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ABSTRACT 

Using an improved theory of plate vibration suggested by R. D. 

Mindlin which takes into account the effects of transverse shear and 

rotary inertia, free and forced transverse vibrations of uniform cir

cular plates are studied and the results compared with those obtained 

using the classical theory of plate vibration. 

The governing equations are developed in polar coordinates using 

the equations of elasticity. Frequency equations for axisymmetric and 

antisymmetric vibrations are derived for solid circular plates under 

different boundary conditions and for an annular plate rigidly mounted 

on a shaft. 

The response of plates to different types of rapidly applied 

axisymmetric steady loads and pulse loads is investigated in detail 

using an improved normal-mode solution suggested by D. Williams. 

Frequency equations for plates loaded with arbitrary impedance at 

the center are derived by three different methods. Two methods make 

use of conventional mode summation techniques and result in series forms 

of the frequency equation. The third method results in a closed-form 

frequency equation which makes it very convenient for use in many appli

cations. A number of typical applications of the closed-form frequency 

equation are also considered. 

The driving-point impedance and transmissibility of free and con

strained circular plates driven by harmonically oscillating forces at 

the center are studied by extending the principles used in the deriva

tion of the closed-form frequency equation. The effect of attaching 

dynamic vibration absorbers at the center of the plate and their tuning 
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are also investigated. Internal material damping is treated in general, 

but no numerical results are presented for damped systems. 

Several examples are given detailed consideration. Numerical results 

are given in nondimensional quantities and are presented in a series of 

graphs and tables. 
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I. INTRODUCTION 

A. Importance of the Problem 

In the design of structures and equipment utilizing plate com

ponents, a major problem is concerned with the determination of defor

mation and stresses in plates when subjected to rapidly applied, time

dependent transverse surface loads as well as time-dependent boundary 

conditions. Such problems arise especially in the aircraft industry 

since aircraft structures and mounted equipment must withstand blasts, 

landing impacts and a variety of other transient loads. 

A complex structure of plates and framing does not seem to be 

amenable to detailed mathematical analysis. However, some insight into 

the problem may be obtained by considering a model system, suitably 

idealized to permit correct mathematical analysis. Toward this end, 

the vibratory response of a uniform circular plate to axisymmetric load

ing is studied in detail in this investigation. 

In some acoustical devices, circular disks are required to resonate 

at certain frequencies at particular modes. For example, the clamp~4 

plate is used in electromagnetic telephone receivers, carbon micro

phones and subaqueous condenser microphones. Such applications require 

accurate computation of the first few natural frequencies of the disk. 

Since many such devices are required to function satisfactorily over a 

wide range of temperatures and since for most materials Poisson's ratio 

varies with temperature, the study of the effect of Poisson's ratio on 

frequencies of transverse vibration is also of practical significance. 

For the past few years there has been a growing interest in the 

field of noise control. Quieting of noisy equipment necessitates the 
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consideration of both vibration and sound [1]*. In many instances, the 

noise radiating part may be a plate component, or a plate on which a 

machine is mounted [2]. Accurate determination of flexural vibration 

frequencies and impedance of the system are essential in analyzing the 

noise problem and devising means to reduce or to eliminate the noise. 

In many applications, the frequencies of nonaxisymmetrical vibra

tions are of interest. For example, in cases like turbine disks, vibra

tions with one or more diametral nodes are of concern because failures 

of such disks are generally attributed to resonance with one of these 

frequencies [3]. Correct determination of such frequencies are there

fore helpful in the design and operation of turbines. 

In the case of equipment mounted on a component plate, the deter

mination of the forces which act on the equipment as a result of excita

tion to the structure, is of great practical importance. In other 

cases, the forces that are transmitted to the structure as a result of 

unbalance in the moving parts of the equipment may be of interest. In 

both cases, the determination of the transmissibility across the plate 

for the common types of loading and boundary conditions is essential for 

the design of the structure and the equipment mounting. The design of 

dynamic vibration absorbers for isolating one or more dangerous fre

quencies is also important in many applications. 

B. Available Theories and Methods 

In all the cases mentioned above, the scope and usefulness of the 

classical Poisson-Kirchoff plate equation are limited because, even for 

a thin plate, it predicts the actual behavior only for the first few 

*Numbers in brackets refer to the bibliography. 
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modes [4]. It is observed that for higher flexural modes the influence 

of coupling between flexure and thickness-shear modes, and that between 

flexure and thickness-twist modes, becomes increasingly important. 

R. D. Mindlin [4] has recently published a refined plate theory, a two 

dimensional analog of Rayleigh-Timoshenko beam equation, which takes into 

account the above coupling effects by including shear deformation and 

rotary inertia effects in the equations of motion. The improved theory 

is found to yield satisfactory results for thick plates and for higher 

modes [4]. 

The conventional normal-mode solution [5,6] for the response of a 

structure to transient loads is not suitable for time-dependent boundary 

conditions. An improved normal-mode solution suggested by D. Williams [7] 

is readily applicable to time-dependent boundary conditions. In the 

Williams method, the dynamic solution is represented as an eigenfunction 

expansion about the so-called static solution [8]. It is particularly 

suitable where the response function is discontinuous because the dis

continuity can be contained in the static portion of the solution, and 

the series is only required to produce a continuous remainder. The 

static part of the solution can be easily obtained by direct integration 

of the homogeneous plate equation. Moreover, the Williams-type series 

is found to converge more rapidly than the conventional type modal 

series [8,9]. These so-called static solutions differ from the Reissner

Goodier solutions for plates only in the value of a constant for which 

Reissner uses 5/6, whereas Mindlin uses rr 2/12 or a value which depends 

on the Poisson's ratio. 

The conventional methods for determining the frequencies of vibra

tion of constrained structures employ mode-summation techniques and 

usually result in series-type frequency equations [6]. These equations 



4 

require as many natural frequencies of the unconstrained structure as 

there are terms in the series and give only the same number of con

strained frequencies. The accuracy of the calculated frequencies de

pends on the number of terms included in the series. Moreover, compu

tations with series solutions are time consuming and laborious. 

C. Methods Developed in this Investigation 

Using Mindlin's improved theory of plates, two series type fre

quency equations and one closed-form frequency equation are developed 

in this investigation for a circular plate loaded with an arbitrary load 

impedance at the center. The closed-form frequency equation can be 

solved to yield an infinite number of frequencies of the constrained 

plate without using the frequencies of the unconstrained plate as is re

quired in series type equations. Also, the closed-form equation is less 

time consuming and easier to program on a digital computer. 

From the extensive literature in the field of sound and vibration 

isolation, very little information is available on methods to determine 

the impedance and transmissibility of free and constrained plates which 

are driven by time-varying forces. It is found that the method used 

for deriving the closed-form frequency equation for constrained plates 

can be extended to obtain closed-form expressions for impedance and 

transmissibility of circular plates which are constrained at the center 

and driven by time-varying forces at the center. Expressions for 

transmissibility of plates loaded at the center and to which dynamic 

vibration absorbers are attached at the center are also derived in 

closed-form in this investigation. 

Nondimensional quantities are used throughout this work in order 

to make derivations and computations easier and the results more general 

for applications. 
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II. REVIEW OF LITERATURE 

The problem of free transverse vibration of circular elastic plates 

has attracted the interest of investigators for well over a century. 

Poisson [10] analyzed radially symmetric, free transverse vibrations, 

and Kirchoff [11] considered nonaxisymmetric vibrations. More recent 

investigations of plate vibration include the integral-transform approach 

of Sneddon [12] who treats axisymmetric vibrations; the separable product 

solutions of Flynn [13] who analyzes plates with impulsive pressure load

ing, and Wah [14] who considers vibration of circular plates with large 

initial tension or compression; the harmonic analysis approach of Erin

gen [15] who treats damped plates under stochastic loading; the Laplace

transform method of Mase (16] who investigates the dynamic response of 

viscoelastic plates; the Ritz-Galerkin method of Bauer [17] who analyzes 

nonlinear response of elastic plates to pulse excitations; and the singu

larity solution concept of Reismann [18] who treats a clamped plate with 

a harmonically oscillating transverse load. Kantham [19] determined the 

frequencies and normal modes of an elastically built-in plate; Reid [20] 

considered the free vibration of an initially deformed circular plate 

following its sudden release; and Weiner [21] investigated the response 

of a thin elastic plate to axisymmetric, time-varying transverse loading. 

The response of a circular plate of large radius to sharp transient load

ing was investigated by Medick [22] both analytically and experimentally. 

Transverse vibrations of clamped and free circular plates of uni

form thickness carrying concentrated masses at the center are investi

gated by Roberson [23,24] using Laplace transform methods. Tyutekin [25] 

has presented a solution to the flexural vibrations of a circular disk 

loaded at the center with an arbitrary load impedance. Vibrations of 
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rectangular plates are investigated by Das [26] who derived a series 

form solution for the frequencies of plates loaded with concentrated 

masses, springs and dashpots and by Stokey [27], who employed Lagrange's 

equation and a series solution for the frequency of a plate carrying any 

number of finite masses. 

Other important investigators of plate vibrations include Kirk [28], 

Stanisic [29], Greene [30], Lange [31], Skudrzyk [32], Flinn [33], 

Hencky [34], Heckel [35,36], Chou [37] and Chree [38]. 

All the investigations mentioned above are based on the classical 

Poisson-Kirchoff plate equation. An improved theory of plate vibrations 

which takes into account the effect of transverse shear and rotary inertia 

was published by Mindlin [4] in 1951. Applications of his theory to disk 

vibrations [39,40], to crystal plate vibrations [41,42] and to wave pro

pagation [43] were subsequently published by him. A detailed discussion 

on the boundary conditions applicable to Mindlin's theory is given by 

Callahan [44]. Kalnins [45,46] has successfully applied Mindlin's theory 

to vibration of a spherical shell. Sharma [47] has made use of Mindlin's 

equations to study the effect of Poisson's ratio on frequency of vibra

tion. More recent contributions using Mindlin's theory include the forced 

motion solution of Reismann [8] who uses a Williams-type normal-mode solu

tion to determine the response of a plate to a rapidly applied trans

verse load, and the fundamental solution [48] of Kalnins [49] who utilizes 

Green's functions to determine the response of a plate to a harmonically 

oscillating load situated at an arbitrary point on the plate. 

Vibration of plates including the effect of transverse shear defor

mation and rotary inertia is investigated also by Reissner [50] who gives 

a solution expressed in terms of Bessel functions for axisymmetric vibra

tion of circular plates of uniform thickness and by Huang [51], who 
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discusses the application of variational methods for the formulation 

of plate vibration problems. Closed-form solutions for the static re

sponse of plates of variable thickness are given by Conway [52,53]. 

Since most vibration problems in plates, beams and other continuous 

structures use identical solution techniques, it will be worthwhile to 

examine some useful developments in beam vibrations and related topics. 

Williams [7] has developed an improved normal mode solution for forced 

vibration problems which can be applied to time-dependent boundary con

ditions. The Williams method was discussed favourably by Ramberg [54] 

in the analysis of transient vibration of an airplane wing. Recently 

Leonard [9] employed the Williams method to transient response of beams 

and Sheng [55] extended it to vibration of shell structures. Transient 

response problems are also investigated by Isakon [56]~ Dohrenwend [57] 

and Plass [58]. Vibrations of constrained beams are studied in detail 

by Dana Young [59] and by Lee [60]. 

Practically no literature was found during the course of this in

vestigation on impedance and transmissibility of force-driven plates. 

For rods and beams, a major contribution to this field is due to Snow

don [61-67] who treats beams with internal damping using both Bernoulli

Euler and Rayleigh-Timoshenko theories. He has also given a detailed 

study on internal material damping [68-70]. A good treatment of sound 

radiation, material damping and plate vibrators is given by Skudrzyk [71]. 

Properties of Bessel functions and integrals of products of Bessel 

functions which are very useful in this investigation are treated 

elaborately by Watson [72] and by McLachlan [73}. 
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III. OBJECTIVES OF INVESTIGATION 

A number of desirable areas of investigation in circular plate 

vibration in the fields of general design, acoustics and vibration iso

lation are mentioned in the first chapter. The limitations of conven

tional theories and methods, new theories and methods which are recently 

introduced, and methods developed in this investigation are also dis

cussed. It is also found from the survey of literature that only a very 

limited amount of work has been done in many of the areas of practical 

interest mentioned earlier. The objective of this work is to investigate 

several of the above problems in detail using improved theories and 

methods and to provide as much information and data as is possible that 

will be of use in the proper design of plate components in their respect

ive fields of application. 

The basic equations of transverse vibrations of plates will be 

derived in polar coordinates using Mindlin's improved theory. The homo

geneous solution of the equation of motion will be used to determine 

axisymmetric and antisymmetric natural frequencies of plates under dif

ferent boundary conditions. The effect of Poisson's ratio on natural 

frequencies will also be studied. 

Using a Williams-type normal-mode solution, the displacement and 

acceleration response of circular plates to different types of rapidly 

applied steady loads and pulse loads will be investigated in detail. 

The effect of load distribution, pulse shape and duration of pulse on 

response and on the convergence of the modal series will also be con

sidered. 

A closed-form frequency equation will be derived for transverse 

vibration of circular plates loaded at the center with an arbitrary 
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impedance and this will be used to determine the frequencies for a 

number of specific forms of the impedance. It is also proposed to derive 

closed-form expressions for the impedance and transmissibility of plates 

loaded at the center and driven at the center by time-varying forces and 

to use these expressions to obtain impedance and transmissibility curves 

for the most common types of loading. The design of dynamic vibration 

absorbers and their tuning to provide isolation for a particular excita

tion frequency will also be considered in detail. The effect of material 

damping on impedance and transmissibility will be treated in general, but 

detailed application will be limited to the classical theory. 

Wherever desirable, the results of the improved theory will be 

compared with those obtained using the classical theory. The main ob

jective of this comparison will be to assess the applicability and limita

tions of the classical theory in the fields of free, transient and steady 

state vibrations. 
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IV. DEVELOPMENT OF THE THEORY 

Differential equations for flexural vibration of circular plates, 

allowing for the effect of transverse shear and rotary inertia, can be 

developed in a very straightforward manner suggested by Hindlin [4]. 

Mindlin described the derivation in rectangular coordinates. In polar 

coordinates the procedure is similar and will be given here. 

A. Basic Equations 

The plate-stress components are (see Lehnhoff [74], p. 7) 

M !z cr dz 
r r 

Me = Jz cre dz 

M = fz Tre dz =M 
re er 

(4 .1) 

Qr = !Trz dz 

Neglecting body forces, the stress equations of motion in cylindrical 

coordinates are [75] 

acrr 1 3T 3T cr -cr 
--+- ~+~+ r e 
ar r ae az r 

oTre 1 acre oTez 2Tre a2ue 
---+---+--+--= p--

ar r ae az r 3t2 

dT dT dCJ T 32u 
~ + 1:. _.Q!_ + _z_ + _£ = p--z 

or r 38 az r 3t2 

The stress-strain relations are (see Boresi [76], p. 114) 

cr = A(s + s8 + s ) + 2Gs r r z r 

cr z 

Tre 

Trz 

Tez 

= 

= 

= 

A(s + s 8 + s ) + 2Gs r z z 

Gyre 

Gyrz 

Gyez 

(4. 2) 

(4. 3) 
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The strain-displacement relations in polar coordinates are (see 

Boresi [76], p. 248) 

au aue ur aw r 
E: = -- e:e = --+- E: = 
r ar rae r z dZ 

aw aue 
Yez = --+--rae az 

The relations between elastic constants are [76] 

G = 2(l+v) ' 
E vE 

(4. 5) 
(l+v)(l-2v) 

B. Derivation of Hindlin's Improved Theory 

The plate is referred to a r, 8, z coordinate system (see figure 1). 

The faces of the plate are the planes z = ± ~ and its cylindrical surfaces 

are defined by plane curves or polygons parallel to the r-8 plane. The 

faces of the plate are assumed to be free of tangential traction, but 

under normal pressures p1 and Pz• Thus, we have 

= TezJ . h = 0 
z = :t 2 

Let p = p2 - p1 

+ h = -p1 (r,B,t) 

2 

h 
= -p2(r,B,t) 

= - 2 

u~.6> 

Normal pressures are retained on both faces in order that one of 

them may, if desired, be made proportional to the transverse displacement 

to simulate the effect of an elastic foundation [4]. 

It is assumed that ur and u6 are proportional to z and u2 is Indepen

dent of z (see reference 4, p. 32 and appendix A). Thus, we have 



u zl/J (r, e, t) 
r r 

ue = zlf;e(r,e,t) 

u = w(r,e,t) 
z 

1/Jr' 1f;8 , and ware called plate-displacement components. 

1. Plate-Stress-Displacement Relations 

12 

(4. 7) 

In the three-dimensional theory of elasticity there are six campo-

nents of stress which are expressed in terms of six components of strain 

through Hooke's law. In the present theory there are only five "plate-

stress components" [see equation (4.1)] and these will be expressed in 

terms of the same number of strain components. The latter will be ex-

pressed in terms of three "plate-displacement components". 

From equations (4.3), solving the equation containing o fore: z z 

gives 

(4.8) 

Substituting this value of e: in the first of equations (4.3) one obtains 
z 

(4G2+4G.\) 
0 r = (2G+.\) e:r 

2G.\ .\ 
+ (2G+.\) e:e + (2G+A) 0 z (4.9) 

Using equations (4.5), equation (4.9) yields 

E vE v 
a = -- e: + --2- e:e + -- a 

r l-v2 r l-v l-v z 
(4.10a) 

A similar procedure on the other equations of (4.3) gives 

E 
're = 2(l+v) Yre ' 'rz = Gyrz ' 'ez = Gyez (4.10b) 

Equations (4.10) are now integrated over the plate thickness to 

convert them into plate-stress components in accordance with equations 

(4.1). The results are then altered in two respects: (a) the integrals 

containing o are dropped; (b) the coefficients of the integrals containing z 

y and y8 are replaced by constants whose magnitudes are to be determined rz z 



later (see reference 4, p. 32 and appendix A). 

This process yields 

M = ~ j E:rzdz + vE 2 J c: 8zdz 
r 1-v 1-v 

Me = l~v2 J c:ezdz + vE zf c:rzdz 
l-v 

Mre = 2(i+v)J Yrezdz 

Q = k2Gjy dz r rz 

Qe = k2G j Yezdz 
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(4.11) 

Substituting equations (4.4) into equations (4.11) and using equations 

(4.12) 

Carrying out the . . f h lntegratlons rom - 2 to +h 
2 ' equations (4.12) yields 

'dtj;r v Clljle 
M = D[- +- (lj! + ae-)J r Clr r r 

Cllj! Clt/Je r 1 
Me = D[v- +- (l}; + ae-)J Clr r r 

Cl'l' Cll/Je 
Mre 

D 1 r = - (1-v) [- (- - o/e) +-] ( 4 .13) 2 r ae ar 

is the flexural rigidity of the plate. 
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k2 is a constant which depends on the z-dependence of the shear 

stress through the thickness of the plate (see appendices A and B). 

Equations (4.13) would have been obtained if it had been assumed 

that a = 0 at the start. However, the procedure adopted reveals that 
z 

only a linearly weighted, average effect of a is neglected, rather than z 

a itself (see reference 4, p. 32). z 

2. Plate-Stress Equations of Motion 

The first two of equations (4.2) are multiplied by z and integrated 

over the plate thickness. This gives 

J aa 1 J ch e J d1"rz ---!.. zdz + - __ r_ zdz + ~z zdz 
ar r ae a 

J (a -a e) J a 2u . 
+ r zdz = p -f adz 

r at 

J a-rre 1 J aae J a-re as- zdz + r "'§6 zdz + dZZ zdz J 21" e J a2ue + __ r_ zdz = p -- zdz 
r at2 

The third of equations (4.2) is integrated over the plate thickness to 

give 

2 J hzr dz + l J a'tz6 dz + J ()az dz + J 'trz dz =Jp a uz dz 
ar r ae az r at2 

Using equations (4.1), (4.6) and (4.7), these become 

aMr 1 aM 6 M -M8 __ + _ __r_ + r _ Q 
ar r ae r r 

aQr 1 aQ6 Qr 
--+- -+-+ p ar r a6 r 

h3 = _P_ 
12 

(4.14) 

The right hand sides of the first two of equations (4.14) represent 

the effect of rotary inertia. 

3. Plate-Displacement Equations of Motion 

The plate-stress equations of motion, equations (4.14), may be 

expressed in terms of plate displacements ~r' ~ 6 , and w by using 
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equations (4.13). The result is 

D [(1 )'l + (l+v) ~] 2 -v 1/!e rae 

(4.15) 

2 2 k Gh (V w + n) + p 

where 

(4.16) 

(4.17) 

Equations (4.13) and equations (4.14) or (4.15) form a set of eight 

coupled linear partial differential equations governing the forces, mo-

ments and displacements of plates. 

It may be noted that at various stages of the development there is 

a very close similarity between Mindlin's theory and Reissner's theory 

[77-81] of flexural equilibrium of plates. Of special interest is the 

fact that, as in Reissner's theory, three boundary conditions are to be 

satisfied rather than the two of the classical theory. Also, the constant 

k 2 which depends on the z-dependence of the shear stress through the 

thickness of the plate is taken as n2/12 in Mindlin's theory, a value 

very close to Reissner's 5/6. 
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V. HOMOGENEOUS SOLUTION 

The subsequent investigation of forced motion of plates will 

require a study of free vibrations with homogeneous boundary conditions. 

Moreover, in many applications the frequencies and mode shapes of free 

vibration are important. For this reason we consider solutions of the 

homogeneous differential equations which are obtained by setting p = 0 

in equations (4.15). 

A. Uncoupling the Equations of Motion 

In the absence of applied loads the equations (4.15) can be un-

coupled by making the substitution 

= ~ + aw3 
1/Jr ar rae 

= ~ _ aw3 
1/Je rae ar 

(5 .1) 

Setting p = 0 in equations (4.15) and assuming separable solutions 

of the form 

w(r,e,t) = w(r,e) 

1/Jr(r,e,t) 

1J; 8 (r,e,t) 

1/Jr(r,e) 

= 1J;8 (r,e) 

iwt 
e 

iwt 
e 

iwt e 

one obtains by using equations (5.1) and manipulating the result 

where 

(Ro 4- s-1H -
0 

\72(Q>+w) 

-1 1-v Cl 2 2 s w] - -2- ar ( \1 +o 3 )w 3 = 0 

+ so 4w = o 
0 

h2 
R = 12 (coefficient of rotary inertia) 

D 
S = ---- (coefficient of transverse shear) 

k2Gh 

(5.2) 

(5. 3) 

(5 .4) 
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0 4 
2 

pw h 
=--

0 D 

0 2 2 4 s-1) =- (Ro -
3 1-v o 

Differentiating the first of equations (5.3) with respect to r 

and the second with respect to 6, one obtains 

32 2 4 -1 -1 1-v a2 2 2 
---2 [V ¢ + (Roo- S )¢- S w] + --2-- r363r (V + 83 )w3 
3r 

0 

Dividing the first of equations (5.3) by r, one gets 

Adding the above three equations gives 

(5.5) 

Differentiating the first of equations (5.3) with respect to a 

and the second with respect to r yields 

32 2 (Ro 4_ s-1)~- s-lw] - l_~ [v2~ + (Ro 4_ s-1)~ -1 
r383r [V ¢ + o '~' 2 38 '~' o '~' - S w] 

r 

Dividing the second of equations (5.3) by r, one obtains 

Subtracting the last two from the first of the above three equations, 

we obtain 

2 2 2 
V ('il + o3 )w3 0 (5.6) 
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Eliminating ~ from equations (5.5) with the aid of the third of equa-

tions (5.3), we get 

(5. 7) 

Equation (5.7) is the uncoupled equation in w. This can be written 

as 

(5.8) 

·where 

0 4 
0 

2 
(5. 9) 

Equation (5.8) can be solved in the form 

(5 .10) 

Let ~ = (cr - 1) w, where cr is a constant. (5.11) 

Substituting ~ in equation (5.5) and in the third of equations (5.3) 

yields 

~2 [~2 (cr- l)w + (Ro 4- s-1)(cr 
0 

~2w + ~2 (cr - l)w + So 4w = 0 
0 

- l)w - s-1w] = 0 

(5.12) 

From equations (5.12) one obtains 

~2 [~2w + (Rc0
4- s-1 - {sccr- 1)} -l)w] = o 

~2w +So 4cr-1w = 0 
0 

Equations (5.13) reduce to 

(~2 + a·2)w = 0 

if . o2 = Sc0 
4 cr - 1 = Ro0 

4- s-1 - { s (cr - 1)} -l 

Solving equations (5.15) for cr, one obtains 

(5.13) 

(5 .14) 

(5.15) 
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(5.16) 

Now in view of equations (5.11) and (5.14), the square-bracketed_ 

terms in equations (5.3) vanish, so that the equation governing w3 re

duces to 

(5 .17) 

To sum up, we may write 

(crl - 1) 
awl 

(a - 1) 
aw2 aw3 

tjJr = -+ -+--ar 2 ar rae 
(5.18) 

tJ!e (cr1 - 1) 
aw1 

(a2 - 1) 
aw2 aw3 

= rae + -----rae ar 

and 

ei 2 
0 + ol )wl = 

(V2 2 0 + o2 )w2 = (5.19) 

(V2 2 0 + o3 )w3 = 

It should be noted that w1 and w2 are components of displacement 

perpendicular to the middle plane of the plate, and w3 is a potential 

function which gives rise to the twist about the normal to the plane of 

the plate. 

It may also be observed that, if R = S = 0, w3 and a vanish and 

c2 = ±c 2• The present equations will then reduce to those of the classi
c 

cal theory where the effects of transverse shear and rotary inertia are 

ignored. 

B. Solution of the Uncoupled Equations 

We can obtain a general solution to equations (5.19) without 

reference to boundary conditions, and to render this solution unique we 

must specify and satisfy the boundary conditions of the problem. Assuming 



a separable solution of the form [5] 

,.,1 (r,e) = R(r) e (e) 

the first of equations (5 .19) yields 

( d 2R + _:L_ dR) G+ ~ d 2e + 
dr2 r dr r2 de2 

8 2RG 1 = 0 

This can be separated into two equations 

or 

0 

2 2 
d R + 1:_ dR + (o 2 _ ~)R = O 
dr2 r dr 1 r2 
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(5.20) 

(5. 21) 

(5. 22) 

where the constant m2 has been chosen to obtain a harmonic equation in e. 

Also, because the solution of equation (5.21) must be continuous, imply-

ing that the solution for e = eo must be identical to the solution for 

8 =eo+ 2ni (i = 1,2,3, ••. ) for any value of eo, m must be an integer. 

Equation (5.21) has the solution 

e = c sin me + c2m cos m8, . m lm m = 0,1,2, ••. (5.23) 

Equation (5.22) has the solution 

m = 0,1,2, ..• (5. 24) 

where Jm(o 1r) and Ym(o 1r) are Bessel functions of order m and of the 

first and second kinds respectively. 

as 

Hence the solution for the first of equations (5.19) can be written 

(5.25) 

+ [A2mJmCo 1r) + A4mYm(o 1r)] cos me, m = 0,1,2 •• 



21 

In a similar manner, the solution for the second of equations (5.19) is 

obtained as 

m = 0,1,2, .•• (5.26) 

The solution of equation (5.8) is the sum of solutions (5.25) and (5.26). 

Hence, we have 

m = 0,1,2, ••• (5. 27) 

The third of equations (5.19) yields 

m = 0,1,2, •.• (5. 28) 

Havin3 obtained solutions for w1 , w2 and w3 , ~rand ~6 are deter

mined by equations (5.18). 

For a plate without holes, the solution must be finite at every 

interior point. This condition eliminates Bessel functions of the 

second kind from equations (5.27) and (5.28). Hence for a solid plate 

without holes, the appropriate solutions for w and w3 are [5,39] 

w (r,e) = [A1 J (o1r) + A2 J (o2r)]cos m8 mn mm mm (5.29) 
w3 (r,e) = A3 J (o3r)sin me 

mn m m 

The subscript n represents the mode number and the subscript m repre-

sents the number of diametral nodes. Form = 0, there are no diametral 

nodes and n - 1 circular nodes. For this case, equation (5.29) special-

izes to 



won(r,e) = A1o3o(olr) + A2o3o(o2r) 

w30n(r,6) = 0 

22 

(5.30) 

Equations (5.30) thus represent the solutions of equations (5.19) 

for the case of axisymmetric vibration of a solid circular plate. 

It should be noted that for each frequency w there are t~vo modes, mn 

except when m=O, for which we obtain only one mode [5]. Therefore, 

form* 0, the natural modes are degenerate. Since we are interested 

only in the frequency equations for vibrations with diametral nodes, 

the form of solution given by equations (5.29) is used for a solid 

circular plate in view of equations (5.18). 
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VI. FORMULATION OF BOUNDARY CONDITIONS 

The differential equations together with the associated boundary 

conditions constitute the boundary value problem. The geometry of a 

system is not always able to provide the necessary number of boundary 

conditions. Whenever a strain-energy function exists, it is possible 

to form an expression for the total energy of the system as the sum of 

kinetic and potential energies. For two-dimensional systems the expres-

sion for total energy at time t consists of a line integral and a surface 

integral, the former representing the work done by external forces along 

the boundary and the latter representing the work done over the surface. 

Appropriate initial and boundary conditions which are necessary to en-

sure a unique solution can be obtained from the expression for total 

energy. This method will be followed here to establish the necessary 

initial and boundary conditions for the improved theory of plate vibra-

tions. 

A. Energy Functions 

The kinetic energy per unit volume according to the general linear 

theory of elasticity is 

By using equations (4.7) and integrating over the thickness, the kinetic 

energy per unit area of the plate becomes 

ph3 
24 

The total kinetic energy of the plate at time t is given by 

T fJ {i~3 
(6 .1) 

(6. 2) 
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The strain-energy function W in the three-dimensional theory of 
s 

elasticity is given by 

2W = a s + a 8s 8 + a s + ' 8y 8 + ' y + 'ezYez s r r z z r r rz rz 
(6.3) 

Using equations (4.4) and integrating over the plate thickness, the 

strain energy per unit area of plate becomes 

(6. 4) 

+ Q (''' + OW) + QB (t/1 8 + dW ) r '~'r or roe 

The potential energy in the plate at time t is given by 

V = JJ Wrd8dr (6. 5) 

B. Total Energy and External Work 

The total energy at time tis the sum ofT and V, which may be 

written as 

(6. 6) 

where T0 and v0 are the values of T and V at an initial time t 0 • 

Performing the operation ~t , the first integrand becomes 

(6. 7) 
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Defining plate-strain components 

(6. 8) 

r r 1 
rz' ez = h 

and using equations (4.4), equations (4.13) yield after manipulation 

M =D(rr+vr8) r 

Me = D(vrr + re) 

D 
Mre = - (1-v) r 2 re (6. 9) 

Qr = k2Ghr rz 

Qe = k2Ghrez 

In view of equations (6.9), equation (6.4) can be written as 

2W = D(r +vre) rr + D(vrr + r 8 ) r 8 + D(l-v) r 2 + k 2Gh(r 2 + r 2) r 2 re rz 8z 

Rearranging this, one obtains 

The second integrand in equation (6.6) now becomes 

aw aw arr aw are aw arre aw arrz aw arez 
- = ----+----+ ----+ ----+----at ar at ar8 at ar 8 at ar at ar8 at r r rz z 

From equations (6.10), using equations (6.9), we get 

aw = M 
ar r 

r 

aw ar-= Me 
e 

aw = M 
ar re re 

(6 .10) 

(6.11) 

(6 .12) 



In view of equations (4.4) and (4.7), equations (6.8) yield 

r 
r 

oljir 
=--

or 

oljie 1Jir 
r e = rae + ;-

o1Jir o1Jie 1Jie 
r re = ra e + a;- - ;;---

r = aw + ljJ 
rz or r 
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(6 .13) 

Substituting equations (6.12) and (6.13), one obtains from equa-

tion (6.10) 

(6.14) 

0 0 dW 
+ (Qr 8; + Qe rae) at 

I th f . t 1 £ oW • (6 6) h . . n e sur ace ln egra o at , equatlon • , t e terms conta~nlng 

space derivatives may be integrated by parts to obtain 

(6.15) 
aq oQ Q 

(---.!.. + - 6- + 2) rd6dr 
8r rae r 



where dS = rde 

M 
( - -E& + Q ) rdedr 

r e 

Combining equations (6.7) and (6.15), equation (6.6) becomes 

T + V = 

+ 

If the equations (4.14) of motion are satisfied this reduces to 

T+V= 

27 

(6 .16) 

(6 .17) 

Equations (6.17) shows that the total energy in the plate at time 

t is equal to the sum of the energy at time t 0 and the work done by the 

external forces along the edge and over the surface of the plate during 

the time interval t 1 - t 0 • 

C. Initial and Boundary Conditions 

From equation (6.17) the appropriate initial and boundary condi-

tions for the system of differential equations of the improved theory 

of plate vibration can be deduced. These are: (1) Any combination 

which contains one member of each of the three pairs of terms in the 

parentheses under the line integral in equation (6.17) must be specified 
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along the edges of the plate. (2) Either p or w and the initial values 

of $r' $6 and w and their time derivatives must be specified on the 

surface of the plate. 

It is the specification of the above quantities that makes the 

solution of the differential equations of the system unique. For homo-

geneous boundary conditions, 

each of the pairs of terms M 
r 

at the boundary. 

equation (6.17) shows that one member of 
o$r d$6 aw 
-a;- , Mr6 at and Qr at must vanish 

A discussion of boundary conditions for classical and Mindlin's 

theories of plate vibration is given in appendix C. A variational formu-

lation of the plate vibration problem is presented in appendix D. 
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VII. FORCED MOTION SOLUTION 

Using an improved normal-mode solution suggested by Williams, a 

formal solution is presented here for the response of a circular plate 

under axisymmetric, but otherwise arbitrarily distributed, time-dependent 

transverse loads and a set of very general stationary or time-dependent 

boundary conditions. 

A. Williams-Type Normal-Mode Solution 

In the conventional normal-mode solution for the response of plates 

to transient loads, the response is expanded in terms of a series of 

normal modes of the plate. The coefficients of the expansion (the gen-

eralized coordinates) are determined from the governing differential 

equations and the associated boundary and initial conditions. Williams 

type modal solutions [7] differ from ordinary normal-mode solutions by 

virtue of the isolation of that part of the response which may be ob-

tained in closed-form by a process of direct integration - the so-called 

"static" part of the response. Only the remaining "dynamic" part of the 

response is expanded in series form. 

The advantage of the Williams method over the conventional modal 

solution is its ability to obtain, for many loading conditions, a more 

accurate result with the same number of terms in the series [8,9]. In 

the ordinary normal-mode solution, the generalized coordinates are deter-

mined from the equation 

•• 2 ( ) q. + n. q. = !P R,T)W. (R RdR 
~ ~ ~ ~ 

(7 .1) 

In the Williams method, the corresponding equation is given by equa-

tions (7.22) and (7.24). The presence of n. 2 in the denominators of the 
~ 

two terms in equation (7.24) manifests the more rapid convergence of 
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the Williams type solution as compared with that of the ordinary modal 

analysis. 

The Williams method is particularly advantageous where the response 

function is discontinuous. The discontinuity is contained exactly in 

the separated static part of the response and the series is only re-

quired to produce a continuous remainder. 

In the Williams method, the isolated part of the response is called 

-static because significant parts of inertia forces are ignored in its 

determination. In general, however, the static solution of a particular 

problem is time-dependent by virtue of the time-dependence of the applied 

load, and of the nonhomogeneous time-dependent boundary conditions, if 

such are imposed. In the case of plates with a fixed point of reference, 

such as clamped or supported plates, all inertia forces are ignored in 

the determination of the static part of the solution. For plates with 

rigid-body freedoms, however, the inertia forces due to the rigid body 

motion must be taken into account. 

It may be noted that the Williams method is directly applicable to 

the solution of problems with nonhomogeneous boundary conditions. Such 

problems require the separation of the solution into two parts, one 

satisfying the time-dependent boundary conditions, and the other capable 

of being expanded in terms of time-dependent functions such as the 

natural modes of the plate. In the Williams method, this separation is 

already made and time-dependent boundary displacements or forces are 

simply introduced into the boundary conditions for the static solution 

or into the equations for rigid-body displacements [44}. 

B. Basic Equations in Nondimensional Form 

For the case of axisymmetric motions, the plate-displacement 



I 

I 

equations of motion (4.15) reduce to 

In the expanded form these become 

3 32 ''' o''' '· 2 3 32''' Eh '~' r 1 '~' r 1P r k Eh 3w ph '~' r 
2 ( "r2 + -;; ar - r2) - "ITl+v) (t/Jr + a-;;) = 12 -:--t2 

12(1-v ) o o 

2 
h 3 w p-

at2 
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(7. 2) 

(7. 3) 

The following dimensionless quantities are now introduced for ease 

of computation and more generality of the results 

Dimensional To convert to dimensionless Dimensionless 
Quantity form divide by Quantity 

r a R 

w a w 

t/J 
r ' 1)!8 - tjJ ' 1/Je r 

t J¥1-a T 

M, M ' M Eh3 
Mr, Me, Mre 2 r e re 12a(l-v ) 

Qr' Qe 
Eh 

Qr' Qe 2 . 
(1-v ) 

Eh p p 
2 

a(l-v ) 

w ~ n 
a 2 

p (1-v ) 

.b a s 
c a y 
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Using the above conversion factors in equations (7 .3) and manipu-

lating the results, one obtains 

where 

K2 ~ ~w ~2w 
R ~R [R(i}Jr + ~R)] + P(R,T) :::: :T2 

2 
K2 = k (1-v) 

2 

2 h2 
a = 

12a2 

The plate-stress displacement equations (4.13) for the case of 

axial symmetry reduce to the following nondimensional equations: 

Q = K2 C~ + aw) 
r r oR 

(7.5) 

(7. 6) 

Equations (7.4) and (7.6) are the nondimensional equations of the 

improved theory of plate vibration. 

C. Formulation of the Dynamic Response Problem 

Within the framework of the theory characterized by equations 

(7.4) and (7.6), a properly posed dynamic response problem may be defined 

by specifying the following: 

1. Time-dependent load, P = P(R,T) 

2. Boundary conditions; for an annular plate these are 

either W(S,T) or Qr (S, T) = f 1 (T) 

either 1/Jr(S,T) or M (!3, T) = f 2 (T) r (7. 7) 
either W(l,T) or Q (l,T) = f 3 (T) r 
either 1/J (l,T) or M (1, T) = f4(T) r r 
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Initial conditions: 

W(R,O) = w0 (R) 

W(R,O) w0 (R) 

1jJ (R,O) = 1/Jro(R) r 

~ (R,O) = 1/Jro(R) r 

It is required to find the displacement components W and 1jJ in 
r 

the area bounded by the circular boundary curves. 

D. Orthogonality Relations of the Eigenfunctions 

(7.8) 

Consider the solution of the homogeneous differential equations 

which are obtained by setting P = 0 in equations (7.4) subject to the 

boundary conditions that at R = B and R = 1, one member of each of the 

products WQ and 1jJ M vanishes. 
r r r 

Assume a separable solution of the form 

W(R,T) 
(7. 9) 

Substituting this in equations (7.4) and (7.6), one gets 

a 1 a K2 aw · 2 
aR [R 3R (Rlj;ri)] - a2 (1/Jri + 3R1

) + Qi 1/Jri 0 

Kz a aw. 2 
R 3R [R(l/Jri + 3R1

)] + ni wi = 0 

(7 .10) 

(7.11) 

In view of equations (7.11), equations (7.10) become 
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2 
Q. lJ; . 
~ r~ 

Hultiply the first of equations (7 .12) by W. and the second by 
J 

(7.12) 

2 
a lj;. and integrate the products over the surface of the plate. This 

J 

process yields (the subscript r on lJ; is deleted for convenience) 

2 
Q. W.W.RdR 

J.. ~ J 

2 
Q. lJ;.lJ;.RdR 
~ ~ J 

=-

= -

( 1 aR (RQ . ) W. dR J s a r~ J 

1(3
1 1 2 R .L [-..a_ (RlJ;.)] a 1J; .dR 

aR R aR ~ J 

+ ( l Q ·lJl .RdR 
) (3 r~ J 

After integration by parts the above equations become 

2 f 1 Q • W. 1-J. RdR 
~ (3 ~ J 

= -

2 21 1 a Q. lJ;.lJ;.RdR 
~ (3 ~ J 

= -

For another mode j, a similar set of equations are obtained by 

interchanging the subscripts i and j in the above equations. The 

result is 

second relationship from the first relationship we obtain 

(7.13) 

(7 .14) 
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(7.15) 

Now in view of equations (7.11) and the condition that at R = S 

and R = 1, one member of each of the products WQ and ljJH vanishes, the r r 

right hand side of equation (7.15) vanishes. Hence, one obtains 

2 2 J 1 2 (n. - n. ) (W.W. +a ljlilji.)RdR = 0 
l. J 6 l.J J 

Thus the pertinent orthogonality relation for the principal modes 

of free vibration is 

1(31 2 
(W.W. +a ljl.lji.)RdR = O, 

l.J l.J 
(7.16) 

By selecting a normalization condition, unique expressions for the 

mode shapes are obtained. The following mode normalization condition 

is used for the subsequent solution of the forced motion problem [8]. 

(7.17) 

E. Response to Transverse Load, P = P(R,T) 

Assume the response in the form 

W(R,T) = W (R,T) +. 2 W.(R)q.(T) 
s i=l l. l. 

00 (7 .18) 

where 

qi is the general~zed coordinate 

Ws(R,T) and ljls(R,T) are the static solutions obtained by solving 

equations (7.4) with inertial terms equal to zero: 
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K2 a aH 
R aR [ R C tJ; s + aR s) J + P (R 'T) ;::; 0 

(7.19) 

Since the static solutions must satisfy the boundary conditions 

(7. 7)' the boundary conditions for the eigenfunctions reduce to 

either W. ( S) = 0 or Q . ( S) = 0 
~ r~ 

either tJ;. ( S) = 0 or M . ( S) = 0 
~ r~ 

(7. 20) 
either W. (1) = 0 or Q .(1) 0 

~ r~ 

either tJ;. (1) = 0 or M . (1) = 0 
~ r~ 

Substituting equations (7.18) into equations (7.4), one obtains 

K2 a aw 
-- [R(1/J +~)] + P(R,T) 
R oR s oR 

K2 0 ClLW.q. a2w 2 a IWiqi 
+ R oR [R( a~ ~ + i:1f;. q.) ] = __ s_ + 

8T2 ~ ~ ClT2 

Using equations (7.10) and (7.19), the above equations reduce to 

00 

00 

I w. (q. + n. zq.) 
. 1 ~ ~ ~ ~ 
~= 

.. 
- H 

s 

(7.21) 

2 Hu1tiplying the first of equation (7.21) by a. 1);. and the second 
J 

by H., adding the result and integrating over the surface of the plate, 
J 

one obtains 

00 

(q ... + 2 ) ( 2 ) D. q. W.W. + a. 1);.1);. RdR 
~ ~ J. ~J ~J 

(W ~L + a.2 ~ 1J;.)RdR 
s J s J I 

i=l 
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By applying the orthogonality relation (7.16) and the normalization 

condition (7.17), the above equation reduces to 

•• 2 
q. + n. q. 1 1 1 =- J 1 (W W. + a 2; ~.)RdR =- Pi(T) 

B s 1 s 1 
(7. 22) 

where 

P. (T) =fa 1 
(W W. + a 2~ ~.)RdR 

1 1-' s 1 s 1 
(7.23) 

Substituting for W. and~- from equations (7.12), integrating by 
1 1 

parts and using equations (7.11) and (7.19), we obtain 

JW W.RdR =- _1_2 ]w ~R (RQ .)dR 
s 1 Q. s o rJ.. 

J.. 

R 1 1 J aws 
=--2 WQ.] +-2 RQ.~R dR n. s r1 s n. rl 0 

J.. J.. 

J a2~s~iRdR =- J :~2 ~s ~R [~ ;R (R~i)] RdR 

Therefore, we have 

+-1-
Q 2 

i 

1 

2 
= a R [M ,,, _ M ,, ] 1 

2 rso/i rio/s S n. 
1 

- _1_2 J RQ ~ . dR - _!_2 J RQ .l/J dR n. rs 1 n. r1 s 
1 J.. 

J aw 
(t)J Q . - t/J. Q + Q . "'R8 )RdR s r1 1 rs r1 o 
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The above equation can be written as 

where 

+ n 12 JS 1 P(R,T) WiRdR 

i 

M rs 

~s 

The form of P.(T) as given by equation (7.24) is particularly 
]. 

cr. 2l~) 

(7.25) 

useful for solving problems with time-dependent boundary conditions. 

Initial Conditions for equation (7.22): 

In view of equations (7.8) and (7.18) 
()() 

w0 (R) = w (R,O) + I w.(R)q.(O) 
s i=l ]. ]. 

00 
(7.26) 

w0 (R) = w (R,O) + I w.(R)qi(o) 
s i=l ]. 

Multiplying the first of equations (7.26)by W. and the second by 
J 

a 2w., adding the products so obtained and integrating over the surface 
J 

of the plate, we obtain 

Applying equations (7.16), (7.17) and (7.23), the above equation 

yields 
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(7. 27) 

A similar process yields 

(7.28) 

The solution of equation (7.22) is [6] 

q, (0) 
q1.(T) = q.(O)cosn.T + 1 sinn.T 

1. 1. n. 1. 
1. 

--1 JT .. P.(T)sinn.(T-T)dT n o 1. 1. 

i 

(7.29) 

Equations (7.27), (7.28) and (7.29), together with the solutions 

of equations (7.10) and (7.19), constitute the solution of the forced 

motion problem. 
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VIII. APPLICATIONS OF THE SOLUTIONS 

Using the homogeneous solution developed in Chapter V, the natural 

frequencies and corresponding mode shapes of solid circular plates with 

clamped, simply supported and free edges are determined. Axisymmetric 

and one diametral node free vibrations of an annular plate rigidly 

mounted on a shaft are also investigated. 

Using the forced motion solution developed in Chapter VII, the res

ponse of a clamped plate and a simply supported plate to a rapidly 

applied transverse load is investigated under three different load dis

tributions; namely, load distributed uniformly over a circular area, 

load distributed uniformly over a circle, and load concentrated at the 

center of the plate. The center deflections and bending moments at 

critical sections are determined in each case as a function of time and 

compared \-lith the results obtained by using the classical theory. The 

behaviour of a plate with an elastically built-in edge is intermediate 

between that of the two limiting cases of simply supported edges and 

clamped edges and is not considered here as a separate case. 

To illustrate the generality of the forced motion solution, the 

response of a circular disk rigidly mounted on a shaft with a time

dependent load at the outer edge is also considered in detail. 

The frequency equations, the eigenfunctions, the static solutions, 

and the dynamic solutions for the different cases mentioned above will 

now be given, 

A. Homogeneous Solution in Nondimensional Form 

Equations (5.18) and (5.19) can be written in nondimensional form 

as follows: 
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w = w1 + w2 

ljlr (a1-l) 
aw1 

(a 2-1) 
aw2 aw3 

= '3"R + 3R +Rae (8 .1) 

(a1-l) 
aw1 aw2 _ aw3 

1Jle = Rae + (a 2-l) Rae 3R 

and 

('i/2 + 8 2) wl = 0 
1 

('i/2 + 8 2) w2 = 0 2 (8. 2) 

('i/2 + 8 3) w3 = 0 
3 

where 

1 + - + (1 - -) + --J 
{

ool222} -- n22 [ 1 } 1 2 4 ' 
K2 - K2 n2~2 

(8 .3) 

It is observed from equations (8.3) that 

n > 0 while o22 ~ 0 according as n ~ n, where 

2 o1 > 0 for all values of 

- K n = - is the frequency of 
~ 

the first thickness-shear mode of an infinite plate [see equation (B.l7)]. 

2 2 > The same condition holds for o3 also, so that o3 < 0 according as 

n :: K 
< a. • 

> K Hence o2 and o3 will be real or imaginary according as n < ~ • 

The solutions of equations (8.2) will depend on whether o2 and o3 are 

real or imaginary. 

K For n > - , the appropriate solutions of equations (8.2) are 
~ 
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(8 .4) 

For 0 < Q < K the solutions are 
a. 

w = lmn [Alm3m (ol R) + BlmYm(olR)] Cos ma 

- -w = 2mn [A2mim(o2R) + B2mKm(o2R)] Cos ma (8. 5) 

w = 3mn [A3mim(S3R) + B3mKm(83R)] Sin me 

where I and K are the modified Bessel Functions of the first and second 
m m 

kinds respectively and of order m and 

when o2 is imaginary 

-o3 = jo3 J , when o3 is imaginary 

B. Frequency Equations and Mode Shapes 

1. Clamped Plate 

a. Axisymmetric Vibration 

The appropriate boundary conditions for a clamped plate are 

W(l,T) = 0 

!JJ (l,T) = 0 
r 

(8 .6) 

(8. 7) 

Hence the boundary conditions for the eigenfunctions are (the subscripts 

i which denote mode numbers are omitted for convenience) 

W(l) = 0 

lJJ (1) = 0 
r 

(8. 8) 

The solutions of equations (8.2) for axisymmetric vibrations are, 

for Q > K 
a. 



and for 0 < Q < K 
a. 

- -
~r(R) = A1 (l-cr1)o1J 1 (o1R) - A2(1-cr2)o2r1 (o2R) 
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(8. 9) 

(8 .10) 

Applying the boundary conditions (8.8) on equations (8.9) and (8.10), 

the frequency determinants are obtained as given below: 

For Q > K 
a. 

[ 
3 o<81) 

(1-crl) olJl (ol) 

K For 0 < Q < -
a. 

3o<8z) 

(1-crz) o2J1 (82) ] {::}- 0 
(8.11) 

(8.12) 

The determinant of the coefficient matrix is the frequency determi-

nant. The frequency determinant equated to zero gives the frequency 

equation which can be solved for the frequencies Q., i = 1,2,3, ••••• 
~ 

Unique solutions for A1 and A2: 

K From the first of equations (8.11) one obtains, for Q > -
a 

In view of equations (7.17), equations (8.9) and (8.13) yield 

=A 2 
1 

(8 .13) 
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On integration and rearrangement, the above equation yields 

12 
Al ~ --~-----------------------------------------------

+ 4 
0 2_0 2 
1 2 

(8.14) 

Following a similar procedure, by using equations (8.10) and (7.17), 

K one obtains for 0 < n < -
a. 

(8.15) 

and 

12 
A = --~------------------------------------------------1 

(8.16) 
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A1 and A2 uniquely determine the mode shapes given by equations 

(8.9) and (8.10). The positive square roots have been chosen in equations 

(8.14) and (8.15) since only the squares and products of A1 and A2 will 

appear in the forced motion problem to be considered later in this 

chapter. 

b. Vibration with One Diametral Node 

This case is considered to illustrate the coupling between thickness-

twist and flexural modes of vibration. The appropriate boundary condi-

tions for this case are 

W(l,T) = 0 

1jJ (1, T) 
r 

0 

1);8 (1, T) = 0 

Hence the boundary conditions for the eigenfunctions are 

W(l) = 0 

1jJ (1) = 0 
r 

(8 .17) 

(8.18) 

In view of the modes of motion of interest, the appropriate solutions 

of equations (8.2) are, for n > K 
CL 

wl AlJl (olR) cos 8 

w2 A2Jl (o2R) cos 8 (8.19) 

W3 = A3J 1 ( cS3R) sin 8 

Substituting these in equations (8.1), one obtains 
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On applying the boundary conditions (8.18), equations (8.19) and (8.20) 

yield 

K For 0 < Q < - a similar process yields 
<X' 

- -

0 

(8. 21) 

0 

0 

(cr 2-l)[o 2r 0 ca 2) = 0 

- - -
(cr 2-l)I1 (o 2) [o3r0 Co3) - I 1 (o 3)J 

(8. 22) 

A necessary and sufficient condition for the existence of a non-

trivial solution for the mode coefficients A1 , A2 and A3 is provided by 

the vanishing of the determinant of the coefficient matrix in (8.21) and 

(8.22). This results in a transcendental equation which can be solved 

for the frequencies via digital computer. 



2. Simply Supported Plate: Axisymmetric Vibration 

The appropriate boundary conditions for the mode shapes are 

W(l) = 0 

M (1) = 0 
r 

where M , the modal bending moment, is 
r 

K For n > - we obtain a' 

atjJr \) 
M =-+-tjJ 

r aR R r 
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(8. 23) 

(8.24) 

Applying the boundary conditions (8.23) to equations (8.9) and (8.24), 

K one obtains' for n > -
a 

For 0 < n < K, the corresponding equations are 
a 

= 0 (8.25) 

(8. 26) 
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and 

(8.27) 

The frequency equation is obtained by equating the determinant of 

the coefficient matrix to zero. It can be easily verified that the form 

of the unique solutions for A1 and A2 for a simply supported plate is the 

same as that of the solutions for a clamped plate. Hence A1 and A2 are 

given by equations (8.13-8.16) with eigenvalues for a simply supported 

plate. 

3. Free Plate: Axisymmetric Vibration 

For the mode shapes of axisymmetric vibration, the boundary condi-

tions are 

11 (1) 
r 

0 

Q (1) = 0 
r 

>vhere Q , the modal shearing force, is 
r 

K 
For ~ > , we have 

a 

(8.28) 

(8.29) 

(8.30) 

On applying the boundary conditions (8.28), equations (8.24) and 

(8.30) yield 



For 0 < Q < K one has 
a' 

and 

= 0 

= 0 
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(8.31) 

(8.32) 

(8.33) 

The frequency equation is obtained by setting the determinant of 

the coefficient matrix to zero. 

4. Circular Disk Rigidly Mounted on a Shaft 

a. Axisymmetric Vibration 

For this case, the boundary conditions for the eigenfunctions are 

wcs> = o 

~r(s) = o 

M (1) = 0 
r 

Q (1) = 0 
r 

(8.34) 



K The appropriate solutions of equations (8.2) are, for n > -
a. 

For 0 < n K 
<

a.' 
the solutions are 
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(8.35) 

(8.36) 

On applying the boundary conditions (8.34), equations (8.35) yield, 

for n > K 
a. 

where 

All = Jo(ols) 

A12 = Jo<ozS) 

A13 = YO(olS) 

[Aij] 

Al 

A2 
= 0 (8 .37) 

Bl 

B2 



A24 = o2(1-o 2)Y2(o 2S) 

A31 = 
2 

(1-al)[ol Jo(ol) + (v-l)o1J1 (81)] 

A32 = 
2 

(1-a2)[82 JoCoz) + (v-1) o2J1 Co 2)] 

A33 = 
2 (1-a1)[o1 Y0 (o1) + (v-1) o1 Y1 (<\)] 

A34 = 
2 (1-o 2)[o2 Y0 (o2) + (v-1) o2Y1 Co 2) J 

A41 = 01°1Jl (o1) 

A42 = 02°2J1 (o2) 

A43 = 01°1 y1 (o1) 

A44 = 82cr2Y1 (82) 

For 0 < Q < K, equations (8.36) yield 
a 

where 

B12 = IO(o2S) 

. B13 = Yo Co1S) 

B14 = Ko (82s) 

- -B22 =- o2(1-a2)r1 (o 2s) 

[Bij] 

A1 

A2 
= 0 

B1 

B2 

51 

(8.38) 



B23 = o1 (l-a1)Y1 (81S) 

B24 = 82 (1-a 2)K1 (82s) 

2 
B31 = (1-a1)[81 Jo(81) + (v-1)81Jl (81)] 

- 2 - - -
B32 = -(1-a2)[8 2 r0 (8 2) + (v-1)8 2r1 (8 2)J 

2 B33 = (1-a1 )[81 Y0 (81 ) + (v-1)81Y1 (81)] 

- 2 - - -
B34 = -(1-a2)[8 2 K0 (8 2) - (v-1)82K1 (8 2)] 

- -
B44 = 82a2K1 (82) 
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The determinants of the coefficient matrices [A .. ] and [B .. ] equated to 
lJ lJ 

zero give the frequency equations. 

Unique Solutions for A1 , A2 , B1 and B2 : 

Solving for A~, B1 and B2 in terms of A1 from the first, second and 

K 
fourth of equations (8.37), one obtains, for n >-

a 

-81 (l-a1)J1 (81S) o1 (l-a1)Y1 (8 1S) 82(1-a2)Y1 (82!3) 

- 81°1J1 (81) '\a1Yl(o1) 82a2Y1 (82) 

A2 DET A1 

JoCozS) -Jo CarS) Yo Co zS) 

o2Cl-a2)J1 Co 28) -o1 (1-a1)J1 Co1s) 82 (1-a2)Y1 Co2s) 

82°2J1 (82) - 81°1 Jl (81) 02°2 Y1 (82) 
B = 1 DET A1 (8.39) 
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3o<526> Y0 Co1 s> -Jo(61 13 > 

o2 Cl-cr 2)J1 Cc 2S) o1 (1-cr1 )Y1 (o1 S) -c1 (l-cr1 )J1 (o1S) 

02°2Jl (c52) olcrlYl (ol) - 01°131 Col) 

B = 2 DET Al 

where DET is the determinant given by 

Y0 (a 2S) 

o2 (l-cr2)Y1 (a 2s) (8.40) 

For brevity let 

(8. 41) 

For 0 < Q < K, the first, second and fourth of equations (8.38) yield 
a 

-Jo (olS) Y0 (a1 s> K0 c62s> 

- --a1 (1-cr1 )J1 Ca1s) o1 (1-cr1 )Y1 (o1 S) o2 (1-cr2)K1 (a2s) 

- -
- 01°131<01) clcrlYl (ol) o2cr2Kl (82) 

A2 = DETT Al 

r 0 c82e> -Jo (cls> K0 (8213) 

-82 (1-cr2)I1 (5 213) 
--o1 (1-cr1 )J1 Co1 s) o2 (1-cr2)K1 0>2s) 

- - - -
-c52cr2Il Co2) -ol 0 131 (ol) o2cr2Kl(oz) 

B = 1 DETT Al (8 .42) 



-r0 co 2s) 

-82(1-a 2)I1 (82s) 

B = 2 

where DETT is the determinant defined by 

r0 (o 2s> 

DETT = -s2 (1-a2)I1 C52S) 

-82a2Il (82) 

For brevity let 

Y0 (o18) 

o1 (l-a1)Y1 (o1 8) 

-Jo(ols) 

-o1 (1-a1)J1 (o 1 S) 

K0 (8213) 

82 (1-cr2)K1 (5213) 

82cr2Kl(S2) 
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(8 .43) 

(8 .44) 

Applying the normalization condition (7.17) on the modes given by 

equations (8.35), one obtains after integration and necessary manipula

K tion, for Q > -
a 

1 A=-
1/QJ (8 .45) 

where 
2 

- ~[J12(ols)+Jo2Cols)J 

Nl2s2 2 2 
- 2 [Jl (o2s)+Jo (o2S)] 

N/ 2 2 N2 2s2 2 2 
+ --2--[Yl (ol)+Yo Col)] - 2 [Yl (olS)+Yo (olS)l 

N32 2 2 N3 2132 2 2 
+ --2--[Yl (o2)+Yo Coz>l - 2 [Yl (o2S)+Yo Co2S)J 
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+ 
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N2 
+ :2[ 231 (ol)Yl (ol)-Jo(ol)YzCol)-J2(ol)Yo(ol)] 

N2s2 
- - 2-[2J1 Co1s)Y1 Co1s)-J0 Co1B)Y2 Co1s)-J2 Co1S)Y0 Co1s) J} 

2 
2 2 2 Nl 2 

+a 02 (l-cr2) {--2--[Jl (o2)-J0(02)J2(02) 

2 2 2 
Nl f3 2 N3 2 

2 [Jl CozB)-Jo<0zS)JzC8zS)J + --2--[Yl Co2)-YoC8z)Y2Coz) 

N zsz 
3 2 

2 [Y1 (o 2S)-Y0(o2S)Y2(o 2S)] 



K For 0 < Q <- by a similar process, equations (8.36) yield 
a' 

where 

+ 

+ 

57 

(8.46) 
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+ 

+ 

The mode shapes W and ~ are uniquely determined by knowing the 
r 

values of A1 , A2 , B1 and B2 as given by the equations (8.39 - 8.46). 

b. Vibration with One Diametral Node 

It is now fairly well established that fractures which occur in 

turbine disks, and which cannot be attributed to defects in the material 

of the disks or to excessive centrifugal forces, are caused by flexural 

vibrations of these disks [3]. There are various causes which may 
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produce these flexural vibrations, but the most important is that due 

to non-uniform gas pressure. An irregularity in the nozzles may cause 

non-uniform pressure. Assuming that the turbine disk is rotating with 

constant angular velocity w in the field of such a pressure, then for 
r 

a certain point on the rim of the disk, the pressure may vary with the 

angle of rotation of the disk, and this may be represented by a periodic 

function 

Taking only one term in the series, such as a1 sin wrt, large lateral 

vibration of the disk occurs when the frequency w /2n of the force coin-
r 

cides with one of the natural frequencies of the disk. Experiments [ 3 J 
have shown that the axisymmetric type of vibration seldom occurs in 

turbine disks and no disk failure can be attributed to this type of vibra-

tion. Failure is mainly attributed to lateral vibrations with one or more 

diametral nodes. The frequency equation for vibration with one diametral 

node will be derived now and the same procedure can be used for obtaining 

the frequency equations for vibrations with more diametral nodes. 

For a disk rigidly mounted on a shaft, the boundary conditions for 

the mode shapes are 

W(B) 0 

1/Jr(S) = 0 

1/Je (S) = 0 
(8.48) 

M (1) 
r 

= 0 

Mre(l) = 0 

Q (1) r 
= 0 
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The solutions of equations (8.2) for one diametral node vibration 

are, K for n > -
a. 

for 0 < n K <
a. 

W = [A1J 1 (o1R)+A2I 1 (82R)+B1Y1 (o1R)+B2K1 (82R)] cos e 

W3 = [A3I1 (63R)+B3K1 (63R)] sin 6 

The modal bending moments and shearing force are given by 

awr v v awe 
M = (-+-w + R-::;--6) r 3R R r o 

Q = Kz Cw + aw) 
r r 3R 

(8.49) 

(8.50) 

(8.51) 

In view of equations (8.1) and (8.51), equations (8.49) yield, for 

K n >
a. 

(8. 52) 

(8.53) 



62 

(v-1) 2 2v 2 
Mr = {A1 (al-l)[ R ol JO (c1R)+(R2 - R2 - 81 )J 1 (ol R)] 

(v-1) 2 2v 2 
+ A2(cr2-1)[ R c2JO(o2R)+(:z- :2- 82 )J1(o2R)] 

R R 

+A [(l-v)o J (oR)+ (Zv-2)~(o R)] (8.54) 
3 R 3 0 3 R2 -1 3 

(8.55) 

. 1 
+ Azcrz[ 8z3aCozR)- RJl Co2R)l 

1 
+ A3 R31 (o3R) 

(8.56 
1 

+ B1cr1[ 01YaCc1R)- Ryl Cc;lR)] 

1 
+ Bzcrz[ozYo<czR)- RY1 (c2R)] 
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Applying the boundary conditions (8.48) to the above equations, one 

K 
obtains, for n > -

a. 

Al 

A2 

A3 

[Cij] = 0 

Bl 

B2 

B3 

where 

1 
c21 = (ol-l)[olJO(olS) - SJl (olS)] 

1 
c22 = (o2-l)[o2J0(82S) - SJl (ozS)] 

1 
c23 = s·\ Co 3S) 

(8.57) 



1 
(cr1-1) SJ1 (o1S) 

1 
Ca2-1)SJ1 Co2S) 

1 
[o3JO(o3S) - SJ1 (o3S)] 

1 
(cr1-1) S:y1 (o113) 

1 
(cr2-1) S:y1 (o2S) 

2 (cr1-1)[(v-1)o1J 0(o1)+(2-2v-o1 )J1 Co1)] 

2 (cr2-1)[(v-1)o2J0(o2)+(2-2v-o2 )J1(o2)J 

2 c44 = (cr1-1)[(v-1)o1Y0 (o1)+(2-2v-o1 )Y1(o1)] 

2 c45 = (cr2-1)[(v-1)o2Y0(o2)+(2-2v-o2 )Y1(o2)] 

c46 = [(1-v)o3Y0 (o3)+(2v-2)Y1 (o3)] 

c51 = (crl-1)[4Jl(o1)-2o1JO(o1)] 

c52 = (cr2-1)[4Jl (o2)-2o2Jo(o2)1 

2 
c53 = [o3 31 (o3)-4Jl(o3)+2833o<o3)l 

c54 = Ccr1-1)[4Y1 (o1)-2o1Y0Co1)] 

c55 = Ccr 2-1)[4Y1 Co2)-2c2Y0Ca2)J 

2 
cs6 = [c3 Y1 Cc3)-4Yl(o3)+2o3Yo<o3)l 

c63 = 31 Co3) · 

c64 = cr1[o1Yo(o1)-Yl(ol)l 
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For 0 < Q 
K <
a' 

a similar process yields 

where 

Dll = Jl (<\e) 

D12 = 11 (82e) 

Dl4 = Yl Cole) 

Dl5 "" Kl (82 e) 

[D .• ] 
1J 

1 
D21 = Col-l)[olJoCole) - SJl Cole)] 

n22 = (o2-1)[82r0 (82s) - ~I1 C82s)] 

1 -
D23 = s11 (o3S) 

1 
D24 = (ol-l)[olYO(olS) - Syl (olS)] 

- - 1 -n25 = -Co2-l)[a2K0 Co2s) + SK1 Co2s)1 

1 -
D26 = ?1 (o3B) 
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= 0 (8.58) 



1 
(a 1-1)~1 (8 28) 

1 -
(a 2-l)Sil (8 28) 

- - 1 -
D33 = [83Io(83B) - Srl (83B)] 

1 
D34 = (a 1-l) 8 :yl (o18) 

1 -
D35 = Caz-l)SKl (828) 

- - 1 -
D36 = - [o3Ko( 838) + SK1 <838>1 

2 (a1-l)[(v-1)81J 0 (81)+(2-2v-c1 )J1 (81)] 

- - - 2 -(c 2-l)[(v-1)8 210 (c 2)+(2-2v+c 2 )11 (c 2)] 

n43 = [(1-v)8310(83)+(2v-2)I1 (83)] 

2 n44 = (a1-l)[(v-l)o1Y0 (<1_)+(2-2v-o1 )Y1 (<1_)] 

- - - 2 -n45 = ( a2 -1) [ (1-v) o2K0 (8 2)+(2-2v+o2 )Kl ( o2)] 

n46 = [(v-1)63K0 (63)+(2v-2)K1 (83)] 

D 51 = (al-l) [ 4J 1 ( 81)-2 ol J 0 ( 81) ] 

(a2-1)[411 (62)-28210(82)] 

-2 - - - -[-03 11 (83)-411 Co3)+2o310 Co3)J 

Ca2-1)[4K1 c82)+282K0 C82)J 

-2 - - - -[-c3 K1 (83)-4K1 Co3)-2o3K0 Cc3)J 

D61 = al(olJO(ol)-Jl (ol)] 

D62 = a2[8210 (82)-11 (82)] 

D63 = 11 (83) 
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D65 = -cr2[~2K0(~2) + Kl(~2)] 

D66 = Kl (83) 
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The determinants of the coefficient matrices [C .. ] and [D .. ] equated 
~J ~J 

to zero give the frequency equations. 

C. Forced Motion under a Step Function Load (see figure 2la) 

Case 1. Clamped Plate with Load Uniformly Distributed over a 

Circular Area (see figure 2) 

The loading for this case is given by 

P(R,T) = -P[U(R)-U(R-y)] U(T) (8.59) 

where 

P is the load intensity 

U(R), U(R-y) and U(T) are Unit Step Functions (see list of symbols) 

Static Solution: 

The governing equations are equations (7.19) with load intensity 

of equation (8.59). Thus we have 

K2 a aw 
[R('J' + _s)] R oR '~"s aR 

The boundary conditions are 

W (l,T) = 0 
s 

~ (l,T) = 0 s 

P[U(R)-U(R-y)] U(T) 

Eliminating W from equations (8.60), one obtains, forT> 0 
s 

(8.60) 

(8. 61) 
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2 
JL _Q_ {R _Q_[l__a (Rl); ) ] } = PU(R) - PU(R-y) 
R 3R 3R R 3R s 

(8.62) 

Successive integration of the above yields 

2 P 3 P 4 PR3 P 2 
a '''s = - R U (R) + [- L - - + - Y RlogR 

'~' 16 16 R 16 4 

p 2 
- Ll y R1ogy] U(R-y) (8.63) 

Since W and 1); must be finite at R = 0, one has 
s s 

Applying the boundary conditions, equation (8.63) yields 

p 2 p 4 
Cz = 2 Y logy - 8 Y (8.64) 

From the first of equations (8.60) one gets 

aw 
2 a [ 1 3 (R ) ] K2 ( + ~) 

a aR R 3R tJ;s = tJ;s aR (8.65) 

In view of equations (8.63) and (8.64), one obtains from the above equa-

tion 

p 3 p 4 p 2 p 2-
+ J:6 R - 16 ~ + 4 y Rlogy - 4 y RlogR) 

U (R-y) - ~ Ry 21ogy + 1p6 Ry 4 

Integrating the above equation, we obtain 
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p 2 p 2 
+ 2 y logR - 2 y logy)U(R-y) 

P4 P 4 P 4 P 4 
+ (64 R - 64 · Y + 16 Y logy - 16 Y logR (8.66) 

P22 P22 P 22 P 4 - S y R logR + B y R logy + 16 Y R - 16 Y ) 

Applying the boundary condition W (1) = 0, the above equation yields 
s 

a 2 P 2 P 2 3 4 
c 4 = -(- y logy - - y ) + 64 Py 

K2 2 4 

p 4 p 2 
- 16 Y logy - 16 y 

Hence the required static solutions are, for 0 < R < y 

tJ;s 1 R3 Rl R 2 (-- + - ogy - - y ) 
PO= rra2 16y2 4 16 

1 R4 R2 R2 2 3 2 + -(- -- - -logy + -32 y + 64 Y 
2 62 2 8 rra y 

For R > y 

tJ;s 1 _1_ R R 2 
-p = -2 (16R + -4 logR - 16 y ) 

0 rra 

2 
.x._logy _ .1_) 
16 16 

(8.67) 

(8. 68) 

(8.69) 



where the total load, P0 , is 

2 
p 0 = TIY p 
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(8. 70) 

Now in view of equations (7.25), equations (8.68) and (8.69) yield, 

for 0 < R < y 

M 
rs 1 (3+v R2 + 1+v 1 -- - - -- -- ogy 

Po - Tia2 16y2 4 

(8. 71) 

For R > y, we obtain 

M 2 
rs 1 (v-1 L + (l+v) logR _ (l+v)Y2 + 1) 

P 0 = 1ra2 16 R2 4 16 4 

(8. 72) 

Dynamic Solution: 

Initial conditions are assumed as 
. 

W(R,O) = W(R,O) = 0 
. (8. 73) 

~(R,O) = ~(R,O) = 0 

In view of equations (8.59), (8.61), (8.70) and (8.8), equation 

(7. 24) yields 

p. (T) 
PO U(T) r Wi(R)RdR = 2 2 ~ 
'TTY Qi 

(8.74) 

0 

Consequently, one obtains 

p. (0) 
Po r w1 (R)RdR = -

~ 2 2 
1ry n. 

~ 

(8. 75) 

0 
. . . 
pi (0) = p. (0) = 0 

~ 
(8. 76) 
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Using equations (8.73) and (8.76), we obtain from equations (7.27) 

and (7.28) 

q. (0) -P. (0) 
Po r Wi(R)RdR = = 1 1 2 2 

TIY Q, (8. 77) 1 0 . . 
qi(O) = -P. (0) = 0 1 

Substituting equations (8.74) and (8.77) into equation (7.29) one gets 

(8. 78) 

In view of equations (8.9) and (8.10), equation (8.78) yields on integra

K tion, for 0 < n < -

K and for n > -
a 

a 

cosQ.T 
1 

2 
rry&t • 

1 

qi (T) _ [ J 1 (<\ y) J 1 Co 2 y) J cosni T 
P0 - Al o1 + A2 ~ 2 

u2 nyni 

where A1 and A2 are given by equations (8.13-8.16). 

(8.79) 

(8.80) 

The complete solution to the forced motion problem is now given by 

co 

W(R,T) = W8 (R,T)_ +I 
i=1 

co 

W. (R)q. (T) 
1 1 

t/!(R,T) ~ (R,T) + I ~i (R)q.(T) 
s i=l 1 

co 

M (R,T) = M (R,T) + I M .(R)q.(T) r rs . 1 r1 1. 1= 

co 

Q (R,T) = Q (R,T) + I Q .(R)q.(T) 
r rs i=1 r1 1 

(8.81) 

The values of W., ~ ., M. and Q. are given by equations (8.9), 1 r1 r1 r1 

(8.24) and (8.30) for n > K, and by equations (8.10), (8.26) and (8.32) 
K a 

for 0 < n < ;- • 
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Case 2. Clamped Plate with Load Uniformly Distributed over a Circle 

(see figure 3) 

The loading for this case is given by 

P(R,T) = -Po(R-y)U(T) (8.82) 

where c(R-y) is a Dirac Delta Function (see list of symbols) and P is the 

load per unit arc length. 

The boundary conditions are the same as those for case 1. Initial 

conditions are also assumed to be the same as those of case 1. 

Static Solution: 

The governing equations are 

a 1 a K2 aws 
<lR [R <lR (Rl}Js)] - Z (l}Js + aR) = O 

ct 

K2 a aw 
~ aR [R(l}Js + ()Rs)] = Po(R-y)U(T) 

Eliminating W , equation (8.83) yields, for T > 0 
s 

Integrating equation (8.84) successively, we get 

p p p 3 p 
= (- RylogR-- Ry + _1._-- Rylogy)U.(R-y) 2 4 4 R 2 

R R R C3 
+ cl (2 logR - 4) + c2 2 + ~ 

Since W and ljJ must be finite at R = 0, we have 
s s 

c = c = 0 1 3 

Applying the boundary condition¢ (1) = 0, yields s 

p p 3 
c 2 = 2 y - 2 y + PYlogy 

From the first of equations (8.83), one obtains 

(8.83) 

(8.84) 

(8.85) 

(8.86) 



In view of equations (8.85) and (8.86), the above yields 

2 aws 
a. -- = aR 

a.2 p p p p p 3 
(- E:1-- RylogR +- Rylogy +- Ry-- L)U(R-Y) 
K2 R 2 . 2 4 4 R 

p p p 3 - z Rylogy - 4 Ry + 4 Ry 

Integrating the above, we get 

2 p 2 
= [ ~ (PylogR - Pylogy) - 4 R ylogR 

K 

p 2 p 2 p 3 p 3 p 3 
+ 4 R ylogy + 4 R y - 4 y + 4 y logy - 4 y logR] U(R-y) 

- p R2ylogy - p R2y+ p R2y3 + C 
4 8 8 4 

Applying the boundary condition W (1) = 0, the above yields 
s 

a.2 p 3 p 3 p c4 = -- Pylogy - - y logy + - y - - y 
K2 4 8 8 

Using equation (7.25), equations (8.85-8.88) yield, for 0 < R < y 

~s 1 R R 2 R -- = - (- logy - - y + -8) 
P0 ~a.2 4 8 

W 2 R2 R2 2 ~ = _L !.Q.gx + - 1- (- L logy ---logy+- y 
PO K2 2 ~o:2 8 8 16 

R2 2 1 
- 16 +-IT- 16) 

Mrs = _1_ { (l+v)logy + (l+v) 
P0 4~o:2 2 

where the total load, P0 , is 

Po = 21fyP 

73 

(8 .87) 

(8.88) 

(8. 89) 



For R > y , one has 

ljJs 1 R 1._ R 2 
- = -2 (-4 logR + 8R - -8 y ) 
Po rra. 

W 1 1 1 R2 2 R2 2 ~ = - ~ + - [- -8 logR - L8 logR + 16 y 
PO K2 2 2 rr rra. 

Mrs = ___ 1_ [(l+v) logR + (v-1) y2 _ (l+v) y2 + l] 
p 0 4rra.2 2R2 2 

Dynamic Solution: 

74 

(8.90) 

In view of equations (8.61), (8.70), (8.82) and (8.8), equation 

(7. 24) yields 

p. (T) 
Po r W. (R) ReS (R-y) dR = -

]_ 2 ]_ 
2nyQ. 

]_ 

0 
This becomes on integration 

p. (T) 
P Owi (y) 

=-
]_ 2 

2rrQ. 
]_ 

By a process similar to that used in case 1, one obtains 

K for 0 < Q < -
a. 

q. (0) = 
1 

(8.91) 

(8. 92) 
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q. (T) cosQ.T 
1 

[AlJO(oly)+A2I0(82y)] 
1. 

= 
Po 2 27rQ. 

(8.93) 

1 

and for Q K 
>-

a 

q. (T) cos Q. T 
1 

[Al J 0 ( 01 y )+A2J 0 ( 02y)] 
1 

= 
Po 2 2'ITQ. 

(8.94) 

). 

The complete solution to the forced motion problem is now given by 

equations (8.81). It may be no ted that the values of W., ljJ • , M . and 
J. rJ. rl. 

Q . are the same as for case l, since they relate to homogeneous solution. 
r1 

Case 3. Clamped Plate with Concentrated Load at the Center (see figure 4) 

In this case the load can be expressed as 

p 

P(R,T) = - 2~R o(R)U(T) (8.95) 

where 

o(R) is a Dirac Delta Function. 

The boundary conditions and the initial conditions are the same as 

those for case 1. 

Static Solution: 

The static solutions for this case are the limiting cases of the 

solutions for case 1 or case 2 as y tends to zero. Hence the required 

solutions can be written as 

~ = RlogR 
Po 47ra2 

w 2 
2. = - 1 - [.l(R2 -1) + (~ - R2) logR] 
PO 2 2 K2 81ra 

M . 
rs 1 

-p- = --2 [l+(l+v) logR] 
0 4'IT<Y. 

(8.96) 
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It should be noted that the static solutions W M and Q become s' rs rs 

infinite at R = 0 and this is consistent with the remarks given by 

Kalnins [4~. For the classical theory the static solutions are finite 

at R = 0. 

Dynamic Solution: 

In view of equations (8.8) and (8.61), equation (7.24) becomes 

PO 2 Jl Wi(R)8(R)dR 
2Tirli 

p. (T) = 
1 

0 
This yields on integration 

p. (T) 
1 

= -

Now, following the same procedure as used in case 1, one obtains 

and 

q. (0) = 
1 

q. (0) = 0 
1 

qi (T) 

Po = 

(8.97) 

(8.98) 

(8.99) 

(8.100) 

It should be noted here that the values of A1 and A2 are different 

K depending on whether Q > - or Q 
CG 

K 
<-. 

a. 

Case 4. Simply Supported Plate with Load Uniformly Distributed over a 

Circular Area (see figure 6) 

For this case the load is given by equation (8.59). For the static 



solution the boundary conditions are 

W (1, T) = 0 s 

M (l,T) = 0 rs 

where M , the static bending moment, is rs 

M rs 

Since c1 = c3 = 0 for a solid plate, from equation (8.63) we obtain 

~2M = (3+v) PR2U(R) +[-
rs 16 

(3+v) PR2 _ (1-v) Py4 
16 16 R2 

(l+V) 2 P 2 
+ 4 PY logR + 4 y 

77 

(8.101) 

(8.102) 

Applying the boundary conditions on equations (8.66) and (8.102) yields 

1-V P 4 P 2 Pi 
c2 = l+v 8 y + 2 y logy - 2(l+v) (8.103) 

iP2 P2 P 4 P 2 
C4 = K2 [2 y logy - 4 y ] - 16 y logy - 16 y 

(8.:i.04) 

[ 1-v 5 J 4 Pi 
+ 32 (l+v) + 64 Py - 8 (l+v) 

From equations (7.25), (8.63), (8.66) and (8.102), the static solutions 

can be written as follows: 

For 0 < R < Y 



R2 1 2 
+ --- L logy 8(l+v) 16 16 

2 2 (1-v)y 2.x_ 
+ 32(l+v) + 64 ] 

For R > y 

2 2 
--::--:-'1:-----:- _ 1-v B:...__y_ 
8(l+v) l+v 32 

l/J s __ 1_ .l 1-v R 2 
P - 2 [4R + RlogR + l+v 4 y 

R 
(l+v) ] 

0 4na. 

W R2 2 
_J?_ = _1_ logR + _1_ [- - logR - - logR 
PO K2 2 2 8 16 

7f Tia. 

2 2 
(1-v)y (R -l)J 

32(1+v) 
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(8.105) 

(8.106) 

The solutions for q.(T) are given by equations (8.79) and (8.80) 
1 

with eigenvalues for a simply supported plate. 

Case 5. Simply Supported Plate with Load Uniformly Distributed over a 

Circle (see figure 7) 

The loading for this case is given by equation (8.82). For the static 

solution, the boundary conditions are the same as those for case 4. 
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Using equations (8.85) and (8.87), and the boundary conditions 

(8.101), one obtains for this case 

2 _ [ 1 +v p 1 R ( 1 +v) p 1 + 1-v p 
a.~ - - y og - y ogy - 4 y rs 2 2 

(8.107) 

1-v P 1-v P 3 
C2 = Py1ogy - l+v 2 y + 1+v 2 y (8.108) 

a.2 p 3 p p 3 c4 = -- Py1ogy - - y logy - - y + - y 
K2 4 4 4 

(8.109) 

+ 1-v P 3 1-v P 
1 +v 8 Y - 1 +v 8 Y 

For 0 < R < y, we obtain by using the above equations 

1/J s 1 1-v R 1-v R 2 
- = -- [Rlogy - -- + -- y J 
P 0 47Ta.2 1 +v 2 1 +v 2 

W 1 1 1 (R2+y2) 2 1 ~ = - .:!:.2..8.Y + -- [- 8 1o gy + 1....:::!:.8-
PO K2 2 2 2 7T 7T a. 

2 2 1-v (y -1) _ 1-v (y -1) R2] 
+ 1+v 16 1+v 16 (8 .110) 

M rs 1 
- = -- [ (1+v)1ogy 
Po 47Ta.2 

(1-v) + (1-v) 2] 
2 2 y 

For R > y, one has 
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W 1 1 (R2+i) R2-l _§.=_logR+-[- 8- logR+-8-
p0 K2 2 2 1T 1TO: 

2 2 . 
1-v R 2 1-v v 1 +-- (1-y) +- (-!-- -)] 
l+v 16 l+v 16 16 

(8.11.1) 

M 
rs 1 [(l+v) logR + (1-v) + (1-v) y2 + (v-1) y2] 
~ = 41To:2 2 2 2R2 

Solutions for q.(T) are given by equations (8.93) and (8.94) with eigen-
1 

values for a simply supported plate. 

Case 6. Simply Supported Plate with Concentrated Load at the Center 

(see figure 5) 

The loading for this case is given by equation (8.95). Boundary 

conditions for the static solution are the same as those for case 4. 

The static solutions for this case are the limiting cases of the 

solutions for case 4 or case 5 as y tends to zero. Taking these limits, 

one ootains 

l);s 1 R 
-p = --2 [RlogR - l+"] 

0 41TO: v 

W R2 R2-l R2 -1 ~ = _1_ logR + _l_ [- _ logR + + ] 
P0 K2 2 2 8 ~ 8(l+v) 1T 1TO: 

M rs (l+v) - = logR 
Po 41To:z 

Qs 

Po 
1 =--

21TR 

(8.112) 

For this case, the value of qi(T) is given by equation (8.100) with eigen-

values for a simply supported plate. 
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Case 7. Disk Mounted on a Shaft with Uniform Load at the Outer Edge 

(see figure 8) 

The loading for this case can be expressed as 

Po 
P(R,T) = 2n o(R-l)U(T) (8.113) 

Static Solution: 

We seek a solution of equations (7.19) with P(R,T) = 0, and boundary 

conditions 

W (S, T) = 0 s 

1/Js(S,T) 0 

(8.114) 
M (l,T) = 0 rs 

Q (1, T) 
Po 

=- U(T) 
rs 2n 

From equations (7.19) one obtains 

(8.115) 

The above equations yield on successive integration 

(8 .116) 

2 a 2 R2 R2 
a. W = C (- logR +-- -logR) 

s 1 K2 4 4 

From equations (7.25) and (8.116), we get 

2M = [ {l+v~ logR] cl + 
{1-v~ 

cl + 
{l+v~ 

c2 + 
{v-1} 

c3 a rs 2 4 2 R2 
(8.117) 

2 
2 

a Qrs = _g_ c 
R 1 
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Applying the boundary conditions to equations (8.116) and (8.117), one 

obtains 

p 
c2 = v-1 _Q_ + 2 (1-v) 

vH 47r l+v c3 

2 
(3 p 0 

2 2 [l+(l+v)logS] 
(1 +vf- S - S v)47r 

1:_ 2 2 2 
c2 4 + c3 logs- c1 [~2 logs + t- } logs] 

Hence, W, ,,, , M and Q are completely determined •. s ~s rs rs 

Dynamic Solution: 

In view of the boundary conditions and since P(R,T) 

(7.24) reduces to 

Q w. (1) POWi(l) 
p. (T) rs ~ 

U(T) = = 
~ 2 

21rni 
2 

ni 

p. (0) 
POWi(l) 

= 
l. 

27r~ 
2 

. 
p. (0) = 0 
~ 

q. (0) = - p. (0) 
l. l. 

(8.118) 

0, equation 

(8.119) 



Hence, from equation (7.29), we obtain, forT> 0 

qi (T) w. (1) 
~ = cos Po 2 

27TS1. 
l. 

where, for n K (the subscript i is omitted >-
a 

and for 0 < n < K 
a 

The modal bending moments are, for n > K 
a 

and for 0 < n < K 
a 

n.T 
l. 

for 
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(8.120) 

convenience) 

(8.121) 

(8 .122) 

(8 .123) 

(8.124) 

The complete solution to the forced motion problem is now given by 

equations (8.81). 

It may be noted that if, instead of a step function load, we consi-

der a square pulse load of duration one unit of time, the appropriate 

solutions for q. (T) become, for 0 < T ~ 1 
l. 



and for T > 1 

Wi(l) 
= - _.:::;-2- cos ~\ T 

27TS1. 
~ 

Qi T-cos Qi (T-:-1)] 
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(8.125a) 

(8.125b) 

D. Response of a Circular Plate to a Ramp-Platform Load (see figure 2lb) 

The loading for this case can be stated as 

P (R, T) = -P TT , 
1 

0 < T < T - 1 

P(R,T) = -P , T > T1 

where T1 is the rise time of the load. 

(8.126) 

The load is assumed to be uniformly distributed over a circular area 

of radius Y· The boundary conditions and initial conditions are the same 

as those for case 1 or case 4. 

Hence, for this case, equation (7.24) yields 

p. (T) 
~ 

= -

From the above equation we get 

p. (0) = 0 
l. 

. 
p. (0) = 

l. 

.. 
p. (0) = 0 
~ 

p 
2 

Qi Tl 

Also, in view of the initial conditions 

qi(O) = 0 

r IIi (R)RdR 

0 

(8.127) 

(8.128) 
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q. (0) 
~ 

(8.129) 

Now equation (7.29) yields 

q. (T) = 3 [ W. (R) RdR] sin~ iT p Jy 
~ Qi Tl ~ 

(8.130) 

0 

Substituting the expressions for the modal displacements from equa-

tions (8.9) and (8.10) and integrating, one obtains from equation (8.130), 

for 0 < T < T1 

q. (T) 11 (81Y) Jl Cozy) sin Qi T K l 
[Al + A2 Po (\ 0 ] 3 

[,) > 
2 Tlnyr2 i 

a 

qi(T) 
[Al 

Jl ((\Y) Il (82 y) sin QiT 
0 < [,) < 

K 

Po 01 
+ A2 - ] 3 

oz TlrryQi 
a 

For T > T1 , using a superposition as shown in figure 2la, we get 

K 
Q >-

a 

0 < [,) 
K 

<
Ct 

(8 .131) 

(8.132) 

The acceleration response of the plate can be expressed in the form 

00 

W(R,T) =Ws(R,T)+ I W.(R) qi(T) 
i=l J.. 

(8.133) 
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.. 
where W 

s 
and ·· can be obtained directly by differenting the expressions qi 

for the static response and the q. twice with respect to time. 
l. 

E. Response of a Circular Plate to Pulse Loads 

The question of which theory (classical or Hindlin's) should be used 

to determine the response of a plate to transient loads is intimately 

related to the convergence of the resulting modal series. This is because 

the secondary effects of transverse shear and rotary inertia become 

increasingly important for higher modes of vibration. Thus if it is 

found that, for a given plate subjected to a certain load, modes which 

are strongly affected by transverse shear and rotary inertia contribute a 

large share of the response, it is unlikely that the classical theory 

will yield correct results. If, on the other hand, the higher modes con-

tribute only a small share of the total response, the classical theory 

may give correct results. 

Convergence of the modal series depends on many factors like the 

duration of the applied load, the shape of the load pulse, the manner 

in which the load is distributed and the area or the length over which 

the load is distributed. Reducing the duration of the pulse or area over 

which the load is distributed may even produce divergence in certain 

transient response problems [9]. 

The response of a circular plate to blast, triangular, square and 

half-sine pulses will be given now. In each case the load is assumed 

to be uniformly distributed over a concentric circular area of the plate. 

1. Blast Pulse: (see figure 21c) 

The time history for this load can be stated as 
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P (R, T) T 0 < T = - (P -- P) ~ Tl 
Tl 

(8 .134) 
P(R,T) = 0 

where T1 is the duration of the pulse. 

For brevity let 

[Al 
Jl ((\y) 

+ A2 
Jl Cozy) 

8 J = WJ 
81 2 

(8.135) 

[Al 
31C81Y) 

+ A2 
I 1 c62y) 

- J = WI 
81 8z 

By using a superposition of step function and ramp-platform loads as 

shown in figure 21c and using equations (8.79), (8.80), (8.131) and 

(8.132), we obtain for 0 < T .$ T1 

sin rJ.T 
WI [ ~.T _ ~ J 

= 2 COS o6~ rl;Tl 
'ITyrl. ..... 

~ 

o < n K 
<-

a 

For T > T1, we have 

qi (T) WJ sin rJ.T sin rJ.(T-T1 ) 
= z[cos n.T - ~ + ~ ] 

Po ~ rJiTl rJiTl 'ITYrli 

2. Triangular Pulse: (see figure 2ld) 

The time history of this load is given by 

K 
rl > 

K 
0 < rl < 

(8.136) 

(8.137) 
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P (R, T) T 
0 < T .:5. T1 = - p-

Tl 

P (R, T) - [P -
P(T-T1 ) 

2T1 (8.138) = T ] Tl $ T .s. 
1 

P (R, T) = 0 , 

where T1 is the rise time of the pulse. 

In view of equations (8.131) and (8.132) and using a superposition 

of two ramp-platform loads as shown in figure 21d, one obtains for 

0 < T < T - 1 

q. (T) 
l. 

Po 

For T1 !5 T :S 

q. (T) 
l. 

For T > 2T1 

WI 
3 

7Tyni Tl 

2T1 

sin n.T 
l. ' 

K n>
a 

o < n < 
K 
a 

K n > 

K o < n < 

(8.139) 

(8.140) 

K n > 
a 



0 < Q 
K 

<-
a 

3. Square Pulse: (see figure 21e) 

The loading for this case is represented by 

P(R,T) -P, 

P(R,T) = 0, 

where T1 is the duration of the load. 

89 

(8.141) 

(8 .142) 

Superposition of two step-function loads as shown in figure 2le 

yields, for 0 < T s T1 

q. (T) WJ K 1. Q.T, Q = cos >-
Po 2 1. a 

7ryrli 

q. (T) 
WI K 1 Q.T, 0 = 2 cos < Q <-

Po 1. a 
7ryrli 

For T > T1 

qi (T) WI rt.T Qi(T-Tl)] = 2 [cos - cos ' Po 1ryrt. 1 

1 

4. Half-Sine Pulse: (see figure 21£) 

The load history for this case is given by 

Q > K 
a. 

0 < Q 

(8 .143) 

(8.144) 

< K 
a 
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P (R, T) -P . er T) 0 < T .::s_ZT1 = Sl.n--2 T1 
(8 .145) 

P (R, T) = 0 ' T > 2T1 

where r1 is the rise time of the pulse. 

The boundary conditions and initial conditions are the same as those 

for case 1 or case 4. In view of equations (7.24) and (7.29), and the 

initial conditions, we obtain for this case 

-Psin('Tf _L) r Wi(R)RdR p. (T) 
2 T1 

= 
1. n.2 

1. 
0 

p. (0) = 0 
1. 

p. (0) = p~ r W. (R)RdR 
1. Uti 2Tl 1. 

0 (8.146) 
.. Pi • (1T T ) r Wi (R)RdR p. (T) = s1.n--1. 4n 2r 2 2 T1 

i 1 
0 

qi(O) = 0 

qi (0) = p1T r Wi (R)RdR 2 
2ni r1 

0 

Therefore, 

JT •• . P1T2 
P.(t)sl.n n.(T-t)dt = 2 2 

1. 1. 4~ ~ Jy . JT 
Wi(R)RdR ' (1TT ) • ,.., (T )d Sl.n ZTl SJ.n ~6i -T T 

0 0 0 IT ("\ . r.1T T ) 1T • T 
~'i SJ.n 'z -Tl- - 2Tl SJ.n fli 

sin(.?!. -L) sin n. (T--r)dt = ------=----=;.._ __ _ 
2 T1 1. ~ 2 

r"\•2 - J': II ) 

Hl. '2T 
1 0 

U'sing equations (8.146- 8.148), equation (7.29) yields 

(8 .147) 

(8.148) 
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. err ) 7T 

n1TJ} r {sin niT - 2;ll ni 
s~n n ---sin 

q. (T) Prr 1 
2T1 

H. (R)RdR = 2 ~ 3 
&"2.2-

l. 

2Qi Tl 7T 
(2T ) l. 1 0 

(8 .149) 

Using the superposition sho-vm in figure 22d, one obtains, for 

K 0 < T ~ 2T1 and Q > ~ 

K For T > 2r1 and Q > a 

sin Qi(T-2T1 ) 

2T1 

7T 

- 4T 2 
1 

&tiT+ Qisin 2; 1 (T-2T1 ) 

2 
n. 2 - (___'!!__) 

1. 2T1 

1T • - -- s1.n 2T1 

(8 .150) 

(8 .151) 

For 0 < 0 < K, WJ is replaced by WI in equations (8.150) and (8.151). 
a 

The static solutions for the pulse loads are obtained by using the 

appropriate time histories for the load P(R,T) in the solutions obtained 

for the step function load. The complete solution to forced motion under 

pulse loads is given by equations (8.81). 
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IX. FREE VIBRATION OF CONSTRAINED CIRCULAR PLATES 

A. Frequency Equation in Matrix Form 

A solution will be presented here for the natural frequencies and 

mode shapes of circular plates, to which masses or springs or both are 

attached at the center, using conventional normal mode techniques. 

Consistent with the nondimensional quantities defined in chapter 

VII, the following nondimensional quantities are now defined for use in 

this chapter. 

Dimensional To convert to dimensionless Dimensionless 
quantity form divide by quantity 

m 
m .....E.. M 

11' 

k Eh 
K 2 (1- v ) 

m~ c 
;; p(l-}) 

c c c 

1[2i l1 a 2 ].1 

p(l-v ) 

Case 1. Circular Plate with a Concentrated Mass Attached at the 

Center (see figure 9) 

Assume a solution for equation (7.4) in the form 

00 

W(R,T) = I W. (R)q. (T) 
i=l ~ ~ 

00 
(9 .1) 

1/J(R,T) = I 1/Ji(R)qi(T) 
i=l 
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Substituting equations (9.1) in equations (7.4), one obtains with the 

aid of equations (7.10) 

00 

I 
i=l 

2 w.cci. + r~. q.) 
~ J. J. J. 

(9. 2) 

P(R,T) 

2 
Multiplying the first of equations (9.2) by a ~j and the second by Wj, 

adding and integrating over the surface of the plate, we obtain 

00 

( 2 ) (" 2 ) W.W. +a ~.~. q. + Q. q. RdR 
l.J l.J J. J. J. I 

i=l 

1 
= J P(R,T)W.(R)RdR 

0 J 

Using the orthogonality condition given by equation (7.17), the above 

equation yields 

.• " 2 qJ.. + 06. q. 
J. J. 

1 
= f P(R,T)W. (R)RdR 

0 J. 
(9. 3) 

For a concentrated force P0 at the center of the plate, this becomes 

.• 2 
q-r + n. q. 

..... J. J. 

(9 .4) 

•. 2 POWi (0) 
q. + Q, q. = 2n 

J. J. J. 

This equation forms the starting point for the analysis of con-

strained plates. For a mass M attached to the center of the plate. 

00 

-H~J(O,T) = -M I W.(O)q.(T) 
j=l J J 

(9 .5) 

The normal modes of the constrained structure are also harmonic and so 

it can be written that 

- irlT 
q = q.e 

j J 
(9. 6) 



Substituting this in equation (9.5), one obtains · 

00 

I 
j=l 

~L(O)q. 
J J 

Substituting equation (9.7) in equation (9.4), yields 

00 

2 H 2 \ -q. + ~i qi = 2n Q Wi(O) L 1-i.(O)q. 
J. j =1 J J 

Substituting for H, this becomes 

.. + n 2 = __!!!___ ~2w. (o) ' w (O)-q. i qi 2m J. L • q. 
J. p j=l J J 

With the use of equation (9.6), one obtains from the above 

00 

/1. 2 [n2w. (O) I w. (O)CijJ 
2 en. - n ) J. j =1 J 

J. 

where A, the mass ratio is defined as 

11 = !!!.._ 
m 

p 
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(9. 7) 

(9.8) 

(9. 9) 

(9 .10) 

(9 .11) 

If we use n modes, there will be n values of qj and n equations 

such as the one above. The determinants formed by the coefficients of 

the q. will lead to the natural frequencies of the constrained modes, 
J 

and the mode shapes are found by substituting the q. into equations (9.1). 
J 

Thus by using n modes, we obtain 

WHl w2(0) w3(0) w4(0) ql 

W1 (0) WM2 w3(0) w4 (O) q2 

w1 (O) W2(0) WM3 w4(0) q3 = 0 (9.12) 

w1 (O) w2(0) w3(0) WM4 q4 



where 

WHl = W (0) -
1 

Q 2 
2(-1-- 1) 

Q2 

AWl (0) 

Q 2 
WM2 = W (0) - 2(--2-- 1) 

2 Q2 __;;.:;,.,_ __ _ 

Case 2. Circular Plate with a Spring Attached at the Center (see 

figure 10) 

For this case, we have 

P(R,T) = _ K\;J(O,T)o(R) 
2rrR 

Substituting this in equation (9.3) and using equation (9.6), one 

obtains 

KW. (0) co 

qi = - ~ 2 2 ' ~ w. (O) q. 
2rr(n. - n ) j=l J J 

~ 

WKl W2(0) w3 (0) w4 (0) ql 

W1 (0) WK2 w3 (0) w4 (0) -
q2 

w1 (0) W2(0) WK3 w4 (0) -
q3 = 0 

w1 (0) w2 (0) w3 (0) -WK4 q4 

where 

............................... 

. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 
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(9 .13) 

(9 .14) 

(9.15) 

(9 .16) 

(9 .17) 
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For a circular plate with a mass and a spring attached at the 

center (see figure 12), the same procedure can be used by taking 

P(R,T) = - HW(O,T) - KW(O,T) (9.18) 

~vith the result that the diagonal terms in the matrix equation (9 .12) 

or (9.16) become 

HMKl = w1 (0) + 
2(Q 2 -

1 

2 (r2 2 -
2 

WMK2 = W 2 ( 0) + --:-W..;;:;.
2

-:-( 0::-:):---

B. Frequency Equation in Series Form 

1T 1 
CK - i\Qz) 

(9 .19) 

If the frequencies of a composite system consisting of plate, mass, 

spring and dashpot alone are required, a method developed by Young [59] 

for the case of a beam can be extended to apply here. 

Case 1. Circular Plate with a Concentrated Mass and a Spring Attached 

at the Center (see figure 12) 

When the system is vibrating freely there is a force F in the link 
p 

joining the mass M and the plate which may be expressed as 

F 
p 

- iQT = F e 
p 

(9.20) 

Let the system be cut through the link so that there are two systems, 

- iQT 
one a circular plate acted on by a force F = F e at the center, and 

p p 

another a spring-supported mass acted on by an equal and opposite force 

as shown in figure 12. 

For the first system described above, we have, 

W1 (0,T) = 2 H.(O)q.(T) 
i=l ~ ~ 

(9. 21) 



For this case equation (9.3) becomes 

1 F eH2T 
•• 2 - J p qi + Qi qi - 0 ~2~7T- O(R)Wi (R)dR 

where 

In view of equation (9.23), equation (9.22) yields 

Hence, one obtains 

w1 (0,T) = 

F W. (0) 
p ~ 

For the spring-mass system the equation of motion is 

d2w 
M --2 + KW = - F ei&1T 

dT2 2 p 

The steady state solution of equation (9.26) is given by 

FeinT 
W (T) = --_....p_-=-

2 (K - Mn2) 

Eliminating F between equations (9.25) and (9.27), 
p 

1 

In view of equation (9.11) 

K 
1 + [-- 1\] 

7T&12 

00 w. 2 (o) 
= - I --~;;...,--~ 

i=l 21r(n 2 - n2) 
i 

this becomes 

&12 00 wi2(o) 
I 2 i=l en 2 _ n2) 

i 

= 

one obtains 

0 
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Equation (9.29) can be solved for the frequencies of the con-

strained modes of transverse vibration of the system. 

(9. 22) 

(9. 23) 

(9. 24) 

(9.25) 

(9.26) 

(9 .27) 

(9.28) 

(9. 29) 

Case 2. Circular Plate with a Concentrated Mass, a Spring and a Dashpot 

Attached at the Center (see figure 13) 
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If a dashpot (linearly viscous) is included along with the spring-

mass system, the system will have a motion in the form of an exponentially 

decaying oscillation. The force between the mass and the plate may now 

be taken in the form 

F 
p 

= F e(-]J+iQ)T 
p 

= F e-~T (cosQT + isinQT) 
p 

For this case, equation (9.3) yields 

.. 2 
q.f + Q. q . 

.L ~ ~ 

-- J 1 _F.._e_< -_]J_+_i_n_) T-
o 2 1T o (R) 1.Ji (R) dR 

Assume that 

Substituting equation (9.32) into equation (9.31), one gets 

F w. (O) 
~ 

Hence in view of equation (9.21), we have 

00 

w1 (O,T) 

For the spring-mass-dashpot system, the equation of motion is 

d2W dW 
M--2 +c - 2 +KW 

dT2 c dT 2 
= -

The steady state solution of this equation is 

- (-]..l+iQ)T - F e 

(9. 30) 

(9. 31) 

(9. 32) 

(9. 33) 

(9.34) 

(9. 35) 

(9. 36) 
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Equating equations (9.34) and (9.36), one obtains 

- 1 

(9. 37) 

By equating the real and imaginary parts of equation (9.37), two 

expressions are obtained which determine the frequency ~ and the decay 

constant ~ in terms of the constants of the system. 

To illustrate the method of computation, only the dashpot attached 

to the center of the plate is considered in the following analysis. 

With this simplification, equation (9.37) reduces to 

co 

1 1 'i' 
c (ll - i~)= 211" I.. 

c i=l 
(9.38) 

Separating the real and imaginary parts from equation (9.38) and 

equating the corresponding parts of each side of the equation, the 

following two equations are obtained: 

2 2 2 ~.2) co W. (O)ll(n. + )l + 
1 1 I ~ ~ ~ -=-

~2)2 c 211" (n.z 2 4~2n2 c i=l + ~ + 
~ 

(9. 39) 

co w. 2(o) (J/ + ~2- ~.2) 
0 I ~ ~ 

= 
(~2 + n.2 _ nz)2 + 4ll2n2 i=l 

~ 

(9.40) 

Equation (9.40) defines the dimensionless decay constant ll as 

a function of the dimensionless frequency n. For a given value of n, 

the corresponding value of ll is calculated from equation (9.40), and 

for each pair of values of )l and n, the corresponding value of C is 
c 

calculated from equation (9.39). This process is repeated for various 

values of ~ and graphs are plotted for ll versus n, and Cc versus n. 
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For any given value of dashpot strength, the corresponding value 

of the frequency Q and the decay constant ~ can be determined from these 

curves. 

C. Frequency Equation in Closed-Form 

Recently, Tyutekin [25] has given a solution for the frequency of 

a thin elastic circular plate loaded at the center with an arbitrary 

load impedance. He used the classical theory and the results were thus 

restricted to thin plates. A somewhat similar approach will be followed 

here to derive the frequency equation in closed-form for a circular plate 

loaded at the center with an impedance, using the improved theory of 

plate vibration due to Mindlin. The results are thus applicable to thick 

plates also. 

1. Derivation of the Frequency Equation 

An arbitrary load Z (in general, complex) representing an impedance 

that is acting on the disk normal to its surface (figure 19) is placed 

at the center of the disk. Flexural waves propagated through the disk 

satisfy the equations (the subscript r on ~ is omitted for convenience) 

2 o1 )W1 = 0 

2 o2 )W2 0 
(9. 41) 

For the motion under consideration, the solutions of equations 

K (9.41) are, for 0 < Q <-(the subscript i is omitted for convenience) 
Ct 

~(R) = A(l- a1)o1J 1 Co1R) + B(l- a1)o1Y1 (o 1R) (9. 42) 

- c(l- cr 2)82r1 c62R) + F(l- a 2)o2K1 C62R) 



and for Q > K 
a 
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(9. 43) 

Were the load not present at the center, from the very beginning, 

the coefficients B and F would have to be assumed to zero, since the 

functions Y0 Co1R), Y0 Co 2R) and K0 (62R) become infinite as R tends to 

zero (see reference 73, p. 26). 

K (6 R) = - log (62R) 
0 2 R+O 

(9. 44) 

The presence of the load impedance at the center makes it necessary 

to retain the functions Y0 (o1R), Y0 (o 2R) and K0 C62R), but the coefficients 

B and F must be chosen such that (see reference 49, p. 34) 

lim Rl};(R) = 0 
R+O 

lim RW(R) = 0 
R+O 

(9. 45) 

Equations (9.45) are the conditions to be satisfied at the load point. 

·It should be noted that the first condition is a weaker restriction than 

lim l};(R) = 0 which could have been assumed on physical grounds due to the 
R-+0 
symmetry of the problem. 

With conditions (9.45) imposed, equations (9.42) and (9.43) yield, 

for 0 < Q 
K 

<
a 
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For 0 

2 - -
~(R) = A(1-o1 )o 1J 1 (o1R) + B(l-a1 )[o 1Y1 (o 1R) +; o2K1 (o 2R)] 

K >
Cl. 

- C(l-o2)82r1 c82R) 

1-a1 
H(R) = AJ0 (o1R) + B[Y0 (o 1R) - l-o Y0 (o 2R)] + CJ0 Co 2R) 

2 

w(R) = A(l- a1)o1J 1 (o 1R) + B(l- o1)[o1Y1 (o1R) - c2Y1 Co 2R)] (9.47) 

+ C(l - a2)c2J 1 (o 2R) 

It is clear from the above equations that according to the improved 

dynamic theory of plates, W is infinite at R = 0. 

The load acting on the disk at its center and caused by the motion 

of the impedance load Z is given by 

F = z ClW(O) 
z ClT 

(9. 48) 

Since W is infinite at the center of the plate, we shall now 

utilize a \villiams type modal solution, in which the discontinuity at 

the center is taken up by the static part of the solution. Then we 

have a continuous eigenfunction expansion to deal with in equation (9.48). 

Thus we have 
00 

W(R,T) = w (R,T) + L w. (R)q. (T) 
s . 1 1 1 

1= 

00 

1j;(R,T) ~. (R) q. (T) 
1 1 

(9.49) 

Since W.(R) must be finite at the center of the plate and in view of 
1 

equations (9.44), equations (9.42) and (9.43) yield, for 0 < 0 < K 
Cl. 

2 - -
= AJ0 (o1R) + B[Y0 (c1R) + ;K0 (o 2R)] + CI0 (o 2R) W(R) 

~(R) 
2 - -= A(l-a1 )o1J1 (o1R) + B[(I-o1)s1Y1 Co1R) + 1T (l-o2)o2K1 (o2R)] 

(9 .50) 



K and for n > -
a 

W(R) = AJ0 (o1R) + B[Y0 (o1R) - Y0 (o 2R)] + CJ0 (d 2R) 

w(R) = A(l-o1)o1J 1 (o1R) + B[(l-o1 )o1Y1 (o 1R) - (1 
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(9. 51) 

iftl' 
Denoting the time dependence of q. (T) by the factor e in vim,r of 

~ 

equations (9.49-9.51), equation (9.48) yields 

F = irtW(O)z = in(A+C)Z z 
(9.52) 

The force acting at the center of the disk due to the motion of the 

disk is given by (see reference 18~ p. 526) 

F = Iim - [f Z1TQ Rd6 + f l f Z1rH 32i~ RdtldRJ. 
p R+O 0 r 0 0 d aT2 

where Md is dimensionless mass per unit area of plate. 

Using equation (8.29), one obtains 

J 21T 
Q Rde = 21TRK2 (~+ aw) 

0 r 3R 

From equations (9.50) and (9.51), we obtain, for 0 < n < K 
a 

2 - -- B[cr1o1Y1 (o1R) + ~ cr 2o2K1 (o 2R)] + Ccr282I 1 (52R) 

and for n K >-
a 

From the 'theory of Bessel functions, we have [73] 

(9.53) 

(9 .54) 
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c (C1RJ} { •:;R} = 
Y1 (o 2R) R+O 

(9. 56) 1ro 2R 

K1 (52R) 1 = 
R+O 62R 

K 
Using equations (9.55) and (9.56), equation (9. 54) yields for 0 < n <-

lim J 2'11' Q Rde 
R-+O 0 r 

and for n > K 
a 

=-

J 2'11' 
lim ~Rd6 = 
R-+O 0 

From the second integral in equation (9.53), we have 

Cl. 

(9.57) 

(9.58) 

Substituting for W(R) from equations (9.50) or (9.51), integrating and 

taking the limit as R approaches zero, equation (9.58) gives 

2 inTI 1 
lim 2'11'Q e MdW(R)RdR = 0 
R+O 0 

In view of equations (9.57) and (9.59), equation (9.53) yields 

Equating F and -F one obtains z p' 

. 2 
in (A+C)Z = 4K (a l-.:5 2)B 

Rearranging the above, we have 
2 4K (cr 1-a 2) 

A + -mz B + c = o 

(9 .59) 

(9.60) 

(9. 61) 
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To solve for A, B and C, we must have two more equations in A, B 

and C. This is obtained by using the boundary conditions at the edge of 

the plate where R = 1. Without limiting the generality of the solution, 

we consider here only the analytically simplest case of a clamped edge. 

For a clamped edge, the boundary conditions are 

(9. 62) 

Substituting this in equations (9.46) and (9.47) and using equation (9.61), 

we get the following matrix equations: 

For 0 < n < K 
a 

1 

For n > K 
a 

1 

2 l-0'1 -
[Yo(ol) +; 1-a Ko(o2)] 

2 

2 - -(l-a1)[c1Y1 Co1) + ~ o2K1 Cs 2)J 

2 4K (a1-a2) 

-iS"2Z 

l-0'1 
[Y0 (s1) - -- Y cs )] 

l-0'2 0 2 

1 

(9 .63) 

1 



106 

A 

B = 0 (9. 64) 

c 

The determinants of the coefficient matrices in equations (9.63) 

and (9.64) equated to zero yield the frequency equations. 

2. Applications of the Closed-Form Frequency Equation 

Case a. Mass Attached at the Center of the Plate (see figure 9) 

For this case, Z = inH 

Hence, we have 

Case b. Spring Attached at the Center of the Plate (see figure 10) 

For this case 

and thus 

K 
Z = H2 

= 

(9. 65) 

(9.66) 

(9. 6 7) 

(9. 68) 

Case c. Dashpot Attached at the Center of the Plate (see figure 11) 

For a dashpot, 

z = c 
c (9. 69) 

In this case the time dependence factor in equation (9.49) can be 

k i (Q+ifl )T h h · · t f th f d ta en as e , w ere t e 1.mag1.nary par lJ o e requency eter-

mines the attenuation decrement of the entire system. 

Hence we have 

2 
4K (a 1 -<r 2 ) 

- i{rl+ljJ )Z 
= 

4K2 (a: 1-o: 2) 

(f.l-:ill ) c c (9. 70) 
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Case d. Center of the Plate Fixed 

For this case, Z = oo 

Clearly, this also is a special case of 2.a with M = oo, or 2.b with K = oo, 

Case e. Two Circular Plates Rigidly Connected at the Centers (see 

figure 15) 

For this case, 

2 
F 4K (cr1 -cr2 ) 

z pa a a a 
B = = -aw (O) H2W (0) a a a 

(9. 71) 

3T 

where the subscript a refers to the attached plate. 

Using equations (9.50) or (9.51), one obtains from equation (9.71) 

z = 

Hence we have 

A + B 

4Ka2(crla- crz) 
iQ 

B. 
a 

A + C a a 

A + C 
a a 

B a 

(9. 72) 

(9.73) 

The quantity a a can be determined by using the boundary con-e a 
ditions of the attached plate. Without limiting the generality of the 

solution, let us consider here the analytically simplest case of a 

clamped edge. For the attached plate, this assumption of a boundary 

condition yields, for 0 < Q < ~ (the subscript a on o1 , o2 and 82 is 

deleted for convenience) 

1-cr 
Wa(l) = AaJO(ol) + Ba[Yo(ol) +; 1-cr~: Ko(82) + cai0(82) = o 

2 - -= Aaol(l-crla)Jl (61) + Ba(l-crla)[olYl(ol) + n o2Kl (82)] 1J.I (1) 
a (9. 74) 



K For n > - , we have 
(X 

Solving equations (9.74) and (9.75 yields, for 0 < n < K 
(X 

A + C II Lij ~ + ~ Mij I a a = B 
~ Nij ~ a 

and K for n > -
(X 

A +C II pij II 
+ 

II Qij II a a = 
B I Rij f a 

where 

1-cr 
-[Yo<(\> +~ la K (6 )] 

Vl2ll ~ Lij.ll 

1T l-cr2a 0 2 
= 

2 - -
-52(1-cr2a)I1(52) -(l-crla)[olYl (ol)+ TI 02Kl(oz)l 
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(9. 76) 

(9. 77) 
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1-cr 
-[Y (o )- laY (6 )] 

0 1 l-cr2a 0 2 

It should be noted that if the two plates have the same values of 

h 
-and Poisson's ratio a 

and equation (9.73) therefore simplifies to 

A + C a a 
= 

B 
a 

(9. 78) 

(9.79) 
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X. FORCED VIBRATION OF CONSTRAINED CIRCULAR PLATES 

In dealing with vibration isolation of equipment mounted on 

plates, the driving-point impedance and transmissibility (see appendix 

E) of plates which are excited to transverse vibration by sinusoidally 

varying forces are of great importance. The driving-point impedance 

and transmissibility of clamped circular plates with or without mass or 

spring loading at the center will be investigated here. The effect of 

mounting a dynamic vibration absorber at the center of the plate will 

also be considered. 

Expressions for the driving-point impedance and the transmissibility 

across the plate for different cases will be derived now, using both the 

classical theory and the improved theory due to Mindlin. 

Case A. Driving-Point Impedance of a Clamped Plate Driven at the 

Center (see figure 16) 

Let the driving force at the center of the plate be given by 

Fo = FoeirtT 

1. Classical Theory 

(10 .1) 

The classical plate vibration equation in nondimensional form is 

given by 

where 

4 4 
(V - a )W = 0 

o4 = n2 
2 

o; 

It may be readily shown that this equation possesses a solution 

(10.2) 

(10. 3) 

Because of the force acting at the center of the plate, Y0 ( R) and 

Ko (oR) must be retained. But to make the value of ~v finite at R = 0, 
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B and F must be chosen such that when R tends to zero, BY0 (oR) and 

FK0 (c.SR) mutually cancel one another. 1\Tith this condition imposed, in 

view of equations (9.44), equation (10.3) becomes 

(10. 4) 

The force acting at the center of the plate due to the motion of the 

plate must balance the force F0 exerted at the center of the plate. 

The force F due to the motion of the plate is given by 
p 

F = lim - J 2~ Rd8 = - lim 27T RQ 
p R-+0 0 r R-+0 r 

For the classical theory, we have 

Q (R) = _.a 2 (a 3w + 1:. a 2w _ L a w) 
r aR3 R aR2 R2 aR 

In view of equation (10.6), equation (10.5) becomes 

FP = i~~ 2rrRa 2o3 [ AJ1 + B(Y1 - ~ K1 ) + cr1 ] (oR) 

Substituting for Y1 (oR) and K1 (oR) from equations (9.56), equation 

(10. 7) yields 

F 
p 

Equating Fp and F0 , one obtains 

Fo 
B=---=:.._..,... 

80.202 

The boundary conditions for the clamped plate are 

W(1) = aw(1) = 0 
8R 

Applying these on equation (10.4), we obtain 

AJ0 (o) -
Fa 

[Y0 (o) + ~ K0 Co) J + CI0(o) 

8a2o 2 

AJ0(o) -
Fo 

[Y~(c.S) + ~ K'(cS)] + CIO(cS) 
8a2o2 Tf 0 

0 

0 

(10. 5) 

(10. 6) 

(10. 7) 

(10.9) 

(10 .10) 

(10.11) 
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Solving for A and C from equations (10.11), one gets 

Fo 
2 

Yo+; Ko ro 

Sa. 2o 2 2 -I Yl+; Kl 1 Co) 
A = (10 .12) 

Jo Io 

~ (O) 
Jl -I 1 

Fo Jo 
2 

Yo + ; Ko 

8a. 20 2 Jl yl +~K 
7T 1 (a) c = 

Jo 
10 I 

Jl -rl Co) 

Hence W(R) is completely determined. The velocity at the center 

of the plate is given by (note that W(R,T) = W(R)etQT) 

iQ (A+C) (10 .13) 

Hence the '1.riving-point impedance of the plate is 

ill (A+C) 
(10.14) 

Substituting for A and C from equations (10.12) yields 

] (10.15) 
1o) Co) 

If z0 is normalized by division by the impedance of a lumped mass 

equal to the mass M of the plate, one obtains 
p 

zu = i~~p = :grr = 
8::~2 [ (Y1+ ~ Kl)(JO:::~-:y::J; KO)(Jl+Il) ] (10.16) 

Co) 

In equation 
2 2 

(10.15) Sa ~ will turn out to be the characteristic · 
rl 

impedance of the plate which is defined as the driving-point impedance 
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of a similar plate of infinite size (see reference 71, p. 253). Denoting 

the characteristic impedance of the plate by zch' we obtain 

= (10.17) 

2. Mindlin's Theory 

For the improved theory of plate vibration, the equation governing 

transverse displacement W is given by 

(10 .18) 

As higher frequencies are not of importance in vibration isolation, 

only the lower frequencies for which o2
2 is negative will be considered 

here. For this case, the required solutions are 

1j!(R) = A(l--cr 1)o1J1 (o 1R) + B(l-o1 )o 1Y1 (o 1R) 

- C(l-a 2)82r1 (62R) + F(l-o 2)62K1 (S2R) 

(10.19) 

Since the procedure used in section IX.C.l is applicable here, re-

writing equations C9.46) and (.9.60), we have 

2 l-ol -
WCR) = AJ0 (o 1R) + B[Y0 (o 1R) +; l-oz K0 Co 2R)] + CI0 C62R) 

1/! CR) 
2 - -

A(l--cr 1 )o 1J 1 Co 1R) + B(l-cr 1) [cS 1Y1 Co 1R) + ;;:- o 2K1 Co 2R)] (10.20) 

and 

(10. 21) 

Equating Fp and F0 , one obtains 

Fo 
B = - --~~----. 2 

4K (a 1 

(10.22) 
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Applying the boundary conditions W(l) = 0 and ~(1) 0 to equations 

(10.20) yields 

2 1-crl -
[Yo(o1)+; 1-cr Ko(o2)J 1o<8z> 

2 

4K2 (cr1-cr2) (1-cr1)(o1Y1 Co1) + ~ 62K1 (62)J - 82 Cl-cr2)r1 C82) 
A = --------------~--~~~~--~--~---------

30(01) 10(82) 

2 1-crl -
[Yo(o1) + ~ 1-cr Ko(o2)] ~ 

(1-crl)[OlYl(Ol) + ~2~2Kl(6z)l! 
c = 

11Jo(o1) 

~ 01 (1-crl)J1 (81) 

10(62) 

-82(1-cr2)r1 (82 ) 

The transverse motion of the plate is given by 

W(R,T) = W(R)eiQT 

Hence the velocity at the center of the plate becomes 

1 . oW (R) iQT . ,.., (A+C) iQT 
V 0 == lm ---ar- e = l~• e 

R-+0 

Therefore, the driving-point impedance of the plate is 

On normalization, the above yields 

(10. 23) 

(10 .24) 

(10. 25) 

(10.26) 

(10. 27) 

Case B. Transmissibility Across a Clamped Plate Driven at the Center 

The transmissibility across the plate is given by (see figure 16) 

T0 = \ ;~ \ (10.28) 
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where 

Fo F0e 
i&"lT 

= the force applied at the center 

Fl F1e 
irlT 

= the force transmitted 

F1 is given by the relation 

J 2rr 
F1 = lim - Q Rde = lim - 2nRQ 

R+l 0 r R+l r 
(10.29) 

1. Classical Theory 

For the classical theory, using equations (10.4) and (10.6) equa-

tion (10.29) yields 

(10. 30) 

where A, Band Care determined from equations (10.9) and (10.12). 

Hence the transmissibility across the plate can be written in the 

form 

T = 0 
(10. 31) 

2. Mindlin's Theory 

For the improved theory of plate vibration, in view of equations 

(8.29), (10.20) and (10.29), one obtains 

(10. 32) 

where A, Band Care given by equations (10.22) and (10.23). 

Hence the transmissibility across the plate 

T = 
0 

is completely determined. 
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Case C. Driving-Point Impedance and Transmissibility of a Clamped 

Plate, Mass-Loaded and Driven at the Center (see figure 17) 

Expressions for the driving-point impedance and transmissibility 

of a mass-loaded plate follow directly from knowledge of the expressions 

for z0 and T0 that were derived earlier. Because of the continuity of 

motion between the load mass M and the center of the plate it is possible 

to state 

where 

ZmO is the driving-point impedance of mass-loaded plate 

Z is the impedance of the load mass and 
m 

z0 is the driving-point impedance of the unloaded plate. 

(10.33) 

Since~ = A, the mass ratio, the normalized driving-point impedance 
p 

of the mass-loaded plate can be expressed by 

zmO 
Z =~=A+Z mn 1.M . n 

(10. 34) 
p 

where Z is given by equation (10.16) for the classical theory and by 
n 

equation (10.27) for the improved theory. 

The driving force at the center of the plate is given by 

If the force which the mass M exerts on the plate is F01 , the 

total force F1 transmitted to the plate support can be expressed by the 

relation 

where 

I Fl I T--
0 - FOl 

- :inT 
::: FOle 

(10.35) 
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Also, if v0 is the corrunon velocity of the load mass }f and the center 

of the plate, we have 

(10.36) 

where 

and 
Fo 

::::-:::: 

vo (10.37) 

Substituting for v0 in equation (10.37) from equation (10.36), one 

obtains 
Fa 

ZmO = FOl ZO (10.38) 

In view of equation (10.35), this becomes 

Hence for the transmissibility of the mass-loaded plate, we obtain 

Tm = j :~ J ~ To j m~~z0 I = To J m.~~z0 I (lO •39l 

where z0 is given by equation (10.15) for the classical theory and~~ 

equation (10.26) for the improved theory. 

Case D. Driving-Point Impedance and Transmissibility of a Clamped 

where 

Plate, Spring-Loaded and Driven at the Center (see figure 18) 

The driving-point impedance for this case is given by 

(10. 40) 

ZkO is the driving-point impedance of the spring-loaded plate and 

Zk is the impedance of a spring element 
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The normalized driving-point impedance is 

z 
n 

K (10.41) 

Following a similar procedure as in case C, for the transmissibility 

across the spring-loaded plate, we obtain 

(10.42) 

Case E. Transmissibility Across a Clamped Plate with Mass and. Spring 

Loading at the Center and Driven at the Center 

For this case, the transmissibility across the plate follows 

directly from the results of case C and case D. It is easily seen that 

zo 
To (10.43) 

zo + irlM +!._ 
iQ 

Case F. Transmissibility Across a Clamped Plate, Driven at the Center 

and to which a Dynamic Absorber is Attached at the Center 

(see figure 19) 

The plate is driven by a harmonically oscillating force F0 at its 

center. A dynamic absorber which consists of a spring-mass system is 

attached at the center of the plate to suppress the transmissibility at 

the first or any other resonant frequency of the plate. 

The impedance of the absorber is given by the relation 

z 
a 

1 l -l 

= [ inMa + ~ ] (10 0 44) 

where M and K represents respectively the mass and stiffness of the 
a a 

absorber elements. 

Making the substitution 

(10 0 45) 

for the natural frequency of the absorber, the above yields 



z 
a 

WM = ___ a='-_ 

1 - (£...)2 n 
a 

The driving-point impedance of the system is given by 

Hence the transmissibility across the plate becomes 

T = To 
zo 

To 
zo 

= a zo +z i~f 
a zo + 

a 
n 

1-(n-) 
a 
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(10.46) 

(10.47) 

(10.48) 

2 

Case G. Transmissibility Across a Clamped Plate, Mass-Loaded and 

Driven at the Center at which a Dynamic Absorber is Attached 

It directly follows from the above discussion that if a mass M is 

attached at the center of the plate in addition to the dynamic absorber, 

the expressions for the total impedance and transmissibility across the 

plate become 

(10.49) 

and 

T = T am 0 i&"lM (10.50) 
z0 + inM + _____ a~~ 

1 -(~ )2 
a 
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XI. DISCUSSION OF RESULTS 

The numerical results and graphs presented in this ~,10rk are obtained 

by using the IBM 360 Hodel 50 digital computer system and the Calcomp 566 

digital incremental plotter which are available in the Computer Center of 

the University of Missouri - Rolla. 

A general discussion of the results of this investigation foll·ot..rs. 

A. Frequency Spectra (see figures 23-32 and tables I-VIII) 

Each curve in these figures is dra.;m through a minimum of 60 data 

points. It is seen that virtually no similarity exists bet,veen the fro.-

quency spectra as predicted by the classical and improved theories, ~..rith 

the possible exception of very thin plates. Improved theory frequencies 

are bounded for increasing thickness to radius ratio (figures 23 an.d 24), 

while the corresponding frequencies in the classical theory increase 

linearly for increasing thickness to radius ratio (figures 31 and 32). 

The frequency spectra for axisymmetric vibration predicted by the 

improved theory result from the coupling of t'vo different systems. The 

first system consists of flexural modes whose frequency spectrum may be 

visualized as an extension into the region n > ri, of the curves in the 

region Q < Q. In figures 23-26, these are ascending curves which flatten 

h 
out for large values of -. In figure 29 these can be discerned as as

a 

cending straight lines. The second system consists of the fundamental 

thickness-shear mode and its overtones. Their spectrum, in figure 29, 

is formed by the loci of the flat, nearly horizontal portion of the 

resonance curves in the region above the thickness-shear frequencies. 

In figures 23-26, these can be discerned as the loci of the descending 

portion of the resonance curves. For the free plate the higher thickness-

shear overtones are not clearly defined as for the clamped and simply 
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supported plates (figure 25). This is also the case for the disk 

mounted on a shaft where the edges of the plate are free. 

For vibration with one diametral node the frequency spectra result 

from the coupling of three different systems of motion (figures 27 and 

28). In addition to the flexural and thickness-shear modes discussed 

earlier, the thickness-twist mode also is present here. It it seen that 

the frequency spectrum for the thickness-twist mode almost coincides 

with the spectrum for the thickness-shear mode. In other words, the 

thickness-twist modes have frequencies very close to the corresponding 

thickness-shear modes. This is evident in figure 30, where the two 

resonance curves are seen as parallel lines close to one another in the 

region above the thickness-shear frequencies. 

It is seen that the suppression of the thickness-shear mode in the 

classical theory serves as a constraint in the system, making frequencies 

larger than those predicted by the improved theory. As a result, according 

to the improved theory, there are more resonances in a given frequency 

range than are predicted by the classical theory. For example, for a 

clamped plate with h = 0.125, in the frequency range 0 < ~ < 1, there 
a n 

are 10 resonances according to the improved theory, whereas the classical 

theory gives only 6. 
h For-= 0.25, the corresponding values are 5 and 3. 
a 

The most striking difference between the two theories occurs at 

frequencies above that of the fundamental thickness-shear mode as is 

seen from figures 23-26. In the frequency range from 0 to 25, for a 

clamped plate with h = 0.125, there are 20 resonances according to the 
a 

improved theory compared to 8 predicted by the classical theory. For 

h = 0.25, the corresponding values are 22 and 5. 
a 
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Since for a given ~ value the frequencies predicted by the improved 
a 

theory are lower than those given by the classical theory, it is evident 

that for a given frequency of vibration in a particular mode the improved 

h theory requires a higher value for a , and hence a smaller plate. Hence 

in designing a plate to vibrate at a certain frequency in a particular 

mode, considerable error will be introduced if the classical theory is 

used in place of the improved theory. This discrepancy will be higher 

for higher modes. For example, considering a clamped plate vibrating in 

its fundamental mode, for a frequency of 0.29 the classical theory gives 

h 
-as 0.10 compared to 0.1025 predicted by the improved theory. For a a 

given plate thickness the radius predicted by the classical theory will 

be larger by 2.5 percent. Considering the third mode of vibration, for 

a frequency of 2.57, the radius predicted by the classical theory will 

be in error by 27 percent. Hence it is very important that in designing 

plates to resonate at particular frequencies the improved theo!y should . 

always be used in place of the classical theory. 

B. Effect of Poisson's Ratio on Frequencies (see figure 33 and tables 

IX and X) 

Figure 33 and tables IX and X show the variation of the frequencies 

of a free circular plate with change in Poisson's ratio from 0.25 to 0.35, 

the usual range of variation encountered in most applications. The dif-

ferences in frequencies are not obvious in the figure and can best be 

observed in the tables. In general, it can be observed that in the fre-

quency range below that of the fundamental thickness-shear mode the 

frequencies increase with increase in Poisson's ratio. Above this range, 

the frequencies are found to decrease with an increase in Poisson's 

ratio. Thus from table IX it is observed that for a plate with ~ = 0.125, a 
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as v increases .from 0.25 to 0.35, the fundamental frequency changes from 

0.32326 to 0.34161, an increase of 5.67 percent. The tenth frequency 

changes from 15.4196 to 15.1032, a decrease of 2.05 percent. For a plate 

with~= 0.25, table X shows that for the same range of v, the fundamental a 

frequency increases by 5.15 percent and the tenth frequency decreases by 

1.48 percent. To summarize the effect of Poisson's ratio it can be 

stated that: (1) For plates vibrating at fixed frequencies, plates with 

larger values of v will be larger in diameter, provided Q < Q, (2) For 

plates of the same dimensions, those with larger values of v will be 

vibrating at higher frequencies, provided Q < Q, For Q < n, the opposite 

of the conditions stated above will prevail. 

C. Mode Shapes and Profiles of Deflected Plate (see figures 34-41) 

A clear picture of the boundary conditions involving W and w can 

be obtained from the mode shapes and the profiles of the deflected plate. 

These curves are plotted through a minimum of 50 data points equally 

spaced along the abscissa. The first 20 modes are considered in obtaining 

the profiles of the deflected plate. 

For the clamped and simply supported plates it is seen that for all 

~odes ~: is zero at the center of the plate and not zero at the support. 

For the simply supported plate, the W nodal circles are closer to the edge 

of the plate compared with the corresponding nodal circles for the clamped 

plate. For the clamped plate it is observed that W is zero at the center 

and at the edge, whereas for the simply supported plate W is zero at the 

center and not zero at the edge. As in the case of the W nodes, the W 

nodal circles are closer to the edge of the plate for the simply supported 

plate compared with the corresponding nodal circles for the clamped plate. 
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From the profiles of the deflected plate sho'vn in figures 39-41, 

it is observed that the deflections predicted by the classical theory 

are generally smaller than the deflections obtained by using the improved 

theory. For a concentrated load the classical theory gives a finite de-

flection at the center, whereas according to the improved theory the 

deflection becomes infinite at the center. 

D. Response of Plate to Rapidly Applied Steady Loads (see figures 

42-58) 

The response curves are drawn through a minimum of 200 data points 

equally spaced along the abscissa. One hundred terms are taken in the 

modal series to obtain the response for the improved theory, whereas 

due to the more rapid convergence of the modal series for the classical 

theory, only 25 modes are considered for the response of the classical 

theory. For the disk mounted on a shaft~25 terms are included in the 

series expansions. Table XVI shows the response data from figures 

42-54, 57 and 58. The portions of the total response contributed by 

each mode for different cases of loading are given in tables XVII - XX. 

From the graphs and tables mentioned above, the following observations 

are made: 

1. The improved theory predicts a larger static deflection than does 

the classical theory for all types of loading and boundary conditions 

considered. The difference between the predictions of the two theories 

increases as the value of h is increased. 
a 

2. As in Reissner-Goodier theory [74, 77-81], for axisymmetrical load-

ing the static bending moments given by the improved and classical 

theories are identical. For unsymmetrical loading the improved theory 

will give a different bending moment than the classical theory. This 

is also the case in the Reissner-Goodier theory. 
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3. The maximum total displacement predicted by the improved theory is 

always greater than the corresponding value obtained by using the clas-

sical theory. Hence, in problems dealing with displacement analysis 

the improved theory is always to be preferred. The difference in the 

total displacements predicted by the two theories is found to become 

h greater for larger values of - . 
a 

4. The Williams-type modal series is found to converge rapidly (tables 

XVII -XX) so that only about 25 modes are required to insure an accuracy 

of the calculated results to two significant figures. However, to ob-

tain accuracy to at least three significant figures, it was found that 

at least one-hundred modes were required. 

5. For the cases considered, the classical theory gives a larger maxi-

mum bending moment at the outer edge of the plate, ~v-hereas, except for 

case 1, the improved theory gives larger maximum bending moment at the 

center of the plate (table XVI). 

6. For the cases where the load is uniformly distributed over a circu-

lar area, the bending moment response curves are found to be smoother 

than the curves for the other types of load distribution considered. 

This can be explained from tables XVIII-XX, wherein it is observed that 

for a load uniformly distributed over an area, compared with the other 

two types of distribution, only a small number of modes contribute sub-

stantially to the response. 

7. In general, the response predicted by the improved theory is slower 

(less cycles per unit time) than the response of the classical theory. 

This is evidently a consequence of the lower values of natural fre-

quencies predicted by the improved theory. 

8. Under the same loading conditions a thicker plate vibrates faster 
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than a thinner plate of the same radius. Also, a clamped plate is found 

to vibrate faster than a simply supported plate of the same dimensions 

under identical loading. 

E. Response of Plate to Pulse Loads (figures 59-65) 

These response curves are drawn through 200 data points, equally 

spaced along the time axis. In each case 20 modes are used in the series 

expansion. The maximum response data for a clamped plate are tabulated 

in table XXI. 

It is seen that the ramp-platform load with unit rise time has 

achieved a dynamic overshoot factor (ratio of maximum response to maxi

mum static response) of 1.935 compared to 1.945 for the step load. It 

is to be noted that if the responses of the four pulse loads are to be 

compared on the basis of equal input impulse, the response of the blast 

pulse must be doubled and the response of the half-sine pulse must be 

multiplied by rr/4. On this basis, for both the classical and the improved 

theories, the blast pulse causes the largest deflection, followed by the 

square pulse and the triangular pulse, with the half-sine pulse producing 

the least deflection. For the pulse loads, the maximum deflection pre

dicted by the improved theory is always larger than the corresponding 

maximum deflection given by the classical theory. 

F. Effect of Load Distribution and Duration of Pulse on the Response 

of Plates (see figures 66-72) 

The effect of changing the area of load distribution on the center 

deflection of a clamped circular plate is shown in figure 66 and table 

XXII. For a ring loading, figure 67 and table XXIII show the effect of 

changing the radius of the load ·on the deflection at the center. 100 

modes are used in the series expansions and the curves are drawn 
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through 200 equally spaced data points. Figures 68-72 and table XXIV 

show the variations of the center deflection of a clamped circular plate 

due to changes in the duration of the pulse for different pulse shapes. 

For these curves 20 modes and 240 equally spaced data points are used. 

It is seen that spreading the load over a larger area or over a 

larger circle about the center obviously reduces the center deflection, 

but increases the dynamic overshoot factor. It is also evident that for 

the same total load, increasing the radius of the loading circle for a 

ring load increases the overshoot factor by a greater amount than that 

produced by a corresponding radius increase for the load distributed over 

a circular area. These may be explained by the fact that as the load is 

removed farther from the center, the higher modes get a proportionately 

larger amount of the total energy input and thereby contribute more to 

the deflection at the center. 

For the same load distributed over a circular area or over a circle 

of the same radius or concentrated at the center, the first one achieves 

the lowest dynamic overshoot factor and the last one the highest. It 

can be observed from tables XVII -XX that in the last two cases of load

ing the higher modes contribute substantially greater amounts to the 

total response than in the first case of loading. So in general, it may 

be stated that the greater the contribution of the higher modes of 

vibration to the total response, the higher will be the dynamic over

shoot factor, the less smooth the response curves and the slower the 

convergence of the modal series. 

Table XXIV and figures 68-72 show that on the basis of equal input 

impulse, for the durations considered, increasing the duration of the 

pulse or the rise time of the load reduces the dynamic overshoot factor, 
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the highest reduction occuring for the half-sine pulse and the lowest 

for the blast pulse. It is also observed that reducing the duration 

of the pulse increases the frequency of the resulting vibration of the 

plate. Horeover, for a pulse of longer duration, it is found that the 

deflection response curves are smoother than those for shorter pulse 

durations. It is to be expected that for shorter pulses, the higher 

modes contribute a substantially larger amount to the total response 

than they do for pulses of longer durations. Also it is reasonable to 

conclude that if the duration of the pulse is reduced to zero (an im-

pulse) the contribution of the higher modes becomes so predominant that 

the question of convergence of the modal series will be in doubt or the 

series may not converge at all (see reference 9, p. 25 for a similar 

statement on beam response). 

For pulse loads of very short durations figure 73 shows that on 

the basis of equal input impulse, the deflection response is almost 

independent of the duration of the pulse and the shape of the pulse. 

G. Acceleration Response of the Center of Plate under Pulse Loads 

(see figures 74-78 and table XXV) 

The response curves shown are drawn through a minimum of 200 data 

points, equally spaced along the time axis. 50 modes are considered 

for the series expansions. 

For the displacement of the plate, we have [see equation (8.79)] 

q.(T) 
J. 

cos n. T 
1. 

Differentiating this twice with respect to time, one obtains 

q. (T) 
J. 

cos Qi T 

rry 

(11.1) 

(11. 2) 



The total acceleration response is given by 

00 

W(R,T) = w (R,T) + L W.(R)~iiCT) 
s . 1 ~ 

~= 
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(11.3) 

Since equation (11.2) does not contain n: in the denominator as in 
~ 

equation (11.1) the convergence of the acceleration modal series will be 

much slower than that of the displacement modal series. Hence a larger 

number of modes must be considered to insure satisfactory accuracy in the 

results. The 50 modes used in this investigation for the acceleration 

modal series is found to give an accuracy of the results to only one 

significant figure. 

From table XXV it is seen that on the basis of equal input impulse 

the blast pulse produces the highest acceleration of the center of the 

plate, followed by the square and triangular pulses, with the half-sine 

pulse producing the least acceleration. It is further observed that for 

gradually rising loads (triangular, half-sine and ramp-platform) the 

acceleration curves are smoother compared with those obtained for sudden-

ly rising loads (blast and square pulses). 

H. Frequency Spectra for Constrained Plates (see figures 79-84 and 

tables XII-XV) 

The closed-form frequency equation is used in obtaining the resonance 

curves which are drawn through a minimum of 40 points. 

It is observed that attaching a concentrated mass to the center of 

the plate reduces the values of the resonant frequencies of the plate 

up to a certain mass ratio after which the frequencies remain nearly 

constant irrespective of the magnitude of the attached mass. On the 

other hand, attaching a spring to the center of the plate has the effect 

of increasing the frequencies of the plate up to a certain value of the 
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spring stiffness after which the frequencies are not greatly affected by 

an increase in the spring stiffness. For a very large mass or a very stiff 

spring attached to the center of the plate, the frequencies are almost ident-

ical and these frequencies can be shown to coincide with those of a plate 

fixed at the center. At higher modes of vibration, the effect of coupling 

between flexural and thickness-shear modes of vibration can be clearly 

seen in the frequency spectra. For modes which are affected by such coup

ling, the behavior of the response curves is found to be different from 

that of the low mode curves. Here, for a mass-loaded plate the frequencies 

are found to increase with an increase in mass ratio up to the point of 

coupling after which they maintain almost constant values for the remaining 

portion of the frequency spectrum. It is also seen that the frequencies 

calculated using the closed-form frequency equation are very close to the 

frequencies obtained using 20 modes in the series solution. Also the clas-

sical theory predicts higher frequency values than the improved theory. 

I. Impedance and Transmissibility of Plates with No Mass or Spring 

Loading (see figures 85-88) 

The impedance and transmissibility curves presented in this work are 

drawn through a minimum of 500 data points equally spaced along the 

frequency axis. 

Between zero frequency and the first resonance (low impedance point) 

it is seen that the impedance is almost entirely springlike: that is to 

say, I znl decreases essentially in proportion to frequency (see appendix 

E). Between the first resonance and the first antiresonance (high impe-

dance point) the impedance is almost entirely masslike in character and 

increases as the frequency increases. The impedance then becomes alter

nately springlike and masslike as the frequency increases through succes

sive antiresonant and resonant frequencies. This behavior is typical of 
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any continuous system such as string, rod or beam (see reference 67, p. 

107). The figures show that the antiresonances occur approximately midway 

between successive resonances. 

The transmissibility across the system exhibits a series of resonant 

peaks which can be shown to coincide in frequencies with the resonant 

frequencies of the system. The mean level of transmissibility is seen to 

be greater than 1, the troughs of the curves (low transmissibility points) 

showing a value of approximately 2, with this value falling off after the 

first few resonances. 

J. Impedance and Transmissibility of Plates with Mass and Spring Loading 

(see figures 89-98) 

The curves show that by attaching a mass to the center of the plate 

the resonant frequencies of the system are moved to lower values by an 

amount that will depend on the magnitude of the attached mass but will 

not exceed the original frequency separation of the particular mode of 

vibration and the next lower antiresonance. The fundamental resonant fre

quency is not restricted in this way because there is not a further anti

resonance at a lower frequency. After the first few modes, it is seen 

that the resonant frequencies almost approach the next lower antiresonances, 

the portion of the impedance curve between each resonance and the next 

higher antiresonance lying almost parallel to the abscissa for almost the 

entire bandwidth. It is also observed that the antiresonant frequencies 

are essentially unchanged by the presence of the loading mass. 

Attaching a spring to the center of the plate is seen to move the 

resonant frequencies of the system to higher values by an amount that 

will not exceed the original frequency separation of the particular mode 

of vibration and the next higher antiresonance, the proportionate in

crease of frequency decreasing at higher modes of vibration. Between 
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zero frequency and the first resonance, the impedance behaves almost 

springlike. Between the first resonance and the first antiresonance, 

the impedance is predominantly masslike and the increase is very sudden. 

As in the case of mass-loaded plates, the antiresonant frequencies of 

the spring-loaded plates are not affected by the presence of the spring 

loading. 

The transmissibility of a mass-loaded plate decreases rapidly with 

frequency following the first plate resonance, in contrast to the trans

missibility of the unloaded plate. The maxima-in the transmissibility 

curves are found to occur at lower frequencies than the corresponding 

maxima for the unloaded plate. This is clearly a consequence of the 

fact that an unloaded plate has higher resonant frequencies than a mass

loaded plate. 

It is seen that the mean level of transmissibility for a mass

loaded plate is much lower than that for an unloaded plate, the propor

tionate decrease in mean level values being higher at higher magnitudes 

of the attached mass. The troughs of the transmissibility curves are 

found to fall off uniformly after the first resonance. A spring-loaded 

plate also exhibits a lower level of transmissibility compared to an 

unloaded plate, but the troughs of each transmissibility curve are found 

to rise successively for the first few modes after which they maintain 

a constant value. The maxima in the transmissibility curve occur at 

higher frequencies than the corresponding maxima for the unloaded plate. 

From figure 97 it can be seen that the main factor contributing to 

a lower transmissibility level is the mounted mass and that the higher 

resonant frequencies of the system are not greatly affected by the mag

nitude of the attached mass or spring. 
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K. Transmissibility of Plates to which Dynamic Absorbers are Attached 

(see figures 99-106) 

The curves show that a particular frequency of the plate can be 

isolated by mounting a dynamic absorber at the center of the plate, the 

absorber being tuned in the neighborhood of that frequency. It is to 

be noted that in isolating a certain frequency by a dynamic absorber, 

this resonant frequency is replaced by two resonances, one on each side 

of it so that there will be one more resonance in the system than in a 

similar system without the absorber. The pronounced maxima of trans

missibility that occur at the resonant frequencies at which the absorbers 

are tuned are replaced by broad bands of relatively low transmissibility. 

For a plate with no mass or spring loading at the center, this band of 

low transmissibility level extends almost equally to both sides of the 

resonant frequency which is isolated by the absorber (see figures 99-

102), the bandwidth being greater for larger absorber masses. Thus the 

bandwidth of low transmissibility level about a certain frequency can 

be controlled by proper choice of the absorber mass. This is of special 

interest in designing foundations for machines which operate over a cer

tain range of frequencies. Isolating a particular resonance is also 

found to change the values of the resonant frequencies which are close to 

it on either side of the transmissibility curve. 

For a mass-loaded plate, the fundamental resonant frequency can be 

isolated satisfactorily by an absorber which is tuned to that frequency, 

the isolated low transmissibility level bandwidth being greater for 

larger absorber masses (figure 103). But as is evident from figures 104 

and 105, if the load mass ratio is large (A = 5 in these figures) the 

higher resonant frequencies cannot be isolated completely by a simple 

undamped dynamic absorber. This is true because for large load masses 
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the second and higher resonant frequencies are not appreciably changed 

by changes in the values of the load masses so that one of the two 

resonances by which the absorber replaces the original resonance still 

coincides with it. However, it is seen that the transmissibility level 

can be considerably reduced by using the proper absorber mass. More

over, since all dynamic absorbers used in practice will have some damp

ing present in them, the amplitude of transmissibility at the resonance 

is considerably reduced by using the absorber, even though the position 

of resonance is not appreciably shifted by it. For lower values of load 

masses, the higher resonance frequencies are more sensitive to changes 

in the magnitude of the load masses and hence the positions of higher 

resonances can also be shifted considerably by the use of dynamic ab

sorbers (see figure '106). 

The impedance and transmissibility curves for the classical theory 

behave in a manner similar to those of the improved theory, except that 

in the case of the classical theory the resonant frequencies occur at 

higher values of frequencies than the corresponding resonant frequencies 

for the improved theory. Moreover, the classical theory predicts a 

slightly higher mean transmissibility level for a given frequency range, 

compared to the improved theory. 
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XII. CONCLUSIONS AND RECOMMENDATIONS 

The main objectives of this investigation outlined in Chapter III 

have been achieved. Using both the improved and classical theories, 

natural frequencies and mode shapes are obtained for circular plates 

under different boundary conditions. Extensive frequency spectra have 

been compiled for various cases of axisymmetric and one diametral node 

vibrations. The effect of Poisson's ratio on the natural frequencies of 

plates is also presented in the form of graphs and tables. These will 

enable the use of the frequency spectra to be extended to materials with 

Poisson's ratio in the range 0.25 to 0.35. In designing circular plates 

to resonate at fixed frequencies, these graphs and tables should be of 

considerable value. 

The Williams-type normal-mode solution has been successively applied 

to a wide variety of transient loading problems. The results are pre

sented mostly in the form of graphs for quick visualization and ease of 

comparison between the results of the two theories. Moreover, nondimen

sional quantities are used for more generality of the results. Even 

though circular plate structures have limited use in practice, these re

sults are still of great value due to the fact that the graphs and 

tables provide an indication of the amount of error involved in using 

the classical theory in place of the improved theory for the dynamic re

sponse of plates of other geometry. Also, from a knowledge of the dynamic 

overshoot factor obtained in this investigation for different types of 

loading and boundary conditions the dynamic response of similar systems 

can be predicted without appreciable error from a knowledge of the static 

response of the system. 
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In addition to two series forms of frequency equations, a closed

form frequency equation has been developed for the frequencies of circu

lar plates loaded at the center with arbitrary load impedances. Using 

this equation frequency spectra have been compiled for mass-loaded and 

spring-loaded plates, for both the classical and improved theories. 

These spectra should be of considerable value in the analysis of noise 

emitted from loaded plate structures and in devising means to reduce or 

isolate the noise. 

Treating the plate as a foundation structure, closed-form expressions 

have been derived for the impedance and transmissibility of plates loaded 

and driven at the center and using these expressions impedance and trans

missibility curves have been presented for various combinations of load 

mass ratio, absorber mass ratio and spring stiffness. These graphs will 

serve to give an insight into the behavior of the circular plate as a 

foundation structure and thereby assist in the design and vibration iso

lation of plates used as machine foundations. It should be noted that 

in view of the dual significance of the expression for transmissibility 

[see equation (E.6)] the transmissibility curves can be used to predict 

the motion transmitted to a machine from the vibration of the floor or 

alternately the force transmitted from a machine to the floor. 

One of the main objectives of this investigation has been an evalu

ation of the improved theory compared to the classical theory. Regarding 

this, the following conclusions can be drawn on the basis of the results 

of this study: 

1. For correct determination of the resonant frequencies of plates the 

improved theory which takes into account the effect of transverse shear 

and rotary inertia should always be used. The classical theory is found 
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to give rather good results only for very thin plates and then for only 

the first few modes of vibration. For plates loaded with masses or 

springs the improved theory is to be preferred for similar reasons. 

2. Since the deflections predicted by the improved theory are always 

higher than those given by the classical theory, for problems concerned 

with dynamic deflections, the improved theory is preferable to classical 

theory. 

3. In many cases the dynamic bending moments given by the classical theory 

are found to be greater than those obtained on the basis of the improved 

theory. In those cases the classical theory is conservative. Extreme 

caution should be exercised in using the classical theory for the evalu

ation of dynamic bending moment, since in certain cases the bending mo

ments predicted by the classical theory are much lower than those ob

tained using the improved theory. 

4. Since the mean transmissibility levels predicted by the classical 

theory are generally slightly higher than those of the improved theory, 

in cases concerned with the determination of the force transmitted from 

a machine to the floor or the motion transmitted from the floor to the 

machine, the classical theory can be used to advantage. 

5. In the design of plates as foundations for machines the classical 

theory should not be used as the frequencies predicted on the basis of 

this theory are greatly in error compared to those obtained by the im

proved theory. 

In spite of the general principles outlined above, for actual 

dynamic response problems one should choose between the two theories by 

considering the importance of the problem and the degree of accuracy 

desired in the results. In general, computations using the improved 
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theory are more difficult and time consuming and these may not be 

justified unless a high degree of accuracy in results is desired for 

the problem under investigation. 

The investigations in this work have been mainly devoted to the 

study of axisymmetrical vibrations of uniform circular plates under axi

symmetric loading. It is felt that the same procedure can be extended to 

nonuniform plates as well as arbitrarily placed loads. Only clamped cir

cular plates driven at the center have been considered in detail in the 

study of impedance and transmissibility. But the procedure can be read

ily applied to other boundary conditions as well. It may also be possible 

to obtain similar solutions for the impedance and transmissibility of 

plates under other types of axisymmetric distribution of the driving 

force. Even though the method of including internal damping has been 

treated in general, no numerical results for damped plate are presented 

in this investigation, since such detailed treatment of damping is con

sidered to be beyond the scope of this work. If desired, results with 

damping considered can be obtained by treating o as a complex quantity 

as explained in appendix F. Furthermore, the improved methods and pro

cedures established in this investigation can be used for the analysis 

of many other types of plate vibration problems including the effect of 

transverse shear and rotary inertia. 
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TABLE I 

First 100 Natural Frequencies of Clamped Circular Plate, h = .125 
a 

(Mindlin's Theory, v = .3, k2 = .8224 

0.3534 30.281 56.884 84.290 

1.2622 30.829 57.839 85.032 

2.5447 32.062 59.515 86.716 

4.0464 33.490 59.908 87.373 

5.6742 33.857 61.243 88.419 

7.3746 35.512 62.837 90.100 

9.1162 36.356 63.018 90.462 

10.8797 37.268 64.645 91.806 . 

12.6526 38.924 65.928 93.454 

14.4236 39.258 66.365 93.584 

15.4812 40.704 68.045 95.193 

16.192 42.053 68.981 96.615 

16.806 42.464 69.757 96.900 

17.967 44.134 71.440 98.578 

18.605 45.002 72.038 99.716 

19.761 45.872 73.151 100.278 

20.698 47.546 74.825 101.962 

21.557 47.968 75.108 102.815 

22.967 49.291 76.545 103.660 

23.378 50.837 78.110 105.345 

25.025 51.068 78.282 105.917 

25.555 52.706 79.937 107.043 

26.824 53.872 81.209 108.724 

28.080 54.435 81.646 109.023 

28.615 56.116 83.328 110.426 
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TABLE II 

First 100 Natural Frequencies of Clamped Circular Plate, ~ = .25 
a 

(Mindlin's Theory, v = .3, k2 = 8.224) 

0.6355 29.547 56.692 83.725 

1.9668 30.315 57.989 85.410 

3.5666 31.266 58.390 86.055 

5. 2722 32.945 60.073 87.100 

7.0146 33.357 61.101 88.785 

8.5087 34.665 61.768 89.182 

8.8355 36.296 63.453 90.476 

10.4224 36.455 64.214 92.156 

10.7352 38.064 65.147 92.314 

12.2957 39.437 66.831 93.851 

13.066 39.773 67.330 95.426 

14.081 41.451 68.525 95.547 

15.617 42.520 70.207 97.226 

15.919 43.156 70.451 98.561 

17.538 44.840 71.903 98.916 

18.510 45.606 73.535 100.601 

19.293 46.541 73.620 101.693 

20.967 48.225 75.281 102.290 

21.421 48.700 76.679 103.975 

22.720 49.926 76.975 104.824 

24.260 51.601 78.658 105.664 

24.500 51.805 79.804 107.349 

26.138 53.310 80.349 107.955 

27.294 54.868 82.034 109.038 

27.866 55.023 82.929 110.732 
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TABLE III 

First 100 Natural Frequencies of Clamped Circular Plate, h = .5 
a 

(Mindlin's Theory, v = .3, k2 = .8224) 

0.9618 29.371 56.834 83.823 

2.4978 29.832 57.496 85.508 

4.1876 31.516 58.526 85.718 

5.4954 32.486 60.211 87.195 

5.9950 33.209 60.630 88.846 

7.6565 34.894 61.899 88.890 

8.1982 35.605 63.583 90.568 

9.4300 36.587 63.766 91.992 

10.9617 38.271 65.273 92.255 

11.2202 38.727 66.890 93.940 

12.855 39.963 66.967 95.130 

13.996 41.645 68.646 95.626 

14.581 41.854 70.032 97.312 

16.263 43.339 70.334 98.269 

17.036 44.958 72.019 98.998 

17.975 45.043 73.168 100.684 

19.657 46.715 73.706 101.408 

20.104 48.100 75.299 102.370 

21.365 48.406 76.305 104.056 

23.031 50.090 77.078 104.547 

23.203 51.231 78.764 105.742 

24.752 51.779 79.442 107.427 

26.255 53.464 80.451 107.686 

26.460 54.363 82.136 109.114 

28.135 55.152 82.580 110.794 
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TABLE IV 

First 100 Natural Frequencies of Simply Supported Circular Plate, h = .125 
a 

(Mindlin's Theory, v = .3, k2 = .8224) 

0.1757 29.443 56.125 83.331 
0.9928 30.318 57.832 85.027 
2.2560 32.058 58.380 85.828 
3.7850 32.163 59.537 86.722 
5.4099 33.794 61.241 88.417 
7.2079 34.942 61.395 88.908 
8.9931 35.526 62.945 90.111 

10.7935 37.255 64.422 91.806 
12.5974 37.770 64.647 91.890 
14.3988 38.982 66.349 93.499 
15.065 40.637 67.458 95.080 

' 16.058 40.705 68.050 95.193 
16.196 42.426 69.750 96.887 
17.635 43.538 70.503 98.171 
17.984 44.145 71.449 98.580 
19.606 45.861 73.148 100.272 
19.765 46.466 73.556 101.265 
21.540 47.576 74.847 101.965 
21.839 49.289 76.544 103.658 
23.307 49.417 76.616 104.362 
24.254 51.000 78.242 105.350 
25.068 52.389 79.681 107.042 

26.799 52.710 79.939 107.462 
26.825 54.419 81.635 108.734 

28.573 55.377 82.752 110.425 
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TABLE V 

First 100 Natural Frequencies of Simply Supported Circular Plate, h = .25 
a 

(Mindlin's Theory, v = .3, k2 = .8224) 

0.3389 28.890 56.438 83.724 

1.6782 29.556 56.693 84.489 

3.3789 31.260 58.384 85.412 

5.1675 31.819 59.544 87.100 

6.9721 32.962 60.075 87.614 

7.8139 34.663 61.765 88.788 

8.7684 34.858 62.654 90.476 

9.5009 36.362 63.455 90.741 

10.5490 37.914 65.145 92.163 

11.7854 38.060 65.767 93.851 

12.315 39.758 66.835 93.869 

14.068 40.981 68.525 95.539 

14.360 41.454 68.833 96.997 

15.812 43.149 70.214 97.226 

17.098 44.059 71.903 98.914 

17.548 44.844 72.001 100.126 

19.276 46.538 73.592 100.601 

19.938 47.145 75.120 102.288 

20.990 48.232 75.281 103.257 

22.717 49.925 76.970 103.975 

22.848 50.237 78.242 105.663 

24.431 51.617 78.659 106.387 

25.806 53.310 80.347 107.350 

26.142 53.335 81.365 109.037 

27.850 55.001 82.035 109.519 
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TABLE VI 

First 100 Natural Frequencies of Simply Supported Circular Plate, ~ = .5 a 

(Mindlin's Theory, v = .3, k2 = .8224) 

0.6620 28.136 55.926 83.823 

2.3473 29.827 56.839 84.146 
4.1517 30.924 .58.526 85.509 

4.4043 31.517 59.059 87.195 

5.9381 33.207 60.212 87.283 

6.7904 34.039 61.899 88.882 

7.6905 34.896 62.193 90.421 

9.4230 36.585 63.586 90.568 

9.5688 37.158 65.270 92.254 

11.1456 38.269 65.327 93.559 

12.498 39.963 66.959 93.940 

12.859 40.281 68.462 95.626 

14.566 41.651 68.646 96.698 

15.504 43.339 70.332 97.312 

16.270 43.406 71.598 98.998 

17.970 45.027 72.019 99.836 

18.551 46.534 73.705 100.684 

19.668 46.715 74.734 102.370 

21.364 48.402 75.392 102.975 

21.625 49.663 77.078 104.056 

23.058 50.090 77.871 105.742 

24.714 51.777 78.764 106.114 

24.752 52.794 80.450 107.428 

26.444 53.464 81.008 109.114 

27.815 55.152 82.137 109.253 
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TABLE VII 

First 25 Natural Frequencies of Clamped Circular Plate, Classical Theory, v = .3 

h/a = .125 h/a = .250 h/a = .50 

0.3686 o. 7372 1. 4744 

1.4351 2.8702 5.7403 

3.2152 6.4305 12.8610 

5.7079 11.4159 22.8318 

8.9130 17.8260 35.6522 

12.8305 25.6610 51.3220 

17.4602 34.9204 69.8408 

22.8022 45.6045 91.2090 

28.8565 57.7130 115.4262 

35.6230 71.2462 142.4926 

43.102 86.204 172.408 

51.293 102.586 205.172 

60.196 120.393 240.786 

69.812 139.624 279.250 

80.140 160.280 320.561 

91.180 182.361 364.722 

102.933 205.866 411.732 

115.398 230.797 461.592 

128.575 257.150 514.300 

142.464 284.929 569.858 

157.066 314.132 628.265 

172.380 344.760 689.520 

188.406 376.813 753.626 

205.144 410.290 820.580 

222.595 445.191 890.382 
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TABLE VIII 

First 25 Natural Frequencies of Simply Supported Circular Plate, 
Classical Theory, v = .3 

h/a = .125 h/a = .250 h/a = .50 

0.1780 0.3561 0.7123 

1.0724 2.1447 4.2896 

2.6757 5.3516 10.7034 

4.9910 9.9821 19.9644 

8.0183 16.0370 32.0738 

11.7580 23.5160 47.0322 

16.2090 32.4197 64.8395 

21.3740 42.7480 85.4958 

27.2502 54.5005 109.0010 

33.838 67.6777 135.3555 

41.139 82.279 164.559 

49.152 98.305 196.611 

57.878 115.756 231.513 

67.316 134.632 269.264 

77.466 154 .. 931 309". 864 

88.328 176.656 353.313 

99.902 199.805 399.611 

112.189 224.379 448.758 

125.188 250.377 500.754 

138.899 277.799 555.599 

153.323 306.647 613.294 

168.459 336.919 673.838 

184.307 368.615 737.230 

200.868 401.736 803.472 

218.140 436.281 872.562 
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TABLE IX 

Frequency versus Poisson's Ratio for Free Circular Plate, 

h/a = .125, Mindlin's Theory 

(Values given are UJ:l. J1) 
Poisson's Mode Number 
Ratio 

1 2 3 4 5 

.25 0.32326 1.30132 2.70902 4.36562 6.15856 

.26 0.32518 1.30488 2.71331 4.36926 6.15880 

.27 0.32715 1.30860 2. 71690 4.37239 6.15977 

.28 0.32812 1.31250 2.71287 4.37604 6.16146 

.29 0.33019 1. 31553 2. 72720 4.38128 6.16283 
• 30 0.33231 1.31979 2.73183 4.38497 6.16496 
.31 0.33448 1. 32423 2.73682 4.39028 6.16785 
.32 0.33565 1. 32782 2.74324 4.39510 6.17045 
.33 0.33793 1.33265 2.74899 4.40051 6.17385 
• 34 0.34027 1. 33662 2.75513 4.40651 6.17698 
.35 0.34161 1. 34187 2.76167 4.41313 6.18095 

Poisson's Mode Number 
Ratio 6 7 8 9 10 

.25 8.01862 9.90761 11.79556 13.65562 15.41964 

.26 8.01567 9.89841 11.78013 13.63285 15.38615 

.27 8.01258 9.89032 11.76494 13.61049 15.35321 

.28 8.01000 9.88229 11.75104 13.58854 15.32083 

.29 8.00709 9.87433 11.73739 13.56806 15.28920 

.30 8.00575 9.86750 11.72401 13.54698 15.25778 

.31 8.00432 9. 86077 11.71092 13.52635 15.22608 

.32 8.00281 9.85415 11.69811 13.50724 15.19499 

.33 8.00228 9.84871 11.68368 13.48756 15.16450 

.34 8.00169 9.84341 11.67450 13.46837 15.13357 

.35 8.00212 9.83827 11.66373 13.44969 15.10328 
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TABLE X 

Frequency versus Poisson's Ratio for Free Circular Plate 

h/a = .25, Mindlin's Theory 

(Values given are waj f'> 

Poisson's Mode Number 
Ratio 

1 2 3 4 5 

• 25 0.61038 2.14718 3.97626 5.84665 7.60034 
.26 0.61308 2.14993 3.97573 5.84087 7.58589 
.27 0.61587 2.15296 3.97565 5.83573 7.57119 
.28 0.61875 2.15625 3.97604 5.83020 7.55729 
.29 0.62172 2.15981 3.97690 5.82429 7.54420 
.30 0.62478 2.16366 3.97719 5.82008 7.53088 
.31 0.62793 2.16779 3.97902 5.81549 7.51732 
.32 0.63119 2.17116 3.97818 5.81053 7.50461 

.33 0.63455 2.17589 3.98101 5.80626 7.49167 

.34 0.63801 2.17986 3.98224 5.80269 7.47853 

.35 0.64158 2.18414 3.98399 5. 79877 7.46624 

Poisson's Mode Number 
Ratio 

6 7 8 9 10 
.25 8.78702 9.65044 10.60681 11.81105 12.67240 
.26 8.76235 9.63123 10.58192 11.78945 12.64798 
.27 8.73647 9.61198 10.55604 11.76806 12.62488 

.28 8.71250 9.59375 10.53229 11.74791 12.60312 

.29 8.68732 9.57549 10.50754 11.72276 12.58168 

.30 8.66407 9.55721 10.48390 11.70829 12.56264 

.31 8.64066 9.54102 10.46136 11.68883 12.54395 

.32 8.61816 9.52484 10.43890 11.67067 12.52668 

.33 8.59551 9.50866 10.41652 11.65171 12.51190 

.34 8.57271 9.49357 10.39529 11.63303 12.49753 

.35 8.55191 9.47851 10.37523 11.61463 12.48465 
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TABLE XI 

First 25 Natural Frequencies of Disk Mounted on a Shaft ~ = .125 
' a 

(Mindlin's Theory, v = .3, S = .2, k2 = .8224) 

Axisymmetric vibration Vibration with one diametral 
node 

0.181 0.164 

1.008 1.075 

2.601 2.674 

4.506 4.581 

6.582 6.653 

8.731 8.789 

10.898 10.953 

13.017 13.065 

14.932 14.910 

15.611 14.988 

16.865 15.289 

17.578 15.690 

19.057 16.077 

19.975 16.857 

21.473 17.045 

22.431 17.700 

24.110 18.238 

24.842 19.089 

26.846 19.658 

27.356 20.073 

29.289 21.166 

30.303 21.604 

31.666 22.471 

33.182 22.943 

34.330 24.190 



TABLE XII 

Frequencies of Clamped Circular Plate with Concentrated Mass 
Attached at the Center, h = .125 · 

a 

(Mindlin's Theory, A = 1, v = .3, k2 = .8224) 

Closed-form solution 20 modes series solution 

0.134 0.128 

0.790 0. 731 

1.887 1. 747 

3.289 3.090 

4.859 4.635 

6.527 6.303 

8.252 8.043 

10.007 9.828 

11.779 11.637 

13.567 13.460 

14.944 15.248 

15.189 15.528 

15.523 16.721 

16.715 17.210 

17.167 18.490 

18.473 19.089 

18.989 20.522 

20.435 21.035 

20.921 22.615 

22.339 23.168 

23.113 

246 
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TABLE XIII 

Frequencies of Clamped Circular Plate with Spring Attached at the 
Center, h = .125 

a 
2 (Mindlin's Theory, K = 1, v = .3, k = .8224) 

Closed-form solution 20 modes series solution 

0.701 0.658 

1. 682 1.617 

2.933 2.900 

4.359 4.390 

5. 913 6.016 

7.546 7. 717 

9.234 9.465 

10.953 11.238 

12.689 13.023 

14.431 14.805 

15.479 15.500 

16.176 16.529 

16.804 16.885 

17.934 18.290 

18.589 18.723 

19.712 20.165 

20.686 20.790 

21.489 22.063 

22.935 23.088 

23.324 24.308 
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TABLE XIV 

Frequencies of Constrained Clamped Circular Plate, Classical Theory 

h (- = .125, v = .3, Closed-Form Solution) a 

Mass attached to center Spring attached to center 

Mass ratio = 1 Spring constant = 1 

0.135 0.751 

0.857 1.954 

2.258 3.744 

4.388 6.181 

7.235 9.322 

10.789 13.183 

15.065 17.767 

20.049 23.073 

25.747 29.089 

32.149 35.827 

39.255 43.262 

47.055 51.389 

TABLE XV 

Frequencies of Two Identical Circular Plates Rigidly Connected at 

the Centers, h = .125 a 
2 (Mindlin's Theory, v = .3, k = .8224, Closed-Form Solution) 

0.757 17.178 

1.867 18.475 

3.275 18.989 

4.848 20.438 

6.517 20.922 

8.242 22.341 

9.990 23.113 

11.765 24.157 

13.540 25.533 

15.271 25.945 

15.530 27.703 

16.717 28.102 



249 

TABLE XVI 

Maximum Response Under Suddenly Applied Steady Loads 

Maximum Maximum 
Figure Static Response Total Response 
Number 

Mindlin's Classical Mindlin's Classical 
Theory Theory Theory Theory 

42 14.281 13.238 27.763 25.404 
43 12.442 11.676 24.790 22.637 
44 37.053 36.010 71.932 69.064 
45 34.479 33.713 67.942 65.055 
46 4.352 3.309 8.541 6.540 
47 1.870 0.827 3.615 1.641 
48 111.382 111.382 206.004 211.950 
49 72.899 72.899 170.954 156.610 
50 170.588 170.588 330.518 322.331 
51 130.194 130.194 267.578 266.232 
52 59.205 59.205 144.893 159.189 
53 57.295 57.295 136.566 140.828 
54 61.115 61.115 169.938 214.873 
57 25.523 * 50.405 * 
58 223.501 * 523.484 * 

*Not investigated 
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TABLE XVII 

Relative Amplitudes of Response Contributed by Different Modes, 

Displacement at the Center for Case 1 - Section VIII.C 

Mode Mindlin's Classical 
Number Theory Theory 

1 12.63977 11.92512 

2 1.30685 1.08945 

3 0.30258 0.20426 

4 0.06852 0.03477 

5 0.00026 -0.00194 

6 -0.01673 -0.00684 

7 -0.01504 -0.00477 

8 -0.00772 -0.00163 

9 -0.00081 0.00007 

10 0.00301 0.00066 

11 0.00289 0.00058 

12 0.00274 0.00026 

13 0.00144 -0.00001 

14 0.00143 -0.00014 

15 0.00122 -0.00014 

16 -0.00000 -0.00007 

17 0.00030 0.00000 

18 -0.00114 0.00004 

19 -0.00062 0.00005 

20 -0.00105 0.00002 
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TABLE XVIII 

Relative Amplitudes of Response Contributed by Different Modes, 

Bending Moment at the Center for Case 1 - Section VIII.C 

Mode Mindlin's Classical 
Number Theory Theory 

1 70.10714 70.82226 

2 28.34576 28.30638 

3 12.36873 11.82775 

4 4.17434 3.57586 

5 0.02102 -0.31246 

6 -1.60917 -1.58312 

7 -1.66175 -1.40876 

8 -0.94778 -0.66993 

9 -0.10894 0.04038 

10 0.42856 0.42761 

11 0.43715 0.45440 

12 0.44883 0.24799 

13 -0.09057 -0.01116 

14 0.26642 -0.18185 

15 -0.14305 -0.20915 

16 -0.00156 -0.12203 

17 -0.06230 0.00437 

18 -0.23883 0.09627 

19 0.08411 0.11580 

20 -0.29112 0.07027 
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TABLE XIX 

Relative Amplitudes of Response Contributed by Different Modes, 

Bending Moment at the Center for Case 2 - Section VIII.C 

Mode Mindlin's Classical 
Number Theory Theory 

1 65.14060 65.70799 

2 18.66241 18.34582 

3 1.34443 0.63056 

4 -5.77673 -6.04773 

5 -6.79968 -6.36267 

6 -4.35281 -3.51120 

7 -0.73349 -0.08047 

8 2.11887 2.18938 

9 3.13660 2.64459 

10 2.30506 1.62078 

11 0.78654 0.02633 

12 0.42794 -1.20052 

13 -0.03594 -1.52477 

14 -1.28129 -0.97513 

15 0.15649 -0.01221 

16 -2.06711 0.78250 

17 0.46605 1.01999 

18 -1.58004 0.66750 

19 0.32331 0.00676 

20 -0.09159 -0.56107 
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TABLE XX 

Relative Amplitudes of Response Contributed by Different Modes, 

Bending Moment at the Outer Edge for Case 3 - Section VIII.C 

Mode Mindlin's Classical 
Number Theory Theory 

1 -78.53144 -79.13867 

2 25.96948 27.23114 

3 -13.47175 -14.92794 

4 8.04204 9.70897 

5 -5.13127 -6.95193 

6 3.36823 5.29060 

7 -2.22353 -4.19912 

8 1.43779 3.43735 

9 -0.86122 -2.88097 

10 0.34560 2.45986 

11 0.27456 -2.13239 

12 0.08638 1. 97114 

13 -0.61689 -1.65951 

14 -0.27666 1.48512 

15 0.90120 -1.33914 

16 0.09838 1. 21551 

17 -1.00445 -1.10999 

18 0.21978 1.01885 

19 1.35704 -0.93946 

20 -0.82202 0.86983 



254 

TABLE XXI 

Maximum Response Data for Ramp-Platform and Pulse Loads 

from Figures 42 and 59-63 

(On the basis of equal input impulse for pulse loads) 

Maximum Response Dynamic 
Loading Overshoot Factor 
Description 

Hindlin's Classical Mindlin's Classical 
Theory Theory Theory Theory 

Step Function 27.763 25.404 1.945 1.920 

Ramp-Platform 27.661 25.206 1.935 1. 900 

Blast Pulse 6.477 5.764 0.450 0.435 

Triangular 6.058 5.503 0.424 0.416 Pulse 

Square Pulse 6.264 5.657 0.438 0.427 

Half-Sine 6.000 5.450 0.420 0.412 Pulse 

TABLE XXII 

Maximum Response Data for Different Areas of Load Distribution 

from Figure 66 

Radius of Static Total Dynamic 
Load Response Response Overshoot 

Factor 

0.10 16.362 31.005 1.895 

0.25 14.281 27.763 1.940 

0.50 10.426 20.893 2.005 

0.80 6.162 12.718 2.060 
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TABLE XXIII 

Maximum Response Data for Different Radii of Load Distribution 

from Figure 67 

Radius of Static Total Dynamic 
Load Response Response Overshoot 

Factor 

0.10 15.695 30.083 1.910 

0.25 12.442 24.790 1. 980 

0.50 6.547 14.230 2.18 

0.80 1.259 3.235 2.56 

TABLE XXIV 

Maximum Response Data for Pulse Loads with Different Durations or 

Rise Time or 
Duration of 
Load 

1 

5 

10 

Blast 
Pulse 

22.897 

Rise Times from Figures 68-72 

Maximum Center Deflection 

Blast Triangular Square Half-Sine Ramp-
Pulse Pulse Pulse Pulse Platform 

Load 

3.223 6.058 6.264 7.615 27.763 

2.352 3.425 3.932 4.321 25.336 

1. 748 1.974 2.751 2.279 21.297 

TABLE XXV 

Maximum Acceleration Data from Figures 74-78 

(On the basis of equal input impulse for pulse loads) 

Triangular 
Pulse 

6. 775 

Square 
Pulse 

13.880 

Half-Sine 
Pulse 

5.540 

Ramp-Platform 
Load 

4.9585 
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XIII. APPENDICES 
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APPENDIX A 

Assumptions and Approximations Used in the Development of Mindlin's 
Theory of Plate Vibration 

The development of an exact solution for plate vibration is very 

difficult. The stresses vary over the thickness of the plate, and the 

problem is a three-dimensional one. For bodies having at least one 

small dimension, the usual procedure in elasticity theory is to reduce 

the number of variables in the differential equations of the system at 

the start by omitting certain variables considered to be unimportant 

and employing average values or restricted regions of others. In this 

way an approximate theory is formed in which some of the boundary con-

ditions are satisfied identically and some or all of the remaining ones 

may be satisfied exactly. Th~ classical plate theory, for example, 

simplifies the derivations considerably by neglecting the variations 

of the stresses over the thickness of the plate; the shear deformation 

and rotary inertia are also neglected. It also employs the Kirchoff 

hypothesis that (1) the linear elements of the plate initially perpen-

dicular to the middle surface remain straight and perpendicular to the 

deformed middle surface and suffer no extensions and (2) the transverse 

normal stresses are negligible in comparison with the other stress com-

ponents. The motion of the plate is described by the deflection of its 

central plane. 

In the improved theory due to Mindlin, the Kirchoff hypothesis is 

replaced by a more judicious alternative which takes into account the 

effect of transverse shear deformation. Details of the assumptions and 

approximations used in the development of Mindlin's theory will now be 

given. 
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Since the displacements ur, u6 , and uz are functions of (r,e,z), 

we may expand them in power series of z: 

u (r,e,z) 
r 

ue(r,e,z) 

u (r,e,z) z 

aur 1 
= u (r,e,O) + (~) z + -2 , 

r az z=O . 

au6 
2 

u6(r,6,0) 1 a ue 2 
(A.l) = + Caz-) z + 2T (--)z +-----

2 z=O az z=O 
2 

u (r,e,O) + 
auz 1 a uz 2 

= (-) z +- (--)z +- ----z az z=O 2! az2 
z=O 

Since we are interested in a small displacement theory, the most 

natural and simplest expressions for the displacements to include the 

effect of transverse shear deformation may be given by retaining only 

the first two terms in the above equations. Considering only bending 

of the plate, ur (r ,e ,0) and u6 (r ,e ,0) "tvhich are related to the stretching 

of the plate can be dropped from the above equations. In plates, the 

component of the strain in the thickness direction is small compared to 

the strains in the other directions and is, therefore, neglected from 

the last of the above equations. Hence for the small deflection theory 

of bending of circular plates, we have 

u (r,e,z) 
r 

au 
= z(~) = zljl (r,6) 

az z=O r 
aue 

= zCaz-) .= ztj16 (r,e) 
z=O 

u (r,e,z) = u (r,e) = w(r,e) z z 

Equations (A.2) state that the linear elements perpendicular to 

the undeformed middle surface remain straight and suffer no strains 

(A. 2) 

although they are no longer perpendicular to the deformed middle surface. 

The functions ur and u6 can be considered as the Taylor series repre

sentation up to the linear terms of the exact solution. The function 

u (r,e,z) must also depend on z. Because we neglect the z-dependence z 
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u and use only the linear terms in the expressions for u and u8 , 
z r 

we have to make certain corrections in the expressions for the plate-

stress components to make the results comparable to those of the exact 

theory. 

In plates, the change in thickness because of load on the plate is 

of no importance. This change and, consequently, the component of the 

strain in the thickness direction is usually eliminated. (In fact, 

this is the standard procedure for plate and shell computations). 

Eliminating E , we obtain equations (4.10). In view of equations (4.1), 
z 

equations (4.10) yield 

E 
[IE zdz v!E 8zdz] 

\) 
zdz M = + + -- fcr r 1-v 2 r 1-v z 

E 
[viE zdz + JE 8zdz] 

\) 

Me = + l fcr zdz 
1-v 2 r -\) z 

(A.3) 

Qr = k2G fyr 2 dz 

2 
Qe = k G fy 82dz 

where 
aur dw 

=--+-az ar 
aue aw 

Yez = ~ + rae 

(A. 4) 

If the plate surfaces are free of normal load, cr is zero at the 
z 

surfaces and small as compared to crr and o8 everywhere else. But even 

if the plate is loaded, cr will be relatively small. The contribution z . 

of cr , which is represented by the last terms in the first two of equa
z 

tions (A.3) will be a very small quantity as cr does not change sign over z 

the thickness of the plate and can therefore be neglected from equations 

(A.3). This procedure reveals that only a linearly weighted, average 

effect of cr is neglected, rather than cr itself as is done in the z z 

classical theory. 



260 

k2G is identical with the shear modulus G if the exact expression 

for yrz and Yez are used in the integrals of equat~ons (A.3). But the 

exact solution is not available and we are replacing ur and u6 by their 

linear approximations and neglecting the z-dependence of u • To com-z 

pensate for the error due to these approximations and assumptions, G is 

2 2 replaced by k G where k can be determined by comparing the present solu-

tion with the exact solutions that have been derived for special cases 

(see appendix B). 
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APPENDIX B 

Comparison of the Two-Dimensional Classical and Mindlin's 
Theories of Plate Vibration to the Three-Dimensional Theory 

The classical Poisson-Kirchoff plate theory has served for many 

years as the accepted mathematical model to be used for the calculation 

of frequencies, mode shapes and dynamic response under applied loads. 

However, in the course of exploring the validity and limitations of 

this model, certain important deficiencies were discovered. In particu-

lar: (1) Because the basic partial differential equation of motion is 

of the fourth order, only two boundary conditions can be imposed at an 

edge of the plate to satisfy the requirements of mathematical consistency. 

In some cases, this gives rise to situations which are contrary to 

"physical intuition", for example, the Kirchoff boundary conditions at 

the free edge (see Langhaar [82], p. 170). (2) Even if a solution is 

obtained which satisfies the differential equation as well.as the 

(mathematically correct) associated boundary conditions, it is possible 

to find sub-regions of the plate which are clearly not in a state of 

equilibrium (see Langhaar [82], p. 172). This inconsistency may be 

attributed to the initial assumption, 'rz = 'ez = 0, upon which the 

classical theory is based. (3) In the area connected with dynamic re-

spouse, classical plate theory predicts unrealistically large phase 

velocities in the plat·e for short wave lengths (see Mindlin [ 4], p. 31). 

According to the classical theory of plate flexural vibration, 

which leads to the equation 

4 a2w 
DV w + Ph---= p(r,e,t) 

at 2 
(B.l) 

the velocities of waves of transverse vibration are inversely propor-

tional to the wave-lengths. The exact solution by Rayleigh [83], 
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Lamb [84] and Timoshenko [85] of the three-dimensional theory of 

elasticity, for the case of straight-crested flexural waves, confirms 

this result only for waves which are long in comparison with the thick-

ness of the plate. As the wave length diminishes, the velocity in the 

three-dimensional theory has as its upper limit the velocity of Rayleigh 

surface waves. Hence the classical theory cannot be expected to give 

good results for sharp transients or for the frequencies of modes of 

vibrations of higher order. A detailed comparison between the classical 

theory, three-dimensional theory and ~1indlin' s theory will now be given. 

Three-Dimensional Theory: 

In the three-dimensional theory, for an infinite plate, the wave 

velocity cf of wave length L is given in the form of the transcendental 

equation [83-85] 

:1 2 2 2 4c (c - ~cf )(c 
s s s 

where 

tanh 

= 
tanh c 2 

f 

cf 
0<-< 1 

c 
s 

cf is the phase velocity of waves of transverse vibration 

cs ~, velocity of waves of distortion (shear waves) 

2 
c 

s 
~=--2= 

cl 

l-2v 
2(1-v) 

= / ;.+2PG = E (1-v) 
cl j (l+v)(l-2v)p , velocity of waves of dilation. 

For long waves (L >>h), equation, (B.2) reduces to 

2 
cf 2rr2 h 2 

(-) -2 = 3 (1-v) L 
c 

s 

(B.2) 

(B.3) 



while for short waves (L + 0) , equation (B. 2) yields 

4c 2)cc 2- ~cf2)(c 2- 2; = s s s cf 
2 2 2 

(2cs - cf ) , 0 
cf 

<- < 1 
c s 
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(B.4) 

In the case of long waves, equation (B.3) shows that the wave 

velocity cf is inversely proportional to the wave length L. 

Equation (B.4) is the equation for the velocity of Rayleigh surface 

waves (see Timoshenko [86], p. 458). For short waves, therefore, the 

velocity cf approaches the velocity of Rayleigh surface waves. Since 

the velocity of Rayleigh surface waves is always less than the velocity 

of shear waves (see Kolsky [87], p. 16), it is evident that the ratio 
cf 
-- is always less than 1. c s 

Classical Theory: 

Assume a solution for equation (B.l) in the form of 

2tr 
w = cos L (x-lt) (B.5) 

Substituting equation (B.5) into equation (B.l), one obtains 

2 
cf D 
-2 = 2 
c phc 

s s 

= {B.6) 

This is identical with equation (B.3). Hence for long waves, the 

predictions of the classical theory and 3-dimensional theory are identical. 

Mindlin's Theory: 

The governing differential equation for this theory is (see Mindlin 

[4], p. 36) 

(B.7) 

If rotary inertia terms are omitted, equation (B.7) reduces to 

2 a2 2 a2w nv2 
D(V - __£_ -) V w +ph-= (1- -)p 

k 2G at2 at2 k 2Gh 
(B.8) 
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If transverse shear deformation is neglected, but rotary inertia re-

tained, equation (B.7) yields 

(DV'2 - ph3 L) 
12 atz (B. 9) 

When both shear deformation and rotary inertia are neglected, equation 

(B.7) reduces to equation (B.l) of the classical theory. 

Rotary Inertia Correction: 

Substituting equation (B.5) into equation (B.9) with p = 0, one 

obtains 

(B .10) 

For L»h, equation (B.lO) reduces to equation (B.3) as it should. 
cf2 2 

But as L+O, ---2 = (l-v) , which is much larger in comparison to the 
c zcs 

value of f 2 given by equation (B.4). 
Cs . 

Rotary Inertia and Shear Corrections: (Mindlin's Theory) 

Substituting equation (B.5) into equation (B.7) with p = O, we 

obtain 

= 1 (B .11) 

where 

c = ~ (B.l2) 
p j~) 

There are two roots for this equation. With the smaller root, 

equation (B.ll) reduces to equation (B.3) for long waves as it should. 

As L~, equation (B.ll) yields 

2 
cf 2 
2=k 
c s 

According to the three-dimensional theory, this should be the 

(B.l3) 

velocity of Rayleigh surface waves. Substituting equation (B.l3) into 
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equation (B.4), one gets 

k8 - 8k6 + (24 - 16a)k4 - 16(q - l)k2 = 0 (B.l4) 

If Mindlin's theory is to be identical with the 3-dimensional theory, 

the appropriate values of k2 are the roots of equation (B.l4). It can 

be shown that k2 varies almost linearly from 0.76 for v = 0 to 0.91 for 

v = t. 

Shear Correction Only: 

Substituting equation (B.5) into equation (B.8) with p = 0, one 

obtains 
2 

cf 2~2 h 2 2 2 
II (-) [1 + 1J' 

-2 = 3(1-v) L 2 
c 3k (1-v) 

s 

For large values of L this reduces to equation (B.3) as it should. 

As 1+0, equation (B.l5) yields 

2 
cf 2 
-=k 

2 
c s 

which is identical to equation (B.l3). 

Thickness-Shear Motion: 

(B.l5) 

(B.l6) 

The validity of Mindlin's theory should also be investigated in the 

case of thickness-shear motion. The circular frequency of the first 

axisymmetric mode of thickness-shear vibration, according to the exact 

theory is given by Lamb [84]. It is given as 

1l'C 
- s w = --h (B.l7) 

The corresponding solution of Mindlin's theory is obtained by setting 

tP = w = 0, 1/J = e:iw t e r 

in equation (4.15). This yields 

w = kc s 
Jl2 
h 

(B.l8) 
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If Mindlin's theory is to be identical with the three-dimensional 

theory, equations (B.l7) and (B.l9) must be equal. This condition 

yields 

(B.20) 

It is to be noted that this value of k2 is very close to Reissner's 

5 6 (see reference 78). Reissner obtained this value by assuming a para-

bolic variation of transverse shear stress across the thickness of the 

plate. 
2 

Substituting k2 =~,into equation (B.l4), one obtains v = .176. 
12 

Thus in a material with v = .176, there is no conflict between 

equations (B.20) and (B.l4). For other values of v, one must compromise 

between equations (B.l4) and (B.20) or choose a particular value. 

Using equations (B.2), (B.6), (B.lO) and the smaller root of equa-

tion 
cf h 

(B.ll), c- versus L are plotted in figure 22. 
s 

From the figure it may be seen that as the wave length L becomes 

smaller, the classical theory departs considerably from the three-

dimensional theory. It is also seen that the results predicted by the 

three-dimensional theory and Mindlin's theory are almost the same. It is 

interesting to note that the shear deformation accounts almost entirely 

for the discrepancy between the classical theory and the three-dimensional 

theory over the whole wave length spectrum. 

To summarize: 

1. Classical plate theory is applicable only for large wave lengths, 

i.e., L>>h. So, for very thin plates, classical theory gives rather 

good results. 

2. Mindlin's improved theory gives results which are identical to those . 
given by the three-dimensional theory, if k2 is chosen in accordance with 
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equations (B.l4) or (B.20). 

3. Transverse shear deformation accounts almost entirely for the 

discrepancy between the classical and three-dimensional theories over 

the entire wave length spectrum. 
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APPENDIX C 

Discussion of Boundary Conditions for Classical and Mindlin's 
Theories of Plate Vibration 

The classical Poisson-Kirchoff theory of plate vibration leads to 

a differential equation of the fourth order [see equation (B.l)] for the 

deflection and, accordingly, to two boundary conditions which can and 

must be satisfied at each edge. For a plate of finite thickness, it 

appears more natural to require the satisfaction of three boundary con-

ditions than of two. For instance, along a free edge of a plate one has 

the three conditions of vanishing vertical force, bending moment and 

twisting moment. The assumptions underlying the classical theory allow 

for a contraction of the three conditions mentioned to two conditions, 

which are the vanishing bending moment and the vanishing of the sum of 

vertical force and edgewise rate of change of twisting moment. The 

physical significance of this reduction in the number of boundary condi-

tions has been explained by Kelvin and Tait (see Timoshenko [89], p.84). 

The simplifying assumptions made in the development of the classical 

theory often lead to several puzzling inconsistencies (see Langhaar 

[82], p. 172 and Reissner [77], p. 69). 

The improved theory of plate vibration due to Mindlin [see equa-

tions (5.19)] makes it possible to satisfy three boundary conditions at 

each edge of the plate, and hence is consistent with the physical re-

quirements of the problem. In the improved theory, the line integral 

in the expression for the total energy of the plate is [see equation 

(6.15)] 

(C .1) 

where dS = r de. 
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In the refined formulation of the plate vibration problem there 

are three mechanical boundary conditions M , M e and Q which are inde-
r r r 

pendent quantities and three geometrical boundary conditions w, ~ and 
r 

¢e which are dependent on M , M 6 and Q [see equations (4.13)]. From r r r 

equations (4.13) it is clear that one member of each of the pairs of 

terms Mr¢r' Mre¢e and ~w must be known for the others to be determined 

uniquely. Hence the necessary boundary conditions for the refined theory 

of plate vibration can be stated as follows: Any combination which con-

tains one member of each of the three pairs of terms in equations (C.l) 

must be specified at the edge of the plate. 

The possible combinations of the six quantities are: 

¢r' We ' w M ' Mra' w r 

¢r' We ' Qr M ' Mra' Qr r 
(C. 2) 

¢r' M 
r e' 

w Mr' 1lie' w 

1Pr' Mre' ~ M ' r We' Qr 

The three quantities in any of the above sets must be specified 

at the edge of the plate to assure a unique solution for the plate 

vibration problem. 

The boundary conditions applicable to the classical theory can be 

deduced from the equations of the improved theory as follows: 

From equations (4.13) we have 

(C. 3) 

This gives 

(C.4) 

In the classical theory, since the transverse shear deformation term 

vanishes, this becomes 

We=-~ (C.5) 



In view of the above relation we obtain 

Hence one obtains 

f 
Integrating by parts, the above yields 

a (aw)dS 
as at 
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(C.6) 

(C. 7) 

(C.8) 

Hence the second and third terms in equation (C.l) can be combined to 

yield J a1f; aM 
[M _r + (__!]_ + Q ) dw]dS 

r at as r at (C.9) 

This leaves the two edge conditions prescribed by Kirchoff in the 

classical theory. The above procedure to reduce the boundary conditions 

from three to two is not necessary in the improved theory as it can 

satisfy three boundary conditions. 
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APPENDIX D 

Variational Formulation of the Plate Vibration Problem 

Whenever a strain-energy function, W , exists, we may deduce the s 

equations of motion from the Hamilton Principle [88]. For the expression 

of this principle, we take T to be the total kinetic energy of the body, 

and V to be the potential energy of deformation, so that V is the volume 

integral of W • We form by the rules of the calculus of variations, s 

the variation of the integral ~(T- V)dt, taken between fixed initial 

and final values of ·time, t 0 and t 1 . In varying the integral we assume 

that the displacement alone is subject to variation, and that its values 

at the initial and final instants are given. We denote by w1 , the work 

done by the external forces when the displacement is varied. Then by 

the principle mentioned above, we get {see Love [88] 

(D .1) 

For the plate problem under consideration, equation (D.l) can be 

written as 

~ rd8dr 

(D. 2) 

where W is the strain energy per unit area of the plate. 

Now in view of equations (6.11 - 6.14) one obtains 

{D.3) 
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This gives 

M 
oW = [M L + _.§.. + M _a_ + Q l otPr 

r ar r re rae r 

M 
+ [Me _a_+ M .L- _..!]_ + Q ]otP 

rae re ar r e a (D. 4) 

+ [ Q .La + Q a l ow r r rae 

Integrating the terms containing space derivatives by parts, we get 

(D.5) 

where dS = rd6. 

The first integral in equation (D.2) becomes 

(D.6) 

Integrating by parts between t 0 and t 1 , the above yields 

Here t 0 and t 1 are the initial and final values of time, and otPr' 

otP6and ow vanish for both these values. Hence the first integral on the 
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right hand side of equation (D.7) vanishes. 

Now combining equations (D.5) and (D.7), equation (D.2) can be 

written as 

2 
h3 a ~ aM aM 8 M -M8 P r r r r . 

12 -2- + -a - + ae + r - Qr] 0~ r 
at r r 

(D.8) 

3z aq aq8 Q } 
+ [- Ph _.]!_ + _..!.. + -- + _!. + p] ow_ rd8dr 

3t2 3r r38 r . 

The three bracketed terms in the surface integral of the above 

equation, each equated to zero, give the three equations of motion for 

the improved theory of plate vibration. As boundary conditions, one 

member of each of the groups Mr~r' Mr8 ~ 8 and ~w is to be specified. 
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APPEND~X E 

Definitions of Certain Terms Used in Chapter X 

1. Internal Damping 

The strain produced in a purely elastic material is proportional 

to the stress that produces the deformation. The stresses are related 

to the strain by simple constants of proportionality, E or G. However, 

when the material is linearly viscoelastic and when it is subjected to 

time-dependent variations of stress and strain, the stress is not related 

to the strain by a simple constant of proportionality, E or G. In this 

case internal damping must be taken into account. Thus we have (see 

Snowdon [68], p. 177) 

E* = E (1 + icE ) w,e w,e w,e (E.l) 
G* = G Cl + ioG ) w,e w,e w,e 

In equation (E.l), Ew,e is the real part and oE is the ratio of 
w,e 

the imaginary part to the real part of the complex Young's modulus. The 

imaginary part (the product oE E 8 ) is a measure of the mechanical loss 
e w, w, 

associated with the linear deformation of the material. The quantity 

oE is correspondingly known as the loss or damping factor [67]. The 
w,e 

fact that E* 8 is a complex quantity signifies only that the strain lags 
w, 

behind the stress by an angle the tangent of which is equal to oE • 
w,e 

The complex modulus is commonly referred to as the dynamic modulus. 

In general, the dynamic modulus and damping factor are functions of 

temperature and frequency. For many materials such as plastics, rubber-

like materials and annealed steel it is reasonable to assume that 

dynamic modulus and damping factor are constants in the frequency range 
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usually encountered in vibration problems. The damping factor 

typically takes values of the order of 0.1. Such materials are said 

to possess damping of Solid Type I (see Snowdon [67], p. 27). Materials 

for which the loss factor and dynamic modulus are dependent on fre-

quency are referred to as materials with damping of Solid Type II. For 

these materials, the damping factor may take values up to 1. Our in-

vestigation is concerned only with materials having damping of Solid 

Type I. 

2. Impedance 

The driving-point impedance at any point of a mechanical system is 

defined as the ratio of the force to velocity at that point when both 

force and velocity vary sinusoidally with time at the same frequency [67]. 

In general, impedance is a complex quantity. 

If the velocity is monitored at a point other than the driving 

point, the complex ratio of force to velocity is called transfer impe-

dance. 

The characteristic impedance of a system is the driving-point 

impedance of a similar system having infinite dimensions. 

For a mass M acted on by a force F, the impedance is ::inM. For a 

spring K, the impedance is ~ and for a dashpot of strength Cc it is 

c . c 

The total impedance of a system of mass, spring and dashpot which 

experiences a common velocity is the sum of the component impedances. 

Thus, for the system shown in figure 20.c, we have 

Z = :inM + ~ + C 
~ c 

(E .2) 

Neglecting damping, it is clear from the above equation that at low 

frequencies, ! >> nM, the impedance Z is almost entirely springlike in 
Q 
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character. K At very high frequencies, QM >> n , the impedance Z is 

almost entirely masslike. 

3. Transmissibility 

Assume that a machine, represented by a mass M, is supported through 

an isolator of stiffness K* by a foundation which vibrates sinusoidally 

with angular frequency Q (see figure 20.a). The resulting displacement 

of the mass is given by 

= x* e 
2 

The transmissibility is defined as 

T = m 

iQT 
(E.3) 

(E.4) 

The displacement x~ is taken as a complex quantity, because in general, 

the phase of x2 will be different from that of x1 • 

Alternatively, transmissibility can be 

It is to be noted that 

T = m 

T m = 
F* 

1 
Fo 

= 

defined as (see figure 20.b) 

(E.5) 

(E.6) 

So any expression for transmissibility will have dual significance. · 

Depending on the problem, whether it is isolating a machine from the 

vibration of the floor, or reducing the force transmitted from the machine 

to the floor, one may have to choose equation (E.4) or equation (E.5) 

for defining transmissibility. 
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APPENDIX F 

Inclusion of Internal Damping in Plate Vibration Problems 

The manner in which internal damping may be included in the 

expressions derived for the classical theory of plate vibration will 

now be considered. 

The classical flexural vibration equation for a plate is 

(F.l) 

where 

(F.2) 

To include internal damping, the parameter c that appears in equation 

(F.l) is replaced by a complex quantity a* defined by (* denotes a 

complex quantity) 

where 

2 2 
= 12 (1-v )pw 

E*h2 

E* = E(l + ia ) e 

E* is complex Young's modulus 

o is loss factor associated with linear 
e deformation 

In view of (F.4) o* can be expressed as 

In general, E and o depend on frequency. We assume that the 
e 

(F.3) 

(F.4) 

(F.S) 

material has damping of the Solid Type I (see Appendix E), which enables 

us to assume that E and o are independent of frequency. Temperature 
e 

change effects are usually negligible and hence will be neglected here 

(see reference 67) 



* o can be conveniently expressed in the form. 

1> * = _ __.::;0 __ 
u l. 

(l+io )q. 
e 

= (s + ig) 

Solving for s and g from equation (F.6), one obtains 

where 

I 

1 s = o[ , 
(1 + D )2 

+ e ]i 
2 12n 2(D ) 2 

e 

l. 
D. = (1 + cS ) z 

e e 

e 
l. 

(1 + D ) z l. ___ e;:;.._ ]2 

2J2D e 
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(F.6) 

(F. 7) 

Hence, damping can be taken into account in all expressions derived 

for the classical theory by using o* in place of cS. 
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APPENDIX G 

Conversion Factors for Dimensional Quantities 

The numerical results presented in this investigation are in terms 

of nondimensional quantities defined on pages 31 and 92, using a Poisson's 

ratio of 0.3. The results are thus applicable to all materials with 

this value for Poisson's ratio. The variation of frequency with 

Poisson's ratio is given in tables IX and X. 

As an example, the following table is given for conversion of non

dimensional quantities into dimensional quantities, using p = 0.282 lbs/in3 

and E = 30xl06 lbs/in2 . 

Nondimensional Dimensions To Convert to 

Quantity R,.equired Dimensional Quantity 

Multiply by 
-

T Seconds 92,23 a (106) 

n Radians per 10820 
Second a 

Po 1 
Pounds 33 ha (10 6) 

P,K Pounds per 33 h (106) 
Inch 

p Pounds per 33 h (106) 
Square Inch a 

3 
Mr Pounds 2.75 h (106) 

a 

z Pound Seconds I 3040 ha 
per Inch 

w Inches per 117.6 (10 6) 
Second per a 
Second 
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APPENDIX H 

Some Integrals of Bessel Functions 

The following integral formulas were used in this investigation: 

J b 2 R2 2 2 ] b 
1. J0 (kR)RdR = z- (J1 (kR) + J 0 (kR)] , valid for Y also 

a a 0 

f b 2 R2 2 2 J b 2. I 0 (kR)RdR = - z- [I1 (kR) - r 0 (kR)] , valid for K0 also 
a a 

b 2 b 
3. J J/(kR)RdR = ~ (J12(kR) - J0 (kR)J2(kR)]] , valid for Y1, r1 , 

a a 

and K1 also 

b R ]b 
5. f J1 (kR)J1 (tR)RdR = 2 2 (~J0 (~R)J1 (kR) - kJ1 (~R)J0 (kR)] , 

a k - .ll. a 

valid for Y1Y1 and J1Y1 also 

J b R ]b 
8. J0 (kR)I0 (~R)RdR = 2 2 [£J0 (kR)I1 (£R) + ki0 (~R)J1 (kR)] 

a k + .ll. a 

valid for Y0r 0 also 
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J b R b 
10. J 1 (kR) r1 (R..R) RdR = 2 2 [ Q.J 1 (kR) r0 (R..R) - ki1 ( R) J O (kR)] ] 

a k + Q. a 

Jb R b 
11. K1 (kR)J1 (R..R)RdR = 2 2 [R..K1 (kR)J2 (R-R) - kK2 (kR)J1 (R-R)] J , 

a k + £ a 

b 2 
12. ~ r1 (kR)K1 (kR)RdR = -~ [~ K2 (kR)I1 (kR) + K2 (kR)I2 (kR) 

a 
b 

+ r1 (kR)K1 (kR)- f K1 (kR)I2 (kR)] l 
- a 
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APPENDIX I 

Solutions for the Classical Theory 

All the derivations in chapters IV to IX have been done for the 

improved theory of plate vibration. Since one of the objectives of this 

investigation is to study the scope and limitations of the classical 

theory of plate vibration, homogeneous and forced motion solutions using 

the classical theory are also needed. Toward this end, without giving 

emphasis to details, the necessary solutions for the classical theory 

will now be given. 

1. Governing Equations 

The plate-stress-displacement relations are 

where 

tlJr = 
aw --ar 

The homogeneous equation in w is 

2 
<iw-~w = 0 

D 

In nondimensional form, this becomes 

4 4 
(V - o )W = 0 

where 

(see Timoshenko [89}, p. 51) 

(I.l) 

(I.2) 

(I.3) 

The required solution of this equation for axisymmetric vibration is 

(!.4) 



2. Frequency Equations 

a. Clamped Plate 

The boundary conditions are 

w(l) = aw (1) = o 
8R 

Substituting equation (I.5) in equation (I.4), one obtains 

= 0 

Co) 

b. Simply Supported Plate 

The boundary conditions are 

W(l) = M (1) = 0 
r 

This gives with equation (I.4) 

c. Free Plate 

The boundary conditions are 

M (1) r = Q (1) 
r 

This yields with eql}ation (I.4) 

2 
[o J 0+(v-l)oJ1] 

cS3J 
1 

3. Forced Motion Solutions 

a. 

W(R,T) = W (R,T) = 
s 

Generalized Coordinates q. 
~ 

= 0 

2 -[o r0+(v-l)or1J 

00 

o3I 
1 

I w. (R) q . (T) . 
i=l ~ ~ 

= 0 
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(I.5) 

(I.6) 

(I. 7) 

(I.8), 

(I.9) 

(I.lO) 

(I .11) 

(I.l2) 
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where P0 is the total load uniformly distributed over a circular area 

of radius y. 

q. (T) 
1 

where P0 is the total load uniformly distributed over a circle of 

radius y. 

where P0 is a concentrated load at the center of the plate. 

b. Static solutions 

The static solutions can be obtained by putting 12 = 0 in the 
K 

solutions for the-improved theory. 

c. Unique solution for A1 and A2 

The normalization condition for the modes is given by 

(I.l3) 

(I.l4) 

In view of the above and the condition that W(l) = 0, equation (I.4) 

yields 

(I.l6) 

(I.l7) 

The modal bending moment and shearing force are given by 

(I.l8) 

Q (R) 
r 

(I.l9) 



4. Response to Pulse Loads 

For a ramp-platform load, we obtain, for 0 < T < T1 

and for T > T1 

where 

we = 

sinS'2.T 
~ =we---=:.... 

3 
Tl1ryS'2i 

sinn.T - sins-2. (T-T1) 
=we ~ ~ 

3 
Tl1ryS'2i 

A1J1 (oy) + A2I 1 (oy) 

0 
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(I. 20) 

(I. 21) 

(I. 22) 

The values of q. for blast, triangular, square and half-sine pulses 
~ 

are obtained from the results of the improved theory by replacing WJ 

or WI by we. 

5. Frequency Equation for Impedance Loaded Plate 

The closed form frequency equation for this case is given by 

1 
8a2o2 

1 -inz 

2 
Jo Yo+; Ko ro = 0 (I. 23) 

2 
Jl yl +; Kl -I 1 Co) 
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