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ABSTRACT 

In this dissertation, neural networks (NN) approximate unknown nonlinear 

functions in the system equations, unknown control inputs, and cost functions for two 

different classes of nonlinear discrete-time systems.  Employing NN in closed-loop 

feedback systems requires that weight update algorithms be stable.  This dissertation is 

comprised of five refereed journal-quality papers that have been published or are under 

review.  Controllers are developed and applied to a nonlinear, discrete-time system of 

equations for a spark ignition engine model to reduce the cyclic dispersion of heat 

release.  In some of the papers, the controller is also tested on a different nonlinear 

system using simulation.   

An adaptive neural network-based output feedback controller is proposed to 

deliver a desired tracking performance for a class of discrete-time nonlinear systems, 

which are represented in non-strict feedback form.  A spark ignition engine can be 

viewed as a nonstrict-feedback nonlinear discrete-time system.  An NN controller 

employing output feedback is designed to reduce cyclic dispersion of heat release in a 

spark ignition engine that uses three NNs to estimate the unknown states, generate the 

virtual control input, and to generate the actual control input.  Another NN controller uses 

state feedback to minimize cyclic dispersion caused by high levels of exhaust gas 

recirculation (EGR).  Adding another state for EGR to the engine model, an adaptive NN 

controller is designed with a separate control loop for maintaining an EGR level where 

output feedback of heat release is used.  The system becomes nonaffine with spark timing 

as the control input, and a novel controller based on reinforcement learning is proposed 

for the affine-like nonlinear error dynamic system. 
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SECTION 

1.  INTRODUCTION 

The behavior of nonlinear systems cannot be described as a linear function of the 

dependent variables.  This makes them difficult to solve, but they are very important to 

study as most real systems are nonlinear.  A nonlinear system does not follow the 

principle of superposition, eliminating techniques used for linear systems.  Nonlinear 

systems can have many isolated equilibrium points.  In some scenarios the nonlinear 

system may have limit cycles or bifurcations.  Also, these systems can exhibit chaos. 

Several methods have been studied to control nonlinear systems including 

adaptive control where parameters can slowly vary over time or are uncertain.  There is 

feedback linearization that applies a change of variables and control input to the 

nonlinear system to make it an equivalent linear system.  Among others there are also 

Lyapunov techniques such as backstepping and sliding mode control.  Lyapunov 

backstepping technique is used in this dissertation. 

Another consideration of nonlinear system control is whether the model is given 

in continuous time or discrete time.  Using Lyapunov techniques to show stability of a 

nonlinear controller requires proof that the derivative of a continuous-time Lyapunov or 

the first difference of a discrete-time Lyapunov is negative definite.   The mathematical 

differences between continuous-time and discrete-time lead to very different proofs to 

demonstrate boundedness or stability. 

The control of nonlinear systems presents many challenges to overcome when a 

system has either unavailable state information or unmodeled dynamics.  There is 
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difficulty obtaining a desired control input such that the system will track a desired 

reference signal.  There may also be some difficulty in showing that a system is stable.  

Furthermore, a nonlinear system with a nonaffine control input presents further design 

problems, as conventional nonlinear controller techniques may fail. 

This dissertation examines such a system in discrete-time that has a nonstrict 

feedback representation of system states with affine control input.  The application of 

most of the controllers to a discrete-time spark ignition engine model demonstrates their 

effectiveness at controlling a nonlinear system with unmodeled dynamics and unavailable 

states for measurement.  Neural network-based controllers employ state and output 

feedback and use fuel and recirculated exhaust gases for control inputs – both of which 

are affine to the nonstrict feedback nonlinear discrete-time system.  Also, spark timing is 

considered as a control input, which appears as nonaffine in the nonlinear discrete-time 

system.  Furthermore, the controller for the nonaffine system places bounds on the 

control input and tracks the desired target with the constraints in place. 

The first paper in this dissertation, “Discrete-Time Neural Network Output 

Feedback Control of Nonlinear Discrete-time Systems in Non-Strict Form,” considers a 

class of discrete-time nonlinear systems that are represented in non-strict feedback form.  

A neural network-based control scheme is proposed to provide desired tracking 

performance.  An observer neural network is used to estimate the system states and two 

other neural networks generate virtual and desired control inputs.  Performance of the 

controller was demonstrated successfully by using a general nonlinear discrete-time 

system in nonstrict feedback form. 
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The second paper, “Output Feedback Controller for Operation of Spark Ignition 

Engines at Lean Conditions Using Neural Networks,” deals with lean operation of the 

spark ignition engine where the equivalence ratio of fuel to air is less than one.   Heat 

release is used as the output feedback signal to an adaptive neural network-based output 

feedback controller.  Since the states of total fuel and total air within the cylinder are not 

realistically measurable, an observer neural network is designed to estimate the heat 

release, and air and fuel.  Two more neural networks are used to estimate the unknown 

functions of residual gas fraction and combustion efficiency that are affected by engine 

dynamics for every cycle and to create the control input in the form of a deviation from 

the nominal fuel for a desired operating equivalence ratio.  By using two engines, 

significant reductions in heat release is demonstrated along with engine out emissions 

such as reductions in NOx from stoichiometric levels and drop in unburned hydrocarbons 

with control.  

The third paper, “Neuro Emission Controller for Minimizing Cyclic Dispersion in 

Spark Ignition Engines with EGR Levels,” where EGR is exhaust gas recirculation, again 

deals with lean operation of the engine, but employs state feedback of the air and fuel 

assuming that an accurate measurement from the universal exhaust gas oxygen sensor 

(UEGO) can be used to determine the total air and fuel in the cylinder since total fresh 

fuel is known.  Performance of the controller is tested using a simplified engine model. 

Since the total air and fuel represented as states are not measurable, in the fourth 

paper, “Neural Network Controller Development and Implementation for Spark Ignition 

Engines with High EGR Levels,” a controller is designed with EGR control in mind.  A 

neural network-based output feedback controller is developed to reduce cyclic variation 
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in the heat release under high levels of EGR even when the engine dynamics are 

unknown by using fuel as the control input. A separate control loop was designed for 

controlling EGR levels.  Use of EGR to dilute the cylinder charge is preferable since 

catalytic converters require a stoichiometric fuel-air ratio of one to operate properly and 

remain functional.  The controller was implemented by using two engine systems and 

significant drop in engine out emissions was demonstrated. 

In all the above controller developments, fuel is used as a control input.  In the 

fifth paper, “Reinforcement Learning-based State-Feedback Control of Nonaffine 

Nonlinear Discrete-time Systems with Application to Engine Spark Timing Control,” 

spark timing is used as the control input for reducing cyclic dispersion.  This control 

input appears in the state equations as nonaffine so a control system must be designed for 

a nonaffine nonlinear system.  The error dynamics, where output feedback is used, are 

transformed into an affine-like system whereupon controller development becomes less 

difficult.  Input constraints are also designed into the controller, and simulation shows 

that the system is stable with limits on the control input. 

A connection is made with the papers of this dissertation as it moves from one 

problem to the next involving a nonlinear, discrete-time systems.  A controller is 

designed for the nonstrict feedback class of systems.  Knowledge from the controller for 

the nonstrict feedback class is used to create an adaptive neural network-based output 

feedback controller for a set of spark ignition engine equations in nonstrict feedback 

form.  Then, a modification of this controller idea leads to a different controller which 

used state feedback rather than output feedback.  An addition to the spark ignition engine 

model includes a state equation for EGR, and a separate control loop is added to the 
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controller for EGR.  Finally, looking into spark timing as another control input leads to a 

nonaffine, nonlinear, discrete-time representation of the spark ignition engine model 

because the spark timing appears a nonaffine control input.  For the first time, limits are 

placed on the control input, which force it to stay within a specified region.  Focusing on 

the affine error dynamics of the nonaffine system, a controller is designed to maintain 

tracking performance while limits to the control input are imposed. 
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PAPER 1 

Discrete-Time Neural Network Output Feedback Control of 

Nonlinear Discrete-time Systems in Non-Strict Form 

J. Vance and S. Jagannathan  

 
 

Abstract — An adaptive neural network (NN) -based output feedback controller is 

proposed to deliver a desired tracking performance for a class of discrete-time nonlinear 

systems, which are represented in non-strict feedback form. The NN backstepping 

approach is utilized to design the adaptive output feedback controller consisting of: 1) a 

NN observer to estimate the system states, and 2) two NNs to generate the virtual and 

actual control inputs, respectively. The non-causal problem encountered during the 

control design is overcome by using a dynamic NN which is constructed through a 

feedforward NN with a novel weight tuning law. The separation principle is relaxed, 

persistency of excitation condition (PE) is not needed and certainty equivalence principle 

is not used. The uniformly ultimate boundedness (UUB) of the closed-loop tracking error, 

the state estimation errors and the NN weight estimates is demonstrated.    Though the 

proposed work is applicable for second order nonlinear discrete-time systems expressed 

in nonstrict feedback form, the proposed controller design can be easily extendable to an 

nth order nonlinear discrete-time system. 
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I.  Introduction 

 

The adaptive neural network (NN) backstepping control approach is a potential 

solution to control a large class of nonlinear systems, whose dynamics are unknown, 

since the NNs, which are nonlinear in the tunable parameters, can approximate the 

unknown dynamics. By using NNs in each stage of the backstepping procedure to 

estimate certain nonlinear functions, a more suitable control law can be designed without 

using both the linear in the parameter (LIP) assumption and regression matrix (Krstic et 

al. 1995). 

  Adaptive state feedback control of nonlinear discrete-time systems in strict 

feedback form has been addressed in the literature, where the nonlinear system is 

( ) ( )( ) ( )( ) ( )kxkxgkxfkx iiiiii 11 ++=+ , and ( ) ( )( ) ( )( ) ( )kukxgkxfkx nnnnn +=+1  with 

( ) Rkxi ∈   is the state, ( ) Rku ∈  is the control input, and ( ) ( ) ( )[ ] iT
ii Rkxkxkx ∈= ,,1 L  

and ( )1,,1 −= ni K . For the strict-feedback systems (Krstic et al. 1995), the nonlinearities 

( )( )kxf ii  and ( )( )kxg ii  depend only upon states ( ) ( )kxkx i,,1 K , i.e., ( )kxi .  If the states 

become unavailable for measurement, an observer is used to estimate the states, and then 

the estimated values will be substituted for the unavailable states in the output feedback 

controller design.  

Several output feedback control schemes in discrete time are developed by using 

the backstepping design (Yeh and Kokotovic 1995, Chen and Khalil 1995, Alolinwi and 

Khalil 1997, Atassi and Khalil 2003, Hovakimyan et al. 2002, Kim and Lewis 1999) 

either for the strict feedback or affine nonlinear systems without (Yeh and Kokotovic 

1995, Alolinwi, and Khalil 1997, Atassi and Khalil 2003) and with neural networks 



 

 

8

(Chen and Khalil 1995, Alolinwi and Khalil 1997, Atassi and Khalil 2003, Hovakimyan 

et al. 2002, Kim and Lewis 1999).  Moreover many are developed for continuous-time 

systems.   

However, for the non-strict feedback nonlinear discrete-time systems, the 

previous controller methods will result in a non-causal design (the current control input 

depends on the future system states) and require a total redesign. Moreover, when NNs 

are not used, the adaptive output feedback control schemes need an additional linear in 

the unknown parameter assumption.  Several practical systems, for instance the spark 

ignition engine dynamics operating either with high exhaust gas recirculation (EGR) 

levels or under lean operation (Davis et al. 1999, Jagannathan 2006), can be represented 

only in non-strict feedback second order systems.  Additionally, the nonlinearities of 

these practical systems cannot be expressed as linear in the unknown parameters, which 

necessitates new design techniques for nonstrict feedback nonlinear systems.  

The causal nature encountered in Ge et al. (2003) is due to the nth order strict 

feedback system whereas the causal problem encountered in the proposed work is due to 

the nonstrict feedback issue even when a 2nd order system is employed.  Additionally, 

controller development and the NN weight updates are different for the two papers.  

Finally, separation principle is relaxed in the proposed work. 

Therefore, an adaptive NN output feedback controller is proposed to deliver a 

desired tracking performance for a class of second order discrete-time nonlinear systems 

in non-strict feedback form. The non-causal problem encountered during the controller 

design is confronted by employing a dynamic NN constructed via a feedforward NN with 

semi recurrent structure which acts as a one step predictor.  The proposed adaptive NN 
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output feedback controller design employs three NNs: 1) a NN observer to estimate 

certain system states, and 2) two NNs to generate the virtual and real control input, 

respectively. The proposed method relaxes the linearity in the unknown parameter 

assumption, separation and certainty equivalence principle and persistency of excitation 

condition.  The uniformly ultimate boundedness (UUB) of the closed-loop tracking error, 

the state estimation errors and the NN weight estimates is shown.   

 

II.  System Description and Observer Design 

A.  Nonlinear System Description 

The discrete-time nonlinear system in non-strict feedback form is expressed as 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )kdkxkxkxgkxkxfkx '
122112111 ,,1 ++=+ ,  (1) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )kdkukxkxgkxkxfkx '
22122122 ,,1 ++=+ ,   (2) 

 ( ) ( )kxky 1= ,                                          (3) 

where ( ) Rkx ∈1  and ( ) Rkx ∈2 are the states, ( ) Rku ∈  is the control input, ( ) Rky ∈  is 

the system output, state ( )kx2  is not measurable, ( ) Rkd ∈'
1  and ( ) Rkd ∈'

2  are bounded 

unknown disturbances, whose bounds are given by ( ) '
1

'
1 mdkd < and ( ) '

2
'
2 mdkd < .  

Equations (1) and (2) represent a discrete-time nonlinear system in non-strict feedback 

form, since unknown functions ( )⋅1f  and ( )⋅1g depend upon both states ( )kx1  and ( )kx2 , 

unlike the case of strict feedback systems, where ( )⋅1f  and ( )⋅1g  depend upon only the 

state ( )kx1 .  Fortunately, for this system, we can use a one-step NN predictor.  
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The control objective is to drive the system state ( )kx1  to track the desired 

trajectory ( )kx d1 . Since ( )kx2  is considered unavailable, both ( )kx1  and ( )kx2  are 

estimated by the NN observer.  Subsequently, the estimated states are used to design the 

adaptive NN output feedback controller.  Throughout this paper, all quantities with “^” 

represent estimated quantities. In addition, quantities with “~” represent the estimation 

errors. Subscripts “o” and “c” refer to the observer and the controller quantities 

respectively. 

B.  Observer Structure 

Considering the system (1) and (2), for simplicity, let us denote ( )if k  

for ( ) ( )( )1 2,if x k x k , ( )kgi  for ( ) ( )( )kxkxgi 21 , , 2,1=∀i , where ( )kfi  and ( )kgi  are 

smooth vector fields, which are considered unknown. The system under consideration 

can be written as 

( ) ( ) ( ) ( ) ( )kdkxkgkfkx '
12111 1 ++=+ ,       (4) 

( ) ( ) ( ) ( ) ( )kdkukgkfkx '
2222 1 ++=+ .        (5)                         

Write system (4) and (5) into the vector form to get 

( ) ( ) ( )kdkfkx '1 +=+ ,                  

where  

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
2

1

kx
kx

kx , ( ) ( ) ( ) ( )
( ) ( ) ( )⎥⎦

⎤
⎢
⎣

⎡
+
+

=
kukgkf
kxkgkf

kf
22

211 , ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

kd
kd

kd '
2

'
1' ,      (7) 
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Since ( )x k is unavailable for measurement, an observer can be designed to 

estimate the states using the past value of the control input.  In other words, using (6), one 

can observe that estimation of ( )x k  requires ( 1)u k − and ( )1−kf . Since the control 

input ( 1)u k −  can be made available whereas ( )1−kf  is unknown, it is approximated 

next by using a NN.  Alternatively, one can estimate ( )x k from its past values and the 

control input by using a dynamic mapping approximated via a NN.  

The term ( )1−kf  can be viewed as an unknown smooth function vector, and it 

can be approximated by a NN (Igelnik and Pao 1995) as  

( )( )
( )( )

( 1) ( ( 1)) 1

( ( 1)) 1

T T
o o o o o

T
o o o o

f k w v z k z k

w z k z k

ϕ ε

ϕ ε

− = − + −

= − + −
,              (8) 

where the NN input is taken as ( ) ( ) ( ) ( )[ ] 3
21 1,1,11 Rkukxkxkz T

o ∈−−−=− , the matrix 

2×∈ on
o Rw  and on

o Rv ×∈ 3 represent the target output and hidden layer weights, the hidden 

layer activation function ( )( )1−kzoϕ  represents  ( )( )1−kzv o
T
oϕ , on denotes the number of 

the nodes in the hidden layer, and ( )( ) 21o oz k Rε − ∈ is the functional approximation error. 

It is demonstrated in (Igelnik and Pao 1995) that, if the hidden layer weight, ov , is chosen 

initially at random and held constant and the number of hidden layer nodes is sufficiently 

large, the approximation error ( )( )1−kzooε can be made arbitrarily small over the compact 

set 3S R⊂ since the activation function forms a basis.  

The proposed NN observer for (6) is defined now as 

))1(ˆ()1(ˆ))1(ˆ()1(ˆ)(ˆ −−=−−= kzkwkzvkwkx o
T
oo

T
o

T
o ϕϕ ,        (9) 
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where ( ) ( ) ( )[ ] 2
21 ˆ,ˆˆ Rkxkxkx T ∈=  is the estimated value of ( )kx , and 

( ) ( ) ( ) ( )[ ] 3
21 1,1ˆ,1ˆ1ˆ Rkukxkxkz T

o ∈−−−=−  is the input to the NN observer, the 

matrix ( ) 21ˆ ×∈− on
o Rkw  is the actually output layer weight, the ( )kϕ  or ( )( )1ˆ −kzoϕ  

represents ( )( )1ˆ −kzv o
T
oϕ  for convenience. In the rest of this paper, the input to the hidden 

layer weight matrix, ov , is not updated and therefore is not explicitly indicated in the 

equations. However, it is not ignored.  Here, it is assumed that the initial value of ( )0u  is 

bounded. In the next section, it is demonstrated that all the values of ( )ku  are 

bounded Rk ∈∀ . 

C.  Observer Error Dynamics 

Define the state estimation errors as 

)()(ˆ)(~ kxkxkx iii −=   2,1=i .                (10) 

The estimation errors can be expressed in a vector form as 

)()(ˆ)(~ kxkxkx −= ,    (11) 

where 2( )x k R∈% .  Combining (6), (8), (9) and (11), we obtain the estimation error 

dynamics as  

( )( )ˆ ˆ ˆ( ) ( ) ( ) ( 1) ( ( 1)) ( ( 1)) 1 '( 1)T T
o o o o o ox k x k x k w k z k w z k z k d kϕ ϕ ε= − = − − − − − − − −%  

          )1()1( −+−= kdk ooξ ,    (12)    

where 
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( ) ( ) ooo wkwkw −−=− 1ˆ1~ ,                      (13) 

( )ˆˆ ˆ( 1) ( 1) ( ( 1)) ( 1) ( ( 1))TT
o o o o o ok w k z k w k w z kξ ϕ ϕ− = − − = − − −% ,  (14) 

( )))1(())1(ˆ())1(~( −−−=− kzkzwkzw oo
T
oo

T
o ϕϕϕ ,   (15) 

and 

( )( )1)1('))1(~()1( −−−−−=− kzkdkzwkd ooo
T
oo εϕ .    (16) 

Remark 1:  Though the first state (or the output) is available for measurement and 

can be used as a NN input, it is not used here since it can be demonstrated that the 

observer can estimate both the states with a small bounded error by using the measured 

output.  Also, for certain practical nonlinear discrete-time systems in nonstrict feedback 

form, for instance spark engine dynamics operating lean (Jagannathan 2006) both the 

states are unavailable for measurement and the measured output is a nonlinear function of 

states. 

 

III.  Adaptive Neural Network Output Feedback Control 

 

In this section, the development of the controller is discussed.  First, some mild 

assumptions are stated. 

A.  Backstepping Controller Design 

Assumption 1: The desired trajectory ( )kx d1  is bounded and its future values are 

available. 
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Assumption 2: The unknown smooth functions, ( )ig k , 1, 2i∀ =  are bounded 

away from zero within certain compact set s  as ( )1 1 1 0M mg g k g> > >  and 

( ) 0222 >>> mM gkgg , respectively.   

Next the adaptive NN output feedback control design is discussed. Define the 

tracking error between actual and desired trajectory as 

( ) ( ) ( )kxkxke d111 −= ,         (17) 

where ( )kx d1 is the desired trajectory. Combining with (4), (17) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )'
1 1 1 1 1 2 1 11 1 1 1d de k x k x k f k g k x k x k d k+ = + − + = + − + +  (18)    

By viewing ( )kx2 as a virtual control input, a desired feedback control signal can be 

designed as  

( ) ( ) ( ) ( )( )11
11

1
2 ++−= kxkf

kg
kx dd .                          (19) 

Since ( )kf1  and ( )kg1  are unknown smooth vector fields, the desired feedback 

control ( )kx d2 cannot be implemented in practice. From (19), it can be seen that the 

unknown part ( )( ) ( ) ( )( )11 111 ++− kxkfkg d  is a smooth function of ( ) ( )1 2, ,x k x k  

and ( )11 +kx d . The term ( )kx d2 can be approximated by the first NN as (Jagannathan 

2006) 

( ) ( )( ) ( )( ) ( ) ( )2 1 1 1 1 1 1 1
T T T

dx k w v z k z k w k kφ ε φ ε= + = + ,  (20) 



 

 

15

where the NN input is ( ) ( )1 1[ , ( 1)]T T
dz k x k x k= + , 1

1
nRw ∈ and 13

1
nv R ×∈ denote the 

constant ideal output and hidden layer weights, 1n  is the hidden layer nodes number, the 

hidden layer activation function ( )( )2 1
Tv z kφ  is simplified as for convenience ( )kφ , 

and ( )1 kε  is the approximation error.  Since a single NN is used to approximate (19), this 

will overcome the controller singularity problem encountered when two NNs are 

employed (Jagannathan 2006).  

Since ( )kx2  is unavailable, it has to be replaced with the estimated state as the NN 

input. Consequently, the virtual control input is taken as 

( ) ( ) ( )( ) ( ) ( )( )2 1 1 1 1 1ˆ ˆ ˆˆ ˆT T T
dx k w k v z k w k z kφ φ= = ,            (21) 

where ( ) 1
1ˆ nRkw ∈  is the actual weight matrix for the second NN with 

( ) ( )1 1 2 1ˆ ˆˆ [ ( ), , ( 1)]T
dz k x k x k x k= + .  Alternatively, the measured state can be utilized as the 

NN input without any change in the analysis.  Next define the weight estimation error by 

( ) ( )1 1 1ˆw k w k w= −% ,                   

Define the error between ( )kx2  and ( )kx d2ˆ as 

( ) ( ) ( )kxkxke d222 ˆ−= .                       (23) 

Equation (18) can be expressed using (23) for ( )kx2  as  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )kdkxkxkekgkfke dd
'
1122111 1ˆ1 ++−++=+ ,    (24) 

or equivalently 

( ) ))()()()((1 11211 kdkkekgke ++=+ ξ ,           (25) 
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where 

1 1 1̂( ) ( ) ( ( ))Tk w k z kξ φ= % ,                             (26) 

1 1 1 1 1ˆ( ) ( ( )) ( )( ( ( )) ( ( )))T Tw k z k w k z k z kφ φ φ= −% ,      (27) 

and 

( ) ( )
'

1
1 1 1 1 1

1

( ) ( ) ( ) ( ( ))
( )

Td k
d k z k w k z k

g k
ε φ= − + % .         (28) 

Rewriting the error ( )ke2  from (23) as  

( ) ( ) ( )1ˆ11 222 +−+=+ kxkxke d ( ) ( ) ( ) ( ) ( )kdkxkukgkf d
'
2222 1ˆ ++−+= ,        (29) 

where ( )2ˆ 1dx k +  is the future value of ( )kx d2ˆ . Here, ( )1ˆ2 +kx d  is not available in the 

current time step.  However, from (21), ( )1ˆ2 +kx d  is a smooth nonlinear function of the 

state ( )kx , (will be replaced with its estimate), desired trajectory 1 ( 1)dx k +  and NN 

weights ( )1ŵ k .  However, one can replace the actual NN weights with virtual control 

input ( )kx d2ˆ  in order to make it a dynamic system which in turn helps in the estimation 

of ( )1ˆ2 +kx d . The state error ( )1e k  is considered as one of the NN input instead of the 

desired state to allow faster convergence since preprocessed inputs rather than the raw 

signals (Lewis et al. 1999) always renders better performance as the NN doesn’t have to 

reconstruct these signals.  

Using these as inputs, a single layer dynamical NN can be used to predict 

( )1ˆ2 +kx d  one step ahead. Consequently, in this paper, a feed forward NN with properly 

chosen weight tuning law rendering a semi-recurrent or dynamic NN is utilized to predict 
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( )1ˆ2 +kx d . Alternatively, the value can be obtained by employing a filter (Lewis et al. 

2002).  By using the above mentioned inputs, the first layer of the feedforward 

architecture-based NN generates ( )1ˆ2 +kx d  which in turn is used by its second layer to 

create a suitable control input.  On the other hand, one can use a separate single layer 

dynamic NN to get ( )1ˆ2 +kx d  which in turn can be utilized as an input to a third control 

NN to generate a suitable control input.  Here, these two single-layer NNs are combined 

into a single multilayer NN. 

Next select the desired control input by using the second NN as 

( ) ( ) ( ) ( )( ) ( )kelkxkf
kg

ku dd 1122
2

1ˆ1
+++−=               

( )( ) ( )( )2 2 2 2 2
T Tw v z k z kσ ε= +                   (30) 

( )( ) ( )( )2 2 2 2
Tw z k z kσ ε= + ,       (31) 

where 2
2

nw R∈  and 24
2

nv R ×∈ denote the constant ideal output and hidden layer weights, 

2n  is the number of hidden layer nodes, the hidden layer activation function ( )( )2 2
Tv z kσ  

is simplified as ( )( )2z kσ , ( )( )1 2z kε  is the approximation error, Rl ∈1  is the design 

constant introduced to ensure stability via Lyapunov, 4
2 ( )z k R∈  is the NN input, which 

is defined next.  Equation (30) allows us to avoid the controller singularity problem 

(Jagannathan 2006) since a single NN is employed. 

Considering that the state ( )kx2  cannot be measured, ( )2z k  is substituted 

with ( ) 4
2ẑ k R∈ , where 
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( ) ( ) ( ) ( ) ( ) 4
2 1 2 2 1ˆ, , ,

T
dz k x k x k x k e k R= ∈⎡ ⎤⎣ ⎦ ,       (32)  

( ) ( ) ( ) ( ) ( ) 4
2 1 2 2 1ˆ ˆ ˆ ˆˆ , , ,

T
dz k x k x k x k e k R= ∈⎡ ⎤⎣ ⎦ ,     (33) 

and 

( ) ( ) ( )kxkxke d111 ˆˆ −= .                                  (34) 

As mentioned earlier, the measured state can replace its estimate.  The control 

input is now selected as 

2 2ˆ ˆ( ) ( ) ( ( ))Tu k w k z kσ= ,                   (35) 

where ( ) 2
2ˆ nRkw ∈  is the actual output layer NN weights. Substituting (30) and (35) into 

(29) yields 

))()()()(()1( 221122 kdkkelkgke ++=+ ξ ,       (36) 

where 

2 2 2ˆ( ) ( )w k w k w= −% ,                     (37) 

2 2 2ˆ( ) ( ) ( ( ))Tk w k z kξ σ= % ,              (38) 

2 2 2 2 2ˆ( ) ( ( )) ( )( ( ( )) ( ( )))T Tw k z k w k z k z kσ σ σ= −% ,        (39) 

and 

'
2

2 2 2 2
2

( ) ( ) ( ) ( ( ))
( )

Tdd k k w k z k
g k

ε σ= − + % .     (40) 
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Equations (25) and (36) represent the closed-loop error dynamics. It is required to show 

that the estimation error (12), system errors (25) and (36) and the NN weight 

matrices ( )kwoˆ , ( )kw1ˆ  and ( )kw2ˆ are bounded.  

B. Weight Updates for Guaranteed Stability 

Assumption 3 (Bounded Ideal Weights): Let ow , 1w and 2w be the unknown output 

layer target weights for the observer and two action NNs and assume that they are 

bounded above so that 

momo wwww 11 , ≤≤ , and mww 22 ≤ ,       (41) 

where +∈ Rwom , +∈ Rw m1  and +∈ Rw m2  represent the bounds on the unknown target 

weights where the Frobenius norm (Lewis et al. 1999, Jagannathan 2006) is used. 

Fact 1: The activation functions are bounded above by known positive values so 

that  

( ) mϕϕ ≤⋅ , ( ) mφφ ≤⋅  and ( ) mσσ ≤⋅ ,         (42) 

where +∈ Rmϕ , +∈ Rmφ and +∈ Rmσ are the upper bounds. 

Assumption 4 (Bounded NN Approximation Error): The approximation errors 

( )( )1−kzooε , 1 1( ( )))z kε  and 2 2( ( ))z kε  are bounded by omε , m1ε  and m2ε , respectively 

over the compact set (Igelnik and Pao 1995).  

Fact 2: The terms ( ) 21 Rkdo ∈− , ( ) Rkd ∈1  and ( ) Rkd ∈2  are bounded over the 

compact set S  by 

( ) ommmomomo dwdkd εϕ ++=≤− '1 ,               (43) 
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where +∈ Rdm
'  is the upper bound for ( )1' −kdo , ( )1 1md k d≤  and ( )2 2md k d≤  where 

'
1

1 1 1
1

m
m m m m

m

dd w
g

ε φ= + + ,                     (44) 

'
2

2 2 2
2

m
m m m m

m

dd w
g

ε σ= + + .               (45) 

In the following theorem, it was demonstrated that the closed-loop signals are 

bounded. 

Theorem 1: Consider the system given by (1) and (2) with the Assumptions 1 

through 4 hold. Let the unknown disturbances be bounded by ( ) '
1

'
1 mdkd ≤  and 

( ) '
2

'
2 mdkd ≤ , respectively.  Let the observer weight tuning be given by 

T
o

T
ooooo Ikelkzkwkzkwkw ))1())(ˆ()(ˆ))((ˆ()(ˆ)1(ˆ 11 ++−=+ ϕϕα ,  (46) 

where [ ]TI 1,1= , with the virtual control NN weight tuning be provided by 

1 1 1 1 1 1 1 1ˆ ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( )) ( ))Tw k w k z k w k z k l e kα φ φ+ = − + ,  (47) 

and the control input weight be tuned by 

2 2 2 2 1 2 1 1ˆ ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( )) ( ))Tw k w k z k w k z k l e kα σ σ+ = − + ,  (48) 

where ,,, 21 RRRo ∈∈∈ ααα and Rl ∈1  are design parameters.  Let the NN observer, 

virtual and actual control inputs be defined as (9), (21) and (35), respectively. The 

estimation error (12), the tracking errors (25) and (36) and the NN weights  ( )kwoˆ , ( )kw1ˆ  

and ( )kw2ˆ  are UUB with the bounds given by (A.10) provided the design parameters are 

selected as 
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(1) ( ) ,10 2 << ko ϕα (2) ( ) 10 2
1 << kφα ,  

(3) ( ) ,10 2
2 << kσα     (4) 

mgg
l

m 2
1

1
133

1
< ,                  (49) 

Proof: See Appendix.                                                       

Remark 1: Persistency of excitation condition (PE) condition and linearity in the 

parameter assumption are not used for the NN observer and controller to prove the 

boundedness of the weights.  Additionally, certainty equivalence principle is not 

employed.   

Remark 2: Generally, the separation principle used for linear systems does not 

hold for nonlinear systems and hence it is relaxed in this paper for the controller design 

since the Lyapunov function is a quadratic function of system errors and weight 

estimation errors of the observer and controller NNs.   

Remark 3: The NN weight tuning proposed in the (46) through (48) render a 

semi-recurrent NN due to the proposed weight tuning law even though a feedforward NN 

is utilized.  This semi-recurrent NN renders a dynamic NN which is capable of predicting 

the state one step-ahead.  

 

IV.  Simulation Results 

 

Consider the following nonlinear system, given in non-strict feedback form as 

( ) ( )
( )( ) ( ) ( )kxkx
kx

kx
kx 212

2

1
1 2

564
11 ++

+
−=+

, (50) 
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( ) ( )
( )( ) ( ) ( )( ) ( )ku

kxkxkx
kxkx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

−+
+

−=+ 2
2

2
1

2
1

2
2 1

7
116

11 ,  (51) 

( ) ( )kxky 1= ,   (52) 

where ( ) , 1, 2ix k R i∈ =  are the states, ( )u k R∈  is the control input, ( )y k R∈  is the 

system output, the state ( )kx1  is known via the output ( )ky , the state ( )kx2  is 

immeasurable. Note that ( ) ( )
( )( ) ( )kx
kx

kxkf 12
2

1
1 564

1
+

+
−=  is a nonlinear function of both 

( )kx1  and ( )kx2 . 

The objective is to drive the output ( )1( )y k x k=  to track the reference signal, 

which was selected initially as ( ) ( )ξω += kTkx d sin21 , where 0.1,
2
πω ξ= = with a 

sampling interval of T = 50msec. The total simulation time is taken as 250 seconds. The 

constant 1l  is taken as -0.05 which satisfies (49).    

The number of hidden layer neurons in the observer NN, ( )kwT
o ϕˆ , controller NN1 

( )kwTφ1ˆ  and NN2 ( )kwTσ2ˆ  each was taken as 15.  For weight updating, the learning rate is 

selected as 01.0=oα , 1.01 =α  and 1.02 =α . The inputs to observer NN, ( )kwT
o ϕˆ , control 

NNs, ( )kwTφ1ˆ  and ( )kwTσ2ˆ  are selected as ( )kzoˆ , ( )1̂z k  , and ( )2ẑ k  (32), respectively.  

The initial input layer weights for the three NNs are selected at random over an internal 

of [0, 1] and all the activation functions used are hyperbolic tangent sigmoid functions.  

The initial output layer weights for all the three NN are chosen to be zero.     

Measurement noise is assumed to be Gaussian with zero mean and variance of 0.01 was 

introduced. 
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Fig. 1 illustrates the performance of the adaptive NN output feedback controller. 

The system tracking performance is superior even when the state is not measured and in 

the presence of measured noise. The NN control input is presented in Fig. 2 where it is 

bounded.  
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Figure 1.  Performance of the NN controller in the presence of measurement noise. 
 

0 50 100 150 200 250
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

u

t(s)

Control input of NN controller

 

Figure 2. Adaptive NN controller input. 
 

Next a bounded disturbance as in (53) is introduced where the sampling interval is 

taken as one-second and the desired trajectory being a step input with a 50 second period.   
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( )
0.0, 0 100

0.1, 100
k

d k
k
≤ <⎧

= ⎨ ≥⎩
 (53) 

Figs. 3 and 4 depict the response of the proposed NN controller and the control input 

which is satisfactory.  
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Figure 3. Performance of the NN controller in the presence of bounded disturbance. 
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Figure 4. Control input. 
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V.  Conclusions 

 

An adaptive neural network (NN) -based output feedback controller is proposed 

which consists of three NNs: 1) a NN observer, and 2) two NNs to generate the virtual 

and real control inputs, respectively. The uniformly ultimate boundedness (UUB) of the 

closed-loop tracking error, the state estimation errors and the NN weight estimates is 

shown.  Results show that the performance of the proposed controller schemes is highly 

satisfactory while meeting the closed loop stability. The proposed approach can be easily 

extendable to an nth order system. 

 

Appendix  

 

Proof of Theorem 1: Define the Lyapunov function 

2 22
1 22 2

1 2

1 1 2 2
1 2

1 1 2 2
1 2

1 1( ) ( 1) ( 1) ( ) ( )
4 6 6

1 1 1( ( 1) ( 1)) ( ) ( ) ( ) ( )

1 1( ) ( ) ( ) ( )

T

m m

T T T
o o

o

T T

lJ k x k x k e k e k
g g

tr w k w k w k w k w k w k

w k w k w k w k

α α α

α α

= − − + +

+ − − + +

+ +

% %

% % % % % %

% % % %

   (A.1) 

where +∈ Rl2  is a design parameter. The first difference, ( 1) ( )J J k J kΔ = + − , is given 

by 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6J k J k J k J k J k J k J kΔ = Δ + Δ + Δ + Δ + Δ + Δ   (A.2) 

The first term, ( )kJ1Δ , is obtained using (12) and by applying the Cauchy’s 

inequality (
2

2 2

1 1 1

n n n

l l l l
l l l

a b a b
= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞≤⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ) as 
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( )

( )
1

2 2

2 2 2

1( ) ( ) ( ) ( 1) ( 1)
4
1 ( 1) ( 1) ( 1)
4
1 1 1( 1) ( 1) ( 1)
2 2 4

T T

o o

o o

J k x k x k x k x k

k d k x k

k d k x k

ξ

ξ

Δ = − − −

= − + − − −

≤ − + − − −

% % % %

%

%

           (A.3) 

Now taking the second term in (A.1) and substituting (25) into (A.1) and using Cauchy’s 

inequality, we get 

( )

( )

2 22
2 1 12

1

2 2 22
1 2 1 1 12

1

2
2 2 22 2 1
2 1 1 2

1

( ) ( 1) ( )
6

( ) ( ( ) ( ) ( )) ( )
6

( )1 1( ) ( ) ( )
2 2 2 6

m

m

m

lJ k e k e k
g

l g k e k k d k e k
g

l l e ke k k d k
g

ξ

ξ

Δ = + −

= + + −

≤ + + −

  (A.4) 

The third term in (A.2) can be calculated using (36) as 

( )

( )

2 2
3 2 22

2

2 2 2
2 1 1 2 2 22

2

2
2 2 2 21
1 2 2 22

2

1( ) ( 1) ( )
6

1 ( ) ( ( ) ( ) ( )) ( )
6

1 1 1( ) ( ) ( ) ( )
2 2 2 6

m

m

m

J k e k e k
g

g k l e k k d k e k
g

l e k k d k e k
g

ξ

ξ

Δ = + −

= + + −

≤ + + −

  (A.5) 

Taking the fourth term in (A.1) and substituting (46) to get 

( )

)

4

1 1

1 1

1( ) ( ( ) ( )) ( ( 1) ( 1))

ˆ(( ( 1) ( ( 1))1 ( ( 1)
ˆ ˆ( ( 1) ( ( 1)) ( ) ) )

ˆˆ( ( 1))( ( 1)

ˆ( ( 1)) ( ) ) )) ( ( 1) ( 1))

T T
o o o o

o

o o o
oT T T

o o o

T
o o o

T T
o o o

J k tr w k w k tr w k w k

tr w k z k
w k

w k z k l e k I

z k w k

z k l e k I tr w k w k

α
α ϕ

α ϕ

α ϕ

ϕ

Δ = − − −

− − −⎛
= −⎜

− − +⎝
− − −

− + − − −

% % % %

%
%

% %
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( )1 1

1 1

1 1

2

ˆˆ ˆ( 1) ( ( 1))( ( 1) ( ( 1)) ( ) )

ˆˆ ˆ( ( ( 1))( ( 1) ( ( 1)) ( ) ) )
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T T T
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T

T
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T T
o o o
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T
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w k z k l
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α ϕ

ϕ
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+
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1

2
1 1

2
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2 2 2

2
1 1 1
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2 ( 1) 2 ( 1) ( 1) ( )
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2

1( )k I
         (A.6) 

The fifth term ( )kJ5Δ  is obtained using (47) as 

( )

( )

5 1 1 1 1
1

2
1 1 1 1 1

1 1 1 1 1 1
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1 1 1 1 1 1

1 1 1

1( ) ( 1) ( 1) ( ) ( )
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    (A.7) 

Using (48), the last term ( )kJ6Δ  is expressed as 
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  (A.8) 

Combining (A.3) through (A.8) to get the first difference and simplifying to get 
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where ( ) ( )mmmmmommmomM wwwdddD σφϕ 21
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22 2
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According to the standard Lyapunov extension theorem (Jagannathan 2006), this 

demonstrates that ( )1~ −kx , ( )ke1 , ( )2e k  and the weight estimation errors ( )kwo
~ , ( )1w k%  

and ( )2w k%  or the weight estimates oŵ (k), 1ŵ (k) and 2ŵ (k) are bounded.   
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Abstract — Spark ignition (SI) engines operating at very lean conditions demonstrate 

significant nonlinear behavior by exhibiting cycle-to-cycle bifurcation of heat release. 

Past literature suggests that operating an engine under such lean conditions can 

significantly reduce NOx emissions by as much as 30% and improve fuel efficiency by as 

much as 5-10%. At lean conditions, the heat release per engine cycle is not close to 

constant, as it is when these engines operate under stoichiometric conditions where the 

equivalence ratio is 1.0. A neural network controller employing output feedback has 

shown ability in simulation to reduce the nonlinear cyclic dispersion observed under lean 

operating conditions. This neural network output controller consists of three NNs: a) A 

NN observer to estimate the states of the engine such as total fuel and air; b) a second NN 

for generating virtual input; and c) a third NN for generating actual control input.  The 

uniform ultimate boundedness of all closed-loop signals is demonstrated by using 

Lyapunov analysis without using the separation principle.  Persistency of excitation 
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condition, certainty equivalence principle and linearity in the unknown parameter 

assumptions are also relaxed.   

 The controller is implemented for a research engine as a program running on an 

embeddable PC that communicates with the engine through a custom hardware interface, 

and the results are similar to those observed in simulation.  Experimental results at an 

equivalence ratio of 0.77 show a drop in NOx emissions by around 98% from 

stoichiometric levels with an improvement of fuel efficiency by 5%.  A 30% drop in 

unburned hydrocarbons from uncontrolled case is observed at this equivalence ratio of 

0.77.  Similar performance was observed with the controller on a different engine. 
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Nomenclature 

 

CFR Cooperative Fuel Research 

COV coefficient of variation 

IMEP Indicated mean effective pressure, .Work DispVolume  

uHC Unburned hydrocarbons 

( )CE k  Combustion efficiency  

( )1d k  Unknown disturbance in air 

( )2d k  Unknown disturbance in fuel 

( )F k  Fraction of unreacted gas and fuel remaining from previous cycle 

R  Stoichiometric air-fuel mass ratio 

( )u k  Mass change fuel input 

( )1x k  Mass of air 

( )2x k  Mass of fuel 

( )kϕ  Equivalence ratio 

,l uϕ ϕ  Lower 10 and upper 90 percent locations of the combustion efficiency 

function 

mϕ  Midpoint between lϕ  and uϕ  
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I.  Introduction 

 

Modern automobiles utilize microprocessor-based engine control systems to meet 

stringent federal regulations governing fuel economy and the emissions of CO, NOx and 

unburned HC. Current efforts aim to decrease emissions and minimize the fuel 

consumption. To address these requirements, lean combustion control technology has 

received increasing attention [1]. Unfortunately, significant cyclic dispersion is exhibited 

when operating spark ignition engines at extreme lean conditions [2-3], causing engine 

instability and poor performance. 

Several control schemes have been proposed to stabilize engine operation at lean 

conditions. Inoue et al. [1] designed a lean combustion engine control system using a 

combustion pressure sensor. With the measurement of engine torsional acceleration, 

Davis et al. [4] developed a feedback control approach, which uses fuel as the control 

variable to reduce the cyclic dispersion. However, system stability is not guaranteed in 

either [1] or [4] since analysis of stability for nonlinear unknown engine dynamics during 

combustion is difficult. On the other hand, several control schemes [5-7] using state 

feedback are available to maintain air to fuel ratio near stoichiometric levels. Maintaining 

air to fuel ratio near a target value is different than reducing cyclic dispersion at lean 

engine operating conditions. Cyclic variability at lean engine operation causes instability 

and degraded performance levels. 

Therefore, He et al. [8] proposed an adaptive neural network (NN) backstepping 

controller to maintain stable operation of the SI engine at lean conditions by altering the 

fuel intake as the control variable. The NN is used to model the complex unknown engine 

dynamics. Lyapunov analysis is applied to ensure the uniformly ultimate boundedness 



 

 

35

(UUB) of the internal system signals. However, to implement the controller, total mass of 

air and fuel (system states) are required for each engine cycle. These are extremely 

difficult if not impossible to measure and therefore this controller cannot be 

implemented. In [9], another control scheme is presented using state feedback for air to 

fuel ratio control at stoichiometric conditions in order to maximize the benefits of the 

catalytic converter.  As mentioned before, controlling air to fuel ratio at stoichiometric 

conditions is a totally different problem from reducing cyclic dispersion using heat 

release as the feedback parameter at lean engine operation.  Additionally, cyclic 

variability exhibits very nonlinear, but to some level deterministic, behavior under lean 

conditions while being stochastic near stoichiometric operation.  

Conventional control schemes [8] have been found incapable of reducing the 

cyclic dispersion to the levels needed to implement these concepts since the engine 

dynamics are not taken into consideration. Moreover, the total amount of fuel and air in a 

given cylinder is normally not measurable on a per-cycle basis which necessitates the 

development of output feedback control schemes.  

Several output feedback controller designs in discrete time are proposed for the 

single-input-single-out (SISO) nonlinear systems [10-16].  However, no output feedback 

control scheme currently exists for the proposed class of nonstrict feedback nonlinear 

discrete-time systems. No controller design is available for nonstrict feedback nonlinear 

systems even with state feedback.   

The separation principle [10,12] does not hold for nonlinear systems, since an 

exponentially decaying state estimation error can lead to instability at finite time [10]. 
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Consequently, the output feedback control design is in general quite difficult for 

nonlinear discrete-time systems even though it is highly necessary. 

To make the controller implementation more practical, a heat release-based 

neuro-output feedback controller is proposed in discrete-time to reach stable operation of 

a single-cylinder spark ignition (SI) engine at lean conditions. Non-catalytic SI engine 

designs (e.g. generator sets and other industrial applications) could make use of lean 

operation to reduce engine-out NOx as well as improve fuel efficiency.  The proposed 

output feedback controller has an observer and a controller.  The NN observer is designed 

to estimate the total mass of air and fuel in the cylinder by using a measured value of heat 

release.  The estimated values are used by an adaptive NN controller. Consequently, the 

cyclic dispersion is reduced and the engine is stable even when an exact knowledge of 

engine dynamics is not known to the controller making the NN controller model-free. 

The proposed controller is designed for a class of nonlinear discrete-time systems 

in non-strict feedback form. Both simulation and experimental results show satisfactory 

performance of the controller.  It is important to note that in this work, the output is an 

unknown function of system states unlike in the existing literature [10-16] where the 

system output is a known linear function of system states.   

The stability analysis of the closed-loop control system is given and the 

boundedness of the closed loop signals is shown since a stable open loop system can still 

become unstable with a controller. This stability permits higher levels of diluents to be 

considered for a specific engine, further enhancing NOX reduction and fuel efficiency 

than would be realized on an uncontrolled engine. The NN weights are tuned on-line, 

with no off-line learning phase required.  Moreover, separation principle, persistency of 
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excitation condition, certainty equivalence and linearity in the unknown parameters 

assumptions are relaxed. Performance of the NN controller is evaluated on different 

engines and results show satisfactory performance of the controller. 

 

II.  Controller Design 

A.  Background 

 1) Engine Dynamics 

According to the Daw model [2-3], spark ignition (SI) engine dynamics can be 

expressed as a class of nonlinear systems in non-strict feedback form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 11x k AF k F k x k R F k CE k x k d k+ = + − ⋅ + , (1) 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )2 2 21 1x k CE k F k x k MF k u k d k+ = − + + + , (2) 

( ) ( ) ( )kCEkxky 2= , (3) 

( ) ( )
( )kx
kx

Rk
1

2=ϕ
, (4) 

( ) ( )
( )

max
( )

1 100
m

u l

k

CECE k ϕ ϕ
ϕ ϕ

− −
−

=

+

, (5) 

and 

2
lu

m
ϕϕ

ϕ
−

=
, (6) 
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where ( )1x k  and ( )2x k  are total mass of air and fuel, respectively, in the cylinder before 

thk  burn, ( )y k  is the heat release at kth instant, ( )CE k  is combustion efficiency for 

( )min max0 CE CE k CE< < < , maxCE  is the maximum combustion efficiency, ( )F k  is 

residual gas fraction for ( )min max0 F F k F< < < , ( )AF k  is mass of fresh air per cycle, R  

is stoichiometric air-fuel ratio, ( )MF k  is mass of fresh fuel per cycle, ( )u k  is change in 

mass of fresh fuel per cycle, ( )kϕ  is input equivalence ratio, , ,m u lϕ ϕ ϕ  are constant 

system parameters, and ( )1d k  and ( )2d k  are unknown but bounded disturbances. Since 

( )y k  varies each cycle, the engine is unstable. In the above engine dynamics, both 

( )F k  and ( )CE k  are unknown nonlinear functions of ( )1x k  and ( )2x k . 

Remark 1: For the system represented by (1) through (3), states of ( )1x k  and ( )2x k  are 

typically not measurable [17] and output ( )y k  can be made available. The control 

objective is to stably operate the engine at lean conditions ( ( )0 1kϕ< < ) with only heat 

release information available – to stabilize ( )y k  around dy , where dy  is the target heat 

release value. 

Remark 2: We notice that in (3) the available system output ( )y k  is an unknown 

nonlinear function of both immeasurable states of ( )1x k  and ( )2x k , unlike that in all 

past literatures [10-16], where ( )y k = ( )1x k  or ( )y k  is a known linear combination of 

system states. This issue makes the observer design more challenging. 
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 2) Engine Dynamics in a Different Form 

Substituting (3) into both (1) and (2), we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11x k AF k F k x k R F k y k d k+ = + − ⋅ + , (7) 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2 2 21x k F k x k y k MF k u k d k+ = − + + + . (8) 

For actual engine operation, fresh air, ( )AF k , fresh fuel, ( )MF k , and residual gas 

fraction, ( )F k , can all be viewed as nominal values plus some small and bounded 

disturbances: 

( ) ( )kAFAFkAF Δ+= 0 , (9) 

( ) ( )kMFMFkMF Δ+= 0 , (10) 

and 

( ) ( )kFFkF Δ+= 0 , (11) 

where 0AF , 0MF , and 0F  are known nominal fresh air, fresh fuel and residual gas 

fraction values, respectively. ( )AF kΔ , ( )MF kΔ , and ( )F kΔ  are small, unknown but 

bounded disturbances for fresh air, fresh fuel, and residual gas fraction, respectively. 

Their bounds are given by  

( ) mAFkAF Δ≤Δ≤0 , (12) 

( ) mMFkMF Δ≤Δ≤0 , (13) 
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and 

( ) mFkF Δ≤Δ≤0 , (14) 

where mAFΔ , mMFΔ , and mFΔ  are the respective upper bounds for ( )AF kΔ , ( )MF kΔ , 

and ( )F kΔ . 

Combine (9)-(11) with (7) and (8), and rewrite (7) and (8) to get 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 0 0 1 0

1 1

1x k AF F x k R F y k

AF k F k x k R F k y k d k

+ = + − ⋅ ⋅ +

Δ + Δ − Δ +
, (15) 

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

2 0 2 0

2 2

1x k F x k y k MF u k

F k x k y k MF k d k

+ = − + + +

Δ − + Δ +
. (16) 

Now, at the kth step and based on (3), future heat release, ( )1y k + can be predicted as  

2

3 1 2

( 1) ( 1) ( 1)
( ( ), ( ), ( ), ( ))

y k x k CE k
f x k x k y k u k

+ = + +
=

, (17) 

where 3 1 2( ( ), ( ), ( ), ( ))f x k x k y k u k  is an unknown nonlinear function. 

It is important to note that the closed-loop stability analysis has to be performed 

with the proposed NN controller even though many of the engine terms are considered 

bounded above since a stable open-loop system can still become unstable with a 

controller unless the NN weight update laws are properly selected. Moreover, a 

Lyapunov-based stability analysis is needed in order to show the relaxation of the 

separation principle for the observer and certainty equivalence principle for the 

controller.  Next the NN observer design is introduced. 
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B.  NN Observer Design 

A two-layer NN predicts the heat release in the subsequent time interval. The heat 

release prediction error is utilized to design the system observer. From (17) ( )1y k +  can 

be approximated by using a one layer NN as 

( ) ( )( ) ( )( )1 1 1 1 1 11 T Ty k w v z k z kφ ε+ = + , (18) 

where ( ) ( ) ( ) ( ) ( ) 4
1 1 2, , ,

T
z k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦  is the network input, matrices 1

1
nw R∈  

and 14
1

nv R ×∈  represent target output and hidden layer weights, ( )1φ ⋅  represents the 

hidden layer activation function, 1n  denotes the number of the hidden layer nodes, and 

( )( )1z k Rε ∈  is the functional approximation error. As demonstrated in [18], if the 

hidden layer weight, 1v , is chosen initially at random and held constant and the number of 

hidden layer nodes is sufficiently large, the approximation error ( )( )1z kε  can be made 

arbitrarily small over the compact set since the activation function forms a basis. 

For simplicity define 

( )( ) ( )( )1 1 1 1 1
Tz k v z kφ φ= , (19) 

and 

( ) ( )( )1 1k z kε ε= . (20) 

Given (19) and (20), (18) is re-written as 

( ) ( )( ) ( )1 1 1 11 Ty k w z k kφ ε+ = + . (21) 
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 1) Observer Structure  

Since states ( )1x k  and ( )2x k  are not measurable, ( )1z k  is not available either. 

Using the estimated values ( )1̂x k , ( )2x̂ k , and ( )ŷ k  instead of ( )1x k , ( )2x k , and ( )y k , 

the proposed heat release observer is given as 

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

1 1 1 1 1

1 1 1 1

ˆ ˆ ˆ1

ˆ ˆ

T T

T

y k w k v z k l y k

w k z k l y k

φ

φ

+ = +

= +

%

%
, (22) 

where ( )ˆ 1y k +  is the predicted heat release, ( ) 1
1ˆ nw k R∈  are output layer weights, 

( ) ( ) ( ) ( ) ( ) 4
1 1 2ˆ ˆ ˆˆ , , ,

T
z k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦  is the network input, 1l R∈  is the observer 

gain, ( )y k%  is the heat release estimation error, where 

( ) ( ) ( )ˆy k y k y k= −% , (23) 

and ( )( )1 1̂z kφ  represents ( )( )1 1 1̂
Tv z kφ , for simplicity. 

Using the heat release estimation error, the proposed system observer is given as 

( ) ( ) ( ) ( )1 0 0 1 0 2ˆ ˆ ˆ1x k AF F x k R F y k l y k+ = + − ⋅ ⋅ + % , (24) 

and 

( ) ( ) ( )( ) ( )( ) ( )2 0 2 0 3ˆ ˆ ˆ1x k F x k y k MF u k l y k+ = − + + + % , (25) 

where 2l R∈  and 3l R∈  are observer gains. Here, the initial value of ( )0u  is assumed to 

be bounded.  Equations (22), (24), and (25) represent the proposed system observer to 

estimate the states of ( )1x k  and ( )2x k . 
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 2) Observer Error Dynamics 

Let us define the state estimation errors as 

( ) ( ) ( ) 1,2ˆi i i ix k x k x k == −% . (26) 

Combining (21) through (26), we obtain the estimation error dynamics as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 0 1 2 0

1 1

1x k F x k l R F y k

AF k F k x k R F k y k d k

+ = + − ⋅ −

Δ − Δ + Δ −

% % %
, (27) 

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

2 0 2 3 0

2 2

1x k F x k l F y k

F k x k y k MF k d k

+ = + − −

Δ − − Δ −

% % %
, (28) 

and 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( )( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

ˆ ˆ1

ˆ

ˆ

T T

T T

T

T

y k w k z k l y k w z k k

w k z k l y k w z k

k w z k

k l y k k w z k

φ φ ε

φ φ

ε φ

ζ ε φ

+ = + − −

= + −

− +

= + − +

% %

% %

% %

 (29) 

where 

( ) ( ) 1ˆw k w k w= −% , (30) 

( ) ( ) ( )( )1 1 1 1̂
Tk w k z kζ φ= % , (31) 

and, for simplicity, ( )( )1 1z kφ %  is ( )( ) ( )( )( )1 1 1 1ẑ k z kφ φ− . These substitutions are made to 

simplify the analysis and to show the boundedness of the closed-loop signals. 
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 C.  Adaptive NN Output Feedback Controller 

Heat release cyclic dispersion is observed at lean conditions, and, thus, engine 

operation is unsatisfactory. To stabilize the engine at lean conditions, our control 

objective is to reduce the heat release cyclic dispersion – drive the heat release toward the 

target operating point of dy . Given dy  and the engine dynamics (1) through (5), we could 

obtain the operating point of total mass of air and fuel in the cylinder, 1dx  and 2dx , 

respectively. By driving states ( )1x k  and ( )2x k  to approach their respective operating 

points 1dx  and 2dx , ( )y k  will approach the desired value dy .  Then the control objective 

is realized. With the estimated states ( )1̂x k  and ( )2x̂ k , the controller design follows the 

backstepping technique [19] detailed in the following sections. 

 1) Adaptive NN Output Feedback Controller Design 

Step 1:  Virtual controller design. Define system error as 

( ) ( )1 1 1de k x k x= − . (32) 

Combining with (1), (32) can be rewritten as 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 2 1

1 1 d

d

e k x k x

AF k F k x k x R F k CE k x k d k

+ = + −

= + − − ⋅ +
. (33) 

For simplicity, let us denote 

( ) ( ) ( ) ( )1 1 1df k AF k F k x k x= + − , (34) 

and 

( ) ( ) ( )1g k R F k CE k= ⋅ . (35) 
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Then the system error equation can be expressed as 

( ) ( ) ( ) ( ) ( )1 1 1 2 11e k f k g k x k d k+ = − + . (36) 

By viewing ( )2x k  as a virtual control input, a desired feedback control signal can be 

designed as  

( ) ( )
( )

1
2

1
d

f k
x k

g k
= . (37) 

The term ( )2dx k  can be approximated by the second NN as 

( ) ( )( ) ( )( )
( )( ) ( )( )

2 2 2 2 2

2 2 2

T T
d

T

x k w v x k x k

w x k x k

φ ε

φ ε

= +

= +
, (38) 

where the input is the state ( ) ( ) ( )1 2,
T

x k x k x k⎡ ⎤= ⎣ ⎦ , 2
2

nw R∈  and 12
2

nv R ×∈  denote the 

constant ideal output and hidden layer weights, 2n  is the number of hidden layer nodes, 

the hidden layer activation function of the input and hidden layer weights, ( )( )2 2
Tv x kφ , is 

abbreviated as ( )( )2 x kφ , and ( )( )2 x kε  is the approximation error. 

Since both ( )1x k  and ( )2x k  are unavailable, the estimated state ( )x̂ k  is selected 

as the NN input. Consequently, the virtual control input is taken as  

( ) ( ) ( )( ) ( ) ( )( )2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆT T T
dx k w k v x k w k x kφ φ= = , (39) 

where ( ) 2
2ˆ nTw k R∈  is the actual weight matrix for the second NN. Define the weight 

estimation error by 

( ) ( )2 2 2ˆw k w k w= −% . (40) 
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Define the error between ( )2x k  and ( )2ˆ dx k  as 

( ) ( ) ( )2 2 2ˆ de k x k x k= − . (41) 

Equation (36) can be expressed using (41) for ( )2x k as 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 1 2 2 1ˆ1 de k f k g k e k x k d k+ = − + + , (42) 

or, equivalently, 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )

( )
( ) ( ) ( )( )
( ) ( )( ) ( )( )

( )

1 1 1

2 2 2 2 1

1 2 2 2 1

2 2 2
1 1

2 2 2

1

ˆ

ˆ

ˆ ˆ

d d d

d d

T

T

e k f k g k

e k x k x k x k d k

g k e k x k x k d k

e k w k x k
g k d k

w k x k x k

φ

φ ε

+ = − ⋅

+ − + +

= − − + +

⎛ ⎞+ −
⎜ ⎟= − +
⎜ ⎟−⎝ ⎠

. (43) 

Similar to the calculation of (29), (43) can be further expressed as 

( ) ( )
( ) ( ) ( )( ) ( )( )( ) ( )

1 1

2 2 2 2 2 1

1
T

e k g k

e k k w x k x k d kζ φ ε

+ = − ⋅

+ + − +%
, (44) 

where 

( ) ( ) ( )( )2 2 2 ˆTk w k x kζ φ= % , (45) 

and  

( )( ) ( )( ) ( )( )( )2 2 2 2 2ˆT Tw x k w x k x kφ φ φ= −% . (46) 

Step 2:  Design of control input ( )u k . Rewriting the error ( )2e k  from (41) as 
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( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

2 2 2

2

2 2

ˆ1 1 1

1

ˆ 1

d

d

e k x k x k

CE k F k x k

MF k u k x k d k

+ = + − +

= − +

+ − + +

, (47) 

for simplicity, let us denote 

( ) ( )( ) ( ) ( ) ( )2 21f k CE k F k x k MF k= − + . (48) 

Equation (47) can be written as 

( ) ( ) ( ) ( ) ( )2 2 2 2ˆ1 1de k f k u k x k d k+ = + − + + . (49) 

Here, the future value ( )2ˆ 1dx k +  is not available in the current time step. 

However, from (37) and (39), observe that ( )2ˆ 1dx k +  is a smooth nonlinear function of 

the state ( )x k  and the virtual control input ( )2ˆ dx k .  Consequently, ( )2ˆ 1dx k +  is assumed 

to be approximated by using another NN with semi-recurrent architecture since a first 

order predictor generated by this NN is sufficient to obtain this value.  Alternatively, a 

first order filter can be used to obtain the value as given in [20]. 

Using the third NN, we can now select the desired control input as 

( ) ( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

2 2

3 3 3 3 3 3 3 3 3 3 3

ˆ 1d d

T T T

u k f k x k

w v z k z k w z k z kφ ε φ ε

= − + +

= + = +
, (50) 

where 3
3

nw R∈  and 33
3

nv R ×∈  denote the constant ideal output and hidden layer weights, 

3n  is the number of hidden layer nodes, the activation function ( )( )3 3 3
Tv z kφ  is 

abbreviated by ( )( )3 3z kφ , ( )( )3 3z kε  is the approximation error, and ( ) 3
3z k R∈  is the 
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NN input, which is given by (51). Considering that both ( )1x k  and ( )2x k  cannot be 

measured, ( )3z k  is substituted with 3
3ˆ ( )z k R∈ , where  

( ) ( ) ( ) 3
3 2ˆ,

T

dz k x k x k R⎡ ⎤= ∈⎣ ⎦ , (51) 

and 

( ) ( ) ( ) 3
3 2ˆ ˆˆ ,

T

dz k x k x k R⎡ ⎤= ∈⎣ ⎦ . (52) 

Define 

( ) ( )1 1 1ˆ ˆ de k x k x= − , (53) 

and 

( ) ( )2 2 2ˆ ˆ de k x k x= − . (54) 

The actual control input is now selected as 

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

3 3 3 3 4 2

3 3 3 4 2

ˆ ˆˆ

ˆ ˆˆ

T T

T

u k w k v z k l e k

w k z k l e k

φ

φ

= +

= +
, (55) 

where ( ) 3
3ˆ nw k R∈  is the actual output layer weights, and 4l R∈  is the controller gain 

selected to stabilize the system. 

Similar to the derivation of (29), combine (49), (50), and (55) yielding 

( ) ( ) ( )
( )( ) ( )( ) ( )

2 4 2 3

3 3 3 3 3 2

ˆ1
T

e k l e k k

w z k z k d k

ξ

φ ε

+ = + +

− +%
, (56) 

where  
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( ) ( )3 3 3ˆw k w k w= −% , (57) 

( ) ( ) ( )( )3 3 3 3ˆ
Tk w k z kξ φ= % , (58) 

and 

( )( ) ( )( ) ( )( )( )3 3 3 3 3 3 3ˆT Tw z k w z k z kφ φ φ= −% . (59) 

Equations (44) and (56) represent the closed-loop error dynamics.  It is necessary 

to show that the estimation errors (23) and (26), the system errors (44) and (56), and the 

NN weight matrices ( )1ŵ k , ( )2ŵ k , and ( )3ŵ k  are bounded. 

 2)  Weight Updates for Guaranteed Performance 

Assumption 1 (Bounded Ideal Weights): Let 1w , 2w , and 3w  be the unknown 

output layer target weights for the observer and two action NNs and assume that they are 

bounded above so that 

1 1 2 2,m mw w w w≤ ≤ , and 3 3mw w≤ ,  (60) 

where 1mw R+∈ , 2mw R+∈ , and 3mw R+∈  represent the bounds on the unknown target 

weights where the Frobenius norm is used. 

Fact 1: The activation functions are bounded above by known positive values so that 

( ) , 1, 2,3i im iφ φ⋅ ≤ = , (61) 

where , 1, 2,3im iφ =  are the upper bounds. 
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Assumption 2 (Bounded NN Approximation Error): The NN approximation errors 

( )( )1 1z kε , ( )( )2 x kε , and ( )( )3 3z kε  are bounded over the compact set by 1mε , 2mε , and 

3mε , respectively. 

Theorem 1:  Consider the system given in (1)-(3) and let the Assumptions 1 and 2 hold.  

Let the unknown disturbances be bounded by ( )1 1md k d≤  and ( )2 2md k d≤ , 

respectively.  Let the observer NN weight tuning be given by  

( ) ( ) ( )( ) ( ) ( ) ( )( )( )1 1 1 1 1 1 1 1 5ˆ ˆ ˆˆ ˆ1 Tw k w k z k w k z k l y kα φ φ+ = − + % , (62) 

with the virtual control NN weight tuning provided by  

( ) ( ) ( )( ) ( ) ( ) ( )( )( )2 2 2 2 2 2 6 1ˆ ˆ ˆ ˆ ˆ ˆ1 Tw k w k x k w k x k l e kα φ φ+ = − + , (63) 

and the control input weight be tuned by 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )3 3 3 3 3 3 3 3 7 2ˆ ˆ ˆ ˆˆ ˆ1 Tw k w k z k w k z k l e kα φ φ+ = − + , (64) 

where 1 2 3, ,R R Rα α α∈ ∈ ∈  and 5l R∈ , 6l R∈ , and 7l R∈  are design parameters. Let 

the system observer be given by (22), (24), and (25), virtual and actual control inputs be 

defined as (39) and (55), respectively. The estimation errors (27)-(29), the tracking errors 

(44) and (56), and the NN weights ( )1ŵ k , ( )2ŵ k , and ( )3ŵ k  are UUB with the bounds 

specifically given by (A.17) through (A.24) provided the design parameters are selected 

as: 

(a)  ( ) 2
0 1, 1,2,3i i k iα φ< < = , (65) 
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(b)  ( ) ( )2 2
1 0 2 02 2

3 52 2 21 4
6 6m m

l R F l F
l l

R F F
− ⋅ −

< − − −
⋅Δ Δ

, (66) 

(c)  
( )2

02
6 2 2 2

1 1min ,
18 18m

F
l

R F R

⎛ ⎞−
⎜ ⎟<
⎜ ⎟⋅ Δ⎝ ⎠

, (67) 

(d)  
( )2

02 2
4 7 2

1 16 min ,
6 3m

F
l l

F

⎛ ⎞−
⎜ ⎟+ <
⎜ ⎟Δ⎝ ⎠

. (68) 

Proof:  See Appendix A. 

Remark 3: Given specific values of R , 0F , and mFΔ , we can derive the design parameters 

of li, i=1,…,7. For instance, given R=14.6, 0F =0.14, and mFΔ =0.02, we can select 

l1=1.99, l2=0.13, l3=0.4, l4=0.14, l5=0.25, l6=0.016, and l7=0.1667 to satisfy (66)-(68). 

Remark 4: Given the hypotheses, this proposed neuro-output control scheme and the 

weight updating rules in Theorem 1 with the parameter selection based on (65) through 

(68), the state ( )2x k  approaches the operating point 2dx . 

Remark 5: A well-defined controller is developed in this paper since a single NN is 

utilized to approximate two nonlinear functions thereby avoiding division by zero.   

Remark 6: It is important to note that in this theorem there is no persistency of excitation 

(PE) condition for the NN observer and NN controller in contrast with standard work in 

the discrete-time adaptive control [21] since the first difference of the Lyapunov function 

in the Appendix does not require the PE condition on input signals to prove the 

boundedness of the weights.  Even though the input to the hidden-layer weight matrix is 

not updated and only the hidden to the output-layer weight matrix alone is tuned, the NN 
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method relaxes the linearity in the unknown parameter assumption.  Additionally, 

certainty equivalence principle is not used in the proof.   

Remark 7: Generally, the separation principle used for linear systems does not hold for 

nonlinear systems and hence it is relaxed in this paper for the controller design since the 

Lyapunov function is a quadratic function of system errors and weight estimation errors 

of the observer and controller NNs.   

Remark 8: It is important to notice that the NN outputs are not fed as delayed inputs to 

the network whereas the outputs of each layer are fed as delayed inputs to the same layer. 

Thus the NN weight tuning proposed in the (62) through (74) renders a semi-recurrent 

architecture due to the proposed weight tuning law even though feed forward NNs are 

utilized in the observer and controller.  This semi-recurrent NN architecture creates a 

dynamic NN which is capable of predicting the state one step-ahead overcoming the non 

causal controller design.  

Remark 9: It is only possible to show boundedness of all the closed-loop signals by using 

an extension of Lyapunov stability [21-22] due to the presence of approximation errors 

and bounded disturbances consistent with the literature. 

The block diagram representation of the controller with observer, controller and 

engine are shown in Fig. 1. The SI engine block represents the model during simulations 

and, during experimentation, the research engine itself. 
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Fig. 1. Structure of system and controller shows the relationship between the observer 

and controller neural networks as well as the connection to the engine. 
 

III.  Simulation 

System parameters are selected as: 15.13R = , 0.09F = , 0.725uϕ = , 0.695lϕ =  

(by prior analysis to match the simulation output with the experimental data), 

max 1.0CE = . The controller gains are 1 1.99l = , 2 0.25l = , 3 0.99l = , 4 0.12l = , 5 0.5l = , 

6 0.1l = , and 7 0.7l = . Adaptation gains for weight updating are selected as 1 0.005α = , 

2 0.03α = , and 3 0.03α = . All of the neural networks have 35 hidden layer nodes. The 

neuron activation functions are hyperbolic tangent sigmoids in order to ensure the NN 

approximation capability. 

Parameters are chosen to correlate with the research engine used for 

implementation. Uncontrolled simulation of the engine model is performed for 5,000 

cycles whereupon model heat release is stored for analysis. Controlled simulation for 

5,000 cycles follows on the engine model using the same parameters. The entire time 
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series of heat release values is plotted in Fig. 2. The 5,000 cycles recorded during control 

exhibit less instability than the first 5,000 cycles where the engine model was run without 

control. Observe in Fig. 2 that the average controlled heat release is slightly higher than 

for uncontrolled, a result of a slight increase in the operating equivalence ratio. 
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Fig. 2. Discrete time series of heat release shows control beginning at cycle 5001. Cyclic 
dispersion decreases since less misfires occur after control is applied. Mean heat release 

also increases. 
 

Fig. 3 shows return maps for the heat release data. A return map is a plot of the 

heat release for the current cycle versus the next cycle heat release. Under stable engine 

operation, the heat release from cycle to cycle would appear to be a cluster on the 45° 

diagonal. The heat release recorded from the engine model without control is on the left 

plot and heat release during control is on the right plot. The controlled heat release return 

map on the right exhibits less cyclic dispersion than without control on the left.  Hence, 

the engine model heat release output is more stable with control. 
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Fig. 3. Uncontrolled and controlled heat release return maps in normalized units of joules 
generated from the engine model. Current heat release, HR(k), is plotted against next heat 

release, HR(k+1), where k represents cycle number.  
 

Fig. 4 highlights the response of estimated heat release and control input ( )u k  

when a weak combustion cycle is encountered. The controller modifies the fuel control 

input when such a misfire is detected. Increased fuel intake during control drives the 

equivalence ratio,φ , slightly higher than 0.74.   

The scale of heat release seen in Fig. 3 is different from that seen in Fig. 4. The 

heat release values of the return maps in Fig. 3 are those from the engine model, but the 

heat release values plotted in Fig. 4 are the internal, controller-scaled, normalized heat 

release values used in calculations. Also, in Fig. 4 one can see that the observer-estimated 

heat release is less than the engine model heat release, but there is an observer heat 

release decrease that indicates engine model misfire detection. 
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Fig. 4. Simulation heat release output in normalized units of joules from the engine model 
is plotted for comparison with estimated heat release.  The plots are shown with zoom 

from cycles 2205 to 2230 for detail. When a low heat release value is detected, which is 
essentially a misfire, the fuel control input increases. 

 

The existence of the observer bias is due to uncertainty of some engine 

parameters – such as efficiency over a range of equivalence ratios.  The oscillation seen 

in the observer heat release – after the misfire – decays on subsequent engine cycles until 

another misfire is detected. 

 

IV.  Controller Hardware Design 

 

Implementation of the controller is carried out on a cooperative fuel research 

(CFR) engine.  Additional results are obtained on a Ricardo Hydra research engine with a 

Ford Zetec head. The controller itself is implemented in software, and the algorithm is 

processed by an embeddable PC running a Linux-based operating system. A special 

hardware board had to be designed in order to interface the engine and PC signals.  Both 
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engines are port fuel-injected, with the fuel injector being driven by an injector driver that 

receives a TTL signal from this interface board. 

The research engines, seen in Fig. 5 (a) and (b), are connected to an electric 

dynamometer which maintains a constant engine speed of 1000 RPM. The use of a single 

cylinder engine eliminates the dynamics that would be introduced from interactions 

between multiple cylinders. A shaft encoder is mounted on the crank shaft to provide a 

crank angle signal and a hall effect sensor on the cam shaft provides a start of cycle 

signal. There are 720° of crankshaft rotation per engine cycle, so a crank angle degree is 

detected approximately every 167 microseconds at 1000 RPM.  

 

 

Fig.5 (a). Cooperative Fuel Research (CFR) Engine. 
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Fig. 5 (b):  Ricardo Engine. 

 
 

In-cylinder pressure measurements are obtained using a Kistler model 6061B 

water-cooled pressure transducer, coupled to a charge amplifier, which converts the pC 

charge from the transducer to a 0-10 V signal.  The laboratory-grade pressure transducers 

used in collecting experimental data are too expensive and fragile for production use.  

However, low-cost, in-cylinder pressure measurement devices are being developed 

including lower-cost piezo-resistive sensors [23], spark plug boss mounted sensors [24], 

and fiber-optic sensors [25], so that in-cylinder pressure measurements will be feasible in 

production automotive engines in the near future.  Production quality in-cylinder pressure 

sensors are currently under development by various companies including Siemens, 

Kistler, and Delphi. 

Heat release for a given engine cycle is calculated by integrating in-cylinder 

pressure and volume over time.  In-cylinder pressure is measured from the engine every 

half crank angle degree during combustion, over a cycle window from 345° to 490° for 

the CFR engine (Fig. 5(a)), and every crank angle from 330° to 490° for the Ricardo 

engine (Fig. 5(b)), for a total of 290, and 130 pressure measurements respectively. At 
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1000 RPM pressure measurements must be made approximately every 83.3 

microseconds.  

Fig. 6 shows the timing events in terms of degrees and again in seconds.  Start of 

cycle is labeled SOC, and top dead center is labeled TDC.  The pressure window is 

shown in milliseconds on the second plot as well as the calculation window and the fuel 

injection window.   
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Fig. 6. Timing specifications per cycle for the CFR engine at 1,000 RPM are shown in 
terms of crank angle degree and again in seconds after the start of cycle. 

 

Notice the timing constraints that are present when an engine is running at 1,000 

RPM.  The pressure measurement window from 345° to 490° corresponds to 24.167 

milliseconds.  Also, observe the fuel for the next cycle is injected at the end of the current 

cycle.  The measurement of pressure data and the injection of fuel leave about 17.67 ms 
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for the PC to collect the pressure measurements, calculate heat release, run the controller 

algorithm, and return the new fuel pulse width to the fuel injector. 

The control input is an adjustment to the nominal fuel required at a given 

equivalence ratio. Fuel injection is controlled by a TTL signal to a fuel injector driver 

circuit developed for the engine. Pressure measurements come from a charge amplifier 

which receives a signal from a water-cooled piezoelectric pressure transducer inside the 

cylinder. 

An engine-to-PC interface board was designed to manage the shaft encoder 

signals, pressure measurements, and fuel injector signal since timing is crucial to correct 

engine operation. The board uses a microcontroller to buffer the engine hardware signals. 

A high speed 8-bit A/D converts the pressure measurements. Pressure measurements are 

sent to the PC where heat release is calculated and then passed to the controller 

algorithm. A change to the fuel control input, ( )u k , is returned by the controller 

algorithm and used to calculate the fuel pulse width for the next engine cycle. This pulse 

width is a function of mass of fuel to be injected. 

The controller algorithm and neural network data structures are implemented in C 

and compiled to run on an x86 PC. The controller was compiled using the same structure 

and parameters as for simulation. Configuration files allow the controller parameters to 

be modified without recompiling. In Fig. 7, a plot of the controller runtime to calculate 

heat release and the new fuel control input is shown for varying neural network hidden 

layer size. 

Since the number of nodes required in a multilayer NN for a given approximation 

error is not clear in the literature, the plot in Fig. 7 illustrates that even with large number 
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of hidden-layer NNs the proposed controller can be implemented on the embedded 

hardware.  However, it was found from offline analysis that the improvement in 

approximation accuracy is not significant beyond 35 hidden-layer nodes and therefore the 

hidden-layer NN nodes in the observer and controller are limited to 35. From this figure 

one can see that the time to compute the controller calculations is less than 100 

microseconds. 
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Fig. 7. Controller algorithm runtimes for varying neural network hidden layer size. 
 

V.  Experimental Results 

 

During experimentation, the controller was tested at a variety of steady state 

operating conditions (determined by a combination of engine speed and load) on the 

engines.  The speed was maintained at a constant 1000 RPM for all tests, and the pressure 

in the intake manifold (manifold absolute pressure, or MAP) was maintained at around 80 
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kPa for the CFR engine which is roughly a mid-load operating condition, and at around 

90 kPa for the Ricardo engine. MAP at full load would be nearly atmospheric pressure 

and at low load is typically around 40 kPa. 

Since the work output from the engine varies with equivalence ratio because 

reduction in fuel will reduce the engine output, each operating condition is a unique 

speed/load case.  The operation on two different engines also yields more varied test 

conditions for the controller. 

Before activating the controller, air flow is measured and nominal fuel is 

calculated for the desired equivalence ratio by 

( )MFR AFϕ = , (69) 

where MF is nominal mass of fuel and AF is nominal mass of air. The nominal fuel and 

air are loaded into the controller configuration.  During data acquisition, ambient pressure 

is measured when the exhaust valve is fully open at 600° and used to calibrate the 

combustion pressure measurements. This is necessary to remove any bias generated by 

charge accumulation on the pressure transducer from which pressure measurements are 

obtained. 

Uncontrolled and controlled heat release data were collected at lean equivalence 

ratios from 0.79 down to 0.72.  NOx and unburned hydrocarbons (uHC) emissions data 

were also collected for both uncontrolled and controlled engine operations. 

NOx data were measured using a Rosemount Analytical Model 951A NOx 

analyzer, and uHC data were measured using a Rosemount Analytical Model 400A flame 

ionization detector.  All emissions data are dry gas measurements, averaged over 2 

minutes through a data acquisition system. 
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Uncontrolled engine data means the controller algorithm was not used to modify 

the fuel injected for each cycle, but the amount of fuel to be injected was set to a nominal 

value. Controlled engine data comes from the controller modifying the fuel injector pulse 

width for every cycle. The engine ran for 3,000 cycles uncontrolled, and then 5,000 

cycles with the control. Before collecting data the engine was allowed to reach a steady 

state for each set point according to stable exhaust temperature. 

Heat release data is shown in time series and return maps. Time series show the 

heat release data for the last 500 cycles without control and for the first 500 cycles with 

control. This illustrates the change in heat release when control is activated. Return maps 

of heat release are the current cycle of heat release plotted against the next cycle of heat 

release. This shows the heat release on a per-cycle-basis as well as the general cyclic 

dispersion.  For fair comparison of cyclic dispersion, 3,000 cycles are used to create the 

uncontrolled return map and 3,000 cycles for the controlled return map. 

On each return map of controlled data, there is a percentage that the equivalence 

ratio increased during control. This percentage increase of the set-point is due to the 

mean value of fuel during control increasing from the nominal value injected for the 

cycles without controller operation.  

Fig. 8 shows the time series of heat release for an equivalence ratio of 0.79. At 

index k=0 the controller is activated, and mean heat release increases. Note that heat 

release increases when control is activated, and there are fewer misfires. In Fig. 9 return 

maps of the uncontrolled and controlled heat release are plotted next to each other. Both 

the return maps exhibit cyclic dispersion, however, with control the dispersion has 
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decreased. This fact is emphasized by the lower coefficient of variation (COV) of heat 

release per cycle calculated for each return map.   
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Fig. 8. CFR engine - Time series of heat release at equivalence ratio 0.79. 
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Fig. 9. CFR engine - Return maps of heat release at equivalence ratio 0.79. 
 

The coefficient of variation metric – hereafter referred to as COV – is used to 

quantify cyclic dispersion in heat release, and is often used as a measure of variability in 

engine output.  It is calculated as the standard deviation of a set of heat release data 

divided by the mean heat release for that set.  A larger COV indicates that heat release 

values were more dispersed on the return map.  With regard to COV, a goal for this 

controller implementation is to observe a reduction in COV when the control loop is 

closed on the engine. 
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Note that heat release appears to be much higher than average after a misfire or 

partial burn. This stronger-than-average burn can be explained by residual fuel left over 

in the cylinder from the previous cycle that experienced the weak burn. This results in 

more fuel to burn for the next cycle causing a higher heat release since the engine is 

operating lean. 

Next, in Fig. 10 the time series of heat release for equivalence ratio 0.77 is 

plotted. Without control, there is more instability seen at this leaner equivalence ratio 

than at 0.79. From the plot one can see abundant misfires for the uncontrolled portion of 

the time series where control begins at index k=0. With control applied, the instabilities 

in the heat release time series reduce substantially. Coefficient of variation decreases 

from 38.7% to 13.6% when control has been applied. 
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Fig. 10. CFR engine - Time series of heat release at equivalence ratio 0.77. 
 

Looking at Fig. 11, one can see the return maps for the data collected at 

equivalence ratio 0.77. A decrease in cyclic dispersion is shown by the drop in COV from 

the uncontrolled return map to the controlled return map. 

In Figs. 12 and 13 the time series and return maps of heat release for equivalence 

ratio 0.75 are plotted. Again, with control applied, instabilities in the heat release time 
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series are reduced substantially. Comparison of the uncontrolled and controlled return 

maps at equivalence ratio 0.75 in Fig. 13 shows significant decrease in cyclic dispersion.  

Coefficient of variation decreases from 46.3% to 20.7% when control has been applied. 
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Fig. 11. CFR engine - Return maps of heat release at equivalence ratio 0.77. 
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Fig. 12. CFR engine - Time series of heat release at equivalence ratio 0.75. 
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Fig. 13. CFR engine - Return maps of heat release at equivalence ratio 0.75. 
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The coefficient of variation (COV) for all of the uncontrolled and controlled heat 

release return maps is shown in Table I. For each equivalence ratio, the uncontrolled 

COV is greater than the controlled COV, since cyclic dispersion reduced when control 

was applied. The most significant decrease in cyclic dispersion was observed at 

equivalence ratio 0.77, where COV fell from 38.6% to 13.6%. This reduction in 

dispersion translated into a drop of 30% in measured unburned hydrocarbons compared 

to the uncontrolled case at an equivalence ratio of 0.77.  Measured NOx values decreased 

by around 98% from levels at stoichiometric conditions. 

 

Table I. Coefficient of Variation for Lean Set-Points of the CFR Engine 

φset-point Uncontrolled
COV 

Controlled
COV 

0.79 0.230 0.205 
0.77 0.385 0.136 
0.75 0.463 0.207 

 

 

Emissions data are given in Table II.  The (u) and (c) prefixes in the column 

headings stand for uncontrolled and controlled, respectively. The exhaust gas analyzers 

were used to measure parts-per-million of nitrogen oxides (NOx) and parts-per-million C3 

unburned hydrocarbons (uHC). Looking at the uncontrolled and controlled data 

independently, uHC increases as equivalence ratio decreases due to more abundant partial 

fuel burns.  To reduce uHC at lower equivalence ratios, cyclic dispersion must be 

decreased. The controller is able to reduce the cyclic dispersion which in turn minimizes 

the uHC.  NOx is decreased at lower equivalence ratios because of lower combustion 

temperatures. 
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Additional results from the Ricardo research engine also show the controller’s 

effectiveness at reducing cyclic dispersion.  The Ricardo engine was operated at 1,000 

rpm like the CFR.  The same emissions analyzers were used, and the in-cylinder pressure 

measurement is similar.  In Fig. 14 and 15, time series and return maps are shown for 

lean equivalence ratio 0.72. 

 

Table II. Emissions Data for Lean Set-Points of the CFR Engine 

φset-point (c) NOx (PPM) (u) uHC (PPM) (c) uHC (PPM)

0.79 351.7 81.4 77.7 

0.77 48.2 387.3 283.7 

0.75 54.5 913.3 386.1 
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Fig. 14 Ricardo engine - Time series of heat release at equivalence ratio 0.72. 
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Fig. 15. Ricardo engine - Return maps of heat release at equivalence ratio 0.72  
 

Figs. 16 and 17 contain the heat release information recorded at equivalence ratio 

0.75.  The coefficient of variation (COV) for the uncontrolled and controlled heat release 

return maps of the Ricardo engine is shown in Table III. For each equivalence ratio, the 

uncontrolled COV is greater than the controlled COV.  This is an expected result, since 

the controller should be reducing the cyclic dispersion. 
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Fig. 16 Ricardo engine - Time series of heat release at equivalence ratio 0.75 
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Fig. 17. Ricardo engine - Return maps of heat release at equivalence ratio 0.75. 
 

 

Table III. Coefficient of Variation for Lean Set-Points of the Ricardo Engine  

φset-point Uncontrolled
COV 

Controlled
COV 

0.72 0.573 0.475 
0.75 0.211 0.179 

 

 

The indicated fuel conversion efficiency, ηf, is a measure of the efficiency of the 

engine in converting the chemical potential energy present in the fuel to actual work.  

This metric was also calculated for both the uncontrolled and controlled cases.  To 

determine ηf, the net indicated mean effective pressure (IMEP) is calculated by 

integrating the pressure measured in the cylinder with respect to the cylinder volume, 

then normalizing by the displacement volume of the engine.  The net IMEP, which is a 

measure of the work output of the engine, is combined with the engine speed to 

determine an indicated power.  Dividing the fuel consumed by the power produced will 

yield a specific fuel consumption rate, which is then used along with the lower heating 

value of the fuel, which quantifies its chemical potential energy content, to determine the 

indicated fuel conversion efficiency. 
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Due to reduced cyclic dispersion and fewer misfires and low energy cycles, a gain 

of approximately 5% in indicated fuel conversion efficiency was observed for controlled 

engine operation. 

In Table IV one can see that NOx levels are lower at reduced equivalence ratios.  

Since cyclic dispersion has been reduced and the engine can operate in a more stable 

fashion, the amount of partial burns and misfires are reduced. This leads to a reduction of 

unburned hydrocarbons in the exhaust.  

 

Table IV. Emissions Data for Lean Set-Points of the Ricardo Engine 

φset-

point 

(c) 

NOx 

(PPM) 

(u) 

uHC 

(PPM) 

(c) 

uHC 

(PPM) 

0.72 89 8918 8378 

0.75 320 4146 3915 

 

 

Results from the controller implementation on two different engines exemplify 

the controller’s flexibility.  Only engine parameters such as fuel injector information and 

cylinder geometry had to be changed to extend the controller from the CFR engine to the 

Ricardo engine.  No offline NN training is required and the controller is model-free. 

Finally, the task of identifying stabilizing initial weights for the observer and controller 

NNs, a well known problem in the literature [21-22], is overcome by initializing the NN 

weights to zero.  
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VI.  Conclusions 

 

The spark ignition engine controller aims to decrease emissions by reducing 

cyclic dispersion encountered during lean operation. Both in model simulation and engine 

experimentation the controller minimizes estimated heat release error given by (23) 

returning a noticeable decrease in cyclic dispersion. Although model heat release output 

does not exhibit all the nonlinearities of actual engine heat release, the controller is still 

able to reduce heat release error.  Correlating the reduction in cyclic dispersion to the 

measured values of NOx and unburned hydrocarbons, it is clear that a modest drop in 

emission products is observed between controlled and uncontrolled scenarios and a 

significant drop in NOx from stoichiometric levels while the fuel conversion efficiency 

shows a 5% improvement. Persistency of excitation condition is not needed, separation 

principle and certainty equivalence principle are relaxed and linearity in the unknown 

parameter assumption is not used. 

While transient conditions are also encountered in actual engine operations, it is 

necessary to first develop the ability to control the engine dynamics under steady state 

conditions.  Also, the avoidance of speed and load transients eliminates the need for 

additional controllers in the system to control equivalence ratio, spark timing, and other 

parameters, leaving the controller being tested as the only controller in the system so that 

there are no conflicts or impacts due to other control systems.  Once control of lean 

engine dynamics under steady state speed and load conditions is perfected, transient 

control will be a logical next step. 

Experimental results indicate that the controller can improve engine stability and 

reduce unburned hydrocarbons at lean engine operation where significant reductions in 



 

 

73

NOx can be realized.  Furthermore, the controller is flexible enough to be implemented on 

two spark ignition research engines. 

 

Appendix 

 

Proof of Theorem 1:  Define the Lyapunov function  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3
2 254
1 2

1 4

2 2 26 7 8
1 2

5

3 3 4

Ti
i i

i i

J k w k w k x k x k

y k e k e k

γ γγ
α α

γ γ γ
=

= + +

+ + +

∑ % % % %

%

,  (A.1) 

where 0 , 1,5,8i iγ< =  are auxiliary constants; the NN weights estimation errors 1w% , 2w% , 

and 3w%  are defined in (30), (40), and (57), respectively; the observation errors ( )1x k% , 

( )2x k% , and ( )y k%  are defined in (26) and (23), respectively; the system errors ( )1e k  and 

( )2e k  are defined in (32) and (41), respectively; and , 1, 2,3i iα =  are NN adaptation 

gains. The Lyapunov function (A.1) consisting of the system errors, observation errors, 

and the weights estimation errors obviates the need for CE condition. 

The first difference of the Lyapunov function is given by 

( ) ( )
8

1
i

i
J k J k

=

Δ = Δ∑ . (A.2) 

The first item of ( )1J kΔ  is obtained using (62) as  
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( ) ( ) ( ) ( ) ( )
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where ( )1 kζ  is defined in (31). 

Now taking the second term in the first difference (A.1) and substituting (63) into (A.2), 

obtain 
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Taking the third term in the first difference (A.1) and substituting (64) into (A.2), then  
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Similarly,  

( ) ( ) ( ) ( ) ( ) ( )
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where 

( ) ( ) ( )1l k R F k CE k′ = ⋅ Δ ⋅ , (A.7) 
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( ) ( ) ( ) ( ) ( ) ( )11 2 2 1
Td k R F k CE k w AF k d kφ= ⋅ Δ ⋅ ⋅ ⋅ − Δ − , (A.8) 

and ( )2 kζ  is defined in (45). 
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where 

( ) ( ) ( )( ) ( )21 2 2 21 Td d k F k CE k w kφ= − − Δ − ⋅ , (A.10) 

( ) ( ) ( ) ( ) ( )( )2 2 2 2 2
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( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2
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Combining (A.3) through (A.13) to get the first difference of the Lyapunov 

function and simplifying it, get  
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where 

2 2 2 2 2 2 2 2
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then, (A.14) is simplified as 
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This implies ( ) 0J kΔ < as long as (66)-(68) hold and 

( )1 Mk Dζ > , (A.17) 

or 

( )2 3 Mk Dζ > , (A.18) 

or 

( )3 Mk Dζ > , (A.19) 

or 

( )
( )1 2

0 2
62 2

1
3

6

M

m

Dx k
F

l
R F

>
−

−
Δ

% , (A.20) 
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or 
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6 6
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m m
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l R F l F

l l
R F F
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Δ Δ
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( )1
2
62

1 3
6

MDe k
l

R

>
−

, (A.23) 

or 

( )2
2 2
4 7

1 6
3

MDe k
l l

>
⎛ ⎞− −⎜ ⎟
⎝ ⎠

. (A.24) 

According to a standard Lyapunov extension theorem [22], this demonstrates that 

the system tracking error and the weight estimation errors are UUB. The boundedness of 

( )1 kζ , ( )2 kζ , and ( )3 kζ  implies that ( )1w k% , ( )2w k% , and ( )3w k%  are bounded, 

and, further, that the weight estimates ( )1ŵ k , ( )2ŵ k , and ( )3ŵ k  are bounded. 

Therefore, signals in the closed-loop system are bounded. 
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Abstract — Past literature has indicated that a significant amount of NOx can be reduced 

by operating a spark ignition (SI) engine at the stoichiometric condition with high 

exhaust gas recirculation (EGR) levels. However, the problem has been the engine 

instability due to cyclic dispersion in heat release. Since the unknown engine dynamics 

with high EGR levels are expressed as a nonlinear system in nonstrict feedback form, a 

suite of novel neural network (NN) control schemes is developed to reduce the cyclic 

dispersion in heat release by using fuel as the control input.  The NN approximation 

property is utilized to approximate the unknown dynamics. A separate control loop is 

designed for controlling EGR levels.  The first NN control scheme uses the total fuel and 

air as the state feedback variables whereas the second scheme is a heat release-based 

output feedback scheme.  The stability analysis of the closed loop system is given and the 

boundedness of all signals is ensured. Online training is used for the adaptive NN and no 

offline training phase is needed. Simulation and experimental results demonstrate that the 

cyclic dispersion is reduced approximately by 30%, NOx dropping by 80% from 

stiochiometric levels and unburned hydrocarbons by 28% using the proposed controller 
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from the uncontrolled scenario. The NN controller can also be used to minimize engine 

emissions at extreme lean condition where similar complex cyclic dynamics are 

observed.    

 

I.  Introduction 

 

Today's automobiles utilize sophisticated microprocessor-based engine control 

systems to meet stringent federal regulations governing fuel economy and the emission of 

carbon monoxide (CO), oxides of nitrogen (NOx), and hydrocarbons (HC). Global 

warming and its impact on the environment have shifted the focus of the automotive 

industry. Current efforts are directed at reducing the total amount of emissions and fuel 

consumption. The engine control system can be classified into three categories [Dudek 

and Sain 1989]: the spark advance (SA) control, the air-fuel ratio (A/F) control and the 

exhaust gas recirculation (EGR) control. Partial recirculation of exhaust gases, a 

technique introduced in the early 70's, has been consistently used for attaining lower 

emission levels [Sutton and Drallmeier 2000].  Operating a spark ignition engine lean can 

reduce the NOx and will improve the fuel efficiency [Inoue et al. 1993, Wagner 1999, He 

and Jagannathan 2005].  Similarly, substantial reductions in NOx concentrations have 

been achieved with 10% to 25% EGR along with reduction in specific fuel consumption. 

For example, if an engine can tolerate 20 to 25% EGR, reduction in engine-out NOx on 

the order of 90-95% [Sutton and Drallmeier 2000] can be realized.  This is the primary 

motivation of this work. 

However, EGR also reduces the combustion rate, which makes stable combustion 

[Daw et al. 1996, 1998] more difficult to achieve. High levels of EGR present in a spark 
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ignition (SI) engine, can result in further reduction in NOx but lead to cyclic dispersion in 

the heat release. Under such conditions a large number of misfires develop causing 

problems in drivability due to cycle-to-cycle variations in output as well as large 

increases in unburned hydrocarbons.   

Several authors (Inoue et al. 1993, Wagner 1999, He and Jagannathan 2005) have 

studied the lean combustion control technology. However, few EGR controller-based 

engine-out emission results have been reported due to unknown complex engine 

dynamics and cyclic dispersion in heat release with high EGR dilution, which results in 

significant performance deterioration of engine performance. Investigation of the onset of 

complex dynamic behavior in a SI engine with high levels of simulated EGR (added 

nitrogen) as compared to the lean equivalence ratio case has demonstrated a bifurcation 

phenomenon (Sutton and Drallmeier, 2000) similar to when the engine was operating 

under lean conditions.  The dynamics of the engine under these conditions are not 

accurately known before hand due to fuel and air residuals in a cylinder per cycle and 

combustion efficiency.   

Conventional schemes such as proportional, derivative and integral controllers 

[He and Jagannathan 2005] have been found incapable of reducing the cyclic dispersion 

to the levels needed to implement these concepts. Moreover, an engine with high EGR 

levels can only be modeled as a nonlinear system in nonstrict feedback form [He et al. 

2005].  At present, no control scheme is reported in the literature for the proposed class of 

nonstrict feedback nonlinear discrete-time systems [Khalil 2002].  Therefore, to 

overcome the need to know the complex engine dynamics, a suite of neural network 

(NN) controller schemes is utilized to minimize the cyclic dispersion because of high 
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levels of EGR dilution since the NN universal approximation property [Igelnik and Pao 

1995] can guarantee that the NN can learn to approximate the unknown dynamics.  

In this paper, a suite of direct adaptive neural network (NN) controllers is 

proposed with and without using output feedback for stable operation of the SI engine 

with high EGR levels at stoichiometric condition. The designed controller learns the 

unknown engine dynamics by using two NNs and reduces the cyclic dispersion by 

minimizing variations in equivalence ratio. In the first NN controller using state 

feedback, equivalence ratio variations are reduced by: 1) keeping the mass of both air and 

fuel close to their respective target values by an adaptive backstepping approach 

[Jagannathan 1998]; and 2) maintaining the variations of injected EGR as small as 

possible around a target level by a separate EGR control loop.  In the backstepping 

approach, the total fuel in the cylinder per cycle is then treated as the virtual control 

signal to the air intake system so that both the air and fuel states are bounded tightly to 

their respective targets. Consequently, the cyclic dispersion is reduced and the engine 

performance becomes satisfactory. A separate control loop ensures the boundedness of 

actual EGR close to its target for maintaining EGR levels.  

In the second output feedback control scheme, heat release is used as the feedback 

variable and backstepping is utilized to develop a different NN controller.  Heat release 

variations are minimized here by using fuel as the control input.  For both the control 

schemes, the stability analysis of the closed-loop control system is given and the 

boundedness of the closed loop signals is shown. The NN weights are tuned on-line, with 

no off-line learning phase required.  Simulation and experimental results are included to 

demonstrate the performance of the proposed controller schemes. 
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II.  Engine as a Nonlinear Discrete-time System 

 

 First we introduce the class of nonlinear discrete-time system in nonstrict 

feedback form and then we show that the engine model falls into this category before we 

present the development of controller schemes.  

A. Non-Strict Nonlinear System Description 

Consider the following non-strict feedback nonlinear system described by, 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 1 2 1 1 2 2 11 , ,x k f x k x k g x k x k x k d k+ = + +   (1)  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 2 1 2 2 1 2 21 , ,x k f x k x k g x k x k u k d k+ = + +   (2) 

where ( ) ; 1, 2ix k i∈ℜ =  are states, ( )u k ∈ℜ  is the system input and ( )1d k ∈ℜ  and 

( )2d k ∈ℜ  are unknown but bounded disturbances, whose bounds are given by 

( )1 1md k d<  and ( )2 2md k d< .  Here md1  and md2  are unknown positive scalars. 

Equations (1) and (2) represent a discrete-time nonlinear system in non-strict 

feedback form [He et al. 2005], since ( )1f ⋅  and ( )1g ⋅  are a function of both 1( )x k  and 

2 ( )x k , unlike in the case of strict feedback nonlinear system, where ( )1f ⋅  and ( )1g ⋅  are a 

function of ( )kx1  only [He and Jagannathan 2005].  Control of nonstrict feedback 

nonlinear systems is introduced in [He at al. 2005] since no known results are available in 

the literature and controller results from strict feedback nonlinear systems cannot be 

extended to nonstrict feedback nonlinear systems.  The SI engine behavior with high 

EGR levels can be expressed in this form as discussed next. 
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B. Engine Dynamics 

Daw et al. [Daw et al. 1996, 1998] developed a mathematical representation of the 

spark ignition (SI) engine behavior to investigate nonlinear cycle dynamics both under 

lean conditions and high EGR levels. The residual air and fuel passed from one cycle to 

the next make the model deterministic. Stochastic effects are embodied in random 

fluctuations of parameters like injected air-fuel ratio or residual fraction. Actual 

variations in parameters due to complex processes like temperature and pressure effects, 

turbulence, fuel vaporization etc are not modeled but assumed to add stochastic noise to 

the engine output. This experimentally validated model for the EGR case [Sutton and 

Drallmeier 2000] is discussed next.  

( ) ( )
221 1 2 1 1( 1) ( )[ ( ) . ( ) ( ) ] ( ) ( )NO newx k F k x k R CE k x k r k r k x k d k′+ = − + + + +

  (3) 

( ) '
2 2 2 2( 1) ( )(1 ( )) ( ) ( ) ( )newx k F k CE k x k x k u k d k+ = − + + +   (4) 

2 2 23 3( 1) ( )( ( ) ( ) ( ) ( ) ( ))CO H O Nx k F k r k r k r k x k EGR k+ = + + + +   (5) 

2( ) ( ) ( )y k x k CE k=   (6) 

32

1 2 1 3

( ) ( )( )( ) . 1
( ) ( ( ) ( ) ( ) ( ))

x k EGR kx kk R
x k x k x k x k EGR k

ϕ γ
⎡ ⎤+

= −⎢ ⎥+ + +⎣ ⎦   (7) 

max
( ( ) ) /( )( ) ,

1 100 m u lk

CECE k ϕ ϕ ϕ ϕ− − −=
+

,
2

u l
m

ϕ ϕϕ +
=

 (8) 

2 2 2( ) ( ) ( )H O H Or k x k CE kγ=   (9a) 
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2 2 2( ) ( ) ( )O Or k x k CE kγ=   (9b) 

2 2 2( ) . ( ) ( )N Nr k R x k CE kγ=   (10a) 

2 2 2( ) ( ) ( )CO COr k x k CE kγ=   (10b) 

where 1 2 3( ),  ( ) and ( )x k x k x k  are the total mass of air, fuel and inert gases respectively. 

The heat release at the kth time instant is given by ( )y k , ( )CE k  is the combustion 

efficiency and min max0 ( )CE CE k CE< < < , maxCE  is the maximum combustion efficiency 

and it is a constant, ( )F k  is the residual gas fraction which is bounded 

min max0 ( )F F k F< < < , R  is the stoichiometric air-fuel ratio, ~15.13 for iso-octane, ( )u k  

is the small change in fuel per cycle, ( )kϕ  is the equivalence ratio, , ,m l uϕ ϕ ϕ are 

equivalence ratio system parameters, 
2 2 2

( ),  ( ),  ( )H O O Nr k r k r k  and 
2
( )COr k  are the mass of 

water, oxygen, nitrogen and carbon dioxide respectively.  

It should be noted that the residual oxygen combines proportionally with the 

residual nitrogen to form residual air. The fraction of total nitrogen leftover after this is 

the residual inert nitrogen,γ is a constant and 
2 2 2, ,  H O O Nγ γ γ and 

2COγ  are constant 

parameters associated with water, oxygen, nitrogen and carbon dioxide, respectively.  

The Daw model uses hydrogen and carbon proportions of the fuel along with the EGR 

fraction to determine the residual fractions using stoichiometry.  The terms '
1 ( )d k  and 

'
2 ( )d k  are unknown but bounded disturbances.  It can be seen that the SI engine with 

EGR levels has highly nonlinear dynamics with ( )CE k  and ( )F k  being unknown and 

cannot be measured. 
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Remark 1: The control objective then is to operate the engine with high EGR levels by 

assuming that the states 1 2( ) and ( )x k x k  are available for measurement first and without 

knowing precisely the engine dynamics.   

 

III.  State-feedback NN Controller Design 

 

The control objective is to reduce the cyclic dispersion in the heat release and to 

improve the performance of a SI engine operating with high EGR levels without needing 

to know its dynamics, residual gas fraction and combustion efficiency.  The heat release, 

( ) ( ) ( )kCEkmkQ ×= , is proportional to the mass of the fuel burned and combustion 

efficiency.  In order to reduce the cyclic dispersion in heat release, the variations in both 

equivalence ratio and the mass of the fuel injected m(k) must be minimized.  From (8), 

the combustion efficiency CE(k) is a function of equivalence ratio ( ( ) ( )
( )ka
km

R
k 1

=ϕ ) 

alone.  Consequently, the control objective is equivalent to attaining a constant steady 

state value of m(k) and reduction in the variations of ( )kϕ .  From Eq. (5), this can be 

realized with a separately controlled EGR system and by keeping both mass of air and 

fuel tightly bounded to their respective targets. By doing so, inert gas in Eq. (5) will 

automatically evolve to a stable value since Eq. (5) is a stable linear system with ( )F k  

being always less than one and ( )
2H Or k ,  ( )

2Nr k , and ( )
2COr k  are finite with small 

variations. Once the amount of air, fuel, EGR and inert gas is controlled precisely, the 

variations in equivalence ratio from Eq. (7) are minimized. This implies that the 

combustion efficiency variations in Eq. (8) are minimized. So the variations in heat 
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release (6) are reduced. Thus, the objective of minimizing the cyclic dispersion is 

achieved by either driving the mass of fuel and air in the cylinder to approach their 

respective targets by using mass of the injected fuel as the control variable.     

Also, one of the difficulties in designing controllers for the system described by 

(3) through (5), is that the combustion efficiency (CE(k)) and the residual gas fraction, 

F(k), are unknown.   Therefore, the NN function approximation property makes it an 

ideal candidate to model the unknown nonlinear functions.  In the following discussion, a 

unified and general approach to backstepping type control of nonlinear systems using 

neural networks is presented.  Two NNs are employed to estimate the nonlinear engine 

dynamics in the backstepping procedure.  A virtual control is designed so that air intake 

is indirectly controlled and the actual control input is designed to control the fuel intake 

such that both the mass of the fuel and air fed into the cylinder will attain values close to 

their targets respectively.  When the total fuel and air are tightly controlled, the 

equivalence ratio and the heat release variations are reduced, and the engine can operate 

smoothly with high EGR levels.  

A.  Controller Design 

Step 1:  (State space model) Let us denote   

( ) ( )1 ,x k a k=  ( ) ( )2 ,x k m k=  3 ( ) ( )x k i k= .  (11) 

Let us choose small changes of the injected fresh fuel as the control variable  

( ) ( )MF k u kδ = .  (12) 

Substituting Eq. (11) and (12) into Eq. (3) through (5) results in 
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( ) ( ) ( ) ( ) ( )
( )( ) ( )

2 21 1 2

'
1

1 ( ) ( )

1 ( )

O Nx k F k x k R CE k x k r k r k

F k AF k d k

⎡ ⎤+ = ⋅ − ⋅ ⋅ + +⎣ ⎦
+ − ⋅ +

  (13) 

( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( ) ( )

2 2

'
2

1 1

1 1

x k x k CE k F k

F k MF k F k u k d k

+ = ⋅ − ⋅

+ − ⋅ + − ⋅ +
,  (14) 

( )
( ) ( ) ( ) ( )( )( )2 2 2

3 3( 1) ( )

( ) CO H O N

x k F k x k

F k EGR k r k r k r k

+ = ⋅

+ ⋅ + + +
.  (15) 

Once states ( )1x k  and ( )2x k  are controlled tightly to their respective target 

values, Eq. (15) can be viewed as a stable linear system (due to ( )F k  being less than one) 

with variations in ( ) ( ) ( ) ( )( )( )2 2 2
( ) CO H O NF k EGR k r k r k r k⋅ + + +  as the bounded input. 

Standard linear system theory [Khalil 2002] shows that the state in (15) will be bounded.  

So in the NN controller design, we do not consider Eq. (15) except treating EGR fed into 

the system as a finite quantity. EGR will influence the total mass of air and fuel present in 

the cylinder at each cycle via residuals and inert gases. Now assigning 

( ) ( ) ( ) ( )( ) ( )
2 21 1( ( ) ( )) 1O Nf k F k x k r k r k F k AF k= ⋅ + + + − ⋅ ,  (16) 

( ) ( ) ( )1g k F k R CE k= − ⋅ ⋅ ,  (17) 

( ) ( ) ( )( ) ( ) ( )( ) ( )2 2 1 1f k x k CE k F k F k MF k= ⋅ − ⋅ + − ⋅ ,  (18) 

( ) ( )2 1g k F k= − .  (19) 

Then system Eq. (13) and (14) becomes 



 

 

92

( ) ( ) ( ) ( ) ( )'
1 1 1 2 11x k f k g k x k d k+ = + + ,  (20) 

( ) ( ) ( ) ( ) ( )'
2 2 2 21x k f k g k u k d k+ = + + .  (21) 

Since the residual gas fraction ( )F k  and combustion efficiency CE(k) are typically 

unknown beforehand, ( ) ( ) ( )1 1 2, , ,f k g k f k  and ( )2g k  are unknown.  Here, NNs are 

employed to approximate these nonlinear functions.   

Step 2:  (Virtual controller design). 

Assumption 1: Since ( ) , 1, 2ig k i =  are smooth functions, they are bounded within 

the compact subset S , whose bounds are ( )1 1 0Mg g k> >  and ( )2 2 0Mg g k> > , 

respectively, where 1Mg R+∈ and +∈ Rg M2 .  

Define the error between actual and desired air as  

( ) ( )1 1 1 ,de k x k X= −                                                                   (22) 

where X1d is the desired constant value of the mass of the air. Hence Eq. (22) is rewritten 

as 

( ) ( ) ( ) ( ) ( ) ( )'
1 1 1 1 1 2 1 11 1 d de k x k X f k g k x k X d k+ = + − = + − + .  (23) 

By viewing ( )2x k  as a virtual control input to Eq. (23), there exists a desired virtual 

control input given by 

( ) ( ) ( )( ) ( )1
2 1 1 1 1 1d dx k g k f k X l e k−= − + + .  (24) 

where 1l R∈  is a design constant, such that the error, ( )1e k , is bounded. 
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Since ( )1f k  and ( )1g k  are unknown, ( )2dx k  cannot be implemented in practice. 

From Eq. (24), the unknown part ( )( ) ( )( )1 1 11 dg k f k X− +  is a smooth function of 

( ) ( ) ( )1 2 3, ,x k x k x k  and 1dX .  By utilizing NN to approximate the unknown part in Eq. 

(24), ( )2dx k  can be expressed as 

( ) ( )( ) ( )( ) ( )2 1 1 1 1 1 1 1
T T

dx k w v z k z k l e kφ ε= + + ,  (25) 

where  

( ) ( ) ( ) ( )1 1 2 3 1, , ,
T

dz k x k x k x k X⎡ ⎤= ⎣ ⎦ ,  (26) 

is the input to the first NN, 1
1

nw R∈  and 14
1

nv R ×∈  represent the matrix of target weights 

of the output and hidden layer, respectively, 1n  is the number of hidden layer nodes, 

( ) 1
1

nRφ ⋅ ∈  is the activation function vector, and ( )( )1 1z k Rε ∈  is the NN reconstruction 

error. It is demonstrated in  [Igelnik and Pao 1995] that, if the hidden layer weight, 1v , is 

chosen initially at random and kept constant and the number of hidden layer nodes is 

sufficiently large, the NN reconstruction error ( )( )1 1z kε  can be made arbitrarily small 

since the activation function forms a basis.   

Consequently, the virtual control input, ( )2ˆ dx k , is taken as 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2 1 1 1 1 1 1 1 1ˆ ˆ ˆT T T
dx k w k v z k l e k w k k l e kφ φ= + = + ,  (27) 
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where ( ) 1
1ˆ nw k R∈  is the actual weights of the output layer to be tuned. The hidden layer 

weight, 1v , is randomly chosen initially and kept constant. For convenience, ( )( )1 1
Tv z kφ  

is written as ( )kφ . Let the weights estimation error be  

( ) ( )1 1 1ˆw k w k w= −% .  (28) 

Define the system error between ( )2x k  and ( )2ˆ dx k  as 

( ) ( ) ( )2 2 2ˆ de k x k x k= − .  (29) 

Equation (23) becomes 

( ) ( ) ( ) ( ) ( )( ) ( )kdXkxkekgkfke dd
'
1122111 ˆ1 +−++=+  

( ) ( ) ( ) ( ) ( )( )kdkkekelkg 112111 +++= ζ ,  (30) 

where  

( ) ( ) ( )1 1
Tk w k kζ φ= % , and ( ) ( ) ( ) ( )( )'

1 1 1 1 1d k d k g k z kε= − .  (31) 

Step 3:  (Design of the control input ( )u k ) 

Writing the error in the total mass of fuel in the cylinder from Eq. (21) as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )'
2 2 2 2 2 2 2ˆ ˆ1 1 1 1d de k x k x k f k g k u k x k d k+ = + − + = + − + + .  (32) 

Similarly, choosing the desired control input by using the second NN as 

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )

2 2 2 2 2

2 2 2 2 2 2 2

ˆ1 1d d

T T

u k g k f k x k l e k

w k v z k z k l e kσ ε

= − + + +

= + +
. (33) 

where the input to the second NN, ( ) 6
2z k R∈ , is taken as 
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( ) ( ) ( ) ( )2 1 1 2, ,
TTz k z k e k e k⎡ ⎤= ⎣ ⎦ ,  (34) 

Assumption 2: The NN reconstruction errors ( )( )1 1z kε  and ( )( )2 2z kε  are bounded over 

the compact set S  by 1mε  and 2mε , respectively.  

The actual control input is selected as 

( ) ( ) ( ) ( )2 2 2ˆ Tu k w k k l e kσ= + ,  (35) 

where ( ) 2
2ˆ nw k R∈  represents actual weights of the output layer. 

Substituting Eq. (33) and (35) into Eq. (32) yields 

( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 21e k g k l e k k d kζ+ = + + .  (36) 

where 

( ) ( )2 2 2ˆw k w k w= −% , ( ) ( ) ( )2 2
Tk w k kζ σ= % , and ( ) ( ) ( ) ( )( )'

2 2 2 2 2d k d k g k z kε= − . (37) 

In order to ensure the stability of the closed loop system, suitable NN weight updating 

rules are now necessary and they are presented next.  

B. Closed-loop System Stability Analysis 

Before we present the NN weight tuning rules and stability analysis, the following 

mild assumption is stated. 

Assumption 3: Both the ideal weights and the activation functions for all NNs are 

bounded by known positive values so that 

1 1maxw w≤ , 2 2maxw w≤ , ( ) maxφ φ⋅ ≤ and ( ) maxσ σ⋅ ≤ .  (38) 
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Theorem 3.1: Consider the system given by Eq. (20) and (21).  Assume that the 

Assumptions 1 through 3 hold.  Take the first NN weight tuning as 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1ˆ ˆ ˆ1 Tw k w k k w k k l e kα φ φ+ = − + .  (39) 

with the second NN weight tuning be provided by 

( ) ( ) ( ) ( ) ( ) ( )( )2
2 2 2 2 2

2

ˆ ˆ ˆ1 Tw k w k k w k k l e k
l
α σ σ+ = − + .  (40) 

where 1 2,R Rα α∈ ∈  are NN learning rates, 1l R∈  and 2l R∈  are controller gains. The 

errors ( )1e k  and ( )2e k , the NN weights estimates, ( )1ŵ k  and ( )2ŵ k  are bounded 

provided the design parameters are selected as 

(a) ( ) 2

10 1,α φ< ⋅ <   (41) 

(b) ( ) 2

2 20 lα σ< ⋅ < ,  (42) 

(c) ( )1 10 1 12 ,Ml g< <   (43) 

(d) ( )( ) ( )2
2 2 20 1 4 6M Ml g g< < − + + .  (44) 

Moreover, the equivalence ratio error is bounded; hence, the actual equivalence ratio is 

also bounded. The heat release dispersion is reduced. 

Proof: See Appendix.       

Remark 2: Our control scheme requires the need for the measurement of the total 

mass of the air and fuel, ( )1x k  and ( )2x k  respectively. Universal Exhaust Gas Oxygen 

(UEGO) sensors are commercially available to measure the equivalence ratio of the 
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exhaust.  The air intake sensor will provide the mass of new air entering the engine and 

the mass of fuel injected is also available. Using this information and performing 

experiments on an engine, one can infer the values of ( )1x k  and ( )2x k .  Alternatively, 

an observer (He and Jagannathan 2005) can be utilized to estimate the values of ( )1x k  

and ( )2x k . 

Remark 3: It is important to notice that in this theorem there is no certainty 

equivalence assumption or the need for the persistence of excitation condition in contrast 

with standard adaptive discrete-time control (Lewis et al. 1999). 

Remark 4: Controller singularity problem ˆ(.) 0g → that is commonly encountered 

in the literature (Khalil 2002) is avoided. 

 

IV.  Simulation 

 

The purpose of the simulation is to verify that the cyclic dispersion in heat release 

of a SI engine using the proposed controller is indeed small and acceptable at high EGR 

levels. The simulation parameters are selected as the following: 1000 cycles are 

considered at equivalence ratio of one with variation of 1%, R =14.6, F = 0.15, mass of 

new air = 9.1295, 0.82, 0.79u lφ φ= = , molecular weight of fuel = 114, molecular 

weight of EGR=30.4, molecular weight of air = 28.84, total gas mole in cylinder = 0.5, 

and ratio of hydrogen/carbon for fuel = 1.87. Initial conditions for all residues including 

air, fuel and inert are selected to be equal to zero. The desired mass of air is taken as 

1 9.0123dX =  and the desired mass of fuel is calculated as 2 0.6173dX = .  The gains of 

controllers are selected as 1 2 0.1l l= = , respectively.  Both NNs contain 15 nodes in the 
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hidden layer.  The learning rate is selected as 1 0.01α =  and 2 0.001α = .  The initial 

weights are selected uniformly within an interval of [0, 1] and all the activation functions 

are selected as hyperbolic tangent sigmoid functions.     

EGR was assumed to be a mixture of gases with a molecular weight of 30.4 and 

fuel had a hydrogen-carbon ratio of 1.87. All initial values of air, fuel and inert gases 

were chosen to be zero. The neural networks were designed to have 15 neurons each in 

the hidden layer with learning rates of 0.01 each.  

The activation functions used were the hyperbolic tangent sigmoid functions. The 

simulation was run for 1000 cycles of engine operation by varying the EGR value from 

19% to 29%. The attached plots show the results obtained from the simulation runs for 

EGR levels of 27%. The dispersion without control illustrated in Figure 1 is significant 

and will make the engine performance unsatisfactory, whereas with control as seen in 

Figure 2 the dispersion is controlled within a relatively tight bound.  

 

Fig. 1.  Heat release without control (27% EGR). 
 

 

It was observed that with the neural network controller applied, the engine 

exhibits minimal dispersion with high EGR levels even with perturbation on the residual 
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gas fraction being unknown as depicted in Figure 2. The reduction in dispersion 

physically translates into fewer misfires and improved drivability even with high EGR 

levels in the engine.   Heat release values are normalized. 

 

Fig. 2.  Heat release with control (27% EGR). 
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Fig. 3.  Heat release with control action beginning at 1001st cycle. 
 

Heat release variations with and without control are indicated as shown in Figure 

3.  With control applied, the variations in heat release have been minimized. Variations in 

combustion efficiency are minimized as shown in Figure 4. The associated total fuel (new 

plus residual) and air plots with and without control for this EGR level are shown in 
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Figure 5 and 6, respectively. These indicate that the cyclic dispersion in heat release is 

minimized by the control. As a result, the variations in residual fuel and air are 

minimized. 

 

 

Fig. 4.  Combustion efficiency with/without control. 
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Fig. 5.  Total new and residual fuel without/with control action. 
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Fig. 6.  Total new and residual air without/with control action. 
 

Reductions in cyclic dispersion are observed due to minimization in combustion 

efficiency variations. These indicate that the cyclic dispersion in heat release is 

minimized by the controller.  As a result, the variations in residual fuel and air are 

minimized. Although exhibiting very similar dynamics, the return maps of heat release 

are quantitatively different between the simplified model used for controller development 

and the actual engine as presented next.  This can be attributed to the fact that the engine 

model simply considers mass conservation and places all complexities of the fluid 

mechanics and combustion into a phenomenological nonlinear combustion efficiency 

term.  In spite of this simplicity in the model, the designed controller performs highly 

satisfactorily on the actual engine as will be seen in the next few sections. 

 

V.  Output-feedback NN Controller Design 

 

In the last section, the NN controller design is discussed by assuming that the total 

air and fuel are available for measurement through sensors.  The total amount of fuel and 



 

 

102

air in a given cylinder is normally not directly measurable which necessitates the 

development of output feedback control schemes.  

Very few adaptive output feedback controller designs in discrete time are 

proposed for the signal-input-single-out (SISO) nonlinear systems; for instance [Yeh and 

Kokotovic 1995].  However, no output feedback control scheme currently exists for the 

proposed class of nonstrict feedback nonlinear discrete-time systems. To overcome the 

need for complex engine dynamics and to make the controller practical, a heat release 

based NN-based output feedback controller is proposed next by using the NN universal 

approximation property.  

In this section, a direct adaptive NN controller is proposed for stable operation of 

the SI engine under high levels of EGR. Neural networks are employed to learn the 

unknown nonlinear dynamics since the residual gas and combustion efficiency are 

unknown. A backstepping approach in discrete-time is used to design the control input 

(injected fuel) to the total fuel system. The total fuel is then treated as the virtual control 

signal to the air system so that both the air and fuel states are bounded tightly to their 

respective targets. Consequently, the cyclic dispersion is reduced and the engine is stable. 

A separate control loop is designed for maintaining EGR levels. No exact knowledge of 

the engine dynamics is needed making the NN controller model-free. The stability 

analysis of the closed-loop control system is given and the boundedness of the closed 

loop signals is shown. The NN weights are tuned on-line, with no off-line learning phase 

required. 

Remark 3: In (3) through (6), states ( )1x k  and ( )2x k  are not measurable whereas 

the output ( )y k  is available for measurement if a thermocouple or a pressure sensor is 
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utilized. The control objective then is to operate the engine with high EGR levels with 

( )y k  as the feedback parameter and without knowing precisely the engine dynamics.  It 

is important to note that the output is a nonlinear function of the states unlike in many 

papers where the output is a linear function of states. 

A. Engine Dynamics using Nominal Values 

Substituting (6) into both (3) and (4), we get 

( )
2 21 1 1 1( 1) ( )[ ( ) . ( ) ( ) ] ( ) ( )O N newx k F k x k R y k r k r k x k d k+ = − + + + +   (45) 

'
2 2 2 2( 1) ( )( ( ) ( )) ( ) ( ) ( )newx k F k x k y k x k u k d k+ = − + + +   (46) 

In real engine operation, the fresh air 1newx , fresh fuel 2newx  and residual gas fraction, 

( )F k  can all be viewed as nominal values plus some small and bounded disturbances. 

The inert gases include the residual exhaust gases in the cylinder and the EGR fraction. 

Equation (5) will not be considered for controller development since a separate control 

loop, most likely a standard controller, designed to control EGR levels makes the inert 

gases evolve into a stable value. It is important to notice that engine-out emissions are the 

main focus of this paper using a controller and not maintaining how close the EGR level 

to its target value. Therefore, it is not included here. 

Consider, 

1 1 0 1( ) ( )new new newx k x x k= + Δ   (47) 

2 2 0 2( ) ( )new new newx k x x k= + Δ   (48) 

0( ) ( ) ( )F k F k F k= + Δ  (49) 
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where 1 0 2 0,   new newx x  and 0F  are the known nominal fresh air, fuel and residual gas 

fraction values. 1 0 2 0,   new newx xΔ Δ  and 0FΔ  are unknown yet bounded disturbances on those 

values whose bounds are given by,  

1 10 ( )new newMx k x≤ Δ ≤ Δ   (50) 

2 20 ( )new newMx k x≤ Δ ≤ Δ   (51) 

0 ( ) MF k F≤ Δ ≤ Δ   (52) 

Substituting these values into the system model we can get the state equations in 

the following form, 

( )
( )

2 2

1 0 1 2

1 0 1 1

( 1) ( ( ) ( ))[ ( ) . ( )

( ) ] + ( ) ( )O N new new

x k F k F k x k R CE k x k

r k r k x x k d k

+ = + Δ −

+ + + Δ +
    (53) 

( ) '
2 0 2 2 0 2 2( 1) ( ( ) ( ))(1 ( )) ( ) ( ) ( )new newx k F k F k CE k x k x x k u k d k+ = + Δ − + + Δ + +   (54) 

B. Observer Design 

First a NN is used to predict the value of the heat release for the next burn cycle, 

which will be used subsequently by the observer to predict the states of the system. The 

inert gases can be calculated directly if the air and fuel values are known so they are not 

estimated. The heat release for the next burn cycle is given by 

( 1) ( 1) ( 1)y k x k CE k+ = + +   (55) 

From (6), the heat release for the next cycle y(k +1) can be approximated by using 

a one layer neural network as 
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1 1 1 1 1 1( 1) ( ( )) ( ( ))T Ty k w v z k z kφ ε+ = +   (56) 

where the input to the NN is taken as 4
1 1 2( ) [ ( ), ( ), ( ), ( )]Tz k x k x k y k u k R= ∈ ,the matrix 

14

1

nw R ×∈  and 14

1

nv R ×∈ represent the output and hidden layer weights, ( )1 .φ  represents 

the hidden layer activation function, 1n  denotes the number of the nodes in the hidden 

layer, and ( )( )1 1z k Rε ∈  is the functional approximation error.  It has been demonstrated 

that, if the hidden layer weight 1v , is chosen initially at random and held constant and the 

number of hidden layer nodes is sufficiently large, the approximation error 1 1( ( ))z kε  can 

be made arbitrarily small over the compact set since the activation function forms a basis 

[Igelnik and Pao 1995]. 

For simplicity, we define 

1 1 1 1 1( ( )) ( ( ))Tz k v z kφ φ=   (57) 

1 1 1( ) ( ( ))k z kε ε=   (58) 

Given (56) and (57), (56) is re-written as 

1 1 1 1( 1) ( ( )) ( )Ty k w z k kφ ε+ = +   (59) 

Since states ( )1x k  and ( )2x k  are not measurable, 1( )z k  is not available either. Using the 

estimated values 1̂( )x k , 2ˆ ( )x k  and ˆ( )y k  instead of ( )1x k , ( )2x k , and ( )y k  the proposed 

heat release observer can be given as, 

1 1 1 1 1 1 1 1 1ˆ ˆ ˆˆ ˆ( 1) ( ( )) ( ) ( ) ( ( )) ( )T T Ty k w v z k l y k w k z k l y kφ φ+ = + = +% %   (60) 



 

 

106

where ˆ( 1)y k +  is the predicted heat release, 1ˆ ( ) inw k R∈  is the actual output layer weights, 

the input to the NN is taken as 4

1 1 2
ˆ ˆ ˆˆ ( ) [ ( ), ( ), ( ), ( )] ,Tz k x k x k y k u k R l R= ∈ ∈  is the 

observer gain, ( )y k%  is the heat release estimation error, which is defined as 

ˆ( ) ( ) ( )y k y k y k= −%   (61) 

and 1 1̂( ( ))z kφ  represents 1 11 ˆ( ( ))Tv z kφ  for the purpose of simplicity.  

Using the heat release estimation error, the proposed observer is given in the 

following form as 

1 1 0 1 2ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )new o ox k x k F x k R F y k l y k+ = + − ⋅ ⋅ + %   (62) 

2 2 2 0 3ˆ ˆ ˆ( 1) ( ( ) ( )) ( ( ) ( )) ( )o newx k F x k y k x k u k l y k+ = − + + + %   (63) 

where 2l R∈  and 3l R∈  are observer gains.  The term 
2 2

( )o O NF r r+  has been pulled out 

from equation (62) as there are no nominal values available for the inert gases.  The error 

introduced by this will be taken up as part of the air estimation error.  Equations (62) and 

(63) represent the dynamics of the observer to estimate the states of ( )1x k  and ( )2x k . 

Define the state estimation errors as: 

ˆ( ) ( ) ( ), 1, 2i i ix k x k x k i= − =%   (64) 

Combining (53) through (63), we obtain the estimation error dynamics as 

2 2 2 2

1 1 2 1

1 1

( 1) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

o o new

o O N O N

x k F x k l R F y k x k
F k x k R F k y k F r r F r r d k

+ = + − ⋅ − Δ

−Δ + Δ − + − Δ + −

% % %
  (65) 

2 2 3 2 2 2( 1) ( ) ( ) ( ) ( )( ( ) ( )) ( ) ( )o o newx k F x k l F y k F k x k y k x k d k+ = + − − Δ − − Δ −% % %   (66) 
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1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

ˆ ˆ( 1) ( ) ( ( )) ( ) ( ( )) ( )
ˆ ˆ ˆ       ( ( ) ) ( ( )) ( ( ( )) ( ( ))) ( )

ˆ       ( ) ( ( )) ( ) ( ( )) ( )
( ) ( ( )) ( )

T T

T T

T T

T

y k w k z k l y k w z k k
w k w z k w z k z k k

w k z k w k z k k
k w z k k

φ φ ε
φ φ φ ε

φ φ ε
ζ φ ε

+ = + − −

= − + − −

= + −

= + −

% %

% % %

%

    (67)  

where                                                                                     

1 1 1ˆ( 1) ( ) ,w k w k w− = −%   (68) 

and 

1 1 1 1( ) ( ) ( ( ))Tk w k z kζ φ= %   (69) 

and for the purpose of simplicity, 1 1 1 1
ˆ( ( ( )) ( ( )))z k z kφ φ−  is written as 1 1( ( ( ))z kφ % . 

C. Output-feedback Controller Design 

The control objective of maintaining the heat release constant is achieved by 

holding the fuel and combustion efficiency within a close bound, i.e., the heat release is 

driven to a target heat release yd. Given yd and the engine dynamics (3) – (5), we could 

obtain the nominal values for the total mass of air and fuel in the cylinder, x1d and x2d, 

respectively.  By driving the states ( )1x k  and ( )2x k  to approach to their respective 

nominal values 1dx  and 2dx , ( )y k  will approach dy .  By developing a controller to 

maintain the EGR at a constant level separately, we can see that the inert gases evolve 

into a stable value since equation (5) can be viewed as a feedback linearizable nonlinear 

discrete-time system with ( )F k  being less than 1 and the weights of the gases kept 

constant with minor variations.  The controller for the EGR system (5) is developed 
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separately and not presented here.  With the estimated states ( )1̂x k  and ( )2x̂ k , the 

controller design follows the backstepping technique.   

Step 1: Virtual controller design. 

Define the error between actual and desired air as 

1 1 1( ) ( ) de k x k x= −   (70) 

which can be rewritten as 

( ) ( )
2 2

1 1 1

1 2 1 1 1

( 1) ( 1)

( )[ ( ) . ( ) ( ) ]   ( ) ( )
d

O N d new

e k x k x

F k x k R CE k x k r k r k x x k d k

+ = + −

= − + + − + +
  (71) 

For simplicity let us denote 

( )
2 21 1 1 1( ) ( )[ ( ) ( ) ] ( )O N new df k F k x k r k r k x k x= + + + −   (72) 

1( ) ( ) ( )g k R F k CE k= ⋅   (73) 

Then the system error equation can be expressed as  

1 1 1 2 1( 1) ( ) ( ) ( ) ( )e k f k g k x k d k+ = − +   (74) 

By viewing ( )2x k  as a virtual control input, a desired feedback control signal can be 

designed as 

1
2

1

( )
( )

( )d

f k
x k

g k
=   (75) 

The term 2 ( )dx k can be approximated by the first action NN as, 

2 2 2 2 2 2 2 2( ) ( ( )) ( ( )) ( ( )) ( ( ))T T T
dx k w v x k x k w x k x kφ ε φ ε= + = +   (76) 
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where the input in the state 2
1 2 2( ) [ ( ), ( )] , nTx k x k x k w R= ∈  and 12

2
nv R ×∈  denote the 

constant ideal output and hidden layer weights, n2 is the  number of nodes in the hidden 

layer, the hidden layer activation function 2 2( ( ))Tv x kφ  is simplified as 2 ( ( ))x kφ  and 

2 ( ( ))x kε  is the approximation error.  Since both ( )1x k  and ( )2x k  are unavailable, the 

estimated state ( )x̂ k  is selected as the NN input. 

Consequently, the virtual control input is taken as 

2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
dx k w k v x k w k x kφ φ= =   (77) 

where 2

2
ˆ ( ) nw k R∈  is the actual weight matrix for the first action NN.  Define the weight 

estimation error by 

2 2 2
ˆ( ) ( )w k w k w= −%   (78) 

Define the error between 2 ( )x k  and 2ˆ ( )dx k  as  

2 2 2ˆ( ) ( ) ( )de k x k x k= −   (79) 

Equation (77) can be expressed using (79) for 2 ( )x k  as 

1 1 1 2 2 1ˆ( 1) ( ) ( )( ( ) ( )) ( ),de k f k g k e k x k d k+ = − + +   (80) 

or equivalently 

1 1 1 2 2 2 2 1

1 1 2 2 2 2 1

1 2 2 2 1

1 2 2 2 2 2 2 1

( 1) ( ) ( )( ( ) ( ) ( ) ( )) ( )
ˆ( ) ( )( ( ) ( ) ( ) ( )) ( )

ˆ( )( ( ) ( ) ( )) ( )
ˆ ˆ( )( ( ) ( ) ( ( )) ( ( )) ( ( ))) ( )

d d d

d d d

d d
T T

e k f k g k e k x k x k x k d k
f k g k e k x k x k x k d k
g k e k x k x k d k

g k e k w k x k w x k x k d kφ φ ε

+ = − + − + +
= − + − + +

= − − + +

= − + − − +

  (81) 

Similar to (77), (81) can be further expressed as 
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1 1 2 2 2 2 2 1
( 1) ( )( ( ) ( ) ( ( )) ( ( ))) ( )Te k g k e k k w x k x k d kζ φ ε+ = − − + − +%   (82) 

where 

2 2 2
ˆ( ) ( ) ( ( ))Tk w k x kζ φ= %   (83) 

2 2 2 2 2
ˆ( ( )) ( ( ( )) ( ( )))T Tw x k w x k x kφ φ φ= −%   (84) 

Step 2: Design of the control input ( )u k . 

Rewriting the error ( )2e k  from (79) as 

2 2 2

2 2 2

( 1) ( 1) ( 1)
ˆ(1 ( )) ( ) ( ) ( ( ) ( )) ( 1) ( )

d

d

e k x k x k

CE k F k x k MF k u k x k d k

+ = + − +

= − + + − + +

%
  (85) 

For simplicity, let us denote, 

( )2 2 2( 1) ( )(1 ( )) ( )newx k F k CE k x k x k+ = − +    (86) 

Equation (85) can be written as 

2 2 2 2ˆ( 1) ( ) ( ) ( 1) ( )de k f k u k x k d k+ = + − + +      (87) 

where 2ˆ ( 1)dx k +  is the future value of  2ˆ ( )dx k . Here, 2ˆ ( 1)dx k +  is not available in the 

current time step.  However, from (75) and (77), it can be clear that 2ˆ ( 1)dx k +  is a smooth 

nonlinear function of the state ( )x k  and virtual control input ( )2ˆ 1dx k + .  Another NN 

can be used to approximate the value of ( )2ˆ 1dx k +  by viewing it as a first order predictor 

since the proposed NNs use a semi-recurrent architecture which makes them dynamic 

NNs.  Other methods via filtering approach [Lewis et al. 2002] do exist in the literature in 

order to obtain this value.   
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Select the desired control input by using the second NN in the controller design as 

2 2 3 3 3 3 3 3 3 3 3 3 3ˆ( ) ( ( ) ( 1)) ( ( )) ( ( )) ( ( )) ( ( ))T T T
d du k f k x k w v z k z k w z k z kφ ε φ ε= − + + = + = +   (88) 

where 3
3

nw R∈  and 33

3

nv R ×∈ denote the constant ideal output and hidden layer weights, 

3n is the hidden layer nodes number, the hidden layer activation function 3 3 3( ( )).Tv z kφ  is 

simplified as 3 3( ( ))z kφ , 3 3( ( ))z kε is the approximation error, 
3

3 ( )z k R∈  is the NN 

input, which is given by (77). Considering the fact both ( )1x k  and ( )2x k  cannot be 

measured, ( )3z k  is substituted with 3
3ˆ ( )z k R∈  where  

3
3 2ˆ( ) [ ( ), ( )]T

dz k x k x k R= ∈   (89) 

and 

3
3 2ˆ ˆˆ ( ) [ ( ), ( )]T

dz k x k x k R= ∈   (90) 

Now define  

1 1 1ˆ ˆ( ) ( ) ,de k x k x= −   (91) 

and 

2 2 2ˆ ˆ( ) ( ) ,de k x k x= −   (92) 

The actual control input is now selected as 

 3 3 3 4 2 3 3 3 4 2ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ( )) ( ) ( ) ( ( )) ( )T T T
cu k w k v z k l e k w k z k l e kφ φ= + = +    (93) 
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where 3

3ˆ nTw R∈  is the actual output layer weights, 4l R∈ is the controller gain selected to 

stabilize the system.  Similar to the derivation of (61), combining (77), (76) with (93) 

yields 

2 4 2 3 3 3 3 3 2ˆ( 1) ( ) ( ) ( ( )) ( ( )) ( )Te k l e k k w z k z k d kξ φ ε+ = + + − +%   (94) 

where 

3 3 3ˆ( ) ( )w k w k w= −%         (95) 

3 3 3 3ˆ( ) ( ) ( ( ))Tk w k z kξ φ= %    (96) 

and 

3 3 3 3 3 3 3ˆ( ( )) ( ( ( )) ( ( )))T Tw z k w z k z kφ φ φ= −%          (97) 

Equations (82) and (94) represent the closed-loop error dynamics. It is required to show 

that the estimation error (61) and (64), the system errors (82) and (94) and the NN weight 

matrices ( )1ŵ k , ( )2ŵ k , and ( )3ŵ k  are bounded.  Fig. 7 shows the block diagram of the 

final structure of the designed neuro-controller. 

 Assumption 4 (Bounded Ideal Weights): Let w1, w2 and w3 be the unknown output 

layer target weights for the observer and two action NNs and assume that they are 

bounded above so that 

   1 1 2 2 3 3 ,, ,m m mw w w w w w≤ ≤ ≤  (98) 

where 1mw R+∈ , 2mw R+∈ , and 3mw R+∈  represent the bounds on the unknown target 

weights where the Frobenius norm is used. 
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Fact 1: The activation functions are bounded above by known positive values so 

that 

( ) , 1, 2,3i im iφ φ⋅ ≤ =  (99) 

where , 1, 2,3im iφ =  are the upper bounds. 

 

Fig.7.  Neuro-controller structure. 
 

Assumption 5 (Bounded NN Approximation Error): The NN approximation 

errors 1 1( ( ))z kε , 2 ( ( ))x kε  and 3 3( ( ))z kε  are bounded over the compact set by 1mε , m2ε  

and m3ε , respectively.  

Theorem 5.1: Consider the system given in (3) – (5) and let the Assumptions 4 

and 5 hold. Let the unknown disturbances be bounded by 1 1( ) md k d≤  and 2 2( ) md k d≤ , 

respectively.  Let the observer NN weight tuning be given by  

1 1 1 1 1 1 1 1 5ˆ ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k z k w k z k l y kα φ φ+ = − + %           (100) 

with the virtual control NN weight tuning be provided by 

2 2 2 2 2 2 6 1ˆ ˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k x k w k x k l e kα φ φ+ = − +           (101) 

and the control NN weight tuning be provided by 
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3 3 3 3 3 3 3 3 7 2ˆ ˆ ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k z k w k z k l e kα φ φ+ = − +             (102) 

where 1 2 3, ,R R Rα α α∈ ∈ ∈  and 5 6 7, ,l R l R l R∈ ∈ ∈  are design parameters.  Let the 

system observer be given by (60), (62) and (63), virtual and actual control inputs be 

defined as (77) and (93), respectively. The estimation errors (65) through (67), the 

tracking errors (82) and (94), and the NN weight estimates 1ˆ ( )w k , 2ˆ ( )w k  and 3ˆ ( )w k  are 

uniformly ultimately bounded provided the design parameters are selected as 

2(a)  0 ( ) 1,    1, 2,3i i k iα φ< < =   (103) 

2 2
2 21 0 2 0
3 52 2 2

( ) ( )(b)  1 4
6 6m m

l R F l Fl l
R F F
− ⋅ −

< − − −
⋅Δ Δ

  (104) 

2
2 0
6 2 2 2

(1 ) 1(c)  min , ,
18 18m

Fl
R F R

⎛ ⎞−
< ⎜ ⎟⋅ Δ⎝ ⎠

 (105) 

2
2 2 0
4 7 2

(1 ) 1(d)  6 min , ,
6 3m

Fl l
F

⎛ ⎞−
+ < ⎜ ⎟Δ⎝ ⎠

  (106) 

Remark: For general nonlinear discrete-time systems, the design parameters can be 

selected using a priori values. Given specific values of R, F0 and ΔFm, the design 

parameters can be derived as , 1, 2, ,7il i = K .  For instance, given R = 14.6, F0 = 0.14, and 

ΔFm = 0.02, we can select l1 = 1.99, l2 = 0.13, l3 = 0.4, l4 = 0.14, l5 = 0.25, l6 = 0.016, and 

l7 = 0.1667 to satisfy (103) – (106). 
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VI.  Experimental Results 

 

The experimental setup involves a Cooperative Fuel Research (CFR) engine 

shown in Fig. 8 on which the controller operates. The CFR is operated at 1000 RPM.  

Being a single cylinder engine, dynamics introduced by multiple cylinders are avoided. 

Shaft encoders are mounted on the cam and crank shafts that return start-of-cycle and 

crank angle signals, respectively. There are 720° of crank angle per engine cycle, so a 

crank angle degree is detected every 167 microseconds. For the exhaust-gas-recirculation 

(EGR) portion of gaseous intake, nitrogen is used.  EGR is comprised mainly of inert 

gases from the previous combustion cycle, so nitrogen, an inert gas in the combustion 

process is used in place of the residual inert gases. This allows for an accurate fraction of 

EGR to be introduced to the cylinder. 

 

Fig. 8. Cooperative fuel research (CFR) engine. 
 

Heat release for a given engine cycle is calculated by integrating in-cylinder 

pressure and volume over time.  In-cylinder pressure is measured every half crank angle 

degree during combustion, which is considered from 345° to 490°, for a total of 290 

pressure measurements. At 1000 RPM pressure measurements must be made every 83.3 

microseconds. The calculation window is 106° wide or 17.667 milliseconds.  In this time 

all engine-to-PC-to-engine communications are completed. The algorithm designed uses 
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15 neurons to approximate the output, though it was observed that even 100 controller 

nodes and 100 observer nodes calculations are complete within 1.2 milliseconds, well 

within the available time of 17.667 milliseconds. 

The control input is an adjustment to the nominal fuel required at a given 

equivalence ratio. Fuel injection is controlled by a TTL signal to a fuel injector driver 

circuit. Pressure measurements come from a charge amplifier which receives pressure 

transducer signals from a piezoelectric transducer located inside the cylinder. 

 

Fig. 9.  Octagon Systems PC770 single board computer. 
 

An engine-to-PC interface board was designed as shown in Fig. 9 to manage the 

shaft encoder signals, pressure measurements, and fuel injector signal since timing is 

crucial to correct engine operation. The board uses a microcontroller to communicate 

between the TTL and analog signals of the engine hardware and a parallel digital I/O port 

of the PC. A high speed 8-bit A/D converts the pressure measurements. Pressure 

measurements are sent to the PC where heat release is calculated before being sent to the 

controller. Fuel pulse width is sent to the microcontroller from the PC. 

The controller algorithm and data structures are implemented in C and compiled 

to run on an x86 PC. The controller was compiled using the same structure and 
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parameters as for simulation. Configuration files allow the controller parameters to be 

modified without recompiling. 

The results for engine operation at a near-stoichiometric equivalence ratio and 

addition of a percentage of EGR to the contents of the cylinder are discussed.  The 

uncontrolled engine equivalence ratio was 0.97.  The controller pushed the equivalence 

ratio to one, due to the behavior of the control input ( )u k additional mass of fuel injected.  

The EGR used for this experiment was nitrogen, rather than actual exhaust gas.  The 

nominal mass of EGR is set such that its mass is a desired percentage of the total mass of 

cylinder contents.  The following equation shows that a mass of nitrogen, EGRm , can be 

chosen to give a desired percentage of EGR. 

% 100 EGR

f a EGR

mEGR
m m m

⎛ ⎞
= ×⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (107) 

Heat release time series and return maps were generated for both controlled and 

uncontrolled cases for each of several EGR set points: 0%, 5%, 10% and so on. Before 

the control is applied, air flow is measured and nominal fuel is calculated for the desired 

equivalence ratio. The nominal fuel and air are loaded into the controller configuration.  

During data acquisition, ambient pressure is referenced in the acquired cylinder pressure 

each engine cycle based on the in-cylinder pressure when the exhaust valve is fully open 

at 600°. 

NN weight values are all initialized at zero.  Heat release return maps in Figs. 10 

and 11 depict the performance of the proposed NN controller for the 10% EGR case. It is 

important to observe that the return maps of heat release with no control is slightly below 

the target value whereas with the application of control the heat release return maps is 
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around the target value. Moreover, misfires are minimized.  The return maps at 10% EGR 

show distinct cyclic dispersion during no control and a significant decrease in those 

dispersed data points during control.  
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Fig. 10.  Heat release time series at 10% EGR. 
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Fig. 11. Uncontrolled and controlled heat release return maps plotting current cycle y(k) 
against next cycle y(k+1) at 10% EGR. 

 
 

It can be seen that the mean heat release increases with control, which 

corresponds to a slightly higher equivalence ratio. The equivalence ratio for EGR 

operation is intended to be held fixed at one.  When using fuel as the control input, the 

controller must change the fuel to affect the engine, which therefore changes the 

equivalence ratio. Fuel intake increases slightly during control causing the actual 

operating equivalence ratio to be slightly higher than the set point, here, at one. It is 

thought that this is partly due to a higher value specified for target heat release compared 
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to uncontrolled case.  Moreover, this slight offset remains due to slow learning of the 

NNs which eventually becomes zero with time.  A tradeoff exists between speed of 

learning and performance. Higher learning rate for NNs slightly degrades performance in 

terms of dispersion and vice versa. 

The dynamics exhibited in the experimental results are quite similar to the 

simulation results. As mentioned earlier, the higher level of dispersion with higher EGR 

levels seen in the experimental results is attributable to complex engine processes that are 

not taken into account by the simplified model. The model is a simplified representation 

of the engine processes for the purpose of real-time control. Scaling and measurement 

uncertainties also contribute to the difference.  Therefore, at 10% EGR levels, misfires 

are still noted with control in comparison with simulation results. 

The coefficient of variation, COV, in integrated cycle work is often used to 

establish variability in engine output.  With the integrated cycle work obtained from the 

cyclic cylinder pressure-volume results, the COV is obtained by dividing the standard 

deviation in cycle work by the mean over all of the cycles observed.  The COV for all of 

the EGR return maps is listed in Table I.  As the EGR percentage of cylinder contents is 

increased from 0% to 10%, the coefficient of variation increases for both uncontrolled 

and controlled engine operation. The increased coefficient of variation indicates 

increased cyclic dispersion as seen in the EGR return maps.  The coefficient of variation 

decreases when control is applied.   
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Table  I. Coefficient of Variation of the Return Maps 

EGR Uncontrolled COV Controlled COV 

5% 0.0873 0.0347 

10% 0.1873 0.0838 

  

 
Results from the engine-out emission data at the chosen set points show a sharp 

reduction in NOx as EGR increases. However, unburned hydrocarbons appear to increase 

with higher EGR which can be attributed to an increase in misfires at high EGR levels.   

Experimental results indicate an 80% drop of NOx at stoichiometric levels (2153 PPM at 

0% EGR to 436 PPM) using 10% EGR.  The percentage of NOx reduction should roughly 

remain the same between the controlled and uncontrolled cases as it is a strong function 

of the percentage of EGR. The percentage of unburned hydrocarbons at 10% also shows 

a drop of 28% due to control (58 PPM C3H8) as compared to the uncontrolled scenario 

(81 PPM C3H8). A 26% increase in unburned hydrocarbons is seen and this is due to the 

increased number of misfires at 10% EGR leading to more unburned fuel.  

 

VII.  Conclusions 

 

A suite of novel NN controller schemes is presented to reduce the cyclic 

dispersion in heat release at high EGR levels. The first control scheme utilizes both the 

NN approximation property and a backstepping type approach for maintaining a fixed air 

to fuel ratio by altering the fuel injected into the cylinder as the control input. The 

stability analysis of the closed-loop control system was conducted and the boundedness 



 

 

121

of the closed loop signals was demonstrated.  Simulation results by using an 

experimentally validated model show that the performance of the proposed controller is 

highly satisfactory while meeting the closed loop stability even though the dynamics are 

not known beforehand. Using the nonlinear backstepping-like controller, the cyclic 

dispersion could be reduced significantly, resulting in the potential for decreased 

emissions and improved fuel economy.  

The second control scheme uses heat release as the feedback variable and 

estimates the total air and fuel in the cylinder at any given time.  Experimental results 

show that the performance of the proposed controller is highly satisfactory while meeting 

the closed loop stability even though the dynamics are not known beforehand. Both in 

model simulation and engine experimentation the controller leads to a noticeable 

decrease in cyclic dispersion. Even though this controller was designed for the model 

heat release output which does not exhibit all the nonlinearities of actual engine heat 

release, the controller was still able to minimize heat release error.  The presented work 

can be extended by introducing a separate control loop for the EGR while varying the air-

fuel ratio to include lean operation of the SI engine. 
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Appendix 

 

Proof of Theorem 3.1 

Define the Lyapunov function candidate  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 2 2 2 1 1 1 2 2 24 3 1 1T T

M MJ k e k g e k k g w k w k w k w kα α= + + +% % % % .  (A.1) 
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where 1Mg  and Mg 2  are the upper bounds for ( )kg1  and ( )kg 2  given a compact set (see 

Assumption 1), and 12 , αk  and 2α  are design parameters (see Theorem 3.1).   The first 

difference of the Lyapunov function is given by 

( ) ( ) ( ) ( ) ( )kJkJkJkJkJ 4321 Δ+Δ+Δ+Δ=Δ .                          (A.2) 

The first term ( )kJ1Δ  is obtained using (23) as 

( ) ( ) ( ) ( )( )kekegkJ M
2
1

2
1

2
11 141 −+=Δ  

           ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )( )kekdkkekekkgg M
2
1

2
112111

2
141 −+++= ζ  

           ( ) ( ) ( ) ( ) ( )kdkkekegk M
2

1
2

1
2
2

2
1

2
1

2
1 41 +++−≤ ζ .                            (A.3) 

Now taking the second term in the first difference (A.2) and substituting (36) yields 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( ) ( )( )

( )( ) ( ) ( ) ( )

2 2 2
2 2 2 2 2

2 2
2 2 2 2 2 2

2 2 2 2 2
2 2 2 2 2 2 2 2

1 3 1

1 1 3

M

M

J k k g e k e k

g k k e k k d k e k

k k g e k k k d k k

ζ

ζ

Δ = + −

= + + −

≤ − + +

  (A.4) 

Taking the third term in (A.2) and substituting the weights updates from (39) and 

simplifying to get 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

3 1 1 1 1
1 1

1 1 1 1 1 1
1

1 1 1 1 1 1 1 1
1

2
1 1 1 1 1 1 1

2

1 1 1 1

1 11 1

1

1

2 2 1

T T

TT T

T T T

T T T

T T

J k w k w k w k w k

I k k w k k w k k k e k

I k k w k k w k k k e k w k w k

k k k k k w k k e k k

k k w k k e k

α α

α φ φ α φ φ
α

α φ φ α φ φ
α

α φ φ ζ α φ φ φ ζ

α φ φ φ

Δ = + + −

⎡ ⎤= − − + ×⎣ ⎦

⎡ ⎤− − + −⎣ ⎦

= − − − − +

+ +

% % % %

%

% % %  (A.5) 
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Taking the forth term in (A.1) and substituting the weights updates from (40) and 

simplifying to get 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 2 2 2 2
2 2

2 2
2 2 2 2

2 2 2

2 2
2 2 2 2 2 2

2 2 2

22
2 2

2

2
2 2 2

2

1 11 1

1

1

1 2

2 1 1

T T

T

T T

T T T

T

T T

J k w k w k w k w k

I k k w k k w k k e k
k k

I k k w k k w k k e k w k w k
k k

k k k k
k

k k k w k k e
k

α α

α ασ σ σ σ
α

α ασ σ σ σ
α

α σ σ ζ

α σ σ σ

Δ = + + −

⎡ ⎤⎛ ⎞
= − − + ×⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

− − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
⎛ ⎞

− − +⎜ ⎟
⎝ ⎠

% % % %

%

% % %

( )( ) ( )

( ) ( ) ( ) ( )( )

2 2

22
2 2 22

2

T T

k k

k k w k k e k
k

ζ

α σ σ σ+ +
 (A.6) 

Combining (A.3) through (A.6) to get the first difference of (A.2) and simplifying to get 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

1 2 3 4

2 2 2 2
1 1 2 2 22 2

1 2 2

2
1 1 1 1

22
2 2 2 2 2

2 2

2

1 1 1 1

2
2 222

2 2 2 12
2 2

1 1 1
4 3

1 2

1 1 2

M M

T T

T T

T T

T T

J k J k J k J k J k

k e k k k e k
g k g

k k k w k k k

k k k w k k e k k
k k

k k w k k e k

d k
w k k e k k k d k

k k

α φ φ ζ φ ζ

α σ σ ζ σ ζ

α φ φ φ

α σ σ σ

Δ = Δ + Δ + Δ + Δ

⎛ ⎞ ⎛ ⎞
≤ − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− − +

⎛ ⎞
− − + +⎜ ⎟

⎝ ⎠

+ +

+ + + +

  (A.7) 

The above (A.7) can be expressed in a more compact form as 
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( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

2 2 2 2 2 2
1 1 1 2 2 2 2 2

2

1 1 1 1 1

22
2 2 2 2 2

2

2 2 2 2 2 2
1 2 2 1max max 2max max 2

3 1 4 1 3 1 3

1

1 1

2

M M

T T

T T

J k k g e k k k k g e k

k k k w k k e k

k k k k w k k e k
k

d k d k k w w k

α φ φ ζ φ

α σ σ ζ σ

φ σ

Δ ≤ − + + −

− − + +

⎛ ⎞
− − + +⎜ ⎟

⎝ ⎠
+ + + +   (A.8) 

This implies that 0<ΔJ  as long as (38) through (41) hold and  

( )
2
1

2
1

1
121

2

M

M

gk

Dke
−

> ,    (A.9) 

or 

( )
( )2

2
2
2

2
22

22
2

931

3

MM

MM

gkgk

Dgk
ke

−−
> ,   (A.10) 

or  

( )
( )( ) maxmax12

1
2

1

1

2
1

1
121

2

1
φ

φα
ζ w

gk

Dk

k

Dk
M

MM +
−

+
−

> ,  (A.11) 

or 

( )
( )( ) ( ) maxmax22

2
2
2

2
22

222
2

22

2
2

931

3
σ

σα
ζ w

gkgk

Dgkk

kk
Dkk

MM

MMM +
−−

+
−

> ,  (A.12) 

where 

( ) ( ) 2
2
max

2
max2

2
max

2
max12

2
2

2
1

2 2 kwwkkdkdDM σφ +++= .    (A.13) 

According to a standard Lyapunov extension theorem (Lewis et al. 1999), this 

demonstrates that the system errors and the errors in weight estimates are bounded.  The 
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boundedness of ( )k1ζ  and ( )k2ζ  implies that ( )kw1
~  and ( )kw2

~  are bounded, or 

equivalently the weight estimates ( )kw1ˆ  and ( )kw2ˆ  are bounded. 

From (A.8) and (A.9), ( )ke1  and ( )ke2  are bounded.  Using (19) and (29), ( )kx1  

and ( )kx2  approach to dX 1  and ( )kx d2ˆ , respectively.  The objective of our control scheme 

is to bound ( )kx1  and ( )kx2  close to their respective targets dX 1  and dX 2 .  Then the 

equivalent ratio ( ( ) ( )
( )kx
kx

R
k

1

21
=φ ) will be close to the desired equivalence ratio 

(
d

d
d X

X
R 2

11
=φ ), and the combustion efficiency ( )kCE  is held constant ( ( )kCE  is the 

function of ( )kφ  alone, see equation (12)).  Since heat release ( ) ( ) ( )kCEkxkQ 2= , the 

heat release is bounded and its variations are reduced provided the bounds are small.  

Since the bounds are a function of design parameters 121 ,, αkk  and 2α  and by suitably 

selecting these, the variations can be reduced.  Consequently, it has been shown that 

( )kx1  is bounded close to dX 1  and ( )kx2  is bounded close to ( )kx d2ˆ .  In order to prove 

( )kx2  is bounded close to dX 2 , the difference between ( )kx d2ˆ  and ( )kx d2  has to be 

considered as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )kkkkkwkwkxkx T
dd 1111122 ˆˆ εζεφ −=−−=− .  (A.14) 

Since ( )k1ζ  and ( )k1ε  are bounded, ( )kx d2ˆ  is bounded close to ( )kx d2 .  Since 

( )ke2  is bounded, and ( )kx2  is bounded close to ( )kx d2ˆ , and ( )kx d2ˆ  is bounded close to 

( )kx d2 , it can be concluded that ( )kx2  is bounded close to ( )kx d2 .  By suitably 

selecting dX 1  according the following equation  
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( ) ( ) ( )( ) ( ) ( ) ( )kXRkXkekXkf
kg

kx ddddd δφδ +××=+=++−= 121111
1

2
1 .  (A.15) 

where ( )kδ  is a small and known bounded value and ( )kx d2  is forced to be close to dX 2  

at steady state.  Then it follows that ( )kx2  is bounded close to dX 2 . Since both ( )kx1  

and ( )kx2  are bounded close to their targets dX 1  and dX 2 , respectively, the equivalence 

ratio is bounded close to its desired value.  Consequently, the combustion efficiency, 

( )kCE , is close to its desired value and the heat release ( ( ) ( ) ( )kCEkxkQ 2= ) is close to 

its target and the heat release dispersion is reduced. 
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Neural Network Controller Development and Implementation 

for Spark Ignition Engines with High EGR Levels  

J. Vance1, A. Singh1, B. Kaul2, S. Jagannathan1, Sr. Member, IEEE and J. Drallmeier2 
1Department of Electrical and Computer Engineering  

2Department of Mechanical and Aerospace Engineering  
 

Abstract — Past Research has shown substantial reductions in the oxides of nitrogen 

(NOx) concentrations by using 10% to 25% exhaust gas recirculation (EGR) in spark 

ignition (SI) engines [1]. However under high EGR levels the engine exhibits strong 

cyclic dispersion in heat release which may lead to instability and unsatisfactory 

performance preventing commercial engines to operate with high EGR levels.  A neural 

network (NN)-based output feedback controller is developed to reduce cyclic variation in 

the heat release under high levels of EGR even when the engine dynamics are unknown 

by using fuel as the control input. A separate control loop was designed for controlling 

EGR levels.  The stability analysis of the closed loop system is given and the 

boundedness of the control input is demonstrated by relaxing separation principle, 

persistency of excitation condition, certainty equivalence principle and linear in the 

unknown parameter assumptions. Online training is used for the adaptive NN and no 

offline training phase is needed. This online learning feature and model-free approach is 

used to demonstrate the applicability of the controller on a different engine with minimal 

effort. 
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Simulation results demonstrate that the cyclic dispersion is reduced significantly 

using the proposed controller when implemented on an engine model that has been 

validated experimentally.  For a single cylinder research engine fitted with a modern four 

valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic 

dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, 

and a 90% drop in NOx from stoichiometric operation without EGR was observed.  

Moreover, unburned hydrocarbons drop by 6% due to NN control as compared to the 

uncontrolled scenario due to the drop in cyclic dispersion.  Similar performance was 

observed with the controller on a different engine. 
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I.  Nomenclature 

 

CFR Cooperative Fuel Research 

COV coefficient of variation 

IMEP Mean effective pressure, .Work DispVolume  

NOx Nitrogen oxide compounds 

uHC Unburned hydrocarbons 

( )CE k  Combustion efficiency  

( )1d k  Unknown disturbance in air 

( )2d k  Unknown disturbance in fuel 

( )F k  Fraction of unreacted gas and fuel  remaining from previous cycle 

( )
2H Or k  Mass of water 

( )
2Or k  Mass of oxygen 

( )
2Nr k  Mass of nitrogen 

( )
2COr k  Mass of carbon dioxide 

R  Stoichiometric air-fuel mass ratio 

( )u k  Mass change fuel input 

( )1x k  Mass of air 

( )2x k  Mass of fuel 

( )3x k  Mass of EGR 

( )kϕ  Equivalence ratio 
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,l uϕ ϕ  Lower 10 and upper 90 percent locations of the combustion efficiency 

function 

mϕ  Midpoint between lϕ  and uϕ  

 

II.  Introduction 

 

One of the most interesting challenges facing the automotive industry today is the 

development of energy generation techniques that have a low impact on the environment. 

Today's automobiles utilize sophisticated microprocessor-based engine control systems to 

meet stringent federal regulations governing fuel economy and the emission of carbon 

monoxide (CO), oxides of nitrogen (NOx) and hydrocarbons (HC). Global warming and 

its impact on the environment have shifted the focus of the automotive industry. Current 

efforts are directed at reducing the total amount of emissions and fuel consumption. The 

engine control system can be classified into three categories [1]: the spark advance (SA) 

control, the air-fuel ratio (A/F) control and the exhaust gas recirculation (EGR) control. 

Partial recirculation of exhaust gases, a technique introduced in the early 70's, has 

continued to receive attention [2].   

Operating a spark ignition engine with EGR can reduce the NOX as well as 

improve the fuel efficiency.  For example, if an engine can tolerate 20 to 25% EGR, 

reduction in engine-out NOx on the order of 90-95% can be realized.  Additionally, 

improved brake specific fuel consumption with EGR dilution is a result of reduced 

pumping work, reduced heat transfer to the walls due to decreased burned gas 

temperature, and to a lesser extent, a reduction in dissociation at high temperatures in the 

burned gases.  EGR dilution has the advantage over lean combustion of maintaining 
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stoichiometric operation so that current three-way catalyst technology can be used.  

These advantages which come with dilute engine operation are the primary motivation of 

this work. 

However, increased dilution of the intake charge through EGR also reduces the 

combustion rate, which makes stable combustion [2, 4-6] more difficult to achieve. High 

levels of EGR present in a spark ignition (SI) engine lead to cyclic dispersion in the heat 

release map of the SI engine. Under such conditions a large number of misfires develop 

causing problems in drivability due to cycle-to-cycle variations in output as well as large 

increases in unburned hydrocarbons.  Therefore, commercial engines do not operate with 

high levels of EGR due to cyclic dispersion.  

Several researchers [3, 7-9] have studied lean combustion engine control 

technology but few results have been reported for the EGR case. Investigation of the 

onset of complex dynamic behavior in a SI engine with high levels of simulated EGR 

(added nitrogen) as compared to the lean equivalence ratio case has demonstrated a 

bifurcation phenomenon similar to when the engine was operating under lean conditions 

[2].  Therefore, it is envisioned that by applying neural network (NN) controller similar to 

that of lean operation, the cyclic dispersion resulting from high levels of EGR dilution 

can be minimized, increasing the engine’s EGR tolerance, potentially further reducing 

engine out NOX and unburned HC while improving fuel efficiency.   

Conventional control schemes [3] have been found incapable of reducing the 

cyclic dispersion to the levels needed to implement these concepts. Moreover, the total 

amount of fuel and air in a given cylinder is normally not measurable on a per-cycle basis 

which necessitates the development of output feedback control schemes.  
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Several feedback controller designs in discrete time are proposed for the signal-

input-single-out (SISO) nonlinear systems [10-12].  However, no output feedback control 

scheme currently exists for the proposed class of nonstrict feedback nonlinear discrete-

time systems. No controller design is available for nonstrict feedback nonlinear systems 

even with state feedback.  To overcome the need for complex engine dynamics and to 

make the controller practical, a heat release based NN-based output feedback controller is 

proposed by using the NN universal approximation property [13].  

In this paper, a direct adaptive NN controller is proposed for stable operation of 

the SI engine under high levels of EGR. The SI engine dynamics is modeled as a 

nonlinear discrete-time system in nonstrict feedback form [16]. Neural networks are 

employed to learn the unknown nonlinear dynamics since the residual gas and 

combustion efficiency are unknown. A backstepping approach [14-15] in discrete-time is 

used to design the control input (injected fuel) to the total fuel system. The total fuel is 

then treated as the virtual control signal to the air system so that both the air and fuel 

states are bounded tightly to their respective targets. A separate control loop is designed 

for maintaining EGR levels. Consequently, the cyclic dispersion is reduced and the 

engine is stable even when an exact knowledge of engine dynamics is not known to the 

controller making the NN controller model-free.  

This stability permits higher levels of diluents to be considered for a specific 

engine, further enhancing NOX reduction and fuel efficiency than would be realized on an 

uncontrolled engine. The stability analysis of the closed-loop control system is given and 

the boundedness of the closed loop signals is shown since a stable open loop system can 

still become unstable with a controller. The NN weights are tuned on-line, with no off-
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line learning phase required.  Moreover, separation principle, persistency of excitation 

condition, certainty equivalence and linear in the unknown parameters assumptions are 

relaxed. Performance of the NN controller is evaluated on different engines and results 

show satisfactory performance of the controller. 

 

III.  Engine as a Nonlinear Discrete-time System 

 

A. Non-strict Nonlinear System Description 

   Consider the following non-strict feedback nonlinear system described by the 

following equations 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 1 2 1 1 2 2 11 , ,x k f x k x k g x k x k x k d k+ = + +  (1) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 2 1 2 2 1 2 21 , ,x k f x k x k g x k x k u k d k+ = + +   (2) 

where ( ) ; 1, 2ix k i∈ℜ =  are states, ( )u k ∈ℜ  is the system input, and ( )1d k ∈ℜ  and 

( )2d k ∈ℜ  are unknown but bounded disturbances  Bounds on these disturbances are 

given by ( )1 1md k d<  and ( )2 2md k d< where md1  and md2  are unknown positive scalars. 

Equations (1) and (2) represent a discrete-time nonlinear system in nonstrict 

feedback form [16], since ( )1f ⋅  and ( )1g ⋅   are functions of both 1( )x k  and 2 ( )x k , unlike 

in the case of strict feedback nonlinear system, where ( )1f ⋅  and ( )1g ⋅  are a function of 

( )kx1  only [10-12].  Control of nonstrict feedback nonlinear systems is introduced in [16] 

since no known results are available in the literature. Controller results from strict 

feedback nonlinear systems cannot be directly extended to nonstrict feedback nonlinear 
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systems due to non causal controller design issues.  Next the engine dynamics is 

presented in the nonstrict feedback form and subsequently the NN controller 

development is introduced. The dynamic NN architecture acts as a one-step predictor 

overcoming the non causal design.   The SI engine dynamic model is discussed next. 

B. Engine Dynamics 

Daw, Finney, Green, Kennel and Thomas (1996) [4] and Daw et al. (1998) [5] 

developed a mathematical representation of the spark ignition (SI) engine to investigate 

nonlinear cycle dynamics under lean conditions and high EGR levels [2]. The residual air 

and fuel passed from one cycle to the next make the model deterministic. Actual 

variations in parameters due to complex processes like temperature and pressure effects, 

turbulence, fuel vaporization, etc. are not directly calculated, but modeled as stochastic 

effects through random noise on parameters such as injected air-fuel ratio and residual 

fraction. The model for the EGR case is shown below.  

( ) ( )
221 1 2

1 1

( 1) ( )[ ( ) . ( ) ( ) ]
                ( ) ( )

NO

new

x k F k x k R CE k x k r k r k
x k d k

+ = − + +

+ +
 (3) 

( ) '
2 2 2 2( 1) ( )(1 ( )) ( ) ( ) ( )newx k F k CE k x k x k u k d k+ = − + + +  (4) 

2 2 23 3( 1) ( )( ( ) ( ) ( ) ( )

( ))
CO H O Nx k F k r k r k r k x k

EGR k

+ = + + +

+
 (5) 

2( ) ( ) ( )y k x k CE k=  (6) 

32

1 2 1 3

( ) ( )( )( ) . 1
( ) ( ( ) ( ) ( ) ( ))

x k EGR kx kk R
x k x k x k x k EGR k

ϕ γ
⎡ ⎤+

= −⎢ ⎥+ + +⎣ ⎦
 (7) 
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max
( ( ) ) /( )( ) ,

1 100 m u lk

CECE k ϕ ϕ ϕ ϕ− − −=
+

,
2

u l
m

ϕ ϕϕ +
=  (8) 

2 2 2( ) ( ) ( )H O H Or k x k CE kγ=  (9) 

2 2 2( ) ( ) ( )O Or k x k CE kγ=  (10) 

2 2 2( ) . ( ) ( )N Nr k R x k CE kγ=  (11) 

2 2 2( ) ( ) ( )CO COr k x k CE kγ=  (12) 

Equations for 1 2 3( ),  ( ) and ( )x k x k x k  are the total mass of air, fuel, and inert gases 

respectively. The heat release at the kth time instant is assumed to be proportional to the 

mass of fuel burned, which is given by ( )y k . The term ( )CE k  is defined as the 

combustion efficiency, which is bounded above as min max0 ( )CE CE k CE< < <  where maxCE  

is the maximum combustion efficiency denoted here as a constant.  The term ( )F k  is the 

residual gas fraction, which is bounded as min max0 ( )F F k F< < <  whereas R  is the 

stoichiometric air-fuel ratio, which is given by ≈15.13 for iso-octane. The term ( )u k  is 

the small change in fuel per cycle and ( )kϕ  is the equivalence ratio. Additionally, 

mul ϕϕϕ ,,  are equivalence ratio system parameters for the lower 10 and upper 90 percent 

and midpoint locations of the combustion efficiency function. The 

terms
2 2 2

( ),  ( ),  ( )H O O Nr k r k r k , and 
2
( )COr k  are the mass of water, oxygen, nitrogen and 

carbon dioxide respectively.  

It should be noted that the residual oxygen combines proportionally with the 

residual nitrogen to form residual air. The fraction of total nitrogen left over after this is 
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the residual inert nitrogen. The terms γ , 
2 2 2, ,  H O O Nγ γ γ , and 

2COγ  are constant parameters 

which are determined from stoichiometry and fuel properties such as the 

hydrogen/carbon ratio and the molecular weight. The terms '
1( )d k  and '

2 ( )d k  are 

unknown, bounded disturbances. It can be seen that the SI engine with EGR levels has 

highly nonlinear dynamics with ( )CE k  and ( )F k  being unknown and not measurable. 

Remark 1: In (3) through (6), states ( )1x k  and ( )2x k  are not available for feedback 

control since they are not measured whereas the output ( )y k  is available for 

measurement.  The control objective then is to operate the engine with high EGR levels 

with ( )y k  as the feedback parameter and without knowing precisely the engine 

dynamics.  It is important to note that the output is a nonlinear function of the states 

unlike in many papers [10-11] where the output is considered as a linear function of 

system states. 

Remark 2: For lean engine operation, the inert gas equation (5) is not required and 

therefore fewer parameters are in (3) and (4). 

C. Engine Dynamics Using Nominal Values 

Substituting (4) into both (3) and (4), we get 

( )
2 21 1 1 1( 1) ( )[ ( ) . ( ) ( ) ] ( ) ( )O N newx k F k x k R y k r k r k x k d k+ = − + + + +  (13) 

'
2 2 2 2( 1) ( )( ( ) ( )) ( ) ( ) ( )newx k F k x k y k x k u k d k+ = − + + +  (14) 

In real engine operation, the fresh air, 1newx , fresh fuel,   2newx , and residual gas 

fraction, ( )F k , can all be viewed as nominal values plus some small and bounded 

disturbances. The inert gases include the residual exhaust gases in the cylinder and the 
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EGR fraction. Equation (5) will not be considered for controller development as a 

separate control loop from the literature designed to control EGR levels makes the inert 

gases evolve into a stable value. One can observe that (5) is a stable system and standard 

control results [17] can be applied.  Therefore, it is sufficient to use (3) and (4) in order to 

minimize cyclic dispersion and (5) is not included in the proposed controller design. 

Consider, 

1 1 0 1( ) ( )new new newx k x x k= + Δ  (15) 

2 2 0 2( ) ( )new new newx k x x k= + Δ  (16) 

0( ) ( ) ( )F k F k F k= + Δ  (17) 

where 1 0 2 0 0,   and  new newx x F are the known nominal fresh air, fuel, and residual gas fraction 

values. 1 0 2 0,  new newx xΔ Δ , and 0FΔ are unknown yet bounded disturbances on those values 

whose bounds are given by,  

1 10 ( )new newMx k x≤ Δ ≤ Δ  (18) 

2 20 ( )new newMx k x≤ Δ ≤ Δ  (19) 

0 ( ) MF k F≤ Δ ≤ Δ  (20) 

Substituting these values into the system model we can get the state equations in the 

following form, 

( ) ( )
2 21 0 1 2

1 0 1 1

( 1) ( ( ) ( ))[ ( ) . ( ) ( ) ]

+ ( ) ( )
O N

new new

x k F k F k x k R CE k x k r k r k

x x k d k

+ = + Δ − + +

+ Δ +
 (21) 
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( ) '
2 0 2 2 0 2 2( 1) ( ( ) ( ))(1 ( )) ( ) ( ) ( )new newx k F k F k CE k x k x x k u k d k+ = + Δ − + + Δ + +  (22) 

It is important to note that the closed-loop stability analysis has to be performed 

with the proposed NN controller even though many of the engine terms are considered 

bounded above since a stable open-loop system can still become unstable with a 

controller unless the NN weight update laws are properly selected. Moreover, a 

Lyapunov-based stability analysis is needed in order to show the relaxation of the 

separation principle for the observer and certainty equivalence principle for the 

controller.  Next the NN observer design is introduced. 

 

IV. Neural Network-based observer design 

 

First, a semi-recurrent NN is used to predict the value of the heat release for the 

next burn cycle, which will be used subsequently by the observer to predict the states of 

the system. The inert gases can be calculated directly if the air and fuel values are known, 

so they are not estimated. The heat release for the next burn cycle is given by 

)1()1()1( 2 ++=+ kCEkxky  (23) 

A. Observer Structure 

From (23), the heat release for the next cycle y(k +1) can be approximated by 

using a one layer neural network as 

1 1 1 1 1 1( 1) ( ( )) ( ( ))T Ty k w v z k z kφ ε+ = +  (24) 

where the input to the NN is taken as 4
1 1 2( ) [ ( ), ( ), ( ), ( )]Tz k x k x k y k u k R= ∈ ,the matrix 

1

4 1nw R ×
∈  and 14

1

nv R ×∈  represent the output and hidden layer weights, ( )1 .φ  represents 
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the hidden layer activation function, 1n  denotes the number of the nodes in the hidden 

layer, and ( )( )1 1z k Rε ∈  is the functional approximation error.  It has been demonstrated 

that if the hidden layer weight 1v  is chosen initially at random and held constant, and the 

number of hidden layer nodes is sufficiently large, then the approximation error ))(( 11 kzε  

can be made arbitrarily small over the compact set since the activation functions form a 

basis according to [13]. 

For simplicity, we define 

1 1 1 1 1( ( )) ( ( ))Tz k v z kφ φ=    (25) 

1 1 1( ) ( ( ))k z kε ε=   (26) 

Given (24) and (25), (26) is re-written as 

1 1 1 1( 1) ( ( )) ( )Ty k w z k kφ ε+ = +   (27) 

Since states 1 2( ) and ( ) x k x k are not measurable, 1( )z k  is not available either. Using the 

estimated values 1̂( )x k , 2ˆ ( )x k , and ˆ( )y k  instead of 1 2( ),  ( )  ( ) andx k x k y k the proposed 

heat release observer can be given as 

1 1 1 1 1

1 1 1 1

ˆ ˆ ˆ( 1) ( ( )) ( )
ˆ( ) ( ( )) ( )

T T

T

y k w v z k l y k

w k z k l y k

φ

φ

+ = +

= +

%

% %
 (28) 

where )1(ˆ +ky  is the predicted heat release, inRkw ∈)(ˆ1  is the actual output layer 

weights, the input to the NN is taken as 4
1 1 2ˆ ˆ ˆˆ ( ) [ ( ), ( ), ( ), ( )] ,Tz k x k x k y k u k R l R= ∈ ∈  is the 

observer gain, )(~ ky  is the heat release estimation error, which is defined as 
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)()(ˆ)(~ kykyky −=   (29) 

and 1 1̂( ( ))z kφ  represents 1 1 1( ( ))ˆTv z kφ  for the purpose of simplicity.  

Using the heat release estimation error, the proposed observer is given in the 

following form: 

1 1 0 1 2ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )new o ox k x k F x k R F y k l y k+ = + − ⋅ ⋅ + %            (30) 

2 2 2 0 3ˆ ˆ ˆ( 1) ( ( ) ( )) ( ( ) ( )) ( )o newx k F x k y k x k u k l y k+ = − + + + %  (31) 

where 2l R∈  and 3l R∈  are observer gains. The term 
2 2

( )o O NF r r+  has been pulled out 

from equation (30) as there are no nominal values available for the inert gases.  The error 

introduced by this will be taken up as part of the air estimation error. Equations (26), (28) 

and (29) represent the dynamics of the observer to estimate the states of 1 2( ) and ( )x k x k . 

B. Observer Error Dynamics    

Define the state estimation errors as: 

2,1),()(ˆ)(~ =−= ikxkxkx iii    (32) 

Combining (21) through (26), we obtain the estimation error dynamics as 

2 2

2 2

1 1 2 1

1

1

( 1) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

o o new

o O N

O N

x k F x k l R F y k x k
F k x k R F k y k F r r

F r r d k

+ = + − ⋅ − Δ
−Δ + Δ − +

−Δ + −

% % %

   (33) 

2 2 3

2 2 2

( 1) ( ) ( ) ( )

               ( )( ( ) ( )) ( ) ( )
o o

new

x k F x k l F y k

F k x k y k x k d k

+ = + −

− Δ − − Δ −

% % %
  (34) 
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1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1

1 1 1 1 1

ˆ ˆ( 1) ( ) ( ( )) ( ) ( ( )) ( )
ˆ ˆ ˆ       ( ( ) ) ( ( )) ( ( ( )) ( ( )))
( )

ˆ       ( ) ( ( )) ( ) ( ( )) ( )
( ) ( ( )) ( )

T T

T T

T T

T

y k w k z k l y k w z k k
w k w z k w z k z k

k
w k z k w k z k k

k w z k k

φ φ ε
φ φ φ

ε
φ φ ε

ζ φ ε

+ = + − −

= − + −
−

= + −

= + −

% %

% % %

%

  (35)                         

where  

111 )(ˆ)(~ wkwkw −=  (36) 

and 

))(ˆ()(~)( 1111 kzkwk T φζ =  (37) 

and for the purpose of simplicity, 1 1 1 1ˆ( ( ( )) ( ( )))z k z kφ φ−  is written as 1 1( ( ( ))z kφ % .  Next the 

NN controller design is presented and the NN weight updates for both NN observer and 

controller are discussed. 

 

V.  Adaptive NN Output Feedback Controller Design 

 

The control objective of maintaining the heat release constant is achieved by 

holding the fuel and combustion efficiency within a close bound, i.e., the heat release is 

driven to a target heat release yd. Given yd and the engine dynamics (3) – (5), we could 

obtain the nominal values for the total mass of air and fuel in the cylinder, x1d and x2d, 

respectively. By driving the states 1 2( ) and ( )x k x k  to approach to their respective 

nominal values 1dx  and 2dx , ( )y k  will approach dy .  By developing a controller to 

maintain the EGR at a constant level separately, we can see that the inert gases evolve 

into a stable value since equation (5) can be viewed as a feedback linearizable nonlinear 
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discrete-time system with ( )F k  being less than one and the weights of the gases kept 

constant with minor variations. The controller for the EGR system (5) is developed 

separately and not presented here. With the estimated states 1 2ˆ ˆ( ) and ( )x k x k , the 

controller design follows the backstepping technique [14-15]. The details are given in the 

following sections. 

A. Adaptive NN Output Feedback Controller Design 

The controller design is now given. 

Step 1: Virtual controller design. 

Define the error between actual and desired air as 

1 1 1( ) ( ) de k x k x= −  (38) 

which can be rewritten as 

( )
( )

2

2

1 1 1

1 2

1 1 1

( 1) ( 1)

( )[ ( ) . ( ) ( )

]   ( ) ( )

d

O

N d new

e k x k x

F k x k R CE k x k r k

r k x x k d k

+ = + −

= − +

+ − + +

 (39) 

For simplicity let us denote 

( )
2 21 1 1 1( ) ( )[ ( ) ( ) ] ( )O N new df k F k x k r k r k x k x= + + + −  (40) 

)()()(1 kCEkFRkg ⋅=  (41) 

Then the system error equation can be expressed as  

1 1 1 2 1( 1) ( ) ( ) ( ) ( )e k f k g k x k d k+ = − +  (42) 
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By viewing 2 ( )x k  as a virtual control input, a desired feedback control signal can be 

designed as 

1
2

1

( )
( )

( )d

f k
x k

g k
=  (43) 

The term 2dx can be approximated by the first action NN as 

2 2 2 2 2 2 2 2( ) ( ( )) ( ( )) ( ( )) ( ( ))T T T
dx k w v x k x k w x k x kφ ε φ ε= + = +  (44) 

where the input in the state 2
221 ,)](),([)( nT Rwkxkxkx ∈=  and 12

2
nv R ×∈  denote the 

constant ideal output and hidden layer weights, n2 is the  number of nodes in the hidden 

layer, the hidden layer activation function 2 2( ( ))Tv x kφ  is simplified as 2 ( ( ))x kφ , and 

))((2 kxε  is the approximation error. Since both 1 2( ) and ( )x k x k  are unavailable, the 

estimated state ˆ( )x k  is selected as the NN input. 

Consequently, the virtual control input is taken as 

2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
dx k w k v x k w k x kφ φ= =    (45) 

where 2
2ˆ ( ) nw k R∈  is the actual weight matrix for the first control NN . Define the weight 

estimation error by 

2 2 2ˆ( ) ( )w k w k w= −%  (46) 

Define the error between 2 ( )x k  and 2ˆ ( )dx k  as  

2 2 2ˆ( ) ( ) ( )de k x k x k= −  (47) 

Equation (35) can be expressed using (47) for 2 ( )x k  as 
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),())(ˆ)()(()()1( 122111 kdkxkekgkfke d ++−=+  (48) 

or equivalently 

1 1 1 2 2 2

2 1

1 1 2 2 2

2 1

1 2 2 2 1

1 2 2 2 2 2

2 1

( 1) ( ) ( )( ( ) ( ) ( )
( )) ( )

( ) ( )( ( ) ( ) ( )
ˆ ( )) ( )

ˆ( )( ( ) ( ) ( )) ( )
ˆ ˆ( )( ( ) ( ) ( ( )) ( ( ))

( ( ))) ( )

d d

d

d d

d

d d
T T

e k f k g k e k x k x k
x k d k
f k g k e k x k x k
x k d k

g k e k x k x k d k

g k e k w k x k w x k
x k d k

φ φ
ε

+ = − + −
+ +

= − + −

+ +
= − − + +

= − + −
− +

 (49) 

Similar to (35), (49) can be further expressed as 

1 1 2 2 2 2 2 1( 1) ( )( ( ) ( ) ( ( )) ( ( ))) ( )Te k g k e k k w x k x k d kζ φ ε+ = − − + − +%  (50) 

where 2 2 2 ˆ( ) ( ) ( ( ))Tk w k x kζ φ= %  (51) 

2 2 2 2 2ˆ( ( )) ( ( ( )) ( ( )))T Tw x k w x k x kφ φ φ= −%  (52) 

Step 2: Design of the control input ( )u k . 

Rewriting the error 2 ( )e k  from (47) as 

2 2 2

2 2 2

( 1) ( 1) ( 1)
ˆ     (1 ( )) ( ) ( ) ( ( ) ( )) ( 1) ( )

d

d

e k x k x k

CE k F k x k MF k u k x k d k

+ = + − +

= − + + − + +

%
 (53) 

For simplicity, let us denote: 

( )2 2 2( 1) ( )(1 ( )) ( )newx k F k CE k x k x k+ = − +  (54) 

Equation (53) can be written as 

2 2 2 2ˆ( 1) ( ) ( ) ( 1) ( )de k f k u k x k d k+ = + − + +  (55) 
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where )1(ˆ2 +kx d  is the future value of )(ˆ2 kx d . Here, )1(ˆ2 +kx d  is not available in the 

current time step. However, from (43) and (45), it can be clear that )1(ˆ2 +kx d  is a smooth 

nonlinear function of the state ( )x k  and virtual control input 2ˆ ( )dx k . Another NN can be 

used to approximate the value of )1(ˆ2 +kx d  and to generate a suitable control input by 

using this value since a second control NN with semi-recurrent architecture can be 

viewed as a first order predictor.  Other methods via filtering approach [18] do exist in 

the literature in order to obtain this value future value which can subsequently be used by 

a second control NN.   

Select the desired control input by using the second NN in the controller design as 

2 2

3 3 3 3 3 3

3 3 3 3 3

ˆ( ) ( ( ) ( 1))

( ( )) ( ( ))

( ( )) ( ( ))

d d

T T

T

u k f k x k

w v z k z k

w z k z k

φ ε

φ ε

= − + +

= +

= +

 (56) 

where 3
3

nw R∈  and 3 3
3

nv R ×∈  denote the constant ideal output and hidden layer weights, 

3n  is the hidden layer nodes number, the hidden layer activation function 3 3 3( ( ))Tv z kφ  is 

simplified as 3 3( ( ))z kφ , 3 3( ( ))z kε  is the approximation error, 3
3( )z k R∈  is the NN input, 

which is given by (55). Considering the fact that both 1 2( ) and ( )x k x k  cannot be 

measured, ( )3z k  is substituted with 3
3ˆ ( )z k R∈  where  

3
23 )](ˆ),([)( Rkxkxkz T

d ∈=   (57) 

and 

3
3 2ˆ ˆˆ ( ) [ ( ), ( )]T

dz k x k x k R= ∈  (58) 

Now define  
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1 1 1ˆ ˆ( ) ( ) ,de k x k x= −  (59) 

and 

,)(ˆ)(ˆ 222 dxkxke −=  (60) 

The actual control input is now selected as 

3 3 3 4 2

3 3 3 4 2

ˆ ˆˆ( ) ( ) ( ( )) ( )
ˆ ˆˆ( ) ( ( )) ( )

T T
c

T

u k w k v z k l e k

w k z k l e k

φ

φ

= +

= +
 (61) 

where 3

3ˆ nTw R∈  is the actual output layer weights, 4l R∈  is the controller gain selected to 

stabilize the system. Similar to the derivation of (39), combining (55), (56) with (61) 

yields 

2 4 2 3 3 3 3 3 2ˆ( 1) ( ) ( ) ( ( )) ( ( )) ( )Te k l e k k w z k z k d kξ φ ε+ = + + − +%  (62) 

where 

3 3 3ˆ( ) ( )w k w k w= −%  (63) 

3 3 3 3ˆ( ) ( ) ( ( ))Tk w k z kξ φ= %  (64) 

and 

3 3 3 3 3 3 3ˆ( ( )) ( ( ( )) ( ( )))T Tw z k w z k z kφ φ φ= −%  (65) 

Equations (50) and (62) represent the closed-loop error dynamics. It is required to show 

that the estimation error (29) and (32), the system errors (50) and (62) and the NN weight 

matrices 1ˆ ( )w k , 2ˆ ( )w k , and 3ˆ ( )w k  are bounded.  Fig. 1 shows the block diagram of the 

final structure of the designed neuro-controller. 
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 Fig.1.  Neuro-controller structure. 
 

B. Weight Updates for Guaranteed Performance 

Assumption 1 (Bounded Ideal Weights): Let w1, w2 and w3 be the unknown output layer 

target weights for the observer and two action NNs and assume that they are bounded 

above so that 

1 1 2 2 3 3, ,  and ,m m mw w w w w w≤ ≤ ≤   (66) 

where 1mw R+∈ , 2mw R+∈ , and 3mw R+∈  represent the bounds on the unknown target 

weights when the Frobenius norm is used. 

Fact 1: The activation functions are bounded above by known positive values so that 

( ) , 1, 2,3i im iφ φ⋅ ≤ =                       (67) 

where , 1, 2,3im iφ =  are the upper bounds. 
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Assumption 2 (Bounded NN Approximation Error): The NN approximation errors 

1 1( ( ))z kε , 2 ( ( ))x kε , and 3 3( ( ))z kε  are bounded over the compact set by 1mε , m2ε , and 

m3ε , respectively.  

Theorem 1: Consider the system given in (3) – (5) and let the Assumptions 1 and 2 hold. 

Let the unknown disturbances be bounded by 1 1 2 2( )  and ( ) ,m md k d d k d≤ ≤  respectively. 

Let the observer NN weight tuning be given by  

1 1 1 1 1 1 1 1 5ˆ ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k z k w k z k l y kα φ φ+ = − + %    (68) 

with the virtual control NN weight tuning be provided by 

2 2 2 2 2 2 6 1ˆ ˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k x k w k x k l e kα φ φ+ = − +    (69) 

and the control NN weight tuning be provided by 

3 3 3 3 3 3 3 3 7 2ˆ ˆ ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k z k w k z k l e kα φ φ+ = − +    (70) 

where 1 2 3 5 6 7, , ,  and , ,  and R R R l R l R l Rα α α∈ ∈ ∈ ∈ ∈ ∈  are design parameters.  Let the 

system observer be given by (28), (29) and (30), virtual and actual control inputs be 

defined as (45) and (61), respectively.  The estimation errors (33) through (35), the 

tracking errors (50) and (62), and the NN weight estimates 1ˆ ( )w k , 2ˆ ( )w k , and 3ˆ ( )w k  are 

uniformly ultimately bounded with the bounds specifically given by (A.17) through 

(A.24) provided the design parameters are selected as 

2(a)  0 ( ) 1,    1, 2,3i i k iα φ< < =    (71) 

2 2
2 21 0 2 0
3 52 2 2

( ) ( )
  1 4

6 6
(b)

m m

l R F l F
l l

R F F
− ⋅ −

< − − −
⋅ Δ Δ

   (72) 
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2
2 0
6 2 2 2

(1 ) 1(c)  min , ,
18 18m

Fl
R F R

⎛ ⎞−
< ⎜ ⎟⋅ Δ⎝ ⎠

   (73) 

2
2 2 0
4 7 2

(1 ) 1(d)  6 min , ,
6 3m

Fl l
F

⎛ ⎞−
+ < ⎜ ⎟Δ⎝ ⎠

       (74) 

Proof: See Appendix. 

Remark 3: For general nonlinear discrete-time systems, the design parameters can be 

selected using a priori values. Given specific values of R, F0, and mFΔ , the design 

parameters can be derived as , 1 to 7il i = .  For instance, given R = 14.6, F0 = 0.14, and 

Δ Fm = 0.02, we can select l1 = 1.99, l2 = 0.13, l3 = 0.4, l4 = 0.14, l5 = 0.25, l6 = 0.016, and 

l7 = 0.1667 to satisfy (71) – (74). 

Remark 4: A well-defined controller is developed in this paper since a single NN is 

utilized to approximate two nonlinear functions thereby avoiding division by zero.   

Remark 5: It is important to note that in this theorem there is no persistency of excitation 

condition (PE) condition for the NN observer and NN controller in contrast with standard 

work in the discrete-time adaptive control [19] since the first difference of the Lyapunov 

function in the Appendix does not require the PE condition on input signals to prove the 

boundedness of the weights.  Even though the input to the hidden-layer weight matrix is 

not updated and only the hidden to the output-layer weight matrix alone is tuned, the NN 

method relaxes the linear in the unknown parameter assumption.  Additionally, certainty 

equivalence principle is not used in the proof.   

Remark 6: Generally, the separation principle used for linear systems does not hold for 

nonlinear systems and hence it is relaxed in this paper for the controller design since the 
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Lyapunov function is a quadratic function of system errors and weight estimation errors 

of the observer and controller NNs.   

Remark 7: It is important to notice that the NN outputs are not fed as delayed inputs to 

the network whereas the outputs of each layer are fed as delayed inputs to the same layer. 

The NN weight tuning proposed in the (68) through (70) render a semi-recurrent 

architecture due to the proposed weight tuning law even though feed forward NNs are 

utilized in the observer and controller.  This semi-recurrent NN architecture renders a 

dynamic NN which is capable of predicting the state one step-ahead overcoming the non 

causal controller design.  

 

VI. Simulation Results 

 

In an initial phase to test the effectiveness of the control scheme, the Daw model 

was used to simulate the engine dynamics under high levels of diluent.  The model input 

parameters were calibrated by comparing return maps of heat release to return maps from 

the single cylinder engines discussed in the next section.  This approach, used in prior 

lean combustion work [9], provided a basis for choosing the nominal input mass of fuel 

and air as well as the residual gas fraction and stochastic variation.  The controller was 

then applied to the simulation model to investigate the reduction in cyclic variability. 

The simulation parameters selected were as follows: An equivalence ratio of one 

was maintained with stochastic  variation of 1%, R = 15.13 for iso-octane, residual gas 

fraction F = 0.09, mass of nominal new air = 0.52485, mass of nominal new fuel = 

0.02428, the standard deviation of mass of new fuel is 0.007, cylinder volume in moles = 

0.021, molecular weight of fuel = 114, molecular weight of air = 28.84, 
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0.665, 0.645u lφ φ= = , maximum combustion efficiency = 1, and the gains ( 2,1 ll ) of 

backstepping controller are selected at 0.1 and placed diagonally to satisfy (72) through 

(74).  EGR was assumed to be an inert mixture with a molecular weight of 30.4.  The 

residuals are assumed to be a mixture of fuel, air and inert gases.  The composition of the 

residuals is determined based on the stoichiometry of the prior cycle to establish the 

fraction of the inert from both EGR and combustion.  The NNs were designed to have 15 

neurons each in the hidden layer with learning rates of 0.01 each so that (71) is satisfied.  

Here the heat release value is normalized. 

The activation functions used were the hyperbolic tangent sigmoid functions. 

Simulations ran for 1000 cycles of engine operation at each EGR value ranging from 

19% to 24%. The attached plots show the results obtained from the simulation runs at 

EGR levels of 24%. The dispersion of heat release in the return map of Fig. 3 is less than 

that seen in Fig. 2, according to the lower coefficient of variation which has reduced from 

0.0741 to 0.0159.  

The coefficient of variation metric – hereafter referred to as COV – is used to 

quantify cyclic dispersion due to heat release.  It is calculated as the standard deviation of 

a set of heat release data divided by the mean heat release for that set.  A larger COV 

indicates that heat release values were more dispersed on the return map.  With regard to 

COV, a goal for this controller implementation is to observe a reduction in COV when 

the control loop is closed on the engine. 

The coefficient of variation, COV, in integrated cycle work is often used to 

establish variability in engine output.  With the integrated cycle work obtained from the 

cyclic cylinder pressure-volume results, the COV is obtained by dividing the standard 
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deviation in cycle work by the mean over all of the cycles observed. It was observed that 

with the NN applied, the engine model exhibits minimal dispersion with high EGR levels 

even with perturbation on the residual gas fraction being unknown. The reduction in 

dispersion physically translates into fewer partial burning cycles even with high EGR 

levels in the engine.  
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Fig. 2.  Heat release return map without control (24% EGR). 
 

  

Although exhibiting very similar dynamics, the return maps of heat release are 

quantitatively different between the simplified model used for controller development 

and testing and the actual engine as presented next. This can be attributed to the fact that 

the engine model simply considers mass conservation of the fuel, air, and combustion 

product species and places all complexities of the fluid mechanics and combustion into a 

phenomenological nonlinear combustion efficiency term and stochastic variations. In 

spite of this simplicity in the model, the designed controller performs highly satisfactorily 

on the actual engine as will be seen in the next few sections. 
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Fig. 3.  Heat release return map with control (24% EGR). 
 

 

VII.  Controller Hardware Design 

 

The experimental setup involves two research engines.  The first is a Cooperative 

Fuel Research (CFR) engine and the second is a Ricardo Hydra engine with a modern 

four valve Ford Zetec head. Both engines are operated at 1000 RPM while multiple load 

set points are tested through the addition of diluent. Being single cylinder engines, 

dynamics introduced by multiple cylinders are avoided.  

For each engine, shaft encoders are mounted on the cam and crank shafts that 

return start-of-cycle and crank angle signals, respectively.  There are 720° of crank angle 

per engine cycle, so a crank angle degree is detected every 167 microseconds at this 

engine speed. For the exhaust-gas-recirculation (EGR) portion of gaseous intake, nitrogen 

is used.  EGR is comprised mainly of inert gases from the previous combustion cycle, so 

nitrogen, an inert gas in the combustion process is used in place of the residual inert 

gases. This allows for accurate metering of an average EGR flow to the cylinder.  
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Heat release for a given engine cycle is calculated by integrating in-cylinder 

pressure and volume over time.  In-cylinder pressure is measured every half crank angle 

degree during combustion, which is considered from 345° to 490°, for a total of 290 

pressure measurements. At 1000 RPM pressure measurements must be made every 83.3 

microseconds.  The calculation window is 106° wide or 17.667 milliseconds.  In this time 

all engine-to-PC-to-engine communication are completed.  The algorithm designed uses 

15 neurons to approximate the output, though it can be seen from Fig. 5 that even at 100 

controller nodes and 100 observer nodes calculations are complete within 1.2 

milliseconds, well within the available time of 17.667 milliseconds.  
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Fig. 4. Neural network controller runtimes varying nodes. 
 

Since the number of nodes required in a multilayer NN for a given approximation 

error is not clear in the literature, the plot in Fig. 4 illustrates that even with large number 

of hidden-layer NNs the proposed controller can be implemented on the embedded 

hardware.  However, it was found from offline analysis that the improvement in 

approximation accuracy is not significant beyond 15 hidden-layer nodes and therefore the 

hidden-layer NN nodes in the observer and controller are limited to 15. 
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The control input is an adjustment to the nominal fuel required at a given 

equivalence ratio. Fuel injection is controlled by a TTL signal to a fuel injector driver 

circuit. Pressure measurements come from a charge amplifier which receives pressure 

transducer signals from a piezoelectric transducer located inside the cylinder. 

An engine-to-PC interface board was designed to manage the shaft encoder 

signals, pressure measurements, and fuel injector signal since timing is crucial to correct 

engine operation. The board uses a microcontroller to communicate between the TTL and 

analog signals of the engine hardware and a parallel digital I/O port of the PC. A high 

speed 8-bit A/D converts the pressure measurements. Pressure measurements are sent to 

the PC where heat release is calculated before being sent to the controller. Fuel pulse 

width for the next engine cycle is sent to the microcontroller from the PC. 

 

VIII.  Experimental Results 

 

The results for engine operation at a near-stoichiometric equivalence ratio and 

addition of a percentage of EGR to the contents of the cylinder are discussed. The 

following equation shows how the mass of nitrogen, EGRm , is chosen to give a desired 

percentage of EGR. 

% 100 EGR

f a EGR

mEGR
m m m

⎛ ⎞
= ×⎜ ⎟⎜ ⎟+ +⎝ ⎠

           (75) 

As mentioned before in the simulation section, COV is a metric that can quantify 

a reduction in cyclic dispersion when viewing a return map.  The following return maps 

for the two engines on which the controller was operated have COV information.  It is 
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shown that with control, the COV is reduced.  Again, this reduction in COV means that 

the engine is more stable in the presence of high intake EGR. 

Typically, COV values less than 10% are considered acceptable for production 

engines.  The ideal COV would be 0%.  More realistically, the cyclic dispersion of an 

engine cannot be reduced to less than the case where equivalence ratio is stoichiometric 

and no EGR is present due to ever present stochastic effects.  The experimental results 

will show that the controller can reduce the cyclic dispersion, measured as a reduction in 

the COV metric. 

Figs. 5 through 11 are results from engine controller tests on the CFR engine. The 

uncontrolled engine equivalence ratio was near stoichiometric at 0.97.  The controller 

pushed the equivalence ratio to 1.0, due to the behavior of the control input ( )u k .  

Equivalence ratios experienced for both uncontrolled and controlled scenarios are near 

stoichiometric although the control input ( )u k  slightly modifies the effective equivalence 

ratio over time. 

Heat release time series and return maps were generated for both controlled and 

uncontrolled cases for each of three EGR set points: 0%, 5%, and 10%. These EGR 

values correspond to average IMEP load values of 528 kPa, 476 kPa and 410 kPa, 

respectively.  Before engine tests, air flow is measured and nominal fuel is calculated for 

the desired equivalence ratio. The nominal fuel and air are loaded into the controller 

configuration.  During data acquisition, ambient pressure is referenced in the acquired 

cylinder pressure each engine cycle based on the in-cylinder pressure when the exhaust 

valve is fully open at 600°. 
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NN weight values are all initialized at zero.  Heat release return maps in Figs. 5 

and 6 depict the performance of the proposed NN controller for the 0% EGR case. It is 

important to observe that the return maps of heat release with no control is slightly below 

the target value whereas with the application of control the heat release return maps is 

around the target value. Moreover, no misfire is noted.  Figs. 7 and 8 show a decrease in 

cyclic dispersion for 5% EGR which corroborates the results seen in simulation. During 

the absence of control there is much cyclic dispersion and occasional misfires, and during 

control the misfires and dispersion are reduced. 
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Fig. 5.  CFR engine heat release (in joules) time series at 0% EGR. 
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Fig. 6. Uncontrolled and controlled heat release return maps plotting current cycle y(k) 
against next cycle y(k+1) at 0% EGR on CFR engine. 
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Fig. 7.  CFR engine heat release time series at 5% EGR. 
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Fig. 8. Uncontrolled and controlled heat release return maps plotting current cycle y(k) 
against next cycle y(k+1) at 5% EGR on CFR engine. 

 

 
The return maps at 10% EGR show distinct cyclic dispersion during no control 

and a significant decrease in those dispersed data points during control.  
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Fig. 9.  CFR engine heat release time series at 10% EGR. 
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Fig. 10. Uncontrolled and controlled heat release return maps plotting current cycle y(k) 
against next cycle y(k+1) at 10% EGR on CFR engine. 

 

It can be seen that the mean heat release increases with control, which 

corresponds to a slightly higher equivalence ratio. The equivalence ratio for EGR 

operation is intended to be held fixed at 1.00.  When using fuel as the control input, the 

controller must change the fuel to affect the engine, and therefore changes the 

equivalence ratio. Fuel intake increases slightly during control causing the actual 

operating equivalence ratio to be slightly higher than the set point, here, at 1.0. It is 

thought that this is partly due to a higher value specified for target heat release compared 



 

 

162

to uncontrolled case.  Moreover, this slight offset remains due to slow learning of the 

NNs which eventually becomes zero with time.  A tradeoff exists between speed of 

learning and performance. Higher learning rate for NNs slightly degrades performance in 

terms of dispersion and vice versa. 

The COV for the EGR return maps is listed in Table I for the CFR engine.  As the 

EGR percentage of cylinder contents is increased from 0% to 10%, the coefficient of 

variation increases for uncontrolled engine operation. The increased coefficient of 

variation indicates increased cyclic dispersion as seen in the uncontrolled EGR return 

maps. The coefficient of variation decreases when control is applied in the presence of 

EGR, a decrease of 55% at 10% EGR, meaning the controller has made the engine more 

stable.  Consequently a 25% drop in unburned hydrocarbons is observed with 10% EGR 

for this engine.  Additionally, 80% drop in NOx from stoichiometric levels is noted. 

 

Table  I. Coefficient of Variation for CFR 

EGR Uncontrolled 

COV 

Controlled 

COV 

5% 0.0873 0.0347 

10% 0.1873 0.0838 

 

 

Figs. 11 through 18 are data collected from engine controller operation on the 

Ricardo research engine.  Performance of the controller was similar in that decreases in 

cyclic dispersion for high EGR cases are seen.  Higher EGR is possible with the Ricardo 

engine because it is a faster-burning engine and hence is more tolerant of diluent 
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addition.  The fuel control input does not increase as much on the Ricardo engine as with 

the CFR engine, so the time series of heat release plots do not exhibit increase when 

control is activated.  Total fuel input during control was not more than 1.5% from the 

nominal fuel for the desired stoichiometric equivalence ratio. 

Aside from the stoichiometric operating condition with no EGR added to the 

Ricardo engine, three cases of high EGR were tested.  EGR levels of 0%, 12.9%, 15.2%, 

and 18.5% were used to obtain data.  These values correspond to IMEP load values of 

881 kPa, 716 kPa, 594 kPa, and 297 kPa, respectively. 

In Fig. 11 the time series of heat release is plotted, showing the last 500 cycles of 

the uncontrolled data set with the transition to the first 500 cycles of data with the 

controller enabled.  As seen in Fig. 12, there is very little cyclic dispersion at this 

stoichiometric case without EGR present, indicated by the low COV value of 2.6%.  This 

set point can be considered optimal in that the engine is operating under ideal conditions.  

When the controller is enabled, very little improvement can be made to reduce the 

stochastic dispersion beyond the engine’s most stable operating point. 
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Fig. 11. Ricardo engine heat release time series at 0 % EGR. 
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Fig. 12. Uncontrolled and controlled heat release return maps plotting current cycle y(k) 
against next cycle y(k+1) at 0% EGR on Ricardo. 

 

In Figs. 13 and 14, the effect of about 12.9% EGR causes the engine to become 

less stable.  The controller causes a reduction in cyclic dispersion by comparing the COV 

values for uncontrolled and controlled data in Fig. 14. The COV falls from 0.0462 to 

0.0352. 
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Fig. 13. Ricardo engine heat release time series at 12.9% EGR for Ricardo. 
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Fig. 14. Uncontrolled and controlled heat release return maps plotting current cycle y(k) 
against next cycle y(k+1) at 12.9% EGR on Ricardo. 

 

One can see from Figs. 17 and 18 that 15.2% EGR causes the engine to become 

much more unstable than for the case of 12.9% EGR.  The controller yields a significant 

improvement, reducing the dispersion by 33% from 0.1345 to 0.0891. 
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Fig. 15. Ricardo engine heat release time series at 15.2% EGR for Ricardo. 
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Fig. 16. Uncontrolled and controlled heat release return maps plotting current cycle y(k) 
against next cycle y(k+1) at 15.2% EGR on Ricardo. 

 

In Figs. 17 and 18, a case of very high EGR is shown for the Ricardo engine.  At 

18.5% EGR the engine becomes very unstable, exhibiting significant cyclic dispersion of 

heat release.  However, the controller is still able to reduce dispersion from 0.3733 to 

0.3419. 
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Fig. 17. Ricardo engine heat release time series at 18.5% EGR for Ricardo. 

 



 

 

167

400 600 800 1000 1200

300

400

500

600

700

800

900

1000

1100

1200

Heat Release(k), J

H
ea

t R
el

ea
se

(k
+1

), 
J

Uncontrolled: 18.5% EGR - COV: 0.3733

400 600 800 1000 1200

300

400

500

600

700

800

900

1000

1100

1200

Heat Release(k), J

H
ea

t R
el

ea
se

(k
+1

), 
J

Controlled: 18.5% EGR - COV: 0.3419

 

Fig. 18. Uncontrolled and controlled heat release return maps plotting current cycle y(k) 
against next cycle y(k+1) at 18.5% EGR on Ricardo. 

 

The COV values for the Ricardo engine data are shown in Table II.  The 

controller reduces COV for every case, corresponding to a decrease in cyclic dispersion.  

Hence, the controller can make the engine more stable in the presence of high EGR. 

 

Table  II. Coefficient of Variation for Ricardo 

EGR Uncontrolled 

COV 

Controlled 

COV 

0.0% 0.0261 0.0258 

12.9% 0.0462 0.0352 

15.2% 0.1345 0.0891 

18.5% 0.3733 0.3419 

 

 

The engine-out emissions of unburned hydrocarbons and NOx for the Ricardo 

engine are shown in Table III.  Prefixes of ‘u’ and ‘c’ given before the emission type 

represent uncontrolled and controlled, respectively.  For all cases of EGR, unburned 
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hydrocarbons diminish with the controller enabled.  This can be expected since the 

controller is reducing the number of partial-burns encountered in the heat release.  Table 

data for NOx shows a significant reduction at high levels of EGR.  The controller makes 

engine operation more stable which increases the mean heat release.  The higher burn 

temperatures within the cylinder during control cause the NOx to slightly increase when 

the controller is activated compared to without control. At 15% EGR, a drop of 90% NOx 

from stoichiometric levels is observed. At this EGR level, an improvement in fuel 

conversion efficiency of 2% is also noted. This improvement is the direct result of 

reduced cyclic dispersion. Even further improvement in fuel efficiency should be possible 

with further reduction in dispersion as this control scheme is refined.  

 

Table III.  EGR NOx and uHC Emissions Data for Ricardo 

EGR (u) NOx 

(PPM) 

(c) NOx 

(PPM) 

(u) uHC 

(PPM) 

(c) uHC 

(PPM) 

0.0% 5443 4995 3399 3532 

12.9% 572 628 3905 3825 

15.2% 204 306 4420 4162 

18.5% 43 50 10370 9051 

  

 

Results from the controller implementation on two different engines exemplify 

the controller’s flexibility.  Only engine parameters such as fuel injector information and 

cylinder geometry had to be changed to extend the controller from the CFR engine to the 
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Ricardo engine.  No offline NN training is required and the controller is model-free. 

Finally, the task of identifying stabilizing initial weights for the observer and controller 

NNs, a well known problem in the literature [19], is overcome by initializing the NN 

weights to zero.  

 

IX.  Conclusions 

 

A novel NN controller scheme is presented to reduce the cyclic dispersion in heat 

release at high EGR levels for a SI engine which is modeled as a non strict feedback 

nonlinear discrete-time system. The proposed control scheme utilizes both the NN 

approximation property and a backstepping type approach for maintaining a fixed air to 

fuel ratio by altering the fuel injected into the cylinder as the control input. The stability 

analysis of the closed-loop control system was conducted and the boundedness of the 

closed loop signals was shown.  

Experimental results show that the performance of the proposed controller is 

highly satisfactory while meeting the closed loop stability even though the dynamics are 

not known beforehand. Using the nonlinear backstepping like controller, the cyclic 

dispersion could be reduced significantly, resulting in the potential for decreased 

emissions and improved fuel economy. Even though the controller was designed for the 

model heat release output which does not exhibit all the nonlinearities of actual engine 

heat release, the controller was still able to minimize heat release error.  Persistency of 

excitation condition is not needed, separation principle and certainty equivalence 

principle are relaxed and linear in the unknown parameter assumption is not used. 
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Experimental results indicate that the controller can improve engine stability and 

reduce unburned hydrocarbons at high levels of EGR where significant reductions in NOx 

can be realized.  Furthermore, the controller is flexible enough to be implemented on two 

spark ignition research engines. 

 

Appendix 

 

Proof of Theorem: Define the Lyapunov function 

3 2 254
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 (A.1) 

where 0 < γi, i = 1, 5, 8 are auxiliary constants, the NN weights estimation errors 

1 2 3,  and w w w% % %  are defined in (36), (46) and (63) respectively, the observation errors 

1 2( ), ( ) and ( )x k x k y k% % %  are defined in (32) and (29), the system errors e1(k) and e2(k) are 

defined in (38) and (47), respectively, αi, i = 1,2,3 are NN adaptation gains. The 

Lyapunov function (A.1) consisting of the system errors, observation errors and the 

weights estimation errors obviates the need for separation principle and certainty 

equivalence principle (CE). 

The first difference of Lyapunov function is given by 

8

1
( ) ( )i

i
J k J k

=
Δ = Δ∑      (A.2) 

The first term of  ( )1J kΔ  is obtained by using (68) as: 
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where 1( )kζ  is defined in (37). 

Now taking the second term in the first difference (A.1) and substituting (69) into (A.2), 

we get 
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Taking the third term in the first difference (A.1) and substituting (70) into (A.2), we get 
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Similarly, we have 
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where 

'
1( ) ( ). ( )l k R F k CE k= ⋅Δ  (A.7) 

( )
2 211 2 2 1 1( ). ( ). ( ) ( ) ( ) ( )T

new O Nod R F k CE k w x k d k F F r rφ= ⋅ Δ ⋅ − Δ − Δ +− +        (A.8) 

and 2 ( )kζ  is defined in (51). 
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where 
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Combining (A.3) through (A.13) to get the first difference of the Lyapunov function and 

simplifying it, we get  
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where, 
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This implies Δ J (k) < 0 as long as (70) - (72) hold and 

1 2 3( ) , ( ) 3 , ( ) ,M M Mk D or k D or k Dζ ζ ζ> > >    (A.17) 

or 

1 22 2
2 2 2
6 7 42 2 2

( ) , ( )
(1 ) (1 )3 6
6 6

M M

o o

m m

D Dx k or x k
F Fl l l

R F F

> >
− −

− − −
Δ Δ

% %    (A.18)      

or 

,

4
6

)(
6

)(
)1(

)(~
2
52

2
2

22

2
12

3 l
F
Fl

FR
FRl

l

Dky

m

o

m

o

M

−
Δ
−

−
Δ
⋅−

−−

>

  (A.19) 



 

 

174

or 

1 2
2 2 2
62 4 7

( ) , ( )
1 13 6

6 3

M MD De k e k
l l l

R

> >
⎛ ⎞− − −⎜ ⎟
⎝ ⎠

                         (A.20) 

According to a standard Lyapunov extension theorem [17,19], this demonstrates that the 

system tracking error and the weight estimation errors are UUB. The boundedness of 

1 ( ) ,kζ  2 3( )   ( )andk kζ ζ  implies that the weight estimation errors 1( ) ,w k%  2 ( ) ,w k%  

3 ( ) and w k%  are bounded, and this further implies that the weight estimates 

)(ˆ and ,)(ˆ,)(ˆ 321 kwkwkw  are bounded. Therefore all the signals in the closed-loop 

system are bounded. 

 

References 

 

[1] K. P. Dudek and M. K. Sain, “A control-oriented model for cylinder pressure in 

internal combustion engines,” IEEE Trans. on automatic control, vol. 34(4), 1989, 

pp. 386-397. 

[2] R. W. Sutton and J. A. Drallmeier, 2000, “Development of nonlinear cyclic dispersion 

in spark ignition engines under the influence of high levels of EGR,” in Proc. of the 

Central States Section of the Combustion Institute, Indianapolis, Indiana, April 16-18, 

2000, pp. 175-180. 

[3] P. He and S. Jagannathan, “Neuroemission controller for reducing cyclic dispersion in 

lean combustion spark ignition engines,” in Automatica, vol. 41, April 2005, pp. 

1133-1142. 



 

 

175

[4] C. S. Daw, C. E. A. Finney, M. B. Kennel and F. T. Connolly, “Observing and 

modeling nonlinear dynamics in an internal combustion engine,” in Physical Review. 

E, vol. 57(3), 1998, pp. 2811 – 2819. 

[5] C. S. Daw, C. E. A. Finney, J. B. Green, M. B.  Kennel and J. F. Thomas, “A simple 

model for cyclic variations in a spark-ignition engine,” SAE, 962086, May 1996.  

[6] J.B. Heywood, Internal combustion engine fundamentals, MGraw-Hill, New York, 

1998.  

[7] T. Inoue, S. Matsushita, K. Nakanishi, and H. Okano, “Toyota lean combustion 

system-The third generation system,” SAE Technical Paper series, 930873, 1993 

[8] R. M. Wagner, “Identification and characterization of complex dynamic structure in 

spark ignition engines,” Ph.D. dissertation, Univ. Missouri – Rolla, Dept. Mech. Eng. 

Rolla, MO.,  

[9] R. M. Wagner, J. A. Drallmeier, & C. S. Daw, “Nonlinear cycle dynamics in lean 

spark ignition combustion,” presented at the 27th Symposium (International) of 

Combustion, 1999. 

[10] P. C. Yeh and P. V. Kokotovic, “Adaptive output feedback design for a class of 

nonlinear discrete-time systems,” IEEE Trans. Automat. Contr., vol. 40, no. 9, Sep. 

1995, pp. 1663–1668. 

[11] F. C. Chen and H. K. Khalil, “Adaptive control of a class of nonlinear discrete-time 

systems using neural networks,” IEEE Trans. Automat. Contr., vol. 40, no. 5, May 

1995, pp. 791–801. 

[12] S. Jagannathan, “Control of a class of nonlinear systems using multilayered neural 

networks,” IEEE Transactions on Neural Networks, vol.12, no. 5, September 2001. 



 

 

176

[13] B. Igelnik and Y. H. Pao, “Stochastic choice of basis functions in adaptive function 

approximation and the functional-link net,” IEEE Trans. Neural Networks, vol. 6, 

Nov.1995, pp. 1320-1329. 

[14] S. Jagannathan, “Robust backstepping control of robotic systems using neural 

networks,” in Proc. 37th IEEE Conf. on Decision and Control, 1998. 

[15] H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, 2002. 

[16] P. He, Z. Chen and S. Jagannathan, “Reinforcement learning based neural network 

control of nonstrict feedback nonlinear systems,” Proc. of IEEE Conference on 

Decision and Control, Dec 2005. 

[17] F. L. Lewis, S. Jagannathan, and A. Yesilderek, Neural Network Control of Robot 

Manipulator and Nonlinear Systems, Taylor & Francis Inc., UK, 1999. 

[18] F. L. Lewis, J. Campos, and R. Selmic, Neuro-Fuzzy Control of Industrial Systems 

with Actuator Nonlinearities, Society for Industrial and Applied Mathematics, 

Philadelphia, 2002.  

[19]S. Jagannathan, Neural Network Control of Nonlinear Discrete-time Systems, CRC 

Press, Boca Raton, FL 2006. 

 

 

 

 



 

 

177

PAPER 5 

Reinforcement Learning-based State-feedback Control of 

Nonaffine Nonlinear Discrete-time Systems  

with Application to Engine Spark Timing Control 

J. Vance, Q. Yang, and S. Jagannathan 
 
 
 

Abstract — A nonaffine, nonlinear, discrete-time system is represented by the nonlinear 

auto regressive moving average with eXogenous input (NARMAX) model with unknown 

nonlinear functions.  Controlling such systems is extremely difficult and challenging.  An 

equivalent affine-like representation for the tracking error dynamics is first developed 

from the original nonlinear nonaffine system, whereby a novel controller based on 

reinforcement learning is proposed for the affine-like nonlinear error dynamic system.  

The control scheme consists of two NNs.  One NN is designated as the critic NN, which 

approximates a predefined long-term cost function, whereas an action NN is employed to 

derive a near optimal control signal for the system to track a desired trajectory while 

minimizing the cost function simultaneously. NN weights are tuned online with derived 

rules.  By using the standard Lyapunov approach, the uniformly ultimate boundedness 

(UUB) of the tracking error and weight estimates is shown with and without input 

constraints.  Simulation of the control scheme is performed on a nonaffine, nonlinear, 

discrete-time engine model where cycle-by-cycle control of spark timing reduces cyclic 

dispersion. Simulation results show the satisfactory performance of the proposed 

controller. 
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I.  Introduction 

 

Design of control laws for nonaffine, nonlinear, discrete-time systems is difficult 

because conventional nonlinear design techniques may fail. Past literature [5]-[8] has 

reported the design of adaptive NN controllers to affine nonlinear discrete-time systems. 

However, for an unknown nonaffine nonlinear discrete-time system, such controller 

techniques cannot be directly employed. Further, reinforcement learning control 

techniques of nonaffine nonlinear discrete-time is not available whereas they are recently 

introduced for affine nonlinear discrete-time systems [8].  

One of the most popularly used nonaffine nonlinear discrete-time representation is 

nonlinear autoregressive moving average with eXogenous input (NARMAX) model, 

which is introduced and studied in [1]-[3]. Due to the difficulty in developing the 

controller design for nonaffine nonlinear discrete-time systems, an affine-like 

representation is first obtained and subsequently a controller is designed [1]-[3]. 

However, certain stringent assumptions are exerted, (e.g. boundedness of control input 

changes), which limits its applicability for many practical applications. Moreover, 

disturbances are not considered in the development. In this paper, an affine-like 

representation is first derived by using Mean Value Theorem from the original 

NARMAX model.  

On the other hand, several appealing online neural network controller design 

methods were introduced in [4]-[6], which were also referred to as forward dynamic 

programming (FDP) or adaptive critic designs (ACD). The central theme of this family of 

methods is that the optimal control law and cost function are approximated by parametric 

structures, such as neural networks (NNs), which are trained over time along with the 
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feedback from the plant. In other words, instead of finding the exact minimum, the ACDs 

approximate the Bellman equation: ( ) ( ) ( ){ }
( )

( ) min ( 1) ( ), ( )
u k

J x k J x k U x k u k= + + , where 

( )x k  is the state and ( ) ( ( ))u k u x k=  is a control law at time step k. The strategic utility 

function ( ( ), ) ( ( ))J x k u J x k=  represents the cost or performance measure associated 

with going from k to final step N, while ( ( ), ( 1))U x k x k +  is the utility function denoting 

the cost incurred in going from ( )x k  to ( 1)x k +  by using control ( )u k . 

In the ACD literature, NNs are widely used for approximation. A new NN 

learning algorithm based on gradient descent rule is introduced in [7]. However, it 

employs a simplified binary reward or cost function that is a variant of the standard 

Bellman equation. The work in [8] proposes a near optimal controller design using 

standard Bellman equation, but the method is only applicable to general affine nonlinear 

discrete-time systems.   

In this paper, the control scheme is applied to a nonaffine, nonlinear, discrete-time 

system representation for a spark ignition engine. Past works with the engine dynamics 

based on the Daw model in [14] and [15] have focused on control of the affine fuel input. 

Modification to the combustion efficiency function of the Daw model gives spark timing 

as a nonaffine control input.  

The desired spark ignition engine control scenario aims to reduce cyclic variation 

in heat release at lean equivalence ratios by controlling spark timing on a cycle-to-cycle 

basis. Cyclic variations in combustion mean that undesirable partial burns are present, 

which lead to increased emissions of NOx (nitrogen oxides) and unburned HC 

(hydrocarbons), both of which lead to ground-level ozone that is harmful to plants, 

animals, humans, and materials [18].  
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For retarded spark timing, where spark is occurring after MBT (maximum brake 

torque), better mixing leads to lower cyclic variation and reduced HC (hydrocarbon) 

emissions [16].  Advanced spark timing causes combustion to occur with less time for 

fuel-air mixing.  Spark timing that is advanced too far leads to misfires, and the 

pronunciation of prior cycle effects becomes apparent [17]. Leaner fuel mixtures will 

require advanced spark timing from MBT since maximum combustion pressure should 

occur at TDC (top-dead-center) [13].  Variations in the combustion at lean operating 

conditions lead to cyclic variations in IMEP (indicated mean effective pressure, 

work/displacement volume) and heat release, which can be determined to give cycle-by-

cycle feedback.  Since misfires are formed if spark timing is advanced too far, constraints 

have to be placed on the control input. 

Additionally, this controller is tested on a second-order system that is defined 

differently, which can clearly demonstrate the performance of the controller when a 

constraint is placed on the control input.  The nonlinear, nonaffine, discrete-time system 

is made to track a sinusoidal reference signal, and a limit on the input forces the 

controller to maintain tracking as closely as possible. 

This system can be represented as a non-affine nonlinear discrete system with 

quadratic-performance index as the cost function. The entire closed-loop system consists 

of two NNs: an action NN to derive the optimal (or near optimal) control signal to track 

not only the desired system output but also to minimize the long-term cost function and 

an adaptive critic NN to approximate the long-term cost function ( ( ))J x k  and to tune the 

action NN weights. Further, actuator constraints are incorporated as saturation 

nonlinearities during the controller development in order to prevent misfires if spark 
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timing is taken as the control input. Closed-loop stability is demonstrated by using 

standard Lyapunov approach with and without input constraints.   

 

II.  Spark Time Control: A  Non-affine Nonlinear Discrete-time System 

 

A. Engine Model 

A non-strict, non-affine, nonlinear system is given below. 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )uxxfky
xxgxxfkx

kxxxgxxfkx

,,1
,,1

)(,,1

213

2122122

22112111

=+
+=+
+=+

 (1) 

Spark ignition engine dynamics can be presented in the form of (1) when the 

control input is spark timing, rather than fuel as in [14].  Writing the engine dynamics of 

the Daw model, the system equations follow 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 2 1 11 c newx k F k x k R k x k x k d kη+ = − ⋅ + +  (2) 

( ) ( ) ( )( ) ( ) ( ) ( )2 2 2 21 1 c newx k F k k x k x k d kη+ = − + +  (3) 

( ) ( ) ( )2cy k k x kη=  (4) 

where the combustion efficiency function ( )c kη  is a function of air, fuel, and spark 

timing as shown in (5).  In equations (2) through (4) ( )1x k  is air, ( )2x k  is fuel, ( )F k  is 

residual gas fraction, R  is stoichiometric fuel-air ratio, ( )1d k  is air disturbance, and 

( )2d k  is fuel disturbance.  The heat release output of the cycle is ( )y k , which is without 

units and a product of fuel ( )2x k and combustion efficiency ( )c kη .  The spark timing 
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input to the engine system, ( )s kθ , appears in the combustion efficiency function which is 

directly multiplied to obtain heat release for a given engine cycle as     

( ) ( ) ( ) ( )( )1 2, ,c sk f x k x k kη θ= ∈ℜ  (5) 

The heat release is a function of the combustion efficiency, past heat release values, and 

the control input. 

( ) ( ) ( ) ( ) ( ) ( )( )1 , , 1 , , ,cy k f k y k y k y k n u kη+ = − − ∈ℜK  (6) 

Total fuel and air within the cylinder are not measurable on a cycle-by-cycle basis 

because the residual fuel, residual air, and residual products from combustion are 

unknown. 

B. System Dynamics 

The engine system model in (6) with disturbance can be written in NARMAX 

form [1] as follows 

( ) 1 1

1

( ) ( , , , ( ), )

( , ( ), )
c k k k

k k

y k f k y u u k d

f w u k d
τ

τ

τ η − + −

+ −

+ =

=
 (7) 

where ( ) 1, ,
TT T

k c k kw k y uη −⎡ ⎤= ⎣ ⎦  and  [ ]1 ( 1),..., ( 1) T
ku u k y k n− = − − +  denotes the system 

inputs and  [ ]( ),..., ( 1) T
ky y k y k n= − +  denotes the system outputs.  The term 

[ ]1 ( 1),..., ( ) T
kd d k d kτ τ+ − = + −  is the disturbance, and τ  represents the system delay, or 

the relative degree of the system [2].  Note that the output ( )y k  is considered measurable 

with initial values in a compact set 
0yΩ .  Furthermore, several mild assumptions are 

needed in order to proceed. 
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Assumption 1: The unknown nonlinear function ( )f ⋅  in (7) is continuous and 

differentiable. 

Assumption 2: The disturbance ( )d k  is bounded with a known bound ( ) Md k d≤ , and the 

partial derivative ( ) Mf d k D∂ ∂ ≤  is also bounded, with MD  a positive constant.  

With assumption 2, by using Mean Value Theorem, equation (1) can be rephrased 

as 

1 1( ) ( , ( ), ) ( , ( ),0)

( , ( ),0)
k

T
k k k f k

k d

y k f w u k d f w u k d

f w u k
τ ττ δ

δ
+ − + −+ = = +

= +
 (8) 

where 

( 1) ( 1) ( ) ( )

,...,
( 1) ( )

T

f
d k d k d k d k

f f
d k d k

ξ ξτ τ

δ
τ + − = + − =

⎡ ⎤∂ ∂⎢ ⎥=
∂ + − ∂⎢ ⎥⎣ ⎦

, 

1k

T
d f kd τδ δ + −= , 

and ( )d kξ  is between 0 and ( )d k , or ( ) 0 ( ( ) 0)d k d kξ λ= + − , [ ]0,1λ ∈ . Through this 

paper, they have the same meaning, and we will present by the former fashion for 

simplicity. 

Lemma 1: 
kdδ  is bounded by 

kd M MD dδ τ≤ . 

Proof: This lemma can be straightforwardly verified from (8) and assumption 2. 

Our objective is to design a control law to drive the system output ( )y k  to track a desired 

trajectory ( )dy k . Before we proceed, let us construct the following virtual system, which 

is free of disturbance. 

( ) ( , ( ),0)n ky k f w u kτ+ =  (9) 
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Assumption 3: ( ) ( )f u k g k∂ ∂ =  is bounded and satisfies min0 ( ) maxg g k g< ≤ ≤ , where 

ming and maxg  are positive constants [8]. 

Assumption 4: Virtual system (9) is invertibly stable [9], which means bounded system 

output implies bounded system input. 

From Assumptions 3 and 4, we can draw the conclusion that for any output 

trajectory ( ) ( , ( ),0)n ky k f w u kτ+ = , there exists a unique and continuous (smooth) 

function 1( ) ( , ( ),0)k nu k f w y k τ−= +  [2], [11]. 

 

III.  Controller Methodology 

 

A. Optimal Control 

In this paper, we consider the long-term cost function as 

 

0

0

( ) ( ( ), ) ( )

[ ( ( )) ( ) ( )]

i

i t

i T

i t

J k J y k u r k i

q y k i u k i Ru k i

γ

γ

∞

=

∞

=

= = +

= + + + +

∑

∑
        (10) 

where ( )J k  stands for ( ( ), )J x k u  for simplicity, u  is a given control policy, R is a 

positive design constant and (0 1)γ γ≤ ≤  is the discount factor for the infinite-horizon 

problem [8].  One can observe from (10) that the long-term cost function is the 

discounted sum of the immediate cost function or Lagrangian expressed as 

2 2

( ) ( ( )) ( ) ( )
( ( ) ( )) ( ( ) ( )) ( ) ( )

( ) ( )

T

T T
d d

r k q y k u k Ru k
y k y k Q y k y k u k Ru k

Qe k Ru k

= +

= − − +

= +

 (11) 
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where Q is a positive design constant. In this paper, we are using a widely applied 

standard quadratic cost function defined based on the tracking error ( ) ( ) ( )de k y k y k= −  

in contrast with [7]. The immediate cost function ( )r k  can be also viewed as the system 

performance index for the current step. 

The basic idea in the adaptive critic or reinforcement learning design is to 

approximate the long-term cost function ( )J k  (or its derivative, or both), and generate 

the control signal minimizing the cost. By learning online through an algorithm, the 

online approximator will converge to the optimal cost function and the controller will in 

turn generate an optimal signal. As a matter of fact, for an optimal control law, which can 

be expressed as *( ) *( ( ))u k u y k= , the optimal long-term cost function can be written as 

*( ) *( ( ), *( ( ))) *( ( ))J k J y k u y k J y k= = , which is just a function of the current system 

output [10]. Next, one can state the following assumption. 

Assumption 5: The optimal cost function *( )J k  is finite and bounded over the compact 

set S R⊂  by MJ . 

B. Affine-like Dynamics 

To avoid the complexity of non-affine nonlinear systems, an affine-like 

representation is desirable for the controller design. By applying the Taylor series 

expansion of system (9) with respect to ( )u k  around ( 1)u k −  yields 

2
2

2

( ) ( , ( ),0)

( , ( 1),0)( , ( 1),0) ( )

( , ( ),0)1 ( )
2

( , ( )) ( ) ( )

k

k

k

k d

k
k

k
d

k k d

y k f w u k

f w u kf w u k u k
u

f w u k
u k

u
F w u k G w u k

μ

τ δ

δ

δ

+ = +

∂ −
= − + Δ

∂
∂

+ ⋅ Δ +
∂

= + Δ +

 (12a) 
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2
2

2

( , ( ),0)1( , ( )) ( , ( 1),0) ( )
2

k
k k

f w u k
F w u k f w u k u k

u
μ∂

= − + ⋅ Δ
∂

  (12b)  

( , ( 1),0)( ) k
k

f w u kG w
u

∂ −
=

∂
  (12c) 

where ( )u kμ is between ( )u k  and ( 1)u k +  (or ( ) ( 1) ( ( 1) ( )),u k u k u k u kμ λ= + + + −  

[ ]0,1λ ∈ ) by using Mean Value Theorem. In other words, there are no higher order terms 

in the Taylor series expansion missing, since they are incorporated into the second 

derivative. By observing (12), we have the equation similar to the virtual system as 

( ) ( , ( )) ( ) ( )n k ky k F w u k G w u kτ+ = + Δ  (13) 

Lemma 2: Consider any desired system trajectory ( )dy k R∈  and corresponding nominal 

desired control input 1( ) ( , ( ),0)d k du k f w y k τ−= + , there exists ( )u kξ  between any input 

( )nu k  and ( )du k to the system such that 

1

( , ( ))
( , ( )) ( , ( ))

( , ( ),0)
( ( ) ( ))

k
k n k d

k
n d

F w u k
F w u k F w u k

u
f w y k

y k y k
y

ξ

ξ τ
τ τ

−

∂
= +

∂
∂ +

× ⋅ + − +
∂

 (14) 

where 1( ) ( , ( ),0)ku k f w y kξ ξ τ−= + . 

Lemma 3: Consider the output of the virtual system ( ) ( , ( ),0)n k ny k f w u kτ+ =  for a 

given input ( )nu k , then there exists ( )y kς τ+  between ( )ny k τ+  and ( )dy k τ+  such that 
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1

1
1

1

( ) ( , ( ),0)

( , ( ),0)
( , ( ),0) ( ( ) ( ))

( , ( ),0)
( ) ( ( ) ( ))

n k n

k
k d n d

k
d n d

u k f w y k

f w y k
f w y k y k y k

y
f w y k

u k y k y k
y

ς

ς

τ

τ
τ τ τ

τ
τ τ

−

−
−

−

= +

∂ +
= + + + − +

∂

∂ +
= + + − +

∂

 (15) 

Proof: Lemmas 2 and 3 can be readily obtained by using Chain Rule and Mean Value 

Theorem. Further, we have following lemma. 

Lemma 4: Consider system (13) with Lemma 2 and 3, we have 

 
1 1( , ( )) ( , ( ),0) ( , ( ),0)

( ) 1k k k
k

F w u k f w y k f w y k
G w

u y y
ξ ξ ςτ τ− −∂ ∂ + ∂ +

⋅ + =
∂ ∂ ∂

 (16) 

Proof: i) If ( ) ( )n dy k y kτ τ+ = + , then ( ) ( ) ( )dy k y k y kξ ςτ τ τ+ = + = + . Therefore, (16) 

could be obtained by differentiating (13) with respect to ( )ny k τ+ . 

ii) If ( ) ( )n dy k y kτ τ+ ≠ + , then from (13), one has 

1

1

( ) ( , ( )) ( )( ( ) ( 1))
( , ( ))

( , ( ))

( , ( ),0)
( ( ) ( ))

( )( ( ) ( 1))

( , ( ),0)
( ( ) ( ))

( , ( )) ( )( ( ) ( 1))

(
(

n k n k n

k
k d

k
n d

k d

k
n d

k d k d

y k F w u k G w u k u k
F w u k

F w u k
u

f w y k
y k y k

y
G w u k u k

f w y k
y k y k

y
F w u k G w u k u k

F

ξ

ξ

ς

τ

τ
τ τ

τ
τ τ

−

−

+ = + − −
∂

= +
∂

∂ +
× ⋅ + − +

∂
+ − −

∂ +
+ + − +

∂
= + − −

∂
+

1

1

, ( )) ( , ( ),0)

( , ( ),0)
) ( ( ) ( ))

k k

k
n d

w u k f w y k
u y

f w y k
y k y k

y

ξ ξ

ς

τ

τ
τ τ

−

−

∂ +
∂ ∂

∂ +
+ × + − +

∂

 (17a) 

Substituting ( ) ( , ( )) ( )( ( ) ( 1))d k d k dy k F w u k G w u k u kτ+ = + − −  into (17) yields 
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1 1( , ( )) ( , ( ),0) ( , ( ))
( ) 1k k k

k

F w u k f w y k f w y k
G w

u y y
ξ ξ ςτ τ− −∂ ∂ + ∂ +

⋅ + =
∂ ∂ ∂  (17b) 

Lemma 5: For any ( )y k Sς τ+ ∈  and corresponding control 

input 1( ) ( , ( ),0)ku k f w y kς ς τ−= + , the following statement holds 

1( , ( ),0) ( , ( ))
1k kf w u k f w y k

u y
ς ς τ−∂ ∂ +

⋅ =
∂ ∂

 (18) 

Proof: It can be straightforward to verify (11) by differentiating 

1( ) ( , ( , ( )),0)k ky k f w f w y kς ςτ τ−+ = +  with respect to ( )y kς τ+ . 

 

Therefore, substituting (14) into (12) produces the system dynamics in terms of 

the tracking error as 

 

1

( ) ( ) ( )
( , ( )) ( ) ( ) ( )

( , ( ))
( , ( ))

( , ( ),0)
( ( ) ( ))

( ) ( ) ( )

k

k

d

k k d d

k
k d

k
d

k d d

e k y k y k
F w u k G w u k y k

F w u k
F w u k

u
f w y k

y k y k
y

G w u k y k

ξ

ξ

τ τ τ
δ τ

τ
τ τ

δ τ

−

+ = + − +
= + Δ + − +

∂
= +

∂
∂ +

× ⋅ + − +
∂

+ Δ + − +

 (19) 

Making use of Lemma 4, (19) can be written as 

1

1

( ) ( , ( )) ( ) ( ) ( )

( , ( ),0)
(1 ( ) ) ( ( ) ( ))

( , ( )) ( ) ( ) ( )

( , ( ),0)
(1 ( ) ) ( )

k

k

k d k d d

k
k d

k d k d d

k
k

e k F w u k G w u k y k

f w y k
G w y k y k

y
F w u k G w u k y k

f w y k
G w e k

y

ς

ς

τ δ τ

τ
τ τ

δ τ

τ
τ

−

−

+ = + Δ + − +

∂ +
+ − ⋅ + − +

∂
= + Δ + − +

∂ +
+ − ⋅ +

∂

 (20) 
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Combining (18) and (20), one has 

( , ( )) ( )( , ( ),0)
( ) ( ( ))

( )
kk d d dk

k

F w u k y kf w u k
e k u k

u G w
ς δ τ

τ
+ − +∂

+ = + Δ
∂  (21) 

By defining ( , ( ),0)k kf w u k uς κ∂ ∂ = , (21) can be rephrased as 

( ) ( ( , ( )) ( )) ( )
( ) ( )
( , ( ), ) ( )

k

k

k k
k d d k d

k k

a k d k k

e k F w u k y k u k
G w G w
F w y k u k κ

κ κτ τ κ δ

τ κ κ δ

+ = − + + Δ +

= + + Δ +
 (22a) 

( , ( ), ) ( ( , ( )) ( ))
( )

k
a k d k k d d

k

F w y k F w u k y k
G w

κτ κ τ+ = − +  (22b) 

( )k k

k
d

kG wκ
κδ δ=  (22c) 

Notice that min min0 ,0 ( )k max k maxg g g G w gκ< ≤ ≤ < ≤ ≤  due to Assumption 3. By 

referring to Lemma 1, one also observes that 
kκδ  is bounded above by 

mink max M Mg D d gκδ τ≤ . 

By rewriting the non-affine system into an equivalent affine-like representation 

(22) in terms of error dynamics, the difficulty of designing controllers for nonaffine 

nonlinear discrete-time systems could be avoided. 

C.  Online Controller 

Proceeding from last section, the purpose of this study is to design an online 

reinforcement learning NN controller for the equivalent error dynamics (22), such that 1) 

all the signals in the closed-loop system remain UUB; 2) the output ( )y k  follows a 

desired trajectory ( )dy k S∈ ; and 3) the long-term cost function (4) is minimized so that a 
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near optimal control input can be generated [8]. Here, the “online” means the learning of 

the controller takes place “in real-time” by interacting with the plant, instead of in an 

offline or iterative manner. 

ˆ( )J k

1z−
ˆ( 1)J k −

1( ) ( , ( ), )k ky k f w u k d ττ + −+ =

( )d k

( )y k τ+

( )dy k τ+

kw ( )u k

z τ−

( )dy k τ+

( )e k τ+( )e k
+

−

 

Fig. 1. Online reinforcement learning neural controller structure. 
 

The block diagram of the proposed controller is shown in Fig. 1, where the action 

NN is providing a near optimal control signal to the nonlinear system while the critic NN 

approximates the long-term cost function. The two NN weights are initialized to zero and 

trained online without any offline learning phase. 

In our controller architecture, we consider the action and the critic NN having two 

layers, and the output of the NN can be given by ( )T TY W V Xφ= , where V  and W  are 

the hidden layer and output layer weights respectively. X  is the input vector of the NN 

and we choose ( ) 2 (1 ) 1XX eφ −= + −  as the activation function. 

We know that any continuous function ( ) ( )Nf X C S∈  can be written as 

( ) ( ) ( )T Tf X W V X Xφ ε= +                           (23) 
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with ( )Xε  a NN functional reconstruction error vector.  In our design, W  is adapted 

online but V  is initially selected at random and held fixed during entire learning process. 

It is demonstrated in [13] that if the number of hidden layer neurons is sufficiently large, 

the NN approximation error ( )Xε  can be made arbitrarily small since the activation 

function vector forms a basis. Furthermore, in this paper, a novel tuning algorithm is 

proposed making the NN weights robust and PE condition unnecessary. Before we 

proceed, the following mild assumption is needed. 

Assumption 6: The desired trajectory of the system output, ( )dy k , is bounded over the 

compact subset of R . 

1) The Action NN Design 

Consider system (22), to eliminate the tracking error, a desired control law is 

given by 

1( ) ( 1) ( , ( ), )d a k d k
k

u k u k F w y k τ κ
κ

= − − +         (24) 

By this means, the tracking error will go to zero afterτ  steps if no disturbance presents. 

However, since both ( , ( ), )a k d kF w y k τ κ+  and kκ  are unknown smooth nonlinear 

functions, the desired feedback control ( )du k  cannot be implemented directly. Instead, an 

action NN is employed to produce the control signal. From (24) and considering 

Assumption 3 and 4, the desired control signal can be approximated by the action NN as 

( ) ( ( )) ( ( )) ( ) ( )T T T
d a a a a a a au k w v s k s k w k kφ ε φ ε= + = +   (25) 
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where ( ) , ( )
TT

k ds k w y k τ⎡ ⎤= +⎣ ⎦  is the action NN input vector. an  is the number of neurons 

in the hidden layer, and 1an
aw R ×∈ , 2 an n

av R ×∈  denote the desired weights of the output 

and hidden layer, respectively, with ( ) ( ( ))a ak s kε ε=  as the action NN approximation 

error. Since av  is fixed, for simplicity purpose, the hidden layer activation function 

vector ( ( )) anT
a av s k Rφ ∈  is written as ( )a kφ . 

Considering the fact that the desired weights are unavailable for us, the actual NN 

weights have to be trained online and its actual output can be expressed as 

ˆ ˆ( ) ( ) ( ( )) ( ) ( )T T T
a a a a au k w k v s k w k kφ φ= =                (26) 

where 1ˆ ( ) an
aw k R ×∈  is the actual weight matrix of the output layer at instant k. 

Using the action NN output as the control signal, and substituting (25) and (26) 

into (22) yields 

( ) ( , ( ), ) ( )

( ( ) ( ))

( ( ) ( ) ( ))

( ) ( )

k

k

k

a k d k k

k d

T
k a a a

k a a

e k F w y k u k

u k u k

w k k k

k d k

κ

κ

κ

τ τ κ κ δ

κ δ

κ φ ε δ

κ ζ

+ = + + Δ +

= − +

= − +

= +

%
 (27) 

where 

ˆ( ) ( )a a aw k w k w= −%                               (28) 

( ) ( ) ( )T
a a ak w k kζ φ= %                                (29) 

( ) ( )
ka k ad k k κκ ε δ= − +                             (30) 

Next the critic NN design with updating rule is followed. 
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2) The Critic NN Design 

As stated above, the proposed controller can stabilize the closed-loop system 

along with minimizing the cost function. In this regard, a critic NN is employed to 

approximate the unknown long-term cost function ( )J k  for current stage. 

First, the prediction error generated by the critic or the Bellman error [9] is 

defined as  

ˆ ˆ( ) ( ) ( 1) ( )ce k J k J k r kγ= − − +              (31) 

where the subscript “c” stands for the “critic” and  

( )ˆ ˆ ˆ( ) ( ( )) ( ) ( )T T T
c c c c cJ k w k v e k w k kφ φ= =            (32) 

( )Ĵ k R∈  is the critic NN output, which is for approximating ( )J k .  ( ) 1ˆ cn
cw k R ×∈  and 

1 cn
cv R ×∈  represent the actual weight matrices of the output and hidden layer, 

respectively.  The term cn  denotes the number of the neurons in the hidden layer. Similar 

to HDP, the tracking error ( )e k  is selected as the critic NN input.  Again, the activation 

function vector of the hidden layer ( ( )) cnT
c cv e k Rφ ∈  is simply denoted as ( )c kφ .  Provided 

with enough number of hidden layer neurons, the optimal long-term cost function ( )*J k  

can be approximated with arbitrarily small approximation error ( )c kε  as 

  * ( ) ( ( )) ( ( )) ( ) ( )T T T
c c c c c c cJ k w v e k e k w k kφ ε φ ε= + = +  (33) 

Similarly, the critic NN weight estimation error can be defined as 

ˆ( ) ( )c c cw k w k w= −%                               (34) 
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where the approximation error is given by 

( ) ( ) ( )T
c c ck w k kζ φ= %                               (35) 

Thus, we obtain 

 ( ) ( )
ˆ ˆ( ) ( ) ( 1) ( )

( ) * ( 1) * 1
( ) ( ) ( 1)

c

c c

c c

e k J k J k r k
k J k k J k

r k k k

γ
γζ γ ζ

ε ε

= − − +

= + − − − −

+ − + −

 (36) 

Next we propose the weight tuning algorithms for both NNs. 

3) Weight Updating for the Critic NN 

Following the discussion from the last section, the objective function to be 

minimized by the critic NN can be defined as a quadratic function of Bellman error as 

( ) ( ) ( ) ( )21 1
2 2

T
c c c cE k e k e k e k= =                (37) 

Using a standard gradient-based adaptation method, the weight updating algorithm for the 

critic NN is given by 

ˆ ˆ ˆ( ) ( ) ( )c c cw k w k w kτ+ = + Δ                   (38) 

where 

( )ˆ ( )
ˆ ( )

c
c c

c

E kw k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥∂⎣ ⎦
                      (39) 

with c Rα ∈  is the adaptation gain. 

Combining (31), (32), (37) with (39), the critic NN weight updating rule can be 

obtained by using the chain rule as [8] 
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ˆ( ) ( ) ( ) ( )ˆ ( ) ˆˆ ˆ( ) ( ) ( )( )
ˆ ˆ( )( ( ) ( ) ( ))

c c c
c c c

c c c

c c

E k E k e k J kw k
w k e k w kJ k

k J k r k J k

α α

α γφ γ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂∂

= − + −

     (40) 

4) Weight Updating for the Action NN 

The objective for adapting the action NN is to track the desired output and to 

lower the cost function simultaneously. Therefore, the error for the action NN can be 

formed by combining the functional estimation error ( )a kζ , and the critic signal ( )Ĵ k . 

Let 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

1

1

ˆ

ˆ

a k a k d

k a k

e k k J k J k

k J k

κ ζ κ

κ ζ κ

−

−

= + −

= +
          (41) 

where ( )a kζ  is defined in (29). The desired long-term cost function ( )dJ k  is nominally 

defined and is considered to be zero (“0”), which means as low as possible [8]. 

Hence, the weights of the action NN ˆ ( )aw k  are tuned to minimize the error  

1( ) ( ) ( )
2

T
a a aE k e k e k=                 (42) 

Combining (27), (29), (41), (42) and using the chain rule yields 

( ) ( ) ( ) ( )ˆ ( )
ˆ ˆ( ) ( ) ( ) ( )

ˆ( )( ( ) ( ))
ˆ( )( ( ) ( ) ( ))

a a a a
a a a

a a a c

T
a a k a

T
a a a

E k E k e k kw k
w k e k k w k

k k J k

k e k d k J k

ζα α
ζ

α φ κ ζ

α φ τ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂ ∂

= − +

= − + − +

  (43) 

where a Rα +∈  is the adaptation gain of the action NN.  Since ( )ad k  is typically 

unavailable, similar to the ideal case, we assume the ( )d k  and the mean value of ( )a kε  
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over the compact subset of R  to be zero [8], and obtain the weight updating algorithm 

for the action NN as 

ˆˆ ˆ( ) ( ) ( )( ( ) ( ))T
a a a aw k w k k e k J kτ α φ τ+ = − + +   (44) 

 

IV. Control without Saturation 

 

First, the design of the controller is addressed when no input constraints are 

asserted.  The following mild assumptions are needed before we proceed. 

Assumption 7: Let the unknown desired output layer weights for the action and critic NNs 

be upper bounded such that 

a amw w≤ , and c cmw w≤                      (45) 

where amw R+∈  and cmw R+∈  represent the bounds on the unknown target weights.  Here 

⋅  stands for the Frobenius norm [14]. 

Assumption 8: The activation functions for the action and critic NNs are bounded by 

known positive values, such that  

( ) ( ),  a am c cmk kφ φ φ φ≤ ≤                            (46) 

where ,am cm Rφ φ +∈  is the upper bound.  It is easily satisfied, since hyperbolic tangent 

sigmoid transfer function is chosen. 

Assumption 9: The NN approximation errors ( )a kε  and ( )c kε  are bounded above over 

the compact set S R⊂  by amε  and cmε  [10]. 
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Lemma 6: With the Assumption 3, 9, the term ( )ad k  in (30) is bounded over the compact 

set S R⊂  by 

max min( )a am am max M Md k d g g D d gε τ≤ = +      (47) 

Combining Assumptions 1, 3, and 4 and Facts 1 and 2, the main result for this section is 

introduced next. 

Theorem 1 (No Actuator Constraints): Consider the nonlinear discrete-time system given 

by (8) whose dynamics can be expressed as (22). Let the Assumptions 1 through 9 hold 

with the disturbance bound Md , a known constant. Let the control input be provided by 

the action NN (26) with the critic NN output given by (32). Further, let the weights of the 

action NN and the critic NN be tuned by (40) and (44), respectively, and let us assume 

there are no constraints on the input. Then, the tracking error, ( )e k , and the NN weight 

estimates of the action and critic NNs, ( )aw k%  and ( )cw k% , are UUB, provided the 

controller design parameters are selected as 

(a)      2 min
2
max

0 ( )a a
gk
g

α φ< <                         (48) 

(b)      2 20 ( ) 1c c kα φ γ< <                        (49) 

(c)      1
2

γ >                         (50) 

where aα  and cα  are NN adaptation gains, and γ  is employed to define the strategic 

utility function. 

Proof: See Appendix. 
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Remark:  It is demonstrated the boundedness of tracking error and NN weights without 

using the persistency of excitation condition.  Additionally, the tracking error can be 

made small by appropriately selecting the control gains. 

Remark: A well-defined controller is developed in this paper since a single NN is utilized 

to approximate two nonlinear functions.   

Remark: It is important to note that in this theorem there is no linearity in the parameters 

assumption, in contrast with standard work in the discrete-time adaptive control.  

Additionally, certainty equivalence principle is not used.  

Remark: Compared to other adaptive critic or reinforcement learning schemes [4]-[7], the 

proposed approach ensures closed-loop stability using the Lyapunov approach even 

though gradient based adaptation is employed. 

 

V. Control with Actuator Saturation 

 

When the actuator constraints are applied, the control design given in the previous 

section has to be modified as follows. 

A. Design of the Auxiliary Tracking Error System 

The control input ( )v k  is defined as the output of the action NN 

ˆ( ) ( ) ( )T
a av k w k kφ=   (51) 

The actual control input after the incorporation of saturation constraints is selected as 

max

max max

( ),                  if ( )
( )

sgn( ( )),   if ( )
v k v k u

u k
u v k v k u

≤⎧
= ⎨ >⎩

  (52) 
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where maxu +∈ℜ  is the upper bound for the control input ( )u k . Then, the closed-loop 

system (27) becomes 

( ) ( ) ( ) ( )k a a ke k k d k u kτ κ ζ κ+ = + + Δ  (53) 

where the control signal difference ( ) ( ) ( )u k u k v kΔ = − . To remove the effect of 

( )u kΔ ∈ℜ , which can be seen as a disturbance, we define now 

( ) ( ) ( )u ke k e k u kκ= − Δ  (54) 

From (53), we have 

( ) ( ) ( )u k a ae k k d kτ κ ζ+ = +  (55) 

In the remainder of this section, (55) is used to focus on designing NN algorithms 

to guarantee the stability of the auxiliary error, ( )ue k . Once ( )ue k  is proven stable, the 

stability of ( )e k  follows. 

B. Adaptive Critic Design with Saturation 

With the presence of saturation, the critic NN design is the same as that of the 

design presented in the last section. However, the action NN design contains the auxiliary 

error signal ( )ue k  instead of the tracking error, ( )e k . Hence, the action NN weight 

update is given by 

ˆˆ ˆ( ) ( ) ( )( ( ) ( ))T
a a a a uw k w k k e k J kτ α φ τ+ = − + +  (56) 

C. Closed-loop System Stability Analysis 

Theorem 2 (with Actuator Constraints): Consider the nonlinear discrete-time system 

given by (8) whose dynamics can be expressed as (22). Let the Assumptions 1 through 9 
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still hold. Let the control input be provided by the action NN (26), with the critic NN 

output being (32). Further, let the weights of the action NN and the critic NN be tuned by 

(56) and (44), respectively. Then, the auxiliary tracking error, ( )ue k , and the NN weight 

estimates of the action and critic NNs, ( )aw k%  and ( )cw k% , are UUB, with the bounds 

specifically given by (A.13) – (A.15), provided the controller design parameters are 

selected as (48) – (50). 

Proof: See Appendix. 

Corollary 1: Let the hypotheses presented in Theorem 2 hold. The tracking error, ( )e k , is 

also UUB. 

Proof: See Appendix. 

 

VI. Simulations 

 

A. Spark Ignition Engine Model 

Control of fuel for operating a spark ignition engine has been simulated in [14] 

and [15], but here spark timing is taken as the desired control variable.  The nonlinear, 

discrete-time engine model used in those papers and created in [19] does not use spark 

timing information.  In order to simulate the controller with spark timing, the model was 

changed to use a new function for combustion efficiency.  The sigmoid-like combustion 

efficiency function of the aforementioned sources follows. 

( ) ( )
( )

max
( )

1 100
k m

u l

CECE k
ϕ ϕ

ϕ ϕ

− −

−

=

+

 (57) 
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The combustion efficiency function of (57) is used as a model for combustion 

efficiency at discrete spark times.  This method is used to produce a two-input function 

with equivalence ratio and spark-timing as inputs and a combustion efficiency output. 

Engine data was recorded at several operating points for a Ricardo Hydra research 

engine with a Ford Zetec head.  This engine is port fuel-injected and has one cylinder.  

For data collection, the engine was motored at 1,000 RPM by a dynamometer, and the 

pressure in the intake manifold (manifold absolute pressure, or MAP) was maintained 

around 90 kPa – roughly a mid-load operating condition.  An in-cylinder pressure sensor 

samples pressure at every crank angle of the cycle.  These pressure measurements 

combined with knowledge of the cylinder geometry are used to determine heat release for 

the engine cycle.   

The combustion efficiency function of the Daw model is modified to include 

spark timing information by collecting engine data at a predetermined equivalence ratio 

and spark timing, and then the combustion efficiency is determined.  Combustion 

efficiency is proportional to amount of fuel in combustion and heat release.  Heat release 

is determined from in-cylinder pressure measurements during combustion, and fuel input 

per cycle is known.  Equivalence ratios from 1.00 down to 0.70 with spark timings 

ranging from -40 to +20 degrees relative to MBT were used as operating points for data 

collection as seen in Table I for equivalence ratio 0.80. 

Engine data was obtained for equivalence ratios of {1.00, 0.90, 0.80, 0.76, 0.74, 

0.72}.  Based on the model combustion efficiency function from [19], data for other 

equivalence ratios of {0.60, 0.50, 0.40, 0.30} were extrapolated for each of the tested 

spark timings.  This allowed for a full set of data to train the neural network that would 
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approximate the combustion efficiency function with spark timing as an input, in addition 

to equivalence ratio. 

 

Table I.  Combustion Efficiency Data for Equ. Ratio 0.80 

Equ. Ratio Spark Time 

from MBT 

Combustion 

Efficiency 

0.79966 0 0.69337 

0.80005 1 0.69101 

0.80014 5 0.68546 

0.8011 10 0.67473 

0.80498 20 0.65049 

0.79778 -1 0.69638 

0.79574 -5 0.70452 

0.79585 -10 0.71324 

0.7895 -20 0.71773 

0.777 -30 0.66821 

0.78991 -40 0.57791 

 

 

A two-layer neural network with 6 hidden layer nodes is trained with back-

propagation to obtain a combustion efficiency function as seen in Fig. 2.  The neural 

network equations are 

( )T
v

T
w

z V x b

y W z b

σ= +

= +
 (51) 

where y is the combustion efficiency output, 2 1xx ∈ℜ  is the input vector containing spark 

timing and equivalence ratio, 

[ ]T
sx θ ϕ=  (53) 
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and the sigmoid activation function of the first layer is  

( ) 2

2 1
1 xx

e
σ −= −

+
 (52) 

 

Fig. 2.  Combustion efficiency function based on trained neural network derived from 
engine data. 

 

Engine model simulations run for 1,500 cycles.  Residual gas fraction ( ) 0.9F k =  

and stoichiometric fuel-air ratio is 15.13R = .  Adaptation gains for weight updating are 

selected as 0.09cα = and 0.09aα = .  Cost function parameters are Q=0.1 and R=0.1.  The 

action NN is set with 20 hidden layer nodes, and the critic NN is set with 20 hidden layer 

nodes.  The neuron activation functions are hyperbolic tangent sigmoids in order to 

ensure the NN approximation capability. 

The simulation results are given in return maps of heat release.  Simulation 

returns heat release for every engine cycle simulated.  For a set of heat release data, the 

current cycle, k, is plotted against the next cycle, k+1, to show the cyclic dispersion of 

the heat release from cycle to cycle.  Ideally, the heat release data in a return map would 

be concentrated on the diagonal axis.  This would indicate that current-cycle and next-
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cycle heat release are the same, but that is not the case due to cycle-to-cycle effects of 

residuals within the cylinder and the dynamic behavior of combustion.  Units of heat 

release on each axis are in Joules that are scaled to match the Ricardo engine data 

recorded for training the combustion efficiency function with spark timing.  

The first simulation depicts the control at a lean equivalence ratio of 0.78.  COV 

(coefficient of variation) is the metric used to determine a reduction in the cyclic 

dispersion between heat release return maps.  A reduced COV value indicates a reduction 

in cyclic dispersion.  In Fig. 3 the return map for the uncontrolled case is shown and in 

Fig. 4 the return map for the controlled case is shown.  A modest drop from 0.103 to 

0.094 in COV is shown. 

 

Fig. 3.  Simulation at equivalence ratio 0.78 with open-loop control. 
 

The second simulation shows control at  lean equivalence ratio 0.85.  In Fig. 5 the 

return map for the uncontrolled case is shown and in Fig. 6 the return map for the 

controlled case is shown.  A reduction from 0.043 to 0.041 in COV is shown. 
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Fig. 4.  Simulation of equivalence ratio 0.78 with closed-loop control. 
 

 

Fig. 5.  Simulation at equivalence ratio 0.85 with open-loop control. 
 

Table II contains the COV values for the reported simulation results and the 

corresponding percent reduction.  The results indicate a modest improvement in reduction 

in cyclic dispersion in heat release with control, which demonstrates the satisfactory 

performance of the controller. 
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Fig. 6.  Simulation at equivalence ratio 0.85 with closed-loop control. 
 

 

Table II.  COV Reduction 

Equivalence ratio φ COV open-loop COV closed-loop % COV reduced

0.78 0.103 0.094 8.7% 

0.85 0.043 0.041 4.7% 

 

 

B. Second-order Nonlinear Discrete-time System 

Another simulation using the controller designed in this paper involves a fictional 

second-order discrete-time system as shown in the following equation. 

( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )

( )( ) ( )

y k 1 0.2cos 0.8 1

0.4sin 0.8 1 2 1

0.1 9 1

2 1
1 cos

y k y k

y k y k u k u k

y k y k

u k u k
d k

y k

+ = + −

+ + + + + −

+ + + −

+ −
+ +

+

 (53) 
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One can see that the system has a nonaffine control input that appears within 

functions of this system.  In the following simulation, the controller must have the system 

in (53) track the reference signal defined as 

( ) ( )0.8 0.2sin 2dy k kTπ= +  (54) 

where 01.0=T seconds.  The simulation runs for 25 seconds and the controller parameters 

are selected as γ =0.8, aα =0.01, cα =0.09, Q=0.01, R=0.01, and Md =0.01.  Both the 

critic NN and the adaptive NN are given 10 hidden-layer nodes.  Fig. 7 shows the output 

of the simulation where the desired and actual outputs are plotted together.  There is no 

constraint placed on the input in Fig. 7, and the system output tracks the desired signal 

with small error. 

 

Fig. 7.  Output tracking of system given in equation (53). 
 

 
To check the performance of the controller, a bound of 0.25u <  was placed on 

the control input.  There is some error visible in tracking the desired signal of Fig. 8 since 

the control input is bounded as seen in Fig. 9.  After learning the desired signal, the 

controller is able to continue tracking even with the input limit constraint. 
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Fig. 8.  Output tracking of system given in equation (53) with input constraint applied. 
 

 

Fig. 9.  Control input of simulation performed on system equation (53) with input 
constraint. 

 
  

In addition to the limited inputs seen in Fig.9., the critic NN weights are shown in 

Fig. 10.  The norm of the critic weights are visibly bounded by looking at the Fig. 10.  

This suggests that the controller is stable. 
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Fig. 10.  Norm of critic NN weights from simulation of equation (53) with input 
constraint. 

 

 

VII.  Conclusions 

 

The model integrates all higher order terms of the Taylor expansion without 

losing any information. Bounded disturbance is also considered within the model.  Based 

on this effort, a novel reinforcement online learning scheme is designed to deliver a 

desired performance by using neural networks. The controller is updated in an online 

fashion without offline phase.  To guarantee the boundedness of the closed-loop signals 

for this approximation based optimal controller methodology, the uniform ultimate 

boundedness of the closed-loop tracking errors and NN weight estimates is verified by 

using standard Lyapunov analysis in the presence of bounded disturbances and 

approximation errors. 

Simulation on both a nonlinear engine model with nonaffine control input and a 

second order nonlinear model based on sinusoids with nonaffine control input 
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demonstrates that the controller with input constraints imposed can track a desired signal.  

The controller remains stable even with limitations placed on the input. 

 

Appendix 

 

Proof of Theorem 1: Define a Lyapunov candidate as 

( )

( )

4 1 1
21 2

1 0 0

1 1
23

4
0 0

( ) ( ) ( ) ( )
3

( ) ( ) ( )

T
i a a

i j ja

T
c c c

j jc

L k L e k j tr W k j W k j

tr W k j W k j k j

τ τ

τ τ

γ γ
α

γ γ ζ
α

− −

= = =

− −

= =

= = + + + +

+ + + + +

∑ ∑ ∑

∑ ∑

% %

% %
 (A.1) 

where i Rγ +∈ , 1, 2,3,4i =  are design parameters. Hence, the first difference of the 

Lyapunov function is given by 

( )

( )

2 21
1

2 21

2 2 2 21
1 max 1

( ) ( )
2

( ( ) ( )) ( )
2

( ) ( ) ( )
2

k a a

a a

L e k e k

k d k e k

e k g k d k

γ τ

γ κ ζ

γ γ ζ γ

Δ = + −

= + −

≤ − + +

 (A.2) 

( )

( )

( )(
)

( )

2
2

2

2

2
2 2

2
2

( ) ( ) ( ) ( )

ˆ ˆ ˆ2 ( ) ( ) ( ) ( )

ˆ2 ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ2 ( ) 2 ( ) ( ) ( )

ˆ( ) ( ) ( )

T T
a a a a

a

T T
a a a a

a

T
a a a k a a

a

T
a a

k a a a

a a k a

L tr W k W k W k W k

tr W k W k W k W k

tr W k k k J k d k

W k W k

k k J k d k

k k J k d

γ τ τ
α
γ τ
α
γ τ α φ κ ζ
α

γ κ ζ γ ζ

γ α φ κ ζ

Δ = + + −

= + Δ + Δ Δ

= − + + +

+Δ Δ

= − − +

+ + +

% % % %

%

%

( )2
( )a k
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( )( )

( ) ( )( )
( ){

( )( )
( ) }

2
2 min 2

2 2 2 2
2 max 2

2

2 2 2 2
2 min min max

2

22

2
2 min

ˆ2 ( ) 2 ( ) ( )

( ) ( ) ( )

ˆ ˆ( ) ( ) 2 ( ) ( ) ( )
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At the same time, 
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Combining (A.1) - (A.6) yields 



 

 

213

( )
( )

( ) ( )
( )

2 2 2 21
1 max 1

2 2 2
2 min 2 min max

22
2

22 2
min max

2 2 2 2
2 3

2 23 3
3

( ) ( ) ( ) ( )
3

( ) ( )

1 ( )
( ) ( )

( )

*( ) ( ) 1 ( ) ( )

( 1) *( ) *( 1)
4 4

a a

a a a

a a k
a c

a a

a c c c

c

L k e k g k d k

g k g k g

k
k k

g k g

J k d k k e k

k J k J k

γ γ ζ γ

γ ζ γ α φ

α φ κ
ζ γ ζ

α φ

γ γ α γ φ

γ γγ γ ζ γ

Δ ≤ − + +

− − −

⎛ ⎞−
′× + +⎜ ⎟

⎜ ⎟−⎝ ⎠

′+ + − −

− + − + − −

( ) ( )

( )

( ) ( ) ( )

2

2 23 3

2 2 2 23
3 4

21 3

2 23
2 min 1 max

2 2 23
3 2 4 4

2 2 2 2 2
3 2 min max

( ) ( )
4 8

( ) ( ) ( 1)
8

( )
2 4

( )
8

( ) ( 1)
4

1 ( ) ( )

( )

c

T
a a cm c c

a

c c

c c c a a

a

Qe k R k

R w k k k

Q e k

g g R k

k k

k e k g k g

k

γ γ ζ

γ φ γ ε γ ζ ζ

γ γ

γγ γ ζ

γγ γ γ γ ζ γ ζ

γ α γ φ γ α φ

ζ

+ +

+ + + − −

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎛ ⎞− − −⎜ ⎟
⎝ ⎠

⎛ ⎞′− − − − − −⎜ ⎟
⎝ ⎠

− − − −

× +
( ) 22

2
2 2

min max

1 ( )
( )

a a k
M

a a

k
D

g k g
α φ κ
α φ

⎛ ⎞−
+⎜ ⎟

⎜ ⎟−⎝ ⎠

 (A.7) 
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For the standard Lyapunov analysis, equation (A.7) and (A.8) implies that 0LΔ ≤  

as long as the conditions (32) – (35) are satisfied and following holds 
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According to the standard Lyapunov extension theorem [12], the analysis above 

demonstrates that the tracking error ( )e k  and the weights of the estimation errors are 

UUB. Further, the boundedness of ( )a kζ  and ( )c kζ  implies that the weight 

estimations ˆ ( )aw k  and ˆ ( )cw k  are also bounded. 

 

Proof of Theorem 2: The proof of Theorem 2 is similar to that of Theorem 1. 

Alternatively, define the Lyapunov candidate as 
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The first difference of it is also similar to (A.7), except that the tracking error, 

( )e k , is replaced by ( )ue k . Thus, ( ) 0L kΔ ≤  as long as (48) – (50) are satisfied and 
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According to standard Lyapunov extension theorem [12], this demonstrates that 

the auxiliary error and the error in weight estimates are UUB. Further, the boundedness 

of ( )a kζ  and ( )c kζ  implies the boundedness of the weight estimates ˆ ( )aw k  and 

ˆ ( )cw k . 

Proof of Corollary 1: The proof of Corollary 1 directly follows Theorem 2.  

Case 1: max( )v k u≤  

If max( )v k u≤ , then ( ) ( )u k v k=  and ( ) ( ) ( ) 0u k u k v kΔ = − = . Hence, (54) implies 

( ) ( )ue k e k= , and the boundedness of ( )e k  directly follows the result of Theorem 1. 

Case 2: max( )v k u>  

If max( )v k u> , then max( ) sgn( ( ))u k u v k= .  As the boundedness of the weight 

estimates ˆ ( )aw k  over a compact set is guaranteed, the auxiliary control input ( )v k  is 

also bounded, which implies the boundedness of ( )u kΔ . Notice from min0 k maxg gκ< ≤ ≤  

and (54), the tracking error, ( )e k , is also bounded. 
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SECTION 

2.  CONCLUSION 

Results from the papers of this dissertation show that the designed controller 

schemes demonstrate good tracking performance and meet closed-loop stability 

requirements.  The NN approximation property is used many times.  To guarantee the 

boundedness of the closed-loop signals for these controller methodologies, the 

boundedness of the closed-loop tracking errors and NN weight estimates is verified by 

using standard Lyapunov analysis in the presence of bounded disturbances and 

approximation errors.   

Simulation results by using the experimentally validated spark ignition engine 

model show that the performance of the proposed controller is highly satisfactory while 

meeting the closed loop stability even though all of the system dynamics are not known 

beforehand.  When the controller design techniques are applied to a spark ignition engine 

model, the closed-loop system is able to reduce cyclic dispersion of heat release.  

Whether considering state feedback of the system states of fuel and air, or using output 

feedback of the heat release output, the controller shows satisfactory performance and 

stability.  The approximation error of the neural networks is shown to be bounded using 

Lyapunov techniques.  Estimated states of fuel and air enable controller design to follow 

backstepping technique. 

Experimental data for the controllers employing output feedback, shows that real-

time performance is achieved when applied to a spark ignition engine.  Over several 

engine cycles, cyclic dispersion of heat release output is reduced as intended.  The result 
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is verified with fuel as the control input and for both cases where an EGR control loop is 

considered and omitted.  NN weights are bounded and the overall engine system is stable. 

Extending this dissertation to future work should include an examination of active 

EGR control where the amount of EGR introduced to the cylinder at each cycle is 

controlled by a pin valve apparatus at the intake.  Similar to the perturbation of fuel from 

a nominal value, the EGR would deviate from a nominal value to influence the 

combustion.  An output feedback control scheme would be applicable to this problem 

where the heat release of each engine cycle is obtained.  The affine control input EGR 

appears in the inert gas state equation of the spark ignition engine model. 

Further work with the results of this dissertation would lead to a control scheme 

where fuel, EGR, and spark timing are controlled together.  Controlling those inputs 

simultaneously would require that stability is demonstrated for a feedback system with 

three control inputs that affect each other – one of which being nonaffine in the system 

model. 

More experimental results are needed to form a picture of how this work can be 

applied to production automotive spark ignition engines.  All experimental results are 

from single-cylinder research engines operating at a speed held fixed by a dynamometer.  

Data should be obtained from a multi-cylinder engine, but this will add new dynamics to 

the system as all of the cylinders are mechanically linked and undergo unique 

combustion.  Finally, variation of the engine load over time to simulate driving 

conditions would also be required to evaluate how these controllers might perform on a 

production automotive engine.  Spark ignition engine system changes over time are 
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difficult to predict.  The mid-load condition would experience hysterisis as transitions 

come from either high-load or low-load conditions. 

Results show that the controller can improve spark ignition engine performance in 

controlled laboratory conditions.  Extended controller development with an EGR input 

and with all inputs considered at once may lead to better performance.  To supplement 

this dissertation, additional controller research and experiments with multi-cylinder and 

variable-load tests will uncover new and useful conclusions.  
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