♦αx

)(∫ b
a
p(x)g(x)♦αx∫ b
a
p(x)♦αx

− γ

)
≤ (Γ− γ)2. (83)

Combining (81) with (82) and (83), we obtain (76).

Example 59. If we let p(x) ≡ 1 on T in Theorem 58, then we obtain Theorem 54.

Example 60. If we let T = R in Theorem 58, then we obtain the inequality

∣∣∣∣∫ b

a

p(x)dx

∫ b

a

p(x)f(x)g(x)dx−
∫ b

a

p(x)f(x)dx

∫ b

a

p(x)g(x)dx

∣∣∣∣
≤ 1

4
(Φ − ϕ)(Γ − γ)

(∫ b

a

p(x)dx

)2

.

This result can be found in [29, Theorem 1.1], where the constant 1
4

is also shown to be

the best possible.

Example 61. If we let T = R in Example 59, then we obtain the inequality∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

(b− a)2

∫ b

a

f(x)dx

∫ b

a

g(x)dx

∣∣∣∣ ≤ 1

4
(Φ− ϕ)(Γ− γ).

Example 62. If we let T = Z and α = 1 in Theorem 58, then we obtain the inequality

∣∣∣∣∣
n−1∑
i=m

pi

n−1∑
i=m

pifigi −
n−1∑
i=m

pifi

n−1∑
i=m

pigi

∣∣∣∣∣ ≤ 1

4
(Φ− ϕ)(Γ− γ)

(
n−1∑
i=m

pi

)2

.

Example 63. If we let T = Z in Example 59, then we obtain the inequality

∣∣∣∣∣ 1

n−m

n−1∑
i=m

[αfigi + (1− α)fi+1gi+1]

− 1

(n−m)2

n−1∑
i=m

[αfi + (1− α)fi+1]
n−1∑
i=m

[αgi + (1− α)gi+1]

∣∣∣∣∣
≤ 1

4
(Φ − ϕ)(Γ − γ).

If, additionally, α = 1, then we obtain the inequality∣∣∣∣∣ 1

n−m

n−1∑
i=m

figi −
1

(n−m)2

n−1∑
i=m

fi

n−1∑
i=m

gi

∣∣∣∣∣ ≤ 1

4
(Φ− ϕ)(Γ− γ).
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Example 64. If we let T = qN0 and α = 1 in Theorem 58, then we obtain the inequality

∣∣∣∣∣
n−1∑
i=m

qip(qi)
n−1∑
i=m

qip(qi)f(qi)g(qi)−
n−1∑
i=m

qip(qi)f(qi)
n−1∑
i=m

qip(qi)g(qi)

∣∣∣∣∣
≤ 1

4
(Φ − ϕ)(Γ − γ)

(
n−1∑
i=m

qip(qi)

)2

.

Example 65. If we let T = qN0 in Example 59, then we obtain the inequality

∣∣∣∣∣ q − 1

qn − qm
n−1∑
i=m

qi
[
αf(qi)g(qi) + (1− α)f(qi+1)g(qi+1)

]
−
(

q − 1

qn − qm

)2 n−1∑
i=m

qi
[
αf(qi) + (1− α)f(qi+1)

] n−1∑
i=m

qi
[
αg(qi) + (1− α)g(qi+1)

]∣∣∣∣∣
≤ 1

4
(Φ − ϕ)(Γ − γ).

If, additionally, α = 1, then we obtain the inequality

∣∣∣∣∣ q − 1

qn − qm
n−1∑
i=m

qif(qi)g(qi)−
(

q − 1

qn − qm

)2 n−1∑
i=m

qif(qi)
n−1∑
i=m

qig(qi)

∣∣∣∣∣
≤ 1

4
(Φ − ϕ)(Γ − γ).

10.4. THE CASE WHEN BOTH MAPPINGS ARE LIPSCHITZIAN

We now extend Theorem 55 to time scales.

Theorem 59. Let T be a time scale and a, b ∈ T with a < b. Let f, g ∈ C(T,R) be two

Lipschitzian mappings with Lipschitz constants L1 > 0 and L2 > 0, respectively, i.e.,

|f(x)− f(y)| ≤ L1 |x− y| and |g(x)− g(y)| ≤ L2 |x− y| (84)

for all x, y ∈ [a, b] ∩ T. If p ∈ C(T, [0,∞)), then

∣∣∣∣∫ b

a

p(x)♦αx
∫ b

a

p(x)f(x)g(x)♦αx−
∫ b

a

p(x)f(x)♦αx
∫ b

a

p(x)g(x)♦αx
∣∣∣∣

≤ L1L2

[∫ b

a

p(x)♦αx
∫ b

a

p(x)x2♦αx−
(∫ b

a

p(x)x♦αx
)2
]
, (85)
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and the inequality is sharp in the sense, that the right hand side cannot be replaced by a

smaller expression.

Proof. Using condition (84), we get

|(f(x)− f(y))(g(x)− g(y))| ≤ L1L2(x− y)2

for all x, y ∈ [a, b] ∩ T. Multiplying this inequality by p(x)p(y) ≥ 0 and integrating over

[a, b]× [a, b], we have∣∣∣∣∫ b

a

∫ b

a

p(x)p(y)(f(x)− f(y))(g(x)− g(y))♦αx♦αy
∣∣∣∣

≤
∫ b

a

∫ b

a

p(x)p(y) |(f(x)− f(y))(g(x)− g(y))| ♦αx♦αy

≤ L1L2

∫ b

a

∫ b

a

p(x)p(y)(x− y)2♦αx♦αy.

We also have

1

2

∫ b

a

∫ b

a

p(x)p(y)(f(x)− f(y))(g(x)− g(y))♦αx♦αy

=

∫ b

a

p(x)♦αx
∫ b

a

p(x)f(x)g(x)♦αx−
∫ b

a

p(x)f(x)♦αx
∫ b

a

p(x)g(x)♦αx

and

1

2

∫ b

a

∫ b

a

p(x)p(y)(x− y)2♦αx♦αy

=

∫ b

a

p(x)♦αx
∫ b

a

p(x)x2♦αx −
(∫ b

a

p(x)x♦αx
)2

,

which completes the proof of inequality (85). Moreover, if we choose L1, L2 > 0, f(x) =

L1x and g(x) = L2x for x ∈ T, then f and g are Lipschitzian with Lipschitz constants

L1 > 0 and L2 > 0, respectively, and equality holds in (85) for any p ∈ C(T, [0,∞)).

Example 66. If we let p(x) ≡ 1 on T in Theorem 59, then we obtain the inequality

∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)♦αx−
1

b− a

∫ b

a

f(x)♦αx
1

b− a

∫ b

a

g(x)♦αx
∣∣∣∣

≤ L1L2

[
1

b− a

∫ b

a

x2♦αx−
(

1

b− a

∫ b

a

x♦αx
)2
]
.
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Example 67. If we let T = R in Theorem 59, then we obtain Theorem 55.

Example 68. If we let T = R in Example 66, then we obtain the inequality∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a

∫ b

a

f(x)dx
1

b− a

∫ b

a

g(x)dx

∣∣∣∣ ≤ L1L2
(b− a)2

12
,

which can be found in [29, Corollary 2.2].

Example 69. If we let T = Z and α = 1 in Theorem 59, then we obtain the inequality

∣∣∣∣∣
n−1∑
i=m

pi

n−1∑
i=m

pifigi −
n−1∑
i=m

pifi

n−1∑
i=m

pigi

∣∣∣∣∣ ≤ L1L2

n−1∑
i=m

pi

n−1∑
i=m

pii
2 −

(
n−1∑
i=m

pii

)2
 .

Example 70. If we let T = Z in Example 66, then we obtain the inequality

∣∣∣∣∣ 1

n−m

n−1∑
i=m

[αfigi + (1− α)fi+1gi+1]

− 1

(n−m)2

n−1∑
i=m

[αfi + (1− α)fi+1]
n−1∑
i=m)

[αgi + (1− α)gi+1]

∣∣∣∣∣∣
≤ L1L2

[
(n−m)2 − 1

12
+ α(1− α)

]
.

If, additionally, α = 1, then we obtain the inequality∣∣∣∣∣ 1

n−m

n−1∑
i=m

figi −
1

(n−m)2

n−1∑
i=m

fi

n−1∑
i=m

gi

∣∣∣∣∣ ≤ L1L2
(n−m)2 − 1

12
.

Note also that we have in the discrete case the same bound on the right-hand side than

in the continuous case if and only if α = 1
2
− 1√

6
or α = 1

2
+ 1√

6
.

Example 71. If we let T = qN0 and α = 1 in Theorem 59, then we obtain the inequality

∣∣∣∣∣
n−1∑
i=m

qip(qi)
n−1∑
i=m

qip(qi)f(qi)g(qi)−
n−1∑
i=m

qip(qi)f(qi)
n−1∑
i=m

qip(qi)g(qi)

∣∣∣∣∣
≤ L1L2

n−1∑
i=m

qip(qi)
n−1∑
i=m

q3ip(qi)−

(
n−1∑
i=m

q2ip(qi)

)2
 .
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Example 72. If we let T = qN0 in Example 66, then we obtain the inequality

∣∣∣∣∣ q − 1

qn − qm
n−1∑
i=m

qi
[
αf(qi)g(qi) + (1− α)f(qi+1)g(qi+1)

]
−
(

q − 1

qn − qm

)2 n−1∑
i=m

qi
[
αf(qi) + (1− α)f(qi+1)

] n−1∑
i=m

qi
[
αg(qi) + (1− α)g(qi+1)

]∣∣∣∣∣
≤ L1L2

[
q2n + qnqm + q2m

q2 + q + 1

(
α + (1− α)q2

)
−
(
qn + qm

q + 1

)2

(α + (1− α)q)2

]
.

If, additionally, α = 1, then we obtain the inequality

∣∣∣∣∣ q − 1

qn − qm
n−1∑
i=m

qif(qi)g(qi)−
(

q − 1

qn − qm

)2 n−1∑
i=m

qif(qi)
n−1∑
i=m

qig(qi)

∣∣∣∣∣
≤ L1L2

(qn − qm+1)(qn+1 − qm)

(q2 + q + 1)(q + 1)2
.

10.5. THE CASE WHEN F IS M-G-LIPSCHITZIAN

Theorem 60. Let T be a time scale and a, b ∈ T with a < b. Let f, g ∈ C(T,R) be such

that f is M-g-Lipschitzian with M > 0, i.e.,

|f(x)− f(y)| ≤M |g(x)− g(y)| (86)

for all x, y ∈ [a, b] ∩ T. If p ∈ C(T, [0,∞)), then

∣∣∣∣∫ b

a

p(x)♦αx
∫ b

a

p(x)f(x)g(x)♦αx−
∫ b

a

p(x)f(x)♦αx
∫ b

a

p(x)g(x)♦αx
∣∣∣∣

≤ M

[∫ b

a

p(x)♦αx
∫ b

a

p(x)g2(x)♦αx−
(∫ b

a

p(x)g(x)♦αx
)2
]
, (87)

and the inequality is sharp.

Proof. Using condition (86), we get

|(f(x)− f(y))(g(x)− g(y))| ≤M(g(x)− g(y))2
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for all x, y ∈ [a, b] ∩ T. Multiplying this inequality by p(x)p(y) ≥ 0 and integrating over

[a, b]× [a, b], we have

1

2

∣∣∣∣∫ b

a

∫ b

a

p(x)p(y)(f(x)− f(y))(g(x)− g(y))♦αx♦αy
∣∣∣∣

≤ 1

2

∫ b

a

∫ b

a

p(x)p(y) |(f(x)− f(y))(g(x)− g(y))| ♦αx♦αy

≤ M

2

∫ b

a

∫ b

a

p(x)p(y)((g(x)− g(y))2♦αx♦αy

= M

[∫ b

a

p(x)♦αx
∫ b

a

p(x)g2(x)♦αx−
(∫ b

a

p(x)g(x)♦αx
)2
]
,

which completes the proof of inequality (87). Moreover, if we choose f(x) = Mx with

M > 0 and g(x) = x, then f is M -g-Lipschitzian and equality holds in (87) for any

p ∈ C(T, [0,∞)).

Example 73. If we let p(x) ≡ 1 on T in Theorem 60, then we obtain the inequality

∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)♦αx−
1

b− a

∫ b

a

f(x)♦αx
1

b− a

∫ b

a

g(x)♦αx
∣∣∣∣

≤ M

[
1

b− a

∫ b

a

g2(x)♦αx−
(

1

b− a

∫ b

a

g(x)♦αx
)2
]
.

Example 74. If we let T = R in Theorem 60, then we obtain Theorem 56.

Example 75. If we let T = R in Example 73, then we obtain the inequality

∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a

∫ b

a

f(x)dx
1

b− a

∫ b

a

g(x)dx

∣∣∣∣
≤ M

[
1

b− a

∫ b

a

g2(x)dx−
(

1

b− a

∫ b

a

g(x)dx

)2
]
,

which can be found in [29, Remark 4.2].

Example 76. If we let T = Z and α = 1 in Theorem 60, then we obtain the inequality

∣∣∣∣∣
n−1∑
i=m

pi

n−1∑
i=m

pifigi −
n−1∑
i=m

pifi

n−1∑
i=m

pigi

∣∣∣∣∣ ≤M

n−1∑
i=m

pi

n−1∑
i=m

pig
2
i −

(
n−1∑
i=m

pigi

)2
 .
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Example 77. If we let T = Z in Example 73, then we obtain the inequality

∣∣∣∣∣ 1

n−m

n−1∑
i=m

[αfigi + (1− α)fi+1gi+1]

− 1

(n−m)2

n−1∑
i=m

[αfi + (1− α)fi+1]
n−1∑
i=m

[αgi + (1− α)gi+1]

∣∣∣∣∣
≤M

 1

n−m

n−1∑
i=m

[
αg2

i + (1− α)g2
i+1

]
−

(
1

n−m

n−1∑
i=m

[αgi + (1− α)gi+1]

)2
 .

If, additionally, α = 1, then we obtain the inequality

∣∣∣∣∣ 1

n−m

n−1∑
i=m

figi −
1

(n−m)2

n−1∑
i=m

fi

n−1∑
i=m

gi

∣∣∣∣∣
≤ M

 1

n−m

n−1∑
i=m

g2
i −

(
1

n−m

n−1∑
i=m

gi

)2
 .

Example 78. If we let T = qN0 and α = 1 in Theorem 60, then we obtain the inequality

∣∣∣∣∣
n−1∑
i=m

qip(qi)
n−1∑
i=m

qip(qi)f(qi)g(qi)−
n−1∑
i=m

qip(qi)f(qi)
n−1∑
i=m

qip(qi)g(qi)

∣∣∣∣∣
≤ M

n−1∑
i=m

qip(qi)
n−1∑
i=m

qip(qi)g2(qi)−

(
n−1∑
i=m

qip(qi)g(qi)

)2
 .

Example 79. If we let T = qN0 in Example 73, then we obtain the inequality

∣∣∣∣∣ q − 1

qn − qm
n−1∑
i=m

qi
[
αf(qi)g(qi) + (1− α)f(qi+1)g(qi+1)

]
−
(

q − 1

qn − qm

)2 n−1∑
i=m

qi
[
αf(qi) + (1− α)f(qi+1)

] n−1∑
i=m

qi
[
αg(qi) + (1− α)g(qi+1)

]∣∣∣∣∣
≤M

[
q − 1

qn − qm
n−1∑
i=m

qi
[
αg2(qi) + (1− α)g2(qi+1)

]
−

(
q − 1

qn − qm
n−1∑
i=m

qi
[
αg(qi) + (1− α)g(qi+1)

])2
 .
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If, additionally, α = 1, then we obtain the inequality

∣∣∣∣∣ q − 1

qn − qm
n−1∑
i=m

qif(qi)g(qi)−
(

q − 1

qn − qm

)2 n−1∑
i=m

qif(qi)
n−1∑
i=m

qig(qi)

∣∣∣∣∣
≤ M

 q − 1

qn − qm
n−1∑
i=m

qig2(qi)−

(
q − 1

qn − qm
n−1∑
i=m

qig(qi)

)2
 .
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11. WEIGHTED OSTROWSKI–GRÜSS INEQUALITIES

This chapter contains also a collaborative work with Martin Bohner and Adnan

Tuna and appeared in 2011 in the African Diaspora Journal of Mathematics with the title

“Weighted Ostrowski–Grüss Inequalities on Time Scales”, see [21]. We study Ostrowski–

Grüss and Ostrowski-like inequalities on time scales and thus unify and extend corre-

sponding continuous and discrete versions from the literature. We present corresponding

inequalities by using the time scales L∞-norm and also by using the time scales Lp-

norm. Several interesting inequalities representing special cases of our general results are

supplied.

11.1. INTRODUCTION

In 1938, A. Ostrowski (see [55, Formula (2)]) presented the following interesting

integral inequality.

Theorem 61. If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b) such

that f ′ ∈ L∞((a, b)), i.e.,

‖f ′‖∞ := sup
s∈(a,b)

|f ′(s)| <∞,

then for all t ∈ [a, b], we have

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s)ds

∣∣∣∣ ≤
1

4
+

(
t− a+b

2

b− a

)2
 (b− a) ‖f ′‖∞ . (88)

In 2007, B. Pachpatte (see [60, Theorem 1 and Theorem 2]) established new general-

izations of Ostrowski-type inequalities involving two functions, whose derivatives belong

to Lp-spaces.

Theorem 62. Let p > 1 and q := p/(p−1). If f, g : [a, b]→ R are absolutely continuous

such that f ′, g′ ∈ Lp([a, b]), i.e.,

‖f ′‖p :=

(∫ b

a

|f ′(s)|p ds

) 1
p

<∞ and ‖g′‖p =

(∫ b

a

|g′(s)|p ds

) 1
p

<∞,
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then for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)− 1

2(b− a)

[
g(t)

∫ b

a

f(s)ds+ f(t)

∫ b

a

g(s)ds

]∣∣∣∣
≤ (B(t))

1
q

b− a
|g(t)| ‖f ′‖p + |f(t)| ‖g′‖p

2
(89)

and

∣∣∣∣f(t)g(t)− 1

b− a

[
g(t)

∫ b

a

f(s)ds+ f(t)

∫ b

a

g(s)ds

]
+

(
1

b− a

∫ b

a

f(s)ds

)(
1

b− a

∫ b

a

g(s)ds

)∣∣∣∣
≤

(
(B(t))

1
q

b− a

)2

‖f ′‖p ‖g
′‖p , (90)

where

B(t) :=
1

q + 1

[
(t− a)q+1 + (b− t)q+1

]
.

In 1988, S. Hilger [41] introduced the time scales theory to unify continuous and

discrete analysis. Since then, many authors have studied certain integral inequalities

on time scales, see, e.g., [2, 22, 23, 18, 19, 46, 54, 20, 65, 72]. In [19], M. Bohner and

T. Matthews established the time scales version of Ostrowski’s inequality, hence unifying

discrete, continuous and other versions of Theorem 61.

This work is organized as follows: In Section 11.2 and Section 11.3, we obtain time

scales versions of weighted Ostrowski–Grüss and Ostrowski-like inequalities using the

L∞-norm and the Lp-norm, respectively. Our proofs utilize generalizations of so-called

Montgomery inequalities, see [49, page 565] and [50, page 261].

11.2. OSTROWSKI–GRÜSS INEQUALITIES IN L∞-NORM

Throughout, we use the following assumption.

Assumption (H). From now on, until the end of this paper, we assume that T is a time

scale and that a, b ∈ T such that a < b. By writing [a, b], we mean [a, b] ∩ T. Moreover,

w ∈ Crd([a, b], [0,∞)) is such that

m(a, b) :=

∫ b

a

w(t)∆t <∞,
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and we also define

pw(t, s) :=


∫ s

a

w(τ)∆τ for a ≤ s < t∫ s

b

w(τ)∆τ for t ≤ s ≤ b.

Theorem 63. Assume (H). If f, g ∈ C1
rd([a, b],R) such that f∆, g∆ ∈ L∞((a, b)), i.e.,

∥∥f∆
∥∥
∞ := sup

s∈(a,b)

∣∣f∆(s)
∣∣ <∞ and

∥∥g∆
∥∥
∞ = sup

s∈(a,b)

∣∣g∆(s)
∣∣ <∞, (91)

then for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)− 1

2m(a, b)

[
g(t)

∫ b

a

w(s)f(σ(s))∆s+ f(t)

∫ b

a

w(s)g(σ(s))∆s

]∣∣∣∣
≤
(

1

m(a, b)

∫ b

a

(σ(s)− t)w(s) sgn(s− t)∆s
) |g(t)|

∥∥f∆
∥∥
∞ + |f(t)|

∥∥g∆
∥∥
∞

2
(92)

and

∣∣∣∣f(t)g(t)− 1

m(a, b)

[
g(t)

∫ b

a

w(s)f(σ(s))∆s+ f(t)

∫ b

a

w(s)g(σ(s))∆s

]
+

(
1

m(a, b)

∫ b

a

w(s)f(σ(s))∆s

)(
1

m(a, b)

∫ b

a

w(s)g(σ(s))∆s

)∣∣∣∣
≤
(

1

m(a, b)

∫ b

a

(σ(s)− t)w(s) sgn(s− t)∆s
)2 ∥∥f∆

∥∥
∞

∥∥g∆
∥∥
∞ . (93)

Proof. Using integration by parts formula twice, we have

∫ b

a

pw(t, s)f∆(s)∆s =

∫ t

a

(∫ s

a

w(τ)∆τ

)
f∆(s)∆s

+

∫ b

t

(∫ s

b

w(τ)∆τ

)
f∆(s)∆s

= f(t)

∫ t

a

w(τ)∆τ −
∫ t

a

w(s)f(σ(s))∆s

−f(t)

∫ t

b

w(τ)∆τ −
∫ b

t

w(s)f(σ(s))∆s

= m(a, b)f(t)−
∫ b

a

w(s)f(σ(s))∆s
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and thus

f(t)− 1

m(a, b)

∫ b

a

w(s)f(σ(s))∆s =
1

m(a, b)

∫ b

a

pw(t, s)f∆(s)∆s. (94)

Replacing f by g in (94), we obtain

g(t)− 1

m(a, b)

∫ b

a

w(s)g(σ(s))∆s =
1

m(a, b)

∫ b

a

pw(t, s)g∆(s)∆s. (95)

Using a similar calculation, we find

∫ b

a

|pw(t, s)|∆s =

∫ t

a

(∫ s

a

w(τ)∆τ

)
∆s−

∫ b

t

(∫ s

b

w(τ)∆τ

)
∆s

= t

∫ t

a

w(τ)∆τ −
∫ t

a

w(s)σ(s)∆s+ t

∫ t

b

w(τ)∆τ +

∫ b

t

w(s)σ(s)∆s

=

∫ b

a

σ(s)w(s) sgn(s− t)∆s− t
∫ b

a

w(s) sgn(s− t)∆s

=

∫ b

a

(σ(s)− t)w(s) sgn(s− t)∆s.

(96)

Now multiplying (94) by g(t) and (95) by f(t), adding the resulting identities, rewriting,

and taking absolute values, we have∣∣∣∣f(t)g(t)− 1

2m(a, b)

[
g(t)

∫ b

a

w(s)f(σ(s))∆s+ f(t)

∫ b

a

w(s)g(σ(s))∆s

]∣∣∣∣
=

1

2m(a, b)

∣∣∣∣g(t)

∫ b

a

pw(t, s)f∆(s)∆s+ f(t)

∫ b

a

pw(t, s)g∆(s)∆s

∣∣∣∣
≤ 1

2m(a, b)

[
|g(t)|

∫ b

a

|pw(t, s)|
∣∣f∆(s)

∣∣∆s+ |f(t)|
∫ b

a

|pw(t, s)|
∣∣g∆(s)

∣∣∆s] .
(97)

Using now (91) and (96) in (97), we obtain (92).
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Next, multiplying the left and right sides of (94) and (95) and taking absolute

values, we get∣∣∣∣f(t)g(t)− 1

m(a, b)

[
g(t)

∫ b

a

w(s)f(σ(s))∆s+ f(t)

∫ b

a

w(s)g(σ(s))∆s

]
+

(
1

m(a, b)

∫ b

a

w(s)f(σ(s))∆s

)(
1

m(a, b)

∫ b

a

w(s)g(σ(s))∆s

)∣∣∣∣
=

1

m2(a, b)

∣∣∣∣(∫ b

a

pw(t, s)f∆(s)∆s

)(∫ b

a

pw(t, s)g∆(s)∆s

)∣∣∣∣
≤ 1

m2(a, b)

(∫ b

a

|pw(t, s)|
∣∣f∆(s)

∣∣∆s)(∫ b

a

|pw(t, s)|
∣∣g∆(s)

∣∣∆s) .
(98)

Using now (91) and (96) in (98), we obtain (93).

Corollary 5. In addition to the assumptions of Theorem 63, let w(t) = 1 for all t ∈ [a, b].

Then for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)− 1

2(b− a)

[
g(t)

∫ b

a

f(σ(s))∆s+ f(t)

∫ b

a

g(σ(s))∆s

]∣∣∣∣
≤ h2(t, a) + g2(b, t)

b− a
|g(t)|

∥∥f∆
∥∥
∞ + |f(t)|

∥∥g∆
∥∥
∞

2
(99)

and

∣∣∣∣f(t)g(t)− 1

b− a

[
g(t)

∫ b

a

f(σ(s))∆s+ f(t)

∫ b

a

g(σ(s))∆s

]
+

(
1

b− a

∫ b

a

f(σ(s))∆s

)(
1

b− a

∫ b

a

g(σ(s))∆s

)∣∣∣∣
≤
(
h2(t, a) + g2(b, t)

b− a

)2 ∥∥f∆
∥∥
∞

∥∥g∆
∥∥
∞ . (100)

Proof. We just have to use Theorem 63 and

∫ b

a

(σ(s)− t) sgn(s− t)∆s = −
∫ t

a

(σ(s)− t)∆s+

∫ b

t

(σ(s)− t)∆s

=

∫ a

t

(σ(s)− t)∆s+

∫ b

t

(σ(s)− t)∆s

= g2(a, t) + g2(b, t) = h2(t, a) + g2(b, t),

where we also applied [22, Theorem 1.112].



148

Example 80. If we let g(t) = 1 for all t ∈ [a, b], then (99) becomes∣∣∣∣f(t)− 1

b− a

∫ b

a

f(σ(s))∆s

∣∣∣∣ ≤ h2(t, a) + g2(b, t)

b− a
∥∥f∆

∥∥
∞ , (101)

which is the Ostrowski inequality on time scales as given in [19, Theorem 3.5]. If T = R

in (101), then we obtain (88) in Theorem 61. If T = Z, a = 0, and b = n ∈ N in (101),

then we obtain∣∣∣∣∣f(t)− 1

n

n∑
s=1

f(s)

∣∣∣∣∣ ≤ 1

n

[
n2 − 1

4
+

(
t− n+ 1

2

)2
]
‖∆f‖∞ ,

an inequality that is given by S. Dragomir in [31, Theorem 3.1].

Example 81. If we let T = R, then (99) and (100) become

∣∣∣∣f(t)g(t)− 1

2(b− a)

[
g(t)

∫ b

a

f(s)ds+ f(t)

∫ b

a

g(s)ds

]∣∣∣∣
≤

1

4
+

(
t− a+b

2

b− a

)2
 (b − a)

|g(t)| ‖f ′‖∞ + |f(t)| ‖g′‖∞
2

and

∣∣∣∣f(t)g(t)− 1

b− a

[
g(t)

∫ b

a

f(s)ds+ f(t)

∫ b

a

g(s)ds

]
+

(
1

b− a

∫ b

a

f(s)ds

)(
1

b− a

∫ b

a

g(s)ds

)∣∣∣∣
≤

1

4
+

(
t− a+b

2

b− a

)2
 (b− a)

2

‖f ′‖∞ ‖g
′‖∞ ,

respectively.

Example 82. If we let T = Z, a = 0, and b = n ∈ N, then (99) and (100) become

∣∣∣∣∣f(t)g(t)− 1

2n

[
g(t)

n∑
s=1

f(s) + f(t)
n∑
s=1

g(s)

]∣∣∣∣∣
≤ 1

n

[
n2 − 1

4
+

(
t− n+ 1

2

)2
]
|g(t)| ‖∆f‖∞ + |f(t)| ‖∆g‖∞

2
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and ∣∣∣∣∣f(t)g(t)− 1

n

[
g(t)

n∑
s=1

f(s) + f(t)
n∑
s=1

g(s)

]
+

(
1

n

n∑
s=1

f(s)

)(
1

n

n∑
s=1

g(s)

)∣∣∣∣∣
≤

(
1

n

[
n2 − 1

4
+

(
t− n+ 1

2

)2
])2

‖∆f‖∞ ‖∆g‖∞ ,

respectively. This is the discrete Ostrowski–Grüss inequality, which can be found in [59,

Theorem 2.1].

11.3. OSTROWSKI–GRÜSS INEQUALITIES IN LP -NORM

Theorem 64. Assume (H). Let p > 1 and q := p/(p − 1). If f, g ∈ C1
rd([a, b],R) such

that f∆, g∆ ∈ Lp([a, b]), i.e.,

∥∥f∆
∥∥
p

:=

(∫ b

a

∣∣f∆(s)
∣∣p ∆s

) 1
p

<∞ and
∥∥g∆

∥∥
p

=

(∫ b

a

∣∣g∆(s)
∣∣p ∆s

) 1
p

<∞,

then for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)− 1

2m(a, b)

[
g(t)

∫ b

a

w(s)f(σ(s))∆s+ f(t)

∫ b

a

w(s)g(σ(s))∆s

]∣∣∣∣
≤
∥∥∥∥ pw(t, ·)
m(a, b)

∥∥∥∥
q

|g(t)|
∥∥f∆

∥∥
p

+ |f(t)|
∥∥g∆

∥∥
p

2
(102)

and

∣∣∣∣f(t)g(t)− 1

m(a, b)

[
g(t)

∫ b

a

w(s)f(σ(s))∆s+ f(t)

∫ b

a

w(s)g(σ(s))∆s

]
+

(
1

m(a, b)

∫ b

a

w(s)f(σ(s))∆s

)(
1

m(a, b)

∫ b

a

w(s)g(σ(s))∆s

)∣∣∣∣
≤
∥∥∥∥ pw(t, ·)
m(a, b)

∥∥∥∥2

q

∥∥f∆
∥∥
p

∥∥g∆
∥∥
p
. (103)

Proof. As in the proof of Theorem 63, we obtain (97) and (98). From (97) and (98),

using Hölder’s inequality on time scales (see [22, Theorem 6.13]), we obtain (102) and

(103), respectively.
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Corollary 6. In addition to the assumptions of Theorem 64, let w(t) = 1 for all t ∈ [a, b].

Then for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)− 1

2(b− a)

[
g(t)

∫ b

a

f(σ(s))∆s+ f(t)

∫ b

a

g(σ(s))∆s

]∣∣∣∣
≤
(∫ t

a

(
s− a
b− a

)q
∆s+

∫ b

t

(
b− s
b− a

)q
∆s

) 1
q |g(t)|

∥∥f∆
∥∥
p

+ |f(t)|
∥∥g∆

∥∥
p

2
(104)

and

∣∣∣∣f(t)g(t)− 1

b− a

[
g(t)

∫ b

a

f(σ(s))∆s+ f(t)

∫ b

a

g(σ(s))∆s

]
+

(
1

b− a

∫ b

a

f(σ(s))∆s

)(
1

b− a

∫ b

a

g(σ(s))∆s

)∣∣∣∣
≤
(∫ t

a

(
s− a
b− a

)q
∆s+

∫ b

t

(
b− s
b− a

)q
∆s

) 2
q ∥∥f∆

∥∥
p

∥∥g∆
∥∥
p
. (105)

Proof. We just have to use Theorem 64.

Example 83. If we let g(t) = 1 for all t ∈ [a, b], then (104) becomes

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(σ(s))∆s

∣∣∣∣
≤
(∫ t

a

(
s− a
b− a

)q
∆s+

∫ b

t

(
b− s
b− a

)q
∆s

) 1
q ∥∥f∆

∥∥
p
, (106)

which is a new time scales Ostrowski inequality. If T = R in (106), then we obtain

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s)ds

∣∣∣∣ ≤ (b− aq + 1

) 1
q

[(
t− a
b− a

)q+1

+

(
b− t
b− a

)q+1
] 1
q

‖f ′‖p ,

an inequality that is given by S. Dragomir and S. Wang in [34], see also [30, Theorem

2]. If T = Z, a = 0, and b = n ∈ N in (106), then we obtain

∣∣∣∣∣f(t)− 1

n

n∑
s=1

f(s)

∣∣∣∣∣ ≤ 1

n

(
t−1∑
s=1

sq +
n−t∑
s=1

sq

) 1
q

‖∆f‖p ,
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which turns into, e.g., when p = q = 2,∣∣∣∣∣f(t)− 1

n

n∑
s=1

f(s)

∣∣∣∣∣ ≤ 1

n

√
(t− 1)t(2t− 1) + (n− t)(n− t+ 1)(2n− 2t+ 1)

6
‖∆f‖2 .

Example 84. If we let T = R, then (102) and (103) become

∣∣∣∣f(t)g(t)− 1

2m(a, b)

[
g(t)

∫ b

a

w(s)f(s)ds+ f(t)

∫ b

a

w(s)g(s)ds

]∣∣∣∣
≤
∥∥∥∥ pw(t, ·)
m(a, b)

∥∥∥∥
q

|g(t)| ‖f ′‖p + |f(t)| ‖g′‖p
2

and

∣∣∣∣f(t)g(t)− 1

m(a, b)

[
g(t)

∫ b

a

w(s)f(s)ds+ f(t)

∫ b

a

w(s)g(s)ds

]
+

(
1

m(a, b)

∫ b

a

w(s)f(s)ds

)(
1

m(a, b)

∫ b

a

w(s)g(s)ds

)∣∣∣∣
≤
∥∥∥∥ pw(t, ·)
m(a, b)

∥∥∥∥2

q

‖f ′‖p ‖g
′‖p ,

respectively, and (104) and (105) become (89) and (90), respectively, in Theorem 62, and

by choosing t = (a+ b)/2, we obtain the inequalities given in [18, Remark 2].

Example 85. If we let T = Z, a = 0, and b = n ∈ N, then (104) and (105) become

∣∣∣∣∣f(t)g(t)− 1

2n

[
g(t)

n∑
s=1

f(s) + f(t)
n∑
s=1

g(s)

]∣∣∣∣∣
≤ 1

n

(
t−1∑
s=1

sq +
n−t∑
s=1

sq

) 1
q |g(t)| ‖∆f‖p + |f(t)| ‖∆g‖p

2

and ∣∣∣∣∣f(t)g(t)− 1

n

[
g(t)

n∑
s=1

f(s) + f(t)
n∑
s=1

g(s)

]
+

(
1

n

n∑
s=1

f(s)

)(
1

n

n∑
s=1

g(s)

)∣∣∣∣∣
≤

 1

n

(
t−1∑
s=1

sq +
n−t∑
s=1

sq

) 1
q

2

‖∆f‖p ‖∆g‖p ,

respectively, which are new discrete Ostrowski–Grüss inequalities.
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12. OSTROWSKI AND GRÜSS TYPE INEQUALITIES

This chapter contains a collaborative work with Elvan Akın-Bohner and Martin

Bohner and appeared in 2011 in Nonlinear Dynamics and Systems Theory with the title

“Time Scales Ostrowski and Grüss Type Inequalities involving Three Functions”, see [5].

We present time scales versions of Ostrowski and Grüss type inequalities containing three

functions. We assume that the second derivatives of these functions are bounded. Our

results are new also for the discrete case.

12.1. INTRODUCTION

Motivated by a recent paper by B. G. Pachpatte [61], our purpose is to obtain time

scales versions of some Ostrowski and Grüss type inequalities including three functions,

whose second derivatives are bounded. In detail, we will prove time scales analogues of

the following three theorems presented in [61].

Theorem 65 (See [61, Theorem 1]). Let f, g, h : [a, b] → R be twice differentiable

functions on (a, b) such that f ′′, g′′, h′′ : (a, b)→ R are bounded, i.e.,

‖f ′′‖∞ := sup
t∈(a,b)

|f ′′(t)| <∞, ‖g′′‖∞ <∞, ‖h′′‖∞ <∞.

Moreover, let

A[f, g, h] := gh

∫ b

a

f(s)ds+ fh

∫ b

a

g(s)ds+ fg

∫ b

a

h(s)ds

and

B[f, g, h] := |gh| ‖f ′′‖∞ + |fh| ‖g′′‖∞ + |fg| ‖h′′‖∞ .

Then, for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)h(t)− 1

3(b− a)
A[f, g, h](t)− 1

3

(
t− a+ b

2

)
(fgh)′(t)

∣∣∣∣
≤ 1

6

{(
t− a+ b

2

)2

+
(b− a)2

12

}
B[f, g, h](t).
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Theorem 66 (See [61, Theorem 2]). In addition to the notation and assumptions of

Theorem 65, let

L[f, g, h] := gh
f(a) + f(b)

2
+ fh

g(a) + g(b)

2
+ fg

h(a) + h(b)

2
.

Then, for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)h(t)− 2

3(b− a)
A[f, g, h](t)− 1

3

(
t− a+ b

2

)
(fgh)′(t) +

1

3
L[f, g, h](t)

∣∣∣∣
≤ 1

3(b− a)
B[f, g, h](t)

∫ b

a

∣∣∣∣p(t, s)(s− a+ b

2

)∣∣∣∣ ds,
where p(t, s) = s− a for a ≤ s < t and p(t, s) = s− b for t ≤ s ≤ b.

Theorem 67 (See [61, Theorem 3]). In addition to the notation and assumptions of

Theorem 65, let

M [f, g, h] := gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b− a
+ fg

h(b)− h(a)

b− a
.

Then, for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)h(t)− 1

3(b− a)
A[f, g, h](t)− 1

3

(
t− a+ b

2

)
M [f, g, h](t)

∣∣∣∣
≤ 1

3(b− a)2
B[f, g, h](t)

∫ b

a

∫ b

a

|p(t, τ)p(τ, s)| dsdτ,

where p is defined as in Theorem 66.

Our time scales versions of Theorems 65–67 will contain Theorems 65–67 as special

cases when the time scale is equal to the set of all real numbers, and they will yield new

discrete inequalities when the time scale is equal to the set of all integer numbers. Special

cases of our results are contained in [19, 18, 20, 21, 65, 46, 54] for the general time scales

case, in [57, 26, 32, 33] for the continuous case and in [58, 4] for the discrete case. One

can also use our results for any other arbitrary time scale to obtain new inequalities, e.g.,

for the quantum case.

The set up of this chapter is as follows. Section 12.2 contains some auxiliary results

as well as the assumptions and notation used in this paper. Finally, in Sections 12.3–12.5,

we prove time scales analogues of Theorems 65–67. Each result is followed by several
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examples and remarks. We would like to point out here that our results are new also for

the discrete case.

12.2. AUXILIARY RESULTS AND ASSUMPTIONS

We start with the following auxiliary result.

Lemma 12. The time scales monomials satisfy the following formulas:

g2(t, a)− g2(t, b) = g2(b, a) + (t− b)(b− a), (107)

g2(a, b) + g2(b, a) = (b− a)2, (108)

g3(t, a)− g3(t, b) = g3(b, a) + (t− b)g2(b, a) + (b− a)g2(t, b). (109)

Proof. The function F defined by F (t) := g2(t, a) − g2(t, b) − g2(b, a) − (t − b)(b − a)

satisfies F∆(t) = σ(t) − a − (σ(t) − b) − (b − a) = 0 and F (b) = 0. Hence F = 0 and

so (107) holds. Next, (108) follows by letting t = a in (107). Moreover, the function G

defined by G(t) := g3(t, a) − g3(t, b) − g3(b, a) − (t − b)g2(b, a) − (b − a)g2(t, b) satisfies

G∆(t) = g2(σ(t), a)−g2(σ(t), b)−g2(b, a)− (b−a)(σ(t)− b) = F (σ(t)) = 0 and G(b) = 0.

Hence G = 0 and so (109) holds.

Throughout this chapter we assume that T is a time scale and that a, b ∈ T such

that a < b. Moreover, when writing [a, b], we mean the time scales interval [a, b]∩T. The

following two Montgomery-type results are used in the proofs of our three main results.

Theorem 68. Suppose f ∈ C1
rd(T,R). Let t ∈ [a, b] and u1, u2 ∈ C1

rd(T,R). If

u(σ(s)) =

u1(σ(s)) for a ≤ s < t

u2(σ(s)) for t ≤ s ≤ b,
(110)

then ∫ b

a

u(σ(s))f∆(s)∆s = (u1(t)− u2(t))f(t)− u1(a)f(a) + u2(b)f(b)

−
∫ t

a

u∆
1 (s)f(s)∆s−

∫ b

t

u∆
2 (s)f(s)∆s.

(111)
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Proof. We split the integral into two parts, each of which is evaluated by applying the

integration of parts formula, i.e.,

∫ b

a

u(σ(s))f∆(s)∆s =

∫ t

a

u1(σ(s))f∆(s)∆s+

∫ b

t

u2(σ(s))f∆(s)∆s

= u1(t)f(t)− u1(a)f(a)−
∫ t

a

u∆
1 (s)f(s)∆s

+ u2(b)f(b)− u2(t)f(t)−
∫ b

t

u∆
2 (s)f(s)∆s,

from which (111) follows.

Theorem 69. Suppose f ∈ C2
rd(T,R). Let t ∈ [a, b] and ui, vi ∈ C1

rd(T,R) be such that

u∆
i (s) = vi(σ(s)) for all s ∈ [a, b], where i ∈ {1, 2}. If u satisfies (110), then

∫ b

a

u(σ(s))f∆∆(s)∆s = (u1(t)− u2(t))f∆(t)− (v1(t)− v2(t))f(t)

− u1(a)f∆(a) + v1(a)f(a) + u2(b)f∆(b)− v2(b)f(b)

+

∫ t

a

v∆
1 (s)f(s)∆s+

∫ b

t

v∆
2 (s)f(s)∆s.

(112)

Proof. Using (111) with f∆ replaced by f∆∆ and subsequently applying integration by

parts twice, we obtain

∫ b

a

u(σ(s))f∆∆(s)∆s = (u1(t)− u2(t))f∆(t)− u1(a)f∆(a) + u2(b)f∆(b)

−
∫ t

a

u∆
1 (s)f∆(s)∆s−

∫ b

t

u∆
2 (s)f∆(s)∆s

= (u1(t)− u2(t))f∆(t)− u1(a)f∆(a) + u2(b)f∆(b)

−
∫ t

a

v1(σ(s))f∆(s)∆s−
∫ b

t

v2(σ(s))f∆(s)∆s

= (u1(t)− u2(t))f∆(t)− u1(a)f∆(a) + u2(b)f∆(b)

−
{
v1(t)f(t)− v1(a)f(a)−

∫ t

a

v∆
1 (s)f(s)∆s

}
−
{
v2(b)f(b)− v2(t)f(t)−

∫ b

t

v∆
2 (s)f(s)∆s

}
,

from which (112) follows.

Assumption (H). For the remaining three sections of this chapter, we assume that T

is a time scale and that a, b ∈ T such that a < b. We assume that f, g, h ∈ C2
rd(T,R) are
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such that

∥∥f∆∆
∥∥
∞ := sup

t∈(a,b)

∣∣f∆∆(t)
∣∣ <∞, ∥∥g∆∆

∥∥
∞ <∞,

∥∥h∆∆
∥∥
∞ <∞ (113)

and define

A[f, g, h] := gh

∫ b

a

f(s)∆s+ fh

∫ b

a

g(s)∆s+ fg

∫ b

a

h(s)∆s,

B[f, g, h] := |gh|
∥∥f∆∆

∥∥
∞ + |fh|

∥∥g∆∆
∥∥
∞ + |fg|

∥∥h∆∆
∥∥
∞ ,

C[f, g, h] := ghf∆ + fhg∆ + fgh∆,

D[f, g, h] :=

(∫ b

a

g(s)h(s)∆s

)(∫ b

a

f(s)∆s

)
+

(∫ b

a

f(s)h(s)∆s

)(∫ b

a

g(s)∆s

)
+

(∫ b

a

f(s)g(s)∆s

)(∫ b

a

h(s)∆s

)
,

L[f, g, h] := gh
g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2
+ fh

g2(b, a)g(a) + h2(b, a)g(b)

(b− a)2

+ fg
g2(b, a)h(a) + h2(b, a)h(b)

(b− a)2
,

M [f, g, h] := gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b− a
+ fg

h(b)− h(a)

b− a
.

12.3. PACHPATTE’S FIRST THEOREM ON TIME SCALES

Theorem 70. Assume (H). Then, for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)h(t)− 1

3(b− a)
A[f, g, h](t)− 1

3

(
t− b+

g2(b, a)

b− a

)
C[f, g, h](t)

∣∣∣∣
≤ 1

3

(
h2(b, t) + (t− b)g2(b, a)

b− a
+
g3(b, a)

b− a

)
B[f, g, h](t) (114)

and

∣∣∣∣ 1

b− a

∫ b

a

f(t)g(t)h(t)∆t− 1

3(b− a)2
D[f, g, h]

− 1

3(b− a)

∫ b

a

(
t− b+

g2(b, a)

b− a

)
C[f, g, h](t)∆t

∣∣∣∣
≤ 1

3(b− a)

∫ b

a

(
h2(b, t) + (t− b)g2(b, a)

b− a
+
g3(b, a)

b− a

)
B[f, g, h](t)∆t. (115)
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Proof. Fix t ∈ [a, b] and define u by (110), where

u1(s) = g2(s, a), u2(s) = h2(b, s).

With the notation as in Theorem 69, we have

v1(s) = s− a, v2(s) = s− b, v∆
1 (s) = v∆

2 (s) = 1

and u1(a) = v1(a) = u2(b) = v2(b) = 0. Moreover, we have

u1(t)− u2(t)
(107)
= (t− b)(b− a) + g2(b, a), v1(t)− v2(t) = b− a.

By (112), we therefore obtain

∫ b

a

u(σ(s))f∆∆(s)∆s = ((t− b)(b− a) + g2(b, a))f∆(t)− (b− a)f(t) +

∫ b

a

f(s)∆s

and thus

f(t) =
1

b− a

∫ b

a

f(s)∆s+

(
t− b+

g2(b, a)

b− a

)
f∆(t)− 1

b− a

∫ b

a

u(σ(s))f∆∆(s)∆s. (116)

Similarly, we get

g(t) =
1

b− a

∫ b

a

g(s)∆s+

(
t− b+

g2(b, a)

b− a

)
g∆(t)− 1

b− a

∫ b

a

u(σ(s))g∆∆(s)∆s (117)

and

h(t) =
1

b− a

∫ b

a

h(s)∆s+

(
t− b+

g2(b, a)

b− a

)
h∆(t)− 1

b− a

∫ b

a

u(σ(s))h∆∆(s)∆s. (118)

Multiplying (116), (117) and (118) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding

the resulting identities and dividing by three, we have

f(t)g(t)h(t)− 1

3(b− a)
A[f, g, h](t)− 1

3

(
t− b+

g2(b, a)

b− a

)
C[f, g, h](t)

= − 1

3(b− a)

∫ b

a

u(σ(s))B̃[f, g, h](t, s)∆s, (119)
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whereB̃[f, g, h](t, s) := g(t)h(t)f∆∆(s) + f(t)h(t)g∆∆(s) + f(t)g(t)h∆∆(s)

so that
∣∣∣B̃[f, g, h](t, s)

∣∣∣ ≤ B[f, g, h](t).
(120)

By taking absolute values in (119) and using (113) and

∫ b

a

|u(σ(s))|∆s =

∫ t

a

g2(σ(s), a)∆s+

∫ b

t

h2(b, σ(s))∆s (121)

= g3(t, a)− g3(t, b)

(109)
= g3(b, a) + (t− b)g2(b, a) + (b− a)h2(b, t),

we obtain (114). Integrating (119) with respect to t from a to b, dividing by b−a, noting

that ∫ b

a

A[f, g, h](s)∆s = D[f, g, h], (122)

taking absolute values and using (113) and (121), we obtain (115).

Example 86. If we let T = R in Theorem 70, then, since C[f, g, h] = (fgh)′,

b− g2(b, a)

b− a
= b− (b− a)2

2(b− a)
= b− b− a

2
=
a+ b

2

and

h2(b, t) + (t− b)g2(b, a)

b− a
+
g3(b, a)

b− a
=

1

2

{
(t− b)2 + (t− b)(b− a) +

(b− a)2

3

}
=

1

2

{(
t− b+

b− a
2

)2

− (b− a)2

4
+

(b− a)2

3

}

=
1

2

{(
t− a+ b

2

)2

+
(b− a)2

12

}
,

we obtain [61, Theorem 1], in particular, Theorem 65.

Example 87. If we let T = Z and a = 0, b = n ∈ N in Theorem 70, then, since

b− g2(b, a)

b− a
= b− (b− a)(b− a+ 1)

2(b− a)
= b− b− a+ 1

2
=
a+ b− 1

2
=
n− 1

2
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and

h2(b, t) + (t− b)g2(b, a)

b− a
+
g3(b, a)

b− a

=
1

2

{
(b− t)(b− t− 1) + (t− b)(b− a+ 1) +

(b− a+ 1)(b− a+ 2)

3

}
=

1

2

{(
t− b+

b− a+ 2

2

)2

− (b− a+ 2)2

4
+

(b− a+ 1)(b− a+ 2)

3

}

=
1

2

{(
t+ 1− a+ b

2

)2

+
(b− a+ 2)(b− a− 2)

12

}

=
1

2

{(
t+ 1− n

2

)2

+
n2 − 4

12

}
,

we obtain

∣∣∣∣f(t)g(t)h(t)− 1

3n
A[f, g, h](t)− 1

3

(
t− n− 1

2

)
C[f, g, h](t)

∣∣∣∣
≤ 1

6

{(
t+ 1− n

2

)2

+
n2 − 4

12

}
B[f, g, h](t)

and ∣∣∣∣∣ 1n
n−1∑
t=0

f(t)g(t)h(t)− 1

3n2
D[f, g, h]− 1

3n

n−1∑
t=0

(
t− n− 1

2

)
C[f, g, h](t)

∣∣∣∣∣
≤ 1

6n

n−1∑
t=0

{(
t+ 1− n

2

)2

+
n2 − 4

12

}
B[f, g, h](t),

where

A[f, g, h] = gh

n−1∑
s=0

f(s) + fh

n−1∑
s=0

g(s) + fg
n−1∑
s=0

h(s),

B[f, g, h] = |gh| max
1≤s≤n−1

∣∣∆2f(s)
∣∣+ |fh| max

1≤s≤n−1

∣∣∆2g(s)
∣∣

+ |fg| max
1≤s≤n−1

∣∣∆2h(s)
∣∣ ,

C[f, g, h] = gh∆f + fh∆g + fg∆h,

D[f, g, h] =

(
n−1∑
s=0

g(s)h(s)

)(
n−1∑
s=0

f(s)

)
+

(
n−1∑
s=0

f(s)h(s)

)(
n−1∑
s=0

g(s)

)

+

(
n−1∑
s=0

f(s)g(s)

)(
n−1∑
s=0

h(s)

)
.
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Furthermore, note that these inequalities are new discrete Ostrowski–Grüss type inequal-

ities.

Remark 36. If we let h(t) ≡ 1 in Theorem 70, then (114) becomes

∣∣∣∣f(t)g(t)− 1

2(b− a)

{
g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}
−1

2

(
t− b+

g2(b, a)

b− a

){
g(t)f∆(t) + f(t)g∆(t)

}∣∣∣∣
≤ 1

2

(
h2(b, t) + (t− b)g2(b, a)

b− a
+
g3(b, a)

b− a

){
|g(t)|

∥∥f∆∆
∥∥
∞ + |f(t)|

∥∥g∆∆
∥∥
∞

}
and (115) turns into

∣∣∣∣ 1

b− a

∫ b

a

f(t)g(t)∆t− 1

(b− a)2

(∫ b

a

f(t)∆t

)(∫ b

a

g(t)∆t

)
− 1

2(b− a)

∫ b

a

(
t− b+

g2(b, a)

b− a

){
g(t)f∆(t) + f(t)g∆(t)

}
∆t

∣∣∣∣
≤ 1

2(b− a)

∫ b

a

(
h2(b, t) + (t− b)g2(b, a)

b− a
+
g3(b, a)

b− a

)
{
|g(t)|

∥∥f∆∆
∥∥
∞ + |f(t)|

∥∥g∆∆
∥∥
∞

}
∆t.

If, moreover, we let g(t) ≡ 1, then (114) becomes

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s)∆s−
(
t− b+

g2(b, a)

b− a

)
f∆(t)

∣∣∣∣
≤
(
h2(b, t) + (t− b)g2(b, a)

b− a
+
g3(b, a)

b− a

)∥∥f∆∆
∥∥
∞ .

From these inequalities, special cases such as discrete inequalities can be obtained.

12.4. PACHPATTE’S SECOND THEOREM ON TIME SCALES

Theorem 71. Assume (H). Then, for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)h(t)− 2

3(b− a)
A[f, g, h](t) +

1

3
L[f, g, h](t)

−1

3

(
t− b+

g2(b, a)

b− a

)
C[f, g, h](t)

∣∣∣∣ ≤ 1

3(b− a)
B[f, g, h](t)I(t) (123)
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and

∣∣∣∣ 1

b− a

∫ b

a

f(t)g(t)h(t)∆t− 2

3(b− a)2
D[f, g, h] +

1

3(b− a)

∫ b

a

L[f, g, h](t)∆t

− 1

3(b− a)

∫ b

a

(
t− b+

g2(b, a)

b− a

)
C[f, g, h](t)∆t

∣∣∣∣
≤ 1

3(b− a)2

∫ b

a

B[f, g, h](t)I(t)∆t, (124)

where

I(t) :=
1

b− a

∫ t

a

|2(b− a)g2(σ(s), a)− (σ(s)− a)g2(b, a)|∆s

+
1

b− a

∫ b

t

|2(b− a)h2(b, σ(s))− (b− σ(s))h2(b, a)|∆s.

Proof. Fix t ∈ [a, b] and define u by (110), where

u1(s) = 2(b− a)g2(s, a)− (s− a)g2(b, a), u2(s) = 2(b− a)h2(b, s)− (b− s)h2(b, a).

With the notation as in Theorem 69, we have

v1(s) = 2(b− a)(s− a)− g2(b, a), v2(s) = 2(b− a)(s− b) + h2(b, a),

v∆
1 (s) = v∆

2 (s) = 2(b− a)

and u1(a) = u2(b) = 0, v1(a) = −g2(b, a), v2(b) = h2(b, a). Moreover, we have

u1(t)− u2(t) = 2(b− a)(g2(t, a)− h2(b, t))

−(t− a)g2(b, a) + (b− t)h2(b, a)

(107),(108)
= 2(b− a)(g2(b, a) + (t− b)(b− a))

−(t− a)g2(b, a) + (b− t)
(
(b− a)2 − g2(b, a)

)
(108)
= (b− a)g2(b, a) + (t− b)(b− a)2,

v1(t)− v2(t) = 2(b− a)2 − g2(b, a)− h2(b, a)

(108)
= 2(b− a)2 − (b− a)2 = (b− a)2.

By (112), we therefore obtain
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∫ b

a

u(σ(s))f∆∆(s)∆s = (b− a) (g2(b, a) + (t− b)(b− a)) f∆(t)

− (b− a)2f(t)− g2(b, a)f(a)− h2(b, a)f(b) + 2(b− a)

∫ b

a

f(s)∆s

and thus

f(t) =
2

b− a

∫ b

a

f(s)∆s− g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2

+

(
t− b+

g2(b, a)

b− a

)
f∆(t)− 1

(b− a)2

∫ b

a

u(σ(s))f∆∆(s)∆s. (125)

Similarly, we get

g(t) =
2

b− a

∫ b

a

g(s)∆s− g2(b, a)g(a) + h2(b, a)g(b)

(b− a)2

+

(
t− b+

g2(b, a)

b− a

)
g∆(t)− 1

(b− a)2

∫ b

a

u(σ(s))g∆∆(s)∆s (126)

and

h(t) =
2

b− a

∫ b

a

h(s)∆s− g2(b, a)h(a) + h2(b, a)h(b)

(b− a)2

+

(
t− b+

g2(b, a)

b− a

)
h∆(t)− 1

(b− a)2

∫ b

a

u(σ(s))h∆∆(s)∆s. (127)

Multiplying (125), (126) and (127) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding

the resulting identities and dividing by three, we have

f(t)g(t)h(t)− 2

3(b− a)
A[f, g, h](t) +

1

3
L[f, g, h](t)

− 1

3

(
t− b+

g2(b, a)

b− a

)
C[f, g, h](t) = − 1

3(b− a)2

∫ b

a

u(σ(s))B̃[f, g, h](t, s)∆s

(128)

with B̃ as in (120). By taking absolute values in (128) and using (113) and

1

b− a

∫ b

a

|u(σ(s))|∆s = I(t), (129)

we obtain (123). Integrating (128) with respect to t from a to b, dividing by b−a, noting

(122), taking absolute values and using (113) and (129), we obtain (124).
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Example 88. If we let T = R in Theorem 71, then, since C[f, g, h] = (fgh)′,

b− g2(b, a)

b− a
=
a+ b

2

and (with p as defined in Theorem 66)

I(t) =
1

b− a

∫ t

a

∣∣∣∣(b− a)(s− a)2 − (s− a)
(b− a)2

2

∣∣∣∣ ds
+

1

b− a

∫ b

t

∣∣∣∣(b− a)(s− b)2 − (b− s)(b− a)2

2

∣∣∣∣ ds
=

∫ t

a

∣∣∣∣(s− a)

(
s− a+ b

2

)∣∣∣∣ ds+

∫ b

t

∣∣∣∣(s− b)(s− a+ b

2

)∣∣∣∣ ds
=

∫ b

a

∣∣∣∣p(t, s)(s− a+ b

2

)∣∣∣∣ ds,
we obtain [61, Theorem 2], in particular, Theorem 66.

Example 89. If we let T = Z and a = 0, b = n ∈ N in Theorem 71, then, since

b− g2(b, a)

b− a
=
n− 1

2

and

I(t) =
1

b− a

t−1∑
s=a

∣∣∣∣(b− a)(s+ 1− a)(s+ 2− a)− (s+ 1− a)
(b− a)(b− a+ 1)

2

∣∣∣∣
+

1

b− a

b−1∑
s=t

∣∣∣∣(b− a)(b− s− 1)(b− s− 2)− (b− s− 1)
(b− a)(b− a− 1)

2

∣∣∣∣
=

t−1∑
s=a

∣∣∣∣(s+ 1− a)

(
s+ 1− a+ b− 1

2

)∣∣∣∣
+

b−1∑
s=t

∣∣∣∣(s+ 1− b)
(
s+ 1− a+ b− 1

2

)∣∣∣∣
=

t−1∑
s=0

∣∣∣∣(s+ 1)

(
s+ 1− n− 1

2

)∣∣∣∣+
n−1∑
s=t

∣∣∣∣(s+ 1− n)

(
s+ 1− n− 1

2

)∣∣∣∣ ,
we have

∣∣∣∣f(t)g(t)h(t)− 2

3n
A[f, g, h](t) +

1

3
L[f, g, h](t)− 1

3

(
t− n− 1

2

)
C[f, g, h](t)

∣∣∣∣
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≤ 1

3n
B[f, g, h](t)

{
t∑

s=1

s

∣∣∣∣s− n− 1

2

∣∣∣∣+
n∑

s=t+1

(n− s)
∣∣∣∣s− n− 1

2

∣∣∣∣
}

and ∣∣∣∣∣ 1n
n−1∑
t=0

f(t)g(t)h(t)− 2

3n2
D[f, g, h]

+
1

3n

n−1∑
t=0

L[f, g, h](t)− 1

3n

n−1∑
t=0

(
t− n− 1

2

)
C[f, g, h](t)

∣∣∣∣∣
≤ 1

3n2

n−1∑
t=0

B[f, g, h](t)

{
t∑

s=1

s

∣∣∣∣s− n− 1

2

∣∣∣∣+
n∑

s=t+1

(n− s)
∣∣∣∣s− n− 1

2

∣∣∣∣
}
,

where in addition to A,B,C,D defined in Example 87,

L[f, g, h] = gh
(n+ 1)f(a) + (n− 1)f(b)

2n
+ fh

(n+ 1)g(a) + (n− 1)g(b)

2n

+ fg
(n+ 1)h(a) + (n− 1)h(b)

2n
.

These inequalities are new discrete Ostrowski–Grüss type inequalities.

Remark 37. If we let h(t) ≡ 1 in Theorem 71, then (123) becomes

∣∣∣∣f(t)g(t)− 1

b− a

{
g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}
+ g(t)

g2(b, a)f(a) + h2(b, a)f(b)

2(b− a)2
+ f(t)

g2(b, a)g(a) + h2(b, a)g(b)

2(b− a)2

−1

2

(
t− b+

g2(b, a)

b− a

){
g(t)f∆(t) + f(t)g∆(t)

}∣∣∣∣
≤ 1

2(b− a)

{
|g(t)|

∥∥f∆∆
∥∥
∞ + |f(t)|

∥∥g∆∆
∥∥
∞

}
I(t),

(observe (108) when calculating L) and (124) turns into

∣∣∣∣ 1

b− a

∫ b

a

f(t)g(t)∆t− 2

(b− a)2

(∫ b

a

f(t)∆t

)(∫ b

a

g(t)∆t

)
+

1

b− a

∫ b

a

{
g(t)

g2(b, a)f(a) + h2(b, a)f(b)

2(b− a)2
+ f(t)

g2(b, a)g(a) + h2(b, a)g(b)

2(b− a)2

}
∆t

− 1

2(b− a)

∫ b

a

(
t− b+

g2(b, a)

b− a

){
g(t)f∆(t) + f(t)g∆(t)

}
∆t

∣∣∣∣
≤ 1

2(b− a)2

∫ b

a

{
|g(t)|

∥∥f∆∆
∥∥
∞ + |f(t)|

∥∥g∆∆
∥∥
∞

}
I(t)∆t.
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If, moreover, we let g(t) ≡ 1, then (123) becomes

∣∣∣∣f(t)− 2

b− a

∫ b

a

f(s)∆s+
g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2

−
(
t− b+

g2(b, a)

b− a

)
f∆(t)

∣∣∣∣ ≤ 1

b− a
∥∥f∆∆

∥∥
∞ I(t).

From these inequalities, special cases such as discrete inequalities can be obtained.

12.5. PACHPATTE’S THIRD THEOREM ON TIME SCALES

Theorem 72. Assume (H). Then, for all t ∈ [a, b], we have

∣∣∣∣f(t)g(t)h(t)− 1

3(b− a)
A[f, g, h](t)− 1

3

(
t− b+

g2(b, a)

b− a

)
M [f, g, h](t)

∣∣∣∣
≤ 1

3(b− a)2
B[f, g, h](t)H(t) (130)

and

∣∣∣∣ 1

b− a

∫ b

a

f(t)g(t)h(t)∆t− 1

3(b− a)2
D[f, g, h](t)

− 1

3(b− a)

∫ b

a

(
t− b+

g2(b, a)

b− a

)
M [f, g, h](t)∆t

∣∣∣∣
≤ 1

3(b− a)3

∫ b

a

B[f, g, h](t)H(t)∆t, (131)

where

H(t) :=

∫ b

a

∫ b

a

|p(t, τ)p(τ, s)|∆s∆τ

and

p(t, s) :=

σ(s)− a for a ≤ s < t

σ(s)− b for t ≤ s ≤ b.

Proof. Fix t ∈ [a, b]. We use Theorem 68 three times to obtain

∫ b

a

∫ b

a

p(t, τ)p(τ, s)f∆∆(s)∆s∆τ =

∫ b

a

p(t, τ)

{∫ b

a

p(τ, s)f∆∆(s)∆s

}
∆τ

=

∫ b

a

p(t, τ)

{
(b− a)f∆(τ)−

∫ b

a

f∆(s)∆s

}
∆τ

= (b− a)

∫ b

a

p(t, s)f∆(s)∆s+ (f(a)− f(b))

∫ b

a

p(t, s)∆s
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= (b− a)

{
(b− a)f(t)−

∫ b

a

f(s)∆s

}
+ (f(a)− f(b))

{
(b− a)t−

∫ b

a

s∆s

}
= (b− a)2f(t)− (b− a)

∫ b

a

f(s)∆s+ (f(a)− f(b))

∫ a

b

(s− t)∆s

= (b− a)2f(t)− (b− a)

∫ b

a

f(s)∆s+ (g2(t, a)− h2(b, t))(f(a)− f(b))

and thus (by using (107))

f(t) =
1

b− a

∫ b

a

f(s)∆s+

(
t− b+

g2(b, a)

b− a

)
f(b)− f(a)

b− a

+
1

(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)f∆∆(s)∆s∆τ. (132)

Similarly, we get

g(t) =
1

b− a

∫ b

a

g(s)∆s+

(
t− b+

g2(b, a)

b− a

)
g(b)− g(a)

b− a

+
1

(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)g∆∆(s)∆s∆τ. (133)

and

h(t) =
1

b− a

∫ b

a

h(s)∆s+

(
t− b+

g2(b, a)

b− a

)
h(b)− h(a)

b− a

+
1

(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)h∆∆(s)∆s∆τ. (134)

Multiplying (132), (133) and (134) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding

the resulting identities and dividing by three, we have

f(t)g(t)h(t)− 1

3(b− a)
A[f, g, h](t)− 1

3

(
t− b+

g2(b, a)

b− a

)
M [f, g, h](t)

=
1

3(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)B̃[f, g, h](t, s)∆s∆τ (135)

with B̃ as in (120). By taking absolute values in (135) and using (113) and the definition

of H, we obtain (130). Integrating (135) with respect to t from a to b, dividing by b− a,

noting (122), taking absolute values and using (113) and the definition of H, we obtain

(131).
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Example 90. If we let T = R in Theorem 72, then, by the same calculations as in

Example 86, we obtain [61, Theorem 3], in particular, Theorem 67.

Example 91. If we let T = Z and a = 0, b = n ∈ N in Theorem 72, then, by the same

calculations as in Example 87, we obtain

∣∣∣∣f(t)g(t)h(t)− 1

3n
A[f, g, h](t)− 1

3

(
t− n− 1

2

)
M [f, g, h](t)

∣∣∣∣
≤ 1

3n2
B[f, g, h](t)H(t)

and ∣∣∣∣∣ 1n
n−1∑
t=0

f(t)g(t)h(t)− 1

3n2
D[f, g, h]− 1

3n

n−1∑
t=0

(
t− n− 1

2

)
M [f, g, h](t)

∣∣∣∣∣
≤ 1

3n3

n−1∑
t=0

B[f, g, h](t)H(t),

where in addition to A,B,D defined in Example 87,

M [f, g, h] = gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b− a
+ fg

h(b)− h(a)

b− a
,

H(t) =
n−1∑
τ=0

n−1∑
s=0

|p(t, τ)p(τ, s)| ,

p(t, s) =

s+ 1 if 0 ≤ s < t

s+ 1− n if t ≤ s ≤ n.

These inequalities are new discrete Ostrowski–Grüss type inequalities.

Remark 38. If we let h(t) ≡ 1 in Theorem 72, then (130) becomes

∣∣∣∣f(t)g(t)− 1

2(b− a)

{
g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}
−1

2

(
t− b+

g2(b, a)

(b− a)

){
g(t)

f(b)− f(a)

b− a
+ f(t)

g(b)− g(a)

b− a

}∣∣∣∣
≤ 1

2(b− a)2

{
|g(t)|

∥∥f∆∆
∥∥
∞ + |f(t)|

∥∥g∆∆
∥∥
∞

}
H(t)

and (131) turns into
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∣∣∣∣ 1

b− a

∫ b

a

f(t)g(t)∆t− 1

(b− a)2

(∫ b

a

f(t)∆t

)(∫ b

a

g(t)∆t

)
− 1

2(b− a)

∫ b

a

(
t− b+

g2(b, a)

b− a

){
g(t)

f(b)− f(a)

b− a
+ f(t)

g(b)− g(a)

b− a

}
∆t

∣∣∣∣
≤ 1

2(b− a)3

∫ b

a

{
|g(t)|

∥∥f∆∆
∥∥
∞ + |f(t)|

∥∥g∆∆
∥∥
∞

}
H(t)∆t.

If, moreover, we let g(t) ≡ 1, then (130) becomes

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s)∆s−
(
t− b+

g2(b, a)

(b− a)

)
f(b)− f(a)

b− a

∣∣∣∣
≤ 1

(b− a)2

∥∥f∆∆
∥∥
∞H(t).
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