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ABSTRACT 

The principal objective of this research is to advance our understanding of how 

glass breaks.  Glass, a material well known for its brittleness, has been used widely but 

within a frustrating limit of its strength.    Generally, strength is not considered as an 

intrinsic property of glass, due to the difficulty of avoiding the presence of flaws on the 

sample surface.   The fiber drawing system and two-point bending (TPB) equipment 

developed at Missouri S&T allow the fabrication of pristine glass fibers and failure strain 

measurements while minimizing the effects of strength limiting critical flaws.  Several 

conditions affect the failure behavior of glasses, including glass composition, thermal 

history of melts and environmental conditions during the failure tests.  Understanding 

how these conditions affect failure helps us understand how glass fails. 

In this dissertation, failure strains for many different silicate and borate glasses 

were measured under a variety of experimental conditions.  Failure stresses for various 

silicate glasses were calculated using values of the nonlinear elastic moduli reported in 

the literature.  Inert intrinsic strengths for alkali silicate glasses were related to the 

structure and corresponding bond strengths, and the dependence of the inert strengths on 

faceplate velocity is discussed.  Inert failure strains were also obtained for sodium borate 

glasses.  Up to ~40% failure strain was measured for vitreous B2O3.  The addition of soda 

to boron oxide increases the dimensionality and connectivity of the glass structure and 

hence increases its resistance to deformation, as was observed in elasticity and brittleness 

measurements reported in the literature.  The increase in deformation resistance produces 

lower failure strains, a behavior also seen for alkali silicate and aluminosilicate glasses 

where the reduction of non-bridging oxygen increases the structure stiffness and leads to 

lower inert failure strain.  Fatigue effects on silicate glasses were studied by measuring 

the failure strains in water at different temperatures and at different loading rates, and in 

air with a range of relative humidities.  The dominant fatigue reaction for cross-linked 

network glasses is bond hydrolysis, whereas for alkali modified depolymerized glasses is 

ion-exchange reaction between alkali ions and water species.  The fatigue mechanism 

difference results in the difference in the humidity sensitivity of the reaction rate.  The 

dominant fatigue reaction also changes at around 50% relative humidity. 
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1. INTRODUCTION 

1.1. OVERVIEW OF GLASS STRENGTH 

Glass is found in many applications including windows, containers, insulation, 

lighting, etc.  The transparency, luster and durability of glass have been appreciated for 

thousands of years [1]. However, the use of glass has been limited by its notorious 

brittleness.   A common experience is to have glass objects that will readily break when 

subjected to a mechanical or a thermal shock.  Typically, the practical strength of a glass 

is around 14-70 MPa [1], but the theoretical strength of glass is several orders of 

magnitude higher.    

Assuming that glass is a flawless brittle solid, its theoretical strength is the 

amount of work done in pulling bonds apart and creating two new surfaces, and it was 

estimated to range from E/10 to E/π, where E is Young’s modulus [2].  As for fused silica, 

E = 70 GPa, thus its theoretical strength is from 7 to 22 GPa.  However, in the real world, 

most glasses are not ‘flawless’.  Practical strength is greatly reduced from its theoretical 

value due to strength-limiting flaws that form during processing or handling (for example, 

scratches or dents).  In addition, glass strength is reduced due to environmental fatigue 

effects, which will be discussed later. 

1.1.1. Effect of Flaws.  Inglis [3] studied the stress concentration of an elliptical-

shaped flaw in an infinite plate (Figure 1.1, [3]).  He used the theory of elasticity, 

assuming that the material is linear elastic and obeys Hooke’s law everywhere.  He found 

that the maximum local stress depends on the shape and size of the flaw: 

 

     =   × 2   ⁄  (1)

 

where    is the remotely applied stress (GPa) on an infinite plate,      is the maximum 

stress (GPa) at the edge of an elliptical flaw, c is the half crack length (mm) and ρ is the 

crack tip radius (mm).  This equation has its limit when trying to answer such questions: 

1) What is the maximum stress at the crack tip when the crack is extremely sharp 

(when ρ approaches 0)? 

2) Why do large cracks tend to grow easier than small cracks? 
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Figure 1.1.  Remotely applied tension on an infinite plate with an elliptical-shaped flaw. 

 

 

Griffith [4] advanced this study and suggested that having a maximum stress at 

the crack tip exceeding theoretical strength is not a sufficient criterion for failure.  He 

considered energy conservation laws of mechanics and thermodynamics and proposed the 

energy-balance concept to relate the loss in strain energy to the gain in surface energy (γ, 

J/mm2).  Assuming an elliptical thorough crack in an infinite plate, Griffith developed his 

solution for strength (σ, GPa) of a flawed brittle solid: 

 

  =  2    ⁄  (2)

 

in which, E is the Young’s modulus (GPa).  Since the flaw size c (mm) can vary by 

several orders of magnitude, the strength of glass was long considered to be an extrinsic 

property and depended on processing [1] (shown in Table 1.1).  
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Table 1.1.  Typical strength for glass samples based on experience [1]. 

Sample Condition Typical Strength 

Freshly drawn, pristine fibers ~0.7-10 GPa 

Handled fibers ~350-700 MPa 

Freshly drawn rods ~70-140 MPa 

Abraded rods ~14-35 MPa 

Used glass products ~14-70 MPa 

 

 

Considering a flawed brittle solid, generally, there are three modes (Figure 1.2) of 

crack-surface displacement used in fracture mechanics: Mode I is an opening (tensile) 

mode; Mode II is a sliding (in-plane shearing) mode; and Mode III is a tearing (torsional 

shearing) mode.    

 

 

 
Mode I                       Mode II                    Mode III 

Figure 1.2.  Three modes of crack-surface displacement. 

 

 

Mode I is the most common load type and its corresponding stress intensity factor 

is KI (MPa·m1/2).  The stress intensity factors are used to predict the stress state (or ‘stress 

intensity’) near the crack tip caused by a remote load or residual stresses (σ, MPa): 

 

   =  √   (3)

 

in which c is the half size of crack (m).  When this stress state becomes critical (KIC), the 

crack will grow at its critical speed and the material will fail. The load at which this 
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failure occurs is referred to as the fracture strength.  Thus, KIC is an important property of 

a material in fracture mechanics, called fracture toughness.  For silicate glasses, a typical 

value of fracture toughness falls in the range of 0.7 to 0.9 MPa·m1/2 [5].   Equation (3) is 

often used in glass strength estimations.  However, the validity of this equation in studies 

of ‘flaw-free’ glass samples is questionable. 

1.1.2. Conventional Strength Measurement.  Many efforts have been made to 

prepare flaw free glass samples [6].  Freshly drawn glass fibers (tested within hours after 

formation) are often used because they can be prepared and handled in such a way as to 

avoid damaging their surfaces (scratches or dents), and so pristine fibers usually give the 

greatest strength (Table 1.1).  Conventional methods of measuring strength of glass 

include tensile tests [7-10], three-point bend tests [11] and four-point bend tests [12] 

In a tensile test, a sample (usually in forms of a fiber or a rod) is gripped at both 

ends and pulled in tension until it fails.  This technique provides information of 

deformation and applied load, which can be converted to strain and stress, based on the 

dimension of the sample.  However, in a tensile test, the sample must be gripped on both 

ends and this may damage the sample surfaces causing a decrease in measured strength.   

Another disadvantage of the tensile test is that the test volume includes the entire length 

of the fiber between the grips, and this increases the probability of finding critical flaws 

and increases the scatter in measured values [13].  Three-point bend (Figure 1.3 (a)) and 

four-point bend tests (Figure 1.3 (b)), if performed on fibers, can significantly reduce the 

probability of encountering a critical surface defect, due to the smaller volume that is 

effectively under tension compared to typical tensile tests, but may create strength-

limiting critical flaws where the testing fixtures touch the pristine surfaces.   

 

 

      
(a)                                                                        (b) 

Figure 1.3.  Schematic diagram of (a) a three-point bend test, and (b) a four-point bend 
test.  
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1.1.3. Two-Point Bend Failure Strain Measurement.  Although the two-point 

bending (TPB) technique was used as early as 1944 [14], its routine use in testing glass 

fibers began in 1980 [15].  In a TPB test (Figure 1.4), a section of glass fiber, diameter d 

(μm), is bent into a U-shape between two parallel faceplates, one of which travels 

towards the second at a constant faceplate velocity (vfp), compressing the ‘U’ until failure. 

The gap distance at failure (D, μm) is recorded, and the failure strain (εf) is then 

calculated from [16]:  

 

   = 1.198 ×  ( −  )  (4)

 

 

 
Figure 1.4.  Schematic diagram of a two-point bend test. 

 

 

The TPB test does not require the special grips needed for conventional tensile 

tests, and the relatively small gauge length (0.3-0.9 mm) in the region of highest tensile 

stress minimizes the probability of extrinsic flaws [15].  A more detailed gauge length 

calculation can be found in [16].  The TPB test does not require excessive handling of the 

glass samples.  For example, in three-point bend test, acid-etched or polished samples are 

often used, whereas, the samples used in a TPB test are freshly-drawn fibers with pristine 

surfaces (tested within hours without touching the fiber surfaces).   TPB can be used to 

measure the failure strains of pristine glass fibers in inert conditions (immersed in liquid 

nitrogen).  The inert failure strains are considered to be inert intrinsic strength of glass, 

which is the closest measure of theoretical strength [13].  
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The application and possibilities of the TPB test are discussed in previous 

publications [17,18,19,20,21,22].  For example, Lower et al. used TPB to determine the 

inert intrinsic failure strains for sodium silicate glass (Figure 1.5, [19]) and sodium 

aluminosilicate glass (Figure 1.6, [20]).   

 

 

 
Figure 1.5.  Weibull distributions of inert failure strains for sodium silicate glass fibers 

with compositions of xNa2O-ySiO2 (x+y=100, in mol%) [19]. 

 

 

These inert failure strains have been related to the silicate glass network [19].   It 

is interesting to see the compositional dependence of inert failure strains for other glass 

systems, for example, borate glasses.  The study of inert failure strains for different glass 

systems might generate some general connection between inert intrinsic strength and 

glass structure. 

The TPB test was also used to study the melt history effect [18].  Lower et al. 

reported that the failure strain distributions for E-glass were dependent on the melt time 

and temperature prior to the fiber drawing (shown in Figure 1.7) 
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Figure 1.6.  Weibull distributions of inert failure strains for sodium aluminosilicate glass 

fibers with compositions of 25Na2O-xAl2O3-ySiO2 (x+y=75, in mol%) [20]. 

 

 

 
Figure 1.7.  Inert failure strain distributions of soda-lime silicate fibers drawn from melts 

with consecutive thermal histories (time and temperature) indicated.  Data points 
represent average failure strains and the ‘uncertainty bars’ represent the range from 

highest to lowest strain [18].  



8 

 

The melt history dependence of the inert failure strains indicates that some 

heterogeneities formed during the melting process serve as ‘Griffith’s flaws’.  Attempts 

to detect the source of heterogeneities using optical microscopy, atomic force microscopy 

(AFM) and scanning electron microscopy (SEM) all failed [22].  The melt homogeneity 

study is of great interest to industry with regards to quality control. 

One disadvantage of the TPB test is that it does not directly measure failure stress.  

Using zero-strain elastic modulus to calculate the failure stress from failure strain will 

lead to an incorrect estimation due to the non-linear elastic modulus [16].  

1.2. ENVIRONMENTAL FATIGUE 

The strength of glass is reduced not only by the effect of flaws but also by 

environmental fatigue.  About a hundred years ago the strength of glass was found to be 

dependent on the loading time and loading rate in aqueous or humid environments [23].  

Glass loaded at a fast rate or forced to support a load in a short time was relatively strong.  

The term ‘fatigue’ has been used to describe this phenomenon as early as the 1940s 

[24,25,26,27].  Charles [28,29,30] was the first who studied the fatigue effect thoroughly.   

Fatigue is usually categorized in two forms: static fatigue (a.k.a. delayed failure) and 

dynamic fatigue.   

 

 

           
(a)      (b) 

Figure 1.8.  Fatigue effect: (a) static fatigue (time to failure) and (b) dynamic fatigue for 
soda-lime silicate glass [29]. 
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Static fatigue (Figure 1.8 (a), [29]) is measured by determining the time-to-failure 

of a sample under a constant applied stress or at a constant strain.  Dynamic fatigue 

(Figure 1.8 (b), [30]) is usually measured by determining the failure stress or failure 

strain under different loading rates, from which the slope can be used to calculate the 

fatigue parameter n (will be introduced later). 

Fatigue is important considering that most applications of glass involve some kind 

of applied force and some contact with air or aqueous environments.  The fatigue of silica 

and silicate glass is of interest because of their wide applications.  A well accepted 

concept is that the failure of glasses in wet environments is controlled by stress corrosion 

due to the chemical reaction between water and strained bonds at the crack tip [31].  

Silica is considered inert to water at zero strain, but when the Si-O-Si bond is strained, it 

can hydrolyze by reacting with water [32,33]:     

 

 — |  | — — |  | —+   ⟶ 2  — |  | —    (5)

 

Silica is more susceptible to fatigue in the presence of basic solutions because 

hydroxyl ions further attack the glass network [34]: 

 

 — |  | — — |  | —+   ⟶— |  | —  + — |  | —   (6)

 

The mechanism of fatigue in modified silicate glasses is different from that of 

silica.  Alkali ions in a silicate glass can exchange with protons [29,35] or hydronium 

ions (H3O+) [36] in solution, increasing the pH value in the vicinity of the strained bond, 

increasing fatigue [29]: 

 

 — |  | — — |  | —    +    ⟶— |  | — — |  | —  +    +     (7)
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Duncan and France et al [37] studied the fatigue of silica and sodium borosilicate 

glass in air and suggested that sodium borosilicate is more susceptible to fatigue than 

silica.  They [38] also studied the fatigue of sodium borosilicate with different soda 

content in water and recognized that reducing soda caused an increase in the stability of 

glass, and hence low-soda borosilicate glass is less susceptible to fatigue.   Wiederhorn 

and Bolz [39] studied stress corrosion behavior (another form of fatigue) for several 

silicate glasses.   Among those glasses, silica glass had the greatest stress corrosion 

resistance, followed by low-alkali aluminosilicate and borosilicate glass.  Soda-lime 

silicate glass however, was sensitive to stress corrosion, indicating that alkali ions play a 

detrimental part in fatigue.   

1.3. SLOW CRACK GROWTH STUDY 

In fracture mechanics, fatigue of glass has been studied by measuring slow crack 

growth (a.k.a. subcritical crack growth).  A typical experiment is a double cantilever 

beam test, shown in Figure 1.9 (a) [31]. A crack of a predetermined length is introduced 

to a glass sample.  A constant force is applied to the cracked ends of the sample.  The 

crack velocity is measured using an optical microscope and recorded as a function of 

applied stress and environment Figure 1.9 (b) [31].  The curve shows three regions.  In 

general, the crack extension in region I is due to the stress-assisted corrosive reaction 

between water and the strained bonds at the crack tip (for example reaction equation (5) 

to (7)).  The plateau in region II shows that crack speed is independent of applied force.   

In this region, water migration becomes the limitation for crack velocity.  The beginning 

of region III initiates a ‘spontaneous’ crack growth.   

The slow crack velocity tests are usually shown in a more appropriate ‘K-V’ curve 

(Figure 1.10), in which the applied force is converted to the stress intensity factor (K).  In 

most stress corrosion studies, only region I crack growth is observed (see Figure 1.10 

from Wiederhorn and Bolz [39]).  In region I the crack growth behavior depends on the 

composition of the glass. 
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(a)                                                                        (b) 

Figure 1.9.  Slow crack growth study: (a) typical experiment configuration and (b) typical 
result of slow-crack growth [31]. 

 

 

 
Figure 1.10.  K-V curve for several silicate glasses in 25°C water [39].   
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The most widely used model to describe the K-V curve is based on an empirical 

power law [40,41]:  

 

  =  (     ⁄ )  (8)

 

where V is the crack growth velocity (μm/s), n is termed the stress corrosion 

susceptibility parameter, or the fatigue parameter, and A is the environmental parameter 

(μm/s) which has an Arrhenius temperature dependence.   In addition to this model, an 

activation volume model [39] based on exponential law was proposed: 

 

  =   exp(      ⁄ ) (9)

 

Other models based on exponential laws [42,43,44] have also been used, but their 

formulations are not very different.  Shiue and Matthewson [45] compared several 

different models for fatigue and suggested that the power law fits the fatigue data the best, 

while the exponential law has a better physical meaning.   Application wise, dynamic 

fatigue studies can also be described with the model using power law.  The relationship 

between strength and stress rate can be derived analytically [46]: 

 

   =   ̇(    ⁄ ) (10)

 

where    is the strength, or failure stress (GPa), D is a constant (s-1), and  ̇ is the applied 

stress rate (GPa/s).  This equation allows direct comparison between slow-crack growth 

study and dynamic fatigue study.  Thus most researchers prefer the power law model.  

Such relationship cannot be analytically derived from the exponential model and its 

application is thus much more limited.  

1.4. TWO-POINT BEND STUDY OF FATIGUE 

As mentioned before, dynamic fatigue [30] is usually measured by determining 

the failure stress or failure strain under different loading rates.   The fatigue parameter, n, 

can be determined using Equation (10).  The TPB test usually uses a measuring mode of 

constant faceplate velocity (vfp), instead of constant stress rate or strain rate.  Rondinella 
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and Matthewson [47] compared three different loading modes: constant strain rate, 

constant stress rate and constant faceplate velocity (vfp) (shown in Figure 1.11).  The 

power law model fits well for all three loading modes.  

 

 

 
Figure 1.11.  Dynamic fatigue results or coated fiber at constant velocity, constant strain 

rate, and constant stress rate loading modes [47]. 

 

 

The dynamic fatigue parameter, n, for constant faceplate velocity mode, can be 

calculated by: 

 

  = 1 + 1/  log (  ) log (   ) (11)

 

There have been reports on the use of TPB to measure the fatigue for silica glass 

fibers [47,48,49,50,51] and sodium borosilicate fibers [38].  Except for dynamic fatigue 

[47], TPB has also been used in other forms of fatigue.  For example, the failure strains in 

ambient conditions decrease systematically with increasing relative humidity [17], or 

with increasing temperature [52]. 
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1.5. INERT STRENGTH AND INERT FATIGUE 

In ambient conditions, glasses loaded at a rapid rate are relatively stronger due to 

the environmental fatigue effect.  This is attributed to the stress corrosion reaction 

between water and strained glass bonds.  To avoid environmental fatigue effects, strength 

measurements have been carried out in high vacuum (~10-8 Torr) [52], or at low 

temperatures (in liquid nitrogen or liquid helium), where the kinetics of the water 

degradation reactions are arrested [53].  Strengths of pristine glass fibers measured in 

such conditions are referred to as inert strength [13]. 

A number of researchers have reported the inert strength for fused silica.  Proctor, 

et al. [53] reported a tensile strength of 11.8±2.2 GPa for 20 µm diameter silica fibers in 

liquid nitrogen.  Pukh, et al. [54] used a three-point bending technique to measure the 

strength of a variety of compositions prepared as 100-150 µm fibers, under liquid 

nitrogen, and reported intrinsic strengths of 12.0 GPa for polymer coated silica glass.  

There are also reports of inert strengths for silica of 11-14 GPa measured in tensile test 

[55] and ~18% failure strain measured in two-point bend test [6], not measured under 

liquid nitrogen but in room temperature, high vacuum conditions (~10-8 Torr). These 

values fall in the range of 7-22 GPa, which is the theoretical strength for silica estimated 

using Orowan’s theory [2].  

Even though the water degradation reactions are believed to be arrested in inert 

conditions, fatigue has also been observed in pristine (flaw free) glass fibers measured in 

inert conditions, and referred to as inert fatigue [13, 53, 56].  Matthewson et al. [56] 

measured the fatigue effect of fused silica from 77 to 473K and showed that fatigue exists 

even at 77K (shown in Figure 1.12).   Compared to room temperature fatigue, the fatigue 

parameter at 77K (calculated using equation (11)) is much higher (~400) but still 

measurable (Figure 1.13).  Matthewson et al. did not differentiate inert fatigue and 

environmental fatigue and considered both processes to be caused by stress-induced 

reactions leading to weaker bonds at longer times.   

Kurkjian, et al. [13] explained the inert fatigue effect as a consequence of the 

normal probability of failure due to thermal fluctuations of bond strengths under high 

stress, with longer times (slower loading) allowing weaker bonds to rupture and initiate  
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Figure 1.12.  Dynamic fatigue observed from 77 to 473 K for fused silica fibers [56]. 

 

 

 
Figure 1.13.  Fatigue parameter as a function of temperature for fused silica fibers [56]. 
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failure.  Kurkjian et al. viewed inert fatigue as a time dependent phenomena and 

suggested that the inert fatigue can be avoided by testing rapidly.  Assuming the inert 

fatigue is due to the thermal fluctuation of bonds, if one can test the strength within the 

bond vibration time (    ~10-13 s) the inert fatigue should be avoided.   The inert fatigue 

was described by Kurkjian et al. using the equation: 

 

  =     exp      1 −         (12)

 

where   is the test time,      is the typical vibration time of bonds, E is the zero-stress 

environmental dependent activation energy, k is the Boltzmann’s constant, T is the 

temperature,   is the measured strength and    is the ‘fatigue free’ strength measured in 

time     . 

Inert dynamic fatigue effect was also observed not only in silica, but also in E 

glass and some other glasses [19,20].  An interesting observation is that there is an 

inverse dependence of inert strength on loading rate for some glasses, that is, the inert 

failure strains increase with decreasing loading rate.  For example, for some sodium 

silicate glasses, inert failure strain measured at a slow faceplate velocity (vfp = 50 µm/s) is 

greater than that measured at a fast faceplate velocity (vfp = 4000 µm/s), shown in Figure 

1.14.  

This effect is to the inverse of the ‘normal’ inert fatigue behavior of silica and E-

glass, and has been referred to as the Inert Delayed Failure Effect (IDFE) [22].  One 

quantitative measure of IDFE is given by: 

 

     = 100 ×    ∙    / −   ∙      /    ∙    /  (13)

 

IDFE in Equation (13) is the relative difference in inert failure strains measured at 

a faceplate velocity of 50 and 4000 µm/s.  Several glasses including silica and E-glass 

have a negative IDFE value, while some other glasses including sodium silicate glasses 

with high soda content have a positive IDFE value (summarized in Table 1.2, [22]).  In 
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general, the negative IDFE glasses have cross-linked structures, whereas positive IDFE 

glasses have more non-bridging oxygens.  One explanation for IDFE is that the structure 

of silicate glasses with relatively large fractions of non-bridging oxygens can reorganize 

or relax when stress is applied, perhaps in a manner similar to that which produces low-

temperature internal friction peaks [57,58].  Given more time (slower vfp), the structure 

can reorganize more before bonds fail and cracks are initiated, and thus failure occurs at a 

greater overall strain, countering the effects of weaker network bonds in the more 

depolymerized glass structures.  The positive or negative of IDFE might result from a 

competition between this relaxation/deformation time and the inert fatigue factor. 

 

 

 
Figure 1.14.  Weibull distributions of inert failure strains for sodium silicate glass fibers 
with compositions of xNa2O-ySiO2 (x+y=100, in mol%), using faceplate velocities (vfp) 

of 4000 µm/s (open symbols) and 50 µm/s (closed symbols) [19]. 

 

 

Oxide glasses have been classified based on their elastic modulus derivatives, 

dM/dT and dM/dP (M: elastic modulus, T: temperature, P: pressure) [59,60,61].  ‘Normal’ 
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glasses have a negative dM/dT and a positive dM/dP, and ‘anomalous’ glasses have a 

positive dM/dT and a negative dM/dP.   

 

Table 1.2.  Collective IDFE data for several glass systems. 

Zero or negative IDFE Positive IDFE 

Potassium Silicate (K2O<25%) Potassium Silicate (K2O≥25%) 

Sodium Silicate (Na2O<15%) Sodium Silicate (Na2O≥15%) 

Sodium Aluminosilicate  
(Na2O=25%, Al2O3>25%) 

Sodium Aluminosilicate  
(Na2O=25%, Al2O3≤25%) 

Silica Soda-lime Silicate 
(Na2O+CaO≥20%) 

E-glass  
 

 

These elastic anomalies have been related to indentation behavior (shown in 

Figure 1.15, [62]).  Normal glasses show shear lines upon indentation at room 

temperature, indicating the presence of shear flow, whereas anomalous glasses exhibit no 

shear lines upon indentation at room temperature.  Instead of shear flow, they show 

deformation due to densification.  

The two types of glasses are believed to have fundamental differences in the way 

they respond to stress.  These differences coincide with the IDFE difference between 

silica and soda-lime silicate.  Silica, classified as anomalous glass, has a zero or negative 

IDFE, while soda-lime silicate, classified as normal glass, has a positive IDFE.   This 

coincidence is also valid for even more glass compositions.   Table 1.3 shows the 

correlation between IDFE and elastic anomalies [59,60,61,62] for several glasses. 

A possible explanation is that the ease of plastic flow for SLS glass can benefit 

from reorganization or relaxation under strains, therefore allowing higher failure strain if 

given more time. 

1.6. SUMMARY 

This dissertation is aimed at advancing the understanding of how glass fails.  The 

two-point bending technique is used to measure the failure strain of freshly-drawn glass 

fibers.  The failure behaviors for different glass systems under different conditions are  
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Figure 1.15.  Room temperature indentation images for (a) soda-lime silica, optical; (b) 
soda-lime silica, HF etch, SEM; (c) fused silica, optical; (d) fused silica, under dry N2, 

optical [62]. 

  

 

Table 1.3.  IDFE and elastic anomalies for several glasses. 

Glass IDFE Elastic anomaly 

Silica (SiO2) ≤0 anomalous 

E-glass ≤0 anomalous 

Soda-lime silicate 
(15%Na2O, 5%CaO, 80%SiO2) 

>0 normal 

Sodium silicate (Na2O<15%) ≤0 anomalous  

Sodium silicate (Na2O≥15%) >0 normal 

Potassium silicate (K2O<13%) ≤0 anomalous 

Potassium silicate (13%<K2O<25%) ≤0  normal 

Potassium silicate (K2O>25%) >0 normal 
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studied.  Paper 1 describes the calculation of failure stress from two-point bend failure 

strains and non-linear elastic modulus.  Failure stresses were determined for silica, E-

glass, a soda-lime silicate glass, a sodium aluminosilicate glass, a series of sodium 

silicate glasses and several potassium silicate glasses.  In this chapter, the compositional 

dependence of inert intrinsic strength was studied.  The inert delayed failure effect was 

discussed.  Paper 1 is formatted following the requirement of Journal of the American 

Ceramic Society, and was submitted to this journal in August 2011.  Paper 2 presents the 

measurements of inert failure strains for a series of sodium borate glasses.  The vitreous 

B2O3 glass exhibits the greatest inert failure strains among all the glasses that had been 

tested.  The compositional dependence of inert failure strain for sodium borate glasses 

was studied and related to the structure and bond strengths.  The failure behaviors for 

sodium borate glasses were compared to those for silicate glasses.   Paper 3 describes the 

dynamic fatigue behavior for several commercial silicate glasses and a series of lab-

prepared sodium aluminosilicate glasses in distilled water.  The dynamic fatigue 

parameter for these glasses will be determined by measuring the failure strains as a 

function of faceplate velocity.  The temperature dependence of the failure strains in water 

was also determined.  The activation energy for fatigue was related to the fatigue 

parameter.  The fatigue mechanisms for the series of sodium aluminosilicate glasses were 

analyzed and related to their reactivity with water.  Paper 4 describes the study of fatigue 

behaviors for silica, soda-lime silicate glass and E-glass in humid air.  Failure strains 

were measured as a function of humidity, and the fatigue parameters were determined.  

The fatigue reaction order in the high humidity range was determined for all three glasses 

and was discussed.  Papers 2, 3, and 4 were formatted following the requirement of 

Journal of Non-Crystalline Solids, and will be submitted to the journal in the near future.  
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ABSTRACT 
The two-point bend (TPB) technique was used to measure the failure strains of 

pristine glass fibers under liquid nitrogen and in ambient conditions and failure stresses 

were then calculated using values of the nonlinear elastic moduli reported in the literature. 

At a faceplate velocity of 4000 µm/s, for silica glass fibers, the failure stresses calculated 

from failure strains measured by TPB are 12.1±0.2 GPa in inert (liquid nitrogen) 

conditions and 7.0±0.1 GPa in ambient conditions (room temperature, 50% RH), 

compared to reports of 11-14 GPa for liquid nitrogen and 4-5 GPa ambient tensile 
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strength measurements, respectively.  Failure stresses were also calculated for an E-glass, 

a soda-lime silicate glass, a nepheline sodium aluminosilicate glass, a series of sodium 

silicate glasses, and several potassium silicate glasses.  These failure stresses were 

compared to the tensile strengths for similar glasses reported in the literature.  Inert 

intrinsic strengths for alkali silicate glasses were related to the structure and 

corresponding bond strengths, and the dependence of the inert strengths on faceplate 

velocity (or strain rate) was discussed. 

1.1. INTRODUCTION 

Strength is one of the most important properties of glass, but also one of the most 

difficult to measure.  Griffith [1] showed that practical strength is greatly reduced from 

its theoretical value due to strength-limiting flaws that form during processing or 

handling.  Much effort has gone into preparing and testing “flaw free” or pristine samples 

to determine intrinsic strength [2].  The measurement of the intrinsic strength of glass is 

of significance because without the effect of surface flaws, strength is sensitive to glass 

composition and can be related to the nature of the glass structure.  In addition, glass 

strength is reduced due to environmental fatigue effects [3,4,5], with water being the 

cause of this degradation [6]. The inert strength of glass is the strength measured under 

conditions where there is no environmental fatigue [7]. To avoid environmental fatigue 

effects, strength measurements have been carried out in high vacuum (~10-8 Torr) [8], or 

in liquid nitrogen, where the kinetics of the water degradation reactions are arrested [9].  

Inert intrinsic strength should depend on the atomic level structure and corresponding 

bond strengths of a glass [7]. 

1.1.1. Conventional Glass Strength Measurement.  Freshly drawn glass fibers  

are often used in studies of glass strength because they can be prepared and handled in 

such a way as to avoid damaging their pristine melt surfaces.  Failure strengths of fibers 

have been measured by tensile tests [9,10-13], three-point bend tests [14] and four-point 

bend tests [15].  In a tensile test, the sample must be gripped on both ends and this may 

damage the sample surfaces causing a decrease in measured strength.   Another 

disadvantage of the tensile test is that the test volume includes the entire length of the 

fiber between the grips, and this increases the probability of finding larger critical flaws 

and increases the scatter in measured values [2].  Three-point bend and four-point bend 
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tests, if performed on fibers, can significantly reduce the probability of encountering a 

critical surface defect, due to the smaller volume that is effectively under tension 

compared to typical tensile tests, but may create strength-limiting critical flaws where the 

testing fixtures touch the pristine surfaces.   

1.1.2. Two-Point Bend Failure Strain Measurement.  Although the two-point  

bending (TPB) technique was used as early as 1944 [16], its routine use in testing glass 

fibers began in 1980 [17].  In a TPB test, a pristine section of glass fiber, diameter d, is 

bent into a U-shape between two parallel faceplates, one of which travels towards the 

second at a constant faceplate velocity (vfp), compressing the ‘U’ until failure (Figure 1.1). 

The gap distance at failure (D) is recorded, and the failure strain (εf) is then calculated 

from [18]:  

 

   = 1.198 ×  ( −  )  (1)

 

The TPB test does not require the special grips needed for conventional tensile 

tests, and the relatively small gauge length (0.3-0.9 mm) in the region of highest tensile 

stress minimizes the probability of extrinsic flaws [17].  A more detailed gauge length 

calculation can be found in [18].  The application and possibilities of the TPB test are 

discussed in our previous publications [19-24].  For example, Lower et al. used TPB to 

determine the inert intrinsic failure strains for sodium silicate glass fibers [22], sodium 

aluminosilicate glass fibers [23] and E-glass fibers [24]. 

A TPB test has an advantage of not requiring any excessive handling of the glass 

samples.  Moreover, the samples used in a TPB test can be freshly-drawn fibers with 

pristine surfaces.  One disadvantage of TPB is that it measures failure strain, not failure 

stress. 

1.1.3. Nonlinear Elastic Modulus of Glass.  To convert the TPB failure strains  

to failure stresses, the elastic modulus must be known.  For glass samples with failure 

strains less than about 1%, failure stress (σf (0)) can be calculated from Hooke’s Law: 

 

   (0) =   ×    (2)
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where E0 is the zero-strain (or linear) Young’s modulus, and εf is failure strain.  However, 

pristine glass fibers typically fail at significantly greater strains (5-25%), where the use of 

the zero-strain Young’s modulus is no longer appropriate. For example, the Young’s 

modulus of 10 μm E-glass fibers tested in tension drops from 74 to 60 GPa for a strain of 

4% [25].  The nonlinear Young’s elastic modulus may be approximated by the 

polynomial [26]: 

 

  =   +    + 12     (3)

 

where E1 is the third-order non-linear Young’s modulus and E2 is the fourth-order non-

linear Young’s modulus. These higher order elastic moduli can be measured using static 

techniques [27], ultrasonic techniques [28,29] or by Brillouin scattering [30,31]. Values 

of E0 and E1 for a variety of glasses have been reported, but very few values of E2 for 

glasses are available in the literature, due to the difficulty of these measurements.  Values 

of E0, E1 and E2 for fused silica have been reported from studies in ambient conditions 

[32].  There are other reported values of E0 and E1 for silica in ambient conditions [29] 

and in liquid nitrogen [33], but these latter studies did not report values for E2.  Values of 

E0, E1 and E2 for E-glass have been obtained under ambient conditions [25].  There are 

also reported values of E0 and E1 for soda-lime silicate glass [31] and a nepheline sodium 

aluminosilicate glass [34].  Manghnani [35] measured the pressure dependence of elastic 

modulus for Na-silicate and K-silicate glasses in air, and values of E0 and E1 were 

obtained using a method discussed by Gupta and Kurkjian [6].  Using equation (3), a 

stress-strain relation can be described as [6]:  

 

  =    + 12    + 16     (4)

 

Assuming that the temperature dependence of these moduli are negligible, Gupta 

and Kurkjian noted that when pristine glasses fail under inert conditions (*), the stress is 

maximum with regard to strain and so the differential of stress to strain, the effective 
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Young’s modulus, dσ/dε, goes to zero.  Using this condition, a value for E2 can be 

derived:  

 

   = −2  +     ∗  ∗  (5)

 

Substituting equation (5) into equation (4) provides an equation for failure stress 

that can be used when E0, E1 and εf* are known but E2 is not: 

 

 σ =     + 12     − 13  +     ∗  ∗     (6)

 

Under inert conditions, when εf = εf*, equation (6) is simplified to: 

 

 σ ∗ = 23    ∗ + 16    ∗  (7)

 

In this paper, equation (6) is used to calculate failure stress under ambient 

conditions, and equation (7) is used to calculate the inert failure stress under liquid 

nitrogen. Values of E0 and E1 used to calculate failure stresses are gathered from the 

literature.    

1.2. EXPERIMENTAL PROCEDURES 

1.2.1. Sample Preparation.  Materials used in this study include fused silica  

(AT&T, Amersil TO8 fused natural quartz), a commercial calcium aluminoborosilicate 

glass (PPG, E-glass), a commercial soda lime silicate glass (Owens-Illinois, flint 

container glass), a nepheline sodium aluminosilicate glass (25Na2O·25Al2O3·50 SiO2, in 

mol%) from reference [22], a series of sodium silicate glasses,  xNa2O·(100-x)SiO2 (10 ≤ 

x ≤ 35), in mol%, described in references [21], and several potassium silicate glasses, y 

K2O·(100-y)SiO2, y=15-25, in mol%, also described in reference [24]. 

Commercial E-glass has a nominal composition described by (20-25)CaO·(10-

15)Al2O3·(5-10)B2O3·(50-55)SiO2, in wt%.   E-glass marbles were remelted in platinum 
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crucibles in air at 1550°C for at least 4 hours prior to fiber pulling.  The melts were then 

transferred to a second furnace set to a fiber pulling temperature of 1300°C. The second 

furnace was located below a custom fiber drawing system which pulled fiber from the 

surface of the melt. Fibers were drawn onto a rotating cage which was designed to 

prevent fiber overlap and damage. Fiber diameter was controlled by the fiber pulling 

temperature and the drawing speed. All fibers are drawn to a diameter of 125 ± 20 μm.  

The commercial soda-lime silicate (SLS) glass was remelted at 1220°C for 8 hours and 

fibers were pulled at 1175°C.  The nepheline sodium aluminosilicate glass was melted at 

1600°C for 19 hours and fibers were pulled at 1375°C [22].  For sodium silicate and 

potassium silicate glasses, the melting conditions depended on melt viscosities, with 

temperatures between 1200 and 1600°C and times between 6 and 20 hours.  Alkali 

silicate glass fibers were pulled at a temperature between 1100°C and 1400°C [21,24]. 

The protective polymer coating was removed from the commercial silica glass 

fibers (125 μm in diameter) by immersing in acetone.   

1.2.2. Two-Point Bend Test.  TPB measurements were made using a home-built 

 system, at a faceplate velocity of 50 or 4000 µm/sec, with fibers either immersed in 

liquid nitrogen or tested in room temperature (21±2°C) air at a relative humidity of 

50±2%.  The relative humidity was controlled by blowing a mixture of wet and dry air 

onto the surfaces of the fibers during the test, and was monitored using a digital 

psychrometer (Extech RH305).  The fibers drawn from melts were tested within thirty 

minutes after they were formed. The commercial silica glass fibers were tested 

immediately after the removal of their polymer coatings.  No aging effects were observed 

for any compositions over the course of their respective testing. 

1.3. RESULTS AND DISCUSSION 

1.3.1. TPB Failure Strain and Failure Stress Calculations.  Figure 1.2 shows  

the TPB failure strain distributions, plotted using the Weibull formalism [36,37], for 

several glasses, measured in both inert and ambient conditions. The Weibull modulus (m) 

ranges from 50 to 200, equivalent to a relative standard deviation of ~2% to 0.5%, 

respectively.  Duncan et al. [8] reported comparable values for failure strain for silica 

fibers under liquid nitrogen (17.6% vs. 17.2% on Figure 1.2) and in room temperature, 

ambient conditions (6.93% vs. 7.9%). The lower failure strains measured for fibers under 
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ambient conditions result from fatigue effects associated with water in the atmosphere. 

Due to the fatigue effect, failure strains are dependent on the measuring conditions, 

including temperature, humidity and strain rate (faceplate velocity, vfp).  Failure strains 

decrease systematically with increasing relative humidity [24], with increasing 

temperature [8], or with decreasing strain rate/stress rate [38].  The absolute values of 

failure strain (or stress) from TPB tests under ambient conditions are difficult to interpret 

unless these parameters are specified. 

The TPB test in this study does not provide a measuring mode of constant stress 

rate or strain rate, but instead uses a mode of constant faceplate velocity (vfp).  This 

means that the applied strain rate increases with increasing strain (decreasing D, from 

equation (1)).   With the diameter of the fiber known, the strain rate at failure can be 

calculated from failure strain and vfp: 

 

         =    ×    1.198 ×   (8)

 

E-glass fibers (d = 125 ± 20μm) have a failure strain of 5.6% in air at room 

temperature and 50% RH, measured at a vfp of 4000μm/s (Figure 1.2).  The calculated 

strain rate at failure is 0.076±0.007 s-1.  In liquid nitrogen, the failure strain of E-glass is 

10.7%, measured at the same vfp and this corresponds to a strain rate at failure of 

0.27±0.03 s-1.  Strain rates (or stress rates) are not specified in most traditional strength 

measurements, except for dynamic fatigue tensile tests for which the strain rate can vary 

from 10-9 to 102 s-1 [39].  The dependence of ambient failure strain on faceplate velocities 

is due to an environmental fatigue effect and will be discussed in another paper [40].  If 

not specified otherwise, the values of failure stress/strain reported here were obtained at a 

faceplate velocity of 4000 µm/s.   

Table 1.1 summarizes the failure strain values for the glasses studied here, 

measured at a vfp of 50 and 4000 μm/s and lists the respective strain rate.  Table 1.2 lists 

the nonlinear elastic modulus parameters reported from the literature. Also listed are the 

calculated failure stresses from equation (6) (ambient data) and equation (7) (LN data), 

and the respective failure strengths reported from the literature.  The failure stress under 
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inert conditions for fused silica fibers is 12.1±0.2 GPa, using the reported non-linear 

elastic modulus parameters [32].  Proctor, et al. [9] reported a tensile strength of 11.8±2.2 

GPa for 20 µm diameter silica fibers in liquid nitrogen.  Pukh, et al. [14] used a three-

point bending technique to measure under liquid nitrogen the strength of a variety of 

compositions prepared as 100-150 µm fibers, and reported intrinsic strengths of 12.0 GPa 

for polymer coated silica glass.  There are also reports of inert strength for silica of 11-14 

GPa [41] and ~18% failure strain [2], not measured under liquid nitrogen but in room 

temperature high vacuum (~10-8 Torr).  Thus, the value of the strength of silica calculated 

from the TPB failure strain measured in liquid nitrogen compares favorably with reported 

values of the inert strength for fused silica measured using conventional methods.  

Comparable values of strength for fibers with different diameters reported in the literature 

indicate that the strength is an intrinsic property. 

Under ambient conditions, the failure stress for silica calculated from the TPB 

measurements falls to 7.0±0.1 GPa.  Reported strength values include 5.1±1.0 GPa, from 

a tensile test in 25°C air [9], 4.8 GPa, from  a tensile measurement in room temperature 

45% RH air [42], 3.6-5.0 GPa in air at 23°C and 55% RH [43], and 4.1 GPa in air at 

room temperature and 100% RH [44].  The calculated strength from TPB data at 50 µm/s 

(5.5±0.1 GPa, Table 1.2) compares more favorably with these reported values.  Failure 

strain is lower for slower values of vfp because the longer experimental times allow for 

greater fatigue effects to reduce the measured glass strength. 

For E-glass, the failure stresses calculated from failure strains under liquid 

nitrogen (5.1±0.1 GPa) and in air (3.8±0.1 GPa) are in good agreement with the 

respective values reported in the literature. Cameron measured the tensile strength of 75 

μm diameter E-glass fibers and reported a value of 5.7±0.3 GPa in liquid nitrogen [45] 

and 3.8±0.1 GPa at a temperature of 23-28°C and a relative humidity of 32-44% [10].  

Gupta [46] reported a tensile strength of 4.3-5.1 GPa for pristine E-glass fibers in room 

temperature and 50-60% humidity.  Lund and Yue [11] reported a tensile strength of 

3.0±0.3 GPa for E-glass measured at room temperature in ambient conditions (without 

specifying temperature and relative humidity).  Feih et al. [12] reported a tensile strength 

of 2.5±0.5 GPa for E-glass in room temperature air.   
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The TPB failure stress values in Table 1.2 were obtained by estimating E2 from εf
* 

using equation (5). There are some reports for experimental values of E2 for silica and E-

glass and these values were used to calculate failure stresses using equation (4); the two 

sets of calculated TPB failure stresses are compared in Table 1.3.  Using reported values 

of E2 [32] and measured values of εf
*, an inert stress of 14.4 GPa is calculated for silica, 

compared to values of 12.1-13.6 GPa using the estimate of E2 from equation (5) and 

different reported values of E0 and E1 [27,29,32]. For E-glass, the inert failure stress 

calculated from εf
* using reported [25] and calculated values of E2 are similar, 5.2 GPa 

and 5.1 GPa, respectively.  For both silica and E-glass, the values of failure stress 

calculated from the respective failure strains fall within the ranges reported for tensile 

tests, under liquid nitrogen and in air. The failure stress calculated using measured or 

estimated values of E2 for silica differ by about 20%, and a similar variation exists when 

different values of E0 and E1 from the literature are used.  Given the limitations in the 

precision of the higher order modulus terms, it appears that the estimation of E2 by 

equation (5) still produces an adequate prediction of failure stress. 

For the soda-lime silicate glass, the failure stresses calculated from failure strains 

are 8.4±0.1 GPa under liquid nitrogen and 4.0±0.1 in air, compared with a reported 

tensile strength of 7.4±0.6 GPa in liquid nitrogen and 3.4±0.4 GPa in 25°C air, 

determined by an oblate bubble technique [13].  Pukh, et al. [14] report an inert strength 

of 7.5 GPa for a soda-lime silicate glass. 

The inert failure stress for the nepheline sodium aluminosilicate glass (25 mole% 

Na2O, 25 mole% Al2O3, 50 mole% SiO2) measured by the TPB technique (7.3±0.1 GPa) 

is about 15% lower than the tensile strength measured by a three-point bend technique 

(8.5 GPa)  for a similar glass [14]. 

For the series of sodium silicate glasses, the inert failure stress increases 

systematically (after an initial drop from the value for silica), from 7.4±0.1 GPa for x=10 

to 8.7±0.1 GPa for x=35 (Figure 1.3). These failure stresses are 2-3 times greater than the 

inert tensile strengths reported in three-point bend tests [15], four-point bend tests [14], 

and from theoretical ultimate strengths calculated from elastic constants [47].  The 

greater failure stresses from the present TPB measurements may be due to differences in 

sample quality or aging effects associated with the reported tensile tests, but are also 
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related to stress/strain rate effects in the TPB measurements, as discussed in more detail 

below.  The increase in failure stress with increasing soda content, between 10 and 35 

mole%, seems counterintuitive given the expectations that strength should decrease, as 

does the zero strain elastic modulus (E0, Table 1.2), when alkali contents increase.  

Bridging oxygens in the silicate network are replaced by non-bridging oxygens with 

addition of Na2O (or K2O) and so the overall ‘strength’ of the network should decrease 

with the decrease in network connectivity.  Bartenev reported an associated decrease in 

the theoretical strength of binary sodium silicate glasses with increasing soda contents 

[47].  However, the strength measurements reported by Kennedy et al. [15] and Pukh et al 

[14] have similar compositional trends, albeit lower absolute values, as our failure stress 

calculations (Figure 1.3).  Kennedy argued that the increase in failure strength of Na-

silicate glasses was a result of the development of nanoscale flaws associated with phase 

separation in glass with lower Na2O-contents.  In the present study, the probability of 

phase separation in thin, rapidly cooled fibers would be less than what Kennedy et al. 

encountered with their thicker samples. 

For the series of potassium silicate glasses, the inert failure stress decreases from 

6.4±0.1 for y=15 to 6.0±0.1 for y =25 (Table 1.2 and Figure 1.4).  The absolute values are 

again about two times greater than the inert strengths calculated from indentation 

hardness measurements [47].  

1.3.2. Inert Failure Strain Dependence on Faceplate Velocities.  Figure 1.5 

compares the failure strain measurements under liquid nitrogen at two different faceplate 

velocities, vfp = 50 and 4000 µm/s, for several different glasses.  There is a small, but 

reproducible, shift to greater values of   ∗ at the greater value of vfp, for both silica and E-

glass, and a significant decrease in   ∗ at the greater vfp for the 25Na2O·75SiO2 glass, as 

well as for other binary sodium and potassium silicate glasses (Table 1.1). 

 ‘Inert fatigue’ behavior has been reported before for silica [7,9,48].  Proctor et al. 

[9] attributed this to the finite activity of water in liquid nitrogen leading to normal 

environmental fatigue behavior.  Kurkjian, et al. [7], however, explained the effect as a 

consequence of the normal probability of failure due to thermal fluctuations of bond 

strengths under high stress, with longer times (slower vfp) allowing weaker bonds to 

rupture to initiate failure.  Matthewson et al. [48] did not differentiate inert fatigue and 
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environmental fatigue and considered both processes as caused by stress-induced 

reactions leading to weaker bonds at longer times.   

In contrast to the ‘normal’ inert fatigue behavior of silica, E-glass, and the 

nepheline glass (Table 1.1), the binary Na- and K-silicate glasses exhibit an opposite 

behavior for the dependence of inert failure strain on the faceplate velocity; that is, inert 

failure strains for these modified glasses are lower at greater values of vfp (shown in 

Figure 1.5 and Table 1.1). This effect has been referred to as the Inert Delayed Failure 

Effect (IDFE), and has been seen in silicate glasses with depolymerized structures [21,24].  

The SLS glass also exhibits IDFE behavior but to a much smaller degree than the binary 

alkali silicate glasses.  One explanation for IDFE is that the structure of silicate glasses 

with relatively large fractions of non-bridging oxygens can reorganize or relax when 

stress is applied, perhaps in a manner similar to that which produces low-temperature 

internal friction peaks [49,50].  Given more time (slower vfp), the structure can reorganize 

more before bonds fail and cracks are initiated, and thus failure occurs at a greater overall 

strain, countering the effects of weaker network bonds in the more depolymerized glass 

structures.  The magnitude of the IDFE response is not as great for the K-silicate glasses 

as for the Na-silicate glasses.  There is a small decrease in inert failure strength when the 

K2O-content increases from 15 to 25 mole%.  However, IDFE is significant for the 

25K2O·75SiO2 glass (Table 1.1) and so at a slower faceplate velocity (50 µm/s), this glass 

has a greater failure stress than the 20K2O·80SiO2 glass. 

The magnitude of IDFE for the Na-silicate glasses increases with increasing soda 

content [19], and this effect can possibly explain the counterintuitive compositional trend 

in failure stress shown in Figure 1.3.  Figure 1.6 plots the inert failure stresses for the Na-

silicate glasses as a function of the failure strain rate.  Because the IDFE for the Na2O-

rich glasses are greater, failure stresses for these glasses will decrease more at higher 

values of strain rate (or faceplate velocity) than glasses with lower Na2O-contents and a 

lower value of IDFE.  If the extrapolation in Figure 1.6 is accurate, when the strain rate in 

a TPB experiment exceeds ~104 s-1, the compositional dependence of the inert strength 

reverses so that glasses with lower Na2O-contents are expected to have greater inert 

strengths, consistent with the compositional dependence of the silicate network structure. 
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An interesting concept, ‘instantaneous strength’ arises from this discussion.  At 

what speed can a strength measurement be considered instantaneous and correlated to the 

ultimate strength or the theoretical strength of glass?  In slow-crack growth studies, it has 

been suggested [51] that the crack speed corresponding to KIC, ~0.1 m/s initiates 

‘spontaneous’ crack growth.  The theoretical maximum velocity of crack propagation is 

set by the Rayleigh wave speed limit [52,53,54].  For fused silica, VR = 3420 m/s [55].  A 

crack propagating through a 100 µm sample at VR that fails at 10% strain corresponds to 

a strain rate of ~106 s-1, and this Rayleigh limit is indicated in Figure 1.6 (a).  However, if 

instantaneous failure in a two-point bend test is controlled by crack nucleation instead of 

crack propagation, then the limit on strain rate may be related to the vibrational period of 

the bonds that constitute the glass structure [56].   The vibrational frequency of a Si-O is 

~1014 s-1.  For a glass that fails at an inert strain of 10%, a corresponding strain rate 

limited by bond vibrations would be 1013 s-1. If the strain rate limit is fixed either by the 

Rayleigh velocity or the bond vibrational frequencies, then one predicts that the 

“instantaneous strength” of the Na-silicate glasses should decrease with increasing Na2O-

content (Figure 1.6 (b)), as expected from the decreasing connectivity of the silicate 

network.  For those glasses with no IDFE (viz., exhibit ‘normal’ inert fatigue behavior), 

like the 10Na2O·90SiO2 glass in Figure 1.6, the “instantaneous inert strength” will not 

differ significantly from the strengths measured in the TPB experiments.  

1.3.3. Modified TPB Failure Strain Equation.  The nonlinear elastic behavior 

of glass not only affects the strain-stress conversion but also generates a challenge to one 

of the assumptions in strain measurement by the two-point bend test. The original 

equation of TPB strain measurement (Equation (1)) is derived based on an assumption 

that the neutral (zero-strain) axis remains in the center of the fiber.  Suhir [57] suggested 

that the neutral axis might shift due to the nonlinear elastic behavior of glass.  Muraoka 

[58] expanded this analysis to include the effects of E2 and predicted that the failure 

strain from a TPB test, calculated using equation (1), should be modified as according to: 

 

   ( ) =    1 − 18       − 132      12     − 14              (9)
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Table 1.4 compares the failure strains calculated from Equations (1) and (9) for 

silica and E-glass, using reported values of E0, E1 and E2.  In general, the Muraoka 

equation predicts similar failure stains as those from equation (1), indicating that the non-

linear modulus has little effect on the measured failure strain.  Thus, equation (1) 

provides an adequate determination for failure strains, particularly for glasses for which 

information about the nonlinear modulus is lacking.  

1.4. SUMMARY 

The two-point bend technique is an effective and efficient way to measure failure 

strain of glass fibers in both inert and ambient conditions. With the knowledge of the 

higher order terms of elastic modulus, failure stress can be calculated from the failure 

strain data. The comparison with reported strength measurements is summarized as 

follows: 

(1) The use of TPB failure strain measurements to predict the strength of glass 

has an advantage of experimental simplicity and minimizes the effects of extrinsic flaws 

when compared to traditional three- or four-point bending or tensile strength 

measurements.  The test can be performed under a variety of conditions, including inert 

(liquid nitrogen) and ambient, and at different strain rates (faceplate velocities). 

(2) Two-point bend failure strain data collected from glasses that exhibit 

normal ‘inert fatigue’ behavior, like silica, low soda-silicates, E-glass and a nepheline 

sodium aluminosilicate glass, yield values for failure strengths, based on reported values 

for nonlinear modulus parameters, that are in good agreement with the strengths reported 

from conventional tensile tests on the respective glasses. 

(3) The calculated inert strengths for binary sodium silicate glasses increase 

with increasing Na2O-contents.  This is counterintuitive because the addition of 

modifying oxides is usually considered to weaken the glass structure.  However, there is a 

dependence of failure strain on the strain rate, determined from the faceplate velocity. 

This inert delayed failure effect (IDFE) may account for the compositional dependence of 

the apparent failure strengths of these glasses.  If the strain rates are extrapolated to limits 

defined by the Rayleigh wave speed limit or the vibrational limits of individual bonds, 

then the expected decrease in strength with increasing Na2O-content could be realized.  
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Table 1.1.  TPB failure strain (εf) and strain rate at failure ( ̇f) for glasses tested at 
faceplate velocities of 50 and 4000 μm/s, in liquid nitrogen and in air (20°C, 50% 

humidity). 

Glass Composition εf ·4000 (%)  ̇f·4000  (s-1) εf ·50 (%)  ̇f·50  (s-1) 

Silica (air) 7.9 ± 0.1 0.17 ± 0.01 6.4 ± 0.1 0.0014 ± 0.0001 

Silica (LN) 17.2 ± 0.2  0.80 ± 0.02 16.9 ± 0.2  0.0099 ± 0.0002 

E-glass (air) 5.6 ± 0.1 0.076 ± 0.007 4.4 ± 0.3 0.0006 ± 0.0001 

E-glass (LN) 10.7 ± 0.2 0.27 ± 0.03 10.5 ± 0.2 0.0035 ± 0.0004 

SLS (air) 5.6 ± 0.1 0.077 ± 0.006 4.3 ± 0.1 0.0006 ± 0.0001 

SLS (LN) 16.4 ± 0.1 0.68 ± 0.05 16.5 ± 0.2 0.0083 ± 0.0007 

Nepheline (LN)  14.8 ± 0.1 [20] 0.53 ± 0.05 14.8 ± 0.1 [20] 0.0069 ± 0.0008 

xNa2O·(100-x)SiO2     

x = 10 (LN) 16.0 ± 0.1 [21] 0.52 ± 0.03 16.0 ± 0.1 [21] 0.007 ± 0.001 

x = 15 (LN) 17.6 ± 0.1 [21] 0.81 ± 0.03 17.9 ± 0.1 [21] 0.011 ± 0.001 

x = 20 (LN) 19.2 ± 0.1 [21] 0.99 ± 0.03 19.9 ± 0.1 [21] 0.012 ± 0.001 

x = 25 (LN) 20.9 ± 0.1 [21] 1.08 ± 0.09 22.0 ± 0.1 [21] 0.015 ± 0.001 

x = 30 (LN) 22.5 ± 0.1 [21] 1.15 ± 0.15 24.2 ± 0.1 [21] 0.018 ± 0.002 

x = 35 (LN) 23.4 ± 0.2 [21] 1.37 ± 0.23   

yK2O·(100-y)SiO2     

y = 15 (LN) 18.0 ± 0.1 [24] 0.70 ± 0.03 18.0 ± 0.1 [24] 0.0089 ± 0.0004 

y = 20 (LN) 18.9 ± 0.1 [24] 0.83 ± 0.04 18.9 ± 0.1 [24] 0.011 ± 0.001 

y = 25 (LN) 19.5 ± 0.1 [24] 0.89 ± 0.12 20.1 ± 0.1 [24] 0.012 ± 0.001 
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Table 1.2.  Nonlinear elastic moduli (E0, E1) reported in the literature and calculated from 
equation (5) (E2), failure stresses (σf) calculated from TPB failure strains using equations 

(6) and (7), and measured failure strengths (σfs ) reported in the literature, of available 
glasses tested at 50 and 4000 μm/s, in liquid nitrogen and in air (20°C, 50% humidity). 

Glass Composition E0 (GPa) E1 (GPa) E2 (GPa) σf ·4000 (GPa) σf ·50 (GPa) σfs (GPa) 

Silica (air) 72 [32] 772.4 [32] -12498 7.0 ± 0.1  5.5 ± 0.1 5.1 [53], 4.8 [42] 

Silica (LN) 72 a [32] 772.4 a [32] -12498 12.1 ± 0.2  11.5 ± 0.1  11.8 [53],12.0 [14], 
11-14 [55] 

E-glass (air) 74 [25] -73.2 [25] -7759 3.8 ± 0.1  3.1 ± 0.2  
3.8 [10], 3.0 [11], 
2.5 [12], 3.4 [45], 
4.3-5.1 [46] 

E-glass (LN) 74 a [25] -73.2 a [25] -7759 5.1 ± 0.1  5.0 ± 0.1  5.7 [45] 

SLS (air) 72 [31] 121[31] -6210 4.0 ± 0.1 3.1 ± 0.1 3.2 [14], 3.4 [13] 

SLS (LN) 72 a [31] 121 a [31] -6210 8.4 ± 0.1 8.5 ± 0.1 7.5 [14], 7.4 [13] 

Nepheline (LN)  74.1a [34] -0.9 a [34] -6765 7.3 ± 0.1  7.3 ± 0.1  8.5 [14] 

xNa2O·(100-x)SiO2       

x = 10 (LN) 65.3 a [35] 97.2 a [35] -6317 7.4 ± 0.1 7.4 ± 0.1  

x = 15 (LN) 62.9 a [35] 47.7 a [35] -4603 7.6 ± 0.1 7.8 ± 0.1 2.1b [15], 4.6 b [47], 
2.7 [14] 

x = 20 (LN) 61.1 a [35] 8.0 a [35] -3396 7.9 ± 0.1 8.2 ± 0.1 2.3b [15], 4.0 b [47] 

x = 25 (LN) 59.8 a [35] -20.6 a [35] -2539 8.2 ± 0.1 8.9 ± 0.1 2.7b [15] 

x = 30 (LN) 59.3 a [35] -36.9 a [35] -2017 8.6 ± 0.1 9.2 ± 0.1 2.8b [15], 3.7 b [47] 

x = 35 (LN) 58.2 a [35] -47.6 a [35] -1701 8.7 ± 0.1  2.9b [15], 3.7 b [47] 

yK2O·(100-y)SiO2       

y = 15 (LN) 52.6 a [35] 22.8 a [35] -3504 6.4 ± 0.1 6.4 ± 0.1 3.6b [47] 

y = 20 (LN) 49.0 a [35] -6.4 a [35] -2679 6.1 ± 0.1 6.1 ± 0.1 3.4b [47] 

y = 25 (LN) 46.4 a [35] -8.3 a [35] -2358 6.0 ± 0.1 6.2 ± 0.1 2.7b [47] 

a. Nonlinear elastic moduli were measured at room temperature but used to calculate inert 

σf. 

b. Reported values of strength are from Na-silicate glasses with slightly different 

compositions from those tested here. 
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Table 1.3.  Calculated (equation (5) and reported fourth-order nonlinear elastic modulus 
(E2), and corresponding calculated failure stress (σf) from TPB failure strains measured at 

a faceplate velocity of 4000 µm/s for silica and E-glass in liquid nitrogen and in air. 

Glass 

Composition 
εf ·4000 (%) E0 (GPa) E1 (GPa) 

E2 from Eq. (5) E2 from literature 

E2(GPa) σf (GPa) E2(GPa) σf (GPa) 

Silica (air) 7.9 ± 0.1 72 [32] 772.4 [32] -12498 7.0 ± 0.1  -11084 a [32] 7.2 ± 0.1  

Silica (LN) 17.2 ± 0.3  72 a [32] 772.4 a [32] -12498 12.1 ± 0.2  -11084 a [32] 14.4 ± 0.3  

Silica (air) 7.9 ± 0.1 72.4 [27] 906 [27] -15429 7.3 ± 0.1    

Silica (LN) 17.2 ± 0.3  72.4 a [27] 906 a [27] -15429 12.8 ± 0.2    

Silica (air) 7.9 ± 0.1 72 [32] 1074 [29] -17383 7.6 ± 0.1    

Silica (LN) 17.2 ± 0.3  72 a [32] 1074 a [29] -17383 13.6 ± 0.2    

E-glass (air) 5.6 ± 0.1 74 [25] -73.2 [25] -7759 3.8 ± 0.1  -11054 [25] 3.7 ± 0.1  

E-glass (LN) 10.7 ± 0.2 74 a [25] -73.2 a [25] -7759 5.1 ± 0.1  -11054 a [25] 5.2 ± 0.1  

a. Nonlinear elastic moduli were measured at room temperature but used to calculate inert 

σf. 
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Table 1.4.  Failure strains (εf) measured at 4000 μm/s, in liquid nitrogen and in air (20°C, 
50% humidity) calculated using equations (1) and (9). 

Glass Composition εf, Eq. (1) (%) εf (M), Eq. (9) (%) 

E-glass (air) 5.6 ± 0.1 5.7 

E-glass (LN) 10.7 ± 0.2 10.8 

Silica (air) 7.9 ± 0.1 7.3 

Silica (LN) 17.2 ± 0.3  16.1 
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Figure 1.1.  Schematic diagram of the TPB test. 
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Figure 1.2.  Weibull distributions of failure strains for silica and E-glass fibers measured 

using TPB (vfp = 4000 μm/s) in inert (LN) and ambient (RH 50%) conditions. 
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Figure 1.3.  Inert failure stress for silica and xNa2O·(100-x)SiO2 glasses, calculated from 
TPB failure strains [19] (vfp = 4000 μm/s and 50 μm/s), compared to inert strengths for 

similar glasses [14,15, 47]. 
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Figure 1.4.  Inert failure stress for silica and yK2O·(100-y)SiO2 glasses, calculated from 
TPB failure strains [24] (vfp = 4000 μm/s and 50 μm/s), compared to inert strengths for 

similar glasses [15,47]. 
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Figure 1.5.  Weibull distributions of failure strains under inert conditions for several 

glasses measured using different faceplate velocities (vfp = 50 μm/s, 4000 μm/s). 
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Figure 1.6.  Inert failure stresses for xNa2O·(100-x)SiO2 glass, calculated from TPB 

failure strains [19] (vfp = 4000 μm/s and 50 μm/s), (a) plotted against the failure strain 
rate, with extrapolations to the Rayleigh velocity limit and vibration frequency limit; (b) 

plotted as a function of Na2O mole fraction. 
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ABSTRACT 
The two-point bend (TPB) technique was used to measure the failure strains of 

xNa2O·(100-x)B2O3 glass fibers in inert conditions (under liquid nitrogen).  In such 

experiments, the effects of extrinsic flaws and environmental fatigue are minimized so 

that intrinsic failure characteristics might be determined and related to glass composition 

and structure.  The inert failure strain for pure B2O3 glass is 36±5%; to our knowledge 

this is the largest inert failure strain ever reported for an oxide glass in a TPB experiment.  

Failure strains decrease systematically as Na2O contents of glasses increases.   The 

addition of Na2O increases the dimensionality and connectivity of the borate glass 

structure and hence increases its resistance to deformation before failure.  Similar 

correlations between inert failure strain and network connectivity have been reported for 

silicate and aluminosilicate glasses. 

2.1. INTRODUCTION 

The experimental or practical strengths of glass are typically lower than the 

theoretical values, sometimes by several orders of magnitude, due to the existence of 

surface flaws [1] and to environmental fatigue [2,3,4].  Efforts have been made to 

determine intrinsic strength of glass by preparing and testing pristine glass samples in 

inert conditions, e.g. in high vacuum [5] or in liquid nitrogen [6].  It has been suggested 
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that these strengths are intrinsic, either because the glass has no ‘flaws’, or that the ‘flaws’ 

that limit strength are intrinsic to the structure of the glass [7].  The inert intrinsic strength 

can then be related to the atomic level structure and properties of the bonds that constitute 

the glass network, much like what has been done to explain the effects of glass 

composition on elastic modulus [8]. 

A number of studies have been performed to evaluate the inert strength of silica 

and silicate glasses [9,10,11], but few studies have been made on other oxide glass-

formers.  It is interesting to study the strength of borate glass since B2O3 melts form a 

glass as readily as do silica melts.  The B-O single bond energy in vitreous B2O3 (498 

kJ/mol) is comparable to that of Si-O in vitreous silica (444 kJ/mol) [12].  However, the 

structures of B2O3 and SiO2 glasses are very different.  Silica glass consists of corner-

joined tetrahedra that form a three-dimension network, whereas in B2O3 glass the 

fundamental structural unit is the BO3 triangle, and three of these triangles can form flat, 

relatively rigid boroxol rings [13].  Although there is some debate about what fraction of 

boron triangles and boroxol rings are found in B2O3 glass [14], the role that these boroxol 

rings play in determining glass properties is significant.  Some mechanical properties for 

B2O3 glasses have been reported, e.g., Vickers hardness [15] (H ~ 1.7 GPa) and elastic 

constants [16,17,18,19] (Young’s modulus, E ~ 17 GPa).  These values are substantially 

lower than the corresponding values for fused silica [20,21] (H ~ 7 GPa and E ~ 70 GPa) 

and this suggests a much lower intrinsic strength for glassy B2O3 than that found for 

fused silica.  On the other hand, the value of fracture toughness, KIC, of B2O3 glasses [22], 

is almost twice that of silica [23] (1.44 vs. 0.8 MPa·m1/2 ).  From Irwin’s equation [24], 

therefore, one would predict that from the same ‘critical flaw’ size (c*), B2O3 could be 

twice as strong as silica, assuming that KIC is a constant with respect to stress and strain: 

 

   =    √  ∗ (1)

 

In view of the high value of fracture toughness, it is interesting to compare these 

two glasses on the basis of the ‘brittleness parameter’ (B) suggested by Marshall and 

Lawn [25]: 
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  =  /    (2)

 

Marshall and Lawn considered hardness (H) to be a measure of the resistance to 

deformation, and fracture toughness to be a measure of the resistance to cracking.  Using 

the values for hardness and fracture toughness reported above, the B-value for silica glass 

is ~9 µm-1/2 and for B2O3 glass is ~1.2 µm-1/2.  The relative difference in brittleness (~8×) 

is larger than the difference in elastic modulus (~4×).  This suggests that the reason for 

the unexpectedly high value of fracture toughness found for B2O3 may be the existence of 

some ‘inelasticity’.  Stevels and co-workers [26,27] studied the flow behavior of B2O3 

and sodium borate glasses near their glass transition temperature.  B2O3 exhibited 

Newtonian flow, while the addition of sodium produced non-Newtonian behavior in 

simple shear.   Hirao, et al. [28] determined the ratio of inelastic to elastic deformation in 

an experiment in which mode I stress was applied at room temperature.  A maximum 

inelastic flow of ~10% was observed in glasses with 20 and 30 mole % sodium oxide, but 

lower amounts of inelastic flow were observed in glasses with 10 or 15 mole % sodium 

oxide.  In addition it was found that the flow was independent of time and was thus 

plastic rather than viscoelastic.  This suggests that plastic deformation is more 

pronounced in sodium borate glasses with higher soda content, and B2O3 glass may or 

may not exhibit plastic flow under stress.  

Few measurements have been made of the mechanical strength of borate glass 

mainly because of its sensitivity to water.  One group [12,29] studied the strength of 

fibers which were drawn in a dry atmosphere or in vacuum and tested (in tension) at 

room temperature in the same environment.  Strengths of 0.8 to 1.2 GPa for B2O3 glass 

were reported.  Another group [15,30] drew fibers under ambient conditions and tested 

them under liquid nitrogen in three point bending.  Strengths of 1.2, 2.7 and 3.0 GPa were 

obtained for pure B2O3, 15Na2O·85B2O3 and 33Na2O·67B2O3 (in mole %) respectively.  

From equation (1), a critical flaw size on the order of 1 µm is obtained, assuming the flaw 

is an elliptical thorough crack in an infinite plate.  A calculation of this sort for silica 

results in a critical flaw sized about 1 nm.  The large flaw size for B2O3 seems 

unreasonable, and perhaps implies that the (brittle) fracture mechanics equation is not 

applicable.    
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The increase in ‘inert strength’, from 1.2 to 3.0 GPa noted above for the addition 

of 33 mole% Na2O to B2O3 is consistent with reports of increasing elastic modulus for 

borate glasses with increasing modifier contents [18].  These trends reflect the well-

known ‘borate anomaly’ for which the addition of modifying oxides strengthen the glass 

network by converting B-triangles into B-tetrahedra. The B-tetrahedra are linked at all 

four corners to other B-polyhedra, and so the network connectivity increases with 

increasing modifying oxide concentrations, at least up to about 30 mole% [18]. 

In this work we describe our inert failure strain measurements on pristine sodium 

borate glass fibers, with compositions of xNa2O·(100-x)B2O3, 0≤x≤35. 

2.2. EXPERIMENTAL PROCEDURE 

Glasses with molar compositions of xNa2O·(100-x)B2O3, x=0, 5, 13, 20, 27 and 35 

were prepared from mixtures of reagent grade sodium carbonate (Na2CO3) and boric acid 

(H3BO3) powders.   All glasses were melted in platinum crucibles in air at 1000°C for 6 

hours, except for B2O3 glass, which was prepared several different times from melts held 

at 1000°C for up to 30 hours.  Weight loss measurements were taken after 1hour of 

melting and were found to be less than 0.05% per hour, thus the ‘as batched’ 

compositions are used in discussion.   Fibers with diameters in the range of ~100 to 300 

µm were drawn by hand and tested within 30 seconds of their creation to minimize the 

effects of aging.   

Another independent set of B2O3 glass were prepared and the inert failure strains 

were measured by Kurkjian in 1995 and never published.  Reagent grade boric acid 

powder was melted in a Pt crucible in an electric furnace at temperatures between 1000° 

and 1300°C.  Melts were normally dried by bubbling with dry nitrogen, although no 

effect of water content was observed in the failure characteristics.  Fibers of ~100 to 200 

µm diameter were drawn from the melt by hand and then tested immediately by TPB at a 

faceplate velocity of 1000 µm/s.  It was found that if the measurements were made within 

~30 seconds, a reproducible value for the failure strain was obtained.  After longer times, 

hydrates formed on the glass surface and degradation of the failure strain values was 

observed. 

Failure strains of the B2O3 and Na-borate glass fibers were measured using the 

two-point bending (TPB) technique [31].    In a TPB test, a pristine section of glass fiber, 
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diameter d, is bent into a U-shape between two parallel face plates, one of which travels 

towards the second at a constant faceplate velocity (vfp), compressing the ‘U’ until failure. 

The gap distance at failure (D) is recorded, and the failure strain (εf) is then calculated 

from [32]:  

 

   = 1.198 ×  ( −  )  (3)

 

The diameters of the broken ends of each fiber tested were measured using a micrometer 

with a precision of 1 µm and these values were used to calculate εf.  Inert conditions are 

created by testing fibers immersed in liquid nitrogen.  At the low temperature (77K, 

boiling point of liquid nitrogen at atmospheric pressure), the kinetics of fatigue reactions 

are arrested [7].   

The TPB test in this study does not provide a measuring mode of constant stress 

rate or strain rate, but instead uses a mode of constant faceplate velocity (vfp).  This 

means that the applied strain rate increases with increasing strain (decreasing D, from 

equation (3)).   With the diameter of the fiber known, the strain rate at failure (  ̇) can be 

calculated from: 

 

   ̇ =    ×    1.198 ×   (4)

 

Faceplate velocities ranging from 50 to 4000 µm/sec were used in these 

experiments and are reported for each data set.  The failure strain rate for each fiber was 

calculated and an average with one standard deviation is reported for each set of data. 

2.3. RESULTS 

The Weibull distributions [33,34] of the inert failure strains for B2O3 glass fibers 

prepared under various conditions are shown in Figure 2.1.  The inert failure strains 

measured at vfp=4000 µm/s decrease with increasing melting time, from 6 to 30 hours.  

An attempt to reproduce the 6h data results in a smaller failure strain.  The inert failure 

strains measured at vfp=50 µm/s are smaller than those measured at vfp=4000 µm/s.  The 
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‘Kurkjian 1995’ data has the widest inert failure strain distribution, ranging from 12% to 

55%.   Over all, there is a significant uncertainty associated with these measurements.    

Figure 2.2 shows that the reproducibility of inert failure strains for 5Na2O·95B2O3 

glass (30±1% and 25±3%) is not as good as the reproducibility for 20Na2O·80B2O3 glass 

(both 18±1%).  Due to the fact that the failure strains for borate glass (especially for B2O3 

rich glasses) are difficult to reproduce in air, to minimize the variability that affects the 

failure strains, fibers collected and tested under similar conditions were evaluated.  

Failure strains for all other glass fibers were collected from glass melted at 1000°C for 6 

hours.  

In room temperature air of ~40% humidity, a B2O3 glass fiber looks perfectly 

clear by eye when it is drawn.  After 5 minutes in air, the fibers are less transparent.  

After 10 minutes, a white coating is visible.  After 20 minutes, the entire fiber is covered 

by the white coating and attempts to load this fiber in the two-point bender will fail, 

indicating that its failure stain is less than 1%.  A surface XRD study showed that the 

white substance on the surface of the B2O3 glass fibers is crystalline boric acid (Figure 

2.3).  This observation is consistent with the reported hydrated species of vitreous B2O3 

glass [35]. 

Weibull distributions of the inert failure strains for xNa2O·(100-x)B2O3 fibers 

drawn by hand from the respective melts and tested at vfp = of 4000 µm/s are shown in 

Figure 2.4.   Much tighter failure strain distributions were obtained for the Na-containing 

glasses than for the B2O3 glass.  The failure strain distributions shift to lower values with 

increasing Na2O content. 

Figure 2.5 compares the inert failure strains of Na-borate glass fibers drawn from 

melts by hand and drawn using the rotating cage method [36].  The compositional 

dependences of failure strains are similar, although the latter failure strains are somewhat 

lower than the former.   
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2.4. DISCUSSION 

2.4.1. Compositional Dependence.  It can be seen in Figure 2.5 that the inert 

failure strains for the sodium borate glasses decrease with increasing Na2O content.   

B2O3 glass, in the short range order, has layered structure with strong chemical bonds (B-

O) forming BO3 triangles and B3O6 boroxol rings in the planes and weak van der Waals 

bonds between the planes [18,30].  Na2O, when added into the B2O3 glass structure, can 

charge balance with boron with BO3 units being converted into BO4 units.   So the 

addition of soda replaces some van der Waals bonds with B-O covalent bonds and turns 

the two dimensional (2D) structure into a 3D structure [15,30].  The decrease in inert 

failure strain with increasing soda should be related to the structure change. 

To analyze the structural dependence of inert failure strains, it is important to look 

at some other mechanical properties that relate to the glass composition and structure.   

For sodium borate glasses, elastic properties, i.e., Young’s modulus and bulk modulus 

increase with increasing Na2O content [18,19].   A greater proportion of covalent bonds 

associated with higher amounts of Na2O causes an increase in rigidity, or resistance to 

deformation [18].  Figure 2.6 shows that Young’s modulus [19] increases systematically 

with increasing soda content, while inert failure strains decrease with increasing soda.  

Also shown in Figure 2.6 are the compositional dependence of Young’s modulus and 

inert failure strains for sodium silicate glasses [9].   Different from the borate glasses, the 

addition of Na2O weakens the structure of silicate glasses by replacing bridging oxygen 

with non-bridging oxygens, thus decreases the Young’s modulus.   

It is interesting that the failure strains and Young’s moduli show opposite 

compositional dependence, for both sodium silicate glasses and sodium borate glasses.  

The correlations between failure strains and Young’s moduli for sodium borate, sodium 

silicate [9] and sodium aluminosilicate glasses [9] are shown in Figure 2.7.  It can be seen 

that for all three series of glasses, failure strains decrease with Young’s moduli.   

Young’s modulus represents a material’s resistance to elastic strain.  A similar 

property is hardness, which measures a material’s resistance to plastic deformation.  For 

sodium borate glasses, hardness increases with increasing soda content ([15, 37], shown 

in Figure 2.8 (a)).  A similar compositional trend in hardness was also observed in soda-

lime borate glasses [38].  In the latter study, a model was proposed to predict the hardness 
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based on the numbers of ‘constraints’ for different types of bonds in the glass structure.  

The change in hardness was attributed to the number of constraints.  The addition of soda 

in borate glasses increases the number of ‘constrains’ and thus increases hardness.  But 

even if a structure has fewer constraints, that does not mean that failure is less easy in this 

structure.   

A mechanical property that is related to the crack behavior is fracture toughness 

(KIC).  In fracture mechanics, fracture toughness is a property which describes the ability 

of a material containing a crack to resist fracture.  The failure of a pristine fiber in inert 

conditions is a crack initiation controlled process.  The inert intrinsic failure proceeds in 

the following steps, inspired by the idea of the indentation process described by Lawn 

and Marshall [25]: 1. The material deforms under stress; in this stage, the size of flaw 

nuclei does not change.  2.  The material continues to deform; maybe some permanent 

deformation takes place, and the size of flaw nuclei increases to a size that is large 

enough to be called a crack.  3.  The crack grows to a critical size and failure occurs.   

The mechanical response is on the verge of transforming from hardness-controlled to 

toughness-controlled, thus the idea of brittleness [25].   The brittleness parameter reflects 

the crack-initiation ability.   The more brittle the material is, the easier a crack can initiate 

under stress.   The brittleness for sodium borate glasses can be achieved by dividing 

hardness data [15] with fracture toughness [22] using equation (2).  Figure 2.8 (b) shows 

that with increasing Na2O, the brittleness increased systematically, whereas the failure 

strains decreased systematically.  Apparently the transformation of structure not only 

increases the resistance to deformation but also increases the brittleness, and hence 

decreases failure strain.  

2.4.2. Elastic Deformation or Plastic Deformation.  Hirao et al. [28] showed  

that sodium borate glasses exhibit inelastic deformation during a crack growth study with 

loading-unloading cycles.   Larger inelastic dissipation energy was observed for 

xNa2O·(100-x)B2O3, x=10, 15, 25 and 30 glasses than soda-lime silicate glasses.  They 

suggested that the fracture of borate glass is accompanied by plastic deformation.  Since 

plastic deformation is observed in crack growth studies, it is possible that it also exists in 

the TPB inert failure strain studies.   In TPB studies, it has been reported that for some 

glasses, inert failure strains increase with decreasing faceplate velocity, and this effect 
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has been referred to as the ‘Inert Delayed Failure Effect’ (IDFE) [10].   One explanation 

for IDFE is that the depolymerized structure of these glasses reorganize or relax under the 

applied stress [11], perhaps in processes similar to those that account for low-temperature 

internal friction [39,40].  Such internal inelasticity does not assure macroscopic plastic 

deformation like what is observed in indentation study, but it is also associated with time 

dependent energy dissipated relaxation [41].   Glasses that exhibit IDFE include 

25Na2O·mAl2O3·(75-m)SiO2, m<25 mol% [9], yNa2O·(100-y)SiO2, y>15 mol% [10], 

zK2O·(100-z) SiO2  z>25 mol% and soda-lime silicate glasses [36].   At lower faceplate 

velocities (or strain rates), the structure is given more time to reorganize and relax.   

However, for sodium borate glasses, the inert failure strains (listed in Table 2.1) are 

greater at a higher strain rate, except for 5Na2O·95B2O3 glass.  The ‘IDFE’ for 

5Na2O·95B2O3 glass might not be real considering the difficulty to reproduce the failure 

strain for B2O3-rich glasses.  The lack of IDFE indicates that the low temperature 

inelastic flow mechanism does not exist in the TPB failure of borate glasses at 77K, and 

the plastic deformation observed at room temperature is a different mechanism. 

It may be remembered that the Vickers hardness of silica and soda-lime-silica 

glasses increase by a factor of three as the temperature is decreased from room 

temperature to 77K [20].  So the mechanism which allows room temperature plastic flow 

of soda-lime silicate glass is ‘frozen out’ at such a low temperature.  However, the IDFE 

of soda-lime silicate shows that the internal friction can exist at 77K.   For sodium borate 

silicate glasses, the room temperature plastic flow is due to the shear of boroxol 

hexagonal planes in borate structure of the exchange of the coordination number of boron 

atoms [28].   If this mechanism is ‘frozen out’ at low temperature, it does not contribute 

to the strain in our TPB test. 

Another possibility is that for some other reason, borate glasses tend to fail readily 

at lower strain rate.  This phenomena of increasing inert strength with increasing strain 

rate/stress rate was referred to as ‘inert fatigue’ because it is similar to the environmental 

fatigue but in inert conditions [7].  ‘Inert fatigue’ behavior has been reported before for 

silica [6,7,42] and E-glass [11,36].  Matthewson et al. [42] did not differentiate inert 

fatigue and environmental fatigue and considered both processes as caused by stress-

induced reactions leading to weaker bonds at longer times.  Kurkjian, et al. [7], explained 
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the effect as a consequence of the normal probability of failure due to thermal 

fluctuations of bond strengths under high stress, with longer times (slower vfp) allowing 

weaker bonds to rupture to initiate failure.   Proctor et al. [6], however, attributed this to 

the finite activity of water in liquid nitrogen leading to normal environmental fatigue 

behavior.   The higher sensitivity of borate glass to water might increase the effect of 

inert fatigue and overwhelm the IDFE.  The mechanisms for IDFE and inert fatigue are 

not quite understood yet, and more research must be done.   

2.5. SUMMARY 

In summary, sodium borate glasses were prepared in the laboratory and inert 

failure strains were measured using the two-point bend technique in liquid nitrogen.  A 

very large inert failure strain with a large variance was observed for B2O3 glass.  The 

inert intrinsic failure strains decrease as Na2O is added into the system.   The addition of 

Na2O increases the dimensionality and connectivity of the structure.   From reported 

Young’s modulus and hardness studies, the addition of soda increase the resistance to 

both elastic and plastic deformation of the glass.  With increasing soda content, the 

decreasing failure strains correlate with increasing resistance to deformation and 

decreasing crack initiation ability, as was reported in literature the increasing brittleness.  

The inert failure strains for sodium borate glasses increase with increasing strain rate.  

The lack of IDFE might suggest that the reported plastic flow of sodium borate glass in 

room temperature might not exist in low temperature (77K), or the effect of plastic flow 

is overwhelmed by other effects accounting for inert fatigue. 
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Table 2.1.  Inert failure strain ( f) and failure strain rate ( ̇f) for sodium borate glass, 
measured at a faceplate velocity of 4000 and 50 µm/s. 

xNa2O·(100-x)B2O3 εf ·4000 (%)  ̇f ·4000  (s-1) εf ·50 (%)  ̇f ·50  (s-1) 

x=0 35.77 ± 4.55 1.95 ± 0.57   

x=0 (melted for 9h) 28.06 ± 5.00 1.48 ± 0.53 23.90 ± 3.96 0.013 ± 0.003 

x=5 29.86 ± 1.09  1.68 ± 0.29 31.69 ± 0.57  0.023 ± 0.002 

x=13 24.26 ± 1.70 1.45 ± 0.24 20.44 ± 1.97 0.013 ± 0.002 

x=20 18.23 ± 0.68 0.78 ± 0.11 16.87 ± 0.69 0.010 ± 0.001 

x=27 11.69 ± 0.59 0.40 ± 0.08 10.21 ± 0.92 0.0036 ± 0.0011 

x=35 8.18 ± 0.52 0.19 ± 0.03   
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Figure 2.1.  Weibull distributions of inert failure strains for B2O3 glass fibers, with legend 
indicating the melting time and faceplate velocity.  Square and triangle data points were 
collected in May (lab humidity ~40%); diamond data points were collected in August 

(lab humidity ~60%); round data points were collected in January (lab humidity ~30%). 
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Figure 2.2.  Weibull distributions of inert failure strains for xNa2O·(100-x)B2O3 glass 

fibers, tested at vfp = 4000 µm/s.  Open symbols represent attempts to reproduce original 
data (solid symbols) in identical testing conditions. 
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Figure 2.3.  Surface XRD results from detection of B2O3 glass fibers aged 1 hour in 21°C 

and 60% RH air. 
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Figure 2.4.  Weibull distributions of inert failure strains for xNa2O·(100-x)B2O3 glass 

fibers, tested at vfp = 4000 µm/s. 
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Figure 2.5.  Inert failure strains for sodium borate glasses (vfp=4000 µm/s), from present 

work and from Lower [36], decrease systematically with Na2O content. 
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Figure 2.6.  Compositional dependence of inert failure strains (closed symbols) (vfp=4000 
µm/s) and Young’s moduli (open symbols) for sodium borate glasses and sodium silicate 

glasses. 
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Figure 2.7.  Inert failure strains measured at 50 and 4000 µm/s vs. Young’s moduli for 
sodium borate, sodium silicate and sodium aluminosilicate glasses. 
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(a) 

 
(b) 

Figure 2.8.  For sodium borate glasses, (a) Fracture toughness (●) [22] and Hardness 
reported by Eversteijn [37] and Pesina [15], (b) Brittleness calculated from equation (2) 

and failure strains.  
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ABSTRACT 
The Two-Point Bend (TPB) method was used to measure fatigue effects on 

freshly-drawn silicate glass fibers, including several different commercial compositions 

and a series of 25Na2O·xAl2O3·(75–x)SiO2 glasses (0≤x≤25).  Fibers were tested in 

distilled water at different temperatures ranging from 3 to 93°C and failure strain was 

found to decrease with increasing temperature.  The dynamic fatigue effect was 

characterized from TPB experiments in water at different faceplate velocities, ranging 

from 50 to 10,000 µm/s. The dynamic fatigue parameter (n) was found to be in good 

agreement with reported values measured using different methods for similar glasses.  

For the series of sodium aluminosilicate glasses, the susceptibility to fatigue decreases 

with increasing alumina content.  A mechanism based on the exchange of sodium ions in 

the glass and protons or hydronium ions (H3O+) in solution is proposed to explain the 

effects of glass composition on fatigue behavior. 

3.1. INTRODUCTION 

3.1.1. Fatigue of Glass.  The strength of glass measured in air is much lower than  

that measured in vacuum, liquid nitrogen or liquid helium [1].  It was found 100 years 

ago that in aqueous or humid environments, the strength of glass is dependent on the 

loading time and/or loading rate [2]. This phenomenon was probably first described as 

“fatigue” in 1946 [3].  Fatigue is important considering that many applications of glass 

involve some kind of applied force in the presence of ambient water.  
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It is widely accepted that failure of inorganic glasses in wet environments is 

controlled by stress corrosion due to the chemical reaction between water and strained 

bonds [4,5].  The glass-water reactions have been discussed by Bunker [6].  Generally, 

there are two categories of reactions between glass and water: (1) Hydrolysis, in which 

water reacts with metal-oxygen bonds and form hydroxyl groups; (2) Leaching, in which 

cations in glass (usually alkali modifiers) ion-exchange with protons or other cations in 

water.   For silica glass, the hydrolysis process is described as: 

 

 — |  | — — |  | —+   ⟶ 2  — |  | —    (1)

 

Silica is often considered relatively inert to water at zero strain, but when the Si-

O-Si bond is strained, it can react with water much faster than in dry conditions [7,8].  

Silica is more susceptible to fatigue in the presence of basic solutions because hydroxyl 

ions further attack the glass network [6,9]: 

 

 — |  | — — |  | —+   ⟶— |  | —  + — |  | —   (2)

 

For alkali silicate glasses, the initial attack by water progresses by an ion-

exchange process that selectively leaches the alkali ions from the glass [6]: 

 

 — |  | —     +   ⟶— |  | —  +     (3)

 

Doremus [10] suggested the possibility that hydronium ions (H3O+) are involved 

in this ion-exchange process.  Depth profile studies of hydrated soda-lime silicate glass 

have shown that three H-atoms replace each Na atom leached from a hydrated glass 

surface, consistent with a Na+-H3O+ exchange mechanism [11, 12]: 
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 — |  | —     +     ⟶— |  | —  +    +     (4)

 

Charles [13,14,15] attributed the fatigue of sodium silicate glass to the extension 

of surface flaws by the leaching of Na+ ions from the glass in the vicinity of the flaw tip.  

Duncan and France et al [16] studied the fatigue of silica and sodium borosilicate glass in 

air and discovered that the sodium borosilicate glass is more susceptible to fatigue than 

silica.  They also studied the fatigue of sodium borosilicate glasses with different soda 

contents and recognized that reducing soda increased resistance of the glass to fatigue 

[17].   Wiederhorn and Bolz [18] studied stress corrosion behavior (another form of 

fatigue) for several different silicate glasses.   Among those compositions, silica glass had 

the greatest stress corrosion resistance, followed by low-alkali aluminosilicate and 

borosilicate glass.  Soda-lime silicate glass however, was sensitive to stress corrosion, 

indicating that the alkali component is playing a detrimental role in fatigue.  Fatigue 

studies have also been performed on soda-lime silicate (SLS) glasses [12,19,20], but no 

compositional dependence was reported.  Less is known about fatigue effects for sodium 

aluminosilicate glasses.  These glasses are finding increasing applications, particularly in 

flat panel displays and touch-screen applications [21].   

3.1.2. Fatigue of Glass in Fracture Mechanics.  Fatigue processes in glass have 

been studied using several different methods [22].  The most conventional way is the 

measurement of slow crack growth velocities (a.k.a. subcritical crack growth) using 

fracture mechanics analyses [18,23].  The theory behind this is that a defect (assuming an 

elliptical thorough crack in an infinite plate) can serve as a stress concentrator [24]:  

 

   =  √   (5)

 

where KI is stress intensity factor (MPa·m1/2), σ is the remotely applied stress (MPa) and c 

is the crack length (m).  When KI reaches its critical value, KIC, the crack will propagate 

at its ‘spontaneous’ crack growth speed ≥0.1 m/s [25].  At this stage, the failure occurs 

essentially instantaneously.  Before this stage, when KI < KIC, the crack grows at a much 

slower velocity, called subcritical crack growth velocity.  The slow crack velocity data is 



78 

 
 

usually shown in a ‘K-V’ curve, where crack velocity (V or  ̇) is recorded as a function of 

KI.  The most widely used model is based on an empirical power law: [26,27] 

 

  ̇ =  (     ⁄ )  (6)

 

Here,  ̇ is the crack growth velocity, n is termed the fatigue parameter or the stress 

corrosion susceptibility parameter, and A is the environmental parameter which has an 

Arrhenius temperature dependence.  In addition to this model, an activation volume 

model [18] based on exponential law has been proposed: 

 

  ̇ =  ′ exp( ′     ⁄ ) (7)

 

Other models based on exponential laws have also been used [28,29,30], but their 

formulations are similar to equation (7).  Shiue and Matthewson [31] compared several 

different models for fatigue and suggested that the power law fits the fatigue data the best, 

while the exponential law has a better physical meaning.   

The effects of fatigue on the failure strength (  ) of glass has been analytically 

derived [32]: 

 

   =   ̇(    ⁄ ) (8)

 

where D is a constant, and  ̇ is the applied stress rate.  This equation allows direct 

comparison between slow-crack growth results and those obtained in dynamic fatigue 

studies.  Most researchers prefer the power law model.   

Fatigue can also be examined from strength measurements, including tensile test 

[33,34], three-point bending [35], and four-point bending [36,37], etc.  These studies are 

usually categorized in two forms: static fatigue and dynamic fatigue.  Static fatigue is 

usually measured by determining the time-to-failure under a constant applied stress or at 

a constant strain.  Dynamic fatigue is usually measured by determining the failure stress 

or failure strain under different loading rates.   According to the type of strength 
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measurement, loading modes include constant stress rate, constant strain rate, and 

constant faceplate velocity (in two-point bending tests).    

3.1.3. Two-Point Bending (TPB) Dynamic Fatigue.  The two-point bending 

(TPB) technique was first described in detail in 1980 [38].  In a TPB test, a pristine 

section of glass fiber, diameter d, is bent into a U-shape between two parallel face plates, 

one of which travels towards the second, compressing the ‘U’ until failure. The gap 

distance at failure (D) is recorded, and the failure strain (εf) is then calculated from: [39]  

 

   = 1.198 ×  ( −  )  (9)

 

TPB does not require the special grips needed for conventional tensile tests, and 

the relatively small gauge length of 0.3-0.9 mm in the region of highest stress minimizes 

the probability of large extrinsic flaws lowering failure strains [38]. More details about 

the TPB technique can be found in our previous publications [40,41]. Lower et al. used 

TPB to determine the inert failure strains for sodium silicate glass fibers [42], sodium 

aluminosilicate glass fibers [43] and E-glass fibers [44].   

In TPB studies, the environmental fatigue effect has been characterized in 

different ways:  Failure strains decrease systematically with increasing relative humidity 

[40], with increasing temperature [37], or with decreasing strain rate/stress rate [45].  In 

this research, the TPB test uses a measuring mode of constant faceplate velocity (vfp). 

Rondinella and Matthewson [45] compared three different loading modes: constant strain 

rate, constant stress rate and constant faceplate velocity (vfp), and calculated the dynamic 

fatigue parameter, n, for each mode.  For the constant faceplate velocity, n can be 

calculated by: 

 

  = 1 + 1/  log (  ) log (   ) (10)

 

This n is equivalent to the n in equations (6) and (8).  However, the value of n for 

the same glass can vary considerably when testing samples with different dimensions and 
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surface conditions.  This will be discussed later.  There have been reports on the use of 

TPB to measure the fatigue for silica glass fibers [45,46,47,48,49] and sodium 

borosilicate glass fibers [38] . 

In the present study, the temperature dependence of failure strain and the dynamic 

fatigue characteristics will be determined for several different silicate glasses.  The 

fatigue behaviors will be related to the composition and structure.  The fatigue 

mechanism will be discussed, especially for a series of sodium aluminosilicate glasses.     

3.2. EXPERIMENTAL PRECEDURE 

3.2.1. Sample Preparation.  Silica glass fibers (Amersil TO8 fused natural quartz, 

125 μm in diameter) were provided by AT&T. The protective polymer coatings on the 

fibers were removed by immersing the fiber in acetone immediately before testing.  

Fibers of other glass compositions were drawn from melts. A commercially 

available soda-lime silicate flint container glass, a calcium aluminoborosilicate fiber glass 

(nominal composition in the ranges [20-25]CaO, [10-15]Al2O3, [5-10]B2O3, and [50-

55]SiO2, wt%), a sodium borosilicate glass similar to Pyrex, and a commercial sodium 

aluminosilicate display glass were each remelted in a platinum crucible in air, for the 

times and temperatures indicated in Table 3.1, to produce bubble-free, homogeneous 

melts.  Laboratory melts of glasses from the series of 25Na2O·xAl2O3·(75–x)SiO2, where 

x = 0, 5, 9, 12.5, 18.75, and 25 in mole %, termed the NaAlSi series, were prepared from 

batches of reagent grade Na2CO3, Al2O3 and SiO2.  The batches, sufficient to produce 25 

grams of glass, were thoroughly mixed with a mortar and a pestle and melted in platinum 

crucibles in air for the times and temperatures shown in Table 3.1 to produce bubble-free, 

homogeneous melts.  The weight of glass melts were measured after one hour of melting 

and before fibers were pulled.  The weight losses were found to be less than 0.1%, thus 

the ‘as batched’ compositions are used in discussion. 

3.2.2. Fiber Pulling.  Glass fibers are produced using a method described in [40].  

When the glass melt reaches a bubble-free and homogeneous state, the crucible is 

transferred into a box furnace located below a custom built fiber drawing system.  The 

box furnace is set at a pulling temperature (Table 3.1) at which the viscosity of the glass 

is appropriate for fiber drawing, that is, above the liquidus temperature and up to the 100 

Pa-s isokom temperature of the melt.  A water cooled copper coil is carefully positioned 
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above the melt surface through a hole in the furnace lid.  The fiber drawing is initiated by 

dipping a silica rod through the cooling coil into the center of the melt surface, drawing a 

fiber up and attaching it to an arm of rotating cage (diameter ~45 cm), with 12 arms 

separated by a distance of 12 cm.  Once it is attached, the fiber is drawn continuously as 

the rotating cage spins.  The cage spins and translates along the rotation axis, preventing 

the fiber from overlapping itself as it is collected.  The fiber diameter is controlled by 

adjusting the rotation speed of the cage, furnace temperature and the height of the cooling 

coil.  The preferred diameter of fibers for the TPB test is 125±20 microns.   

3.2.3. TPB Test.  Failure strains of freshly drawn fibers were measured using a  

homebuilt two-point bending system [40].  Inert failure strains were measured by testing 

in liquid nitrogen at a faceplate velocity (vfp) of 4000 μm/s.  At this low temperature (77 

K), the kinetics of the fatigue reactions are considered arrested [50], thus environmental 

fatigue is minimized.   Temperature-dependent fatigue experiments were carried out by 

testing fibers immersed in distilled water at four different temperatures, using TPB at a 

constant faceplate velocity (vfp = 4000 μm/s).  Each fiber was tested immediately after 

immersion in water (within 5 seconds) to avoid aging effects.  Five measurements were 

made at each temperature and then repeated until a total of 20 measurements were made 

at each temperature.  The water temperature was controlled by a hot plate and monitored 

by thermometers with 1°C precision.  Dynamic fatigue was determined by measuring the 

failure strains of fibers immersed in room temperature (21 ± 2°C) distilled water using 

faceplate velocities (vfp) of 50, 500, 4000 and 10000 μm/s.  Again, each fiber was tested 

immediately after immersion in water (within 5 seconds) to avoid aging effects; five 

measurements were made at each vfp and then repeated until a total of 20 measurements 

were made under each condition.  The fibers drawn from melts were tested immediately 

after they were first formed.  The failure strains for each testing condition are 

independent of testing sequence, so there was no aging effect.  The commercial silica 

glass fibers were tested immediately after removal of their polymer coatings.  
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3.3. RESULTS 

3.3.1. Failure Strains.  Figure 3.1 shows the Weibull distributions [51,52] of 

failure strain for commercial glasses measured in liquid nitrogen and in distilled water at 

room temperature, each at a faceplate velocity of 4000 µm/s.  The inert (liquid nitrogen) 

failure strains are greater than the failure strains measured in water for all glasses.  Broad 

failure strain distributions for the commercial Na-borosilicate and Na-aluminosilicate 

glasses were obtained for fibers drawn from several different melts.  The high viscosities 

of these two glasses made it difficult to produce fibers with tighter distributions noted in 

Figure 3.1 for the commercial soda-lime and Ca-aluminoborosilicate glasses. 

3.3.2. Temperature Dependence.  Figure 3.2 shows the Weibull distribution of 

failure strains for the NaAlSi (x=5) glass fibers measured in distilled water at different 

temperatures.   The failure strains shift to lower values with increasing temperature.  

Similar results were obtained for the commercial glasses and the other NaAlSi glasses, 

and they are summarized in Table 3.2 and illustrated in Figure 3.3 and Figure 3.4.  The 

average failure strains for each glass at the different temperatures are reported with one 

standard deviation.  The relatively large standard deviation for the commercial Na-

borosilicate and Na-aluminosilicate glasses reflect the broad distributions noted in Figure 

3.1 for these compositions. 

The temperature dependence of failure strain from a TPB test has been described 

using an Arrhenius equation [16]: 

 

  =   exp      (11)

 

where Ea is the apparent activation energy, R is the gas constant and T is the temperature.  

Thus Ea can be obtained by plotting the log of failure strain vs 1/T.  The Arrhenius plots 

of failure strains for silica from this study and two studies reported in the literature are 

shown in Figure 3.2.  The apparent activation energy for failure strains for silica in water 

is 1.7±0.1 kJ/mol, compared to the value of 1.3 kJ/mol, derived from failure strain 

measured in various water saturated conditions (for example water bath at room 

temperature and subliming CO2 in acetone at 195K) by Matthewson et al [53].  Duncan et 
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al. [16], also measured failure strain for silica glass in 100% humidity and report a value 

of 2.4 kJ/mol for coated silica fibers.   

Table 3.2 shows that the values of Ea for the commercial Na-borosilicate and Na-

aluminosilicate glasses are lower than that measured for silica, and the values measured 

for the commercial Ca-aluminoborosilicate and Na-Ca-silicate are greater.  The values of 

Ea for the NaAlSi glasses decrease systematically from 8.3±0.3 to 2.3±0.3 kJ/mole with 

increasing alumina content. 

3.3.3. Dynamic Fatigue.  Figure 3.6 shows an example of the Weibull 

distributions of failure strains for NaAlSi (x=5) glass fibers measured at different 

faceplate velocities in room temperature distilled water.  The failure strains increase with 

increasing faceplate velocity.  Table 3.3 lists the average failure strains (± 1 s.d.) of 

various glass fibers measured using TPB at the different values of vfp.  Generally, failure 

strain increases with increasing vfp for every composition.  Dynamic fatigue parameters (n) 

were calculated from equation (10) from the slopes of the plots, like those shown in 

Figure 3.7 and Figure 3.8; the values for n for all glasses studied are also given in Table 

3.3.   

The value for n for silica in 21°C distilled water is 23.7±1.5.  Similar TPB 

dynamic fatigue studies have been reported for silica in 30°C distilled water (n=22±0.5 

[54]), and in 90°C pH 7 buffer solution (n=20.0±1.7 [48,55]). 

The value of n for the commercial Na-Ca-silicate glass in this study was 14.9±2.1.  

This compares favorably to a reported value of 16.6 [18] from a bulk crack propagation 

study in distilled water at 25°C, a value of 16.1 [56] from a slow crack growth study, and 

a value of 16.0 [36] using abraded rods in a 4-point bend study.  Baikova et al. [20] 

measured the dynamic fatigue parameter for soda-lime silicate glasses in water, using 

several different methods.  The values of n for abraded sheet glass samples were 13.6 by 

central symmetrical bending and 14.7 by four-point bending.  The values of n for abraded 

soda-lime silicate glass rod samples were 15.5-16.8 by three-point bending.   

The value of n for the commercial Ca-aluminoborosilicate glass is 16.6±2.8, 

compared to a value of 16.1 reported for E-glass at 20°C and 100% relative humidity 

from a static fatigue study [57].   
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The n value of the commercial Na-borosilicate glass fibers is 21.6±11.7, 

compared to values of 27.4 [36] and 27.8-47.4 [37] in dynamic fatigue studies of Pyrex 

glass rods, which were abraded, aged in distilled water, then immersed in distilled water 

immediately before measured using 4-point bend technique.  Another value, 34.1, was 

reported by Wiederhorn and Bolz [18] in a slow-crack growth study of bulk Pyrex glass, 

tested in distilled water at 25°C.  The n value for our commercial Na-aluminosilicate 

glass is 27.2±18.5.  The great uncertainties in this value and that for the Na-borosilicate 

glasses are due to the broad distributions of failure strains (Figure 3.1) rather than the 

quality of the fit of the data to equation. 

The dynamic fatigue parameter, n, of the sodium aluminosilcate glasses increases 

from 6.9±0.2 for NaAlSi (x=0) to 19.6±2.4 for NaAlSi (x=25) (shown in Figure 3.9).  

Gehrke [58] measured the crack growth velocity of a series of sodium aluminosilicate 

glasses, including a glass with the composition: 26%Na2O, 11%Al2O3, 63%SiO2.  The 

value of n for this glass was approximately 25, compared to the value of 16.1±1.7 for our 

sample NaAlSi (x=12.5).  The value of n for Gehrke’s 24% Na2O, 76%SiO2 glass was 17, 

compared to the value of 8.1±0.2 for our NaAlSi (x=0) glass. 

3.4. DISCUSSION 

3.4.1. Slow Crack Growth vs. Fatigue of Pristine Fibers.  A comprehensive 

summary of fatigue data for silica reported by Glaesemann [59] shows that the fatigue 

parameter derived for different types of samples or from different types of measurement 

will not necessarily be the same.  Such differences were also reported by Maurer [60] and 

Kurkjian et al. [61].  As-drawn silica fibers generally have lower fatigue parameters with 

most values ranging between 20-26 [34,54,55].  Abraded silica fibers or rods seem to be 

more resistant to fatigue, with reported values of n ranging from 22.1 to 42.6.   Abraded 

bulk samples of silica have the greatest values of n, ranging from 30.7 to 45 [18,36].   

Direct comparisons between indented and pristine silica fibers [33] and among silica 

fibers with different indentation flaw sizes [62] showed that the fatigue parameter 

increases with increasing indentation flaw size.   

Kurkjian et al. [61] suggested that the failure of pristine glass fibers is controlled 

by crack initiation, whereas the failure of abraded or precracked samples is controlled by 

crack propagation, thus modeling fatigue of high strength fibers by means of slow crack 
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growth may not be appropriate.  Dabbs et al. [62] suggested that there is a threshold of 

flaw size (~10µm) indicating a transition from crack propagation-controlled failure to a 

crack initiation-controlled failure mechanism.   Most likely, the kinetics of the fatigue 

process for pristine glass fibers is quite different from that for slow crack growth.  In 

slow crack growth studies, crack propagation behavior dominates, whereas in fatigue 

studies for pristine glass fibers, crack initiation must be considered.  On pristine fiber 

surfaces, there is no crack tip for stress to concentrate.  In the case of pristine glass fibers 

in TPB study, all reactive Si-O bonds in the gauge length are in contact with water, 

whereas in a slow crack growth experiment, the most reactive Si-O bonds are at the crack 

tip where water supply is limited and there might be some diffusion limit associated with 

it to slow down the fatigue.  In a word, the fatigue reaction on a strained pristine surface 

might be different from that at a crack tip.  It would be interesting if one could examine 

the in-situ structural change of a strained fiber until failure.   It might give us some 

information about the difference between the fatigue mechanism before and after a crack 

is initiated. 

From another point of view, the fatigue parameter n appears to decrease with 

increasing failure strain, since failure strain for pristine fibers are several orders of 

magnitude greater than for pre-cracked samples [61].  This is contrary to France and 

Duncan’s observation of increased fatigue parameter with increasing failure strain [38].  

However, their correlation was based on failure strains in different environments (i.e. in 

water, air, vacuum, liquid nitrogen), which involved different temperatures and water 

activities.   

3.4.2. Activation Energy vs. Fatigue Parameter.  It is noteworthy that the 

Arrhenius equation is usually used to describe the temperature dependence of a reaction 

rate (X), which increases with increasing temperature: 

 

  =   exp−    (12)

 

where H is the activation energy.  In the TPB test, the failure strain decreases with 

increasing temperature, so the apparent activation energy Ea in equation (11) does not 

have the negative sign.  The value of Ea is used for the convenience of comparing the 
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temperature dependence of failure strain, for different glass compositions, since failure 

strains are controlled by the fatigue reaction rate, thus justifies the use of an Arrhenius 

relationship.   

For the glasses tested in this study, the commercial silica, Na-borosilicate, and 

Na-aluminoslicate glasses, and the laboratory NaAlSi (25%) glass each have greater 

values for the fatigue parameter (>19, Table 3) and lower apparent activation energies for 

failure strains in water (<2.5 kJ/mol, Table 2).  The low-alumina (≤9 mol %) NaAlSi 

glasses have low values for the fatigue parameter (<10) and greater values for Ea (>5 

kJ/mole).   Figure 3.10 compares n and Ea for each glass, and it is clear that there is an 

inverse relationship between the two parameters.  This implies that if a material is 

susceptible to fatigue (has a low value of n), the temperature dependence of the 

associated fatigue reactions is large (great value of Ea).   

Although it is suggested that the failure of pristine glass fibers is controlled by 

crack initiation, whereas slow crack growth is controlled by crack propagation.  Both 

processes depend on the activated fatigue reaction, and so the slow crack growth models 

can help us understand the relationship between apparent activation energy (temperature 

dependence of fatigue) and the fatigue parameter (stress dependence of fatigue).  The 

difference in the two tests is that failure strains from TPB are inversely correlated with 

the fatigue reaction rate, and thus failure strains decrease with increasing temperature, 

whereas crack growth rates are positively correlated with the fatigue reaction rate and 

thus increase with increasing temperature.   So in Arrhenius equations, there is a negative 

sign in front of the activation energy term for slow crack growth, but no negative sign in 

front of the activation energy term for failure strains.   

According to the activation volume model [18], the activation energy required for 

stress corrosion of a Si-O bond is dependent on the stress intensity: 

 

  ̇ =  ̇ exp(− ∗ +    )/   (13)

 

where  ̇ is the crack velocity, KI is the stress intensity factor, R is the gas constant, T is 

the temperature,  ∗ is the stress-free activation energy, b is a parameter related to the 



87 

 
 

activation volume, and  ̇  is a constant.  A rough relationship between the fatigue 

parameter  ′ and b can be deduced by substituting equation (13) into (7): 

 

   ∝  +   (14)

 

where a is a constant.  In other words, the effective activation energy ( ∗-bKI) decreases 

with increasing  ′.  Although the activation energy here is different from the apparent 

activation energy Ea in equation (11), both energy terms provide a measure of the 

temperature dependence of the stress-corrosion reaction rate (greater activation energy 

means steeper Arrhenius slope).  Similarly, the fatigue parameter  ′ is different from n in 

equation (10), but they both provide a measure of the inverse fatigue susceptibility.   

Thus this analysis qualitatively explains the trend in Figure 3.10.   

3.4.3. Fatigue Mechanism for NaAlSi Glasses.  The chemical reaction for 

fatigue in sodium silicate glasses is widely discussed [32,6].  It is well accepted that ion-

exchange contributes to the extension of cracks in alkali silicate glass:  

 

 — |  | — — |  | —     +    ⟶— |  | — — |  | —  +    +     (15)

 

This ion-exchange reaction is greatly influenced by the stress applied on the glass 

structure.  Celarie et al [63] studied ion diffusion at the vicinity of a crack tip in soda-lime 

silicate glass in humid air.  They claim a two-step process in slow crack growth: 1. a fast 

migration of sodium ions to the fracture surface; 2. a slower inter-diffusion between 

alkali ions and protons (or hydronium ions) enhanced by the relaxation of the glass 

network changing the bond angles and lengths under stress.   An explanation of this 

phenomenon is that sodium ions near NBO sites form a modifier channel [64,65] which 

works as a path for sodium diffusion [66].  Such diffusion channels are opened through 

the glass structure by the tensile stress near the crack tip.  The sodium flow is balanced by 

interchange with hydrogen or hydronium ions to preserve charge neutrality [35].   

It has been shown that the conductivity of a bent soda-lime silicate glass sheet is 

higher on the tension surface than on the compression surface [67,68].  The differences in 
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conductivity were attributed to higher sodium ion density in the tension regions because 

of sodium ion migration from the compression regions.  The channel opening theory also 

provides an explanation of this phenomenon; viz., the conductivity increased as the alkali 

ion mobility increased as the structure was opened by the tensile stress.  This suggests 

that the ability of a structure to reorganize, or the potential of ‘channel opening’ of the 

glass, has an influence on the stress-enhanced diffusion of alkali ions, and thus will affect 

the fatigue characteristics. 

The fatigue mechanisms for sodium aluminosilicate glasses should be similar to 

those for other modified silicate glasses.  Ion-exchange of sodium ions and hydrogen-

bearing species (protons or hydronium ions) in sodium calcium aluminosilicate glass has 

been observed under atomic force microscope [69].   When an alumina ion is added to 

sodium silicate structure, an alumina tetrahedron (AlO4
-) forms and one sodium ion is 

attracted to charge balance the site [70].  The addition of alumina eliminates non-bridging 

oxygens from the glass structure.  The bond strength of sodium ions with alumina 

tetrahedra is weaker than the bond strength between sodium ions and NBO [70,71], thus 

alumina is added in alkali silicate glasses to enhance the sodium diffusivity.  For example, 

Ag-Na interdiffusion rate was increased by adding alumina to sodium silicate glasses [72].  

However, the ion-exchange between sodium and water species does not increase with the 

addition of alumina.  Wassick et al. [73] studied the hydration of soda-lime silicate glass 

and found that the hydrogen penetration was ten times slower, and the diffusion 

coefficients of sodium and hydrogen were 50 times smaller, after 5 mole % of calcium 

oxide was replaced by alumina.   A similar study showed that adding alumina to alkali 

silicate glasses resulted in an improvement in resistance to hydration [74].  A recent study 

showed that the sodium ion-exchange rate with protons (or hydronium ions) decreased by 

three orders of magnitude as alumina mole fraction increased from 0 to 15% in sodium 

aluminosilicate glasses [75].  Bunker [6] showed that alkali ions on NBO sites fully 

exchange with water species in a pH~8 basic solution, whereas alumina tetrahedral 

anionic sites resist exchange down to almost pH 5, indicating a much lower leachability 

for sodium cations from AlO4
- sites than those from NBO sites.  Bunker suggested that 

the H+AlO4
- tetrahedra are not a stable structure. 
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The difference in the ion-exchange rate is usually attributed to the increased 

fraction of bridging oxygen bonds cross-linking the sodium filled channels [76], and this 

might be related to the compositional dependence of the fatigue behavior shown in Figure 

3.9.  Consider the fatigue process proposed by Celarie et al [63], where sodium channels 

in sodium silicate glasses can be opened by the tensile stress, thus enhancing cation 

diffusion and ion-exchange.  When alumina is added to the glass, the ion-exchange rate 

decreases.  In the meantime, the sodium channel is more and more cross-linked, thus the 

stress-enhanced diffusion also decreases as well.  Thus the fatigue effect is less 

pronounced (greater n) with increasing alumina content.  

Schematic representations of the fatigue processes for a sodium silicate glass and 

a fully cross-linked sodium aluminosilicate glass are shown in Figure 3.11 and Figure 

3.12 respectively.  For the sodium silicate glasses, the ion-exchange between sodium 

cations and hydrogen bearing species takes place in the sodium-rich channels [64,65] 

(Figure 3.11 (a)). The inter-diffusion between alkali ions and protons (or hydronium ions) 

is enhanced by the opening of the channel due to the remotely applied tensile stress 

(Figure 3.11 (b)). Finally the hydration of the nonbridging oxygens leads to the bonds 

breaking and crack initiation (Figure 3.11 (c)).  For the sodium aluminosilicate glass 

(Figure 3.12), the ion-exchange rate is decreased when alumina is added to the glass. In 

these glasses, crack initiation requires the hydrolysis of more chemically-stable bridging 

oxygen bonds, consistent with the increases in n with increasing alumina content.   

It is interesting to compare the failure strains measured in ambient conditions with 

those measured in inert conditions for the same glass (Figure 3.1).  This enables us to 

differentiate the two mechanisms that lead glasses to fail in a TPB experiment.  In inert 

conditions, the environmental fatigue effect is minimized, and the failure of glass solely 

depends on the types and properties of bonds that constitute the structure of the glass. In 

ambient conditions, fatigue plays an important role in determining the failure strain.  

France et al. [77] compared the failure strains in liquid nitrogen and in 20°C air (humidity 

not specified) for silica and several sodium borosilicate glasses which had been stored in 

a variety of environments for different lengths of time.  They suggested that despite the 

differences in glass composition and aging conditions, the ratio (γ) between the inert 

failure strain and failure strain measured in air appeared to be constant at a value of about 
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2.8.   This suggestion was probably the result of a coincidence that their compositions 

happened to have similar fatigue behaviors.   Figure 3.13 compares the inert failure 

strains [43] and failure strains measured in water for the series of sodium aluminosilicate 

glasses studied here.  It can be seen that for low alumina content glasses, the decrease in 

failure strain from inert conditions to ambient conditions is greater, compared to high 

alumina content glasses.  The γ parameter introduced by France et al. [77] thus decreases, 

from 3.2 to 2.4 as the alumina content increases from 0 to 25 mole % (for data collected 

at 4000 µm/s).   Similar phenomena can be found in commercial glasses. Figure 3.1 

shows that silica and soda-lime silicate glasses have almost identical inert failure strain, 

whereas silica has a greater failure strain in water.  Thus, γ for silica is 2.4 and that for 

soda-lime silicate glass is 3.3.  The γ parameter is difficult to predict because it not only 

depends on the environmental fatigue parameter n, but also depends on the inert fatigue 

effect [22] or inert delayed failure effect [43], both of which describe the time dependent 

inert failure strains of glass.  

3.5. CONCLUSION 

The two-point bend (TPB) technique has been used to measure failure strains of 

glass fibers in water. Temperature dependence and strain rate dependence have been 

studied for several commercial glasses and a series of sodium aluminosilicate glasses.  

Failure strains decrease with increasing temperature, showing that fatigue effect depends 

on an activated chemical reaction.  The dynamic fatigue parameters determined using 

TPB are comparable with reported values obtained using different methods but under 

similar conditions.   It is found that glasses with cross-linked structures exhibit lower 

apparent activation energies and have a greater fatigue parameter. 

For laboratory melts of sodium aluminosilicate glasses, the apparent activation 

energy decreases and the fatigue parameter increases with increasing alumina contents.   

The mechanism of fatigue in sodium aluminosilicate glass is similar to that of other 

modified silicate glass.  Sodium ion exchanges with hydrogen ion or hydronium ion 

(H3O+), then the crack grows under the loading force with an assist from further chemical 

reactions, which depend on the further diffusion of sodium from the glass bulk.  When 

alumina is added to sodium silicate glass, sodium ions charge balance with the aluminum 

to form alumina tetrahedra, so the non-bridging oxygens are replaced by bridging 
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oxygens.  The sodium channel opening mechanism is reduced by the cross-link structure, 

leading to decreasing susceptibility to fatigue.   
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Table 3.1.  Melting temperature (Tmelt), melting time (tmelt) and pulling temperature (Tpull) 
for the commercial glasses and the series of 25Na2O·xAl2O3·(75–x)SiO2 glasses prepared 

in the laboratory. 

Source Composition Tmelt (°C) tmelt (hour) Tpull(°C) 

Commercial Ca-aluminoborosilicate 1550 4 1300 

Commercial Na-Ca-silicate 1220 4 1150 

Commercial Na-borosilicate 1600 16 1375 

Commercial Na-aluminosilicate 1600 10 1375 

Laboratory NaAlSi (x = 0) 1300 5 1150 

Laboratory NaAlSi (x = 5) 1350 5 1150 

Laboratory NaAlSi (x = 9) 1400 6 1200 

Laboratory NaAlSi (x = 12.5) 1450 8 1200 

Laboratory NaAlSi (x = 18.75) 1550 16 1300 

Laboratory NaAlSi (x = 25) 1600 16 1375 
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Table 3.2.  TPB average failure strain (εf) measured in distilled water at different 
temperatures with a faceplate velocity (vfp) of 4000 μm/s and apparent activation energy 

(Ea) calculated from equation (7). 

 Average Failure Strain, εf (%)  Ea (kJ/mol) 

Temperature (°C)  3±2 21±2 55±2 94±2  

Fused silica 7.42±0.09 7.22±0.08 6.63±0.07 6.22±0.04 1.7±0.1 

Ca-aluminoborosilicate 5.86±0.18 5.36±0.22 4.76±0.25 3.87±0.23 3.6±0.5 

Na-Ca-silicate 5.36±0.14 5.06±0.20 4.45±0.13 3.95±0.08 2.8±0.3 

Na-borosilicate 5.30±0.28 5.24±0.52 4.75±0.39 4.52±0.36 1.5±0.8a 

Na-aluminosilicate 3.75±0.35 3.45±0.34 3.43±0.29 3.25±0.28 1.1±1.1a 

NaAlSi (x = 0) 7.83±0.12 6.55±0.14 4.55±0.10 3.12±0.10 8.3±0.3 

NaAlSi (x = 5) 7.78±0.25 7.01±0.12 5.45±0.12 4.35±0.13 5.6±0.3 

NaAlSi (x = 9) 8.03±0.35 6.89±0.36 5.70±0.21 5.05±0.18 4.2±0.5 

NaAlSi (x = 12.5) 7.29±0.22 6.48±0.14 5.70±0.14 5.52±0.11 2.4±0.3 

NaAlSi (x = 18.75) 6.92±0.13 6.41±0.08 5.58±0.13 5.61±0.14 2.2±0.3 

NaAlSi (x = 25) 6.84±0.17 6.12±0.16 5.52±0.09 5.30±0.12 2.3±0.3 

a. Broad distributions of failure strains lead to great uncertainty of activation energy 
calculation, as the errors of failure strains were weighed in linear fit. 
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Table 3.3.  Failure strain (εf) measured at different faceplate velocities (vfp) in distilled 
water at 21°C and the fatigue parameter (n) calculated from equation (6). 

 εf (%) in 21˚C distilled water n 

vfp (μm/s) = 50 500 4000 10000  

Fused silica 5.92±0.07 6.60±0.07 7.22±0.08 7.49±0.08 23.7±1.5 

Ca-aluminoborosilicate 4.14±0.24 4.68±0.24 5.36±0.22 5.77±0.17 16.6±2.8 

Na-Ca-silicate 3.71±0.15 4.37±0.19 5.06±0.20 5.47±0.28 14.9±2.1 

Na-borosilicate 4.31±0.42 4.71±0.44 5.23±0.51 5.56±0.39 21.6±11.7b 

Na-aluminosilicate 2.97±0.22 3.27±0.25 3.45±0.34 3.68±0.30 27.2±18.5b 

NaAlSi (x=0) 3.10±0.06 4.67±0.10 6.55±0.14 7.62±0.15 6.9±0.2 

NaAlSi (x=5) 3.70±0.07 5.18±0.16 7.01±0.12 7.69±0.16 8.1±0.2 

NaAlSi (x=9) 4.21±0.14 5.39±0.18 6.89±0.36 7.53±0.43 10.0±0.9 

NaAlSi (x=12.5) 4.91±0.16 5.64±0.22 6.48±0.14 7.01±0.19 16.1±1.7 

NaAlSi (x=18.75) 4.85±0.13 5.63±0.25 6.41±0.08 6.71±0.08 17.4±1.4 

NaAlSi (x=25) 4.90±0.17 5.49±0.19 6.12±0.16 6.50±0.11 19.6±2.4 

b. Great uncertainties are due to broad distributions of failure strains rather than the 
quality of the fit, as the errors of failure strains were weighed in linear fit. 
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Figure 3.1.  Weibull distributions of failure strains for commercial glass measured using 
two-point bend technique (vfp=4000 µm/s) in liquid nitrogen (open symbols) and in room 

temperature distilled water (solid symbols). 
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Figure 3.2.  Weibull distributions of failure strains of NaAlSi (x=5) glass fibers measured 

in distilled water at different temperatures (vfp=4000 µm/s). 
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Figure 3.3.  Temperature dependence of failure strains for commercial silicate glasses 

measured in distilled water (vfp=4000 µm/s). 

  



103 

 
 

 
Figure 3.4.  Temperature dependence of failure strains for the 25Na2O·xAl2O3·(75–x)SiO2 

glasses measured in distilled water (vfp=4000 µm/s). 
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Figure 3.5.  Temperature dependence of failure strains of silica from present work 
(measured in distilled water), Duncan et al. (measured in 100% humidity) [16] and 

Matthewson et al. (measured in water and moisture saturated acetone at lower temp) [53]. 

  



105 

 
 

 
Figure 3.6.  Weibull distributions of failure strains for NaAlSi (x=5) glass in 21˚C 

distilled water measured at different faceplate velocities. 
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Figure 3.7.  Failure strains (measured in 21°C distilled water) as a function of faceplate 

velocity for commercial silicate glasses. 
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Figure 3.8.  Failure strains (measured in 21°C distilled water) as a function of faceplate 

velocity for 25Na2O·xAl2O3·(75–x)SiO2 glasses. 
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Figure 3.9.  Dynamic fatigue parameters for lab made sodium aluminosilicate glasses 

measured by TPB in 21˚C distilled water. 
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Figure 3.10.  Fatigue parameter and apparent activation energy of selected glasses. 
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Figure 3.11.  Schematic drawings for fatigue process for a sodium silicate glass in water. 
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Figure 3.12.  Schematic drawings for fatigue process for a fully cross-linked sodium 
aluminosilicate glass in water.  
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Figure 3.13.  Inert failure strains measured in liquid nitrogen at vfp = 4000 µm/s from 
Lower [43] and failure strains measured in 21°C distilled water at vfp = 4000 and 10000 
µm/s (present work) as a function of Al2O3 mole fraction for 25Na2O·xAl2O3·(75-x)SiO2 
(mole %) glasses. 
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ABSTRACT 
Failure strains of commercial silica, soda-lime silicate and E-glass fibers were 

measured using two-point bending in room temperature humid air.  Humidity dependence 

and dynamic fatigue behavior were studied and the fatigue reaction orders in terms of 

humidity were determined.  In the humidity range tested (~0.1% to ~100%), the dynamic 

fatigue parameters for silica and E-glass are found to be greater in lower humidity (~0.1% 

to ~10%), whereas the fatigue parameter for soda-lime silicate is independent of humidity.  

The humidity dependence of failure strains for all three glasses was more pronounced in 

high humidity (~10% to ~100%) than in low humidity (~0.1% to ~10%), indicating that 

the reaction order decreases with decreasing humidity.  These observations were 

correlated to the different structures of the glasses and their corresponding fatigue 

mechanisms. 

4.1. INTRODUCTION 

About 100 years ago, Grenet [1] observed that the strength of glass is dependent 

on the loading time and/or loading rate in aqueous or humid environments.  Even though 

a glass might withstand a certain load for a short period of time, it might fail later.  This 

phenomenon was probably first describes as ‘fatigue’ by Baker and Preston in 1946 

[2,3,4].  The static fatigue (loading time dependence) and the dynamic fatigue (loading 

rate dependence) for silica and soda-lime silicate glasses were studied by Charles [5,6,7].  

It is well accepted that the fatigue effect is due to some stress-induced chemical reaction 

between glass and water [8,9].  The general fatigue reactions for silica and alkali silicate 

glasses were summarized in our other paper [10].   
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4.1.1. Fatigue Measurements.  A popular way to study the fatigue effect is to 

study the slow-crack growth behavior (a.k.a. subcritical crack growth).  A typical 

experiment is a double cantilever beam test, in which a constant force is applied to a 

predetermined length of crack on a glass sample, and the crack propagation velocity is 

measured as a function of the force [11,12].  The most widely used model to describe the 

slow crack growth is based on an empirical power law [13,14]:  

 

  =  (     ⁄ )  (1)

 

where V is the crack growth velocity, n is termed the stress corrosion susceptibility 

parameter, or the fatigue parameter, KI is stress intensity factor, KIC is the critical value of 

KI, or fracture toughness, and A is the environmental parameter which has a Arrhenius 

temperature dependence.    

Fatigue has also been studied by measuring the time or rate dependent strength of 

glass.  For example, dynamic fatigue can be described as [15]: 

 

   =   ̇(    ⁄ ) (2)

 

where    is the strength, or failure stress,  ̇ is the applied stress rate, D is a constant, and 

n is the fatigue parameter equivalent to the n in equation (1).  This equation allows direct 

comparison between slow-crack growth studies and dynamic fatigue studies.  The fatigue 

of glass has been studied using different strength measurements, including tensile tests 

[16,17,18,19,20], two-point bending tests [10,21,22,23,24], three-point bending tests 

[3,25], four-point bending tests [26,27], and ring-on-ring tests [28]. 

Even though the fatigue parameters for slow crack growth and strength 

measurements are equivalent, differences in the value of n for the same materials (silica 

glass) have been reported [29,30,31].  As-drawn silica fibers generally have smaller 

fatigue parameters, abraded silica fibers or rods exhibit an intermediate value for n, and 

abraded or pre-cracked bulk samples of silica have the greatest values of n.   Kurkjian et 

al. [31] suggested that the failure of pristine glass fibers is controlled by crack initiation 

while the failure of abraded or pre-cracked samples is controlled by crack propagation; 
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thus, modeling fatigue of high strength fibers by means of slow crack growth may not be 

appropriate.  It was suggested that the transition from crack propagation-controlled 

failure to a crack initiation-controlled failure mechanism occurs at a threshold flaw size 

of ~10 µm [32]. Duncan et al. [23] suggested that the fatigue reaction is the same for 

slow crack growth and fiber strength measurements, but the kinetics might be slightly 

different. 

4.1.2. Water vs Humidity.  Fatigue has been studied in both liquid water and in 

moist air.  There is no substantial difference in mechanism considering that fatigue in 

both environments is essentially a stress-enhanced reaction between water molecules and 

glass bonds; however, differences exist in the kinetics of the reaction.  Celarie et al. [33] 

studied stress-enhanced ion-diffusion at the crack tip of soda-lime silicate glass in ~50% 

RH using atomic force microscopy, and observed a condensation from the gaseous 

atmosphere to continuous aqueous liquid phase.  It is likely that the liquid water is 

enriched with ions which allow same ion-exchange mechanism that was observed in 

soda-lime silicate glass in water [8]. 

As was stated by Glasstone et al. [34], generally, a reaction occurring between a 

gas/liquid and a solid can be separated into five consecutive steps: (1) Transport of the 

gas reactants to the surface (2) Absorption of the gas/liquid reactants by the surface, (3) 

Reaction between the gas/liquid reactants and the surface, (4) Desorption of the products, 

and (5) Transport of the liberated products away from the surface.  The overall reaction 

rate is limited by the slowest steps of the five.  In the case of fatigue reactions, step (4) 

and (5) can be neglected because fracture produces new surface (fresh reaction sites) and 

the reaction products (broken bonds) are left behind and have no effect on the subsequent 

reactions.   It was suggested that the early stage (region I crack growth) of crack 

propagation is controlled by step (3), the glass-water reaction rate [12].  However, when 

the humidity is low enough, the water concentration and mobility are greatly reduced, it 

is possible that step (1) and (2), water transportation and absorption become the limiting 

factors [35].   Mrotek et al. [22] suggested that a complete monolayer of water is formed 

on the silica surface in above ~18% RH so below this the water condensation observed 

by Celarie et al. [33] may not occur at lower RH and, if present, may not act in the same 
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manner.  This might result in completely different fatigue mechanisms at different 

humidities and, in turn, vary from that seen in liquid water. 

The study of fatigue in humidity brings important information because if there is 

only one simple fatigue reaction, the rate constant A in equation (1) should depend on the 

relative humidity, RH, according to [12]: 

 

  ∝ (RH)   (3)

 

in which, m is the reaction order, defined as the number of molecules of water that are 

involved in the bond-breaking reactions.   Wiederhorn [12] reported that the reaction 

order for fatigue in soda-lime silicate glasses, measured in a slow crack growth study, 

decreased from ~1.3 in the range of 10-100% RH to ~0.5 in the range of 0.017%-1% RH 

(It was reported that m~1 in the high RH range, but the data reported in Figure 5 from 

Wiederhorn’s paper indicates that m~1.3).  Wiederhorn suggested that the change in m 

near RH ~1-10% indicates that there is more than one reaction occurring between water 

and glass. 

In two-point bend tests, the empirical dependence of failure strain (εf) on relative 

humidity (RH) can be obtained by [23]:  

 

   ∝ (RH) , (4)

 

and the reaction order (m) can be determined by [23]: 

 

  =  × (1 −  )  (5)

 

The reasoning behind this can be seen from the relationship between the failure 

strain (εf) and the environmental constant (A) for two-point bending at a constant 

faceplate velocity (vfp) [36]:  

 

 (   )   =  − 1( − 2)    × 1.198                 (6)
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where E is the Young’s modulus, Y is the crack shape parameter, r is the radius of the 

fiber, and σi is the inert strength.  Taking the log of εf from equation (6), and assuming 

that the fatigue parameter (n) does not depend on humidity [23], it can be shown that: 

  

 log   × ( − 1) = − log +   (7)

 

where B is a constant with regards to RH.  Substituting equation (3) and (4) into (7) gives 

(5).  Using this approach, Duncan et al. [23] reported that m for silica decreased from 

~2.3 in the range of 15-100% RH to ~1.1 in the range of 10-4-10-8 RH, and that m for a 

sodium borosilicate glass decreased from ~1.7 in the range of 15-100% RH to ~0.9 in the 

range of 10-5-10-8 RH.  As pointed out by Mrotek et al. [22], if Duncan’s data were 

plotted in a single log RH axis, the trend in high and low humidity do not intersect at an 

intermediate humidity.  Mrotek et al. [22] measured failure strains for silica in a 25°C 

glove box and reported that the fatigue parameter (n) gradually decreased from ~31 in 

0.025% RH to ~22 in 95% RH, which violates Duncan’s assumption of n being 

independent of RH.  Mrotek et al. also reported that the reaction order droped from 2.1 in 

the range of 20-95% RH to 0.9 in the range of 0.025-13% RH. 

The study of fatigue behaviors for several different silicate glass fibers in distilled 

water is presented in another paper [10].  In this paper we will focus on the fatigue 

behaviors for commercial silica, soda-lime silicate glass and E-glass compositions in 

humid air.  From this we hope to obtain some information on the kinetics of the chemical 

reaction occurring on the strained surface of glass.  We also expect to see some 

compositional dependence of the fatigue behavior as was seen in the studies of fatigue in 

water [10].  

4.2. EXPERIMENTAL PROCEDURE 

Materials used in this study included polymer coated fused silica fibers (AT&T, 

Amersil TO8 fused natural quartz, 125 µm), a commercial soda lime silicate (SLS) glass 

(Owens-Illinois, flint container glass) and a commercial calcium aluminoborosilicate 

glass (PPG, E-glass).  The polymer coatings on the silica fibers were removed by 

immersing the fibers in a mixture of acetone and methanol (lacquer thinner).  Fibers were 

immediately tested after removal of the coating.  The soda-lime silicate glass was 
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remelted in a platinum crucible in air at 1220°C for at least 8 hours prior to fiber drawing.  

The E-glass was remelted in a platinum crucible in air at 1550°C for at least 8 hours prior 

to fiber drawing. 

The homogeneous melts were transferred to a second furnace set to a fiber pulling 

temperature (1150°C for the soda-lime silicate glass and 1275°C for the E-glass). Fibers 

were drawn from the glass melts using a custom-built fiber drawing system.  Fibers were 

drawn onto a rotating cage which was designed to prevent fiber overlap and damage. 

Fiber diameter was controlled by the fiber pulling temperature and the drawing speed. All 

fibers were drawn to a diameter of 125 ± 20 μm.   

Failure strains of fiber samples were measured using a two-point bending (TPB) 

technique [37].  In a TPB test, a pristine section of glass fiber, diameter d, is bent into a 

U-shape between two parallel faceplates, one of which travels towards the second at a 

constant faceplate velocity (vfp), compressing the ‘U’ until failure. The gap distance at 

failure (D) is recorded, and the failure strain (εf) is then calculated from [38]:  

 

   = 1.198 ×  ( −  )  (8)

 

The dynamic fatigue was studied at room temperature (21±2°C) by measuring the 

failure strains at different faceplate velocities (50, 500, 4000 and 10000 µm/s) and in 

different relative humdities.  The relative humidity was controlled by blowing a mixture 

of wet and dry air onto the surfaces of the fibers, and was monitored.  Dry air was 

obtained by flowing air through a desiccant column.  Wet air was obtained by bubbling 

air through room temperature distilled water.  The temperature and relative humidity was 

measured using a digital psychrometer (Extech RH305).  Twenty fibers were tested at 

each combination of faceplate velocity and relative humidity.  The dynamic fatigue 

parameter n, which is equivalent to n in equations (1) and (2), was determined from [39]: 

 

  = 1 + 1 log    log    ⁄    (9)
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Some fibers were also tested after up to 10 minutes of equilibrium time and no 

time dependence of failure strain was observed.  This is consistent with the observation 

by Mrotek et al. [22] that no equilibration time is needed because glass samples are in 

direct contact with moisture.   

4.3. RESULTS AND DISCUSSION 

The Weibull distributions [40,41] of failure strains for silica, soda-lime silicate 

glass and E-glass measured at different humidities are shown in Figure 4.1, Figure 4.2 

and Figure 4.3, respectively.  For all three glasses, failure strains decrease with increasing 

relative humidity.  The humidity dependence of failure strain is plotted in logarithm 

scales for all three glasses in Figure 4.4.   

The Weibull distributions of failure strains for silica measured at a constant 

humidity but at different faceplate velocities are shown in Figure 4.5.  The failure strains 

increase with increasing faceplate velocity.  Table 4.1 lists the average failure strains (± 

one standard deviation) for all three compositions measured using TPB at the different 

values of vfp.  Also listed are the dynamic fatigue parameters (n) calculated from equation 

(9) from the slopes of the plots like those shown in Figure 4.6, Figure 4.7 and Figure 4.8.   

4.3.1. Dynamic Fatigue.  The fatigue parameter for silica measured at room  

temperature is 22.9±1.7 in 98% RH and 29.2±3.0 in 3.4% RH.  The fatigue parameter 

measured in high humidity compares well with that measured in room temperature 

distilled water (23.7±1.5, Table 4.1).  Table 4.2 summarizes the reported values of fatigue 

parameter measured in static or dynamic fatigue studies using various techniques.  The 

value we obtained compares favorably with most reported values.  By calculating 

reaction order in a low humidity range using a high humidity (15% to 100% RH) fatigue 

parameter, Duncan [23] implicitly suggested that the fatigue parameter should be 

independent of humidity.  Our data suggests that this is not necessarily true.  Our 

observation is consistent with Mrotek et al. [22], who reported that the fatigue parameter 

of silica decreased with increasing humidity (shown in Figure 4.9).  This brought up the 

argument that the power law approach (equation (1)) is deficient in describing fatigue in 

humid conditions, because it defines A as the environmental constant and n as the 

materials constant.  
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The fatigue parameter for E-glass also exhibits a humidity dependence 

(n=32.3±2.8 in 0.2±0.1% RH vs. n=23.1±1.6 in 43.4±0.2% RH).  Both values are greater 

compared with that measured in room temperature distilled water (16.6±2.8, Table 4.1).  

There are few reported studies of fatigue for E-glass.  A value of 25.8±0.8 was reported 

for E-glass in 32% RH in a TPB dynamic fatigue study [24].  A value of 20 was reported 

for E-glass at 20°C and 100% relative humidity from a static fatigue study [42].  

Wiederhorn and Bolz [11] reported a value of 27.4 for an aluminosilicate glass (similar to 

E-glass) in room temperature distilled water from a slow crack growth study.  

Room temperature TPB fatigue studies of a calcium aluminosilicate glass (~20% 

CaO, 20% Al2O3, 60% SiO2, in mole %) and a calcium aluminoborosilicate glass (~20% 

CaO, 10% Al2O3, 10% B2O3, 60% SiO2, in mole %), on the other hand, showed no 

dependence of n on RH [24]. The fatigue parameter for soda-lime silicate glass also 

appears independent of humidity (n=16.8±0.2 in 0.7±0.1% RH vs n=16.2±0.4 in 41.8±0.5% 

RH).  The fatigue parameter measure in water was 14.9±2.1, shown in Table 4.1.  This is 

consistent with the findings from a slow crack growth study which showed that the 

fatigue parameter was also independent of humidity for a soda-lime silicate glass (n=~20 

in RH ranging from 0.017%-100%, [12]).  Another fatigue study of soda-lime silicate 

glass indicated that n=16.4 in both 0.2% humidity air and in distilled water [14].  

Counterevidence was found in a four-point bend static fatigue study of acid-etched soda-

lime silicate glass rods, where n~35±6 in 50% RH vs. n=~30±2 in 100% RH [43], but 

these values of n are significantly greater than the current study or other studies, raising 

some uncertainty about the significance of the reported RH dependence.   

The environmental fatigue effect is minimized when the strength of glass is 

measured in dry environments, for example, high vacuum (~10-8 Torr) [23].  This implies 

that the effective fatigue parameter for soda-lime silicate glass should eventually increase 

at low RH.  Actually, the slope of logεf vs. logvfp may even decrease to 0 and then to a 

negative value, considering the inert failure delayed effect (IDFE, [44]).  But for some 

reason, the fatigue reaction for soda-lime silicate was not affected by RH higher than 

0.017% [12].   

It was discussed in our other paper that depolymerized alkali containing glasses 

have a different fatigue mechanism than cross-linked glasses, like silica or E-glass [10].  
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For cross-linked network glasses, the fatigue reaction is mainly the hydrolysis of network 

bonds [5,8]: 

 

 — |  | — — |  | —+   ⟶ 2  — |  | —    (10)

 

The fatigue of depolymerized alkali containing glasses, like soda-lime silicate 

glass, is initiated by ion-exchange reactions between alkali ions and hydrogen species [8]: 

 

 — |  | —     +    ⟶— |  | —  +    +     (11)

 

Depth profile studies of hydrated soda-lime silicate glass showed that three H-

atoms replace each Na atom leached from a hydrated glass surface, indicating a Na+-

H3O+ exchange mechanism [45, 46]: 

 

 — |  | —     +     ⟶— |  | —  (   ) +     (12)

 

The ion-exchange reaction occurs faster than the Si-O hydrolysis, so probably the 

ion exchange kinetics are less affected at low RH, compared to bond hydrolysis.   

For soda-lime silicate glass, the fatigue parameter measured in humid air (which 

is independent of RH) compares well with that measured in water.  For silica, the fatigue 

parameter depends on RH, but the n measured in 98% RH compares well with that 

measured in water.  For E-glass, the fatigue parameter also depends on RH, and the n 

measured in 43% RH is greater compared to n measured in water (23.1±1.6 vs 16.6±2.8).  

4.3.2. Humidity Dependence.  Figure 4.4 shows that failure strains decrease with  

decreasing relative humidity for silica, soda-lime silicate glass and E-glass.  The humidity 

dependence of failure strains is more pronounced in high humidity than in low humidity 

for all three glasses.  Figure 4.10 shows the humidity dependence of failure strains for 
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silica from the present work and from reported studies.  The difference in the absolute 

values might be due to some experiment uncertainties.  For example, Duncan et al. [23] 

measured polymer coated silica fibers, and Mrotek et al. [22] removed the coatings by 

hand.   But the trend of humidity dependence is consistent.  The overall humidity 

dependence of failure strains appears to be composed of three stages: a strong 

dependence in the high humidity range (10% to 100%), a small dependence almost like a 

‘plateau’ in the intermediate humidity range (10-2% to 10%), and a medium dependence 

in the ultra low humidity range (10-7% to 10-2%).  Because we were not able to measure 

failure strains below ~0.1% RH, the three-stage humidity dependence is yet to be 

confirmed, and we do not intend to deeply discuss the reaction order below ~0.1% RH.   

But the change in reaction order (humidity dependence) near 10% RH appears to be 

reproducible.  Mrotek et al. [22] attributed the changes in reaction order to the formation 

of a water monolayer on the glass surface above ~18% RH.   

Changes in reaction order are also clear for soda-lime silicate glass and E-glass 

(shown in Figure 4.4).  Such changes were also reported for soda-lime silicate glass in 

Wiederhorn’s slow crack growth study, in which the glass samples were annealed in a 

chamber with flowing nitrogen gas (RH<0.017%) and tested in the same chamber [12].  It 

was observed that the reaction order decreased from ~1.3 in the range of 10-100% RH to 

~0.5 in the range of 0.017%-1% RH.  If the change in reaction order is real, it probably 

means that more than one reaction is occurring between the water and the glass [12].  

Considering the differences between reaction (11) and (12), the two different ion-

exchanging water species should depend on the equilibration of the following reaction: 

 

 2   ⟶     +     (13)

 

In the high humidity environments, the condensed liquid water allows reaction 

(13) to occur; hence the hydronium is the dominant ion-exchange species.  Combining 

reaction (12) with (13) gives: 
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 — |  | —     + 2   ⟶— |  | —  (   ) +    +     (14)

 

In the low humidity environments, there might not be a complete monolayer of 

water, so reaction (13) is not allowed and reaction (11) is the dominant fatigue reaction 

(14).  Thus, in high humidity, two water molecules are associated with bond hydrolysis, 

whereas only one water molecule is able to break a bond in low humidity.  Additional 

experiments similar to the depth profile studies [45,46] need to be done to confirm this 

speculation. 

In the high humidity range (RH≥10%), the humidity dependence of failure strains 

can be fit to straight lines using equation (5).  Table 4.3 summarizes the slope (a) of these 

lines and the reaction order (m) calculated from these slopes and the fatigue parameter (n) 

measured in the high humidity range.  The reaction orders are 2.2±0.3, 1.5±0.2, and 

1.7±0.2, for silica, SLS and E-glass, respectively.  The reaction order in the high 

humidity range compares favorably with reported values, including m=~2 for silica 

[22,23] and m=~1.3 for soda-lime silicate glass [12].  Armstrong et al. [21] suggested that 

the reaction with water is second order if it is first order with OH-, and there should be 

enough OH- available the at silica surface in the high humidity range.  The fatigue 

reaction mechanism for SLS is more complex than for silica because the ion-exchange 

reactions (11) and (14) will generate OH- ions as by-products, causing the local pH to 

increase, and leading to further attack on Si-O bonds [5].  This is especially true in the 

case of fatigue in humid conditions because the OH- will not migrate away from reaction 

sites as quickly as in liquid water.   This might explain qualitatively why the reaction 

order is lower for SLS than for silica and E-glass.   

4.4. SUMMARY 

Failure strains as a function of humidity (ranging from ~0.1% to ~100%) were 

measured for silica, soda-lime silicate and E-glass fibers in room temperature air using 

the two-point bend technique.  Dynamic fatigue behavior was also studied for all three 

glasses in both low (~0.1-10% ) and high (~10-100%) humidity ranges.   A humidity 

dependence of the fatigue parameter for silica and E-glass was observed, whereas the 

fatigue parameter for soda-lime silicate glasses seems to be independent of humidity, at 



124 

 
 

least in the range of our test.  These observations are consistent with reported fatigue 

behaviors for both silica and soda-lime silicate glass in humid air.  It is suggested that the 

dominant fatigue reaction for silica is between water and Si-O bonds which greatly relies 

on the available water, whereas the dominant fatigue reaction for soda-lime silicate glass 

is an ion-exchange reaction which occurs more rapidly and thus is less affected by the 

RH within the test range.  However, this speculation needs to be confirmed in future 

studies.  

The reaction order for fatigue seems to differ in the low humidity range (0.1% to 

10%) and high humidity range (10% to 100%) for all three glasses.  In the high humidity 

range, silica and E-glass have a reaction order around 2, and soda-lime silicate glass has a 

reaction order around 1.5.  These values compare favorably with reported values.  The 

difference in reaction order between cross-linked glasses (silica and E-glass) and 

depolymerized glasses (soda-lime silicate glass) is attributed to the different fatigue 

mechanism.  For depolymerized glasses, the ion-exchange fatigue reaction forms 

OH- ions which can further react with Si-O bonds.  Thus the same number of water 

molecules can break more bonds in depolymerized glasses than in cross-linked glasses.  

The actual fatigue mechanism is likely to be consisted of different reactions occurring 

simultaneously and thus is expected to be more complex.  
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Table 4.1.  Failure strain (εf) measured at different faceplate velocities (vfp) in air at 21°C 
and the corresponding fatigue parameter (n) for silica, soda-lime silicate glass (SLS) and 

E-glass; the fatigue parameter for the same glasses measured in room temperature 
distilled water [10] are shown for comparison. 

 εf (%) in 21˚C humid air n 

vfp (μm/s) = 50 500 4000 10000  

Silica (RH 3.4±0.1%) 7.77±0.14 8.61±0.13 9.14±0.18 9.44±0.10 29.2±3.0 

Silica (RH 98±2%) 5.84±0.09 6.58±0.13 7.11±0.09 7.49±0.12 22.9±1.7 

Silica (RT distilled water) [10]    23.7±1.5 

SLS (RH 0.7±0.1%) 5.77±0.11 6.67±0.15 7.59±0.12 8.10±0.35 16.8±0.2 

SLS (RH 41.8±0.5%) 4.80±0.12 5.53±0.08 6.42±0.12 6.76±0.17 16.2±0.4 

SLS (RH 92±2%) 4.43±0.06 5.07±0.10 5.80±0.15 6.21±0.07 16.7±0.8 

SLS (RT distilled water) [10]    14.9±2.1 

E-glass (RH 0.2±0.1%)  6.11±0.09 6.64±0.07 6.98±0.12 7.27±0.06 32.3±2.8 

E-glass (RH 43.4±0.2%) 4.96±0.07 5.49±0.06 6.10±0.07 6.23±0.10 23.1±1.6 

E-glass (RH 97±2%)  4.45±0.08 4.94±0.08 5.49±0.07 5.84±0.7 20.4±1.4 

E-glass (RT distilled water) [10]    16.6±2.8 
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Table 4.2.  A summary of dynamic and static fatigue parameters (n) for silica measured 
in room temperature humid air using two-point bending (TPB) test, tension test and four-

point bending (4PB) test. 

Sample Form Technique RH n (dynamic) n (static) Ref. 

Pristine Fibers TPB 3.4%  29.2±3.0  Present  

Pristine Fibers TPB 98%  22.9±1.7  Present  

Pristine Fibers TPB 50%  25  [23] 

Pristine Fibers TPB 50%  30.4±1.0  [24] 

Pristine Fibers TPB 0.02% 31±1  [22] 

Pristine Fibers TPB 20% 26±2  [22] 

Pristine Fibers TPB 95% 21±2  [21] 

Pristine Fibers Tension Not Spec.  19.5 [16] 

Pristine Fibers Tension 50% 20  [17] 

Abraded Fibers Tension 50% 27  [17] 

Indented Fibers Tension 50% 31  [17] 

Pristine Fibers Tension 55% 18.5-22.2  [18] 

Pristine Fibers Tension 97% 15.9 14.3 [19] 

Pristine Fibers Tension 50% 22.1±0.7 19.8±0.8 [20] 

Abraded Rods 4PB Wetted 37.8  [26] 
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Table 4.3.  The fatigue parameter (n) in 90-100% RH, the humidity dependence 
parameter (a), and the reaction order (m) calculated from equation (5) for silica, soda-

lime silicate glass and E-glass in RH≥10%. 

 n a m 

Silica  22.9±1.7 -0.099±0.009 2.2±0.3 

SLS 16.7±0.8 -0.095±0.010 1.5±0.2 

E-glass  20.4±1.4 -0.090±0.009 1.7±0.2 
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Figure 4.1.  Weibull distributions of failure strains for silica measured at room 

temperature and at different relative humidities, using a faceplate velocity of 4000 µm/s. 
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Figure 4.2.  Weibull distributions of failure strains for soda-lime silicate glass measured 

at room temperature and at different relative humidities, using a faceplate velocity of 
4000 µm/s. 
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Figure 4.3.  Weibull distributions of failure strains for E-glass measured at room 

temperature and at different relative humidities, using a faceplate velocity of 4000 µm/s. 
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Figure 4.4.  Humidity dependence of failure strains for silica, soda-lime silicate glass and 

E-glass, measured at room temperature 
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Figure 4.5.  Weibull distributions of failure strains for silica measured at room 

temperature at 43±0.5% RH, using different faceplate velocities. 
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Figure 4.6.  Dynamic fatigue for silica measured at room temperature and at different 

relative humidities. 
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Figure 4.7.  Dynamic fatigue for soda-lime silicate glass measured at room temperature 

and at different relative humidities. 
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Figure 4.8.  Dynamic fatigue for E-glass measured at room temperature and at different 

relative humidities. 
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Figure 4.9.  Fatigue parameter for silica measured at room temperature and at different 

relative humidities, data from present work and from Mrotek et al. [22]. 
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 Figure 4.10.  Room temperature humidity dependence of failure strains for silica from 

the present work, and from Duncan et al. [23], Mrotek et al. [22] and Lower [24]. 



141 

 
 

2. SUMMARY AND AFTERWORDS 

The failure characteristics of glass are of great interest in both science and 

technology.  This dissertation includes several different aspects of this topic.  This 

chapter serves as a summary of the previous chapters, mixed with some suggestions for 

future work. 

The development of high strength glasses and their applications are an important 

component to meet the need of today’s progressing industry.  There are several critical 

aspects in determining the useful strength of glass: 1. the ultimate strength of glass, which 

is determined by the bond strength and the glass structure; 2. the presence of flaws or 

heterogeneities, in the structure, i.e. variation in bond strength, interstice size, ring size, 

etc; 3. the presence of surface flaws, and 4. the fatigue effect.  The first two aspects can 

be categorized into the intrinsic properties and the last two aspects are extrinsic effects.  

The two categories are to be discussed in the following texts. 

2.1.  INTRINSIC ASPECTS OF GLASS STRENGTH 

2.1.1. Elastic Deformation of Glasses.  As was described in Paper 1, the inert 

intrinsic failure strains measured by the two-point bend technique represent one approach 

to measure the ultimate strength of glass, and thus are related to the atomic structure and 

bond strength of glass.  It was shown in Paper 1 that the inert strength of silica glass can 

be as high as ~12 GPa (failure stress), which is the greatest among the glasses studied, 

including E-glass, soda-lime silicate glass, sodium aluminosilicate glass, sodium silicate 

glass and sodium aluminosilicate glasses.  This is attributed to the cross-linked network 

and high bond strength of silica.  However, silica does not exhibit the greatest inert 

failure strain.  The strain-to-stress relationship (elastic modulus) is important in 

determining the ultimate strength of glass.   

Young’s modulus is often used to predict the ultimate strength.  For example, the 

ultimate strength of glass is estimated to range from E/10 to E/π, where E is Young’s 

modulus, since Young’s modulus represents the bond strength [1].  In Paper 2, it was 

discussed that for sodium silicate glasses, sodium aluminosilicate glasses, and sodium 

borate glasses, the inert failure strain decreases with increasing Young’s modulus.  

Similar correlations were observed for many other glasses [2].  This indicates that glasses 
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with greater bond strength exhibits smaller inert failure strains.  It is suggested that the 

elastic modulus increases with increasing connectivity and dimensionality of the glass 

structure [3].  A cross-linked strong glass that exhibits great ultimate strength will at the 

same time fail at a small strain.  You can’t sell the cow and drink the milk.  An intuitive 

reason for this phenomenon would be that the weak structure allows the glass network to 

deform more prior to failure [4].  However, this explanation merely describes the 

question but does not actually answer it.  It would be interesting to further study the 

structural changes that occur before and at the crack initiation.  

The molecular dynamic (MD) simulation could be a useful tool to study the 

structural dynamics of a strained fiber [5].  The MD simulation provides the possibility to 

directly observe the simulated atom movement and bond breaking under tension or 

compression stress.  The energy dissipation mechanism can also be examined.  The 

information of failure process can be compared to the measurement from real materials. 

2.1.2. Inert Fatigue and IDFE.  The inert fatigue [6] and IDFE (inert delayed 

failure effect) [7] also strongly depend on the glass structure.  It was summarized in Paper 

1 that most cross-linked glasses exhibit inert fatigue while depolymerized glasses exhibit 

IDFE.  The inert fatigue is attributed to thermal fluctuations of bond strength under high 

stress [6], whereas IDFE is possibly due to the reorganization or relaxation of glass 

structure, perhaps in processes similar to those that account for low-temperature internal 

friction [8,9].  These speculations need to be confirmed in further research. 

It would be interesting to study the inert failure behavior at different temperatures.  

For example, room temperature high vacuum (~20°C), elevated temperature high vacuum 

(>100°C), immersion in liquid helium (~4K), liquid nitrogen (~77K), liquid oxygen 

(~90K) and some appropriate water-insoluble liquid mixed with dry ice (~-79°C).  If inert 

fatigue is due to thermal fluctuations associated with individual bonds, it should be an 

activated process and change systematically with increasing temperature, following an 

Arrhenius relationship.  If IDFE is due to internal friction, it can be correlated to the 

inertial friction peaks at different temperatures [8]. 

In Paper 1, IDFE is correlated with the deformation mechanisms associated with 

indentation.  It will be interesting to study the indentation behavior in inert conditions for 
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several different glasses that exhibit IDFE to different degrees.  Shear flow under 

indentation possibly accounts for the IDFE behavior. 

Another important piece of information that can be studied in indentation 

experiments is ‘brittleness’ [10], which was discussed in Paper 2.  Compared to the 

toughness, which describes how easily a crack can grow on the glass surface, the 

brittleness describes how easily a crack can form on the glass surface, thus can help 

understanding crack initiation processes.  

2.2. EXTRINSIC ASPECTS OF GLASS STRENGTH 

The practice strength of glass is lower than the ultimate strength of glass due to 

flaws and fatigue.  Surface damage is minimized by testing freshly-drawn fibers.  During 

the failure strain measurements, extra care was used to avoid any contact on the fiber 

surface; otherwise the failure strain will be much smaller.  The failure strain of glass 

fibers is found to depend on the surface topology (see Appendix E).  The relationship 

between the flaw size and strength is well established in fracture mechanics [12,11].  

Other than surface flaws, there are also ‘Griffith’s flaws’ in the bulk of the glass. 

2.2.1. Melt History Effect.  The melt history effect is discussed in Appendix C. 

For some glass fibers, the inert failure strain distribution is tight, showing that the glass is 

‘homogeneous’ in structure; for other glass fibers, prepared from melts with different 

melt histories, the inert failure strain distribution is broad, showing that there are some 

heterogeneities serving as ‘weak points’ or ‘Griffith flaws’ [12] in the glass bulk or on 

the glass surface (discussed in Appendix F).  To understand the broad failure strain 

distributions, it is important to study the sources of the heterogeneities and hopefully their 

sizes, shapes and distribution.  The presence of these critical flaws is difficult to detect 

due to their small size [2]; however, it is possible to grow crystals on the flaws and then 

they can be detected (see Appendix D).   

2.2.2. Environmental Fatigue Effect.  The other major enemy of the useful 

 strength of glass is the environmental fatigue effect, which was discussed in Paper 3 and 

4.  It was found that the fatigue mechanism and the fatigue susceptibility vary with glass 

compositions and structures.  The dominant fatigue reaction for cross-linked silicate 

glasses is Si-O bond hydrolysis, whereas for alkali modified silicate glasses, the ion-

exchange reaction with water species is dominant.  The power law model [13,14] is used 
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to predict the fatigue behavior, including reaction order and fatigue parameter (reaction 

rate).  The fatigue parameter is found to depend on the relative humidity, whereas power 

law suggests that fatigue parameter should be independent of environment.  This suggests 

that the power law has some deficiency describing the fatigue of freshly-drawn fibers.  A 

further study might be focused on the modeling of the fatigue.  The change in fatigue 

reaction order at around ~10% RH suggests that the fatigue reaction is complex and it is 

likely that more than one reaction occurs at the strained surface of glass.  The fatigue 

reactions of silica were thoroughly studied by Matthewson’s group [15,16,17,18].  It 

would be interesting to study the fatigue of one of the simple compositions of alkali 

modified silicate glasses, for example 33%Na2O·67%SiO2 glass.  The understanding of 

different fatigue mechanism might contribute to help develop glasses with greater useful 

strength in different environments. 
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APPENDIX A 

VISCOSITY MEASUREMENTS FOR COMMERCIAL GLASSES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

VISCOSITY MEASUREMEN

The viscosity-temperature characteristics for glass melts were determined 

standard method described in ASTM C1276

temperature viscometer (Model: ME

 

 

Figure A.1.  Schematic diagram of a high temperature viscometer measuring system

 

 

The viscometer features

and diameter r), and viscosity (

maintain a constant spindle spinning speed (

(Equation (1)).  

 

 

VISCOSITY MEASUREMENTS FOR COMMERCIAL GLASSES

temperature characteristics for glass melts were determined 

standard method described in ASTM C1276-94 and C965-96 using a Haake high 

viscometer (Model: ME-1700, shown in Figure A.1).   

 
Schematic diagram of a high temperature viscometer measuring system

The viscometer features a platinum crucible (diameter R) and spindle (length 

), and viscosity (η) is determined by measuring the torque (Τ) required to 

maintain a constant spindle spinning speed (ω) as a function of melt temperature 

 = 14   1  − 1      
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In a particular experiment, a glass sample is crushed to small pieces and about 50 

grams of crushed glass were re-melted in the viscometer platinum crucible in the 

viscometer at about 1400°C for at least 4 hours to produce bubble free melt.  After a 

homogeneous melt was obtained, the platinum spindle was lowered into the melt and 

rotated.  The rotation speed is adjusted so the corresponding torque is in the detect range 

of the viscometer.  The furnace was cooled to about 1000°C at the rate of 10°C/min, 

when the torque and the spindle speed were recorded and used to calculate the melt 

viscosity.  Each melt was then re-heated at 10°C/min and the viscosity was again 

recorded as a function of temperature.  The temperature was cycled several times for each 

melt and an average viscosity-temperature was determined. 

This viscometer is calibrated using several different glasses with known viscosity-

temperature characteristics, including SRM717a, a standard borosilicate glass provided 

by NIST, and BK-7, a commercial borosilicate optical glass provided by Schott Glass 

North America.  Figure A.2 shows an excellent agreement between the melt viscosity-

temperature curve for BK-7 measured at Missouri S&T and that reported by Schott.  

Figure A.3 shows similar curves obtained for the SRM717a glass.   

 

 

 
Figure A.2.  Viscosity-temperature curves for BK-7 glass, measured at Missouri S&T and 

reported by Schott Glass North America (reference). 
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Figure A.3.  Viscosity-temperature curves for NIST SRM717a glass, measured at 

Missouri S&T and reported by NIST. 

 

 

The viscosity curve provides valuable information for glass manufacturing in 

industry, and also benefits this research.  The isokom temperature of 1000 Poise is 

referred to as the forming temperature (TF), due to the ease of manufacturing glass at this 

temperature.  It is also used as the “well-conditioned” melting temperature baseline in the 

thermal history study. 

Figure A.4 to Figure A.7 show the viscosity-temperature curves collected for each 

of the four OI samples.  These curves were fit using the Vogel–Fulcher–Tammann (VFT) 

equation (Equation (2)): 

 

 log  =  +   −   (2)

 

where a, b and c are VFT fitting parameters.  Table A.1 lists the VFT parameters for each 

respective average data set. 
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Figure A.4.  Viscosity-temperature curve of OI-A clear SLS bottle glass. 

 

 

 
Figure A.5.  Viscosity-temperature curve of OI-B emerald green SLS bottle glass. 
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Figure A.6.  Viscosity-temperature curve of OI-C amber SLS bottle glass. 

 

 

 
Figure A.7.  Viscosity-temperature curves of OI-D dead leaf green SLS bottle glass. 

 

 

Table A.1.  VFT parameters and 1000 P isokom temperatures for four OI SLS bottle 
glass samples. 

Glass Samples provided 

by Owens-Illinois 

VFT parameters Forming Temperature 

103 P isokom (°C) a b c 

OI-A (clear) -0.41 2549 463 1220 ±19 

OI-B (emerald green) -0.586 2550 465 1175 ± 5 

OI-C (amber) -0.504 2550 474 1202 ± 4 

OI-D (dead leaf green) -0.529 2553 487 1210 ± 5 
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Figure A.8 to Figure A.11 show the viscosity-temperature curves collected for 

four of the five PPG samples, except for PPG-E glass, for which the viscosity curve 

provided by PPG is used.  The VFT parameters and the 1000 P isokom temperatures 

(Forming temperatures) for each sample are listed in Table A.2.  The measured values for 

the Forming temperatures are very close to reported values provided by PPG.   

 

 

 
Figure A.8.  Viscosity-temperature curve of PPG-C glass. 

 

 

 
Figure A.9.  Viscosity-temperature curve of PPG-P glass. 
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Figure A.10.  Viscosity-temperature curve of PPG-D glass. 

 

 

 
Figure A.11.  Viscosity-temperature curve of PPG-H glass. 

 

 

Table A.2.  VFT parameters and 103 P isokom temperatures for four PPG glass samples. 

Glasses provided 

by PPG 

VFT parameters Forming Temp.103 P isokom (°C) 

a b c Measured Reported (PPG) 

C-glass -0.597 2554.2 498.8 1209 ± 3 1217 

P-glass -0.520 2555.3 506.2 1232 ± 6 1223 

D-glass -0.684 2569.2 603.4 1301 ± 3 1288 

H-glass -1.027 2567.1 555.7 1295 ± 8 1293 
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APPENDIX B 

LIQUIDUS TEMPERATURE MEASUREMENTS 
FOR COMMERCIAL GLASSES 
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LIQUIDUS TEMPERATURE MEASUREMENTS 
FOR COMMERCIAL GLASSES 

The liquidus temperature (TL) of a melt is the maximum temperature at which the 

primary crystalline phase is in equilibrium with the melt.  TL is measured using the 

gradient furnace technique described in ASTM C829-81.  In a particular experiment, 

approximately 40 grams of glass powder was spread evenly onto a ten-inch-long 

platinum foil boat.  The boat was kept in the gradient furnace with a temperature range 

from ~800 to ~1100°C in air for 24 hours.  During this period, the temperature profile of 

the furnace was recorded at 0.25 inch intervals.  After 24 hours, the boat was removed 

from the furnace and the sample quenched in air to room temperature.  The sample was 

then examined under a light microscope to identify the position of the crystal/melt 

interface.  From the recorded temperature profile, the liquidus temperature was 

determined.  Based on the precision of the position measurement and the uncertainty in 

the temperature profile, the experimental uncertainty of this measurement is about ±10°C.   

Figure B.1 shows a photograph of the platinum strip with a sample of OI-A after 

24 hours in the gradient furnace.  Superimposed on this photograph is the temperature 

gradient recorded for this sample.  The distinct line between the crystallized portion of 

the sample and the clear (glassy) portion corresponds to 999 ± 10°C, and this is defined 

as TL for this glass.   

The liquidus temperatures measured in this study are listed in Table B.1.  Also 

listed are reported values from glass provider.  The liquidus temperature of PPG-C glass 

is 1092°C, compared favorable to reported value of 1095°C.  for PPG-P glass the 

measured value is 1110°C, compared favorable to reported value of 1118°C.  The 

difference is within error of this experiment. 
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Figure B.1.  Liquidus temperature measurement for SLS glass OI-A. 

 

 

Table B.1.  Liquidus Temperatures for OI and PPG glass samples. 

Glass Samples TL measured (±10°C) 
TL reported by glass 

provider (°C) 

OI-A 999 N/A 

OI-B 1005 N/A 

OI-C 1018 N/A 

OI-D 1050 N/A 

PPG-C 1092 1095 

PPG-P 1110 1118 
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APPENDIX C 

MELT HISTORY EFFECT ON FAILURE STRAINS FOR 
COMMERCIAL SODA-LIME SILICATE GLASSES 
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MELT HISTORY EFFECT ON FAILURE STRAINS FOR 
COMMERCIAL SODA-LIME SILICATE GLASSES 

Strength of glass was considered an extrinsic property for a long time, because 

extrinsic flaws are the most decisive factors in determining the strength of glass [1].  

Measured strength can vary several orders of magnitude according to the surface 

conditions of the sample [2].  Attempts have been made to measure intrinsic strength of 

glass by testing ‘flaw-free’ pristine samples [3].  Some reports of strength measurement 

have approached the theoretical values of strength by measuring pristine samples in inert 

conditions [4,5,6], whereas others found that strength distribution of glass can be broad, 

and that is related to the melt history of the glass[7,8]. Otto [9] measured tensile strength 

of pristine calcium aluminoborosilicate glass fibers with different diameters and with 

different forming conditions.  He found that the strength of fibers of different diameters 

were identical within the experimental limits, as long as the forming conditions are nearly 

identical, and that fibers of same diameter exhibited greater strength when formed at 

higher temperatures.  This indicates that, when the effects of surface flaws are minimized, 

some other imperfections that are generated during the forming process limit the ultimate 

strength of glass.  Griffith [1] suggested that, other than extrinsic flaws on the surface of 

the samples, melt preparation and conditioning play an important role in glass strength.  

Batch purities, melting temperature and forming temperature, etc. have influences on the 

measured strength of glass.   

Lower et al. [10,11] showed that in general, longer melting times and greater 

melting temperatures ensure greater average failure strain and narrower strain distribution.  

Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM) and Scanning 

Electron Microscopy (SEM) were used to characterize sources of broad failure 

distribution of the fibers, but no distinct sources for strength-limiting flaws were detected.   

If the broad strength distributions are due to some heterogeneity from the melt, they are 

expected to be so small in size (nanometer scale) that they are beyond the delectability of 

these techniques.   

In the present work, failure strains of a commercial soda-lime silicate glass are 

measured and the melt history effects on the strength distribution are studied.   
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Commercial flint soda-lime silicate (SLS) clear glass bottles (termed ‘OI-A’) 

provided by Owens-Illinois were remelted in platinum crucibles in air.  Fibers were 

drawn from the surface of the melt onto a rotating cage which was designed to prevent 

fiber overlap and damage. Fiber diameter was monitored by eye and controlled by the 

fiber pulling temperature and the drawing speed.  All fibers are drawn into a diameter of 

125 ± 20 μm.  

Failure strains of freshly drawn fibers were measured using the two-point bending 

(TPB) technique  [12] with fibers either immersed in liquid nitrogen or tested in air at 

room temperature (21±2°C) with a relative humidity of 50±2%.  The relative humidity is 

controlled by blowing a mixture of wet and dry air onto the surfaces of the fibers, and is 

monitored using a digital psychrometer (Extech RH305).  The fibers drawn from melts 

were tested immediately after they were formed.  No aging effects were observed. 

In a TPB test, a pristine section of glass fiber, diameter d, is bent into a U-shape 

between two parallel face plates, one of which travels towards the second at a constant 

faceplate velocity (vfp), compressing the ‘U’ until failure. The gap distance at failure (D) 

is recorded, and the failure strain (εf) is then calculated from: [13]  

 

   = 1.198 ×  ( −  )  (1)

 

OI-A SLS glass bottles were crushed and remelted in platinum crucible in air at 

1120°C, 1220°C (1000 Poise isokom temperature) and 1320°C for different lengths of 

time.  Inert failure strains of fibers drawn from each melt with different melt time were 

measured using TPB technique under liquid nitrogen.  For glass melted at 1120°C, failure 

strains were also measured in room temperature air (21±2°C) with 66±2% relative 

humidity.  The Weibull distributions for these failure strains were shown from Figure C.1 

to Figure C.3. 
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Figure C.1.  Failure strain distribution of OI-A SLS glass fibers measured using TPB 
technique.  The glass was melted at 1120°C for different lengths of time prior to fiber 

pulling.  Open data points are measured in liquid nitrogen, solid data points are measured 
in air at room temperature (21±2°C) with a relative humidity of 66±2%. 

 

 

From Figure C.1, it can be seen that when melted at 1120°C, the inert failure 

strain distributions for OI-A glasses tighten as the melting time increases from 1.5 to 16 

hours.  The failure strains measured in humid air do not show such distinct dependence 

on melting time dependence. 
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Figure C.2.  Inert failure strain distribution of OI-A SLS glass fibers measured in liquid 
nitrogen using TPB technique.  The glass was melted at 1220°C for different length of 

time prior to fiber pulling. 

 

 

When melted at 1220°C, the failure strain distribution initially starts to tighten as 

the melting time increases.  The tightest failure strain distribution is from glasses melted 

for 4 hours at 1120°C, and then the failure strain distribution starts to broaden for longer 

melting time.  The tightest distribution in Figure C.2 is tighter than the tightest 

distribution in Figure C.1, and it takes shorter time, indicating that melting at 1220°C 

makes the glass melt reach its homogeneous state faster than melted at 1120°C.  But for 

some reason, this homogeneous state discontinued after longer melting time. 
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Figure C.3.  Inert failure strain distribution of OI-A SLS glass fibers measured in liquid 
nitrogen using TPB technique.  The glass was melted at 1320°C for different lengths of 

time prior to fiber pulling. 

 

 

Melting time dependence of inert failure strain distributions for 1320°C melt 

(Figure C.3) is similar to that for 1220°C melt (Figure C.2).  The failure strain 

distribution tightens at first than broadens after longer time of melting.   

A summary of melt history and corresponding failure strains are listed in Table C. 

to Table C.3, where εmax is the average of 3 maximum failure strain measured for a 

particular set of fibers, εmid is the medium failure strain, εmin is the average of 3 minimum 

failure strain, and m is the Weibull modulus, which is the slope of data in the Weibull 

plot.  The Weibull modulus is a measure of the tightness of a distribution.  The tighter the 

distribution is, the steeper the slope is, and the greater value of m is. 
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Table C.1.  Melt history (1120°C) study on OI-A glass. 

Melt History Pull#, Condition εmax (%) εmid (%) εmin (%) m 

1120°C 1.5h P1, RH 66% 6.20 5.94 5.40 25.7 

 P1, LN 17.82 16.32 10.18 5.8 

1120°C 4h P2, RH 66% 5.97 5.79 5.61 58.1 

 P2, LN 17.48 16.13 11.68 8.7 

1120°C 8h P3, RH 66% 5.88 5.53 5.04 22.4 

 P3, LN 16.64 14.50 13.39 15 

1120°C 16h P4, RH 66% 5.91 5.52 5.38 33 

 P4, LN 17.24 16.23 14.39 21.5 

 

 

Table C.2.  Melt history (1220°C) study on OI-A glass. 

Melt History Pull#, Condition εmax (%) εmid (%) εmin (%) m 

1220°C 1h P1, LN 18.03 17.18 12.22 10.4 

1220°C 2h P2, LN 17.94 17.07 14.22 18.4 

1220°C 4h P3, LN 18.34 17.27 16.69 43.9 

1220°C 8h P4, LN 18.08 17.22 14.02 18 

1220°C 22h P5, LN 17.91 17.11 11.65 9.2 

 

 

Table C.3.  Melt history (1320°C) study on OI-A glass. 

Melt History Pull#, Condition εmax (%) εmid (%) εmin (%) m 

1320°C 1h P1, LN 18.08 16.65 11.43 9.5 

1320°C 2h P2, LN 18.02 16.92 14.65 20.8 

1320°C 4h P3, LN 18.23 17.08 13.96 15.3 

1320°C 8h P4, LN 17.77 16.49 13.18 14.3 

1320°C 22h P5, LN 17.54 16.83 12.10 10.7 
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Figure C.4 plots failure strain and Weibull modulus as a function of melting time 

at 1120°C, for both in liquid nitrogen (LN) and in relative humidity (RH).  Inert failure 

strain distribution tightened as melting time increases.  A clear trend of increase can be 

found in Weibull modulus.  However, failure strain distribution in RH does not seem to 

have a melting time dependence, except that the Weibull modului of failure data at 4 

hours is abnormally high.  It can also be seen that the inert failure strains are much 

greater than failure strains measured in RH, whereas the Weibull modulus is smaller in 

LN than in RH.  This indicates that the failure mechanisms for the two conditions are 

different. 

 

 

 
   (a)      (b) 

Figure C.4.  Melt history study for OI-A SLS glass melted at 1120°C, (a) Failure strain; 
(b) Weibull modulus of OI-A SLS glass fibers measured using TPB technique. Solid data 

points are measured in liquid nitrogen, open data points are measured in air at room 
temperature (21±2°C) with a relative humidity of 66±2%.  
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      (a)            (b) 

 

 
      (c)            (d) 

Figure C.5.  Failure strain of OI-A SLS glass fibers measured in liquid nitrogen using 
TPB technique.  Glass were melted at 1120°C (a), 1220°C (b), and 1320°C (c), for a 

certain period of time prior to fiber pulling.  (d) Weibull modulus of corresponding data. 

 

 

Figure C.5 shows the melting time dependence of the inert failure strains and the 

Weibull modulus for OI-A glass melted at 1120°C, 1220°C and 1320°C.  The greatst 

failure strain in every distribution is lying at about 18%, which is probably the greatest 
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TPB failure strain for OI-A glass measured at this condition (LN, 4000 µm/s).  If this 

value represents the inert failure strain of a ‘perfect’ homogeneous OI-A glass fiber, then 

any failure strain which is smaller than 18% is due to some structural flaw present in the 

bent region of a fiber.  

The Weibull moduli at 1120°C increase with increasing melting time, while for 

1220°C and 1320°C melts, the Weibull modulus reach their highest values at 4 and 2 

hours respectively.  The reason for the decreasing Weibull modulus is unknown. 

A continuous melt history study is shown in Figure C.6.  Fibers were drawn from 

the same melt held at different temperature for different length of time.   Generally, the 

average failure strains pulled from melts conditioned at TF or above TL increased with 

increasing melting time.  Air quench of melt resulted in a decrease in failure strain.   The 

average failure strain melted below TF decreased with increasing melting time.  

 

 

 
Figure C.6.  Thermal history study of SLS container glass OI-A (grey lines show melt 

history, corresponding to left Y-axis; Colored symbols show failure strains, 
corresponding to right Y-axis; black bars represent average number of each set of data; 

highlighted open symbols represent five worst failure strains from each set of data). 
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The viscosity-temperature curves for 4 OI bottle glasses and 4 PPG fiber glasses 

were determined using a high temperature rotational viscometer.  The 1000 P isokom 

temperatures, or the forming temperatures (TF) are comparable to the available reported 

values from the glass providers.  The liquidus temperatures (TL) for 4 OI bottle glasses 

and 2 PPG fiber glasses were determined using a gradient furnace, and they are 

comparable to the available reported values from the glass providers.   

Failure strains for OI-A soda-lime silicate glass fibers were determined using two-

point bending technique.  The failure strain distributions are dependent on the melt 

history of the glass prior to the fiber drawing.  Melt history study are performed based on 

TF and TL for OI-A glass.  It was observed that the inert failure strain distribution tightens 

with increasing melting time at a temperature close to TF at the beginning, then the failure 

strain distribution starts to broaden.  The reason for the broadening of the failure strain 

distribution is unknown.  The melting history effect on inert failure strains was not 

observed on failure strains measured in room humidity.  The small failure strains in broad 

inert failure strain distributions might due to some structural flaws which are not big 

enough to have an effect on failure strains measured in room humidity.  When the glass is 

melted below TL, inert failure strains decrease with increasing melting time.  This 

degradation can be recovered by melting the glass above TL. 

Fibers drawn from glasses melted at TF and below TL are heat treated at its 

crystallization temperature.  ‘Bad’ fibers (melted below TL and yielded a broad failure 

strain distribution) grow more and bigger crystals on the surface than ‘good’ fibers 

(melted at TF and yielded a tight failure strain distribution).  This might indicates that the 

heterogeneities that are responsible for broad failure strain distribution can serve as nuclei 

in crystallization behavior.  Further study has to be done to confirm this speculation. 

Fibers etched in acid has smaller inert failure strains and tighter failure strain 

distribution, indicating that the etching process produced similar sized and evenly 

distributed flaws on the fiber surfaces.  The existence of the ‘low strain tail’ suggests that 

the heterogeneities which are responsible for the broad failure strain distribution are 

located in the fiber instead of on the fiber surface.  
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FIBER HEAT TREATMENT 

It is discussed in Appendix C that the inert failure strain distributions are 

dependent on the melt history of the glass.  It is possible that these weak points are due to 

‘Griffith’ flaws [1] that are too small to be detected using nuclear magnetic resonance 

(NMR), atomic force microscopy (AFM) or scanning electron microscopy (SEM) [2]. 

A hypothesis is that such heterogeneities can serve as nucleation cites in 

crystallization process.  If so, crystals can grow on these heterogeneities upon an 

appropriate heat treatment.  A differential thermal analysis (DTA, Perkin-Elmer DTA7) 

is performed on about 100 mg of commercial soda-lime silicate flint clear bottle glass 

(OI-A) powders (<150 µm).  Samples were heated in air in an alumina crucible at 

2°C/min from 700°C to 1100°C in a .  Figure D.1 shows that an exothermal peak at 

880°C was detected and it is expected to be the crystallization peak. 

 

 

 
Figure D.1.  DTA patterns of OI-A soda-lime silicate glass heated in air at 2°C/min (two 

identical runs). 
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Figure D.2.  Weibull distributions failure strains for OI-A soda-lime silicate glasses with 
different melting histories, failure strains were measured using two-point bend technique 
in 21°C distilled water and in liquid nitrogen (LN) at a faceplate velocity of 4000 µm/s. 

 

 

Fibers with different melt histories and different failure strains were heat treated 

in a tube furnace at 880±2°C for 1 hour.  The temperature is examined using a second 

thermocouple at the location of the fibers.   Fibers are arranged in alternate way so that 

‘good’ fibers and ‘bad’ fiber are scattered.  Heat treated fibers were examined using an 

optical microscope (Nikon Optiphot-POL) (shown in Figure D.3). 

Before heat treatment, there is no difference for ‘good’ fibers and ‘bad’ fibers 

under microscope.  Both fibers look immaculate.  After 1 hour of heat treatment, there are 

more crystals grown on the surface of ‘bad’ fibers and less on ‘good’ fibers, shown in 

Figure D.3.  If these crystals are grown from the nuclei that are responsible for weaker 

fibers, this may indicate that the Griffith flaws are on the surface of the fibers.  Assuming 

all Griffith flaws are on the surface of the fibers, such flaws can be eliminated by etching 

the fiber surface before failure test. 
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Figure D.3.  Optical microscope images for heat treated fibers, upper three images from 

‘bad’ fibers and bottom three images from ‘good’ fibers. 
 

  

50 µm 
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FAILURE STRAINS FOR ACID ETCHED FIBERS 

Etching test was performed on soda-lime silicate glass provided by Asahi Glass.  

The SLS glass sample was remelted in air in a platinum crucible at 1450°C for 4 hours.  

Fibers with a diameter of 125±20 µm were pulled from the surface of the melt at 1170°C 

using a fiber drawing system.   After the fibers are drawn from the melt, they are etched 

in an acid solution (8% HF and 10% HCl in weight) for 30 seconds.  After the etching, 

the fibers were washed by dipping in distilled water in the #1 bottle for 10 seconds, 

dipping in distilled water in the #2 bottle for 10 seconds, dipping in distilled water in the 

#3 bottle for 10 seconds, dipping in ethanol in the #4 bottle for 10 second, dipping in 

acetone in the #5 bottle for 10 seconds, and drying in the air.  By dipping several times, 

acid on the surface can be removed. Water on the fiber surface is removed in ethanol and 

acetone.  A control group of fiber were ‘etched’ using the same process but with distilled 

water replacing the acid solution, in order to rule out the effect of the extra handling 

effect on the fibers.   Fiber diameters were measured before and after etching.  An 

average of 3.3±0.5 µm decrease in diameter is recorded.  Inert failure strains for etched 

fibers are shown in Figure E.1. 

The failure strains for the original fibers and fibers ‘etched’ in water are almost 

identical, indicating that the extra handling does not have much effect on the inert failure 

strain.  The greatest failure strain decreases from 18.0% to 13.4% after etching, and the 

medium failure strain decreases from 16.7% to 12.7%.   It is suggested that the pristine 

surface of the fibers become etched and relatively coarse, after dipping in the acid.  It is 

interesting that after etching, there are still 10% data points fall in the weak tail of the 

failure strain distribution, and the failure strain distribution below 10% probability for 

three sets of data are almost identical.  This probably suggests that the Griffith flaws are 

in the body of the fibers.   
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Figure E.1.  Inert failure strains for etched soda-lime silicate glass fibers 
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RAMAN STUDY OF BENT FIBERS 

The glass structure is believed to change when the glass is under stress.  Using 

Raman (Horiba Jobin Yvon, LabRAM ARAMIS Confocal Raman Microscope) to exam a 

bent fiber which is under both positive and negative stress, a shift of the structure peak is 

expected to be discovered.  A new custom-built two-point bending apparatus was 

designed to examine the bent fibers under micro Raman spectrometer (shown in Figure 

F.1).  This apparatus is working as a small-sized two-point bender, with two polished 

parallel faceplates bending the fiber into U-shape.  

 

 

 
Figure F.1.  Two-point bend apparatus design for Raman spectroscopy. 

 

 

In this study, a silica fiber with a diameter of 124 microns was bent into U-shape 

and tested under Raman spectroscope in air.  The distance between two faceplates was 

3.08 mm, providing a strain of 5.17% and a maximum stress of 3.7 GPa.  Diode laser was 

focused on the stress-concentrated regions and the stress free region.  

Figure F.2 shows Raman spectra of the stress-free, tensile, and compressive 

region of a bent fiber. We were able to observe peak shift in the 423 cm-1, 482 cm-1, 596 

cm-1, and 802 cm-1 bands.  No significant shift observed at 1050 cm-1.  Generally, in 

tensile region, the Raman peak shifted to lower frequency; in compressive region, the 

Raman peak wave number shifted to higher frequency.  Central force models predict that 
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under tensile stress, Si-O-Si angle increase, with decreasing frequency of 440 cm-1 and 

800 cm-1 band, whereas under compressive stress, Si-O-Si angle decreases, with 

increasing frequency of 440 cm-1 and 800 cm-1 band.  

 

 

 
Figure F.2.  Raman spectrum for silica fiber under stress. 

 

 

This apparatus does not allow bending in liquid nitrogen or other inert conditions, 

thus the highest strain for silica without failure is ~5%.  If it can be improved to allow 

bending in liquid nitrogen or other conditions, a silica fiber can be bent to >15% strain, 

and much more significant Raman peak shifts are expected. 
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