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ABSTRACT 

Proteolytic enzymes have been used for the synthesis of homo-oligomers and 

hydroxy acid capped peptides with amino acids and hydroxy acid esters as substrates in 

aqueous and aqueous organic biphasic and triphasic systems. However, successful 

incorporation of hydroxy acids in oligopeptide substrates has not been demonstrated. Use 

of monophasic media comprising of acetonitrile/water in which oligopeptide substrates 

were soluble was examined for the synthesis of oligomers of neutral and polar amino 

acids like Met, Tyr, Lys, Gly, Asp and Glu and tailored co-oligomers of Lys-Met and 

Arg-Met. Effect of reaction parameters such as starting substrate concentration, system 

composition, reaction time, temperature, and time of addition of second substrate on the 

peptide synthesis process was evaluated. The HPLC and ESI-MS characterization 

revealed the formation of oligomers and co-oligomers in yields of~ 80%. Results also 

show that systematic change of reaction media composition and sequential addition of 

amino acid substrates would serve as the best approach for the synthesis of co

oligopeptides of Lys-Met and Arg-Met in acetonitrile/water system. 

Use of anti-oxidants during oligomerization is essential. Traditionally 

mercaptoethanol has been used. However, because of their toxicity, such anti-oxidants 

pose a problem for utilization. To over come this, the effectiveness of L-Cysteine as an 

anti-oxidant for protease catalysis was also evaluated. Results show that L-Cysteine can 

be used as an effective replacement for mercaptoethanol in peptide synthesis. Finally, 

hydroxy acid capping of peptides was carried out in acetonitrile/water system. Results 

show that oligopeptides of Met, Phe and Insulin could be readily capped with a hydroxy 

acid in a monophasic system comprising of acetonitrile/water. 
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SECTION 

1. INTRODUCTION 

Supplementation of hydroxy analog of Met and amino acid oligomers has 

received widespread attention as efficient amino acid supplements in cattle and poultry 

(1, 2). Use of hydroxy acid capped peptides and tailored co-oligopeptides have also been 

suggested (1, 2). These strategies have been adopted to maximize amino acid availability 

to the animal for its optimal growth. Enzymatic synthesis of oligomers has been the most 

common technique for the synthesis of these oligomers and co-oligomers. Such synthesis 

has been carried in aqueous, bi-phasic and tri-phasic reaction media (1, 2). A brief 

overview of animal nutrition with emphasis on protein uptake, current approaches for 

dietary supplementation in farm animals and approaches for peptide synthesis are 

discussed in the following sections. 

1.1 ANIMAL NUTRITION 

Nutrition is defined as a series of interrelated steps by which a living organism 

assimilates and utilizes food for growth and maintenance (3). The discipline that deals 

with the process of food intake and utilization is called "Nutrition Science". Plants are 

the primary source of biochemical energy needed for growth and maintenance of tissues 

and cells in farm animals. Fats and carbohydrates are the primary source of energy in 

animal feed (4, 5). Glucose, the end product of carbohydrate metabolism, is the most 

readily available source of energy. Excess carbohydrates are stored in the tissues as body 

fat (6). Diet also supplies the essential amino acids, minerals, vitamins and other micro 

nutrients required for the proper growth of animals. Proteins are essential for the 

structural growth of bones, tissues, tendons, muscles, etc. Lipoproteins are the most 

important constituents of cell membranes (7). 

Protein requirements vary from species to species; requirements also change 

during different phases of life for the same species based on the growth, maintenance and 
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reproduction. The highest protein requirements are during growth stage of the animal (8, 

9). Digestion of proteins in the diet supplies the amino acid requirements of the animals. 

Digestion is the process by which large proteins are broken down or hydrolyzed in the GI 

tract to the constituent amino acids (4). Amino acids are chiral molecules (except 

Glycine) and can occur in two enantiomeric or mirror image forms. However, only one 

form (L-Form) is synthesized in higher living forms. Absorption of amino acids occur 

through the intestinal brush border membrane. Any modification of the terminal ends of 

the amino acids could alter their absorption across this membrane (7). The absorbed 

amino acids are then utilized for the growth process or anabolic pathways of metabolism. 

Deamination and transamination are two important steps in the anabolic pathway (Figure 

1.1). The absorbed amino acids undergo oxidative deamination in the presence of amino 

acid oxidase to form the corresponding a.-keto acid analog. In the step of transamination, 

the amine group from one amino acid is transferred to the a.-keto acid (7). 

H 0 
I II 

H2N-C-C -OH + 112 02 
I 
R1 

0 
Amino Acid Oxidase 11 

O=C-C-OH + NH3 
I 
R1 

H 0 0 Transaminase 0 H 0 
I II II II I II 

H2N-C-C-QH+O=C-C-OH ~ O=C-C-oH+H2N-C-C-oH 
I I I I 
~ ~ ~ ~ 

Figure 1.1: Post-absorption metabolism of amino acids 

The digestive physiology varies from species to species. For example, in 

monogastrics species, digestion of ingested proteins takes place in the stomach while 

absorption of amino acids and short chain peptides take place in the intestine; not 

everything ingested is hydrolyzed. Monogastrics cannot utilize Non-Protein Nitrogen 
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(NPN) as a source of amino acids whereas ruminants can convert NPNs to amino acids to 

partially meet their protein requirements. In such animals, the pre-gut fermentation by 

rumen microbes converts free amino acids and peptides to short chain fatty acids and 

ammonia, thus making the free amino acids and peptides unavailable to the animal (10). 

This alters the amino acids homeostasis in the animal. Portion of proteins in the diet that 

survive through the rumen is "High by-pass protein". Hence, the total amino acid 

requirement for ruminants is the sum of microbial degradable protein and ruminally 

unprotected protein or "High by-pass protein" (10). Amino acids are classified as non

essential and essential amino acids. Essential amino acids are those that are not 

synthesized in the living organism from the a-keto acid precursor (e.g. Lysine, 

Methionine, Phenyl alanine, Tryptophan). Essential amino acids should be supplemented 

in the diet in an available form. As a result, the nutritive value of a feed depends not only 

on its on its essential amino acid content but also on the digestibility, absorbability and 

composition of the diet (11). Certain essential amino acids are called Limiting amino 

acids. "Limiting amino acids" are the essential amino acids present in the least amount in 

the diet; the other essential amino acids are utilized only to the extent of these limiting 

amino acids (11). Lysine and Methionine are the primary limiting amino acids in dairy 

cattle whereas Arginine and Methionine are limiting in poultry feed (12, 13, 14). 

Limiting amino acids may be supplemented through protein-enhanced diet as 

crystalline amino acids or as amino acid analog (14). Met can be supplemented as its 

hydroxy analog HMB. HMB is 2-hydroxy-4-(methylthio)butanoic acid. L-amina acids 

for supplementation are obtained through microbial fermentation, however chemical 

synthesis yields a racemic mixture containing 50% of L and D- forms. D-form must be 

converted to the L-form prior to utilization by the animal. It has been shown that 

supplementation of crystalline amino acids are of limited efficacy in ruminants and 

poultry due to microbial degradation in the rumen and crop, respectively (15). Some 

studies have shown that nutritive requirements are met optimally when the limiting amino 

acids are present in the diet in the required ratio (16). 

Alpha hydroxy acids are low molecular weight organic acids that are analogous to 

amino acids (e.g. Lactic acid, HMB, Malic acid). These molecules contain a hydroxyl 

group (OH) attached to the a- carbon atom instead of an amine group of an amino acid. 
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a - hydroxy acids find applications as nutritive supplements, cosmetics and 

pharmaceuticals. Supplementation of analogs of L-amino acids like a- hydroxy acids is a 

potentially viable route to impart rumen degradation resistance to the feed. However, the 

bioavailability of these analogs is dependant on the stereospecific conversion of these 

analogs to the corresponding a - keto acid and then to the L-amino acid by enzymatic 

pathways (7). Inefficiencies in absorption and bioconversion limit the bioavailability in 

this case (17). Any absorbed analog that is not metabolized is excreted in the urine (7). 

liMB, 2-hydroxy-4-(methylthio)butanoic acid, which is one hydroxy analog that has been 

used as animal feed supplement is the a - hydroxy analog of methionine. HMB is 

reportedly more resistant to ruminal degradation than methionine and nearly 40% of 

liMB escapes as ruminally undegraded fraction and is therefore available for the animal 

(18). Only less than 10% of the initial Methionine escapes undegraded from the rumen 

(18). Researchers have shown that HMB is the most effective form of methionine 

supplement currently available (19, 20, 21). It is sold under the commercial name 

ALIMET by Nevus International, St.Louis, MO. This commercial form is a racemic 

mixture comprising of D, L-HMB with 11% water (19). Synthesis of HMB capped 

limiting amino acid co-oligomers has been reported (1, 2). It is anticipated that the 

presence of liMB would increase the by-pass properties of such peptides. In a few 

studies, these HMB capped oligomers have been shown to be more resistant to enzymatic 

hydrolysis than the corresponding homo oligomers (22, 23). 

As stated above, supplementation of HMB has been in the form of a racemic 

mixture and the effects of the individual enantiomers have not been studied. Since 

chemical synthesis yields a racemic mix, the effectiveness of individual enantiomers have 

not been studied. A few studies indicate that D-HMB is to a certain extent converted to 

L-Met (18). However, in the absence of studies with enantiopure HMB this claim 

remains open to debate. Studies with enantiopure HMB have been hampered due to the 

non-availability of these compounds. 

The three most common resolution techniques have been direct crystallization, 

kinetic resolution and diastereomeric complex formation. A detailed description of these 

mechanisms and approaches is well-documented and available elsewhere (24, 25). 

Biological world is the richest source of chiral molecules and hence the most widespread 
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procedure for enantiomeric resolution has been biocatalyst (enzymes) based kinetic 

resolution. Enzymes have a specific reactivity towards one form of the enantiomer and 

the other unreacted enantiomer could be retrieved as enantiomeric excess from the 

leftover residue (25). 

1.2 PEPTIDE SYNTHESIS 

The three common techniques used for the synthesis of peptides are chemical 

synthesis (in bulk and in solid state), recombinant DNA technology and enzymatic 

peptide synthesis. Each method has its own advantages as well as pitfalls. Solution phase 

and solid-phase synthesis are the most common methodologies of chemical synthesis (26, 

27). Chemical synthesis has advanced over the last decade and is the method of choice 

for bulk-scale production. However, the lack of stereo specificity of the synthesis step has 

been the main drawback of chemical synthesis (28). Recombinant DNA technology was 

mainly used for synthesis of peptides that are difficult to synthesize using chemical or 

enzymatic route (29, 30). Its main drawback is its high cost (31). Enzymatic peptide 

synthesis is attractive because of the specificity of enzyme-catalyzed reactions (32). 

Enzymes have structural, regio and stereo-specificity. 

The most important advantages of enzymatic peptide synthesis are 1) Substrate 

specificity 2) Milder reaction conditions 3) Selectivity and 4) Formation of non-racemic 

products (33, 34). This specificity may also be disadvantageous at times because a 

specific enzyme can be used only for a specific reaction. Care must be taken to 

understand the properties and mechanism of enzymes in choosing an enzyme catalyzed 

synthetic approach. 

Enzymes are biological catalysts essential for the normal functioning of the 

machinery of life. They catalyze numerous reactions that are too slow under 

physiological conditions (4, 5). Enzymes are proteins and their purification, 

crystallization and inactivation parallels those of other proteins. The three most 

significant and unequalled properties of enzymes are (35): 

a. Efficiency: Because of enzymes numerous cellular reactions occur 

millions times faster than the normal rate 
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b. Specificity of action 

c. Activity of enzyme is subject to regulation 

A commission of the International union of Biochemistry on enzymes proposed 

classification of enzymes into six main divisions based on the reactions they catalyze. 

These six divisions are Oxidoreductases, Transferases, Hydrolases, Lyases, Isomerases 

and Ligases (36). 

Proteases or peptidases belong to the hydrolases class of enzymes. These enzymes 

catalyze hydrolysis of the peptide bonds. Proteases are integral constituents of cell and 

nearly 4% of all genetic material in the cell is dedicated to the encoding of these enzymes 

(35). Proteases are further classified into exopeptidases and endopeptidases. 

Exopeptidases act on terminal (N or C) peptide linkages while endopeptidases act on 

internal peptide linkages. Endopeptidases are further subdivided into classes based on the 

catalytic active site constituents as Serine, Cysteine, Aspartic and Metallo peptidases 

(36). Under proper physiological conditions, proteases can catalyze the formation of 

peptide bonds instead of their hydrolysis. This property has been taken advantage of in 

the synthesis of numerous peptides (37). 

Cysteine proteases like papain and serine proteases like chymotrypsin utilize a 

double addition-elimination reaction mechanism to hydrolyze a peptide bond (38). The 

two addition elimination steps are the acylation of the active site residue and subsequent 

deacylation through a nucleophilic attack on the acyl-complex by water molecule. The 

crucial step of the catalytic process involves formation of a reactive thiolatelimidazolium 

ion pair (Cys-S-!His-Im+), which results from proton transfer between Cys-25 and His-

159 In the first acylation step, the thiolate anion attacks the carbonyl carbon of the 

scissile peptide bond, and the double bond between the carbon and the oxygen converts 

into a single one (Fig. 1A). The oxygen assumes a negative net charge allowing 

formation of the first tetrahedral transition state. The oxyanion is stabilized by hydrogen 

bonding to the NH groups of Gln-19 side chain and Cys-25 backbone. The tetrahedral 

intermediate then decomposes to an acyl-enzyme complex and a leaving group. In the 

second step, involves dissociation of the amine part of the substrate and its replacement 

with a water molecule. The imidazole nitrogen contributes to polarization of the water 

molecule that in turn attacks the carbonyl carbon of acyl enzyme. In the final step, 
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nucleophilic attack by water on the acyl-enzyme complex results in its breakdown and 

the release of the free carboxyl bearing part of the peptide bond being hydrolyzed, Figure 

1.2 (38, 39, 40). The leaving group is represented as Me in the acylation step while Me 

represents the hydroxy group of water in the subsequent deacylation step. 

Aspartic proteases like pepsin and renin utilize a single-addition elimination step 

for their catalytic action as opposed to the double-addition elimination step preferred by 

cysteine proteases. The mechanism is different in that there is no covalent attachment of 

the enzyme active site with the carbonyl group of the peptide (38). 

Acylation 

H"s Hi Ir 
Me 

I 
s -c-R' 

I o-

Hi~ 

I +HMe 

~s-~~-R' 
0 

.I\_ 
s 

Me 
I 

+ w-R· 
0 

De acylation 

Figure 1.2: Schematic of peptide bond hydrolysis mechanism by papain (38) 

An enzyme-substrate complex (held together by physical forces) is formed in this 

case (38). In the next step, the intermediate decomposes irreversibly to form the products 

of hydrolysis. 

1.3 PROTEASE CATALYZED PEPTIDE SYNTHESIS 

Protease catalyzed peptide synthesis has been investigated in aqueous medium for 

the past seventy years while biphasic system has been used for the past forty years (41, 

42). Aqueous systems have been mainly used for the protease-catalyzed synthesis of 

neutral amino acid oligomers while biphasic systems are preferred for polar amino acids. 
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The advantages and disadvantages of each reaction medium is well documented and a 

complete description is available in numerous articles (41, 42, 43). 

Enzyme catalyzed reactions were mainly carried out in aqueous or biphasic 

systems until 1980s because of the preconceived notion that organic solvents destroy the 

catalytic nature of enzymes (44) . However, over the last two decades considerable 

interest has been shown monophasic aqueous organic solvent systems for esterification 

reactions and, to some extent, in peptide synthesis. Such systems offer distinct 

advantages over aqueous or biphasic systems such as 

1. High solubility for apolar substrates 

2. Little/No microbial contamination 

3. Reduction of reverse hydrolysis 

4. Easy downstream processing for product recovery 

5. Enzymes are mostly insoluble in such systems, thus reducing the need for 

immobilization 

This dissertation is focused on protease-catalyzed synthesis of high by-pass 

peptides in a monophasic reaction media (acetonitrile/water mixtures). 

1.4 OBJECTIVES 

The overall objective of this study was to exploit monophasic systems for the 

synthesis of oligopeptides, tailored co-oligopeptides and hydroxy acid capped 

polypeptides that find application as nutritive feed supplements. This dissertation is 

divided into four papers: 

1. The first paper deals with papain-catalyzed synthesis of homo

oligopeptides of Met, Tyr, Lys and Gly in acetonitrile/water system. 

The system composition was optimized and the chiral specificity of the 

enzyme in the system was also evaluated. 

2. The effectiveness of L-Cysteine as a suitable replacement for 

mercaptoethanol as an antioxidant in papain catalyzed oligopeptide 

synthesis organic solvent system was studied in the second paper. 
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3. The third paper is dedicated to studying papain-catalyzed synthesis of 

tailored co-oligopeptides of Lys-Met in a nominal composition of Lys: 

Met (3: 1) using a sequential addition strategy. The effect of reaction 

parameters such as temperature, time of incubation, concentration of 

substrates, time of addition of substrates and system composition on the 

product composition and profile in an acetonitrile/water system was 

studied. 

4. The fourth paper deals with the protease catalyzed HMB capping of 

Phe, Met and Lys oligomers. The process was evaluated to separate 

enantiopure forms of HMB from the commercial formulation ALIMET 

sold by Novus International, St.Louis, MO. 

A complete survey of research carried out in such mixed aqueous organic solvent 

systems is described in detail in the next chapter. 
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Abstract. Synthesis of oligopeptides is generally carried out in aqueous or hi

phasic reaction media; use of monophasic reaction media is quite limited. In this study, 

homo-oligopeptides of lysine, glycine, methionine and tyrosine were synthesized through 

papain-catalyzed reaction in monophasic systems consisting of acetonitrile/water. 

Reaction conditions were optimized for peptide bond formation and to minimize enzyme 

denaturation. Such media are especially attractive because they can minimize the 

secondary and reverse hydrolysis of the acyl complex and the oligopeptide, respectively. 

The synthesized oligopeptides were purified and characterized by reversed phase liquid 

chromatography (RPLC) and Electrospray ionization mass spectrometry (ESI-MS). The 

yields of oligopeptides were approximately 80% for all amino acids. The stereo 

specificity of papain in acetonitrile/water media was also investigated. The separated 

enantiomers of methionine were characterized using Chiral HPLC. The results indicate 

the L-specificity of papain is maintained in monophasic media. 

Keywords: Monophasic aqueous organic media; Amino acids; oligopeptides; Papain; 

Methionine; Tyrosine; Lysine; Glycine; Enantiomers; Liquid Chromatography; Mass 

Spectrometry 
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INTRODUCTION 

Enzymatic peptide synthesis has gained importance and is a good alternative for 

chemical peptide synthesis because of its stereo-, regia-specificity and because it does not 

require side chain protection (1, 2, 3). Protease catalyzed synthesis of neutral amino acid 

homo-oligomers (Met, Tyr, and Leu) in aqueous systems have been reported (4,5). 

Synthesis of such amino acid oligomers in aqueous media is kinetically favored because 

precipitation of the hydrophobic products that shift the equilibrium towards peptide bond 

formation is conducive for higher yields (4, 5). However, yields of polar amino acid 

homo-oligomers in such reaction systems are very low. Synthesis of polar amino acid 

homo-oligomers has been carried out more efficiently in low water bi-phasic systems, 

triphasic, or in nearly anhydrous systems (4). Efficient synthesis of di through penta 

peptides has been reported with modified, immobilized or free protease catalyzed 

reactions in biphasic systems consisting of water and water immiscible organic solvents 

such as toluene, trichloroethylene, cyclohexane and ethyl acetate have been reported (6-

12). 

Protease catalyzed synthesis of oligopeptides in monophasic aqueous organic 

solvent mixtures have received little attention. Such monophasic systems have mainly 

received attention for protease-catalyzed esterification of amino acids (14, 15). The major 

hindrance for the use of such systems is the denaturation and deactivation of enzymes 

because of the presence of organic solvent molecules (16). By contrast, denaturation is 

minimal in biphasic or tri-phasic solvent systems because of the absence of direct contact 

of the enzyme with organic solvents (17). Monophasic systems that do not contain 

denaturing protic cosolvents have a potential for oligopeptides synthesis. Their 
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advantages include very high solubility for various amino acid and their derivatives used 

as substrates that are insoluble in many polar solvents. The absence of two phases 

eliminates the mass transfer barrier encountered in Biphasic, triphasic system and hence 

leads to a higher reaction rate (17, 18). Leu and Met-Enkephalin derivatives have been 

synthesized in acetonitrile-Tris-HCl (pH 9) buffer (13). Organic solvent-stable protease 

PST-01 has been used for the synthesis of the tripeptide Cbz-Arg-Leu-NH2; varying 

yields between -70% to -88% have been obtained in water and water-miscible organic 

solvents such as DMF and DMSO (1). 

The enzymatic peptide synthesis is a typical two-step process (i.e., formation of 

an acyl-enzyme complex and nucleophilic attack of the second substrate or water on the 

complex to form a peptide or hydrolyzed product). Yield of the process is a function of 

the relative rates of hydrolysis and aminolysis (19). When the reaction is carried out in 

monophasic aqueous organic solvent systems, hydrolysis is greatly reduced; it is 

comparable to hi-phasic and tri-phasic solvent systems (20). The low water content media 

are highly attractive in kinetically controlled peptide synthesis because the secondary 

hydrolysis of the product peptide is minimized (13). However, in all monophasic 

systems, a certain minimum amount of water is essential for the catalytic activity of the 

enzyme (21). The effect of water in monophasic reaction mixtures has been quantified in 

terms of changes in product conversion upon changes in water content. (22). 

Protease catalyzed peptide synthesis is reported to be stereo-specific (1, 2, 23, 24). 

It is a well-known fact that L and D enantiomers have different biological activity. 

Enzymatic resolution of liD forms amino acids has been studied extensively (23, 24, 25, 

26). 
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In this study, use of monophasic aqueous organic solvent systems was evaluated 

for papain-catalyzed oligomerization of both neutral and polar amino acid oligomers. 

Studies were directed at the synthesis of oligomers of Lys, Met and Tyr with potential 

application as high by-pass feed supplement in cattle feed and poultry. In addition, 

synthesis of Gly oligomers that have potential application as anti-bacterial agents was 

also carried out (27). Glycine and glycinate salts have been used as antibacterial agents in 

foods/drinks against Gram-negative pathogens like Escherchia coli, Enterobacter 

Sakazakii, Salmonella and Campylobacter. Mercaptoethanol was used as the anti-oxidant 

during the synthesis of polar amino acid oligomers while L-Cysteine was used for the 

synthesis of neutral amino acid oligomers. 

MATERIALS AND METHODS 

Materials. L-Methionine ethyl ester (MetEE) hydrochloride was purchased from 

Fluka Chemical Corp., (Milwaukee, WI). DL-Methionine, L-Tyrosine ethyl ester 

(TyrEE) hydrochloride, L-Lysine ethyl ester (LysEE) dihydrochloride, 2-

Mercaptoethanol, N, N diisopropylethylamine (DIPEA), L-Cysteine, sodium citrate, 

acetic acid and trifluoroacetic acid were purchased from Sigma Chemical Co., (St.Louis, 

MO). Ethylenediaminetetraacetic acid (EDTA), sodium salt of Hexane sulfonic acid 

(HSA), acetonitrile (ACN), and 0-Phosphoric acid were obtained from Fisher Scientific, 

(St.Louis, MO). Glycine ethyl ester (GlyEE) hydrochloride and Dimethyl sulfoxide 

(DMSO) were purchased from Aldrich Chemical Co., (Milwaukee, WI). 

Decafluoropentane-1,1,1,2,3,4,4,5,5,5 (DFP) was purchased from Miller-Stephenson 

chemical company, (Danbury, CT). Papain (EC 3.4.22.2, 25 units activity/mg, 28mg 

protein/mL) was provided by Novus International Inc., (St.Louis, MO). RPLC 
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separations of amino acids, esters and oligomers were carried out with a XPERCHROM 

C-18 column (250mm x 4.6mm), purchased from P.J. Cobert Associates Inc., (St.Louis, 

MO). Separation of amino acid enantiomers was carried out with a CHIROBIOTIC-TAG 

(macrocyclic antibiotics) column (250mm x 4.6mrn) obtained from Advanced Separation 

Technologies Inc.(ASTEC), (Whippany, NJ). 

Evaluation of papain stability in monophasic solvent system. To evaluate the 

stability of papain in monophasic system, free papain was added to 7mL clear 

borosilicate glass vials along with 5mL of the acetonitrile/water mixture. The water 

content of the mixture was varied from 1% -15% (v/v); the contact period between the 

enzyme and solvent mix was varied from Oh to 24h. The enzyme was recovered by 

removing the solvent with a rotary evaporator. The recovered enzyme was evaluated for 

its activity of Met oligomerization in aqueous system (4). The residual ester and the 

synthesized oligomers were separated by HPLC. 

Synthesis of Met oligomers from L-MetEE in ACN/water system. The 

oligomerization of Met was carried out in acetonitrile/water system; water content of 

ACN/Water mixture was varied from 15% to 100% (v/v). Three gram of L-Methionine 

ethyl ester hydrochloride was added to lOmL acetonitrile with varied water content. 

1mmole L-cysteine, O.lmmole EDTA, sodium citrate and 30mg of papain were also 

added to the reaction mixture. The amount of sodium citrate was varied till O.OlmM. The 

reaction mixture was incubated for 24h at room temperature. After 24h, the reaction was 

stopped by heating the mixture at 80°C for 10 minutes. After deactivation of the enzyme, 

the reaction mixture was centrifuged and the supernatant was rotary evaporated to near 
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dryness. The precipitate was lyophilized. A small portion of the dry products was 

reconstituted in ACN/Water (70: 30) mixture for HPLC analysis. 

Synthesis of Tyr oligomers in ACN/water system. The oligomerization of 

tyrosine was done in ACN/water system under the same conditions used for Met. Only 

0.934g of L-Tyrosine ethyl ester hydrochloride was used as the substrate. The residual 

monomer, ester and oligomers were characterized with HPLC. 

Synthesis of Met and Tyr oligomers with other co-solvents. The synthesis of 

Met and Tyr oligomers were also carried out in DMF/water and DMSO/water 

monophasic systems under the same conditions used with ACN/W ater system 

Assessment of relative solubility of Met and Tyr oligomers. The relative 

solubility of Met and Tyr oligomers was determined in ACN/water mixtures with varying 

water content (15% -100% (v/v)). lOmg of the oligomer was added to 5rnL of the solvent 

mixture in a 7mL clear glass vial. The mixture was sonicated for lOminutes in a sonic 

bath. The mixture was then centrifuged and supernatant was filtered through a 0.22JL 

membrane filter and injected into HPLC. 

Synthesis of DL-Met ethyl ester from DL-Met The synthesis of DL-Met ethyl 

ester from DL-Met was carried out using a procedure similar to that described by Rajesh 

et.al. (28). 

Synthesis of Met oligomers with DL-MetEE substrate in ACN/water system. 

Oligo- Met synthesis was carried out in a solvent system consisting of 40% water and 

60% ACN (v/v). All other additives and reaction parameters were the same as that used 

for L-MetEE substrate. The separated precipitate from the reaction mixture was washed 

with nanopure water thrice to remove any residual monomers present in the precipitate 
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chain because the presence of these adsorbed un-reacted monomers will interfere in 

establishment of chiral purity. Once the precipitate was free of adsorbed monomers, it 

was lyophilized. This lyophilized product was hydrolyzed. 

Acid hydrolysis of purified oligomers. 500mg of Met oligomers obtained from 

DL-MetEE substrate were placed in a 40mL vial containing lOmL of 6N HCI. The 

contents were stirred and kept at 110°C on a sand bath. After 48h, the reaction mixture 

was cooled and a lmL aliquot of the acid solution was taken and transferred to a 25mL 

round bottom flask. The solution was dried with a rotary-evaporator and reconstituted 

with 5mL of water. The sample was diluted and analyzed with RPLC to determine the 

completion of hydrolysis and chiralliquid chromatography to monitor the enantio-purity 

of methionine obtained from the oligomer hydrolysate. 

Synthesis of Lys oligomers in ACN/water system. L-LysineEE dihydrochloride 

(123mg) was added to 7mL clear glass reaction vials containing 5mL of the solvent with 

varying water content (2, 4, 7, 10 and 15% (v/v)) in ACN. lOOJLL of DIPEA, 25JLL of 

mercaptoethanol and 30mg of papain were added to the vials and these vials were then 

placed in a shaker at room temperature for 24h. The reaction was stopped by heating the 

reaction mixture to 80°C for 10 minutes. The supernatant in each case was separated and 

rotary evaporated to dryness. The precipitate was lyophilized in all cases. Dried products 

from both the supernatants and precipitates were then reconstituted in 50% ethanol in 

water, centrifuged, filtered and analyzed with HPLC. Orthogonal information was 

obtained by analyzing the resultant products with ESI-MS 

Synthesis of Gly oligomers in ACN/water system. Gly oligomerization was 

carried out in a system containing 10% (v/v) of water in ACN. 70mg of GlyEE was 
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added as the substrate. All other additives were added in the same condition as Lysine 

oligomerization. 

HPLC analysis of oligomers and acid hydrolysate. A model L-7000 HPLC 

system (Hitachi systems Inc., San Jose, CA) was used for HPLC separations of oligomer 

product, monomers and their esters. The system consisted of a column oven, a 

reciprocating piston: pump and an autosampler with a 50J.!.L injection loop. The analytes 

were separated with a reverse phase C-18 column (250mm x 4.6mm i.d) and detected 

with a fixed wavelength UV detector set at 210nm. Separation of Met and Tyr 

monomers, esters and oligomers was achieved with a gradient elution, in which the 

mobile phase composition was changed from 100% A (Water + 0.1% TF A) initial to 80% 

B (Acetonitrile+ 0.1 %TFA) in 50 minutes for Met and to 57% Bin 33 minutes for Tyr. 

Separation of residual monomers, esters, oligomers of Lys and Gly was also achieved 

with gradient elution, in this case the mobile phase gradient was changed from 100% A 

(Water+ 10mM HSA +0.1% 0-Phosphoric acid) initial to 75% B (50% acetonitrile + 

10mM HSA +0.1% 0-Phosphoric acid) in 50 minutes. DL-Met ethyl ester and Met 

oligomer acid hydrolysate were separated using a gradient from 100% A (Water+ 0.1% 

TFA) initial to 32% B (Acetonitrile+ 0.1 %TFA) in 25 minutes. In all cases, the mobile 

phase flow rate was maintained at 1mL min"1 and 10J.t.L of all solutions were filtered 

through a 0.22J.t. membrane filter prior to their injection into the column. 

ESI (+) -MS characterization of Lys and Gly oligomers. Lys and Gly 

oligomers were also characterized with direct injection ESI-MS (Model M-8000, 3D-Q 

ion trap, Hitachi High Technologies, San Jose, CA). An Electrospray Ionization interface 

was used. The mass range of the 3D Q- Ion Trap mass analyzer was set from 50 -
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1600amu. The electrospray capillary voltage was set at +3.5KV. The assistant gas heater 

temperature was set to 200°C. The desolvator temperature and the aperture-1 temperature 

of the MS system were 200°C and 150°C, respectively. The 3D Q- Ion Trap mass 

analyzer was scanned from 50- 1600amu. For such characterization, the oligomers were 

dissolved in ethanol/water mixture (50: 50) to form a nominal concentration of 0.5mg/mL 

solution. The solution was introduced into the MS with a syringe pump (Harvard 

Apparatus) at a flow rate of lrnUhr. A make-up solution (50% acetonitrile in water with 

0.1% acetic acid) was infused along with the sample at a flow rate of 0.2miJmin. 

Analysis of Met enantiomers. The separation of amino acid enantiomers was 

carried out with a CHIROBIOTIC-TAG column (250mm x 4.6mm). The column was 

installed in a Model L-7000 HPLC system (Hitachi High Technologies Inc., San Jose, 

CA). The separation was achieved under isocratic elution with water-acetonitrile (50:50) 

mobile phase maintained at a flow rate of 0.2 mL min -I. The effluent was monitored with 

a fixed wavelength UV detector set at 210nm. 

RESULTS AND DISCUSSION 

Stability of papain in monophasic system. The· stability of papain in a 95% 

ACN/ 5% water solution was studied through its exposure for a period ranging between 

2h to 24h. After each exposure period, enzyme was recovered from the solvent mix and 

introduced into a aqueous system optimized for synthesis of Met oligomers. Results 

obtained with virgin enzyme (not exposed to ACN) and enzyme exposed for 4h and 24h 

respectively in ACN/Water systems are shown in Figure l(A, B, C). The chromatograms 

show no marked deactivation of papain after exposure to a high concentration of ACN. 

The percent yield of Met oligomers calculated using the formula mentioned below: 
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Percent yield= {(AA-EE) initial- (AA-EE +free AA) rma~}/ (AA-EE) initial *100 

remained the same ( -80%) under all exposure conditions. Most of the peptide syntheses 

described in this article were carried out at 24hrs incubation times; thus, the effect of 

ACN on the activity of the enzyme was not monitored beyond this time. Thus the results 

clearly show the exposure of papain to ACN at this concentration and for no more than 

24 hrs does not denature the enzyme. 

Synthesis of Met and Tyr oligomers in ACN/water system. Once the stability 

of papain in ACN/water was established, it was used for the synthesis of Met and Tyr 

oligomers in ACN/water solvent mixtures with a water content varying from 15% to 

100% (v/v). The oligomerization of Met and Tyr was also attempted in other water 

/organic solvent systems including water/DMSO and water/DMF. However, papain 

showed no activity towards Met and TyrEE in these systems. The concentration of 

residual substrate remained the same over a period of 24h indicating the absence of 

oligomerization. Such systems have been shown to be suitable for oligomerization of 

amino acids with subtilisin (29, 30). HPLC chromatograms of Met and Tyr oligomers 

synthesized in two ACN/water systems (15% (v/v) water/ 85% v/v ACN and 40% (v/v) 

water/60% ACN) are shown in Figures 2 and 3. The chromatogram (Figure 2) clearly 

shows the presence of several peaks eluting after the retention time of Met and MetEE. 

These peaks correspond to oligomers of Met ranging from dimer through nanomer. The 

peak assignment for Met, MetEE and di-methionine were based on retention time 

matching while that of higher oligomers was in part based on the ESI-MS spectral 

information for each individual peak. Analogous results were obtained with Tyr. In this 

case, the oligomers ranged from dimer to decamer. The presence of oligomer peaks in 
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the chromatograms of the supernatant recovered from the reaction mixture in case of both 

Met and Tyr (Figure 2 (i, ii) and Figure 3 (i, ii)) indicate that they have a finite solubility 

in the ACN/Water. This solubility of peptides in the supernatant serves to distinguish 

such monophasic solvent systems from other systems, such as aqueous system where 

these neutral oligomers completely precipitate out. This is very significant if these 

hydrophobic peptides are chosen as substrates for further polymerization. 

The relative distribution of Tyr oligomers obtained in ACN/water mixtures for 

different water content is shown in Figure 4. The results show that the composition of 

oligomers with different ACN/water mixtures was nearly the same with 9-11 residues 

being dominant. Similar results were obtained with Met, however in this case the 

dominant oligomers were the hexamer through nanomer. These results show that 

ACN/water system bears some resemblance to aqueous systems (4), however higher 

oligomers were obtained in monophasic system for both Met and Tyr. This is most likely 

related to the higher solubility of oligomers in ACN/water system. Because of the 

increased solubility, higher oligomers are available to act as nucleophile in ACN/water 

systems whereas they completely precipitate out in aqueous systems. The obtained result 

correlates with the well-accepted acyl-intermediate mechanism for catalytic action of 

proteases (19, 31). As the size of the oligomer chain increases, it cannot fit into the active 

site of the enzyme to form acyl-intermediate complex. The ester group remains intact in 

all cases and hence they can act as substrates for further oligomerization. This is 

important because it is a well-established fact that ester or amide derivatives are 

thermodynamically more favorable (esters/amides have much higher energy) than the 

free carboxyl substrates in peptide synthesis (30). 
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The percent oligomer yield was calculated on the basis of the initial ester amount 

and the residual monomer and ester left in the reaction mixture after· the completion of 

the reaction, using the formula mentioned above. The yield as a function of (%v/v) water 

content is shown in Figure 5. The overall trend was similar in case of both Met and Tyr. 

Minor improvements were noticed in the yield when water concentration was increased 

beyond 60% (v/v). The percent yield for both Met and Tyr increases with increasing 

water content and reaches a maximum at 100% water. These results are in contrast with 

· the results obtained during the trans-esterification of amino acid esters with immobilized 

papain in ACN/Water mixtures, where the yield increased with increasing water content 

and then decreased beyond a certain maximum value (15). It has been speculated that the 

decrease in yield at high water contents when immobilized enzymes are use is due to the 

increase in thickness of a water layer around the enzyme that acts as a diffusional barrier 

(15, 29). In the present case, the reaction is moved forward because of the enhanced 

precipitation of oligomers, which drives the kinetics of the reaction forward. Protease 

catalyzed synthesis in ACN/Water system shows a behavior that is similar to that 

observed in aqueous systems with increasing water content; where the higher availability 

of water increases the intrinsic reaction rate, through precipitation of the product. The 

absence of oligomerization when no water was added to the organic solvent is in good 

agreement with published results. This is due to the insolubility of the enzymes in 

completely anhydrous solvents (21). Results show that such systems should be amenable 

for addition of amino acid esters or other hydroxy acid moieties in reasonable yields. 

Stevenson and Storer (15) found that the amino acid substrate must have its amine 

group deprotonated to participate in papain-catalyzed oligomerization reactions (15). 
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They based their conclusion on the fact that acidification of the reaction medium is 

eliminated by a buffer concentration that minimizes electrostatic forces. Therefore, we 

decided to study the effect of sodium citrate buffer concentration on the reaction rate and 

yield. Reactions carried out in the absence of sodium citrate or in amounts less than 

O.Olmmole did not show appreciable oligomerization. 

The relative solubility of methionine and tyrosine oligomers in ACN/Water 

system was also studied. The result of relative solubility of Met oligomers as a function 

of water content is shown as a graphical representation in Figure 6. Results showed a 

slight increase in solubility for when the water content was increased from 15% to 40% 

for the oligomers studied (2-8mers ). Further increase in water content resulted in a 

dramatic decrease in solubility of these oligomers. Solubility in the absence of ACN was 

less than 1%. This data can be used for choosing a solvent composition that would be 

favorable for modification of oligopeptide substrates in monophasic solvent systems. The 

solubility of Tyr oligomers in ACN/water system was similar to Met oligomers (Plot not 

shown). 

Enantio-specificity of papain in ACN/water mixture was assessed through the 

oligomerization of DL-MetEE as substrate in 40% water/60% acetonitrile (v/v) using the 

same reaction medium used for L-Met ethyl ester. After the enzyme was deactivated, 

oligomer yields were determined at set time periods by monitoring the residual esters and 

monomers. Results of the study show that oligomerization was complete by 24h and 

yield, based on the formula mentioned earlier was -42%. These results are in agreement 

with results obtained with DL-MetEE substrate in aqueous systems (24). 42% yield vs 

80% for L-MetEE is indicative of enantiospecificity of papain. Orthogonal HPLC 
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confirmation of enantio-specificity of papain was obtained by hydrolyzing the oligomer 

precipitate. The RPLC separation of acid hydrolysate obtained from purified oligomers is 

. shown in Figure 7. The chromatogram shows the presence of a single peak 

corresponding to methionine indicating the completion of hydrolysis. The monomer from 

acid hydrolysate was characterized using a chiral HPLC to determine its enantio-purity. 

The chiral separation of oligo-methionine acid hydrolysate is shown in Figure 8. The 

chromatogram shows a clear separation of the enantiomers. The peak for L-Met was 

dominant with trace P-Met present in the oligomer precipitate. The enantiopurity of the 

hydrolysate was greater than 95% L-Met; thus showing papain maintains its stereo 

specificity in monophasic reaction media. 

Synthesis of Lys oligomers in ACN/water system. The yield of Lys oligomers 

determined on the basis of residual monomers as a function of water content is shown in 

Figure 9. The plot shows that the maximum yield (-65%) is obtained at -10% (v/v) of 

water. Once water content increases beyond 10%, the system behaves in a manner similar 

to aqueous systems and hydrolysis of the oligomers results in almost no oligomerization. 

The oligomer yields are lower in the case of hydrophilic amino acid oligomers when 

compared to hydrophobic amino acid oligomers because papain has a strong selectivity 

for peptides with hydrophobic side pockets than that of hydrophilic ones. This high 

specificity for a bulky hydrophobic group at the second position of the active site (P1' 

position) is due to the presence of multiple flanking sub-sites in the binding sites of 

enzymes (32). Here again, the importance of water is clearly seen, with no 

oligomerization noticed under anhydrous conditions. 



29 

The RPLC separation of precipitated Lys oligomers synthesized in a monophasic 

system (7% water in acetonitrile) is shown in Figure 10. The supernatant consisted of 

mainly the dipeptide. The chromatogram contains a series of peaks eluting after Lysine 

ethyl ester. These peaks correspond to the esterified residues of oligo-lysine. Similar 

results were obtained from 4% to 10% water. The ESI-mass spectrum of the synthesized 

oligomers is shown in Figure 11. The spectrum contains series of ions that are 128 amu 

apart. This mass difference corresponds to the repeating Lys moiety. The dominant ions 

appeared at mlz 303, 431, 559, 687, 815 and 943. These ions correspond to the oligo

lysine residues with intact ester at the C-terminal (NLys - (Lys)n - LyseooEt + W). A 

tetramer of lysine, NLys - (Lys)2 - Lyse + W should appear at a mlz 531 while a 

pentamer NLys - (Lys)3 - Lyse + W should appear at a m!z 659. These ions though 

present in the spectra were less dominant. This is in sharp contrast to the free acid intact 

oligomers resulting from synthesis in both bi-phasic (6) and triphasic system (4). The 

oligomers synthesized in ACN/water systems should be good substrates for further 

peptide synthesis, eliminating an additional esterification step. Hence in the case of 

polar amino acids like Lys, the oligomer yield increases, as the water concentration is 

decreases because of a reduction of hydrolysis and because of a decrease in product 

solubility, which drives the reaction forward. The distribution of Lys oligomer residues 

was estimated for varying amounts of water. From Figure 12, it is quite evident that 

oligomers with 3-7 residues dominate the product. 

Synthesis of Gly oligomers in ACN/water system. Oligomers of Gly were 

synthesized in a 10% (v/v) Water/Acetonitrile system optimized previously for oligo

lysine. The supernatant and the precipitate separated from the reaction mixture were 
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characterized using HPLC and ESI (+)-MS. Quantification of Gly and Gly ethyl ester left 

in the supernatant showed that the - 73% of the substrate was oligomerized. The RPLC 

separation of the precipitate obtained from the Gly oligomerization reaction is shown in 

Figure 13. The chromatogram shows a series of peaks at retention times longer than 

Gly ethyl ester, indicating the formation of oligomers of glycine. The precipitate was also 

devoid of residual Gly and Gly ethyl ester. The glycine oligomers were identified through 

ESI-MS spectra of the precipitate solution in water: ethanol (50: 50) mixture. The positive 

ion ESI-MS spectrum is shown in Figure 14. The spectrum shows the presence of ions at 

mlz 275, 297, 332,389, 446, 503, 582, 582, 617, 674 and731. The ions in series 275 -

731show a mass difference of 57, which corresponds to the Gly residue [NH- CH -CO]. 
2 

Mass calculation shows that ions correspond to (Gly) -BE to (Gly) -BE. Sodiated ions 
4 12 

+ + 
(Gly) -BE Na [m/z 297] and (Gly) -EE Na [rnlz 582] are also observed in the spectrum. 

4 9 

Table 1 summarizes the yield and relative distribution for polar and neutral amino 

acid oligomers in ACN/W ater system and compares it with the results obtained for Met 

oligomerization in aqueous system (5) previously reported. There was no oligomerization 

of Met and Tyr when DMF and DMSO were used in the solvent system. The yields and 

solubility of hydrophobic amino acids do indicate that 40% (v/v) of water in acetonitrile 

should serve as an optimum condition for peptide synthesis. In the case of Lys and Gly, 5 

to 10% (v/v) of water was found to be optimal. These results show that by manipulation 

of water content, one single system could be used for the oligomerization of both polar 

and neutral amino acids. Another important aspect is the presence of ester intact oligomer 

residues in ACN/water system as compared to biphasic system, where the free acid form 



31 

of the oligomer is the dominant product. As mentioned earlier, esters are more amenable 

substrates than free acids if these oligomers are chosen for further modification. 

Conclusions. Papain catalyzed oligomerization of hydrophobic and hydrophilic 

amino acids in monophasic aqueous organic media were successfully carried out. This 

proves the potential of papain to catalyze peptide formation in organic solvents. Our 

results also prove that papain maintains its activity in ACN/Water monophasic systems 

contrary to the belief that they lose their activity (16, 17). The studies on enantio

selectivity also show that papain maintains its stereo specificity in monophasic system. 

Studies on enantio-selectivity of papain for polar amino acids should aid in obtaining 

pure D-form of amino acids, which is also important. Our results also show the utility of 

monophasic system for synthesis of co-oligopeptides tailored for specific amino acid 

composition. The synthesis could be carried out with water content favoring the 

oligomerization of one substrate and then altered to favor the incorporation of the second 

substrate. 

LIST OF ABBREVIATIONS 

Met, Methionine; Tyr, Tyrosine; Lys, Lysine; Gly, Glycine; HPLC, High Pressure Liquid 

Chromatography; RPLC, Reverse Phase Liquid Chromatography; ESI-MS, Electrospray 

Ionization Mass Spectrometry; EDTA, Ethylenediaminetetraacetic acid; HSA, Hexane 

sulfonic acid; TFA, Trifluoroacetic acid; UVNis, UltravioletNisible; DMSO, Dimethyl 

sulfoxide; DMF, Dimethyl formamide; ACN, Acetonitrile. 
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Figure 1: Chromatogram of methionine oligomers synthesized in aqueous system with 
enzyme recovered from 95% acetonitrile! 5% water system incubated for (A) 4h and (B) 
24h. C) Chromatogram of Met oligomers synthesized with enzyme recovered from 
100% water system. Separation was achieved with a RPLC C-18 column using a 
mobile phase gradient comprising of 100%A (Water+ 0.1% TFA) initial to 80% B 
(Acetonitrile+ 0.1%TFA) in 50 minutes. 
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Figure 2: Chromatogram of methionine oligomers synthesized in acetonitrile/water 
system. i) Supernatant of 15(%v/v) water/acetonitrile ii) Supernatant of 40(%v/v) 
water/acetonitrile iii) Precipitate of 15(%vlv) water/acetonitrile iv) Precipitate of 
15(%v/v) water/acetonitrile incubated for 24hours. Separation was achieved with a 
RPLC C-18 column using a mobile phase gradient mentioned in Figure 1. 
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Figure 3: Chromatogram of tyrosine oligomers synthesized in acetonitrile/water 
system. i) Supernatant of 15 (%vlv) water/acetonitrile ii) Supernatant of 40 (%v/v) 
water/acetonitrile iii) Precipitate of 15 (%v/v) water/acetonitrile iv) Precipitate of 40 
(%vlv) water/acetonitrile incubated for 24hours. Separation was achieved with a RPLC 
C-18 column using a mobile phase gradient comprising of 100%A (Water+ 0.1% 
TFA) initial to 57% B (Acetonitrile+ 0.1%TFA) in 33 minutes. 
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Figure 4: Relative distribution of tyrosine oligomer residues synthesized in 
acetonitrile/water solvent system as a function of varying water content. 
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solvent system as a function of varying water content. 
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Figure 6: Relative solubility of Met oligomers in acetonitrile/water solvent system with 
varying water content. 
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Figure 7: RPLC-18 separation of acid hydrolysate obtained from purified oligo
methionine precipitate synthesized in 40 (% v/v) water/acetonitrile system. The 
chromatogram shows a peak at a retention time of 6 minutes corresponding to 
Methionine indicating complete hydrolysis of the oligomers. Separation was achieved 
with a mobile phase gradient comprising of 100% A (Water+ 0.1% TFA) initial to 32% 
B (Acetonitrile+ O.l%TFA) in 25 minutes. 
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solvent system as a function of varying water content. 



41 

0.4 4 (Lys)n • EE 

0.3 3 5 

~ 6 
>o 0. 2 

7 8 .... ... 
a .... 
d ... 0.1 

o.o 

22 24 26 28 30 32 34 36 38 40 42 

Retention Time (min) 

Figure 10: Chromatogram of precipitated lysine oligomers synthesized in 7 (%vlv) of 
water/acetonitrile system for 24h incubation. Separation was achieved in a RPLC C-18 
column with a mobile phase gradient comprising of 100%A (Water+ 10mM HSA 
+0.1% 0-Phosphoric acid) initial to 75% B (50% acetonitrile+ 10mM HSA +0.1% 0-
Phosphoric acid) in 50 minutes. 
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Figure 11: Mass spectra of precipitated lysine oligomers synthesized in 10 (%v/v) of 
water/acetonitrile system after 24h incubation obtained through direct injection ESI 
( +) - MS. The spectrum shows the presence of series of peaks corresponding to oligo
Lysine. 
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acetonitrile/water solvent system as a function of varying water. 
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Figure 13: Chromatogram of glycine oligomers synthesized in 1 0(%v/v) of 
water/acetonitrile system after 24h incubation. Separation was achieved with a RPLC 
C-18 column using a mobile phase gradient mentioned in Figure 10. 
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TABLES . 

Substrate Optimal water Yield at optimal Dominant 
composition (%) composition residues 

(%) 

Met >40 75 6-8 

Tyr >40 85 9-11 

Lys 10 65 3-6 

Gly 10 70 4-8 

Met (Jost 100 80 6-9 
et.al)- (5) 

Table 1: Comparison of oligomerization of neutral and polar amino acids in 
ACN/water system. 
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Abstract. Enzymatic peptide synthesis has drawn considerable attention for 

synthesis of high by-pass oligopeptide feed supplements in animal nutrition. A hardy 

protease, (papain) with a cysteine moiety at the active site requires the presence of an 

anti-oxidant in the reaction medium to ensure that the thiol group remains intact. Free 

cysteine has been the antioxidant of choice for papain-catalyzed synthesis of 

oligopeptides in aqueous systems. However, due to limited solubility of cysteine in 

organic solvents, it is generally not a suitable antioxidant for the synthesis of 

oligopeptides in biphasic solvent systems; instead mercaptoethanol is often used. The 

inherent toxicity of mercaptoethanol when present even at trace amounts would make its 

use undesirable during synthesis of oligopeptides to be used as feed supplements. Use of 

non-toxic antioxidants or anoxic condition should be more prudent for such synthesis. 

Therefore efficacy of L-cysteine as an anti-oxidant was investigated during papain 

catalyzed oligomerization of Lys, Arg, Glu and Asp in two organic systems: a three phase 

micro-aqueous media consisting of n-octane, DFP and water; as well as homogeneous 

ACN I water mixtures. Reactions were also carried out under an argon atmosphere in the 

presence and absence of anti-oxidants. The results of the experiments showed that L

cysteine facilitated oligomer synthesis in both the three phase system and the ACN I 

water mixture. The overall oligomer yields were found to be better than 75% in the 

presence of L-Cysteine. Oligopeptide yields obtained through reactions carried out under 

the argon atmosphere were less than 20%. 

Keywords: Lys, Met, Arg, Asp, Glu, Papain, L-Cysteine, mercaptoethanol, Reverse

Phase Liquid Chromatography, Electro-spray Ionization Mass Spectrometry. 
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INTRODUCTION 

Primary function of proteolytic enzymes (proteases) is to catalyze hydrolysis of 

the peptide bond, however, under the right conditions these enzymes can also catalyze the 

synthesis of the peptide bond (1, 2, 3, 4, 5). Papain belongs to a class of thiol proteases 

that have a cysteine residue at their active center. The activity of these proteases is based 

on a catalytic diad of cysteine and histidine (6, 7). 

Oligomers of Lys and Arg have potential application as high by-pass feed 

supplements in cattle-feed and poultry nutrition. Several studies have ·shown the optimal 

requirements of these amino acids in the diet and a complete discussion of the same is 

beyond the scope of this article and is available elsewhere (8, 9, 10, 11). Glu and Asp are 

di-carboxylic amino acids that are acidic at physiological pH (12). Glu is one of the key 

molecules in cellular metabolism and can serve as metabolic fuel in the body when 

released as a consequence of hydrolysis of dietary proteins (13, 14, 15). It is present in 

high amounts in the blood and a small amount of it can easily permeate through the 

blood-brain barrier providing a fuel source for the brain (16). Glu is also the most · 

abundant excitatory neurotransmitter in the mammalian nervous system (17, 18). It helps 

to treat mental retardation, muscular dystrophy and ulcers also (19, 20). The sodium salt 

of Glu has a brothy taste at neutral pH and is used as a food additive to enhance the flavor 

of foods. Glu oligomers can be used in the fields of food and medicinal chemistry as a 

masking additive for bitter compounds in many foods (21). These highly ionic peptides 

can also find applications as functional property modifiers. Asp also plays a crucial role 

in generating cellular energy (22, 23). Asp may provide resistance to fatigue and thus 

lead to endurance as a neuro-transmitter (24, 25), although the evidence to support this 
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idea is not strong. Asp is found in dairy, beef, poultry, sugar cane and molasses (the 

artificial sweetener aspartame is made from Asp and Phe ). People with low proteinaceous 

diet or with eating disorders or malnutrition may develop an Asp deficiency and 

experience extreme fatigue or depression. Asp also helps in the removal of harmful 

ammonia from the body (26). Glu and Asp oligomers have a potential use as slow release 

source in the food and medicinal chemistry (21). Glu and Asp oligomers can serve as 

slow release source of Glu and Asp. Aqueous solvents are not suitable for enzymatic 

synthesis of these peptides because of the increased solubility of these hydrophilic 

oligomers in water (27). 

Peptide synthesis catalyzed by cysteine proteases requires the presence of an 

antioxidant in the reaction medium to maintain enzymatic activity (28, 29). Free L

Cysteine has often been used as anti-oxidant during papain catalyzed oligopeptide 

synthesis in aqueous media, however, due to its limited solubility in organic solvents 

employed in the two phase systems during synthesis of polar amino acid oligopeptides 

mercaptoethanol has been used as antioxidant instead. However, mercaptoethanol is 

unsuitable for the synthesis of oligopeptides that are used in feed due to its toxicity. 

Mercaptoethanol is toxic (LD-50 190 mg kg-1 in mice) and its presence in oligopeptides 

even at trace level can render oligopeptides unsuitable as feed supplements (30). Hence, 

it is desirable to evaluate a non-toxic anti-oxidant in organic solvent systems for peptide 

synthesis. We studied the use of L-Cysteine as a replacement for mercaptoethanol for 

papain catalyzed peptide synthesis in two organic solvent systems: a micro aqueous tri

phasic media and a monophasic media. 
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Papain catalyzed synthesis of Leu, Met, Phe and Tyr oligomers in citric acid 

buffer in the presence of L-Cysteine has been reported, and oligomer yields range 

between 51 to 96% (31, 32). It has been shown that papain can catalyze oligomerization 

of Met and Tyr in a monophasic system comprising of acetonitrile and citrate buffer with 

L-Cysteine as the reducing agent (33). Papain catalyzed synthesis of a protected dipeptide 

BocGly-PheOMe in the presence of L-Cysteine has been carried out in an aqueous 

organic two-phase systems consisting of different solvents like carbon tetrachloride, 

trichloroethylene, toluene and benzene (34). Mercaptoethanol was used as an antioxidant 

in papain catalyzed hydrolysis and amino acid incorporation into BSA and Zein (a 

protein from com) in low water organic media (35). Mercaptoethanol has also been used 

for papain stabilization during the synthesis of Leu-Enkaphalin precursors in ethyl acetate 

saturated with Mes/NaOH buffer and Tris/HCl buffer (36, 37). Dithiothreithol has also 

been used as an anti-oxidant during papain catalyzed oligopeptide synthesis in 

water/water immiscible organic solvents such as hexane, toluene and chloroform (38). 

Oligomers of Lys, Arg, Glu and Asp were synthesized in a three-phase system 

consisting of n-octane, DFP and water and also in ACN I water mixture. The efficacy of 

antioxidants (mercaptoethanol and L-Cysteine) and use of anoxic conditions on the 

oligopeptide yield and degree of oligomerization was evaluated. Concentration of L

Cysteine required for maintaining enzyme activity was optimized. 

MATERIALS AND METHODS 

Materials. L-Lysine ethyl ester (LysEE) dihydrochloride, L-Arginine ethyl ester 

(ArgEE) dihydrochloride, L-Aspartic acid (Asp), L-Glutamic acid (Glu), L-Cysteine 

hydrochloride monohydrate (Cys), n-Octane, 2-Mercaptoethanol, N, N 
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diisopropylethylamine (DIPEA) and acetic acid were purchased from Sigma Chemical 

Co., (St.Louis, MO). Sodium salt of Hexane sulfonic acid (HSA), anhydrous ethanol (200 

proof), 0-Phosphoric acid, acetonitrile and ethanol (HPLC grade) were obtained from 

Fisher Scientific, (St.Louis, MO). 1,1,1,2,3,4,4,5,5,5-decafluorpentane (DFP) was 

purchased from Miller-Stephenson Chemical Company (Danbury, CT). Papain (EC 

3.4.22.2, 25 units activity/mg, 28mg protein/mL) was provided by Novus International 

Inc., (St.Louis, MO). Argon (Grade 336) was purchased from Oz-Arc/gas, Rolla, MO. 

RPLC separation of oligomers was carried mit with a XPERCHROM C-18 column 

(250mm x 4.6mm) obtained from P.J. Cobert Associates Inc., (St.Louis, MO). Nanopure 

water used in the experiments was obtained after filtration through a Synergy 185 

filtration system purchased from Millipore Corp. (Billerica, MA). 

LC with UV detection. A model L-7000 HPLC system (Hitachi High 

Technologies America, San Jose, CA) was used to carry out the HPLC separations. The 

system consisted of a reciprocating piston pump (L-7100) fitted with a column oven (L-

7300), autosampler (L-7200) and with a 50J.1L injection loop. The analytes separated on 

reverse phase columns were then introduced into a UV-Vis absorbance detector (L-7420). 

ESI-Mass Spectrometer. An Ion Trap Mass Spectrometer equipped with an 

Electrospray ionization interface (Model M-8000) purchased from Hitachi High 

Technologies America, San Jose, CA was used for the mass analysis of the synthesized 

oligomers. 

Synthesis of basic amino acid oligomers under anoxic conditions. The 

synthesis of Lys anq Arg oligomers was carried out in an anoxic condition using argon as 

the degassing agent. 25mL of DFP, n-octane and water were taken in separate lOOmL 
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round bottom flasks and purged with argon for 15 minutes. From these degassed solvents, 

2.5rnL of DFP, n-octane and 0.5rnL of water were added to another 25rnL round bottom 

flask that was already purged with argon for 15 minutes. To this, 123mg of L-LysEE was 

added. lOOf.lL of degassed DIPEA was added to this reaction mixture. Purging was 

continued for another 15 minutes. After purging, 30mg of papain was added and the 

reaction flask was sealed with stopper cock-Para film. The reaction media was incubated 

in a shaker for a 24h. After 24h, the reaction was stopped by heating the contents at 80°C 

for 5 minutes. The reaction product was rotary evaporated to dryness. The resulting 

product was reconstituted in 50% ethanol, diluted, centrifuged, filtered and injected into 

HPLC for product characterization. Yield was calculated based on the amount of residual 

monomer left in the reaction product after the incubation period. Similar procedure was 

used for Arg oligomerization except that 137 mg of L-ArgEE was added as the substrate. 

A similar approach was used for the oligomerization of Arg and Lys in a 5mL 

ACN/water system consisting of 10% water. In this case, the supernatant and precipitate 

were separated, dried and reconstituted in 50% ethanol/water solution for HPLC 

characterization. 

Synthesis of basic amino acid oligomers in the presence of L-Cysteine. L

LysEE dihydrochloride (123mg- 0.5rnM) was added to a 7rnL clear glass reaction vial 

containing 2.5rnL of DFP, 2.5rnL of n-octane and 0.5mL of water. lOOJLL of DIPEA, 

30mg of papain, and. 20mg of L-Cysteine were also added. The reaction vial was placed 

in an incubator shaker for a period of 24h. The reaction was stopped by heating the 

reaction mixture to 80°C for 5 minutes. The reaction product was rotary evaporated to 

dryness. The dried product was reconstituted in 50% ethanol in water, centrifuged, 
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filtered and analyzed in HPLC, to determine the amount of residual monomers and 

characterize the oligomers. Arg oligomerization was also carried out in the same 

procedure except that 0.5mM ArgEE was ·used as a substrate in that case. Lys and Arg 

oligomerization was also attempted in 5mL of ACN/water mixture containing 10% water . 

in the presence of L-Cys anti-oxidant. Other reaction conditions and additives were the 

same as used for three-phase system. 

Synthesis of Asp and Glu esters. Asp and Glu were esterified with anhydrous 

ethanol in the presence of HCl gas using a procedure described by Rajesh (28). The 

synthesized ester was rotary evaporated to dryness. The dried ester was reconstituted in 

water, centrifuged, filtered and injected into RPLC for characterization. The percent 

conversion of monomers to ester was calculated based on the amount of residual 

monomers left in the product after the esterification reaction. 

Synthesis of acidic amino acid oligomers in organic solvent system. Glu and 

Asp oligomers were synthesized from their corresponding esters in three-phase and 

monophasic solvent systems. The synthesis followed the same procedure as in Lys and 

Arg oligomerization. In this case, either 0.5mM Asp-diester or Glu-diester was added as 

the substrate. For oligomerization in monophasic system, 0.5mM Glu-diester/Asp-diester 

substrate was added to a 7mL clear glass vial containing 0.5mL of water and 4.5mL of 

acetonitrile along with lOOJLL DIPEA and 30mg of papain. The reaction mixture was 

incubated in a shaker for 24h. After the incubation period, the mixture was heated at 80°C 

for five minutes to deactivate the enzyme. The supernatant was separated and rotary 

evaporated to dryness and the precipitate was lyophilized. The dried products were 

reconstituted in 50% ethanol, centrifuged, filtered and injected into HPLC for 
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determining reaction yields based on the residual monomer. Product distribution 

information was obtained by injecting the dried precipitate into ESI (+)-MS. In both 

solvent systems, either 20mg of L-Cysteine or 25p,L of 2-mercaptoethanol was added as 

the reducing agent to maintain papain stability. 

HPLC analysis of synthesized oligomers. The separation of residual Lys, Arg, 

Asp, Glu monomers and Lys, Arg oligomers was carried out with a reverse phase C-18 

column (250mm x 4.6mm i.d, 5p.) and detected with a fixed wavelength UV-Vis detector 

maintained at 210nm (Hitachi High Technologies, San Jose, CA). A gradient elution was 

used, the mobile phase gradient was changed from 100% A (Water + IOmM HSA +0.1% 

0-Phosphoric acid) to 75% B (50% acetonitrile+ IOmM HSA +0.1% 0-Phosphoric acid) 

in 50 minutes for the separation of residual monomers of Lys, Arg and the corresponding 

oligomers. In case of Asp and Glu oligomers, the separation of residual monomers was 

again carried out using a gradient elution with a mobile phase gradient from 100% A 

(Water+ 5mM HSA +0.1% 0-Phosphoric acid) to 60% B (50% acetonitrile+ 5mM HSA 

+0.1% 0-Phosphoric acid) in 30 minutes. The mobile phase flow rate was maintained at 

1mL min-1 and lOt-tL of the sample after filtration with a 0.22J.I. membrane filter was 

injected into the column in all the cases. 

ESI (+)-Mass Spectrometric characterization of acidic amino acid oligomers. 

Asp and Glu oligomers were characterized by injecting them directly into an ESI-MS (M-

8000, Model 3D-Q ion trap, Hitachi high Technologies, San Jose, CA). An electrospray 

ionization interface was used. The mass analyzer was scanned from 50 - 1200amu. The 

operating parameters of the MS were as follows: Electrospray capillary voltage, +3.5KV; 

detector voltage, 400V; assistant gas heater temperature, 200°C; desolvator temperature 
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and the aperture-! temperature, 200°C and 150°C respectively. Asp and Glu oligomers 

were dissolved in ethanol/water (50:50) mixture to form a nominal concentration of 

0.5mg/rnL solution. The solution was injected into the MS using a syringe pump 

(Harvard Apparatus) at a flow rate of lmlJhr. A make-up solution (50% acetonitrile in 

water with 0.1% acetic acid) was infused along with the sample at a flow rate of 

0.2rnUmin. 

RESULTS AND DISCUSSION 

Oligomer synthesis under an argon atmosphere. The oligomerization of Lys 

and Arg in three-phase system was carried out under an argon atmosphere. The 

oligomerization was evaluated with and without antioxidants (L-Cysteine and 

mercaptoethanol). Oligomer yield was calculated on the basis of initial concentration of 

monomer (AA-EE) in the reaction and concentration of residual monomer (AA-EE +free 

AA) in the reaction mixture after the set incubation period. 

Percent yield= {(AA-EE) initial- (AA-EE +free AA) rma~}/ (AA-EE) initial *100 

The residual amount of monomer and ester left in the reaction mixture was calculated 

based on the calibration curve obtained by determining the response of standards of the 

monomer and ester with HPLC-UV. 

The RPLC separation of Lys oligomers synthesized under anoxic conditions with 

argon purging in three-phase system for a 24h incubation period is shown in Figure 1. 

The chromatogram contains a series of peaks that appear after the Lys and LysEE peaks. 

Percent yield for [Lys] n based on the formula mentioned above was determined to be 

approximately 30%. Tentative identification of the oligomer peaks was based on ESI-MS 

results and expected increase in retention time with increased molecular weight within 
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the homologous oligomers. The degree of oligomerization ranged from 2-7 in case of 

[Lys] n in three-phase system. Similar yield ( -30%) was obtained for Arg oligomerization 

also in three-phase system. In this case, the degree of polymerization ranged from 

tetramer to heptamer. The percent yield for Lys oligomerization based on residual 

monomers left in the supernatant from a 10% water/90% ACN mixture was determined 

to be - 25% (Table 1). The degree of oligomerization for Lys in case of a monophasic 

system ranged from 2-7. The results obtained for Arg oligomerization in ACN/water 

system was similar to that obtained for Lys oligomerization (Table 1). 

Basic amino acid oligomerization in the presence of free Cysteine. The 

synthesis of Lys oligomers in a three-phase system with free L-Cys as the anti-oxidant 

was also evaluated. The RPLC separation of Lys oligomers synthesized in three-phase 

system with L-Cysteine anti-oxidant for a 24h incubation period is shown in Figure 2. 

The oligomer yield was calculated on the basis of residual monomer found to be present 

in the reaction after the specific incubation period, as outlined earlier. The yield for 

[Lys]n was found to be - 80% . The chromatogram consists of series of peaks eluting 

after the retention time of LysEE. These peaks correspond to oligomers of Lysine. 

Tentative assignment of oligomer peaks was carried on the basis of ESI-MS data and 

expected retention increase in a homologous series. Similar oligomer yield ( -80%) was 

obtained in the case of [Arg] n in three-phase system (Figure 3). The Lys and Arg 

oligomers synthesized are mostly 2 to 7 residues long. The percent conversion for both 

Lys and Arg in 10% water/90% ACN mixture in the presence of L-Cysteine anti-oxidant 

was- 75% (Table 1). The degree of polymerization in this case ranged from 2-7 for both 

Lys and Arg. These results compare well with the yield and degree of polymerization 
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obtained for basic amino acid oligomerization in both three-phase and monophasic 

system with mercaptoethanol as the anti-oxidant (28, 33). The results in the presence of 

mercaptoethanol are also given in Table 1. With mercaptoethanol anti-oxidant, the yield 

in three-phase system was close to 80% while it was close to 75% in case of ACN/water 

system (28, 33). This is significantly different from the results obtained in the absence of 

mercaptoethanol or L-Cysteine or argon purging (Table 1). In the latter case, the percent 

conversion was only 15% and the product mainly comprised of the dimer with very little 

trimer and tetramer. 

These results confirm the need for an anti-oxidant in the reaction medium to 

maintain the activity of a thiol protease like papain. The anti-oxidants maintain the active 

site cysteine residue in its native thiol form and avoid the formation of disulfide bridges 

between the active site cysteine residue with another cysteine residue (Cys-22, 63) that 

denature the enzyme (39, 40). 

Synthesis of Asp and Glu acid oligomers. The synthesis of di-carboxylic amino 

acids Asp and Glu oligomers was also evaluated in three-phase and monophasic systems. 

The synthesized ester of Asp and Glu (Figure 4 A and Figure 4 B) was used as the 

substrate for oligomerization of Asp and Glu in three-phase and monophasic system in 

the presence of L-Cysteine and mercaptoethanol. The RPLC chromatogram of the 

residual monomers left in the Asp oligomers synthesized in three-phase system with L

Cysteine and mercaptoethanol for a 24h incubation is shown in Figure 5 (A, B). The 

chromatogram shows a clear separation of Asp, Asp monoester and Asp diester. The 

percent conversion of the reaction was calculated from the residual monomer left in the 

reaction mixture as mentioned above. The separation of residual monomers in the Glu 
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oligomerization product obtained from three-phase system for a 24h incubation is shown 

in Figure 6 (A, B). Conversion was close to 80% in the presence of L-Cysteine while it 

was close to 40% in the presence of mercaptoethanol. Similar conversion was obtained 

for Glu oligomerization. The ESI ( + )-MS analysis of the synthesized oligomer product 

was carried out to determine the product distribution in the oligomer chain. Figure 7 (A) 

shows the ESI-MS spectrum of Asp oligomer synthesized in three-phase system with L

cysteine as the anti-oxidant, for a 24h incubation period. The spectrum consists of a series 

of peaks appearing at m/z 305, 448, 591, 734, 877 and 1020. These peaks appear at a 

mass difference of 143 amu corresponding to an Asp residue backbone with an intact 

ester group. These peaks correspond to 2 to 7 residues of Asp. A simple Asp dimer is 

shown in Figure 8. There are three possible sites for the presence of ester intact residues. 

The oligomer residues of Lys, Met, Arg and other amino acids obtained in a three-phase 

system typically has the a - carbon in a free acid form. This coupled with the dominant 

presence of diester in the starting substrate is an indication of the presence of intact ester 

residue in the side chain carboxylic acid group. When mercaptoethanol was used as the 

anti-oxidant in three-phase system, the mass spectrum of Asp oligomers showed a 

product consisting of only Asp dimer (Figure 7 B). Oligomerization is more complete 

in the presence of L-Cysteine than in the presence of mercaptoethanol. Only the dimer is 

formed in mercaptoethanol whereas higher oligomers are formed in L-Cysteine. The ESI 

- MS spectrum of Glu oligomers synthesized with L-Cysteine and mercaptoethanol in a 

three-phase system, for a 24h incubation is shown in Figure 9 (A, B). Figure 9 A 

consists of series of peaks appearing at mlz 490, 647, 804, 961 and 1118 with 157 amu 

difference indicated the formation of Glu oligomer products with residue numbers (n) 
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3,4,5,6 and 7 respectively. The mass difference of 157amu corresponds to the addition of 

' 
Glu backbone with intact ester residue. The ion at mlz 316 corresponds to a fragment ion 

of Glu dimer arising from the loss of ammonia as a neutral from the actual dimer ion. 

Only Glu dimer is formed in the presence of mercaptoethanol as the anti-oxidant (Figure 

9B). 

Asp and Glu oligomerization was also carried out in a monophasic system 

(acetonitrile/water (9:1)). The equilibrium was shifted towards peptide synthesis by the 

precipitation of the formed Asp and Glu oligomers from the reaction medium because of 

the presence of very little water. The percent conversion was calculated based on the 

residual amount of monomer left in the supernatant of the reaction mixture. The 

conversion was close to 80% for Glu oligomerization in the presence of L-Cysteine while 

it was only 50% in the presence of mercaptoethanol (Table 1), for a 24h incubation of the 

reaction mixture. The ESI ( + )-MS spectrum of the precipitated Glu oligomers synthesized 

in acetonitrile/water system in the presence of L-Cysteine, for a 24h incubation is shown 

in Figure 10 A. The product profile though close to three-phase system, shows only the 

formation up to pentamer. The tetramer and pentamer were the dominant products. As the 

product precipitates out, the solubility of the higher oligomer residues decrease thereby 

reducing their availability as substrates for further oligomerization. This resulted in the 

formation of shorter chain oligopeptides in monophasic solvent system when compared 

to a three-phase system. The ion appearing at m/z 316 corresponds to the ion resulting 

from the fragmentation of Glu dimer in the MS with the loss of ammonia as a neutral. 

The precipitated product mainly comprised of an ion appearing at mlz 333 corresponding 
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to a Glu dimer residue with two intact ester groups when mercaptoethanol was used as 

the reducing agent (Figure 10 B). 

The percent conversion for the Asp oligomerization reaction, based on the amount 

of monomer left in the supernatant in an acetonitrile/water (9: 1) solvent system with L

Cysteine as anti-oxidant for a 24h incubation was only 45% (Table 1). The reduction in 

oligomerization efficiency in case of Asp is due to the highly polar nature of Asp that 

results in the chemical hydrolysis of the synthesized oligomers even when only 10% 

water is present. The percent conversion dropped to 35% when mercaptoethanol was 

used as the reducing agent (Table 1). The ESI-MS analysis of the precipitated product 

synthesized in the presence of L-Cysteine and mercaptoethanol in a 10% water/ACN 

mixture for a 24h incubation (Figure 11 A, B) revealed only the presence of a dimer with 

three intact ester groups appearing at mlz 333. 

In order to increase the percent oligomerization of Asp, the solvent composition 

was changed to acetonitrile (95%) I water (5%). The RPLC separation of the supernatant 

from the reaction product in the presence of L-Cysteine, for a 24h incubation (Figure 12) 

shows that the percent conversion of monomer was -80%. The percent conversion in the 

presence of mercaptoethanol was only 35% (Table 1). When the precipitated Asp 

oligomers synthesized in the presence of L-Cysteine was analyzed using ESI (+) - MS, 

the spectrum shows the presence of peaks appearing at mlz 305, 448, 591, 734, 877 

corresponding to Asp oligomer residues ranging from 2 to 6 respectively (Figure 13 A). 

Asp dimer dominated the product synthesized under the same solvent composition in the 

presence of mercaptoethanol (Figure 13 B). The dimer in this case had only two ester 

intact residues. 
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Table 1 is a summation of results obtained for different amino acids under 

different conditions. The higher amounts of residual monomers left in the reaction 

medium incubated under anoxic conditions and in the absence of anti-oxidapts show their 

importance in maintaining the activity of thiol proteases in reaction medium. The anoxic 

conditions used are not sufficient to maintain the cysteine residue of the active site in its 

reduced form ( -SH) and it oxidizes and forms a disulfide bridge with another cysteine 

residue. Rzychon and Chmiel (39) reported that the catalytic activity of Cysteine 

proteases is mainly dependant on the formation of a thiolate/imidazolium pair resulting 

from the proton transfer between Cys-25 and His-159 residue. Hussain and Lowe (40) 

have reported the amino acid sequence of Papain. The sequence shows that the Cys 

residues (Cys - 22, 63) that are adjacent to the active site Cys-25 can form a disulfide 

bridge, thereby preventing the proton transfer to the Histidine group during the catalytic 

process. L-Cysteine served as an effective anti-oxidant for oligomerization reactions in 

three-phase and monophasic solvent systems. Oligomers of Lys, Arg, Asp and Glu were 

successfully synthesized in the presence of L-Cysteine. The oligomerization efficiency in 

the presence of L-Cysteine was close to 80% and there was no change in product 

distribution for basic amino acid oligomers when mercaptoethanol was replaced with L

Cysteine. However, in case of acidic amino acid oligomers L-Cysteine provided better 

conversion than mercaptoethanol. The elimination of mercaptoethanol by L-Cysteine will 

result in reduction of product toxicity. 

Conclusions. We have shown that anti-oxidants in the reaction medium are 

needed for papain-catalyzed oligomerization of basic and acid amino acids. Our results 

show that L-cysteine may be used efficiently to replace mercaptoethanol as the anti-
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oxidant. The elimination of mercaptoethanol from the reaction mixture would allow the 

use of the synthesized oligopeptides as dietary supplements. 

LIST OF ABBREVIATIONS 

Met, Methionine; Lys, Lysine; K, Lysine; M, Methionine; R, Arginine; LysEE, Lysine 

Ethyl Ester di-hydrochloride; MetEE, Methionine Ethyl Ester Hydrochloride; HPLC, 

High Pressure Liquid Chromatography; RPLC, Reverse Phase Liquid Chromatography; 

ESI-MS, Electrospray Ionization-Mass Spectrometry; HSA, Hexane sulfonic acid; 

UVNis, Ultraviolet/Visible; ACN, Acetonitrile; MS, Mass Spectrometry; MS/MS, 

Tandem Mass Spectrometry; Arg, Arginine; Asp, Aspartate; Glu, Glutamate; Cys, 

Cysteine; E, Glutamate; D, Aspartate; DFP, 1,1,1,2,3,4,4,5,5,5-decafluorpentane; DIPEA, 

N, N-di-isopropyl ethyl amine. 
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FIGURES AND TABLES 

LysEE (Lys)n- OH 

2 3 
4 5 6 7 

89 

Q " :J,.Q :J.S ::OQ "" 40 4.S 

Figure 1: RPLC separation of Lys oligomers synthesized under anoxic conditions 
(argon atmosphere) in three-phase system. Separation was achieved with a RPLC C-18 
column using a mobile phase gradient 100% A (Water + 1 OmM HSA +0.1% 0-
Phosphoric acid) to 75% B (50% acetonitrile+ 10mM HSA +0.1% 0-Phosphoric acid) 
in 50 minutes. The Chromatogram shows the presence of peaks corresponding to 
oligomers of Lysine. 
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Figure 2: RPLC separation of Lys oligomers synthesized in three-phase system with L
Cysteine as the anti-oxidant. Separation was achieved in a RPLC C-18 column with 
HSA as the ion-pairing agent in the mobile phase using a mobile phase gradient 
mentioned in Figure 1. The separation shows the presence of peaks corresponding to 
oligomers of Lysine. 
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Figure 3: RPLC separation of Arg oligomers synthesized in three-phase system with 
L-Cysteine as the anti-oxidant. Separation was achieved in a RPLC C-18 column with 
HSA as the ion-pairing agent in the mobile phase using a mobile phase gradient 
mentioned in Figure 1. The separation shows the presence of peaks corresponding to 
oligomers of Arginine. 
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Figure 4: HPLC separation of acidic amino acid esters (A) Asp and (B) Glu 
synthesized with absolute ethanol. Separation was achieved with a RPC-18 column 
using a mobile phase gradient comprising of 100%A (Water+ 10mM HSA +0.1% 0-
Phosphoric acid) to 60% B (50% acetonitrile+ 10mM HSA +0.1% 0-Phosphoric acid) 
in 30 minutes. The chromatograms show the presence of two peaks eluting after the 
retention time of Asp and Glu corresponding to their mono and di-esters, respectively. 
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Figure 5: RPLC separation of residual monomers left in the Asp oligomer product 
synthesized in three-phase system with (A) L-Cysteine and (B) 2-mercaptoethanol as 
anti-oxidant. Separation was achieved in a RPLC C-18 column with HSA as the ion
pairing agent in the mobile phase using a mobile phase gradient mentioned in Figure 
4. The chromatograms show the clear separation of residual Asp ester and monomer. 
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Figure 6: RPLC separation of residual monomers left in the Glu oligomer product 
synthesized in three-phase system with (A) L-Cysteine and (B) 2-mercaptoethanol as 
anti-oxidant. Separation was achieved in a RPLC C-18 column with HSA as the ion
pairing agent in the mobile phase using a mobile phase gradient mentioned in Figure 
4. The chromatograms show the clear separation of residual Glu ester and monomer. 
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Figure 7: Direct injection ESI (+)-MS spectra of Asp oligomers synthesized with (A) I.
Cysteine and (B) 2-mercaptoethanol as the anti-oxidant in three-phase system. The 
spectrum shows the presence of series of peaks corresponding to oligomers of Asp. 
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Figure 8: Structure of an Asp dimer indicating the possible sites for the presence of 
intact ester groups. Both the a- carboxyl group andthe side chain carboxyl group can 
have intact ester moiety. 



74 

l .. (t(t 
(GJu),-nEE 

. 2 
•ti(.!Oo / 

1 41 ··"· ,. 
~ ~ s . .,. ... 

~ 

~ 
7 I 3 c 

~ I ioC:UfO 

~ 
. d c .. . ... :,• 

~ '" . 

.... 
~ ... 

• 
auo ·- .. _ 

••• ........ u .. ........ ...,,, 

(A) 

~•Ou 

:..:.rou 

aoua .,..,- L (GJu),-:nEE 
J.ftOO 

"" 
.14500 • . • ~ •no 

~ a;,ao 2 • · It" c .. auuu • ..... . ., .. 
000 

.,1)0 

aue ·- .... ·- &DGQ --· .. ,.~ 
(B) 

Figure 9: Direct injection ESI (+)-MS spectra ofGlu oligomers synthesized with (A) L
Cysteine and (B) 2-mercaptoethanol as anti-oxidant in three-phase system. The 
spectrum shows the presence of peaks co"esponding to oligomers of Glu. 
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Figure 10: Direct injection ESI ( + )-MS spectra of Glu oligomers synthesized with (A) 
L-Cysteine and (B) 2-mercaptoethanol as anti-oxidant in monophasic solvent system 
comprising of 90% acetonitrile/ 10% water. The spectrum consists of a series of peaks 
corresponding to Glu oligomers. 
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Figure 11: Direct injection ES1 (+)-MS spectra of Asp oligomers synthesized wiJh (A) 
L-Cysteine and (B) 2-mercaptoethanol as anti-oxidant in monophasic solvent system 
comprising of 90% acetonitrile/ 10% water. The spectrum shows the presence of only 
Aspdimer. 
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Figure 12: RPLC separation of residual monomers left in the Asp oligomer product 
synthesized in monophasic system with 95% acetonitrile and 5% water in the presence 
of L-Cysteine as an anti-oxidant for papain stabilization. Separation was achieved in a 
RPLC C-18 column with HSA as the ion-pairing agent in the mobile phase using a 
mobile phase gradient mentioned in Figure 4. The chromatogram shows the clear 
separation of residual Asp ester and monomer. 
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Figure 13: Direct injection ESI (+)-MS spectra of Asp oligomers synthesized with (A) 
L-Cysteine and (B) 2-mercaptoethanol as anti-oxidant in monophasic solvent system 
comprising of 95% acetonitrile/ 5% water. The top spectrum consists of a series of 
peaks corresponding to oligomers of Asp, while the bottom spectrum shows only the 
formation of Asp dimer. 
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· Table 1: Comparison of amino acid oligomerization efficiency of L-Cys, 
mercaptoethanol and argon purge as anti-oxidant conditions for papain stabilization in 
(A) three-phase system and (B) monophasic (acetonitrile/water) system. 
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Abstract. Supplementation of tailored peptides has potential for catering to the 

nutritional requirements of the animal. Protease catalyzed synthesis of tailored 

oligopeptides in aqueous, biphasic and triphasic media have been reported in literature. 

Use of monophasic aqueous organic system in which polypeptide substrates are soluble 

was examined for the synthesis of oligopeptides and tailored high by-pass co

oligopeptides under different elevated temperature conditions using a simple sequential 

addition approach coupled with change in solvent composition. The synthesis of 

oligomers of Lys and co-oligomers of Lys and Met was carried out in a monophasic 

organic system consisting of water in acetonitrile under elevated temperatures using 

papain as a catalyst. The effect of temperature and time of incubation on the yield of Lys 

oligomers was studied. Yields as high as 70% were obtained even at 60°C. For Lys-Met 

co-oligopeptides, the reaction was started with a water content favoring the 

oligomerization of the first substrate, and then the water content was changed to favor the 

addition of the second substrate. The effect of temperature, time of incubation, time of 

addition of the second substrate, concentration of the substrates and solvent composition 

on the yield of tailored peptides was studied. The synthesized tailored peptides were then 

characterized by Liquid chromatography, Electro-spray Ionization Mass Spectrometry 

and Tandem Mass Spectrometry. The results show that sequential addition of the second 

substrate with changing water composition is a simple and rapid approach for 

synthesizing tailored co-oligopeptides. 

Keywords: Amino acids, tailored peptides, Temperature, Monophasic organic system, 

High Performance Liquid Chromatography, Electrospray Ionization Mass Spectrometry 

(ESI-MS), Tandem Mass Spectrometry. 
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INTRODUCTION 

Lysine (K), Methionine (M) and Arginine (R) are considered the primary limiting 

amino acids in cattle feed and poultry (1-4). For example, in dairy cows, milk production 

accounts for nearly 95% of this amino acid requirement (5). Supplementation of 

crystalline amino acids is not feasible because the pregut fermentative step converts these 

amino acids into short chain fatty acids and ammonia (6, 7). Studies have proven that 

ruminally protected forms of these amino acids help in improving milk production (3, 5, 

8, 9, 1 0). Different strategies have been adopted to supplement these amino acids in the 

ration. Methionine has been supplemented as a 50% mixture (by moles) of Methionine 

Hydroxy Analogue (HMB, 2-Hydroxy-4-(methylthio) butanoic acid) and DL-Met (2, 6, 

11, 12). The efficacy of this supplementation procedure depends on the resistance of 

MHA to ruminal microbial degradation and the subsequent absorption and metabolism of 

Met in the tissues (13). Abomasal (Post-rumen) infusion of these amino acids has also 

received widespread attention for their supplementation (14, 15, 16), especially in the 

case of Lys. Studies have shown that supplementation of Met or Lys individually has 

little effect on milk production when compared to their addition together in the ration in a 

1:3 ratio (15, 17). An alternative supplementation protocol may be the use of oligomers 

and peptides of amino acids (6, 18, 19, 20). Research has been mainly focused on the 

synthesis of homo-oligomers of Met, Lys and capped co-oligomers of MHA with Met 

(6). Very little work has been reported on the synthesis of poly-Lys-met co-oligopeptides. 

One such study has been reported on the synthesis of a branched chain polypeptide 

multioligo (L-methionyl) poly-L-Lys (18) with nutritional value and assessment of its 

bioavailability. Such peptides are not readily available because they are expensive and 



83 

difficult to synthesize. In this study we propose a simple enzymatic protocol for the 

synthesis of Lys-Met co-oligopeptides with their composition tailored in the ratio of -3:1 

(Lys: Met) to meet nutritional requirements. 

Remarkable advancement has been made in the field of peptide synthesis in the 

past century. The common techniques adopted for peptide synthesis are chemical 

synthesis, recombinant DNA technology and enzymatic synthesis (21, 22, 23). The 

stereo- and regia-specificity of enzymatic synthesis has made it an attractive technique 

for peptide synthesis (24, 25). Enzymatic peptide synthesis has long been carried out in 

aqueous, hi-phasic and tri-phasic reaction media (6). The use of monophasic organic 

solvent systems has been limited in peptide synthesis because enzymes loose their 

catalytic power in some protic solvents (26, 27, 28). 

Proteolytic enzymes maintain their catalytic activity m monophasic medium, 

thereby preventing them from undergoing inactivation (29). Direct contact of organic 

solvents with the enzyme may affect the catalytic efficiency of the enzyme (30, 31). 

Monophasic aqueous organic media offer numerous advantages for enzymatic peptides 

synthesis such as higher solubility for non-polar substrates, thermodynamic equilibrium 

shift towards peptide bond synthesis, ease of enzyme recovery eliminating/reducing the 

need for immobilization, high thermal stability of the enzymes and very little microbial 

contamination (28). Higher reaction rates have been reported in some cases with 

monophasic systems because of the reduction in mass-transfer resistance/barrier existing 

in hi-phasic systems (32). 

Another added advantage of monophasic solvent systems is the increased stability 

of enzyme to thermo-inactivation (33). Covalent modifications in the primary molecular 
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structure coupled with the partial unfolding of the enzyme leads to its inactivation at high 

temperatures in aqueous media (33, 34, 35). Porcine pancreatic lipase was shown to have 

a 5 times enhanced transesterification rate at 100°C when compared to 20°C with a half

life time of 12h in dry tributyrin containing heptanol (36). Enzymatic catalysis in organic 

solvent system thus obeys the conventional chemical principle of enhanced reaction rate 

at higher temperatures. This increased thermo stability of enzymes in non-aqueous media 

could be utilized for biocatalysis in supercritical systems as the enzyme remains viable at 

high temperatures (26, 37-40). · 

Acetonitrile containing pH 9.0 Tris/HCl buffer has been used for the synthesis of 

Leu and Met Enkephalin derivatives (41). The synthesis of the aspartame precursor N

(benzyloxycarbonyl)-L-aspartyl-L-Phenyl-alanine methyl ester at high yield was reported 

in a homogeneous reaction medium consisting of DMSO with boilysin and thermolysin 

as catalysts. The enzymes were enantio-selective (42). Papain catalyzed synthesis of 

chemotactic peptides in a mixture of Mcilvaine buffer and ethanol with high yields has 

been reported (43). Trypsin and chymopapain catalyzed synthesis of RGD tripeptide has 

been reported in Ethanol-Tris-Hcl buffer and CHES/NaOH buffer in high yields (-80%) 

(44). Corrine (45) reported the subtilisin- Carlsberg catalyzed synthesis of a tetrapeptide 

ester containing the unnatural amino acid allylglycine exhibiting ~-sheet structure in 

several miscible aqueous/organic solvent systems. 

The solubility of peptides in monophasic solvent systems coupled with the 

enhanced thermal stability of enzymes in such media makes them an ideal choice for 

synthesis of homo-oligopeptides and targeted/tailored co-oligopeptides. Papain-catalyzed 

oligomerization of Met, Tyr, Lys and Gly in monophasic aqueous organic media 
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consisting of varying amounts of acetonitrile/water has already been reported ( 46). The 

synthesis of both polar and non-polar amino acid oligomers could be achieved in such 

solvent systems with proper manipulation of the water content of the reaction medium. 

The optimal condition for Lys oligomerization was around 10 (%v/v) of water in 

acetonitrile while Met was polymerized at water contents greater than 15 (%v/v) in 

ACN/water systems. This unique property of monophasic solvent systems could be 

advantageous in the synthesis of peptides of Lys-Met with tailored composition. 

Papain catalyzed synthesis of co-oligopeptides of Lys and Met with tailored 

amino acid composition was studied in this work. The reaction was started with the water 

content required for oligomerization of the first substrate. After the first substrate was 

incubated for a specific period of time, the second substrate was added and the system 

composition was altered to favor its incorporation into the oligopeptide chain. The effect 

of temperature of the reaction media, time of incubation, time of addition of the second 

substrate, concentration of the substrates, system composition and type of anti-oxidant 

(Mercaptoethanol or L-Cysteine) on the co-oligomerization process was studied. The 

amino acid sequence of some of the oligomers synthesized was determined using Tandem 

Mass Spectrometry. A comparative study was done by carrying the synthesis of the same 

peptides in three-phase system with L-Cysteine as the reducing agent. 

MATERIALS AND METHODS 

Materials. L-Methionine Ethyl ester (MetEE) hydrochloride was purchased from 

Fluka Chemical Corp., (Milwaukee, WI). L-Lysine ethyl ester (LysEE) dihydrochloride, 

L-Cysteine hydrochloride monohydrate (Cys), n-Octane, 2-Mercaptoethanol, · N, N 

diisopropylethylamine (DIPEA), acetic acid and trifluoroacetic acid were purchased from 
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Sigma Chemical Co., (St.Louis, MO). 1,1,1,2,3,4,4,5,5,5-decafluorpentane (DFP) was 

purchased from Miller-Stephenson Chemical Company (Danbury, CT). Sodium salt of 

Hexane sulfonic acid (HSA), 0-Phosphoric acid, acetonitrile and ethanol (HPLC grade) 

were obtained from Fisher Scientific, (St.Louis, MO). Papain (EC 3.4.22.2, 25 units 

activity/mg, 28mg protein/mL) was provided by Novus International Inc., (St.Louis, 

MO). RPLC separation of the synthesized oligomers and co-oligomers was carried out 

with a XPERCHROM C-18 column (250mm x 4.6mm) obtained from P.J. Cobert 

Associates Inc., (St.Louis, MO). Nanopure water used in the experiments was obtained 

after filtration through a Synergy 185 filtration system purchased from Millipore Corp. 

(Billerica, MA). 

LC with UV detection. A model L-7000 · HPLC system (Hitachi High 

Technologies America, San Jose, CA) was used to carry out the HPLC separations. The 

system consisted of a reciprocating piston pump (L-7100) fitted with a column oven (L-

7300), autosampler (L-7200) and with a 50J!L injection loop. The analytes separated on 

reverse phase columns were then introduced into a UV-Vis absorbance detector (L-7420). 

ESI-Mass Spectrometer. An Ion Trap Mass Spectrometer equipped with an 

electrospray ionization interface (Model M-8000) purchased from Hitachi High 

Technologies America, San Jose, CA and a Triple Quadrupole Mass Spectrometer fitted 

with an electrospray ionization source (Model 1200) purchased from Varian Inc., Walnut 

Creek, CA were used for the mass analysis of the synthesized oligomers and co

oligomers. 

Synthesis of Lys oligomers at elevated temperatures. L-LysEE dihydrochloride 

(123mg) was added to a 7mL clear glass reaction vial containing 5mL of the solvent 
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consisting of 10% (v/v) water in acetonitrile. lOO~tL of DIPEA, 25~tL of mercaptoethanol 

and 30mg of papain was added and the sealed vial was then placed in an incubator 

shaker. The incubation temperature was varied from 25°C to 60°C and the incubation 

period was varied from 2h to 24h. The reaction was stopped by heating the reaction 

mixture to 80°C for 10 minutes. The supernatant was separated and rotary evaporated to 

near dryness. The precipitate was lyophilized. Dried products from both the supernatant 

and the precipitate were then reconstituted in 50% ethanol in water, centrifuged, filtered 

and analyzed in HPLC. 

Synthesis of Lys-Met co-oligomers in monophasic organic solvent system. A 

simple sequential addition strategy was adopted for the synthesis of Lys-Met co

oligomers in acetonitrile/water solvent system. The reaction was started at a water 

content favoring the oligomerization of Lys. After a specific period of incubation, MetEE 

was added and the water content of the solvent system was changed to favor the 

incorporation of the second substrate into the Lys oligomer. A simple schematic of the 

strategy is shown in Figure 1. 0.5mM LysEE.2HCl and 30 mg of papain were dissolved 

in 10 %( v/v) of water in acetonitrile. 25J,lL of mercaptoethanol (or 20mg of L-Cysteine) 

and lOOJ.!L DIPEA were also added to the reaction mixture. After a pre-established period 

of time, MetEE.HCl (from 0.1 to 0.5 mM) was added as the second substrate to favor the 

formation of Lys-Met co-oligomers. Papain prefers hydrophobic amino acids to 

hydrophilic amino acids as substrates for polymerization. To achieve an average 

composition of 3:1 (Lys: Met), it becomes clear that steps have to be taken to slow down 

the incorporation of Methionine. We previously reported that methionine oligomerization 

m acetonitrile/water systems increases with increasing water content while Lys 
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oligomerization is the highest at 10 (%v/v) of water in acetonitrile (46). With this in mind 

and for initial studies, the composition of the reaction medium was kept initially at 10 

(%v/v) of water in acetonitrile and at the time of addition of MetEE.HCl, the composition 

was changed to 15 (%v/v) of water in acetonitrile. This increase in water content serves 

two purposes: 1) it slows down the polymerization of Lys and 2) facilitates the 

incorporation of Met at a slow rate. 

After the reaction was completed, the mixture was rotary . evaporated to dryness. 

The product was reconstituted in 50% ethanol, centrifuged, filtered and then injected into 

HPLC for product characterization. Orthogonal confirmation was obtained by the 

analysis of the synthesized GO-oligomers using ESI (+)-MS. The incubation temperature 

was varied from 25°C to 60°C. The overall incubation period was also varied from 2h to 

12 h. The yield of oligomers synthesized was determined based on the residual substrates 

left in the oligomer product. 

Acid hydrolysis of purified oligomers. 100mg of the synthesized Lys-Met 

oligomers were placed in a 40mL vial containing 5mL of 6N Hydrochloric acid. The 

contents were stirred and kept at 110°C on a sand bath for 48h. A 1rnL aliquot of the 

solution was taken at 48h and transferred to a round bottom flask. The solution was dried 

with a rotary-evaporator and reconstituted with 5mL of water. The sample was diluted 

appropriately and analyzed with ESI (+)- MS to establish the relative concentrations of 

Lys and Met present in the oligomer product. 

Synthesis of Lys-Met tailored peptides in organic solvent systems in the 

presence of L-Cysteine. The synthesis of Lys-Met tailored peptides was carried out in 

three-phase system in the presence of L-Cysteine. 0.5mM LysEE was added initially to 
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the reaction medium that consisted of 2.5mL of DFP, 2.5mL of n-octane and 0.5mL of 

water. The second substrate (MetEE) was added initially or after 0.5 or 1h incubation 

period. The concentration of MetEE was either 0.1mM or 0.17mM. 30mg of papain and 

lOOj.tL of DIPEA were added to the reaction vial. For initial studies, 20mg of L

Cysteine was added as the reducing agent in place of 2-mercaptoethanol. The reaction 

mixture was placed in an incubator shaker for a period of 24h. Then, the reaction 

mixture was heated at 80°C for 5 minutes to stop the reaction. The product was rotary 

evaporated to dryness. The dried product was reconstituted in 50% ethanol, centrifuged, 

filtered and injected to HPLC. Orthogonal confirmation was obtained by analysis of the 

synthesized co-oligopeptides using ESI ( +) - MS. Once the starting substrate 

concentration ratios and time of addition of second substrate was established to obtain a 

nominal composition of Lys-Met peptides in the ratio of 3:1, the minimum amount of L

Cysteine required for enzyme stabilization was determined. 

HPLC analysis of synthesized oligomers and co-oligomers. The separation of 

residual monomers of Lys, Met, Lys oligomers and Lys-Met co-oligomers was carried 

out with a reverse phase C-18 column (250mm x 4.6mm i.d, 5~) and then detected with a 

fixed wavelength UV-Vis detector maintained at 210nm (Hitachi High Technologies 

America, San Jose, CA.). A gradient elution program was used and the mobile phase 

gradient was changed from 100% A (Water+ lOmM HSA +0.1% 0-Phosphoric acid) to 

75% B (50% acetonitrile+ lOmM HSA +0.1% 0 -Phosphoric acid) in 50 minutes. In all 

cases, the mobile phase flow rate was maintained at lmL min-1 and lOj.tL of the sample 

after filtration with a 0.22p, membrane filter was injected into the column. 
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ESI (+)-MS characterization of Lys-Met co-oligomers and acid hydrolysate. 

The distribution of Lys-Met co-oligomers was obtained by injecting the co-oligomers 

directly into a Hitachi M-8000 ion trap (3DQ- Ion Trap) Narian 1200 (Triple

Quadrupole) ESI-MS system. An electrospray ionization interface was used in both the 

cases. The operating parameters of the trap were as follows: Electrospray capillary 

voltage, +3.5KV; detector voltage, 400V; assistant gas heater temperature, 200°C; 

desolvator temperature and the aperture-! temperature, 200°C and 150°C respectively. 

The trap mass analyzer was scanned from 50- 1200amu. The operating parameters of the 

Triple-Quadrupole (operated in MS mode) were as follows: capillary voltage, +5.0 KV; 

desolvator temperature: 180°C; assistant gas h~ater temperature, 180°C; detector voltage, 

1600V. The mass range of the Quadrupole mass filter (Q1) was set from 100- 1300amu. 

Lys-Met co-oligomers were dissolved in 50% ethanol in water solution to form 

0.5mg/rnL solution. The solution was injected into the ESI-MS using a syringe pump 

(Harvard Apparatus) at a flow rate of lmUh. A make-up solution consisting of 50% 

acetonitrile in water with 0.1% acetic acid was infused along with the sample at a flow 

rate of 0.2rnUmin. 

MS/MS analysis of Lys-Met co-oligomers. The amino acid sequence of specific 

oligomer residues in the synthesized product was carried out with the Varian 1200 model 

Triple Quadrupole mass spectrometer operated in the MS-MS mode. Q1 was used to 

separate the targeted oligopeptide parent ions, which were then subjected to Collisionally 

Induced Dissociation (CID) in Q2. The fragment ions were then separated and monitored 

in Q3. All other analysis conditions were exactly the same as that mentioned in the 
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previous paragraph for characterization of co-oligomers in MS mode using the · same 

model instrument. 

RESULTS AND DISCUSSION 

The synthesis of co-oligomers of Lys and Met was pursued using two different 

solvent systems: ACN/water and a three phase systems. The ideal product from the 

viewpoint of animal nutrition should have a 3:1 ratio of Lys to Met. To achieve this, the 

following strategy was adopted. Lys was allowed to polymerize but before reaching 

completion Met was added to the reaction mixture. Therefore it is important to determine 

the effect of reaction parameters like temperature and incubation period on the 

oligomerization of Lys. The time-temperature data of Lys oligomerization provides 

information on the time taken for the completion of Lys oligomerization and also for the 

effectiveness of papain at high temperatures. Once the time taken for the completion of 

Lys oligomeriz~tion is determined, the second substrate MetEE could be added at a time 

before the oligomerization of Lysis complete, so that the co-oligomerization process may 

occur. The percent conversion of Lys and Met was determined for each case and the 

average composition ratio of the amino acids in the co-oligomer was obtained using the 

formula shown below: 

Average 

Lys : Met 

composition 

Lyso * XLys = -----"--
Meto * XMet 

where Lyso and Meto are the initial concentrations of Lys and Met and XLys and XMet. 

their conversion. The results obtained in an acetonitrile/water system were then 
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compared to that obtained in a three-phase system with L-Cysteine as the anti-oxidant in 

place of mercaptoethanol. 

Effect of temperature on Lys oligomerization in ACN/water system. The 

effect of temperature on the protease activity in monophasic organic solvent systems was 

studied first. Lys oligomerization was carried out in 10 (%v/v) water/ACN with the 

reaction temperature varying from 25°C to 60°C. The extent of monomer consumption 

was determined by assessing the residual Lys and LysEE left in the supernatant after 

different incubation periods and for each reaction temperature. The chromatogram of the 

precipitated Lys oligomers synthesized at 25°C, 37°C, 50°C and 60°C for an incubation 

period of 2h is shown in Figure 2(A-D). The chromatogram contains a series of peaks 

eluting after the retention time of LysEE corresponding to esterified residues of poly-Lys. 

The degree of polymerization and extent of monomer consumption remain constant after 

2h .. The poly-Lys species observed after 24h incubation period at 25°C were the same as 

those obtained after 2h. Similar results were obtained at the other temperatures. The ESI 

( + )-MS spectrum of the precipitated lysine oligomers for an incubation time of 2h at 25°C 

is shown in Figure 3. The oligo-lysine residues with intact ester at the C-terminal (NLys

(Lys)3 - LyseooEt + W) corresponding to mlz 303, 431, 559, 687, 815 and 943 were the 

dominant ions in the spectra. The ions were 128amu apart, representing a repeating Lys 

moiety. NLys- (Lys)2 - Lyse+ W, a tetramer of lysine should appear at a mlz 531 while 

NLys- (Lys)3 -Lyse+ W, a pentamer should appear at a mlz 659. These ions are less 

dominant in the spectra. 

The extent of Lys oligomerization obtained at different incubation times for 

various reaction temperatures was studied (Figure 4). The oligomerization yield was 
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monitored by determining the amount of residual amount of monomer and ester left in the 

reaction mixture. The following formula was used: 

Percent yield= { (AA-EE) initial- (AA-EE +free AA) rma~}/ (AA-EE) initial *100 

The results show that the concentration of free Lys and LysEE in the reaction mixture 

decreased rapidly in the presence of the enzyme. At an incubation temperature of 50°C 

the yield of the oligomerization process was the highest; more than 80% of the initial 

LysEE added to the reaction medium was incorporated into the oligomer chain. The 

results also show that the reaction reaches completion in about 2h. There is a decrease in 

the percent incorporation of Lys in the oligomer chain at 60°C. We speculate that this 

drop in monomer incorporation could be due to the drop in activity of papain at this 

temperature for a prolonged incubation period. 

Synthesis of Lys-Met tailored peptides in ACN/water system. The results 

discussed in the previous paragraphs show that lysine oligomerization goes to completion 

in two hours; hence MetEE should be added before 2h incubation of the initial reaction 

mixture. Starting substrate concentration ratio of Lys and Met, time of addition of the 

second substrate, incubation period, anti-oxidants, temperature of incubation and solvent 

composition of the reaction medium were varied to achieve a Lys to Met ratio of 3:1. 

The synthesis of tailored peptides was carried out with a starting substrate 

composition of Lys: Met at 1: 1. MetEE was added after an incubation time of lh. The 

ESI-MS spectrum of the synthesized oligomers is shown in Figure 5. The product profile · 

shows a series of peaks corresponding to Lys oligomers and Lys-Met co-oligomers. 

Lys3-Met oligomers were almost absent. The product of the reaction was injected into a 

HPLC column to determine the residual amounts of Lys, Met, LysEE and MetEE present 
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in the product. The results indicated that percent conversion of both Lys and Met was 

about 70%. The average composition of the synthesized co-oligomer was determined 

using the formula mentioned above and it was determined to be -1: 1 of Lys and Met, 

which is not the desired result. Because of the higher affinity of the enzyme for Met, 

more "unfavorable" conditions for the incorporation of Met are obviously needed. 

The synthesis of Lys-Met co-oligomers was also carried out with a starting 

substrate composition of 3: 1 (Lys: Met) in acetonitrile/water system to enrich the final 

reaction mixture in Lys. MetEE.HCl was added after 0.5h has elapsed and the water 

concentration was changed from 10% to 15% at the time of addition. The synthesis was 

carried out at 25°C, 37°C, 50°C and 60°C and the total incubation time was varied from 

2h to 12h. The chromatographic separation of the product obtained at 25°C for a period 

of 2h is shown in Figure 6A. The chromatogram consists of a series peaks eluting after 

the retention time of LysEE and MetEE. These peaks correspond to oligomers and co

oligomers of Lys and Met. The peaks were co-eluting in some cases and individual peak 

characterization was not feasible because of the use of the ion-pairing agent hexane

sulfonic acid in the separation. The use of HSA in ESI-MS will lead to salt formation at 

the capillary leading to increased background (23). The residual amount of Lys, Met, 

LysEE and MetEE present in the product was determined to estimate the percent 

incorporation of the both amino acids into the oligomers. There was no marked change in 

the chromatographic output obtained when the incubation period was increased to 6h 

while all other reaction conditions remained the same (Figure 6B). The concentrations of 

free Lys and ~et present in the product also remained essentially the same after 2h 

incubation of the reaction mixture. The product profile was determined by · analyzing the 
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synthesized oligomer product in ESI (+)-MS. The spectrum of Lys-Met co-oligomers is 

shown in Figure 7 A. The spectrum consists of a series of peaks corresponding to homo

oligomers of lysine and hetero-oligomers of Lys-Met. The homo-oligomers, though 

present, were less dominant than the hetero-oligomers. The spectral output of the product 

synthesized when the incubation time was increased to 6h without any change in other 

reaction parameters showed no differences (Figure 7B). The product has nearly the same 

distribution as the one obtained at 2h with the exception of an increase in the intensity of 

Lys2-Met. 

The ESI (+)-MS spectral output of Lys-Met co-oligopeptides synthesized at 

incubation temperatures of 37°C and 50°C showed a series of peaks appearing at a mass 

difference of 128 amu corresponding to oligo-Lysine residues. Small amounts of hetero

oligomers of Lys-Met were also present in the product. The relative abundance of 

oligomers of Lys, Met and Lys-Met co-oligomers synthesized under these conditions is 

shown in Table 2. The higher abundance of Lys oligomers when compared to Met 

oligomers and Lys-Met co-oligomers clearly indicates that the incorporation of Met in the 

oligomer chain was much lower to that of Lys. This was further confirmed by assessing 

the amount of residual Lys and Met present in the oligomerization product. These results 

indicated that more than 55% of the initial MetEE remained as free monomer even after 

12h incubation. This could be explained to some extent based on the oligomerization 

profile of Lys at these temperatures. The yield of Lys oligomerization is the highest at 

50°C. At these high temperatures a change in the selectivity of papain can occur in such 

monophasic solvent systems (23) making Lys a more favorable substrate than Met. 

However, when the reaction temperature was elevated to 60°C, there was a significant 
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change in the product profile. The spectrum consists of a series of peaks corresponding to 

hetero-oligomers of Lys-Met along with homo-oligomers of Lys. The product 

distribution though similar to that obtained at 25°C, shows a slightly higher abundance 

for homo-oligomers of Lys (Table 2). The efficiency of Lys oligomerization was much 

lower at 60°C, than at other temperatures and this could be the possible reason for the 

increased.formation of hetero-oligomers when compared to 37°C and 50°C. Although the 

product distribution favored the formation of co-oligomers, determination of residual Lys 

and Met shows that the incorporation of Lys and Met in the oligomer chain was only 

around 50%. Similar results were obtained when mercaptoethanol was replaced with 

20mg of L-Cysteine as the reducing agent in the reaction medium. This indicates that L

cysteine could be an effective replacement for mercaptoethanol, which is very toxic. 

The effect of the time of addition of the second substrate on the oligomerization 

process was studied next by adding MetEE.HCl after an incubation period of lh. The ESI 

(+)-MS spectrum of the product (Spectrum not shown) showed a product profile that 

closely resembles the profile obtained for the oligomer product with 0.5h addition of 

MetEE.HCl (Figure 7A). The only difference is a slight increase in the ratio between 

homo-oligomers and co-oligomers (Table 2). The residual monomer analysis shows a 

decrease in the incorporation of Met (-55%) in the oligomer chain, down to 55% from 

the 70% observed when MetEE.HCl was added after 0.5h. Similar results were obtained 

for 37°C, 50°C, and 60°C for all incubation times. When MetEE.HCl is added after a 

period of lh, most of the Lys monomers have been already converted into oligo-Lys and 

thus very little of it is available for co-oligomerization with Met. 
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The percent conversion of starting substrates into oligomers was determined in 

each case by assessing the residual amounts of Lys, LysEE, Met and MetEE present in 

the product. Percent conversion of Lys and Met substrates into oligomers for different 

reaction conditions with a starting substrate ratio of 3: 1 (Lys: Met), the addition of 

second substrate MetEE after 0.5h and 1h incubation of the initial reaction mixture is 

given in Table 1. Only when the incubation temperature is 25°C or 60°C with a starting 

substrate concentration of 3:1 (Lys: Met) and 0.5h addition of MetEE.HCl, the 

conversion of Lys and Met in the oligomer chain is nearly the same (- 70% and 50% 

respectively) indicating their presence in the oligomer product in the molar ratio of 3:1 

(Lys: Met). This was further confirmed by determining the average composition of the 

product (Table 1). It is clear from this table that for a starting substrate ratio of 3:1, with 

0.5h addition of MetEE.HCl the nominal composition value is close to 3:1 at 25°C and 

60°C. There is slight reduction in the incorporation of Met in the oligomer chain when the 

second substrate MetEE.HCl is added after an incubation period of 1h (Table 1). As a 

result, there is a net increase in the molar ratio of Lys: Met; close to 4:1 in the oligomer 

product, as is shown in Table 1. 

The effect of water content in the reaction medium on co-oligomerization was 

studied to maximize the distribution of tailored co-oligopeptides in the final product. The 

water content at the time of addition was changed from 15, 20, 25 and 30% (v/v) of water 

in acetonitrile. The starting substrate ratio was maintained at 3:1 (Lys: Met); the second 

substrate MetEE.HCl was added after 0.5h incubation; reaction temperature was 

maintained at 25°C and the mixture was incubated for 6h. Figure 8 shows the ESI ( + )

MS spectrum of the product synthesized when the water composition of the reaction 
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medium was changed to 20%. The spectrum shows an increase in the formation of Lys

Met co-oligopeptides with very little formation of homo-oligomers of Lys and Met. The 

relatively large amounts of homo-oligorners of Lys present when the water content of the 

reaction medium was changed to 15% (Figure 7A) is now absent or present in relatively 

lower amounts. The assessment of residual amounts of Lys and Met present in the 

product also shows that the incorporation of Lys and Met in the oligomer chain did not 

change considerably with the change in water content from 15% to 20%. ESI (+)-MS 

spectrum of purified Lys-Met co-oligomer acid hydrolysate is shown in Figure 9. The 

spectrum contains ions appearing at mlz 147 and 150 corresponding to Lys and Met. 

However, the dominant ions in the spectrum appeared at m/z 130 and 133 corresponding 

to Lys and Met fragment ions with the loss of NH3. The relative intensities of these ions 

were measured to obtain the molar concentration of Lys and Met in the product. The 

analysis revealed that the actual molar composition was 3.25:1. The ESI (+)-MS 

spectrum of the oligomers synthesized when the water composition was changed to 30% 

is shown in Figure 10. The spectrum shows the presence of a series of peaks 

corresponding to homo-oligomers of Met with lower amounts of co-oligomers of Lys

Met. Therefore, by manipulating the reaction medium composition product profile can be 

tailored without changing the molar concentration of the amino acids in the oligomers. 

The effect of change in composition of the reaction medium on the percent conversion of 

monomers is shown in Figure 11. When the water composition was increased beyond 

20%, there was a noticeable drop in the conversion of Lys while the conversion of Met 

showed a considerable increase. As the water composition increases beyond 20% (v/v) of 

water in acetonitrile the system tends to behave in a manner . similar to 100% aqueous 
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systems. This results in an increased hydrolysis of preformed Lys oligomers dropping the 

net conversion of Lys while it favors the formation of Met oligomers. 

Tandem MS analysis of specific co-oligomer residues in the synthesized product 

was carried out to determine the sequence of the amino acids in the residues. MS/MS 

analysis of different oligomer residues such as Lys2-Met, Lys3-Met and Lys4-Met in the 

product synthesized with a starting concentration of 3: 1 (Lys: Met) for O.Sh addition of 

MetEE was performed using a Varian Triple Quadrupole MS (Model 1200). The 

daughter ion spectrum obtained from the CID of Lys3-Met (mlz- 534amu) parent ion is 

shown in Figure 12. A detailed explanation of peptide fragmentation and possible 

daughter ions is well documented in textbooks and review articles (26). From the 

fragment daughter ions in the spectrum we speculate the possible sequence of the Lys3-

Met residue analyzed was Lys-Met-Lys-Lys. From the fragment daughter ions obtained 

for different residues, we speculate that Met is the second residue in all cases. It seems 

like before the addition of Met, the partial consumption of Lys (as it forms dimers and 

higher oligomers) leaves the necessary amount of Lys to react immediately with Met. 

After that initial addition the dimer Lys-Met becomes the substrate for further additions 

of Lys (either as monomers, dimers, or higher oligomers). 

The above results suggest that a large excess of Lys would decrease the 

incorporation of Met in the product. This was confirmed by performing the synthesis 

with a Lys to Met ratio of 5 to 1. The product distribution in this case shows an increase 

in homo-oligomers of Lys and a decrease in Lys-Met co-oligomers (Table 3). The same 

was true even when MetEE.HCl was added after lh incubation. No attempts were done 

beyond that time because the polymerization of Lys is expected to be complete after 
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approximately two hours. HPLC analysis showed that less than 35% of the initial MetEE 

added to the reaction mixture was incorporated in the oligomer chain in most cases. 

Percent conversion of Lys and Met substrates into oligomer product for different reaction 

conditions with a starting substrate ratio of 5: 1 (Lys: Met), the addition of second 

substrate MetEE after 0.5h and 1h incubation of the initial reaction mixture is given in 

Table 1. The percent incorporation of Lys into the product is much higher than the 

incorporation of Met independently of its time of addition (either 0.5 or 1 h). Table] 

shows that the average composition of Lys: Met in the co-oligomer was higher than 10:1 

in most cases. In all cases, the reaction was completed in 2 h; there was no observable 

difference in the residual amounts of Lys and Met left in the oligomer product after this 

time period. 

These results show that a starting substrate concentration of 3:1 (Lys: Met) when 

incubated at 25°C for a time period of 2h with MetEE added after 0.5h should result in 

the de$ired composition of Lys-Met (3-1) in the tailored peptide. 

Synthesis of Lys-Met tailored peptides in three-phase system with L-cysteine. 

The ESI ( +) - MS spectra of co-oligomers synthesized in a three-phase system with a 

starting substrate ratio of 3:1 (Lys: Met) with simultaneous addition of Met along with 

Lys for a 24h incubation period is shown in Figure 13. The homo-oligomers present in 

the spectrum were less dominant than the hetero-oligomers. Figure 14 shows the ESI 

(+)-MS spectra of Lys-Met co-oligomers synthesized in three-phase system with a 

starting substrate ratio of 3:1 (Lys: Met) with 0.5h addition of Met along with Lys for a 

24h incubation period. Hetero-oligomers of Lys-Met though present in the spectrum were 

less dominant than homo-oligomers of Lys. Finally, tandem MS analysis shows that the 
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possible sequence of the Lys3-Met residue is Lys-Met-Lys-Lys, which is the same as the 

sequence of the residues obtained in monophasic system. A similar sequence with Met as 

the second residue was obtained in all the co-oligomer residues analyzed. 

The residual amount of Lys, LysEE, Met and MetEE left after the reaction was 

completed was determined to estimate the percent monomer incorporation in the 

oligomer chain. The plot of percent conversion as a function of time of addition of second 

substrate Met is shown in Figure 15 for starting substrate concentrations of 3:1 and 5:1. 

There is a slight decrease in the percent incorporation of Met with a delayed addition of 

Met to the reaction medium. The conversion of both Lys and Met is nearly the same 

( -70% ). Therefore, when the substrates are added simultaneously, the average 

composition of the product is approximately the same as the starting substrate 

composition. 

The minimum amount of L-Cysteine required for maintaining the activity of 

papain in three phase system was also studied. The synthesis of Lys-Met co-oligomers 

was carried out with a starting substrate ratio of 3:1 (Lys: Met) with simultaneous 

addition of Met along with Lys. The amount of L-Cysteine added to the reaction medium 

was varied from 0.5mmole to 3.3mmole. Percent conversion in each case was determined 

based on the residual amount of monomers left in the reaction medium. Figure 16 shows 

that beyond 0.5 mM of L-cysteine added the conversion becomes independent of cysteine 

concentration. The mass spectrum of the synthesized product shows no change in 

product distribution upon changes in the amount of L-cysteine added. Finally, the results 

obtained with L-Cysteine are similar to that obtained with mercaptoethanol as the 

reducing agent in three phase system (48). 
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Simultaneous addition of Lys and Met is the best approach to synthesize co

oligopeptides of the required average composition in three phase systems because there is 

no appreciable change in the amount of monomer incorporated into the co-oligopeptide 

with sequential addition of the substrates. This must be contrasted with the results 

obtained when the synthesis was done in ACN/water systems where the sequential 

addition of substrates was needed. 

Conclusions. Papain catalyzed oligomerization of Lys at elevated temperatures 

was successfully carried out. The synthesis of Lys-Met co-oligopeptides with the desired 

final average composition of 3:1 (Lys: Met) was demonstrated successfully in 

acetonitrile/water solvent and in three-phase systems. Whereas it was necessary to 

implement a sequential addition approach in ACN/systems, the synthesis using three 

phase systems was successful when both substrates were added simultaneously. The 

reaction parameters were successfully optimized in monophasic system as follows: 

starting substrate concentration ratio 3:1 (Lys: Met); Time of incubation 2h; Time of 

addition of second substrate 0.5h; temperature of incubation 25°C; final reaction medium 

composition 20 (%v/v) of water in acetonitrile. Manipulating the solvent composition of 

the system could alter the co-oligomer distribution. The results also indicate that L

Cysteine could be used as an effective anti-oxidant for peptide synthesis. The MS/MS 

analysis of synthesized peptide residues in both solvent systems indicates the possible 

presence of Met as the second amino acid in the sequence of some co-oligomers. 

LIST OF ABBREVIATIONS 

Met, Methionine; Lys, Lysine; K, Lysine; M, Methionine; R, Arginine; LysEE.2Hcl, 

Lysine Ethyl Ester di-hydrochloride; MetEE.Hcl, Methionine Ethyl Ester Hydrochloride; 
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MHA, Methionine Hydroxy Analogue; CHES, 2-(N-Cyclohexylamino) ethane Sulfonic 

Acid; HPLC, High Pressure Liquid Chromatography; RPLC, Reverse Phase Liquid 

Chromatography; ESI-MS, Electrospray Ionization-Mass Spectrometry; HSA, Hexane 

sulfonic acid; UVNis, UltravioletNisible; ACN, Acetonitrile; MS, Mass Spectrometry; 

MS/MS, Tandem Mass Spectrometry; RGD peptide, Arg-Gly-Asp peptide; Arg, 

Arginine; Asp, Aspartate; Gly, Glycine 
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FIGURES AND TABLES 

First substrate- Water composition favoring its oligomerization 

Incubation for a specific time period 

Second substrate addition - Change water content 

Allow reaction to completion 

Figure 1: A simple schematic ofthe strategy adapted for enzymatic synthesis oftailored 
peptides in monophasic system. 
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Figure 2: Chromatogram of precipitated Lys oligomers synthesized in 10 (%vlv) of 
water in acetonitrile system for an incubation period of2h atA) 2sDc B) 3'f1C C) srfc 
and D) 60°C. Separation was achieved in a RPLC C-18 column with HSA as the ion
pairing agent in the mobile phase. Separation was achieved in a RPLC C-18 column 
with a mobile phase gradient comprising of 100%A (Water+ 10mM HSA +0.1% a
Phosphoric acid) initial to 75% B (50% acetonitrile+ 10mM HSA +0.1% a
Phosphoric acid) in 50 minutes. 
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Figure 3: Mass spectrum of precipitated lysine oligomers synthesized in 10 (%vlv) of 
water/acetonitrile system after 2h incubation at 2SOC obtained through direct injection 
ESI ( +) -MS. The spectrum shows the presence of series of peaks corresponding to 
oligo-lysine. 

-



100 
90 
80 
70 
60 "C 

-+-T=25 C 
Gi 

50 > 
~ 40 0 

30 

-T=37C 
-ts-T= 50 C 

"""'*""- T = 60 C 

20 
. 10 

0 
0 5 10 15 20 25 30 

Time (hrs) 

Figure 4: Effect of incubation period on the yield of Lys oligomers synthesized in I 0 
(%v/v) of water/acetonitrile system at different incubation temperatures. 
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Figure 5: Direct injection ESI (+)-MS spectrum of Lys-Met co-oligomers synthesized 
in water/acetonitrile system after 24h incubation period for a starling substrate ratio of 
Lys: Met (1:1). The second substrate MetEE.HCl was added after lh incubation of the 
reaction mixture and the system composition was changed to 15 (%vlv) of 
water/acetonitrile. The spectrum shows the presence of series of peaks co"esponding 
to oligomers of Lys, Met and co-oligomers of Lys-Met. 
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Figure 6: Chromatogram of Lys-Met co-oligomers synthesized in water/ acetonitrile 
system at an incubation temperature of 25°C with a starting substrate ratio of 3:1 (Lys: 
Met) and O.Sh addition of second substrate MetEE.HCl for an incubation period of A) 

. 2h and B) 6h. The system composition was changed to 15 (%v/v) of water in 
acetonitrile at the time of addition of MetEE.HCl. Separation was achieved with a 
RPLC C-18 column using a mobile phase gradient mentioned in Figure 2. The 
oligomers co-eluted with one another making their identification difficult. 
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Figure 7: Direct injection ESI (+)·MS spectra of Lys-Met co·oligomers synthesized in 
water/ acetonitrile system at an incubation temperature of 2sDC with a starting 
substrate ratio of 3: I (Lys: Met) and O.Sh addition of second substrate MetEE.HClfor 
an incubation period of A) 2h and B) 6h. The system composition was changed to IS 
(%vlv) of water in acetonitrile at the time of addition of MetEE.HCl. The spectrum 
shows the presence of series of peaks corresponding to oligomers of Lys, Met and co· 
oligomers of Lys-Met. 
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Figure 8: Direct injection ESI (+)-MS spectrum of Lys-Met co-oligomers synthesized 
in water/ aceto~itrile system with a composition change to 20 (%v/v) of water in 
acetonitrile at the time of addition of second substrate MetEE.HCl for an incubation 
period of 6h at 2sDC with a starting substrate ratio of 3:1 (Lys: Met) and O.Sh addition 
of second substrate MetEE.HCl. The spectrum shows the presence of series of peaks 
corresponding to oligomers of Lys, Met and co-oligomers of Lys-Met. 
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Figure 9: Direci injection ESI ( +)·MS of acid hydrolysate obtained from Lys-Met co
oligomers. The co-oligopeptides were synthesized .in water/ acetonitrile system at an 
incubation temperature of 2s0C with a starting substrate ratio of 3:1 (Lys: Met) and 
O.Sh addition of second substrate MetEE.HCl for an incubation period of 6h. The 
system composition was changed to 20 (%vlv) of water in acetonitrile at the time of 
addition of MetEE.HCl. The spectrum shows the presence of ions co"esponding to Lys 
and Met. 
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Figure 10: Direct injectWn ESI (+)-MS spectrum of Lys-Met co-oligomers synthesized 
in water! acetonitrile system with a composition change to 30 (%v/v) of water in 
acetonitrile at the time of addition of second substrate MetEE.HClfor an incubatWn 
period of 6h at 2s'1C with a starting substrate ratW of 3:1 (Lys: Met) and O.Sh addition 
of second substrate MetEE.HCl. The spectrum shows the presence of series of peaks 
corresponding to oligomers of Lys, Met and co-oligomers of Lys-Met. 
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Figure 11: Effect of change in water content on the percent incorporation of Lys and 
Met in the oligomers synthesized in monophasic water/acetonitrile system. The 
synthesis was carried out with a starting substrate ratio of3:1 (Lys: Met) at 2$°Cfor an 
incubation period of 6h. The second substrate MetEE.HCl was added after O.Sh 
incubation ofthe reaction mixture. 
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Figure 12: MS/MS spectrum of Lys3-Met-OH (mlz- 534) co-oligopeptide synthesized 
in water/ acetonitrile system at an incubation temperature of 2S'C with a starting 
substrate ratio of 3:1 (Lys: Met) and O.Sh addition of second substrate MetEE.HCl for 
an incubation period of 6h. The system composition was changed to 20 (%vlv) of water 
in acetonitrile at the time of addition of MetEE.HCl. The mlz values of the fragment 
ions labeled in the spectrum indicate the possible sequence of the tetra-peptide to be 
Lys-Met-Ly-Lys. 
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Figure 13: Direct injection ESI (+)-MS spectrum of Lys-Met co-oligomers synthesized 
in three-phase system with a starting substrate ratio of 3:1 (Lys: Met) and 
simultaneous addition of second substrate MetEE.HCl for an incubation period of 24h. 
The spectrum shows the presence of series of peaks co"esponding to oligo men of Lys, 
Met and co-oligomers of Lys-Met. 
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Figure 14: Direct injection ESI (+)·MS spectrum of Lys-Met co-oligomers synthesized 
in three-phase system with a starling substrate ratio of3:1 (Lys: Met) and O.Sh addition 
of second substrate MetEE.HCl for an incubation period of 24h. The spectrum shows 
the presence of series of peaks corresponding to oligomers of Lys, Met and co-
oligomers of Lys-Met. · 
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Figure 15: Percent incorporation of Lys and Met into oligomers and co-oligomers 
synthesized in three-phase system with 20mg of L-Cysteine as the anti-oxidant in the 
reaction medium as afunction oftime of addition of second substrate MetEE.HClfor 
starting substrate concentrations of(A) 3:1 {Lys: Met} and (B) 5:1 {Lys: Met). 
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Figure 16: Percent incorporation of Lys and Met into oligomers and co-oligomers 
synthesized in three-phase system for a starting substrate concentrations of 3:1 (Lys: 
Met) for varying amounts of L-Cysteine added as the anti-oxidant for papain 
stabilization in three phase system. 
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Table 1: Nominal composition of Lys-Met peptides synthesized under different 
conditions in monophasic system (K-Lys; M-Met; Nom. Comp- ratio of K: M). 
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Time of Tem£eratme Incubation time (h) 
addition of (OC) 
MetEE.HCl 

(h) 2 4 6 12 

K M K-IVI K M K-M K M K-M K M K-M 

25 30 5 65 28 5 67 29 4 67 28 5 67 

37 65 2 33 67 3 30 68 3 29 67 3 30 
0.5 

50 75 2 23 77 3 20 77 2 21 78 2 20 

60 52 3 45 51 3 46 52 2 46 53 2 45 

25 58 2 40 57 2 41 57 3 40 58 3 39 

37 69 3 28 70 3 27 70 2 28 71 1 28 

1 
50 78 2 20 79 3 18 78 3 19 79 3 18 

60 62 3 35 63 3 34 62 2 36 . 63 2 35 

Table 2: Relative abundance of homo-oligomers of Lys (K), Met (M) and Lys-Met co
oligomers (K-M) synthesized in ACN/water system for different incubation periods and 
temperature with a starting substrate ratio of 3:1 (Lys: Met). The second substrate 
MetEE.HCl was added after O.Sh and 1h, respectively. The system composition was 
changed to 15 (%v/v) of water in acetonitrile at the time of addition of MetEE.HCl. 
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Time of Tem~erature Incubation time Q1) 
addition of C) 

MetEE.HCl 
(h) 2 4 6 12 

K M K-M K M K-M K M K-M K r.,.I K-M 

25 70 2 28 71 3 26 70 3 27 73 2 25 

37 78 I 21 79 2 19 79 I 20 79 2 19 
0.5 

50 81 2 17 82 2 16 81 2 17 82 2 16 

60 65 3 32 64 3 33 66 2 32 66 3 31 

25 73 3 24 74 2 24 75 3 22 74 3 23 

37 80 I 19 81 2 17 81 1 18 82 1 17 

1 
50 85 2 13 84 2 14 85 2 13 84 2 14 

60 68 3 29 61 3 30 68 2 30 69 3 28 

Table 3: Relative abundance of homo-oligomers of Lys (K), Met (M) and Lys-Met co
oligomers (K-M) synthesized in ACN/water system for different incubation periods and 
temperature with a starting substrate ratio of 5:1 (Lys: Met). The second substrate 
MetEE.HCl was added after 0.5h and 1h, respectively. The system composition was 
changed to 15 (%vlv) of water in acetonitrile at the time of addition of MetEE.HCl. 
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Abstract. Alpha hydroxy acids (AHAs) have received wide attention in cosmetic 

and animal-feed industries. Lactic acid, malic acid and the hydroxy analog of methionine 

(HMB) are important members of the AHA group. The chemically synthesized 

formulations of alpha hydroxy acids are a racemic mixture comprising of 50% Land 50% 

D forms. It is a well-documented fact that enantiomeric forms of chemicals can possess 

different activities. Enantio purity of chemicals is important in their use in 

pharmaceutical applications and it may play a significant role in nutritional and cosmetic 

applications as well. However, this role has not been fully documented because of the 

lack of enantio pure HMB and other AHAs. In this work, papain and chymotrypsin 

catalyzed peptide capping was evaluated for obtaining enantio pure HMB. Chymotrypsin 

catalyzed peptide capping was found to be a very fast and efficient tool to obtain 

enantiopure HMB. The enantio purity of products was evaluated with Reverse Phase 

liquid Chromatography and Chiral Liquid Chromatography-Mass Spectrometry. The 

results indicate that enantio-purity of greater than 95% was obtained in less than - 30 

minutes with chymotrypsin catalyzed capping HMB capping reaction. 

Keywords: Alpha hydroxy acids (AHAs), HMB, Lactic acid, Malic acid, enantiomers, 

enantio-enrichment, Chymotrypsin, Papain, Chiral Liquid chromatography-Mass 

Spectrometry 
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INTRODUCTION 

Met and Lys are the primary limiting amino acids in a number of animal species. 

Therefore, supplementation of these amino acids in the feed is required for their proper 

growth (1, 2). Studies indicate that 40 to 80% of Met in the feed proteins is used by 

microbial colonies of the digestive system (3, 4, 5) and is not available for the animal. 

When crystalline forms of these amino acids are supplemented, the · pre-gastric 

fermentative step converts these amino acids to short chain fatty acids and ammonia (6, 

7). Structural manipulation of these amino acids to provide effective resistance to 

microbial degradation is one method to achieving high by-pass of these amino acids in 

the digestive system (8). One of those strategies involves the supplementation of amino 

acid analogs. HMB (1-hydroxy methylthio butanoic acid), also known as MHA is an 

analog of Met (The structures of Met (A) and HMB (B) are shown in Figure 1). Studies 

have proven the effectiveness of HMB as a high by-pass Met feed supplement for 

poultry, swine, lactating cows, lambs and heifers (9, 10, 11). The rumen microorganisms 

do not recognize the terminal hydroxy group and hence HMB escapes the rumen intact 

(12, 13). HMB is converted to Met in the animal by a two-step reaction: 1) oxidation of 

the hydroxyl group and 2) subsequent trans-amination (14). A racemic mixture of HMB 

(89% DL-HMB and 11% water) is produced chemically in commercial scale and is sold 

under the trade name ALI MET by Novus International, St. Louis, MO. 

It is a well-established fact that different enantiomers have different biological 

activities. For example, only the L-form of Met is absorbed in the brush border 

membrane of the intestines (16). Supplementation of HMB till date has been in the form 

of a racemic mixture and the long-term effects of the individual enantiomers have not 
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been determined. Enantiopure forms of HMB have to be synthesized to evaluate their 

difference in activities and properties. Novus International reports have mentioned that lg 

of enantiopure HMB costs around $1000 and these high costs have prevented a detailed 

assessment of the properties of these enantiomers. It becomes necessary to develop an 

economically viable process to obtain enantiopure HMB. 

The three most common methods . to resolve optical isomers are direct 

crystallization, kinetic resolution and diastereomeric complex formation; A detailed 

description of these mechanisms and approaches is well documented and available 

elsewhere (16, 17, 18, 19). The most widespread procedure for enantiomeric resolution 

has been biocatalyst (enzymes) based kinetic resolution. Most enzymes act only on one 

form of the enantiomer while the other enantiomer could be recovered in excess from the 

unreacted residue (20). Lipases (EC 3.1.1.3) have been the preferred enzymes of choice 

for chiral resolution studies because of their high selectivity and specificity for one of the 

enantiomers. Lipase catalyzed resolution of racemic acids in bi-phasic medium by 

asymmetric esterification and trans-esterification was first demonstrated twenty years ago 

(21, 22). Lipase (Aspergillus Niger) catalyzed resolution of N-protected non-protein 

amino acids (e.g. Homocysteine, Ornithine, Citrulline), which are used as toxins and 

hormones through ester hydrolysis, have been reported (23). Lipase catalyzed kinetic 

resolution of numerous other substrates have been reported and an entire description is 

beyond the scope of this article (24, 25, 26, 27). We have reported procedures for the 

optical resolution of alpha hydroxy acids, especially HMB, through lipase catalyzed 

hydrolysis and esterification (16, 28). 
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Proteases belong to a class of enzymes that hydrolyze peptide bonds but under 

proper conditions they could be also used to catalyze highly enantio-specific peptide 

bond synthesis. Proteases like papain and chymotrypsin show an enhanced specificity 

towards L- amino acids while the D-amino acids remain unreacted (16, 29, 31). This 

property of proteases could be used to optically resolve racemic mixtures. For example, 

papain catalyzed enantio-enrichment of Met through the formation of oligomers of Met in 

aqueous system has been reported (29). L-Met was oligomerized while D-Met was not. 

We have also reported chiral resolution of Met using the same procedure in a monophasic 

aqueous organic system consisting of 40% water/60% acetonitrile (30). Proteases could 

also be used to obtain optically pure alpha hydroxy acids. When hydroxy acid capped co

oligomers are synthesized, only one form of the enantiomer is incorporated into the 

oligomer chain. Thus, the unreacted mixture is enriched in the other enantiomer. 

HMB capped co-oligomers of Met. Tyr, Phe, Lys, Arg and numerous other amino 

acids were synthesized in different solvent systems using papain as the catalyst (16, 29). 

Hydrolysis and the subsequent chiral LC-MS studies proved the enantio-selective 

incorporation of L-HMB in the peptide chain (16, 29). In this study, we present a simple 

and rapid approach for enantio-enrichment of HMB using a protease-catalyzed peptide 

capping reaction. Two approaches were followed. In the first one, HMB was 

incorporated into Phe, Met and Lys oligomer chain using papain and chymotrypsin as the 

catalyst. In the second, HMB-LysEE adducts were synthesized using chymotrypsin as 

the catalyst. After the reactions were completed, residual HMB ester was recovered, 

hydrolyzed and its enantio purity was assessed with chiral chromatography. 
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MATERIALS AND METHODS 

Materials. L-Lysine ethyl ester (LysEE) dihydrochloride, L-Cysteine 

hydrochloride monohydrate (Cys), n-Octane, L-Phenyl alanine ethyl ester (PheBE) 

hydrochloride, L-Methionine ethyl ester (MetEE) hydrochloride, N, N 

diisopropylethylamine (DIPEA), acetic acid, ammonium acetate and trifluoroacetic acid 

were purchased from Sigma Chemical Co., (St.Louis, MO). Anhydrous methanol, ethanol 

and propanol (200 proof), sodium phosphate (dibasic, anhydrous), sodium salt of Hexane 

sulfonic acid (HSA), 0-Phosphoric acid, acetonitrile and methanol (HPLC grade) were 

purchased from Fisher Scientific, (St.Louis, MO). 1,1,1,2,3,4,4,5,5,5-decafluorpentane 

(DFP) was purchased from Miller-Stephenson Chemical Company (Danbury, CT). 

Papain (EC 3.4.22.2, 25 units activity/mg, 28mg protein/mL) was provided by Novus 

International Inc., (St.Louis, MO). DL-Hydroxy methylthio butanoic acid (HMB-Alimet) 

was procured from Novus International, (St. Louis, MO). a- Chymotrypsin (EC 3.4.21.1, 

66 units /mg of solid, From Type II: Bovine Pancreas) crystallized thrice from 

chymotrypsinogen was purchased from Sigma Aldrich Co., (St. Louis, MO). RPLC 

separation of hydrolysate was carried out with a XPERCHROM C-18 column (250mm x 

4.6mm) purchased from P.J. Cobert Associates Inc., (St.Louis, MO). The Chirobiotic -

TAG column (250mm X 4.6mm) used for chiral separation of HMB was purchased from 

Advanced Separation Technologies Inc., (Whippany, NJ). The nanopure water used in 

the experiments was obtained after filtration through a Synergy 185 filtration system 

purchased from Millipore Corp. (Billerica, MA). 

Liquid Chromatography with UV detection. A model L-7000 HPLC system 

(Hitachi High Technologies America, San Jose, CA) was used to carry out the HPLC 
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separations. The system consisted of a reciprocating piston pump (L-7100) fitted with a 

column oven (L-7300), autosampler (L-7200) and with a 50J.!L injection loop. The 

analytes separated on the reverse phase columns were introduced into a UV-Vis . 

absorbance detector (L-7420). 

ESI-Mass Spectrometer. An Ion Trap Mass Spectrometer equipped with an 

Electrospray ionization interface (Model M-8000) purchased from Hitachi high 

Technologies America, San Jose, CA was used for the mass analysis of the synthesized 

oligomers and HMB capped co-oligomers. 

Synthesis of DL-HMB ester. DL-HMB was esterified· with anhydrous methanol, 

ethanol or propanol in the presence of HCI gas using a procedure described elsewhere 

16). The synthesized ester was rotary evaporated to dryness. The dried ester was 

reconstituted in water, centrifuged, filtered and injected into RPLC for characterization. 

The synthesized esters had a purity of -98%. 

Synthesis of Phe and Lys oligomers in three-phase system. L-PheEE 

hydrochloride (0.5mM) was added to a reaction flask containing 250 mL of DFP, 250 mL 

of n-octane, 50 mL of water, lOmL of DIPEA, 2 g of cysteine, and 300mg of papain. The 

reaction vial was incubated for 24h in an incubator shaker. The reaction was stopped by 

heating the mixture to 80°C for 5 minutes. The reaction product was rotary evaporated to 

dryness. The dried product was washed with lOmL of Nanopure water three times. The 

water washed oligomer product was lyophilized. The dried product was esterified with 

absolute ethanol in the presence of HCl gas. The esterification mixture was refluxed 

overnight. The reaction product was recovered by rotary evaporating the excess ethanol 

under vacuum. An aliquot of the dried Phe oligomer ester was made by dissolving it in 
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70% acetonitrile/30% water, centrifuged, filtered and injected into HPLC for 

characterization. Another aliquot of the dried oligomer ester was dissolved in DMSO, 

centrifuged, filtered and injected into ESI- MS for determining the oligomer distribution. 

A similar approach was used for the synthesis of Lys oligomers with LysEE as the 

substrate. In this case, the dried oligomers were dissolved in 50% ethanol/water for ESI

MS characterization. 

Synthesis of Met oligomers in aqueous system. Methionine oligomers were 

synthesized in an aqueous reaction media at pH 5.5 using papain as catalyst. 30.0 grams 

of methionine ethyl ester was dissolved in 100ml of nanopure water in a 500mL flat

bottomed flask. lOmM L-cysteine, l.OmM EDTA and O.lmole sodium citrate were 

added after the ethyl ester of methionine was dissolved. The contents were stirred and the 

pH was adjusted to 5.5. 300mg of crude papain was added to that mixture and the 

reaction mixture was kept at 37°C with constant shaking for 24h. Then, the reaction was 

stopped by heating the reaction mixture at 80°C for 5min. The mixture was transferred to 

200mL centrifuge vials and centrifuged at 10000rpm for 10 minutes to remove residual 

monomers and salts. The precipitate was washed thrice with 100 mL deionized water to 

remove residual monomers. The supernatant after the third wash was analyzed with 

HPLC to check for the presence of any monomers. The washed precipitate was dried by 

lyophilization. A known aliquot of the dried oligomer was made by dissolving it in 70% 

acetonitrile/30% water, centrifuged, filtered and injected into HPLC for characterization. 

Another aliquot of the dried oligomer was dissolved in DMSO, centrifuged, filtered and 

injected into ESI - MS for determining the oligomer distribution. 
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Synthesis and purification of HMB capped poly-Phe and poly-Met. 500mg of 

the purified Phe and Met oligomers were dissolved in IOmL of 60 % (v/v of 

acetonitrile/water) containing lmmole L-cysteine, O.lmmole EDTA and O.Olmmole 

sodium citrate. 500mg of HMBEE and 30mg of papain were added after the oligomers 

were dissolved. The reaction was allowed to proceed for 24h. The reaction was stopped 

by heating it at 80°C for 5min. The resultant mixture was centrifuged to separate the 

supernatant (residual Met and Phe oligomers and HMB monomers) from the precipitate 

( co-oligomers ). 

The precipitate was lyophilized. The dried precipitate was injected into HPLC

ESI (+)-MS to obtain the distribution of the synthesized co-oligomers. The freeze-dried 

oligomers were washed three times with IOOmL of water to remove any residual 

monomers and smaller oligomers of Met and Phe. The precipitate from this washing was 

dissolved thrice in DMSO and reprecipitated with water to remove residual HMB 

monomers. This washed precipitate was lyophilized to obtain pure co-oligomers. 

Acid hydrolysis of HMB-(Phe)n and HMB-(Met)n co-oligomers. 500mg of the 

synthesized HMB-Phe and HMB-Met co-oligomers were placed in a 40mL vial 

containing IOmL of 6N Hydrochloric acid. The contents were stirred and kept at 110°C 

on a sand bath for 48 h. A lmL aliquot of acid solution was after 8h and transferred to a 

round bottom flask. The solution was dried with a rotary-evaporator and reconstituted 

with 5mL of water. The sample was diluted and analyzed by reverse phase liquid 

chromatography to determine the percent incorporation of HMB in to the oligomer chain. 

Chymotrypsin catalyzed HMB capping of Lys oligomers. 50mg of Lys 

oligomer and 50 mg ofHMB-ME were added to a reaction vial containing 5mL of 50mM 
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sodium phosphate (dibasic) buffer (pH 7.8). To this vial, 250ttL (50units) of enzyme 

suspension (3.33mg/mL of sodium phosphate-dibasic) was also added. The reaction 

mixture was incubated in a shaker for 15, 30, 45, 60, 120 and 180 min. After each time 

period, a 250ttL aliquot was taken for analysis. This aliquot was diluted proportionately, 

centrifuged, filtered and 5p.L aliquot of the filtered product was injected directly into ESI 

(+) -MS for determining the product profile. The same procedure was repeated with 

HMBEE as substrate. 

Synthesis and recovery of HMB-LysEE dimer. HMB capped LysEE dimer was 

synthesized using the same procedure mentioned above for the capping of oligomers of 

Lys with HMB with the addition of HMBME, HMBEE and HMBPE substrate along with 

LysEE. The product was characterized by injecting it into ESI (+)-MS for 

characterization. 

The product (HMB-LysEE dimer plus unreacted substrates) was rotary 

evaporated to dryness. The dried product was washed with absolute ethanol thrice to 

remove residual unreacted HMB ester and residual HMB. The ethanol washings were 

then pooled, diluted to 50% ethanol/water mix, centrifuged, filtered and injected to RPLC 

for characterization. 

Acid hydrolysis of residual HMB ester. The pooled ethanol washing was rotary 

evaporated to dryness to recover the residual HMB ester and HMB. The recovered HMB 

ester was hydrolyzed with 5mL of 6N HCI. This mixture was placed in a heated sand 

bath maintained at 110°C for a period of 48h. The hydrolysate was rotary evaporated to 

dryness under vacuum. The resultant product was reconstituted in SrnL of water, 

centrifuged, filtered, characterized and quantified by HPLC. The enantiopurity of the 
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hydrolysate was detenhined by characterizing it using Chiral Liquid chromatography 

equipped with UV detection. 

Acid hydrolysis of HMB-LysEE dimer. The dried HMB-LysEE dimer product 

(ethanol washed and unwashed) was hydrolyzed using the same procedure mentioned 

above. The hydrolysate was dissolved in water, centrifuged, filtered and then injected 

into HPLC for characterization and quantification. The enantiopurity of HMB 

incorporated into the dimer was also established by characterizing the hydrolysate using 

chiralliquid chromatography equipped with UV detection. 

Reverse Phase Liquid Chromatography. The separation of A) Phe oligomers 

and HMB capped Phe co-oligomers; B) Phe, Met and HMB present in the co-oligomer 

acid hydrolysate and C) the residual HMB ester recovered by ethanol from the dried 

HMB-LysEE dimer and the corresponding monomer obtained from its acid hydrolysis 

was carried out with a reverse phase C-18 column (250mm x 4.6mm i.d) and detected 

with a fixed wavelength UV detector (Hitachi high Technologies America, San Jose, 

CA.). The separated analytes from the column were monitored at 210nm. The mobile 

phase flow rate was maintained at 1mL min-1 and lOJ.LL of the sample after filtration with 

a 0.22J.L membrane filter was injected into the column. 

The following gradients were used: 100% A (Water + 0.1% TF A) to 80% B 

(Acetonitrile+ 0.1 %TFA) in 50 minutes for the separation of Phe oligomers and HMB 

capped Phe co-oligomers; 100% A (Water+ 0.1% TFA) initial to 45% B (Acetonitrile+ 

0.1% TFA) in 20 minutes for the residual Phe, Met, and HMB in the co-oligomer acid 

hydrolysate; 100% A (Water+ 0.1% TFA) initial to 45% B (Acetonitrile+ 0.1% TFA) in 

30 minutes for residual HMB ester recovered by ethanol wash and the monomer obtained 
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from its acid hydrolysis, and 100% A (Water+ lOmM HSA +0.1% 0-Phosphoric acid) 

initial to 23% B (50% acetonitrile + 10mM HSA +0.1% 0-Phosphoric acid) in 15 

minutes for HMB-LysEE dimer acid hydrolysate. 

ESI (+)-MS characterization of oligomers and co-oligomers. Synthesized Phe 

oligomers, Phe oligomer ester and HMB capped Phe co-oligomers were dissolved in 

DMSO to form 0.5mg/mL solution. Synthesized Lys oligomers, HMB capped Lys co

oligomers and HMB-LysEE dimer was diluted to form 0.5mg/mL solution in water. A 

make-up solution comprising of 50% acetonitrile in water with 0.1% acetic acid was 

infused along with the sample at a flow rate of 0.2rnUmin into a Hitachi M-8000 ion trap 

mass spectrometry system using a syringe pump (Harvard Apparatus) at a flow rate of. 

1rnUhr. An Electrospray Ionization interface was used. The operating parameters of the 

3D Q-Ion Trap were as follows: Electrospray capillary voltage, +3.5KV; detector voltage, 

400V; assistant gas heater temperature, 200°C; desolvator temperature and the aperture-1 

temperature, 200°C and 150°C respectively. The 3D Q- Ion Trap mass analyzer was 

scanned from 50- 1200amu. 

LC-MS characterization of Met oligomers and co-oligomers. The LC-ESI-MS 

separation of Met oligomers and HMB-Met co-oligomers were carried out with a mobile 

phase gradient comprising of 100% A (Water + 0.1% acetic acid) initial to 80% B 

(Acetonitrile + 0.1% acetic acid) in 50 minutes. The separation was done in a RP C-18 

column. The mobile phase flow rate was maintained at 1mL min-1• The column effluent 

was split and 80% was introduced into a fixed wavelength UV detector set at 210nm. The 

remaining 20% was introduced into the ESI ( +) - MS ion trap mentioned in the previous 
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paragraph. The LC system used for this analysis was similar to the one mentioned for the 

analysis of Phe oligomers and co-oligomers. 

Chiral LC analysis of HMB enantiomers. The chiral separation of HMB 

enantiomers was done with an isocratic mobile phase gradient comprising of 70: 30 

mixture of 30mM ammonium acetate buffer (pH 4.0) and methanol with a Chirobiotic 

TAG (ASTEC, Inc.) column. The column effluent was monitored at 230nm. The mobile 

phase flow rate was maintained at 0.2mL min-1• lOJ.!.L of the sample after filtration with a 

0.22J.1. membrane filter was injected into the column. 

RESULTS AND DISCUSSION 

The enantiomeric resolution of HMB was attempted following two different 

approaches. In one approach, HMB was incorporated into oligomers of Phe, Met or Lys 

using either papain (Phe, Met) or chymotrypsin (Lys). A second approach consisted in 

the synthesis of dimers ofLys-HMB. 

Phe oligomers were synthesized in three-phase systems. The oligomers were 

washed with nanopure water thrice to remove any residual Phe and PheBE left. This was 

done to eliminate co-oligomerization of HMB with residual PheBE that might 

significantly increase the amount of HMB capped Phe co-oligomers. The analysis of the 

supernatant obtained after three water washes showed no residual monomers. This was 

confirmed by the RPLC analysis of Phe oligomers. The Phe oligomers were esterified 

for their HMB capping activation. The RPLC separation of the Phe oligomer ester is 

shown in Figure 2 A. The identification of peaks was made by comparing them against 

the retention time of Phe, PheBE, Phe-Phe dimer and Phe oligomers with intact free acid 

at the C-terminal. The chromatogram shows the presence of Phe oligomer residues 
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consisting of 2 to 7 amino acids. All the oligomers have an ester group at the C-terminal. 

Further orthogonal confirmation was obtained by injecting the esterified Phe oligomers in 

an ESI ( + )-MS ion trap mass spectrometer (Figure 2 B). The spectrum consists of a 

series of peaks appearing at m/z 782, 929 and 1076; the mass difference is 147amu .. 

This difference corresponds to a repeating Phe group. The spectrum also consists of 

another series of less dominant peaks at m/z 607, 754 and 901 that also correspond to the 

addition of a Phe group. The peaks at rnfz 754, 901, and 782 correspond to a pentamer of 

Phe ( NPhe - (Phe )3 - Phe c + W ) , a hexamer (NPhe - (Phe )4 - Phe c + W ) and a 

pentamer of Phe with ester intact at the C-terminal [NPhe - (Phe)3 - PhecooEt + W] 

respectively. The ions at 782 are dominant in the spectrum because of the esterification 

reaction. Higher or lower oligomers of Phe are absent because of problems in 

solubilizing Phe oligomers with DMSO. 

Previous results (28) showed that a monophasic system consisting of 40% 

water/60% acetonitrile is optimal for neutral oligomers. Thus, the capping of Phe 

oligomers with HMBEE was catalyzed with papain in 40% water/ 60% acetonitrile 

systems. The supernatant and precipitate were separated and characterized in RPLC and 

ESI-MS. HMB capped Phe oligomers precipitated out. The RPLC separation of HMB 

capped Phe oligomers is shown in Figure 3 A. The chromatogram consists of a series of 

peaks eluting after the retention time of PheBE and HMBEE. The tentative peak 

identification was based on the comparison of retention time against standards of Phe, 

PheBE, HMB, HMBEE and Phe oligomer substrates used as substrates. The comparison 

of Phe oligomer ester separation (Figure 2 A) and HMB capped Phe co-oligomers 

(Figure 3 A) shows a shift in retention time of separated peaks in the latter. This shift is 
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due to the reduced polarity of HMB capped Phe oligomer ester when compared to Phe 

oligomer ester. For example a Phe pentamer {(Phe)5-EE} elutes at a retention time of 

33min while a HMB capped Phe tetramer {HMB- (Phe)4-EE} elutes at 34min. The 

difference in retention times is due to the addition of a HMB residue in place of Phe. 

This difference becomes more pronounced for higher oligomers and corresponding co

oligomers. Figure 3 A also shows a significant amount of Phe monomer formed by the 

chemical hydrolysis of oligomers that occur in the presence of water. Further orthogonal 

confirmation of capping was obtained by analyzing the synthesized co-oligomers in ESI

MS. Figure 3 B shows the ESI ( + )-MS spectrum of HMB-Phe co-oligomers. The 

spectrum consists of a series of peaks separated by 147 amu appearing at m/z 620, 767 

and 914. This difference in m/z corresponds to the addition of a recurring Phe group. 

However, these ions do not correspond to Phe oligomers but rather to the addition of a 

HMB residue to Phe oligomers. The ions appear at an m/z value corresponding to HMB 

capped Phe oligomers with intact ester at the C-terminal end. The absence of other ions in 

the spectrum is due to solubility problems encountered with DMSO, as is the case with 

Phe oligomers. 

The precipitated Met oligorners synthesized in aqueous systems were washed 

thrice with water to remove any residual monomers. The RPLC analysis of the washing 

fluid shows also the removal of smaller chain oligomers (dimer, trimer, tetramer and 

pentamer) of Met. The RPLC separation of the Met oligomers is shown in Figure 4 A. 

The peak identification was carried out by obtaining the ESI-spectrurn of the individual 

peaks eluting out of the column. The chromatogram shows the complete absence of 

monomer of Met but trace amounts of lower oligomers. The ESI-MS spectrum of washed 
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Met oligomers is shown in Figure 4 B. The spectrum is dominated by the heptamer and 

octamer of Met with an intact C-terminal ester appearing at m/z 964 and 1095. The 

spectrum also shows the presence of Met hexamer, heptamer and octamer (mlz 805, 936, 

1067) with free acid present at the C-terminal. It is evident from the chromatogram and 

ESI-MS spectrum that ester intact oligomers are the dominant products. This eliminated 

the need for an additional esterification reaction in preparation for HMB capping in this 

case. 

Met oligomers were capped with HMBEE under conditions similar to that of the 

Phe oligomer capping reaction (40% water/60% acetonitrile) The LC-UV output of the 

purified HMB-Met co-oligomers is shown in Figure 5 A. Comparison of this 

chromatogram with Figure 4 A, shows the presence of additional peaks. These additional 

peaks were identified as HMB capped Met co-oligomers. The peak identification was 

done by obtaining the ESI-MS spectral output of each separated peak. Figure 5 B shows 

** ** . the ESI-MS output of peak labeled 5 and 6 m the LC-UV output. The spectrum shows 

an ion at mlz 834 and 965. These ions appear at a mass value 1amu higher than the 

corresponding Met oligomers. This corresponds to HMB capped Met pentamer (HMB-

(Met) 5-EE) and hexamer (HMB- (Met) 6-EE) respectively. 

When the RPLC separation of HMB capped Phe oligomers and HMB capped Met 

oligomers (Figure 3 A and Figure 5 A) are compared, it is evident that capping is more 

complete with poly-Phe than with poly-Met. More than 90% of the initial Phe oligomers 

were capped while only 65% of the initial Met oligomers were capped. Phe oligomers 

have a higher solubility than Met oligomers in monophasic system and hence were 

capped more efficiently than Met oligomers. 
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The amount of HMB incorporated into Met and Phe oligomers was determined by 

hydrolyzing the synthesized HMB capped co-oligomers under acidic conditions. Figure 

6 A and 6 B shows the RPLC separation of acid hydrolysate of HMB capped Phe and 

HMB capped Met co-oligomers. The separated peaks were identified and quantified by 

comparing them against standards of HMB, Phe and Met. Approximately 16% of the 

initial HMB was incorporated into Phe oligomers while only 11% was incorporated into 

Met oligomers. The percent HMB incorporated is less than half the initial amount and 

hence the unreacted HMBEE is not highly enantioenriched. Hence a different approach 

was utilized for obtaining enantiopure HMB with Lys oligomer as substrate. 

Lys oligomerization was carried out in a three-phase system (DFP/n

octane/water). The dried oligomer was injected into ESI ( + )-MS for characterization. The 

positive ion ESI-MS spectrum of synthesized Lys oligomers is shown in Figure 7. The 

spectrum contains a series of ions, which are 128 amu apart. This mass difference 

corresponds to the repeating Lys moiety. The dominant ions appeared at mlz 403, 531, 

659, 787 and 915 which correspond to the oligo-Lys residues with a free acid group at 

the C-terminal (NLys - (Lys)n - LyscooH + W). A tetramer of Lys, NLys - (Lysh -

LyscooH + W should appear at a mlz 531 while a pentamer NLys- (Lysh- LyscooH + W 

should appear at a mlz 659. There is another peak that appears at mlz 303. This peak 

corresponds to a dimer (NLys - LyscooH + W). 

The capping of Lys oligomers with HMB was done by incubating equal amounts 

of HMB methyl ester with Lys oligomers (molar ratio- 3:1) in a sodium phosphate 

dibasic buffer with chymotrypsin catalyst. The positive ion ESI-MS spectra of an aliquot 

taken from the reaction mixture incubated for a period of 15min with HMBME as a 
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substrate is shown in Figure 8 A. The spectrum consists of a series of ions appearing at a 

mass difference of 128amu. This mlz value is 4amu higher than poly Lys residues, which 

corresponds to the addition of one HMB moiety to the oligo-Lys residues. For example, 

when a HMB residue is added to a tetramer of Lys (NHMB- Lys- (Lys)z- LyscooH + 

W) it will appear at m/z 663, which is 4amu higher than the pentamer of Lys that will 

appear at m/z 659. The spectrum had a series of peaks appearing at mlz 435, 535, 663, 

791 and 919 corresponding to HMB capped poly Lys residues ranging from 2 to 6. The 

ion appearing at mlz 435 corresponds to HMB capped dimer of Lys with intact ester at 

the C-terminal end tHMB-Lys-LyscooEt + W). The spectrum also shows a small peak 

corresponding to an unreacted dimer of Lys. The ESI ( + )-MS of the sample incubated for 

a period of 30min with HMBME as substrate (Figure 8 B) shows the absence of any Lys 

oligomer residues indicating that the process of capping was complete in 30min. The only 

peaks appearing in the spectrum at mlz 535, 663, 791 and 919 were that of HMB capped 

poly Lys residues. An ion corresponding to doubly protonated HMB capped Lys hexamer 

also appeared in the spectrum (mlz 460). When the reaction period was increased beyond 

30min, there was a significant hydrolysis of higher oligomers to HMB capped dimer and 

trimer of Lys (Figure 9). Similar results were observed when HMBEE was used as the 

substrate (Figure 10 A, B). However, in this case only after an incubation period of 

60min the reaction went to completion. These results show that HMB is capped to theN

terminal end of the peptide and only one residue is attached. To simplify the processing 

steps, enantioenrichment studies of HMB were carried out by synthesizing HMB-LysEE 

dimer starting with HMB ester and LysEE. 
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The synthesis of HMB-LysEE dimer was carried out in the presence of 

chymotrypsin with HMB methyl ester and LysEE as substrates. The ESI ( + )-MS spectra 

of the product synthesized for an incubation period of 15min is shown in Figure 11 A. 

The spectrum shows a single residue appearing at m/z 307 corresponding to a dimer 

Illvll3-LysEE. The spectrum also shows the presence of residual LysEE. However, when 

the reaction medium was incubated for 30min, there was no residual LysEE left (Figure 

11 B). Another important aspect of this capping process is the exclusive formation of 

Illvll3-LysEE when HMB ester and LysEE were used as substrates. This result is quite 

different from the mixture of oligomers and co-oligomers obtained when the same 

substrates were used with papain (31). This also implies that the acyl-enzyme complex is 

formed with HMBME and LysEE acts as the nucleophile. If LysEE formed the acyl

complex with the enzyme, then oligomerization of Lys should also occur with the 

formation of HMB-LysEE dimer. Similar results though were obtained with HMBEE 

(Figure 12 A, B) and HMBPE (Results not shown), but the reaction was slower. The 

reaction went to completion in 60min with HMBEE and it was complete in 120min with 

HMBPE. The formation of only dimers is significant in terms of enantio-specificity of 

chymotrypsin. Only one HMB residue is incorporated for each LysEE residue. It is a 

well-established fact that proteases are specific towards L-form of the enantiomer (29, 

31). With this in mind, if we start with twice the stoichiometric amounts of HMB ester 

and the reaction is allowed to proceed to completion, then the residual HMB ester left in 

the reaction medium should be D-enriched. This hypothesis was validated by recovering 

the residual HMB ester, subjecting it to hydrolysis and characterizing it with Chiral LC. 
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The enantio-enrichment of HMB was determined with each ester substrate for 

incubation times from 15min to 180min. After each incubation period, the reaction 

mixture was dried by rotary evaporation to recover the synthesized HMB-LysEE dime 

and residual monomers. The dried dimer was washed with ethanol thrice to recover any 

residual HMB ester present. Ethanol washing removed only residual HMB ester and 

HMB while it did not remove any residual LysEE. 

The synthesized HMB-LysEE dimer was hydrolyzed (Unwashed and washed with 

ethanol). The difference in the amount of HMB present in the hydrolysate in both cases is 

a good estimate of the amount of HMB incorporated. Ethanol washing removes the free 

or unreacted HMB and hence the amount of HMB determined from the washed residue 

will correspond directly to the amount of HMB bound as a dimer. The RPLC separation 

of acid hydrolysate obtained from HMB-LysEE dimer synthesized with HMB:ME for an 

incubation period of 30min is shown in Figure 13 A . The hydrolysate consists of two 

peaks eluting at the retention times of HMB and Lys. The response for HMB in this 

chromatogram was nearly twice that obtained with the dimer hydrolysate after ethanol 

washing (Figure 13 B). The amount of HMB present in both cases was quantified by 

comparing their response with HMB standards. Such a comparison shows that the 

amount of HMB incorporated into HMB-LysEE with HMBME for 30min incubation 

time was approximately 45%. The amount of bound HMB was determined for each 

incubation period with each substrate. In case of HMBEE, only after 60min incubation 

46% of the initial HMB was bound while for HMBPE it took 120min for 44% of initial 

the HMB to be incorporated into the dimer. The optical purity of HMB present in the 

dimer washed with ethanol was determined by chiralliquid chromatography. The chiral 
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LC separation of HMB enantiomers present in the hydrolysate of washed HMB-LysEE 

dimer synthesized with HMBME substrate for an incubation period of 30min is shown in 

Figure 14 A. The chromatogram shows two peaks, which were identified by comparing 

them against the retention time of DL-HMB standard under the same conditions. It is 

evident that chymotrypsin acts only on the L-form HMB, which was incorporated in 

excess when compared to the D-form. The purity of L-HMB incorporated into the dimer 

was greater than 98%. When HMBEE was used as the substrate with an incubation time 

of 30 min, the chiral separation shoes that the enantiopurity of L-HMB incorporated in 

this case was also close to 98% (Figure 14 B). However, the enantio-purity of L

enantiomer incorporated into the dimer when HMBPE was used (30min incubation time) 

was close to 85% (Figure 14 C). Capping was much slower with HMBPE. This resulted 

in a higher amount of residual DL HMBPE after 30min incubation and washing the dimer 

with ethanol thrice did not remove all the residual HMBPE. Therefore, this residual DL 

HMBPE contributed to the low enantio-purity with HMBPE. This was resolved by 

extending the incubation to 120 min; in this case the amount of L-HMB incorporated into 

the dimer was approximately 98%. 

HMB ester cannot be separated in the Chirobiotic TAG column used for chiral 

separation and hence it has to be hydrolyzed to the corresponding free acid. The residual 

HMB ester left in the HMB-LysEE dimer was recovered by washing it with absolute 

ethanol. The RPLC separation of residual HMB:ME and HMB recovered from HMB

LysEE synthesized with methyl ester as substrate is shown in Figure 15 A. The 

identification of the separated peaks was done by comparing them against HMB and 

HMB:ME standards. The chromatogram shows that 57% of the initial HMB:ME added 
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was recovered. This correlates well with the amount of bound HMB ( 45%) determined 

by acid hydrolysis of washed and unwashed HMB-LysEE dimer. Figure 15 B shows the 

RPLC separation of the residual HMBME acid hydrolysate. The chromatogram shows 

the complete hydrolysis of HMBME to HMB. Quantification of HMBEE (Figure 16 A, 

B) and HMBPE (Figure 17 A, B) recovered from the reaction medium for an incubation 

period of 30min showed that 65% and 82% of initial HMB was recovered in each case, 

respectively. However, the amount of residual HMBEE was 55% and 85~ for an 

incubation time of 60min and 120min, respectively. The chiral separation of the residual 

HMB ester acid hydrolysate confirmed our initial hypothesis that it should be enantio

enriched. The chiral LC separation of the hydrolysate of residual HMBME recovered 

from HMB-LysEE for 30min incubation shows an enantiomeric excess e.e (DIL ratio) of 

92% (Figure 18 A). This correlates well with the amount of bound HMB (45%) 

determined by the hydrolysis of washed and unwashed dimer and the RPLC separation of 

HMBME recovered by ethanol. For the same incubation period, e.e was determined to be 

85% for HMBEE as a substrate (Figure 18 B) while it was only 65% with HMBPE. 

(Figure 18 C). Figure 19 shows the effect of reaction time on the e.e for different 

starting HMB ester substrates. When the reaction time was increased to 60min, the e.e for 

HMBEE was 94% while it was 91% with HMBPE for a reaction time of 120min. The e.e 

was the same (nearly 90%) for all HMB ester substrates when the synthesis extended 

beyond the time required for the completion of the reaction. 

Conclusions. Protease catalyzed capping of Phe, Met and Lys oligomers with 

HMB was carried out successfully. Our results show that chymotrypsin catalyzed 

hydroxy.,acid capping reactions are very rapid and completion is reached in less than 
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30min. The reaction of HMBME with LysEE yields the HMB-LysEE dimer exclusively 

as opposed to the co-oligomers formed with papain (29). In case of HMB, only the L

form of the hydroxy acid was incorporated into the dimer. The chiral separation of 

residual HMB show that it was D-enriched and a e.e of 90% could be achieved in 30min. 

There was no change in the Chirality of HMB incorporated once the capping reaction was 

complete indicating that chymotrypsin is enantio-specific towards HMB. Similar enantio 

enrichment studies with other hydroxy acids should be carried out to get a much broader 

picture about the specificity of chymotrypsin towards other hydroxy acids and also 

obtaining optically pure form of these compounds for evaluating their properties. 
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Figure 2: (A) RPC-18 separation of esterified Phe oligomers synthesized in three-phase 
system using a mobile phase gradient comprising of 100% A (Water+ 0.1% TFA) 
initial to 80% B (Acetonitrile + 0.1%TF A) in 50 minutes. The chromatogram shows the 
clear separation of Phe oligomer esters. (B) ESI (+)-MS of Phe oligomer ester 
synthesized in three-phase system. The spectrum shows the presence of series of peaks 
co"esponding to oligomers of Phe. 
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Figure 3: (A) RPC-18 separation of HMB capped Phe co-oligomers synthesized in 40% 
water/60%acetonitrile system with Phe oligomers as substrates. The separation was 
carried out using the same mobile phase gradient mentioned in Figure 2. The 
chromatogram shows the shift in retention of time of the eluting peaks, corresponding 
to the incorporation of HMB. (B) ESI (+)-MS of HMB capped Phe co-oligomer ester 
synthesized in monophasic aqueous organic system. HMB incorporation is confirmed 
by the presence of HMB-(Phe)n oligomer peaks in the spectrum. 
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Figure 4: (A) RPC-18 separation of Met oligomers synthesized in aqueous system. The 
separation was carried out using the same mobile phase gradient mentioned in Figure 
2. The chromatogram shows the clear separation of Met oligomers. (B) ESI (+)-MS of 
Met oligomer synthesized in aqueous system. The spectrum shows the presence of 
series of ions appearing at m/z values corresponding to Met oligomers. 
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Figure 5: (A) RPC-18 separation of HMB capped Met co-oligomers synthesized in 40% 
water/60%acetonitrile system with Met oligomers as substrates. The separation was 
carried out using the same mobile phase gradient mentioned in Figure 2. The 
chromatogram shows the presence of additional peaks identified as HMB-(Met)n co
oligomers. (B) ESI (+)-MS output of peak s•• and 6••in the RPLC separation of HMB 
capped Met co-oligomers synthesized in monophasic aqueous organic system. The mlz 
values correspond to HMB- (Met)s-EE and HMB-(Met)6""EE. 
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Figure 6: RPLC separation of (A) HMB-Phe co-oligomer acid hydrolysate and (B) 
HMB-Met co-oligomer acid hydrolysate. The separation was obtained with a C-18 
column using a mobile phase gradient comprising of 100% A (Water+ 0.1% TFA) 
initial to 45% B (Acetonitrile + 0.1% TF A) in 20 minutes. The chromatogram shows 
the complete hydrolysis of co-oligomers to Phe, Met and HMB. The percent HMB 
incorporation was -16%for Phe oligomers and -11%for Met oligomers. 
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Figure 7: ESI (+)·MS Spectrum of Lys oligomers synthesized in three-phase system 
with LysEE substrate. The spectrum shows the presence of series of peaks 
co"esponding to oligomers of Lysine. 
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Figure 8: ESI (+)-MS spectrum of HMB capped Lys oligomers synthesized through 
chymotrypsin catalysis with HMBME substrate for A) 15min and B) 30min incubation 
period. The spectra show the presence of additional peaks appearing at 4amu higher 
than Lysine oligomers. These peaks co"espond to HMB·(Lys), co-oligomers. 
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r:?igure 9: ESI (+)-MS spectrum ofHMB capped Lys oligomers synthesized through 
:hymotrypsin catalysis with HMBME substrate for an incubation period of 60min. the 
:pectrum shows the complete absence of peaks co"esponding to Lys oligomers and 
mly the presence of peaks co"esponding to HMB-(Lys)n co-oligomers. 
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Figure 10: ESI (+)·MS spectrum of HMB capped Lys oligomers synthesized through 
chymotrypsin catalysis with HMBEE substrate for A) 30min and B) 60min incubation 
period. The spectra show the presence of additional peaks appearing at 4amu higher 
than Lysine oligomers. These peaks correspond to HMB-(Lys)n co-oligomers. 
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Figure 11: ESI ( + )-MS spectrum of HMB-LysEE dimer synthesized through 
chymotrypsin catalysis with HMBME substrate for A) lSmin and B) 30min incubation 
period. The spectra show the exclusive formation of an HMB-LysEE dimer. 
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Figure 12: ESI ( + )-MS spectrum of HMB-LysEE dimer synthesized through 
chymotrypsin catalysis with HMBEE substrate for A) 30min and B) 60min incubation 
period. The spectra show the exclusive formation of an HMB-LysEE dimer. 
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·Figure 13: RPLC separation of acid hydrolysate obtained from HMB-LysEE dimer 
synthesized with HMBME substrate A) Un-washed and B) Washed with absolute 
ethanol. The separation was achieved with a C-18 column using a mobile phase 
gradient comprising of IOO%A (Water+ 10mM HSA +0.1% 0-Phosphoric acid) initial 
to 23% B (50% acetonitrile+ 10mM HSA +0.1% 0-Phosphoric acid) in 15 minutes. 
The chromatogram shows the clear separation of HMB and Lys present in the 
hydrolysate. The difference in the response of HMB from the two chromatograms 
revealed that 45% of the initial HMB was bound in the dimer. 
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Figure 14: Chiral LC separation of acid hydrolysate of washed HMB-LysEE dimer 
synthesized with A) HMBME B) HMBEE and C) HMBPE substrate. Separation was 
achieved with a Chirobiotic TAG column using an isocratic gradient of70: 30 mixture 
of 30mM ammonium acetate buffer (pH -4.0) with methanol. The chiral separations 
show the enantio-selective incorporation of L-HMB into the dimer by chymotrypsin. 



167 

JIM:B-ME 
0 . J~ 

I ~ U • .!JU 

u - 2~ 

:ot 

" Hl\l.ffi ~ u .:.w 
~ 
~ u .l.!:i 

I u 

" ~ 
0 H lU 

tLU!o:i 

0 . uu 

(A) 

(B) 

Figure 15: RPLC separation of A) Residual HMBME and HMB and B) Acid 
hydrolysate of residual HMBME recovered by absolute ethanol washing of HMB
LysEE dimer synthesized with HMBME substrate. Separation was achieved with a C-
18 column using a mobile phase gradient comprising of 100%A (Water+ 0.1% TFA) 
initial to 45% B (Acetonitrile+ 0.1% TFA) in 30 minutes. Quantification revealed 57% 
of the initial HMB-ME was recovered. The presence of only a HMB peak in the 
hydrolysate indicates the completion of acid hydrolysis. 
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Figure 16: RPLC separation of A) Residual HMBEE and HMB and B) Acid 
hydrolysate of residual HMBEE recovered by absolute ethanol washing of HMB
LysEE dimer synthesized with HMBEE substrate. Separation was achieved with a C-18 
column using a mobile phase gradient comprising of 100% A (Water+ 0.1% TFA) 
initial to 45% B (Acetonitrile+ 0.1% TFA) in 30 minutes. Quantification revealed 65% 
of the initial HMB-ME was recovered. The presence of only a HMB peak in the 
hydrolysate indicates the completion of acid hydrolysis. 
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Figure 17: RPLC separation of A) Residual HMBPE and HMB and B) Acid 
hydrolysate of residual HMBPE recovered by absolute ethanol washing of HMB
LysEE dimer synthesized with HMBPE substrate. Separation was achieved with a C-18 
column using a mobile phase gradient comprising of 100%A (Water+ 0.1% TFA) 
initial to 45% B (Acetonitrile+ 0.1% TFA) in 30 minutes. Quantification revealed 82% 
of the initial HMB-ME was recovered. The presence of only a HMB peak in the 
hydrolysate indicates the completion of acid hydrolysis. 
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Figure 18: Chiral LC separation of acid hydrolysis of residual HMB ester recovered 
from HMB-LysEE dimer synthesized with A) HMBME B) HMBEE and C) HMBPE 
substrate. Separation was achieved with a Chirobiotic TAG column using an isocratic 
gradient of 70: 30 mixture of 30mM ammonium acetate buffer (pH -4.0) with 
methanol. The chiral separations show the D-enrichment of residual HMB left in the 
reaction mixture. 
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Figure 19: Enantiomeric excess of HMB obtained with different HMB ester substrates 
for different incubation periods of chymotrypsin-catalyzed synthesis of HMB-LysEE 
dimer. 
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APPENDIX 

Synthesis of HMB capped bovine insulin. 150mg of Insulin was added to a 

reaction vial containing 30mL of solvent containing 40% (v/v) of 125mM sodium 

bicarbonate buffer in acetonitrile. To this 90mg of EDTA, 528mg of L-Cysteine was also 

added. 150mg of HMBEE was added to this reaction medium as the capping substrate. 

50mg of papain was added to catalyze the capping reaction. The reaction mixture was 

incubated for a period of 24h. After 24h, the reaction was stopped by heating the mixture 

at 80°C for a period of 5min. The reaction product was separated into a supernatant and 

precipitate. The supernatant was rotary evaporated to dryness while the precipitate was 

lyophilized to dryness. The dried supernatant and precipitate were then reconstituted in 

lOmL of 1% acetic acid solution, centrifuged, filtered and then injected into ESI-MS for 

characterization. 

Bovine Insulin standard and synthesized liMB-Insulin was diluted to form 

0.5mg/mL solution in 1% acetic acid. A make-up solution comprising of 50% acetonitrile 

in water with 0.1% acetic acid was infused along with the sample at a flow rate of 

0.2mL/min into a Hitachi M-8000 ion trap mass spectrometry system using a syringe 

pump (Harvard Apparatus) at a flow rate of 1rnlJhr. An Electrospray Ionization interface 

was used. The operating parameters of the 3D Q-Ion Trap were as follows: Electrospray 

capillary voltage, +3 .5KV; detector voltage, 400V; assistant gas heater temperature, 

200°C; desolvator temperature and the aperture-1 temperature, 200°C and 150°C 

respectively. The 3D Q- Ion Trap mass analyzer was scanned from 500- 3900amu. 

The procured insulin was first characterized using ESI (+)-MS. The ESI-MS 

spectrum of the procured insulin standard is shown in Figure A.l. The spectrum consists 

of a single peak appearing at mlz 979. This ~orresponds to a hexa-sodiated ion of insulin 

(Insulin+ 6Na+). The mass of bovine insulin used is 5734amu. There are a total of four 

basic amino acid residues in insulin that could stay protonated under the analysis 

conditions. This along with the terminal amine groups in the two chains leads to a total of 

six ionization sites. The sample was prepared in 1% acetic acid solution. Insulin has 

limited solubility in water, ethanol or acetonitrile and has high solubility in 1% acetic or 

hydrochloric acid and moderate solubility in 125mM sodium bicarbonate solution. Hence 
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for analytical characterization, insulin samples were prepared in 1% acetic acid solution 

while capping was done in a monophasic solvent system comprising of 40% 125mM 

sodium bicarbonate buffer and 60% water. Because of the highly acidic nature of the 

sample, all the possible ionization sites were sodiated resulting in a multiply charged ion 

of insulin. 

979 -
--

I ----
• - - - - - - ---

Figure A.l: ESI (+)-MS of Bovine Insulin in an ion trap mass spectrometer. The trap was 
scanned from 500-3900amu. 

Bovine Insulin capping with HMB was attempted in monophasic system. Phe is 

the N-terminal residue in one of the insulin chains. Earlier results show that Phe 

oligomers acted as a good substrate for capping with HMB in monophasic system. 

Hence, we attempted the capping of insulin with HMB under the same conditions 

replacing sodium citrate with sodium bicarbonate. After incubation, supernatant was 

separated from the precipitate. The ESI-MS spectrum of dried (rotary-evaporation) 

supernatant is shown in Figure A.2 (i). The spectrum shows the presence of two ions 

appearing at m/z 957 and 1468. The ion at mlz 957 corresponds to hexa charged insulin 

(Insulin + 6W) while the ion at mlz 1468 corresponds to tetra-charged ion of HMB 
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capped insulin (liMB-Insulin + 4W). The ESI-MS spectrum of the precipitate (Figure 

A.2 (ii)) revealed the presence of peaks appearing at mlz 1468, 1897, 2469 and 3405. 

"'''" 
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Figure A.2: ESI (+)-MS output of dried (i) Supernatant and (ii) Precipitate ofHMB
Insulin synthesized in monophasic aqueous organic system. 
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Of these peaks only the ion at m/z 1468 corresponds to liMB-Insulin (4W). The 

ESI-MS spectrum of the precipitate obtained from incubation of insulin under the 

reaction conditions with out any HMBEE showed the presence of the additional peaks 

appearing in Figure A.2 (ii) indicating that these additional peaks could be possible 

insulin hydrolysate. The MS data also shows the addition of only one HMB residue to the 

peptide. This shows that only one of the chains is capped in the protein. This is due to the 

stearic hindrance arising when both the terminal amino acid residues (Phe and Gly) are 

capped. Quantification revealed that nearly 50% of the initial insulin was capped with 

HMB. 
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