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ABSTRACT

The principal objective of this research is to advance our understanding of how
glass breaks. Glass, amaterial well known for its brittleness, has been used widely but
within afrustrating limit of its strength. Generally, strength is not considered as an
intrinsic property of glass, due to the difficulty of avoiding the presence of flaws on the
sample surface. The fiber drawing system and two-point bending (TPB) equipment
developed at Missouri S& T allow the fabrication of pristine glass fibers and failure strain
measurements while minimizing the effects of strength limiting critical flaws. Several
conditions affect the failure behavior of glasses, including glass composition, thermal
history of melts and environmental conditions during the failure tests. Understanding
how these conditions affect failure helps us understand how glassfails.

In this dissertation, failure strains for many different silicate and borate glasses
were measured under avariety of experimental conditions. Failure stresses for various
silicate glasses were calculated using values of the nonlinear elastic moduli reported in
the literature. Inert intrinsic strengths for alkali silicate glasses were related to the
structure and corresponding bond strengths, and the dependence of the inert strengths on
faceplate velocity is discussed. Inert failure strains were also obtained for sodium borate
glasses. Up to ~40% failure strain was measured for vitreous B,O,. The addition of soda
to boron oxide increases the dimensionality and connectivity of the glass structure and
hence increases its resistance to deformation, as was observed in elasticity and brittleness
measurements reported in the literature. The increase in deformation resistance produces
lower failure strains, a behavior also seen for akali silicate and aluminosilicate glasses
where the reduction of non-bridging oxygen increases the structure stiffness and leads to
lower inert failure strain. Fatigue effects on silicate glasses were studied by measuring
the failure strainsin water at different temperatures and at different loading rates, and in
air with arange of relative humidities. The dominant fatigue reaction for cross-linked
network glasses is bond hydrolysis, whereas for alkali modified depolymerized glassesis
ion-exchange reaction between alkali ions and water species. The fatigue mechanism
difference results in the difference in the humidity sensitivity of the reaction rate. The

dominant fatigue reaction also changes at around 50% relative humidity.
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1. INTRODUCTION

1.1. OVERVIEW OF GLASS STRENGTH

Glassisfound in many applications including windows, containers, insulation,
lighting, etc. The transparency, luster and durability of glass have been appreciated for
thousands of years[1]. However, the use of glass has been limited by its notorious
brittleness. A common experience is to have glass objects that will readily break when
subjected to amechanical or athermal shock. Typically, the practical strength of aglass
isaround 14-70 MPa[1], but the theoretical strength of glassis several orders of
magnitude higher.

Assuming that glassis aflawless brittle solid, its theoretical strength isthe
amount of work done in pulling bonds apart and creating two new surfaces, and it was
estimated to range from E/10 to E/x, where E is Young’s modulus [2]. Asfor fused silica,
E =70 GPa, thusits theoretical strength isfrom 7 to 22 GPa. However, in the real world,
most glasses are not ‘flawless’. Practical strength is greatly reduced from its theoretical
value due to strength-limiting flaws that form during processing or handling (for example,
scratches or dents). In addition, glass strength is reduced due to environmental fatigue
effects, which will be discussed later.

1.1.1. Effect of Flaws. Inglis[3] studied the stress concentration of an elliptical-
shaped flaw in an infinite plate (Figure 1.1, [3]). He used the theory of elasticity,
assuming that the material is linear elastic and obeys Hooke’s law everywhere. He found

that the maximum local stress depends on the shape and size of the flaw:

Omax = 0L X 23/c/p «y

where g;, isthe remotely applied stress (GPa) on an infinite plate, g,,,,, 1S the maximum
stress (GPa) at the edge of an elliptical flaw, cisthe half crack length (mm) and p isthe
crack tip radius (mm). This equation hasits limit when trying to answer such questions:
1) What isthe maximum stress at the crack tip when the crack is extremely sharp
(when p approaches 0)?
2) Why do large cracks tend to grow easier than small cracks?
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Figure 1.1. Remotely applied tension on an infinite plate with an eliptical-shaped flaw.

Griffith [4] advanced this study and suggested that having a maximum stress at
the crack tip exceeding theoretical strength is not a sufficient criterion for failure. He
considered energy conservation laws of mechanics and thermodynamics and proposed the
energy-balance concept to relate the loss in strain energy to the gain in surface energy (y,
Jmm?). Assuming an dliptical thorough crack in an infinite plate, Griffith developed his
solution for strength (o, GPa) of aflawed brittle solid:

o =+/2Ey/mc (2

in which, E isthe Young’s modulus (GPa). Since the flaw size ¢ (mm) can vary by
several orders of magnitude, the strength of glass was long considered to be an extrinsic

property and depended on processing [1] (shownin Table 1.1).



Table1.1. Typical strength for glass samples based on experience [1].

Sample Condition Typica Strength
Freshly drawn, pristine fibers ~0.7-10 GPa
Handled fibers ~350-700 MPa
Freshly drawn rods ~70-140 MPa
Abraded rods ~14-35 MPa
Used glass products ~14-70 MPa

Considering aflawed brittle solid, generally, there are three modes (Figure 1.2) of
crack-surface displacement used in fracture mechanics: Mode | is an opening (tensile)
mode; Mode Il isadliding (in-plane shearing) mode; and Mode 11 is atearing (torsional

shearing) mode.

d f

Mode | Model ll Mode I11

Figure 1.2. Three modes of crack-surface displacement.

Mode | isthe most common load type and its corresponding stress intensity factor
isK, (MPamY?). The stress intensity factors are used to predict the stress state (or ‘stress

intensity’) near the crack tip caused by aremote load or residual stresses (o, MPa):

K, = 0'\/E ©)

in which cisthe half size of crack (m). When this stress state becomes critical (K,c), the

crack will grow at its critical speed and the material will fail. The load at which this



failure occursisreferred to as the fracture strength. Thus, K¢ is an important property of
amaterial in fracture mechanics, called fracture toughness. For silicate glasses, atypical
value of fracture toughness falsin the range of 0.7 to 0.9 MPa mY? [5]. Equation (3) is
often used in glass strength estimations. However, the validity of this equation in studies
of ‘flaw-free’ glass samplesis questionable.

1.1.2. Conventional Strength Measurement. Many efforts have been made to
prepare flaw free glass samples[6]. Freshly drawn glass fibers (tested within hours after
formation) are often used because they can be prepared and handled in such away asto
avoid damaging their surfaces (scratches or dents), and so pristine fibers usually give the
greatest strength (Table 1.1). Conventional methods of measuring strength of glass
include tensile tests [ 7-10], three-point bend tests[11] and four-point bend tests [12]

In atensiletest, asample (usually in forms of afiber or arod) is gripped at both
ends and pulled in tension until it fails. This technique provides information of
deformation and applied load, which can be converted to strain and stress, based on the
dimension of the sample. However, in atensile test, the sample must be gripped on both
ends and this may damage the sample surfaces causing a decrease in measured strength.
Another disadvantage of the tensile test is that the test volume includes the entire length
of the fiber between the grips, and this increases the probability of finding critical flaws
and increases the scatter in measured values [13]. Three-point bend (Figure 1.3 (a)) and
four-point bend tests (Figure 1.3 (b)), if performed on fibers, can significantly reduce the
probability of encountering a critical surface defect, due to the smaller volumethat is
effectively under tension compared to typical tensile tests, but may create strength-

limiting critical flaws where the testing fixtures touch the pristine surfaces.

{ { f
L L L
(@ (b)

Figure 1.3. Schematic diagram of (@) athree-point bend test, and (b) a four-point bend
test.



1.1.3. Two-Point Bend Failure Strain Measurement. Although the two-point
bending (TPB) technique was used as early as 1944 [14], itsroutine use in testing glass
fibers began in 1980 [15]. InaTPB test (Figure 1.4), a section of glass fiber, diameter d
(um), is bent into a U-shape between two parallel faceplates, one of which travels
towards the second at a constant facepl ate velocity (vip), compressing the ‘U’ until failure.
The gap distance at failure (D, um) isrecorded, and the failure strain (&) isthen
calculated from [16]:
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Figure 1.4. Schematic diagram of atwo-point bend test.

The TPB test does not require the special grips needed for conventiona tensile
tests, and the relatively small gauge length (0.3-0.9 mm) in the region of highest tensile
stress minimizes the probability of extrinsic flaws[15]. A more detailed gauge length
calculation can befound in [16]. The TPB test does not require excessive handling of the
glass samples. For example, in three-point bend test, acid-etched or polished samples are
often used, whereas, the samples used in a TPB test are freshly-drawn fibers with pristine
surfaces (tested within hours without touching the fiber surfaces). TPB can be used to
measure the failure strains of pristine glass fibersin inert conditions (immersed in liquid
nitrogen). Theinert failure strains are considered to be inert intrinsic strength of glass,
which is the closest measure of theoretical strength [13].



The application and possibilities of the TPB test are discussed in previous
publications [17,18,19,20,21,22]. For example, Lower et al. used TPB to determine the
inert intrinsic failure strains for sodium silicate glass (Figure 1.5, [19]) and sodium

aluminosilicate glass (Figure 1.6, [20]).
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Figure 1.5. Welibull distributions of inert failure strains for sodium silicate glass fibers
with compositions of xNaO-ySiO, (x+y=100, in mol%) [19].

These inert failure strains have been related to the silicate glass network [19]. It
isinteresting to see the compositional dependence of inert failure strains for other glass
systems, for example, borate glasses. The study of inert failure strains for different glass

systems might generate some general connection between inert intrinsic strength and

glass structure.
The TPB test was aso used to study the melt history effect [18]. Lower et a.

reported that the failure strain distributions for E-glass were dependent on the melt time

and temperature prior to the fiber drawing (shown in Figure 1.7)
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The melt history dependence of the inert failure strains indicates that some
heterogeneities formed during the melting process serve as ‘Griffith’s flaws’. Attempts
to detect the source of heterogeneities using optical microscopy, atomic force microscopy
(AFM) and scanning electron microscopy (SEM) all failed [22]. The melt homogeneity
study is of great interest to industry with regards to quality control.

One disadvantage of the TPB test is that it does not directly measure failure stress.
Using zero-strain elastic modulus to calculate the failure stress from failure strain will
lead to an incorrect estimation due to the non-linear elastic modulus [16].

1.2. ENVIRONMENTAL FATIGUE

The strength of glassis reduced not only by the effect of flaws but also by
environmental fatigue. About a hundred years ago the strength of glass was found to be
dependent on the loading time and loading rate in aqueous or humid environments [23].
Glass|oaded at afast rate or forced to support aload in a short time was relatively strong.
Theterm ‘fatigue’ has been used to describe this phenomenon as early as the 1940s
[24,25,26,27]. Charles[28,29,30] wasthe first who studied the fatigue effect thoroughly.
Fatigueis usually categorized in two forms: static fatigue (a.k.a. delayed failure) and

dynamic fatigue.
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Figure 1.8. Fatigue effect: (a) static fatigue (timeto failure) and (b) dynamic fatigue for
soda-lime silicate glass [29].



Static fatigue (Figure 1.8 (a), [29]) is measured by determining the time-to-failure
of asample under a constant applied stress or at a constant strain. Dynamic fatigue
(Figure 1.8 (b), [30]) is usually measured by determining the failure stress or failure
strain under different loading rates, from which the slope can be used to calculate the
fatigue parameter n (will be introduced later).

Fatigue isimportant considering that most applications of glassinvolve some kind
of applied force and some contact with air or agueous environments. The fatigue of silica
and silicate glassis of interest because of their wide applications. A well accepted
concept isthat the failure of glassesin wet environmentsis controlled by stress corrosion
due to the chemical reaction between water and strained bonds at the crack tip [31].
Silicais considered inert to water at zero strain, but when the Si-O-Si bond is strained, it
can hydrolyze by reacting with water [32,33]:

I I I
— Si— 0— Si— +H,0 — 2 [—Si— OH (5)

Silicais more susceptible to fatigue in the presence of basic solutions because

hydroxyl ions further attack the glass network [34]:

I I I I
— Si—0—Si—+0H~ ——Si— 0™+ —Si— OH (6)

The mechanism of fatigue in modified silicate glassesis different from that of
silica. Alkali ionsin asilicate glass can exchange with protons [29,35] or hydronium
ions (Hs0") [36] in solution, increasing the pH value in the vicinity of the strained bond,
increasing fatigue [29]:

| I | I
— Si— 0— Si— ONa* + H,0 —>—Si— 0—Si— OH + Na* + 0H~  (7)
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Duncan and France et a [37] studied the fatigue of silicaand sodium borosilicate
glassin air and suggested that sodium borosilicate is more susceptible to fatigue than
silica. They [38] also studied the fatigue of sodium borosilicate with different soda
content in water and recognized that reducing soda caused an increase in the stability of
glass, and hence low-soda borosilicate glassis less susceptible to fatigue. Wiederhorn
and Bolz [39] studied stress corrosion behavior (another form of fatigue) for severa
silicate glasses. Among those glasses, silica glass had the greatest stress corrosion
resistance, followed by low-alkali aluminosilicate and borosilicate glass. Soda-lime
silicate glass however, was sensitive to stress corrosion, indicating that alkali ions play a
detrimental part in fatigue.

1.3. SLOW CRACK GROWTH STUDY

In fracture mechanics, fatigue of glass has been studied by measuring slow crack
growth (a.k.a. subcritical crack growth). A typical experiment is adouble cantilever
beam test, shown in Figure 1.9 (a) [31]. A crack of a predetermined length is introduced
to aglasssample. A constant forceis applied to the cracked ends of the sample. The
crack velocity is measured using an optical microscope and recorded as afunction of
applied stress and environment Figure 1.9 (b) [31]. The curve showsthreeregions. In
general, the crack extension in region | is due to the stress-assisted corrosive reaction
between water and the strained bonds at the crack tip (for example reaction equation (5)
to (7)). The plateau in region Il shows that crack speed isindependent of applied force.
In this region, water migration becomes the limitation for crack velocity. The beginning
of region Il initiates a ‘spontaneous’ crack growth.

The slow crack velocity tests are usualy shown in amore appropriate ‘K-V’ curve
(Figure 1.10), in which the applied force is converted to the stress intensity factor (K). In
most stress corrosion studies, only region | crack growth is observed (see Figure 1.10
from Wiederhorn and Bolz [39]). Inregion | the crack growth behavior depends on the
composition of the glass.
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The most widely used model to describe the K-V curve is based on an empirical
power law [40,41]:

V=AW /Kic)" (8)

where V is the crack growth velocity (um/s), nistermed the stress corrosion
susceptibility parameter, or the fatigue parameter, and A is the environmental parameter
(wm/s) which has an Arrhenius temperature dependence. In addition to this model, an
activation volume model [39] based on exponentia law was proposed:

V =Aexp(nK;/Kic) 9)

Other models based on exponential laws [42,43,44] have aso been used, but their
formulations are not very different. Shiue and Matthewson [45] compared several
different models for fatigue and suggested that the power law fits the fatigue data the best,
while the exponential law has a better physical meaning. Application wise, dynamic
fatigue studies can also be described with the model using power law. The relationship
between strength and stress rate can be derived analytically [46]:

o = DGA/mD) (10)

where o¢ isthe strength, or failure stress (GPa), D is a constant (s1), and ¢ isthe applied
stress rate (GPals). This equation alows direct comparison between slow-crack growth
study and dynamic fatigue study. Thus most researchers prefer the power law model.
Such relationship cannot be analytically derived from the exponential model and its
application is thus much more limited.
1.4. TWO-POINT BEND STUDY OF FATIGUE

As mentioned before, dynamic fatigue [30] is usually measured by determining
the failure stress or failure strain under different loading rates. The fatigue parameter, n,
can be determined using Equation (10). The TPB test usually uses a measuring mode of
constant faceplate velocity (i), instead of constant stressrate or strain rate. Rondinella
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and Matthewson [47] compared three different loading modes: constant strain rate,
constant stress rate and constant facepl ate velocity (vip) (shown in Figure 1.11). The
power law model fitswell for al three loading modes.

:" I I — T T |
. ,f’“’/}f
o b L
o T o
T g f
t‘.}_ 3 — H"ff,- %’J’:i -
_ - -
9 T ,-i."ff—-";:::r
o | /"l/’f
= s
5.0
w4 = I " T
= A cm oy 10 fumsT) b
= e ¢y 107 (min
T o G« 107 (MPasTT)
| i [

Rote

Figure 1.11. Dynamic fatigue results or coated fiber at constant velocity, constant strain
rate, and constant stress rate |oading modes [47].

The dynamic fatigue parameter, n, for constant faceplate velocity mode, can be

calculated by:

dlog (¢f)
dlog (v;) (11)

n=1+1/

There have been reports on the use of TPB to measure the fatigue for silicaglass

fibers [47,48,49,50,51] and sodium borosilicate fibers[38]. Except for dynamic fatigue
[47], TPB has aso been used in other forms of fatigue. For example, the failure strainsin

ambient conditions decrease systematically with increasing relative humidity [17], or

with increasing temperature [52].
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1.5. INERT STRENGTH AND INERT FATIGUE

In ambient conditions, glasses |oaded at arapid rate are relatively stronger due to
the environmental fatigue effect. Thisis attributed to the stress corrosion reaction
between water and strained glass bonds. To avoid environmental fatigue effects, strength
measurements have been carried out in high vacuum (~10 Torr) [52], or at low
temperatures (in liquid nitrogen or liquid helium), where the kinetics of the water
degradation reactions are arrested [53]. Strengths of pristine glass fibers measured in
such conditions are referred to as inert strength [13].

A number of researchers have reported the inert strength for fused silica. Proctor,
et a. [53] reported atensile strength of 11.8+2.2 GPafor 20 um diameter silicafibersin
liquid nitrogen. Pukh, et al. [54] used a three-point bending technique to measure the
strength of avariety of compositions prepared as 100-150 um fibers, under liquid
nitrogen, and reported intrinsic strengths of 12.0 GPafor polymer coated silica glass.
There are also reports of inert strengths for silica of 11-14 GPameasured in tensile test
[55] and ~18% failure strain measured in two-point bend test [6], not measured under
liquid nitrogen but in room temperature, high vacuum conditions (~10°® Torr). These
valuesfall in therange of 7-22 GPa, which is the theoretical strength for silica estimated
using Orowan’stheory [2].

Even though the water degradation reactions are believed to be arrested in inert
conditions, fatigue has al so been observed in pristine (flaw free) glass fibers measured in
inert conditions, and referred to asinert fatigue [13, 53, 56]. Matthewson et al. [56]
measured the fatigue effect of fused silicafrom 77 to 473K and showed that fatigue exists
even at 77K (shownin Figure 1.12). Compared to room temperature fatigue, the fatigue
parameter at 77K (calculated using equation (11)) is much higher (~400) but still
measurable (Figure 1.13). Matthewson et al. did not differentiate inert fatigue and
environmental fatigue and considered both processes to be caused by stress-induced
reactions leading to weaker bonds at longer times.

Kurkjian, et al. [13] explained the inert fatigue effect as a consequence of the
normal probability of failure due to thermal fluctuations of bond strengths under high

stress, with longer times (slower loading) allowing weaker bonds to rupture and initiate



15

1? T T T T T
16 |- =
TR
I & —i——-
—3 $ r *
16 | ~
== 185 K
e Mr S 7
£ BT K
oy 13 F _ a
E ‘F,’I__,"!/’A}_/
S 473K
T 12 | //’ -
L L
1| %/ -
1|:} 1 1 1 1 I
oA 1 10 100 1000 10000

Faceplate Velocity (umis)

Figure 1.12. Dynamic fatigue observed from 77 to 473 K for fused silicafibers [56].

Figure 1.13.

400

300

200

100

a 2 4 & B 10 12 14
1000/ 7 (K

Fatigue parameter as a function of temperature for fused silica fibers [56].



16

failure. Kurkjian et al. viewed inert fatigue as a time dependent phenomena and
suggested that the inert fatigue can be avoided by testing rapidly. Assuming the inert
fatigue is due to the thermal fluctuation of bonds, if one can test the strength within the
bond vibration time (z,;,~10"® s) the inert fatigue should be avoided. Theinert fatigue
was described by Kurkjian et a. using the equation:

= o[- 2)

where 7 isthetest time, t,,;;, iSthetypical vibration time of bonds, E is the zero-stress
environmental dependent activation energy, k is the Boltzmann’s constant, T isthe
temperature, o isthe measured strength and o, isthe ‘fatigue free’ strength measured in
time T,p.

Inert dynamic fatigue effect was also observed not only in silica, but asoin E
glass and some other glasses[19,20]. Aninteresting observation isthat thereis an
inverse dependence of inert strength on loading rate for some glasses, that is, the inert
failure strainsincrease with decreasing loading rate. For example, for some sodium
silicate glasses, inert failure strain measured at a slow faceplate velocity (vi, = 50 pm/s) is
greater than that measured at afast faceplate velocity (vi, = 4000 pm/s), shown in Figure
1.14.

This effect isto the inverse of the ‘normal’ inert fatigue behavior of silicaand E-
glass, and has been referred to as the Inert Delayed Failure Effect (IDFE) [22]. One
guantitative measure of IDFE is given by:

(ff-soum/s - gf-4000um/s)

IDFE =100 x (13)

Ef.s0um/s

IDFE in Equation (13) isthe relative difference in inert failure strains measured at
afaceplate velocity of 50 and 4000 um/s. Several glassesincluding silica and E-glass
have a negative IDFE value, while some other glasses including sodium silicate glasses

with high soda content have a positive IDFE value (summarized in Table 1.2, [22]). In
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general, the negative IDFE glasses have cross-linked structures, whereas positive IDFE
glasses have more non-bridging oxygens. One explanation for IDFE is that the structure
of silicate glasses with relatively large fractions of non-bridging oxygens can reorganize
or relax when stressis applied, perhaps in amanner similar to that which produces low-
temperature internal friction peaks[57,58]. Given more time (slower Vi), the structure
can reorganize more before bonds fail and cracks are initiated, and thus failure occurs at a
greater overall strain, countering the effects of weaker network bonds in the more
depolymerized glass structures. The positive or negative of IDFE might result from a
competition between this relaxation/deformation time and the inert fatigue factor.
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Figure 1.14. Weibull distributions of inert failure strains for sodium silicate glass fibers
with compositions of XNaxO-ySiO; (x+y=100, in mol %), using faceplate velocities (vr,)
of 4000 pm/s (open symbols) and 50 um/s (closed symbols) [19].

Oxide glasses have been classified based on their elastic modulus derivatives,
dM/dT and dM/dP (M: elastic modulus, T: temperature, P: pressure) [59,60,61]. ‘Normal’
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glasses have a negative dM/dT and a positive dM/dP, and ‘anomalous’ glasses have a
positive dM/dT and a negative dM/dP.

Table 1.2. Collective IDFE datafor severa glass systems.

Zero or negative IDFE Positive IDFE
Potassium Silicate (K,0<25%) Potassium Silicate (K,0>25%)
Sodium Silicate (Nay0O<15%) Sodium Silicate (Na,0>15%)
Sodium Aluminosilicate Sodium Aluminosilicate
(NaxO=25%, Al,03>25%) (NaxO=25%, Al,03<25%)
Slica Soda-lime Silicate

(NaO+Ca0>20%)
E-glass

These elastic anomalies have been related to indentation behavior (shown in
Figure 1.15, [62]). Normal glasses show shear lines upon indentation at room
temperature, indicating the presence of shear flow, whereas anomal ous glasses exhibit no
shear lines upon indentation at room temperature. Instead of shear flow, they show
deformation due to densification.

The two types of glasses are believed to have fundamental differencesin the way
they respond to stress. These differences coincide with the IDFE difference between
silicaand soda-lime silicate. Silica, classified as anomalous glass, has a zero or negative
IDFE, while soda-lime silicate, classified as normal glass, has apositive IDFE. This
coincidenceis also valid for even more glass compositions. Table 1.3 shows the
correlation between IDFE and elastic anomalies [59,60,61,62] for several glasses.

A possible explanation is that the ease of plastic flow for SLS glass can benefit
from reorganization or relaxation under strains, therefore alowing higher failure strain if
given more time.

1.6. SUMMARY

This dissertation is aimed at advancing the understanding of how glassfails. The

two-point bending technique is used to measure the failure strain of freshly-drawn glass

fibers. The failure behaviorsfor different glass systems under different conditions are
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Figure 1.15. Room temperature indentation images for (a) soda-lime silica, optical; (b)
soda-lime silica, HF etch, SEM; (c) fused silica, optical; (d) fused silica, under dry No,

optical [62].

Table 1.3. IDFE and elastic anomalies for several glasses.

Glass IDFE Elastic anomaly
Silica(SiOy) <0 anomalous
E-glass <0 anomalous
Soda-lime silicate -0 normal
(15%Na,0, 5%Ca0, 80%Si0,)

Sodium silicate (Na,0<15%) <0 anomalous
Sodium silicate (Na,0>15%) >0 normal
Potassium silicate (K,0<13%) <0 anomalous
Potassium silicate (13%<K,0<25%) <0 normal
Potassium silicate (K,0>25%) >0 normal




20

studied. Paper 1 describes the calculation of failure stress from two-point bend failure
strains and non-linear elastic modulus. Failure stresses were determined for silica, E-
glass, asoda-lime silicate glass, a sodium aluminosilicate glass, a series of sodium
silicate glasses and severa potassium silicate glasses. In this chapter, the compositional
dependence of inert intrinsic strength was studied. The inert delayed failure effect was
discussed. Paper 1 isformatted following the requirement of Journal of the American
Ceramic Society, and was submitted to thisjournal in August 2011. Paper 2 presents the
measurements of inert failure strains for a series of sodium borate glasses. The vitreous
B,0; glass exhibits the greatest inert failure strains among all the glasses that had been
tested. The compositional dependence of inert failure strain for sodium borate glasses
was studied and related to the structure and bond strengths. The failure behaviors for
sodium borate glasses were compared to those for silicate glasses. Paper 3 describes the
dynamic fatigue behavior for severa commercial silicate glasses and a series of lab-
prepared sodium aluminosilicate glassesin distilled water. The dynamic fatigue
parameter for these glasses will be determined by measuring the failure strains as a
function of faceplate velocity. The temperature dependence of the failure strainsin water
was also determined. The activation energy for fatigue was related to the fatigue
parameter. The fatigue mechanisms for the series of sodium aluminosilicate glasses were
anayzed and related to their reactivity with water. Paper 4 describes the study of fatigue
behaviorsfor silica, soda-lime silicate glass and E-glassin humid air. Failure strains
were measured as afunction of humidity, and the fatigue parameters were determined.
The fatigue reaction order in the high humidity range was determined for all three glasses
and was discussed. Papers 2, 3, and 4 were formatted following the requirement of
Journal of Non-Crystalline Solids, and will be submitted to the journal in the near future.
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ABSTRACT

The two-point bend (TPB) technique was used to measure the failure strains of
pristine glass fibers under liquid nitrogen and in ambient conditions and failure stresses
were then calculated using values of the nonlinear elastic moduli reported in the literature.
At afaceplate velocity of 4000 um/s, for silicaglassfibers, the failure stresses calculated
from failure strains measured by TPB are 12.1+0.2 GPain inert (liquid nitrogen)
conditions and 7.0+0.1 GPain ambient conditions (room temperature, 50% RH),

compared to reports of 11-14 GPafor liquid nitrogen and 4-5 GPa ambient tensile
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strength measurements, respectively. Failure stresses were also calculated for an E-glass,
asodalime silicate glass, a nepheline sodium aluminosilicate glass, a series of sodium
silicate glasses, and severa potassium silicate glasses. Thesefailure stresses were
compared to the tensile strengths for similar glasses reported in the literature. Inert
intrinsic strengths for alkali silicate glasses were related to the structure and
corresponding bond strengths, and the dependence of the inert strengths on faceplate
velocity (or strain rate) was discussed.

1.1. INTRODUCTION

Strength is one of the most important properties of glass, but also one of the most
difficult to measure. Griffith [1] showed that practical strength is greatly reduced from
its theoretical value due to strength-limiting flaws that form during processing or
handling. Much effort has gone into preparing and testing “flaw free” or pristine samples
to determineintrinsic strength [2]. The measurement of the intrinsic strength of glassis
of significance because without the effect of surface flaws, strength is sensitive to glass
composition and can be related to the nature of the glass structure. In addition, glass
strength is reduced due to environmental fatigue effects [3,4,5], with water being the
cause of this degradation [6]. The inert strength of glass is the strength measured under
conditions where there is no environmental fatigue [7]. To avoid environmental fatigue
effects, strength measurements have been carried out in high vacuum (~10°® Torr) [8], or
in liquid nitrogen, where the kinetics of the water degradation reactions are arrested [9].
Inert intrinsic strength should depend on the atomic level structure and corresponding
bond strengths of aglass[7].

1.1.1. Conventional Glass Strength M easurement. Freshly drawn glassfibers
are often used in studies of glass strength because they can be prepared and handled in
such away asto avoid damaging their pristine melt surfaces. Failure strengths of fibers
have been measured by tensile tests [9,10-13], three-point bend tests [14] and four-point
bend tests[15]. In atensile test, the sample must be gripped on both ends and this may
damage the sample surfaces causing a decrease in measured strength.  Another
disadvantage of the tensile test is that the test volume includes the entire length of the
fiber between the grips, and this increases the probability of finding larger critical flaws

and increases the scatter in measured values[2]. Three-point bend and four-point bend
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tests, if performed on fibers, can significantly reduce the probability of encountering a
critical surface defect, due to the smaller volume that is effectively under tension
compared to typical tensile tests, but may create strength-limiting critical flaws where the
testing fixtures touch the pristine surfaces.

1.1.2. Two-Point Bend Failure Strain Measurement. Although the two-point
bending (TPB) technique was used as early as 1944 [16], its routine use in testing glass
fibersbeganin 1980 [17]. InaTPB test, apristine section of glass fiber, diameter d, is
bent into a U-shape between two parallel faceplates, one of which travels towards the
second at a constant faceplate velocity (vip), compressing the ‘U’ until failure (Figure 1.1).
The gap distance at failure (D) is recorded, and the failure strain (&) is then calcul ated
from [18]:

1198 xd
= 0-d) @)

The TPB test does not require the special grips needed for conventiona tensile
tests, and the relatively small gauge length (0.3-0.9 mm) in the region of highest tensile
stress minimizes the probability of extrinsic flaws[17]. A more detailed gauge length
calculation can be found in [18]. The application and possibilities of the TPB test are
discussed in our previous publications [19-24]. For example, Lower et a. used TPB to
determine the inert intrinsic failure strains for sodium silicate glass fibers [22], sodium
aluminosilicate glass fibers [23] and E-glass fibers [24].

A TPB test has an advantage of not requiring any excessive handling of the glass
samples. Moreover, the samples used in a TPB test can be freshly-drawn fibers with
pristine surfaces. One disadvantage of TPB isthat it measures failure strain, not failure
stress.

1.1.3. Nonlinear Elastic Modulus of Glass. To convert the TPB failure strains
to failure stresses, the elastic modulus must be known. For glass samples with failure

strains less than about 1%, failure stress (o7 (0)) can be calculated from Hooke’s Law:

0r(0) = Ey X & (2)
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where Ey isthe zero-strain (or linear) Young’s modulus, and ¢; is failure strain. However,
pristine glass fibers typically fail at significantly greater strains (5-25%), where the use of
the zero-strain Y oung’s modulus is no longer appropriate. For example, the Young’s
modulus of 10 um E-glass fibers tested in tension drops from 74 to 60 GPafor a strain of
4% [25]. The nonlinear Y oung’s elastic modulus may be approximated by the
polynomial [26]:

1
E :E0+E1€+§E282 (3)

where E; isthe third-order non-linear Y oung’s modulus and E; is the fourth-order non-
linear Y oung’s modulus. These higher order elastic moduli can be measured using static
techniques [27], ultrasonic techniques [28,29] or by Brillouin scattering [30,31]. Values
of Eg and E; for avariety of glasses have been reported, but very few values of E, for
glasses are available in the literature, due to the difficulty of these measurements. Values
of Ep, E; and E; for fused silica have been reported from studies in ambient conditions
[32]. There are other reported values of Eg and E; for silicain ambient conditions [29]
and in liquid nitrogen [33], but these latter studies did not report values for E,. Values of
Eo, E1 and E; for E-glass have been obtained under ambient conditions [25]. There are
also reported values of Ep and E; for soda-lime silicate glass [31] and a nepheline sodium
aluminosilicate glass [34]. Manghnani [35] measured the pressure dependence of elastic
modulus for Na-silicate and K-silicate glassesin air, and values of E; and E; were
obtained using a method discussed by Gupta and Kurkjian [6]. Using equation (3), a

stress-strain relation can be described as [6]:

1 1
O-:E0€+§E1€2+6E2€3 (4)

Assuming that the temperature dependence of these moduli are negligible, Gupta
and Kurkjian noted that when pristine glasses fail under inert conditions (*), the stressis

maximum with regard to strain and so the differential of stressto strain, the effective
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Y oung’s modulus, ds/de, goesto zero. Using this condition, avalue for E; can be
derived:

Ey+ E &

E;=-2 (5)

2
*
&

Substituting equation (5) into equation (4) provides an equation for failure stress

that can be used when Eg, E; and & are known but E, is not:

1 1EO + Elg;
o = Eogr + 5 Erg” — 57%3 (6)

Under inert conditions, when & = &, equation (6) is simplified to:

2 1
Of = §E0£f + gElgfz (7)

In this paper, equation (6) is used to calculate failure stress under ambient
conditions, and equation (7) is used to calculate the inert failure stress under liquid
nitrogen. Values of Ey and E; used to calculate failure stresses are gathered from the
literature.

1.2. EXPERIMENTAL PROCEDURES

1.2.1. Sample Preparation. Materials used in this study include fused silica
(AT&T, Amersil TOS8 fused natural quartz), acommercia calcium aluminoborosilicate
glass (PPG, E-glass), acommercia sodalime silicate glass (Owens-lllinais, flint
container glass), a nepheline sodium aluminosilicate glass (25Na,0-25A1,03-50 SIO,, in
mol%) from reference [22], a series of sodium silicate glasses, XNa,O-(100-x)SiO, (10 <
x < 35), in mol%, described in references [21], and severa potassium silicate glasses, y
K20-(100-y)SIO,, y=15-25, in mol%, aso described in reference [24].

Commercial E-glass has anominal composition described by (20-25)CaO-(10-
15)Al,03:(5-10)B,03:(50-55)SiO,, in wt%. E-glass marbles were remelted in platinum
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cruciblesin air at 1550°C for at least 4 hours prior to fiber pulling. The melts were then
transferred to a second furnace set to afiber pulling temperature of 1300°C. The second
furnace was located below a custom fiber drawing system which pulled fiber from the
surface of the melt. Fibers were drawn onto a rotating cage which was designed to
prevent fiber overlap and damage. Fiber diameter was controlled by the fiber pulling
temperature and the drawing speed. All fibers are drawn to a diameter of 125+ 20 um.
The commercial soda-lime silicate (SLS) glass was remelted at 1220°C for 8 hours and
fiberswere pulled at 1175°C. The nepheline sodium aluminosilicate glass was melted at
1600°C for 19 hours and fibers were pulled at 1375°C [22]. For sodium silicate and
potassium silicate glasses, the melting conditions depended on melt viscosities, with
temperatures between 1200 and 1600°C and times between 6 and 20 hours. Alkali
silicate glass fibers were pulled at a temperature between 1100°C and 1400°C [21,24].

The protective polymer coating was removed from the commercial silica glass
fibers (125 um in diameter) by immersing in acetone.

1.2.2. Two-Point Bend Test. TPB measurements were made using a home-built
system, at afaceplate velocity of 50 or 4000 mm/sec, with fibers either immersed in
liquid nitrogen or tested in room temperature (21+2°C) air at arelative humidity of
50+2%. The relative humidity was controlled by blowing a mixture of wet and dry air
onto the surfaces of the fibers during the test, and was monitored using a digital
psychrometer (Extech RH305). The fibers drawn from melts were tested within thirty
minutes after they were formed. The commercial silica glass fibers were tested
immediately after the removal of their polymer coatings. No aging effects were observed
for any compositions over the course of their respective testing.
1.3. RESULTSAND DISCUSSION

1.3.1. TPB Failure Strain and Failure Stress Calculations. Figure 1.2 shows
the TPB failure strain distributions, plotted using the Weibull formalism [36,37], for
several glasses, measured in both inert and ambient conditions. The Weibull modulus (m)
ranges from 50 to 200, equivalent to arelative standard deviation of ~2% to 0.5%,
respectively. Duncan et al. [8] reported comparable values for failure strain for silica
fibers under liquid nitrogen (17.6% vs. 17.2% on Figure 1.2) and in room temperature,

ambient conditions (6.93% vs. 7.9%). The lower failure strains measured for fibers under
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ambient conditions result from fatigue effects associated with water in the atmosphere.
Due to the fatigue effect, failure strains are dependent on the measuring conditions,
including temperature, humidity and strain rate (faceplate velocity, vr,). Failure strains
decrease systematically with increasing relative humidity [24], with increasing
temperature [8], or with decreasing strain rate/stress rate [38]. The absolute values of
failure strain (or stress) from TPB tests under ambient conditions are difficult to interpret
unless these parameters are specified.

The TPB test in this study does not provide a measuring mode of constant stress
rate or strain rate, but instead uses a mode of constant faceplate velocity (vip). This
means that the applied strain rate increases with increasing strain (decreasing D, from
equation (1)). With the diameter of the fiber known, the strain rate at failure can be
calculated from failure strain and v

(dE) &P X gy, g
dt/ef 1198 x d ®)

E-glassfibers (d = 125 + 20um) have afailure strain of 5.6% in air at room
temperature and 50% RH, measured at a v, of 4000pm/s (Figure 1.2). The calculated
strain rate at failureis 0.076+0.007 s™*. In liquid nitrogen, the failure strain of E-glassis
10.7%, measured at the same vy, and this corresponds to a strain rate at failure of
0.27+0.03 s*. Strain rates (or stress rates) are not specified in most traditional strength
measurements, except for dynamic fatigue tensile tests for which the strain rate can vary
from 10 to 10° s* [39]. The dependence of ambient failure strain on faceplate velocities
is due to an environmental fatigue effect and will be discussed in another paper [40]. If
not specified otherwise, the values of failure stress/strain reported here were obtained at a
faceplate velocity of 4000 um/s.

Table 1.1 summarizes the failure strain values for the glasses studied here,
measured at a v, of 50 and 4000 pm/s and lists the respective strain rate. Table 1.2 lists
the nonlinear elastic modulus parameters reported from the literature. Also listed are the
calculated failure stresses from equation (6) (ambient data) and equation (7) (LN data),

and the respective failure strengths reported from the literature. The failure stress under
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inert conditions for fused silicafibersis 12.1+0.2 GPa, using the reported non-linear
€lastic modulus parameters [32]. Proctor, et al. [9] reported atensile strength of 11.8+2.2
GPafor 20 um diameter silicafibersin liquid nitrogen. Pukh, et a. [14] used a three-
point bending technique to measure under liquid nitrogen the strength of avariety of
compositions prepared as 100-150 um fibers, and reported intrinsic strengths of 12.0 GPa
for polymer coated silicaglass. There are aso reports of inert strength for silicaof 11-14
GPa[41] and ~18% failure strain [ 2], not measured under liquid nitrogen but in room
temperature high vacuum (~10°® Torr). Thus, the value of the strength of silica calculated
from the TPB failure strain measured in liquid nitrogen compares favorably with reported
values of the inert strength for fused silica measured using conventional methods.
Comparable values of strength for fibers with different diameters reported in the literature
indicate that the strength is an intrinsic property.

Under ambient conditions, the failure stress for silica calculated from the TPB
measurements fallsto 7.0+0.1 GPa. Reported strength values include 5.1+1.0 GPa, from
atensiletest in 25°C air [9], 4.8 GPa, from atensile measurement in room temperature
45% RH air [42], 3.6-5.0 GPain air at 23°C and 55% RH [43], and 4.1 GPain air at
room temperature and 100% RH [44]. The calculated strength from TPB data at 50 um/s
(5.5+0.1 GPa, Table 1.2) compares more favorably with these reported values. Failure
strain is lower for slower values of vy, because the longer experimental times allow for
greater fatigue effects to reduce the measured glass strength.

For E-glass, the failure stresses cal culated from failure strains under liquid
nitrogen (5.1+0.1 GPa) and in air (3.8+0.1 GPa) are in good agreement with the
respective values reported in the literature. Cameron measured the tensile strength of 75
um diameter E-glass fibers and reported avaue of 5.7+0.3 GPain liquid nitrogen [45]
and 3.8+0.1 GPa at atemperature of 23-28°C and arelative humidity of 32-44% [10].
Gupta[46] reported atensile strength of 4.3-5.1 GPafor pristine E-glass fibers in room
temperature and 50-60% humidity. Lund and Y ue [11] reported atensile strength of
3.0+0.3 GPafor E-glass measured at room temperature in ambient conditions (without
specifying temperature and relative humidity). Feih et al. [12] reported atensile strength
of 2.5+0.5 GPafor E-glassin room temperature air.
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The TPB failure stress values in Table 1.2 were obtained by estimating E, from &’
using equation (5). There are some reports for experimental values of E; for silicaand E-
glass and these values were used to calculate failure stresses using equation (4); the two
sets of calculated TPB failure stresses are compared in Table 1.3. Using reported values
of E, [32] and measured values of &', an inert stress of 14.4 GPais calcul ated for silica,
compared to values of 12.1-13.6 GPa using the estimate of E, from equation (5) and
different reported values of Ep and E; [27,29,32]. For E-glass, the inert failure stress
calculated from & using reported [25] and calculated values of E are similar, 5.2 GPa
and 5.1 GPa, respectively. For both silicaand E-glass, the values of failure stress
calculated from the respective failure strains fall within the ranges reported for tensile
tests, under liquid nitrogen and in air. The failure stress calculated using measured or
estimated values of E; for silica differ by about 20%, and a similar variation exists when
different values of Ep and E; from the literature are used. Given the limitationsin the
precision of the higher order modulus terms, it appears that the estimation of E, by
eguation (5) still produces an adequate prediction of failure stress.

For the soda-lime silicate glass, the failure stresses calculated from failure strains
are 8.4+0.1 GPaunder liquid nitrogen and 4.0+0.1 in air, compared with a reported
tensile strength of 7.4+0.6 GPain liquid nitrogen and 3.4+0.4 GPain 25°C air,
determined by an oblate bubble technique [13]. Pukh, et al. [14] report an inert strength
of 7.5 GPafor asodalime silicate glass.

The inert failure stress for the nepheline sodium auminosilicate glass (25 mole%
NaO, 25 mole% Al,O3, 50 mole% SiO,) measured by the TPB technique (7.3+0.1 GPa)
is about 15% lower than the tensile strength measured by a three-point bend technique
(8.5 GPa) for asimilar glass[14].

For the series of sodium silicate glasses, the inert failure stress increases
systematically (after an initial drop from the value for silica), from 7.4+0.1 GPafor x=10
to 8.7+0.1 GPafor x=35 (Figure 1.3). These failure stresses are 2-3 times greater than the
inert tensile strengths reported in three-point bend tests [15], four-point bend tests [14],
and from theoretical ultimate strengths calculated from elastic constants [47]. The
greater failure stresses from the present TPB measurements may be due to differencesin

sample quality or aging effects associated with the reported tensile tests, but are al'so
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related to stress/strain rate effects in the TPB measurements, as discussed in more detail
below. Theincreasein failure stress with increasing soda content, between 10 and 35
mole%, seems counterintuitive given the expectations that strength should decrease, as
does the zero strain elastic modulus (Ep, Table 1.2), when alkali contents increase.
Bridging oxygensin the silicate network are replaced by non-bridging oxygens with
addition of Na&,O (or K,0) and so the overall ‘strength’ of the network should decrease
with the decrease in network connectivity. Bartenev reported an associated decreasein
the theoretical strength of binary sodium silicate glasses with increasing soda contents
[47]. However, the strength measurements reported by Kennedy et al. [15] and Pukh et a
[14] have similar compositional trends, albeit lower absolute values, as our failure stress
calculations (Figure 1.3). Kennedy argued that the increase in failure strength of Na-
silicate glasses was a result of the development of nanoscal e flaws associated with phase
separation in glass with lower Na,O-contents. In the present study, the probability of
phase separation in thin, rapidly cooled fibers would be less than what Kennedy et al.
encountered with their thicker samples.

For the series of potassium silicate glasses, the inert failure stress decreases from
6.44+0.1 for y=1510 6.0+0.1 for y =25 (Table 1.2 and Figure 1.4). The absolute values are
again about two times greater than the inert strengths calculated from indentation
hardness measurements [47].

1.3.2. Inert Failure Strain Dependence on Faceplate Velocities. Figure 1.5
compares the failure strain measurements under liquid nitrogen at two different faceplate
velocities, v, = 50 and 4000 um/s, for several different glasses. Thereisasmall, but

reproducible, shift to greater values of ¢ at the greater value of vy, for both silicaand E-
glass, and asignificant decreasein & at the greater vy, for the 25Na,O-75Si0; glass, as

well as for other binary sodium and potassium silicate glasses (Table 1.1).

‘Inert fatigue’ behavior has been reported before for silica[7,9,48]. Proctor et al.
[9] attributed this to the finite activity of water in liquid nitrogen leading to normal
environmental fatigue behavior. Kurkjian, et al. [7], however, explained the effect asa
consequence of the normal probability of failure due to thermal fluctuations of bond
strengths under high stress, with longer times (slower vi,) allowing weaker bonds to
rupture to initiate failure. Matthewson et a. [48] did not differentiate inert fatigue and
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environmental fatigue and considered both processes as caused by stress-induced
reactions leading to weaker bonds at longer times.

In contrast to the ‘normal’ inert fatigue behavior of silica, E-glass, and the
nepheline glass (Table 1.1), the binary Na- and K-silicate glasses exhibit an opposite
behavior for the dependence of inert failure strain on the faceplate velocity; that is, inert
failure strains for these modified glasses are lower at greater values of vi, (shownin
Figure 1.5 and Table 1.1). This effect has been referred to as the Inert Delayed Failure
Effect (IDFE), and has been seen in silicate glasses with depolymerized structures [21,24].
The SLS glass also exhibits IDFE behavior but to a much smaller degree than the binary
alkali silicate glasses. One explanation for IDFE is that the structure of silicate glasses
with relatively large fractions of non-bridging oxygens can reorganize or relax when
stressis applied, perhaps in amanner similar to that which produces low-temperature
internal friction peaks [49,50]. Given more time (slower vgp), the structure can reorganize
more before bonds fail and cracks are initiated, and thus failure occurs at a greater overall
strain, countering the effects of weaker network bonds in the more depolymerized glass
structures. The magnitude of the IDFE responseis not as great for the K-silicate glasses
asfor the Na-silicate glasses. Thereisasmall decreasein inert failure strength when the
K,O-content increases from 15 to 25 mole%. However, IDFE is significant for the
25K,0-75Si0; glass (Table 1.1) and so at a slower faceplate velocity (50 pm/s), this glass
has a greater failure stress than the 20K ,0-80SO, glass.

The magnitude of IDFE for the Na-silicate glasses increases with increasing soda
content [19], and this effect can possibly explain the counterintuitive compositional trend
in faillure stress shown in Figure 1.3. Figure 1.6 plotsthe inert failure stresses for the Na-
silicate glasses as a function of the failure strain rate. Because the IDFE for the Na,O-
rich glasses are greater, failure stresses for these glasses will decrease more at higher
values of strain rate (or faceplate velocity) than glasses with lower Na,O-contents and a
lower value of IDFE. If the extrapolation in Figure 1.6 is accurate, when the strain rate in
aTPB experiment exceeds ~10* s, the compositional dependence of the inert strength
reverses so that glasses with lower Na,O-contents are expected to have greater inert

strengths, consistent with the compositional dependence of the silicate network structure.
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An interesting concept, ‘instantaneous strength’ arises from this discussion. At
what speed can a strength measurement be considered instantaneous and correlated to the
ultimate strength or the theoretical strength of glass? In slow-crack growth studies, it has
been suggested [51] that the crack speed corresponding to K¢, ~0.1 m/sinitiates
‘gpontaneous’ crack growth. The theoretical maximum velocity of crack propagation is
set by the Rayleigh wave speed limit [52,53,54]. For fused silica, Vg = 3420 m/s[55]. A
crack propagating through a 100 um sample at Vg that fails at 10% strain corresponds to
astrain rate of ~10° s, and this Rayleigh limit isindicated in Figure 1.6 (a). However, if
instantaneous failure in atwo-point bend test is controlled by crack nucleation instead of
crack propagation, then the limit on strain rate may be related to the vibrational period of
the bonds that constitute the glass structure [56]. The vibrational frequency of aSi-Ois
~10" s, For aglassthat fails at an inert strain of 10%, a corresponding strain rate
limited by bond vibrations would be 10* s™. I the strain rate limit is fixed either by the
Rayleigh velocity or the bond vibrational frequencies, then one predicts that the
“instantaneous strength” of the Na-silicate glasses should decrease with increasing Na,O-
content (Figure 1.6 (b)), as expected from the decreasing connectivity of the silicate
network. For those glasses with no IDFE (viz., exhibit ‘normal’ inert fatigue behavior),
like the 10Na,0O-90SiO;, glassin Figure 1.6, the “instantaneous inert strength” will not
differ significantly from the strengths measured in the TPB experiments.

1.3.3. Modified TPB Failure Strain Equation. The nonlinear elastic behavior
of glass not only affects the strain-stress conversion but also generates a challenge to one
of the assumptionsin strain measurement by the two-point bend test. The origina
equation of TPB strain measurement (Equation (1)) is derived based on an assumption
that the neutral (zero-strain) axis remainsin the center of the fiber. Suhir [57] suggested
that the neutral axis might shift due to the nonlinear elastic behavior of glass. Muraoka
[58] expanded this analysis to include the effects of E, and predicted that the failure
strain from a TPB test, calculated using equation (1), should be modified as according to:

_. [ 1E, 1 E, [1E, l(E1>2 5 ©
o0 =\ T 8E, T T 32E, |2E, 4\E,) |
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Table 1.4 compares the failure strains calculated from Equations (1) and (9) for
silicaand E-glass, using reported values of Eyp, E; and E,. In genera, the Muraoka
equation predicts similar failure stains as those from equation (1), indicating that the non-
linear modulus has little effect on the measured failure strain. Thus, equation (1)
provides an adequate determination for failure strains, particularly for glasses for which
information about the nonlinear modulus is lacking.

1.4. SUMMARY

The two-point bend technique is an effective and efficient way to measure failure
strain of glassfibersin both inert and ambient conditions. With the knowledge of the
higher order terms of elastic modulus, failure stress can be calculated from the failure
strain data. The comparison with reported strength measurements is summarized as
follows:

Q) The use of TPB failure strain measurements to predict the strength of glass
has an advantage of experimental simplicity and minimizes the effects of extrinsic flaws
when compared to traditional three- or four-point bending or tensile strength
measurements. The test can be performed under a variety of conditions, including inert
(liquid nitrogen) and ambient, and at different strain rates (faceplate vel ocities).

2 Two-point bend failure strain data collected from glasses that exhibit
normal ‘inert fatigue’ behavior, like silica, low soda-silicates, E-glass and a nepheline
sodium aluminosilicate glass, yield values for failure strengths, based on reported values
for nonlinear modulus parameters, that are in good agreement with the strengths reported
from conventional tensile tests on the respective glasses.

(©)) The calculated inert strengths for binary sodium silicate glasses increase
with increasing Na,O-contents. Thisis counterintuitive because the addition of
modifying oxides is usually considered to weaken the glass structure. However, thereisa
dependence of failure strain on the strain rate, determined from the faceplate velocity.
Thisinert delayed failure effect (IDFE) may account for the compositional dependence of
the apparent failure strengths of these glasses. If the strain rates are extrapolated to limits
defined by the Rayleigh wave speed limit or the vibrational limits of individual bonds,

then the expected decrease in strength with increasing Na,O-content could be realized.
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Table1.1. TPB failure strain (&) and strain rate at failure (&) for glasses tested at
faceplate velocities of 50 and 4000 pm/s, in liquid nitrogen and in air (20°C, 50%

humidity).
Glass Composition & 4000 (%) €ra000 (S7) & 50 (%) £rs0 (ST
Silica(air) 79=+0.1 0.17+0.01 6.4+0.1 0.0014 + 0.0001
Silica(LN) 17.2+0.2 0.80+ 0.02 16.9+0.2 0.0099 + 0.0002
E-glass (air) 56=0.1 0.076 £ 0.007 4.4+0.3 0.0006 + 0.0001
E-glass (LN) 10.7+£0.2 0.27+0.03 105+0.2 0.0035 + 0.0004
SLS(air) 56+01 0.077+£0.006 4.3=+0.1 0.0006 + 0.0001
SLS(LN) 16.4+0.1 0.68 + 0.05 16.5+0.2 0.0083 + 0.0007
Nepheline (LN) 148+0.1[20] 053+0.05  14.8+0.1[20] 0.0069 + 0.0008
XNa,O-(100-x)SIO,
x =10 (LN) 16.0+0.1[21] 052+0.03  16.0+0.1[21] 0.007+ 0.001
x =15 (LN) 17.6+0.1[21] 081+0.03  17.9+0.1[21] 0.011+ 0.001
x =20 (LN) 19.2+0.1[21] 099+0.03  19.9+0.1[21] 0.012+0.001
x =25 (LN) 209+0.1[21] 108+009  22.0+0.1[21] 0.015+ 0.001
x =30 (LN) 225+01[21] 115+015  24.2+01[21] 0.018+ 0.002
x =35 (LN) 234+02[21] 1.37+023
yK,0-(100-y)SiO,
y =15 (LN) 18.0+0.1[24] 070+003  18.0+0.1[24] 0.0089 + 0.0004
y =20 (LN) 189+0.1[24] 0.83+0.04  189+0.1[24] 0.011+ 0.001
y=25(LN) 195+0.1[24] 089+0.12  20.1+0.1[24] 0.012+ 0.001
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Table 1.2. Nonlinear elastic moduli (Ep, E;) reported in the literature and calculated from
equation (5) (E,), failure stresses (o7) calculated from TPB failure strains using equations
(6) and (7), and measured failure strengths (ots ) reported in the literature, of available
glasses tested at 50 and 4000 um/s, in liquid nitrogen and in air (20°C, 50% humidity).

Glass Composition  E,(GPa)  E; (GPa) E (GPa) s 4000 (GPQ) 05 .50 (GPa) ot (GPa)

Silica (air) 72[32] 7724[32) 12498 7.0+01 55+01 5.1[53],4.8[42]
" a a ) 11.8[53],12.0[14],
Silica(LN) 72°[32]  7724%[32] 12498 12102 115+01 117 e
3.8[10], 3.0[11],
E-glass (air) 74 [25] -732[25] 7759 38+01 31+02 25[12],3.4[45],
4.3-5.1 [46]
E-glass (LN) 74°[25]  -732%[25] -7759 51+01 50+01 5.7[45]
SLS (air) 72[31] 121[31] 6210 40+01 31+01 32[14],34[13
SLS(LN) 722[31]  121%[3]] 6210 84+01 85+01 7.5[14],7.4[13]

Nepheline (LN) 74.1°[34] -09°[34]  -6765 7.3+01 7.3+01 85[14]

xNa,O-(100-x)SiO,

x =10 (LN) 65.3°[35] 97.2°[35]  -6317 7.4+01 7.4+0.1

x =15 (LN) 62.9%[35] 47.7%[35]  -4603 7.6+01 7.8=0.1 g:%b[[li?]' 4.6°[47),
x =20 (LN) 61.1°[35] 8.0°[35] 3396 7.9+01 82+01 23°[15],4.0°[47]
x =25 (LN) 59.87[35] -20.6°[35] -2539 82+0.1 89+01 27°[15]

x =30 (LN) 590.3°[35] -36.99[35] -2017 8.6+0.1 9.2+0.1 2.8°[15],3.7°[47]
x =35 (LN) 58.2°[35] -47.6°[35] -1701 8.7+0.1 2.9°[15], 3.7°[47]
yK,0-(100-y)SiO,

y =15 (LN) 52.6°[35] 22.8°[35] -3504 64+01 64+01 3.6°[47]

y =20 (LN) 49.0°[35] -6.4°[35] 2679 6.1+01 61+01 3.4°[47]
y=25(LN) 46.4°[35] -8.3°[35] 2358 6.0+0.1 62+01 2.7°[47]

a. Nonlinear elastic moduli were measured at room temperature but used to calculate inert
OF.

b. Reported values of strength are from Na-silicate glasses with dlightly different
compositions from those tested here.
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Table 1.3. Calculated (equation (5) and reported fourth-order nonlinear elastic modulus
(E2), and corresponding cal culated failure stress (o) from TPB failure strains measured at
afaceplate velocity of 4000 mm/sfor silicaand E-glassin liquid nitrogen and in air.

Glass E, from Eq. (5) E, from literature

- & 4000 (%) Eo(GPa) E;(GPa)
Composition Ex(GPa) o (GPa) E,(GPa) ot (GPa)
Silica (air) 79+0.1 72[32] 772.4[32] -12498 7.0+0.1 -11084°%[32] 7.2+0.1
Silica(LN) 17.2+03 72°[32] 7724°%[32] -12498 121+02 -11084°%[32] 14.4+0.3
Silica (air) 79+0.1 72.4[27] 906 [27] -15429  7.3+0.1
Slica(LN)  17.2+03 724°[27] 906°[27] -15429 12.8+0.2
Silica(air) 79+0.1 72[32] 1074[29] -17383 7.6+0.1
Slica(LN) 17.2+03 72°[32] 1074°[29] -17383 13.6+0.2
E-glass(air) 5.6+0.1 74[25] -73.2[25] -7759 3.8+0.1 -11054[25] 3.7+0.1
E-glass(LN) 10.7+0.2 74°[25] -73.2°[25] -7759 51+0.1 -11054°[25] 52+0.1

a. Nonlinear elastic moduli were measured at room temperature but used to calculate inert

Of.
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Table 1.4. Failure strains (¢r) measured at 4000 pum/s, in liquid nitrogen and in air (20°C,
50% humidity) calculated using equations (1) and (9).

Glass Composition

&, eq. (1) (%0)

& (M), Eq. 9) (%0)

E-glass (air)
E-glass (LN)
Silica(air)
Silica (LN)

56+0.1
10.7+0.2
79+0.1
17.2+0.3

5.7
10.8
7.3
16.1
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Figure 1.1. Schematic diagram of the TPB test.
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ABSTRACT

The two-point bend (TPB) technique was used to measure the failure strains of
XNa,O-(100-x)B,03 glass fibers in inert conditions (under liquid nitrogen). In such
experiments, the effects of extrinsic flaws and environmental fatigue are minimized so
that intrinsic failure characteristics might be determined and related to glass composition
and structure. Theinert failure strain for pure B,Os3 glass is 36+5%; to our knowledge
thisisthe largest inert failure strain ever reported for an oxide glassin a TPB experiment.
Failure strains decrease systematically as Na,O contents of glassesincreases. The
addition of NaO increases the dimensionality and connectivity of the borate glass
structure and hence increases its resistance to deformation before failure. Similar
correlations between inert failure strain and network connectivity have been reported for
silicate and aluminosilicate glasses.
2.1. INTRODUCTION

The experimental or practical strengths of glass are typically lower than the
theoretical values, sometimes by several orders of magnitude, due to the existence of
surface flaws [1] and to environmental fatigue [2,3,4]. Efforts have been made to
determine intrinsic strength of glass by preparing and testing pristine glass samplesin

inert conditions, e.g. in high vacuum [5] or in liquid nitrogen [6]. It has been suggested



54

that these strengths are intrinsic, either because the glass has no ‘flaws’, or that the ‘flaws’
that limit strength areintrinsic to the structure of the glass[7]. Theinert intrinsic strength
can then be related to the atomic level structure and properties of the bonds that constitute
the glass network, much like what has been done to explain the effects of glass
composition on elastic modulus [8].

A number of studies have been performed to evaluate the inert strength of silica
and silicate glasses [9,10,11], but few studies have been made on other oxide glass-
formers. Itisinteresting to study the strength of borate glass since B,O3; meltsform a
glass as readily as do silicamelts. The B-O single bond energy in vitreous B,O3 (498
kJmol) is comparable to that of Si-O in vitreous silica (444 kJ/mol) [12]. However, the
structures of B,O3 and SIO, glasses are very different. Silica glass consists of corner-
joined tetrahedra that form a three-dimension network, whereas in B,Os glass the
fundamental structural unit isthe BOj3 triangle, and three of these triangles can form flat,
relatively rigid boroxol rings[13]. Although there is some debate about what fraction of
boron triangles and boroxol rings are found in B,O3 glass [14], the role that these boroxol
rings play in determining glass propertiesis significant. Some mechanical properties for
B,0; glasses have been reported, e.g., Vickers hardness [15] (H ~ 1.7 GPa) and elastic
constants [16,17,18,19] (Young’s modulus, E ~ 17 GPa). These values are substantially
lower than the corresponding values for fused silica[20,21] (H~ 7 GPaand E ~ 70 GPa)
and this suggests a much lower intrinsic strength for glassy B,O5 than that found for
fused silica. On the other hand, the value of fracture toughness, K¢, of B,Os glasses [22],
is almost twice that of silica[23] (1.44 vs. 0.8 MPam®?). From Irwin’s equation [24],
therefore, one would predict that from the same “critical flaw’ size (c¢*), B.O3 could be

twice as strong as silica, assuming that K¢ is a constant with respect to stress and strain:

KIC

O'f = — (1)

In view of the high value of fracture toughness, it is interesting to compare these
two glasses on the basis of the ‘brittleness parameter’ (B) suggested by Marshall and
Lawn [25]:
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B :H/KIC (2)

Marshall and Lawn considered hardness (H) to be a measure of the resistance to
deformation, and fracture toughness to be a measure of the resistance to cracking. Using
the values for hardness and fracture toughness reported above, the B-value for silica glass
is~9 mm ™2 and for B,Os glassis ~1.2 nm 2. Therelative differencein brittleness (~8x)
islarger than the difference in elastic modulus (~4x). This suggests that the reason for
the unexpectedly high value of fracture toughness found for B,Oz may be the existence of
some ‘inelasticity’. Stevels and co-workers [26,27] studied the flow behavior of B,Os
and sodium borate glasses near their glass transition temperature. B,O3 exhibited
Newtonian flow, while the addition of sodium produced non-Newtonian behavior in
simple shear. Hirao, et a. [28] determined the ratio of inelastic to elastic deformation in
an experiment in which mode | stress was applied at room temperature. A maximum
inelastic flow of ~10% was observed in glasses with 20 and 30 mole % sodium oxide, but
lower amounts of inelastic flow were observed in glasses with 10 or 15 mole % sodium
oxide. In addition it was found that the flow was independent of time and was thus
plastic rather than viscoelastic. This suggests that plastic deformation is more
pronounced in sodium borate glasses with higher soda content, and B,O3 glass may or
may not exhibit plastic flow under stress.

Few measurements have been made of the mechanical strength of borate glass
mainly because of its sensitivity to water. One group [12,29] studied the strength of
fibers which were drawn in adry atmosphere or in vacuum and tested (in tension) at
room temperature in the same environment. Strengths of 0.8 to 1.2 GPafor B,O; glass
were reported. Another group[15,30] drew fibers under ambient conditions and tested
them under liquid nitrogen in three point bending. Strengths of 1.2, 2.7 and 3.0 GPawere
obtained for pure B,Os3, 15Nax0-85B,03 and 33Na,O-67B,03 (in mole %) respectively.
From equation (1), acritical flaw size on the order of 1 nm is obtained, assuming the flaw
isan eliptical thorough crack in an infinite plate. A calculation of this sort for silica
resultsin acritical flaw sized about 1 nm. Thelarge flaw size for B,O3; seems
unreasonable, and perhaps implies that the (brittle) fracture mechanics equation is not

applicable.
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Theincrease in ‘inert strength’, from 1.2 to 3.0 GPa noted above for the addition
of 33 mole% Na,O to B,Os3 is consistent with reports of increasing el astic modulus for
borate glasses with increasing modifier contents [18]. These trends reflect the well-
known ‘borate anomaly’ for which the addition of modifying oxides strengthen the glass
network by converting B-triangles into B-tetrahedra. The B-tetrahedra are linked at all
four cornersto other B-polyhedra, and so the network connectivity increases with
increasing modifying oxide concentrations, at least up to about 30 mole% [18].

In thiswork we describe our inert failure strain measurements on pristine sodium
borate glass fibers, with compositions of XNaO-(100-x)B,03, 0<x<35.

2.2. EXPERIMENTAL PROCEDURE

Glasses with molar compositions of xXNa,O-(100-x)B,03, x=0, 5, 13, 20, 27 and 35
were prepared from mixtures of reagent grade sodium carbonate (NaCO3) and boric acid
(H3BO3) powders. All glasses were melted in platinum cruciblesin air at 1000°C for 6
hours, except for B,O3 glass, which was prepared several different times from melts held
at 1000°C for up to 30 hours. Weight |oss measurements were taken after 1hour of
melting and were found to be less than 0.05% per hour, thus the ‘as batched’
compositions are used in discussion. Fibers with diametersin the range of ~100 to 300
um were drawn by hand and tested within 30 seconds of their creation to minimize the
effects of aging.

Another independent set of B,Os glass were prepared and the inert failure strains
were measured by Kurkjian in 1995 and never published. Reagent grade boric acid
powder was melted in a Pt crucible in an electric furnace at temperatures between 1000°
and 1300°C. Meltswere normally dried by bubbling with dry nitrogen, although no
effect of water content was observed in the failure characteristics. Fibers of ~100 to 200
mm diameter were drawn from the melt by hand and then tested immediately by TPB at a
faceplate velocity of 1000 um/s. It was found that if the measurements were made within
~30 seconds, areproducible value for the failure strain was obtained. After longer times,
hydrates formed on the glass surface and degradation of the failure strain values was
observed.

Failure strains of the B,O3 and Na-borate glass fibers were measured using the

two-point bending (TPB) technique[31]. InaTPB test, apristine section of glass fiber,
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diameter d, is bent into a U-shape between two parallel face plates, one of which travels
towards the second at a constant facepl ate velocity (vip), compressing the ‘U’ until failure.
The gap distance at failure (D) is recorded, and the failure strain (&) is then calcul ated
from [32]:

1198 xd
T (D-d) (3)

The diameters of the broken ends of each fiber tested were measured using a micrometer
with aprecision of 1 um and these values were used to calculate &. Inert conditions are
created by testing fibersimmersed in liquid nitrogen. At the low temperature (77K,
boiling point of liquid nitrogen at atmospheric pressure), the kinetics of fatigue reactions
are arrested [7].

The TPB test in this study does not provide a measuring mode of constant stress
rate or strain rate, but instead uses a mode of constant faceplate velocity (vip). This
means that the applied strain rate increases with increasing strain (decreasing D, from
equation (3)). With the diameter of the fiber known, the strain rate at failure (¢;) can be
calculated from:

&2 XV

& = ﬁ (4)

Faceplate velocities ranging from 50 to 4000 mm/sec were used in these
experiments and are reported for each dataset. The failure strain rate for each fiber was
calculated and an average with one standard deviation is reported for each set of data.
23.RESULTS

The Weibull distributions [33,34] of theinert failure strains for B,O3 glass fibers
prepared under various conditions are shown in Figure 2.1. Theinert failure strains
measured at vi,=4000 nm/s decrease with increasing melting time, from 6 to 30 hours.
An attempt to reproduce the 6h data results in asmaller failure strain. The inert failure

strains measured at vi,=50 pm/s are smaller than those measured at v;,=4000 pm/s. The
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‘Kurkjian 1995’ data has the widest inert failure strain distribution, ranging from 12% to
55%. Over al, there isasignificant uncertainty associated with these measurements.

Figure 2.2 shows that the reproducibility of inert failure strains for 5SNa,O-95B,05
glass (30+1% and 25+3%) is not as good as the reproducibility for 20Na0-80B,03 glass
(both 18+1%). Dueto the fact that the failure strains for borate glass (especially for B,Os
rich glasses) are difficult to reproduce in air, to minimize the variability that affects the
failure strains, fibers collected and tested under similar conditions were evaluated.
Failure strains for all other glass fibers were collected from glass melted at 1000°C for 6
hours.

In room temperature air of ~40% humidity, a B,Os3 glass fiber looks perfectly
clear by eye when it isdrawn. After 5 minutesin air, the fibers are less transparent.
After 10 minutes, awhite coating isvisible. After 20 minutes, the entire fiber is covered
by the white coating and attempts to load this fiber in the two-point bender will fail,
indicating that itsfailure stain islessthan 1%. A surface XRD study showed that the
white substance on the surface of the B,Os glass fibersis crystalline boric acid (Figure
2.3). Thisobservation is consistent with the reported hydrated species of vitreous B,O3
glass[35].

Weibull distributions of the inert failure strains for xNa,O-(100-x)B,Os fibers
drawn by hand from the respective melts and tested at v, = of 4000 pm/s are shown in
Figure 2.4. Much tighter failure strain distributions were obtained for the Na-containing
glasses than for the B,Os glass. The failure strain distributions shift to lower values with
increasing Na,O content.

Figure 2.5 compares the inert failure strains of Na-borate glass fibers drawn from
melts by hand and drawn using the rotating cage method [36]. The compositional
dependences of failure strains are similar, although the latter failure strains are somewhat

lower than the former.
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2.4. DISCUSSION

2.4.1. Compositional Dependence. It can be seen in Figure 2.5 that the inert
failure strains for the sodium borate glasses decrease with increasing Na,O content.

B,Os glass, in the short range order, has layered structure with strong chemical bonds (B-
O) forming BOj3 triangles and B3Og boroxol rings in the planes and weak van der Waals
bonds between the planes [18,30]. Na&O, when added into the B,O3 glass structure, can
charge balance with boron with BOs units being converted into BO4units. So the
addition of soda replaces some van der Waals bonds with B-O covaent bonds and turns
the two dimensional (2D) structure into a 3D structure [15,30]. The decreasein inert
failure strain with increasing soda should be related to the structure change.

To analyze the structural dependence of inert failure strains, it isimportant to look
at some other mechanical properties that relate to the glass composition and structure.
For sodium borate glasses, elastic properties, i.e., Young’s modulus and bulk modulus
increase with increasing Na;O content [18,19]. A greater proportion of covalent bonds
associated with higher amounts of Na,O causes an increase in rigidity, or resistance to
deformation [18]. Figure 2.6 showsthat Young’s modulus [19] increases systematically
with increasing soda content, while inert failure strains decrease with increasing soda.
Also shown in Figure 2.6 are the compositional dependence of Y oung’s modulus and
inert failure strains for sodium silicate glasses[9]. Different from the borate glasses, the
addition of NaxO weakens the structure of silicate glasses by replacing bridging oxygen
with non-bridging oxygens, thus decreases the Y oung’s modulus.

It isinteresting that the failure strains and Y oung’s moduli show opposite
compositional dependence, for both sodium silicate glasses and sodium borate glasses.
The correlations between failure strains and Y oung’s moduli for sodium borate, sodium
silicate [9] and sodium aluminosilicate glasses [9] are shown in Figure 2.7. It can be seen
that for all three series of glasses, failure strains decrease with Y oung’s moduli.

Y oung’s modulus represents a material’s resistance to elastic strain. A similar
property is hardness, which measures a material’s resistance to plastic deformation. For
sodium borate glasses, hardness increases with increasing soda content ([15, 37], shown
in Figure 2.8 (a)). A similar compositional trend in hardness was a so observed in soda-

lime borate glasses [38]. In the latter study, a model was proposed to predict the hardness
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based on the numbers of ‘constraints’ for different types of bonds in the glass structure.
The change in hardness was attributed to the number of constraints. The addition of soda
in borate glasses increases the number of ‘constrains’ and thus increases hardness. But
even if astructure has fewer constraints, that does not mean that failureisless easy in this
structure.

A mechanical property that is related to the crack behavior is fracture toughness
(Kic). Infracture mechanics, fracture toughnessis a property which describes the ability
of amaterial containing a crack to resist fracture. The failure of a pristine fiber in inert
conditionsis acrack initiation controlled process. Theinert intrinsic failure proceeds in
the following steps, inspired by the idea of the indentation process described by Lawn
and Marshall [25]: 1. The material deforms under stress; in this stage, the size of flaw
nuclel does not change. 2. The materia continues to deform; maybe some permanent
deformation takes place, and the size of flaw nuclel increasesto asize that islarge
enough to be called acrack. 3. The crack growsto acritical size and failure occurs.

The mechanical response is on the verge of transforming from hardness-controlled to
toughness-controlled, thus the idea of brittleness[25]. The brittleness parameter reflects
the crack-initiation ability. The more brittle the material is, the easier acrack can initiate
under stress. The brittleness for sodium borate glasses can be achieved by dividing
hardness data [ 15] with fracture toughness [22] using equation (2). Figure 2.8 (b) shows
that with increasing NaxO, the brittleness increased systematically, whereas the failure
strains decreased systematically. Apparently the transformation of structure not only
increases the resistance to deformation but a so increases the brittleness, and hence
decreases failure strain.

2.4.2. Elastic Defor mation or Plastic Defor mation. Hirao et a. [28] showed
that sodium borate glasses exhibit inelastic deformation during a crack growth study with
loading-unloading cycles. Larger inelastic dissipation energy was observed for
XNa,O-(100-x)B,03, X=10, 15, 25 and 30 glasses than soda-lime silicate glasses. They
suggested that the fracture of borate glass is accompanied by plastic deformation. Since
plastic deformation is observed in crack growth studies, it is possible that it also existsin
the TPB inert failure strain studies. In TPB studies, it has been reported that for some

glasses, inert failure strains increase with decreasing faceplate vel ocity, and this effect
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has been referred to as the ‘Inert Delayed Failure Effect’ (IDFE) [10]. One explanation
for IDFE is that the depolymerized structure of these glasses reorganize or relax under the
applied stress [11], perhaps in processes similar to those that account for low-temperature
interna friction [39,40]. Such internal inelasticity does not assure macroscopic plastic
deformation like what is observed in indentation study, but it is also associated with time
dependent energy dissipated relaxation [41]. Glassesthat exhibit IDFE include
25Na,O-mAl,03(75-m)SIO,, m<25 mol% [9], yNaO-(100-y)SiO,, y>15 mol% [10],
ZK,0-(100-2) SIO, z>25 mol% and soda-lime silicate glasses [36]. At lower faceplate
velocities (or strain rates), the structure is given more time to reorganize and relax.
However, for sodium borate glasses, theinert failure strains (listed in Table 2.1) are
greater at ahigher strain rate, except for SNa,0-95B,03 glass. The ‘IDFE’ for
5Na0-95B,03 glass might not be real considering the difficulty to reproduce the failure
strain for B,Os-rich glasses. Thelack of IDFE indicates that the low temperature
inelastic flow mechanism does not exist in the TPB failure of borate glasses at 77K, and
the plastic deformation observed at room temperature is a different mechanism.

It may be remembered that the Vickers hardness of silica and soda-lime-silica
glasses increase by afactor of three as the temperature is decreased from room
temperature to 77K [20]. So the mechanism which allows room temperature plastic flow
of soda-lime silicate glassis ‘frozen out’ at such alow temperature. However, the IDFE
of soda-lime silicate shows that the interna friction can exist at 77K. For sodium borate
silicate glasses, the room temperature plastic flow is due to the shear of boroxol
hexagonal planesin borate structure of the exchange of the coordination number of boron
atoms[28]. If thismechanismis ‘frozen out’ at low temperature, it does not contribute
to the strain in our TPB test.

Another possibility isthat for some other reason, borate glasses tend to fail readily
at lower strain rate. This phenomena of increasing inert strength with increasing strain
rate/stress rate was referred to as ‘inert fatigue” because it is similar to the environmental
fatigue but in inert conditions[7]. ‘Inert fatigue’ behavior has been reported before for
silica[6,7,42] and E-glass[11,36]. Matthewson et a. [42] did not differentiate inert
fatigue and environmental fatigue and considered both processes as caused by stress-
induced reactions leading to weaker bonds at longer times. Kurkjian, et a. [7], explained



62

the effect as a consequence of the normal probability of failure due to thermal
fluctuations of bond strengths under high stress, with longer times (slower vi,) alowing
weaker bonds to ruptureto initiate failure. Proctor et al. [6], however, attributed thisto
the finite activity of water in liquid nitrogen leading to normal environmental fatigue
behavior. The higher sensitivity of borate glass to water might increase the effect of
inert fatigue and overwhelm the IDFE. The mechanisms for IDFE and inert fatigue are
not quite understood yet, and more research must be done.
2.5. SUMMARY

In summary, sodium borate glasses were prepared in the laboratory and inert
failure strains were measured using the two-point bend techniquein liquid nitrogen. A
very large inert failure strain with alarge variance was observed for B,O3 glass. The
inert intrinsic failure strains decrease as NaxO is added into the system. The addition of
NaO increases the dimensionality and connectivity of the structure. From reported
Y oung’s modulus and hardness studies, the addition of soda increase the resistance to
both elastic and plastic deformation of the glass. With increasing soda content, the
decreasing failure strains correl ate with increasing resistance to deformation and
decreasing crack initiation ability, as was reported in literature the increasing brittleness.
Theinert failure strains for sodium borate glasses increase with increasing strain rate.
Thelack of IDFE might suggest that the reported plastic flow of sodium borate glassin
room temperature might not exist in low temperature (77K), or the effect of plastic flow
is overwhelmed by other effects accounting for inert fatigue.
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Table2.1. Inert failure strain (&5) and failure strain rate (¢;) for sodium borate glass,

measured at afaceplate velocity of 4000 and 50 umy/s.

xNapO-(100-X)B,0s &t 4000 (%) Era00 (SY) &t 50 (%) ér50 (Y

x=0 3577+ 455 1.95+057

x=0 (melted for 9h) 28.06+500 1.48+053 23.90+396  0.013+0.003
x=5 2986+ 1.09 1.68+029 31.69+057  0.023+ 0.002
x=13 2426+170 145+024 2044+197  0.013+0.002
x=20 1823+0.68 0.78+0.11 16.87+0.69  0.010+ 0.001
x=27 11.69+059 0.40+0.08 10.21+0.92  0.0036+ 0.0011
x=35 8.18+052  0.19+0.03
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Figure 2.2. Weibull distributions of inert failure strains for xNaO-(100-x)B,03 glass
fibers, tested at v, = 4000 um/s. Open symbols represent attempts to reproduce original

data (solid symbols) in identical testing conditions.
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Figure 2.4. Weibull distributions of inert failure strains for xNa,O-(100-x)B,O3 glass

fibers, tested at v, = 4000 um/s.
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Figure 2.5. Inert failure strains for sodium borate glasses (vi=4000 pmy/s), from present

work and from Lower [36], decrease systematically with Na,O content.
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ABSTRACT

The Two-Point Bend (TPB) method was used to measure fatigue effects on
freshly-drawn silicate glass fibers, including several different commercial compositions
and a series of 25Na,O-xAl,03:(75-X)SIO, glasses (0<x<25). Fibersweretestedin
distilled water at different temperatures ranging from 3 to 93°C and failure strain was
found to decrease with increasing temperature. The dynamic fatigue effect was
characterized from TPB experiments in water at different faceplate velocities, ranging
from 50 to 10,000 um/s. The dynamic fatigue parameter (n) was found to be in good
agreement with reported values measured using different methods for similar glasses.
For the series of sodium aluminosilicate glasses, the susceptibility to fatigue decreases
with increasing alumina content. A mechanism based on the exchange of sodium ionsin
the glass and protons or hydronium ions (HsO") in solution is proposed to explain the
effects of glass composition on fatigue behavior.
3.1. INTRODUCTION

3.1.1. Fatigue of Glass. The strength of glass measured in air is much lower than
that measured in vacuum, liquid nitrogen or liquid helium [1]. It was found 100 years
ago that in aqueous or humid environments, the strength of glassis dependent on the
loading time and/or loading rate [2]. This phenomenon was probably first described as
“fatigue” in 1946 [3]. Fatigue isimportant considering that many applications of glass

involve some kind of applied force in the presence of ambient water.
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It iswidely accepted that failure of inorganic glassesin wet environmentsis
controlled by stress corrosion due to the chemical reaction between water and strained
bonds[4,5]. The glass-water reactions have been discussed by Bunker [6]. Generdly,
there are two categories of reactions between glass and water: (1) Hydrolysis, in which
water reacts with metal-oxygen bonds and form hydroxyl groups; (2) Leaching, in which
cationsin glass (usually akali modifiers) ion-exchange with protons or other cationsin

water. For silicaglass, the hydrolysis processis described as:

I I I
— Si— 0— Si— +H,0 — 2 [— Si— OH (1)

Silicais often considered relatively inert to water at zero strain, but when the Si-
O-Si bond is strained, it can react with water much faster than in dry conditions [7,8].
Silicais more susceptible to fatigue in the presence of basic solutions because hydroxyl

ions further attack the glass network [6,9]:

| I I I
—Si—0—Si—+0H~ ——Si— 0™+ —Si—OH (2)

For akali silicate glasses, the initial attack by water progresses by an ion-

exchange process that selectively leaches the akali ions from the glass [6]:

| |
—Si—O0"Nat+H* —-—Si—OH + Na* (3)

Doremus [10] suggested the possibility that hydronium ions (Hz0") are involved
in thision-exchange process. Depth profile studies of hydrated soda-lime silicate glass
have shown that three H-atoms replace each Na atom leached from a hydrated glass

surface, consistent with aNa'-HzO" exchange mechanism [11, 12]:
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| |
—Si— 0~ Na* + H;0* —-—Si—OH + H,0 + Na* (4)

Charles[13,14,15] attributed the fatigue of sodium silicate glass to the extension
of surface flaws by the leaching of Na" ions from the glass in the vicinity of the flaw tip.
Duncan and France et a [16] studied the fatigue of silica and sodium borosilicate glassin
air and discovered that the sodium borosilicate glass is more susceptible to fatigue than
silica. They also studied the fatigue of sodium borosilicate glasses with different soda
contents and recognized that reducing soda increased resistance of the glass to fatigue
[17]. Wiederhorn and Bolz [18] studied stress corrosion behavior (another form of
fatigue) for several different silicate glasses. Among those compositions, silica glass had
the greatest stress corrosion resistance, followed by low-alkali aluminosilicate and
borosilicate glass. Soda-lime silicate glass however, was sensitive to stress corrosion,
indicating that the alkali component is playing a detrimental rolein fatigue. Fatigue
studies have also been performed on soda-lime silicate (SLS) glasses[12,19,20], but no
compositional dependence was reported. Lessis known about fatigue effects for sodium
aluminosilicate glasses. These glasses are finding increasing applications, particularly in
flat panel displays and touch-screen applications [21].

3.1.2. Fatigue of Glassin Fracture Mechanics. Fatigue processesin glass have
been studied using severa different methods[22]. The most conventiona way isthe
measurement of slow crack growth velocities (a.k.a. subcritical crack growth) using
fracture mechanics analyses [18,23]. The theory behind thisis that a defect (assuming an
elliptical thorough crack in an infinite plate) can serve as a stress concentrator [24]:

K, = o/nc (5)

where K| is stress intensity factor (MPam®?), o is the remotely applied stress (MPa) and ¢
isthe crack length (m). When K reachesits critical value, K¢, the crack will propagate
at its ‘spontaneous’ crack growth speed >0.1 m/s[25]. At this stage, the failure occurs
essentialy instantaneously. Before this stage, when K, < K¢, the crack grows at a much
slower velocity, called subcritical crack growth velocity. The slow crack velocity datais
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usually shown in a ‘K-V’ curve, where crack velocity (V or ¢) isrecorded as a function of
Ki. The most widely used model is based on an empirical power law: [26,27]

¢ = A(K; /Kie)" (6)

Here, ¢ isthe crack growth velocity, n istermed the fatigue parameter or the stress
corrosion susceptibility parameter, and A is the environmental parameter which has an
Arrhenius temperature dependence. In addition to this model, an activation volume

model [18] based on exponential law has been proposed:
¢ = A'exp(n' K;/Kic) (7)

Other models based on exponential laws have aso been used [28,29,30], but their
formulations are similar to equation (7). Shiue and Matthewson [31] compared several
different models for fatigue and suggested that the power law fits the fatigue data the best,
while the exponentia law has a better physical meaning.

The effects of fatigue on the failure strength (o) of glass has been analyticaly
derived [32]:

o; = Dg@/n+D) ®)

where D isaconstant, and ¢ is the applied stressrate. This equation allows direct
comparison between slow-crack growth results and those obtained in dynamic fatigue
studies. Most researchers prefer the power law model.

Fatigue can a so be examined from strength measurements, including tensile test
[33,34], three-point bending [35], and four-point bending [36,37], etc. These studies are
usually categorized in two forms: static fatigue and dynamic fatigue. Static fatigueis
usually measured by determining the time-to-failure under a constant applied stress or at
aconstant strain. Dynamic fatigue is usually measured by determining the failure stress

or faillure strain under different loading rates. According to the type of strength
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measurement, loading modes include constant stress rate, constant strain rate, and
constant faceplate velocity (in two-point bending tests).

3.1.3. Two-Point Bending (TPB) Dynamic Fatigue. The two-point bending
(TPB) technique was first described in detail in 1980 [38]. InaTPB test, apristine
section of glass fiber, diameter d, is bent into a U-shape between two parallel face plates,
one of which travels towards the second, compressing the ‘U’ until failure. The gap
distance at failure (D) is recorded, and the failure strain (g;) is then calculated from: [39]

1.198 x d
& = W 9)

TPB does not require the special grips needed for conventional tensile tests, and
therelatively small gauge length of 0.3-0.9 mm in the region of highest stress minimizes
the probability of large extrinsic flaws lowering failure strains [38]. More detail s about
the TPB technique can be found in our previous publications [40,41]. Lower et a. used
TPB to determine the inert failure strains for sodium silicate glass fibers [42], sodium
aluminosilicate glass fibers [43] and E-glass fibers [44].

In TPB studies, the environmental fatigue effect has been characterized in
different ways. Failure strains decrease systematically with increasing relative humidity
[40], with increasing temperature [37], or with decreasing strain rate/stress rate [45]. In
this research, the TPB test uses a measuring mode of constant faceplate velocity (Vip).
Rondinellaand Matthewson [45] compared three different loading modes: constant strain
rate, constant stress rate and constant faceplate velocity (vr,), and calculated the dynamic
fatigue parameter, n, for each mode. For the constant faceplate velocity, n can be
calculated by:

dlog (¢f)

n=1+1/
dlog (vgp)

(10)

Thisnisequivalent to the nin equations (6) and (8). However, the value of n for

the same glass can vary considerably when testing samples with different dimensions and
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surface conditions. Thiswill be discussed later. There have been reports on the use of
TPB to measure the fatigue for silica glass fibers [45,46,47,48,49] and sodium
borosilicate glass fibers [38] .

In the present study, the temperature dependence of failure strain and the dynamic
fatigue characteristics will be determined for several different silicate glasses. The
fatigue behaviors will be related to the composition and structure. The fatigue
mechanism will be discussed, especially for a series of sodium aluminosilicate glasses.
3.2. EXPERIMENTAL PRECEDURE

3.2.1. Sample Preparation. Silicaglass fibers (Amersil TO8 fused natural quartz,
125 um in diameter) were provided by AT&T. The protective polymer coatings on the
fibers were removed by immersing the fiber in acetone immediately before testing.

Fibers of other glass compositions were drawn from melts. A commercially
available soda-lime silicate flint container glass, a calcium aluminoborosilicate fiber glass
(nominal composition in the ranges [20-25]Ca0O, [10-15]Al»03, [5-10]B203, and [50-
55]SiO,, wt%), a sodium borosilicate glass similar to Pyrex, and a commercia sodium
aluminosilicate display glass were each remelted in a platinum cruciblein air, for the
times and temperatures indicated in Table 3.1, to produce bubble-free, homogeneous
melts. Laboratory melts of glasses from the series of 25Nay,O-xAl,03:(75-X)SiO,, where
x=0,5,9, 125, 18.75, and 25 in mole %, termed the NaAIlSi series, were prepared from
batches of reagent grade Na,CO3, Al,O3 and SIO,. The batches, sufficient to produce 25
grams of glass, were thoroughly mixed with a mortar and a pestle and melted in platinum
cruciblesin air for the times and temperatures shown in Table 3.1 to produce bubble-free,
homogeneous melts. The weight of glass melts were measured after one hour of melting
and before fibers were pulled. The weight losses were found to be less than 0.1%, thus
the ‘as batched” compositions are used in discussion.

3.2.2. Fiber Pulling. Glassfibers are produced using a method described in [40].
When the glass melt reaches a bubble-free and homogeneous state, the crucibleis
transferred into a box furnace located below a custom built fiber drawing system. The
box furnace is set at a pulling temperature (Table 3.1) at which the viscosity of the glass
is appropriate for fiber drawing, that is, above the liquidus temperature and up to the 100

Pa-s isokom temperature of the melt. A water cooled copper coil is carefully positioned
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above the melt surface through a hole in the furnace lid. The fiber drawing isinitiated by
dipping asilicarod through the cooling coil into the center of the melt surface, drawing a
fiber up and attaching it to an arm of rotating cage (diameter ~45 cm), with 12 arms
separated by adistance of 12 cm. Onceit is attached, the fiber is drawn continuously as
the rotating cage spins. The cage spins and tranglates along the rotation axis, preventing
the fiber from overlapping itself asit is collected. The fiber diameter is controlled by
adjusting the rotation speed of the cage, furnace temperature and the height of the cooling
coil. The preferred diameter of fibersfor the TPB test is 125+20 microns.

3.2.3. TPB Test. Failure strains of freshly drawn fibers were measured using a
homebuilt two-point bending system [40]. Inert failure strains were measured by testing
inliquid nitrogen at a faceplate velocity (vip) of 4000 um/s. At thislow temperature (77
K), the kinetics of the fatigue reactions are considered arrested [50], thus environmental
fatigueisminimized. Temperature-dependent fatigue experiments were carried out by
testing fibersimmersed in distilled water at four different temperatures, using TPB at a
constant faceplate velocity (vqp, = 4000 pm/s). Each fiber was tested immediately after
immersion in water (within 5 seconds) to avoid aging effects. Five measurements were
made at each temperature and then repeated until atotal of 20 measurements were made
at each temperature. The water temperature was controlled by a hot plate and monitored
by thermometers with 1°C precision. Dynamic fatigue was determined by measuring the
failure strains of fibersimmersed in room temperature (21 + 2°C) distilled water using
faceplate velocities (vip) of 50, 500, 4000 and 10000 pm/s. Again, each fiber was tested
immediately after immersion in water (within 5 seconds) to avoid aging effects; five
measurements were made at each vy, and then repeated until atotal of 20 measurements
were made under each condition. The fibers drawn from melts were tested immediately
after they werefirst formed. The failure strains for each testing condition are
independent of testing sequence, so there was no aging effect. The commercia silica

glass fibers were tested immediately after removal of their polymer coatings.
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33.RESULTS

3.3.1. Failure Strains. Figure 3.1 shows the Weibull distributions [51,52] of
failure strain for commercia glasses measured in liquid nitrogen and in distilled water at
room temperature, each at afaceplate velocity of 4000 um/s. Theinert (liquid nitrogen)
failure strains are greater than the failure strains measured in water for all glasses. Broad
failure strain distributions for the commercial Na-borosilicate and Na-aluminosilicate
glasses were obtained for fibers drawn from several different melts. The high viscosities
of these two glasses made it difficult to produce fibers with tighter distributions noted in
Figure 3.1 for the commercia soda-lime and Ca-aluminoborosilicate glasses.

3.3.2. Temperature Dependence. Figure 3.2 shows the Weibull distribution of
failure strains for the NaAlSi (x=5) glass fibers measured in distilled water at different
temperatures. The failure strains shift to lower values with increasing temperature.
Similar results were obtained for the commercia glasses and the other NaAlSi glasses,
and they are summarized in Table 3.2 and illustrated in Figure 3.3 and Figure 3.4. The
average failure strains for each glass at the different temperatures are reported with one
standard deviation. The relatively large standard deviation for the commercial Na-
borosilicate and Na-aluminosilicate glasses reflect the broad distributions noted in Figure
3.1 for these compositions.

The temperature dependence of failure strain from a TPB test has been described
using an Arrhenius equation [16]:

E
£ = £eXp o (11)

where E; is the apparent activation energy, Risthe gas constant and T is the temperature.
Thus E; can be obtained by plotting the log of failure strain vs /T. The Arrhenius plots
of failure strains for silicafrom this study and two studies reported in the literature are
shown in Figure 3.2. The apparent activation energy for failure strains for silicain water
is1.7+0.1 kJ/mol, compared to the value of 1.3 kJ/mol, derived from failure strain
measured in various water saturated conditions (for example water bath at room
temperature and subliming CO; in acetone at 195K) by Matthewson et a [53]. Duncan et
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al. [16], also measured failure strain for silica glassin 100% humidity and report avalue
of 2.4 kJ/mol for coated silicafibers.

Table 3.2 shows that the values of E; for the commercial Na-borosilicate and Na-
aluminosilicate glasses are lower than that measured for silica, and the values measured
for the commercial Ca-aluminoborosilicate and Na-Ca-silicate are greater. The values of
E, for the NaAlSi glasses decrease systematically from 8.3+0.3 to 2.3+0.3 kJ/mole with
increasing aumina content.

3.3.3. Dynamic Fatigue. Figure 3.6 shows an example of the Weibull
distributions of failure strains for NaAlSi (x=5) glass fibers measured at different
faceplate velocities in room temperature distilled water. The failure strains increase with
increasing faceplate velocity. Table 3.3 lists the average failure strains (+ 1 s.d.) of
various glass fibers measured using TPB at the different values of vq,. Generally, failure
strain increases with increasing vy, for every composition. Dynamic fatigue parameters (n)
were cal culated from equation (10) from the slopes of the plots, like those shown in
Figure 3.7 and Figure 3.8; the values for n for all glasses studied are aso givenin Table
3.3.

Thevauefor nfor silicain 21°C distilled water is 23.7+1.5. Similar TPB
dynamic fatigue studies have been reported for silicain 30°C distilled water (n=22+0.5
[54]), and in 90°C pH 7 buffer solution (n=20.0+1.7 [48,55]).

The value of n for the commercial Na-Ca-silicate glass in this study was 14.9+2.1.
This compares favorably to areported value of 16.6 [18] from a bulk crack propagation
study in distilled water at 25°C, avalue of 16.1 [56] from a slow crack growth study, and
avalue of 16.0 [36] using abraded rods in a4-point bend study. Baikovaet al. [20]
measured the dynamic fatigue parameter for soda-lime silicate glasses in water, using
several different methods. The values of n for abraded sheet glass samples were 13.6 by
central symmetrical bending and 14.7 by four-point bending. The values of n for abraded
soda-lime silicate glass rod samples were 15.5-16.8 by three-point bending.

The value of n for the commercial Ca-aluminoborosilicate glassis 16.6+2.8,
compared to avalue of 16.1 reported for E-glass at 20°C and 100% relative humidity
from a static fatigue study [57].



The n value of the commercial Na-borosilicate glass fibersis 21.6+11.7,
compared to values of 27.4 [36] and 27.8-47.4 [37] in dynamic fatigue studies of Pyrex
glass rods, which were abraded, aged in distilled water, then immersed in distilled water
immediately before measured using 4-point bend technique. Another value, 34.1, was
reported by Wiederhorn and Bolz [18] in aslow-crack growth study of bulk Pyrex glass,
tested in distilled water at 25°C. The n value for our commercial Na-aluminosilicate
glassis 27.2+18.5. The great uncertaintiesin this value and that for the Na-borosilicate
glasses are due to the broad distributions of failure strains (Figure 3.1) rather than the
quality of the fit of the data to equation.

The dynamic fatigue parameter, n, of the sodium aluminosilcate glasses increases
from 6.9+0.2 for NaAISi (x=0) to 19.6+2.4 for NaAlSi (x=25) (shown in Figure 3.9).
Gehrke [58] measured the crack growth velocity of a series of sodium aluminosilicate
glasses, including a glass with the composition: 26%Na,0, 11%Al,03, 63%SiO,. The
value of n for this glass was approximately 25, compared to the value of 16.1+1.7 for our
sample NaAlSi (x=12.5). The value of n for Gehrke’s 24% Na,O, 76%SiO, glass was 17,
compared to the value of 8.1+0.2 for our NaAlSi (x=0) glass.

3.4. DISCUSSION

3.4.1. Slow Crack Growth vs. Fatigue of Pristine Fibers. A comprehensive
summary of fatigue data for silicareported by Glaesemann [59] shows that the fatigue
parameter derived for different types of samples or from different types of measurement
will not necessarily be the same. Such differences were al so reported by Maurer [60] and
Kurkjian et a. [61]. As-drawn silicafibers generally have lower fatigue parameters with
most values ranging between 20-26 [34,54,55]. Abraded silicafibers or rods seem to be
more resistant to fatigue, with reported values of n ranging from 22.1 to 42.6. Abraded
bulk samples of silica have the greatest values of n, ranging from 30.7 to 45[18,36].
Direct comparisons between indented and pristine silicafibers [33] and among silica
fibers with different indentation flaw sizes [62] showed that the fatigue parameter
increases with increasing indentation flaw size.

Kurkjian et a. [61] suggested that the failure of pristine glass fibersis controlled
by crack initiation, whereas the failure of abraded or precracked samplesis controlled by

crack propagation, thus modeling fatigue of high strength fibers by means of slow crack
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growth may not be appropriate. Dabbs et al. [62] suggested that there is a threshold of
flaw size (~10um) indicating a transition from crack propagation-controlled failureto a
crack initiation-controlled failure mechanism. Most likely, the kinetics of the fatigue
process for pristine glass fibersis quite different from that for slow crack growth. In
slow crack growth studies, crack propagation behavior dominates, whereas in fatigue
studies for pristine glass fibers, crack initiation must be considered. On pristine fiber
surfaces, there isno crack tip for stressto concentrate. In the case of pristine glass fibers
in TPB study, all reactive Si-O bonds in the gauge length are in contact with water,
whereas in aslow crack growth experiment, the most reactive Si-O bonds are at the crack
tip where water supply is limited and there might be some diffusion limit associated with
it to slow down the fatigue. In aword, the fatigue reaction on a strained pristine surface
might be different from that at a crack tip. It would be interesting if one could examine
the in-situ structural change of a strained fiber until failure. It might give us some
information about the difference between the fatigue mechanism before and after a crack
isinitiated.

From another point of view, the fatigue parameter n appears to decrease with
increasing failure strain, since failure strain for pristine fibers are several orders of
magnitude greater than for pre-cracked samples[61]. Thisis contrary to France and
Duncan’s observation of increased fatigue parameter with increasing failure strain [ 38].
However, their correlation was based on failure strains in different environments (i.e. in
water, air, vacuum, liquid nitrogen), which involved different temperatures and water
activities.

3.4.2. Activation Energy vs. Fatigue Parameter. It isnoteworthy that the
Arrhenius equation is usually used to describe the temperature dependence of areaction

rate (X), which increases with increasing temperature:
—H

= — 12

X = Xoexp (12)

where H isthe activation energy. Inthe TPB test, the failure strain decreases with
increasing temperature, so the apparent activation energy E; in equation (11) does not

have the negative sign. The value of E; is used for the convenience of comparing the
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temperature dependence of failure strain, for different glass compositions, since failure
strains are controlled by the fatigue reaction rate, thus justifies the use of an Arrhenius
relationship.

For the glasses tested in this study, the commercial silica, Na-borosilicate, and
Na-aluminoslicate glasses, and the laboratory NaAlSi (25%) glass each have greater
values for the fatigue parameter (>19, Table 3) and lower apparent activation energies for
faillure strainsin water (<2.5 kJ/mol, Table 2). The low-aumina (<9 mol %) NaAIlSi
glasses have low values for the fatigue parameter (<10) and greater valuesfor E; (>5
kJmole). Figure 3.10 compares n and E, for each glass, and it is clear that thereis an
inverse relationship between the two parameters. Thisimpliesthat if amaterial is
susceptible to fatigue (has alow value of n), the temperature dependence of the
associated fatigue reactionsis large (great value of Ey).

Although it is suggested that the failure of pristine glass fibersis controlled by
crack initiation, whereas slow crack growth is controlled by crack propagation. Both
processes depend on the activated fatigue reaction, and so the slow crack growth models
can help us understand the relationship between apparent activation energy (temperature
dependence of fatigue) and the fatigue parameter (stress dependence of fatigue). The
difference in the two testsis that failure strains from TPB areinversely correlated with
the fatigue reaction rate, and thus failure strains decrease with increasing temperature,
whereas crack growth rates are positively correlated with the fatigue reaction rate and
thus increase with increasing temperature.  So in Arrhenius equations, there is a negative
signin front of the activation energy term for slow crack growth, but no negative signin
front of the activation energy term for failure strains.

According to the activation volume model [18], the activation energy required for

stress corrosion of a Si-O bond is dependent on the stress intensity:

¢ = ¢oexp(—E* + bK;)/RT (13)

where ¢ isthe crack velocity, K isthe stress intensity factor, R isthe gas constant, T is

the temperature, E* isthe stress-free activation energy, b is a parameter related to the
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activation volume, and ¢, isaconstant. A rough relationship between the fatigue

parameter n’ and b can be deduced by substituting equation (13) into (7):

n'«<b+a (14)

where aisaconstant. In other words, the effective activation energy (E*-bK,) decreases
withincreasing n’. Although the activation energy here is different from the apparent
activation energy E, in equation (11), both energy terms provide a measure of the
temperature dependence of the stress-corrosion reaction rate (greater activation energy
means steeper Arrhenius slope). Similarly, the fatigue parameter n’ is different fromnin
eguation (10), but they both provide a measure of the inverse fatigue susceptibility.
Thusthis analysis qualitatively explains the trend in Figure 3.10.

3.4.3. Fatigue Mechanism for NaAISi Glasses. The chemical reaction for
fatigue in sodium silicate glasses is widely discussed [32,6]. It iswell accepted that ion-
exchange contributes to the extension of cracksin akali silicate glass:

I I I I
— Si— 0—Si— 0~Na* + H,0 —— Si— 0— Si— OH + Na* + OH-  (15)

Thision-exchange reaction is greatly influenced by the stress applied on the glass
structure. Celarie et al [63] studied ion diffusion at the vicinity of acrack tip in soda-lime
silicate glassin humid air. They claim atwo-step processin slow crack growth: 1. afast
migration of sodium ions to the fracture surface; 2. a slower inter-diffusion between
alkali ions and protons (or hydronium ions) enhanced by the relaxation of the glass
network changing the bond angles and lengths under stress.  An explanation of this
phenomenon is that sodium ions near NBO sites form amodifier channel [64,65] which
works as a path for sodium diffusion [66]. Such diffusion channels are opened through
the glass structure by the tensile stress near the crack tip. The sodium flow is balanced by
interchange with hydrogen or hydronium ions to preserve charge neutrality [35].

It has been shown that the conductivity of a bent soda-lime silicate glass sheet is
higher on the tension surface than on the compression surface [67,68]. The differencesin
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conductivity were attributed to higher sodium ion density in the tension regions because
of sodium ion migration from the compression regions. The channel opening theory also
provides an explanation of this phenomenon; viz., the conductivity increased as the akali
ion mobility increased as the structure was opened by the tensile stress. This suggests
that the ability of a structure to reorganize, or the potential of ‘channel opening’ of the
glass, has an influence on the stress-enhanced diffusion of alkali ions, and thus will affect
the fatigue characteristics.

The fatigue mechanisms for sodium aluminosilicate glasses should be similar to
those for other modified silicate glasses. lon-exchange of sodium ions and hydrogen-
bearing species (protons or hydronium ions) in sodium calcium aluminosilicate glass has
been observed under atomic force microscope [69]. When an aluminaion is added to
sodium silicate structure, an aluminatetrahedron (AlO4) forms and one sodium ionis
attracted to charge balance the site [70]. The addition of alumina eliminates non-bridging
oxygens from the glass structure. The bond strength of sodium ions with alumina
tetrahedrais weaker than the bond strength between sodium ions and NBO [70,71], thus
aluminais added in akali silicate glasses to enhance the sodium diffusivity. For example,
Ag-Nainterdiffusion rate was increased by adding aluminato sodium silicate glasses [72].
However, the ion-exchange between sodium and water species does not increase with the
addition of alumina. Wassick et al. [73] studied the hydration of soda-lime silicate glass
and found that the hydrogen penetration was ten times slower, and the diffusion
coefficients of sodium and hydrogen were 50 times smaller, after 5 mole % of calcium
oxide was replaced by alumina. A similar study showed that adding aluminato alkali
silicate glasses resulted in an improvement in resistance to hydration [74]. A recent study
showed that the sodium ion-exchange rate with protons (or hydronium ions) decreased by
three orders of magnitude as alumina mole fraction increased from 0 to 15% in sodium
aluminosilicate glasses [75]. Bunker [6] showed that alkali ions on NBO sites fully
exchange with water species in a pH~8 basic solution, whereas a umina tetrahedral
anionic sitesresist exchange down to amost pH 5, indicating a much lower leachability
for sodium cations from AlO,” sites than those from NBO sites. Bunker suggested that
the H'AIO; tetrahedra are not a stable structure.
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The difference in the ion-exchange rate is usually attributed to the increased
fraction of bridging oxygen bonds cross-linking the sodium filled channels [76], and this
might be related to the compositional dependence of the fatigue behavior shown in Figure
3.9. Consider the fatigue process proposed by Celarie et a [63], where sodium channels
in sodium silicate glasses can be opened by the tensile stress, thus enhancing cation
diffusion and ion-exchange. When aluminais added to the glass, the ion-exchange rate
decreases. In the meantime, the sodium channel is more and more cross-linked, thus the
stress-enhanced diffusion also decreases aswell. Thus the fatigue effect isless
pronounced (greater n) with increasing alumina content.

Schematic representations of the fatigue processes for a sodium silicate glass and
afully cross-linked sodium aluminosilicate glass are shown in Figure 3.11 and Figure
3.12 respectively. For the sodium silicate glasses, the ion-exchange between sodium
cations and hydrogen bearing species takes place in the sodium-rich channels [64,65]
(Figure 3.11 (a)). The inter-diffusion between akali ions and protons (or hydronium ions)
is enhanced by the opening of the channel due to the remotely applied tensile stress
(Figure 3.11 (b)). Finally the hydration of the nonbridging oxygens leads to the bonds
breaking and crack initiation (Figure 3.11 (c)). For the sodium aluminosilicate glass
(Figure 3.12), the ion-exchange rate is decreased when aluminais added to the glass. In
these glasses, crack initiation requires the hydrolysis of more chemically-stable bridging
oxygen bonds, consistent with the increases in n with increasing alumina content.

It isinteresting to compare the failure strains measured in ambient conditions with
those measured in inert conditions for the same glass (Figure 3.1). Thisenables usto
differentiate the two mechanismsthat lead glasses to fail in a TPB experiment. Ininert
conditions, the environmental fatigue effect is minimized, and the failure of glass solely
depends on the types and properties of bonds that constitute the structure of the glass. In
ambient conditions, fatigue plays an important role in determining the failure strain.
Franceet a. [77] compared the failure strainsin liquid nitrogen and in 20°C air (humidity
not specified) for silicaand severa sodium borosilicate glasses which had been stored in
avariety of environments for different lengths of time. They suggested that despite the
differencesin glass composition and aging conditions, the ratio (y) between the inert

failure strain and failure strain measured in air appeared to be constant at a value of about
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2.8. Thissuggestion was probably the result of a coincidence that their compositions
happened to have similar fatigue behaviors. Figure 3.13 compares the inert failure
strains [43] and failure strains measured in water for the series of sodium aluminosilicate
glasses studied here. It can be seen that for low aumina content glasses, the decrease in
failure strain from inert conditions to ambient conditionsis greater, compared to high
alumina content glasses. They parameter introduced by France et al. [ 77] thus decreases,
from 3.2 to 2.4 as the alumina content increases from 0 to 25 mole % (for data collected
at 4000 pm/s). Similar phenomena can be found in commercial glasses. Figure 3.1
shows that silica and soda-lime silicate glasses have amost identical inert failure strain,
whereas silica has a greater failure strain in water. Thus, y for silicais 2.4 and that for
soda-lime silicate glassis 3.3. They parameter is difficult to predict because it not only
depends on the environmental fatigue parameter n, but also depends on the inert fatigue
effect [22] or inert delayed failure effect [43], both of which describe the time dependent
inert failure strains of glass.

3.5. CONCLUSION

The two-point bend (TPB) technique has been used to measure failure strains of
glassfibersin water. Temperature dependence and strain rate dependence have been
studied for severa commercial glasses and a series of sodium aluminosilicate glasses.
Failure strains decrease with increasing temperature, showing that fatigue effect depends
on an activated chemical reaction. The dynamic fatigue parameters determined using
TPB are comparable with reported values obtained using different methods but under
similar conditions. It isfound that glasses with cross-linked structures exhibit lower
apparent activation energies and have a greater fatigue parameter.

For laboratory melts of sodium aluminosilicate glasses, the apparent activation
energy decreases and the fatigue parameter increases with increasing alumina contents.
The mechanism of fatigue in sodium aluminosilicate glassis similar to that of other
modified silicate glass. Sodium ion exchanges with hydrogen ion or hydronium ion
(H30"), then the crack grows under the loading force with an assist from further chemical
reactions, which depend on the further diffusion of sodium from the glass bulk. When
aluminais added to sodium silicate glass, sodium ions charge balance with the aluminum

to form aluminatetrahedra, so the non-bridging oxygens are replaced by bridging
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oxygens. The sodium channel opening mechanism is reduced by the cross-link structure,
leading to decreasing susceptibility to fatigue.
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Table 3.1. Melting temperature (Tmer), Melting time (tmer) and pulling temperature (Tpuni)
for the commercia glasses and the series of 25NaxO-xAl,03:(75-X)SIO,, glasses prepared
in the laboratory.

Source Composition Tt (°C) tmat (hour) Tou(°C)
Commercial  Ca-aluminoborosilicate 1550 4 1300
Commercial Na-Casllicate 1220 4 1150
Commercial Na-borosilicate 1600 16 1375
Commercial Na-aluminosilicate 1600 10 1375

Laboratory NaAlSi (x=0) 1300 5 1150
Laboratory NaAISi (x=D5) 1350 5 1150
Laboratory NaAIS (x=9) 1400 6 1200
Laboratory NaAlSi (x=12.5) 1450 8 1200
Laboratory NaAlSi (x = 18.75) 1550 16 1300

Laboratory NaAlS (x =25) 1600 16 1375
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Table 3.2. TPB average failure strain (¢f) measured in distilled water at different
temperatures with afaceplate velocity (vip) of 4000 um/s and apparent activation energy
(Es) calculated from equation (7).

Average Failure Strain, & (%) Ea (kJ/mol)
Temperature (°C) 3+2 21+2 55+2 94+2
Fused silica 7.42+0.09 7.22+0.08 6.63+0.07 6.22+0.04 1.7+0.1
Ca-aluminoborosilicate 5.86+0.18 5.36+0.22 4.76+0.25 3.87+0.23 3.6+0.5
Na-Ca-silicate 5.36+0.14 5.06+0.20 4.45+0.13 3.95+0.08 2.8+0.3
Na-borosilicate 5.30+0.28 5.24+0.52 4.75+0.39 4.52+0.36 1.5+0.8°
Na-aluminosilicate 3.75£0.35 3.45+0.34 3.43+0.29 3.25+0.28 1.1+1.1°
NaAlS (x=0) 7.83+0.12 6.55+0.14 4.55+0.10 3.12+0.10 8.3+0.3
NaAlS (x=5) 7.78+0.25 7.01+0.12 5.45+0.12 4.35+0.13 5.6+0.3
NaAISi (x=9) 8.03+0.35 6.89+0.36 5.70+0.21 5.05+0.18 4.2+0.5
NaAISi (x =12.5) 7.29+0.22 6.48£0.14 5.70+0.14 5.52+0.11 2.4+0.3
NaAlSi (x = 18.75) 6.92+0.13 6.41+0.08 5.58+0.13 5.61+0.14 2.2+0.3
NaAlS (x = 25) 6.84+0.17 6.12+0.16 5.52+0.09 5.30+0.12 2.3+0.3

a. Broad distributions of failure strains lead to great uncertainty of activation energy
calculation, asthe errors of failure strains were weighed in linear fit.
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Table 3.3. Failure strain (ef) measured at different faceplate velocities (i) in distilled
water at 21°C and the fatigue parameter (n) calculated from equation (6).

& (%) in 21°C distilled water

n

Vip (LmY/s) = 50 500 4000 10000

Fused silica 5.92+0.07 6.60+0.07 7.22+0.08 7.49+0.08 23.7+1.5
Ca-duminoborosilicate 4.14+0.24 4.68+0.24 5.36+0.22 5.77+0.17 16.6+2.8
Na-Casilicate 3.71+0.15 4.37+0.19 5.06+0.20 5.47+0.28 14.9+2.1
Na-borosilicate 4.31+0.42 4.71+0.44 523+051 556+0.39 21.6+11.7°
Na-aluminosilicate 2.97+0.22 3.27+0.25 3.45:0.34 3.68+0.30 27.2+18.5"
NaAISi (x=0) 3.10+0.06 4.67+0.10 6.55+0.14 7.62+0.15 6.9+0.2
NaAISi (x=5) 3.70+0.07 5.18+0.16 7.01+0.12 7.69+0.16 8.1+0.2
NaAlSi (x=9) 4.21+0.14 5.39+0.18 6.89+0.36 7.53+0.43 10.0+0.9
NaAlSi (x=12.5) 491+0.16 5.64+0.22 6.48+0.14 7.01+0.19 16.1+1.7
NaAlSi (x=18.75) 4.85+0.13 5.63+0.25 6.41+0.08 6.71+0.08 17.4+1.4
NaAISi (x=25) 4.90+0.17 5.49+0.19 6.12+0.16 6.50+0.11 19.6+2.4

b. Great uncertainties are due to broad distributions of failure strains rather than the
quality of thefit, asthe errors of failure strains were weighed in linear fit.
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Failure strains (measured in 21°C distilled water) as afunction of faceplate
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Figure 3.12. Schematic drawings for fatigue process for afully cross-linked sodium



112

B Oleweer. m LI, M0 s
& Present work, in Waler, 4000 pmes
A = Presen ! work, in Waler, S60um’s
- O
—_ m|
‘;T_ o
w3 o |
g
pP
= 1u
&
& ¢ ¢ o o &
A § N
f
0 3 Lo [3 21 15 A

Al Mole Frachion (40)

Figure 3.13. Inert failure strains measured in liquid nitrogen at vi, = 4000 pm/s from
Lower [43] and failure strains measured in 21°C distilled water at vf, = 4000 and 10000

um/s (present work) as a function of Al,Oz mole fraction for 25Na,O-xAl,03:(75-X)Si O,
(mole %) glasses.



113

4. ENVIRONMENTAL FATIGUE OF SILICATE GLASSES
INHUMID CONDITIONS

Zhongzhi Tang and Richard K. Brow

*Missouri University of Science & Technology, Department of Materials Science &
Engineering, Rolla, MO 65409, USA

ABSTRACT

Failure strains of commercial silica, soda-lime silicate and E-glass fibers were
measured using two-point bending in room temperature humid air. Humidity dependence
and dynamic fatigue behavior were studied and the fatigue reaction orders in terms of
humidity were determined. In the humidity range tested (~0.1% to ~100%), the dynamic
fatigue parameters for silica and E-glass are found to be greater in lower humidity (~0.1%
to ~10%), whereas the fatigue parameter for soda-lime silicate is independent of humidity.
The humidity dependence of failure strains for all three glasses was more pronounced in
high humidity (~10% to ~100%) than in low humidity (~0.1% to ~10%), indicating that
the reaction order decreases with decreasing humidity. These observations were
correlated to the different structures of the glasses and their corresponding fatigue
mechanisms.
4.1. INTRODUCTION

About 100 years ago, Grenet [1] observed that the strength of glass is dependent
on the loading time and/or loading rate in agueous or humid environments. Even though
aglass might withstand a certain load for a short period of time, it might fail later. This
phenomenon was probably first describes as ‘fatigue’ by Baker and Preston in 1946
[2,3,4]. The static fatigue (loading time dependence) and the dynamic fatigue (loading
rate dependence) for silicaand soda-lime silicate glasses were studied by Charles[5,6,7].
It iswell accepted that the fatigue effect is due to some stress-induced chemical reaction
between glass and water [8,9]. The general fatigue reactions for silicaand alkali silicate
glasses were summarized in our other paper [10].
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4.1.1. Fatigue Measurements. A popular way to study the fatigue effect isto
study the slow-crack growth behavior (a.k.a. subcritical crack growth). A typical
experiment is a double cantilever beam test, in which a constant forceis applied to a
predetermined length of crack on a glass sample, and the crack propagation velocity is
measured as a function of the force [11,12]. The most widely used model to describe the

slow crack growth is based on an empirical power law [13,14]:
V =AK;/Kic)" 1)

where V is the crack growth velocity, n istermed the stress corrosion susceptibility
parameter, or the fatigue parameter, K; is stress intensity factor, K¢ isthe critical value of
K, or fracture toughness, and A is the environmental parameter which has a Arrhenius
temperature dependence.

Fatigue has a so been studied by measuring the time or rate dependent strength of

glass. For example, dynamic fatigue can be described as [15]:
O'f = D(j'(l/n+1) (2)

where o¢ isthe strength, or failure stress, ¢ isthe applied stressrate, D is a constant, and
n isthe fatigue parameter equivalent to the nin equation (1). This equation allows direct
comparison between slow-crack growth studies and dynamic fatigue studies. The fatigue
of glass has been studied using different strength measurements, including tensile tests
[16,17,18,19,20], two-point bending tests [10,21,22,23,24], three-point bending tests
[3,25], four-point bending tests [26,27], and ring-on-ring tests [28].

Even though the fatigue parameters for slow crack growth and strength
measurements are equivalent, differences in the value of n for the same materials (silica
glass) have been reported [29,30,31]. As-drawn silicafibers generally have smaller
fatigue parameters, abraded silicafibers or rods exhibit an intermediate value for n, and
abraded or pre-cracked bulk samples of silica have the greatest values of n.  Kurkjian et
al. [31] suggested that the failure of pristine glass fibersis controlled by crack initiation
while the failure of abraded or pre-cracked samplesis controlled by crack propagation;
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thus, modeling fatigue of high strength fibers by means of slow crack growth may not be
appropriate. It was suggested that the transition from crack propagation-controlled
failure to a crack initiation-controlled failure mechanism occurs at athreshold flaw size
of ~10 um [32]. Duncan et al. [23] suggested that the fatigue reaction is the same for
slow crack growth and fiber strength measurements, but the kinetics might be dlightly
different.

4.1.2. Water vs Humidity. Fatigue has been studied in both liquid water and in
moist air. Thereisno substantial difference in mechanism considering that fatiguein
both environmentsis essentially a stress-enhanced reaction between water molecules and
glass bonds; however, differences exist in the kinetics of the reaction. Celarieet a. [33]
studied stress-enhanced ion-diffusion at the crack tip of soda-lime silicate glassin ~50%
RH using atomic force microscopy, and observed a condensation from the gaseous
atmosphere to continuous aqueous liquid phase. Itislikely that the liquid water is
enriched with ions which alow same ion-exchange mechanism that was observed in
soda-lime silicate glass in water [8].

Aswas stated by Glasstone et a. [34], generally, areaction occurring between a
gas/liquid and a solid can be separated into five consecutive steps. (1) Transport of the
gas reactants to the surface (2) Absorption of the gas/liquid reactants by the surface, (3)
Reaction between the gas/liquid reactants and the surface, (4) Desorption of the products,
and (5) Transport of the liberated products away from the surface. The overall reaction
rateislimited by the slowest steps of the five. In the case of fatigue reactions, step (4)
and (5) can be neglected because fracture produces new surface (fresh reaction sites) and
the reaction products (broken bonds) are left behind and have no effect on the subsequent
reactions. It was suggested that the early stage (region | crack growth) of crack
propagation is controlled by step (3), the glass-water reaction rate [12]. However, when
the humidity is low enough, the water concentration and mobility are greatly reduced, it
ispossible that step (1) and (2), water transportation and absorption become the limiting
factors[35]. Mrotek et a. [22] suggested that a complete monolayer of water isformed
on the silica surface in above ~18% RH so below this the water condensation observed

by Celarie et a. [33] may not occur at lower RH and, if present, may not act in the same
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manner. Thismight result in completely different fatigue mechanisms at different
humidities and, in turn, vary from that seen in liquid water.

The study of fatigue in humidity brings important information because if thereis
only one simple fatigue reaction, the rate constant A in equation (1) should depend on the
relative humidity, RH, according to [12]:

A x (RH)™ (3)

in which, misthe reaction order, defined as the number of molecules of water that are
involved in the bond-breaking reactions. Wiederhorn [12] reported that the reaction
order for fatigue in soda-lime silicate glasses, measured in aslow crack growth study,
decreased from ~1.3 in the range of 10-100% RH to ~0.5 in the range of 0.017%-1% RH
(It was reported that m~1 in the high RH range, but the data reported in Figure 5 from
Wiederhorn’s paper indicates that m~1.3). Wiederhorn suggested that the changein m
near RH ~1-10% indicates that there is more than one reaction occurring between water
and glass.

In two-point bend tests, the empirical dependence of failure strain (ef) on relative
humidity (RH) can be obtained by [23]:

g o« (RH)4, (4)
and the reaction order (m) can be determined by [23]:
m=aXx(1l—n) ©)
The reasoning behind this can be seen from the rel ationship between the failure
strain (ef) and the environmental constant (A) for two-point bending at a constant

faceplate velocity (vip) [36]:

(Fe,ynt = n—1 ( o; )n—z ©
&) T (n—2)AEY?x 11981 \K,.) IP
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where E isthe Young’s modulus, Y is the crack shape parameter, r isthe radius of the
fiber, and o; isthe inert strength. Taking the log of & from equation (6), and assuming

that the fatigue parameter (n) does not depend on humidity [23], it can be shown that:

loger x (n—1) = —logA + B (7)

where B is a constant with regards to RH. Substituting equation (3) and (4) into (7) gives
(5). Using this approach, Duncan et a. [23] reported that m for silica decreased from
~2.3in the range of 15-100% RH to ~1.1 in the range of 10*-10® RH, and that mfor a
sodium borosilicate glass decreased from ~1.7 in the range of 15-100% RH to ~0.9 in the
range of 10°-10® RH. As pointed out by Mrotek et a. [22], if Duncan’s data were
plotted in asingle log RH axis, the trend in high and low humidity do not intersect at an
intermediate humidity. Mrotek et al. [22] measured failure strains for silicain a25°C
glove box and reported that the fatigue parameter (n) gradually decreased from ~31in
0.025% RH to ~22 in 95% RH, which violates Duncan’s assumption of n being
independent of RH. Mrotek et al. aso reported that the reaction order droped from 2.1 in
the range of 20-95% RH to 0.9 in the range of 0.025-13% RH.

The study of fatigue behaviors for severa different silicate glass fibersin distilled
water is presented in another paper [10]. In this paper we will focus on the fatigue
behaviors for commercial silica, soda-lime silicate glass and E-glass compositions in
humid air. From this we hope to obtain some information on the kinetics of the chemical
reaction occurring on the strained surface of glass. We also expect to see some
compositional dependence of the fatigue behavior as was seen in the studies of fatiguein
water [10].

4.2. EXPERIMENTAL PROCEDURE

Materials used in this study included polymer coated fused silicafibers (AT&T,
Amersil TO8 fused natural quartz, 125 um), acommercia sodalime silicate (SLS) glass
(Owens-lllinais, flint container glass) and acommercial calcium auminoborosilicate
glass (PPG, E-glass). The polymer coatings on the silica fibers were removed by
immersing the fibersin a mixture of acetone and methanol (lacquer thinner). Fiberswere

immediately tested after removal of the coating. The soda-lime silicate glass was
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remelted in aplatinum cruciblein air at 1220°C for at least 8 hours prior to fiber drawing.
The E-glass was remelted in aplatinum crucible in air at 1550°C for at least 8 hours prior
to fiber drawing.

The homogeneous melts were transferred to a second furnace set to afiber pulling
temperature (1150°C for the soda-lime silicate glass and 1275°C for the E-glass). Fibers
were drawn from the glass melts using a custom-built fiber drawing system. Fiberswere
drawn onto arotating cage which was designed to prevent fiber overlap and damage.
Fiber diameter was controlled by the fiber pulling temperature and the drawing speed. All
fibers were drawn to a diameter of 125+ 20 pum.

Failure strains of fiber samples were measured using a two-point bending (TPB)
technique [37]. InaTPB test, apristine section of glassfiber, diameter d, is bent into a
U-shape between two parallel faceplates, one of which travels towards the second at a
constant faceplate velocity (vgp), compressing the ‘U’ until failure. The gap distance at

failure (D) isrecorded, and the failure strain (&) is then calculated from [38]:

_1198xd
70— a) ®)

The dynamic fatigue was studied at room temperature (21+2°C) by measuring the
failure strains at different faceplate velocities (50, 500, 4000 and 10000 um/s) and in
different relative humdities. The relative humidity was controlled by blowing a mixture
of wet and dry air onto the surfaces of the fibers, and was monitored. Dry air was
obtained by flowing air through a desiccant column. Wet air was obtained by bubbling
air through room temperature distilled water. The temperature and relative humidity was
measured using adigital psychrometer (Extech RH305). Twenty fibers were tested at
each combination of faceplate velocity and relative humidity. The dynamic fatigue

parameter n, which is equivaent to nin equations (1) and (2), was determined from [39]:

1

=1+
" d log &r/d log vg,

9)
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Some fibers were also tested after up to 10 minutes of equilibrium time and no
time dependence of failure strain was observed. Thisis consistent with the observation
by Mrotek et al. [22] that no equilibration time is needed because glass samples arein
direct contact with moisture.

4.3. RESULTSAND DISCUSSION

The Weibull distributions [40,41] of failure strains for silica, soda-lime silicate
glass and E-glass measured at different humidities are shown in Figure 4.1, Figure 4.2
and Figure 4.3, respectively. For all three glasses, failure strains decrease with increasing
relative humidity. The humidity dependence of failure strain is plotted in logarithm
scalesfor all three glassesin Figure 4.4.

The Weibull distributions of failure strains for silica measured at a constant
humidity but at different faceplate velocities are shown in Figure 4.5. The failure strains
increase with increasing faceplate velocity. Table 4.1 lists the average failure strains (=
one standard deviation) for all three compositions measured using TPB at the different
values of vip. Also listed are the dynamic fatigue parameters (n) calculated from equation
(9) from the slopes of the plots like those shown in Figure 4.6, Figure 4.7 and Figure 4.8.

4.3.1. Dynamic Fatigue. The fatigue parameter for silica measured at room
temperature is 22.9+1.7 in 98% RH and 29.2+3.0 in 3.4% RH. The fatigue parameter
measured in high humidity compares well with that measured in room temperature
distilled water (23.7+1.5, Table 4.1). Table 4.2 summarizes the reported values of fatigue
parameter measured in static or dynamic fatigue studies using various techniques. The
value we obtained compares favorably with most reported values. By calculating
reaction order in alow humidity range using a high humidity (15% to 100% RH) fatigue
parameter, Duncan [23] implicitly suggested that the fatigue parameter should be
independent of humidity. Our data suggests that thisis not necessarily true. Our
observation is consistent with Mrotek et al. [22], who reported that the fatigue parameter
of silica decreased with increasing humidity (shown in Figure 4.9). This brought up the
argument that the power law approach (equation (1)) is deficient in describing fatiguein
humid conditions, because it defines A as the environmental constant and n as the

materials constant.
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The fatigue parameter for E-glass also exhibits a humidity dependence
(n=32.3£2.81n 0.2+0.1% RH vs. n=23.1+1.6 in 43.4+0.2% RH). Both values are greater
compared with that measured in room temperature distilled water (16.6+2.8, Table 4.1).
There are few reported studies of fatigue for E-glass. A value of 25.8+0.8 was reported
for E-glassin 32% RH in a TPB dynamic fatigue study [24]. A value of 20 was reported
for E-glass at 20°C and 100% relative humidity from a static fatigue study [42].
Wiederhorn and Bolz [11] reported a value of 27.4 for an aluminosilicate glass (sSmilar to
E-glass) in room temperature distilled water from a slow crack growth study.

Room temperature TPB fatigue studies of a calcium aluminosilicate glass (~20%
Ca0, 20% Al,03, 60% SiO,, in mole %) and a cal cium aluminoborosilicate glass (~20%
Ca0, 10% Al,0s3, 10% B,03, 60% SiO,, in mole %), on the other hand, showed no
dependence of n on RH [24]. The fatigue parameter for soda-lime silicate glass also
appears independent of humidity (n=16.8+0.2 in 0.7+0.1% RH vs n=16.2+0.4 in 41.8+0.5%
RH). The fatigue parameter measure in water was 14.9+2.1, shown in Table4.1. Thisis
consistent with the findings from a slow crack growth study which showed that the
fatigue parameter was al so independent of humidity for a soda-lime silicate glass (n=~20
in RH ranging from 0.017%-100%, [12]). Another fatigue study of soda-lime silicate
glassindicated that n=16.4 in both 0.2% humidity air and in distilled water [14].
Counterevidence was found in a four-point bend static fatigue study of acid-etched soda-
lime silicate glass rods, where n~35+6 in 50% RH vs. n=~30+2 in 100% RH [43], but
these values of n are significantly greater than the current study or other studies, raising
some uncertainty about the significance of the reported RH dependence.

The environmental fatigue effect is minimized when the strength of glassis
measured in dry environments, for example, high vacuum (~10® Torr) [23]. Thisimplies
that the effective fatigue parameter for soda-lime silicate glass should eventually increase
at low RH. Actually, the slope of loger vs. logvy, may even decrease to 0 and thento a
negative value, considering the inert failure delayed effect (IDFE, [44]). But for some
reason, the fatigue reaction for soda-lime silicate was not affected by RH higher than
0.017%[12].

It was discussed in our other paper that depolymerized alkali containing glasses

have a different fatigue mechanism than cross-linked glasses, like silica or E-glass [10].



121

For cross-linked network glasses, the fatigue reaction is mainly the hydrolysis of network
bonds[5,8]:

| I I
— Si— 0—Si— +H,0 — 2 [— Si— OH (10)

The fatigue of depolymerized alkali containing glasses, like soda-lime silicate

glass, isinitiated by ion-exchange reactions between alkali ions and hydrogen species[8]:

I I
— Si—O0~Na* + H,0 ——Si— OH + Na* + OH~ (11)

Depth profile studies of hydrated soda-lime silicate glass showed that three H-
atoms replace each Na atom leached from a hydrated glass surface, indicating a Na'-

HsO" exchange mechanism [45, 46]:

I |
— Si—0~Na* + H,0* —— Si— OH(H,0) + Na* (12)

The ion-exchange reaction occurs faster than the Si-O hydrolysis, so probably the
ion exchange kinetics are less affected at low RH, compared to bond hydrolysis.

For soda-lime silicate glass, the fatigue parameter measured in humid air (which
isindependent of RH) compares well with that measured in water. For silica, the fatigue
parameter depends on RH, but the n measured in 98% RH compares well with that
measured in water. For E-glass, the fatigue parameter also depends on RH, and the n
measured in 43% RH is greater compared to n measured in water (23.1+1.6 vs 16.6+2.8).

4.3.2. Humidity Dependence. Figure 4.4 shows that failure strains decrease with
decreasing relative humidity for silica, soda-lime silicate glass and E-glass. The humidity
dependence of failure strainsis more pronounced in high humidity than in low humidity

for al three glasses. Figure 4.10 shows the humidity dependence of failure strains for
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silicafrom the present work and from reported studies. The difference in the absolute
values might be due to some experiment uncertainties. For example, Duncan et al. [23]
measured polymer coated silicafibers, and Mrotek et al. [22] removed the coatings by
hand. But the trend of humidity dependenceis consistent. The overall humidity
dependence of failure strains appears to be composed of three stages: a strong
dependence in the high humidity range (10% to 100%), a small dependence ailmost like a
‘plateawr’ in the intermediate humidity range (102% to 10%), and a medium dependence
in the ultralow humidity range (10 % to 102%). Because we were not able to measure
failure strains below ~0.1% RH, the three-stage humidity dependence s yet to be
confirmed, and we do not intend to deeply discuss the reaction order below ~0.1% RH.
But the change in reaction order (humidity dependence) near 10% RH appears to be
reproducible. Mrotek et al. [22] attributed the changes in reaction order to the formation
of awater monolayer on the glass surface above ~18% RH.

Changesin reaction order are also clear for soda-lime silicate glass and E-glass
(shown in Figure 4.4). Such changes were also reported for soda-lime silicate glassin
Wiederhorn’s slow crack growth study, in which the glass samples were annealed in a
chamber with flowing nitrogen gas (RH<0.017%) and tested in the same chamber [12]. It
was observed that the reaction order decreased from ~1.3 in the range of 10-100% RH to
~0.5 intherange of 0.017%-1% RH. If the changein reaction order isreal, it probably
means that more than one reaction is occurring between the water and the glass[12].
Considering the differences between reaction (11) and (12), the two different ion-

exchanging water species should depend on the equilibration of the following reaction:
2H,0 — H3;0* + OH~ (13)
In the high humidity environments, the condensed liquid water allows reaction

(13) to occur; hence the hydronium is the dominant ion-exchange species. Combining
reaction (12) with (13) gives:
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I I
—Si—0~Na* + 2H,0 —— Si— OH(H,0) + Na* + OH~ (14)

In the low humidity environments, there might not be a complete monolayer of
water, so reaction (13) is not allowed and reaction (11) is the dominant fatigue reaction
(14). Thus, in high humidity, two water molecules are associated with bond hydrolysis,
whereas only one water molecule is able to break abond in low humidity. Additional
experiments similar to the depth profile studies [45,46] need to be done to confirm this
speculation.

In the high humidity range (RH>10%), the humidity dependence of failure strains
can befit to straight lines using equation (5). Table 4.3 summarizes the slope (a) of these
lines and the reaction order (m) calculated from these slopes and the fatigue parameter (n)
measured in the high humidity range. The reaction orders are 2.2+0.3, 1.5+0.2, and
1.7+0.2, for silica, SLS and E-glass, respectively. The reaction order in the high
humidity range compares favorably with reported values, including m=~2 for silica
[22,23] and m=~1.3 for soda-lime silicate glass[12]. Armstrong et al. [21] suggested that
the reaction with water is second order if it isfirst order with OH", and there should be
enough OH" available the at silica surface in the high humidity range. The fatigue
reaction mechanism for SLS is more complex than for silica because the ion-exchange
reactions (11) and (14) will generate OH" ions as by-products, causing the local pH to
increase, and leading to further attack on Si-O bonds [5]. Thisis especialy truein the
case of fatigue in humid conditions because the OH™ will not migrate away from reaction
sitesasquickly asin liquid water. This might explain qualitatively why the reaction
order islower for SLS than for silicaand E-glass.

4.4. SUMMARY

Failure strains as a function of humidity (ranging from ~0.1% to ~100%) were
measured for silica, soda-lime silicate and E-glass fibers in room temperature air using
the two-point bend technique. Dynamic fatigue behavior was also studied for all three
glassesin both low (~0.1-10% ) and high (~10-100%) humidity ranges. A humidity
dependence of the fatigue parameter for silicaand E-glass was observed, whereas the
fatigue parameter for soda-lime silicate glasses seems to be independent of humidity, at
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least in the range of our test. These observations are consistent with reported fatigue
behaviors for both silicaand soda-lime silicate glassin humid air. It is suggested that the
dominant fatigue reaction for silicais between water and Si-O bonds which greatly relies
on the available water, whereas the dominant fatigue reaction for soda-lime silicate glass
is an ion-exchange reaction which occurs more rapidly and thusis less affected by the
RH within the test range. However, this speculation needs to be confirmed in future
studies.

The reaction order for fatigue seems to differ in the low humidity range (0.1% to
10%) and high humidity range (10% to 100%) for al three glasses. In the high humidity
range, silicaand E-glass have areaction order around 2, and soda-lime silicate glass has a
reaction order around 1.5. These values compare favorably with reported values. The
difference in reaction order between cross-linked glasses (silica and E-glass) and
depolymerized glasses (soda-lime silicate glass) is attributed to the different fatigue
mechanism. For depolymerized glasses, the ion-exchange fatigue reaction forms
OH" ions which can further react with Si-O bonds. Thus the same number of water
molecules can break more bonds in depolymerized glasses than in cross-linked glasses.
The actual fatigue mechanism islikely to be consisted of different reactions occurring
simultaneously and thus is expected to be more complex.
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Table4.1. Failurestrain (ef) measured at different faceplate velocities (vip) in air at 21°C
and the corresponding fatigue parameter (n) for silica, soda-lime silicate glass (SLS) and

E-glass; the fatigue parameter for the same glasses measured in room temperature

distilled water [10] are shown for comparison.

& (%) in 21°C humid air

Vip (uMV/s) = 50 500 4000 10000

Silica(RH 3.4£0.1%)  7.77+0.14 861+0.13 9.14+0.18 9.44+0.10 29.2+3.0
Silica (RH 98+2%) 5.84+0.09 6.58+0.13 7.11+0.09 7.49+0.12 22.9+1.7
Silica (RT distilled water) [10] 23.7+15
SLS(RH0.740.1%)  5.77+0.11 6.67+0.15 7.50+0.12 8.10+0.35 16.8+0.2
SLS(RH 41.8:05%)  4.80+0.12 5.53+0.08 6.42+0.12 6.76£0.17 16.2+0.4
SLS (RH 92+2%) 4.43+0.06 5.07+0.10 5.80+0.15 6.21+0.07 16.7+0.8
SLS(RT distilled water) [10] 14.9+2.1
E-glass(RH 0.2+0.1%) 6.11+0.09 6.64+0.07 6.98+0.12 7.27+0.06 32.3+2.8
E-glass (RH 43.4+0.2%) 4.96+0.07 5.49:0.06 6.10:0.07 6.23:+0.10 23.1+1.6
E-glass(RH 9742%)  4.45+0.08 4.94+0.08 5.49:0.07 58407 20.4+14
E-glass (RT distilled water) [10] 16.6+2.8
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Table4.2. A summary of dynamic and static fatigue parameters (n) for silica measured
in room temperature humid air using two-point bending (TPB) test, tension test and four-
point bending (4PB) test.

Sample Form Technique RH n(dynamic) n(static) Ref.
Pristine Fibers TPB 3.4% 29.2+3.0 Present
Pristine Fibers TPB 98% 22.9+1.7 Present
Pristine Fibers TPB 50% 25 [23]
Pristine Fibers TPB 50% 30.4+1.0 [24]
Pristine Fibers TPB 0.02% 31+1 [22]
Pristine Fibers TPB 20% 26+2 [22]
PristineFibers TPB 95% 21+2 [21]
Pristine Fibers  Tension Not Spec. 195 [16]
Pristine Fibers  Tension 50% 20 [17]
Abraded Fibers Tension 50% 27 [17]
Indented Fibers Tension 50% 31 [17]
Pristine Fibers  Tension 55% 18.5-22.2 [18]
Pristine Fibers  Tension 97% 15.9 14.3 [19]
Pristine Fibers  Tension  50% 22.1+0.7 19.8£0.8 [20]

Abraded Rods  4PB Wetted 37.8 [26]
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Table 4.3. The fatigue parameter (n) in 90-100% RH, the humidity dependence
parameter (a), and the reaction order (m) cal culated from equation (5) for silica, soda-
lime silicate glass and E-glass in RH>10%.

n a m
Silica 22.9+1.7  -0.099+0.009 2.2+0.3
SLS 16.7+0.8  -0.095+0.010 1.5+0.2

E-glass 20.4+1.4  -0.090+0.009 1.7+0.2
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Figure 4.2. Weibull distributions of failure strains for soda-lime silicate glass measured
at room temperature and at different relative humidities, using afaceplate velocity of

4000 pm/s.
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Figure 4.6. Dynamic fatigue for silicameasured at room temperature and at different

relative humidities.
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Figure 4.8. Dynamic fatigue for E-glass measured at room temperature and at different

relative humidities.



139

Relative Humidity (%)
0.01 0.1 1 10 100

198
[\
!
|

(oY)
(o)
T T T
—0—
1

§ 28 -
O |
g $
< 1
8 26+ - -
ol
q) -
&
2l | % _
22 o Mirotek et al. 7
® Present work
20 1 s | . | " 1 ! |
-2 -1 0 1 2

Log RH (%)

Figure 4.9. Fatigue parameter for silicameasured at room temperature and at different
relative humidities, data from present work and from Mrotek et a. [22].



140

Relative Humidine (%)
oot 1w ot et ot e

313
1.10 +— S .
N -
- 412
\\ -
1.0% > ]
— AN 411
-\.\E \\ T
s N “";'
= 100 o 10
i S E
n o ~- - --3 =
e 95 LN =" 17 &
E: -t % 1w
= T T v e ] =
S Y 4 1=
o 0,90 + v AN \%—_ B
o L ‘\ \ ] -
— I ® |*resent wark b ) !_
eS| 7
B dyncan et al. 1
¥ rael e al .
080 - & T.ower N
| [ | f L | L1 f [ | s

-6 -5 -4 -1 -2 -1 0 1 zl
Log 1211 (%)

Figure 4.10. Room temperature humidity dependence of failure strains for silicafrom
the present work, and from Duncan et al. [23], Mrotek et al. [22] and Lower [24].



141

2. SUMMARY AND AFTERWORDS

The failure characteristics of glass are of great interest in both science and
technology. Thisdissertation includes several different aspects of thistopic. This
chapter serves as a summary of the previous chapters, mixed with some suggestions for
future work.

The development of high strength glasses and their applications are an important
component to meet the need of today’s progressing industry. There are severd critical
aspects in determining the useful strength of glass: 1. the ultimate strength of glass, which
is determined by the bond strength and the glass structure; 2. the presence of flaws or
heterogeneities, in the structure, i.e. variation in bond strength, interstice size, ring size,
etc; 3. the presence of surface flaws, and 4. the fatigue effect. The first two aspects can
be categorized into the intrinsic properties and the last two aspects are extrinsic effects.
The two categories are to be discussed in the following texts.

2.1. INTRINSIC ASPECTS OF GLASS STRENGTH

2.1.1. Elastic Defor mation of Glasses. Aswas described in Paper 1, the inert
intrinsic failure strains measured by the two-point bend technique represent one approach
to measure the ultimate strength of glass, and thus are related to the atomic structure and
bond strength of glass. It was shown in Paper 1 that the inert strength of silica glass can
be as high as ~12 GPa (failure stress), which is the greatest among the glasses studied,
including E-glass, soda-lime silicate glass, sodium aluminosilicate glass, sodium silicate
glass and sodium aluminosilicate glasses. Thisis attributed to the cross-linked network
and high bond strength of silica. However, silica does not exhibit the greatest inert
failure strain. The strain-to-stress relationship (elastic modulus) isimportant in
determining the ultimate strength of glass.

Y oung’s modulus is often used to predict the ultimate strength. For example, the
ultimate strength of glassis estimated to range from E/10 to E/x, where Eis Young’s
modulus, since Y oung’s modulus represents the bond strength [1]. In Paper 2, it was
discussed that for sodium silicate glasses, sodium aluminosilicate glasses, and sodium
borate glasses, the inert failure strain decreases with increasing Y oung’s modul us.

Similar correlations were observed for many other glasses[2]. Thisindicates that glasses
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with greater bond strength exhibits smaller inert failure strains. It is suggested that the
elastic modulus increases with increasing connectivity and dimensionality of the glass
structure [3]. A cross-linked strong glass that exhibits great ultimate strength will at the
sametimefail at asmall strain. You can’t sell the cow and drink the milk. Anintuitive
reason for this phenomenon would be that the weak structure allows the glass network to
deform more prior to failure [4]. However, this explanation merely describes the
guestion but does not actually answer it. It would be interesting to further study the
structural changes that occur before and at the crack initiation.

The molecular dynamic (MD) simulation could be a useful tool to study the
structural dynamics of a strained fiber [5]. The MD simulation provides the possibility to
directly observe the smulated atom movement and bond breaking under tension or
compression stress. The energy dissipation mechanism can aso be examined. The
information of failure process can be compared to the measurement from real materials.

2.1.2. Inert Fatigueand IDFE. Theinert fatigue [6] and IDFE (inert delayed
failure effect) [ 7] also strongly depend on the glass structure. It was summarized in Paper
1 that most cross-linked glasses exhibit inert fatigue while depol ymerized glasses exhibit
IDFE. Theinert fatigue is attributed to thermal fluctuations of bond strength under high
stress [6], whereas IDFE is possibly due to the reorganization or relaxation of glass
structure, perhaps in processes similar to those that account for low-temperature internal
friction [8,9]. These speculations need to be confirmed in further research.

It would be interesting to study the inert failure behavior at different temperatures.
For example, room temperature high vacuum (~20°C), elevated temperature high vacuum
(>100°C), immersion in liquid helium (~4K), liquid nitrogen (~77K), liquid oxygen
(~90K) and some appropriate water-insoluble liquid mixed with dry ice (~-79°C). If inert
fatigue is due to thermal fluctuations associated with individual bonds, it should be an
activated process and change systematically with increasing temperature, following an
Arrheniusrelationship. If IDFE isdueto internal friction, it can be correlated to the
inertial friction peaks at different temperatures[8].

In Paper 1, IDFE is correlated with the deformation mechanisms associated with

indentation. It will be interesting to study the indentation behavior in inert conditions for
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several different glasses that exhibit IDFE to different degrees. Shear flow under
indentation possibly accounts for the IDFE behavior.

Another important piece of information that can be studied in indentation
experimentsis ‘brittleness’ [10], which was discussed in Paper 2. Compared to the
toughness, which describes how easily a crack can grow on the glass surface, the
brittleness describes how easily a crack can form on the glass surface, thus can help
understanding crack initiation processes.

2.2. EXTRINSIC ASPECTS OF GLASS STRENGTH

The practice strength of glassislower than the ultimate strength of glass dueto
flaws and fatigue. Surface damage is minimized by testing freshly-drawn fibers. During
the failure strain measurements, extra care was used to avoid any contact on the fiber
surface; otherwise the failure strain will be much smaller. Thefailure strain of glass
fibersisfound to depend on the surface topology (see Appendix E). The relationship
between the flaw size and strength is well established in fracture mechanics[12,11].
Other than surface flaws, there are aso “Griffith’s flaws’ in the bulk of the glass.

2.2.1. Mdt History Effect. The melt history effect is discussed in Appendix C.
For some glass fibers, the inert failure strain distribution is tight, showing that the glassis
‘homogeneous’ in structure; for other glass fibers, prepared from melts with different
melt histories, the inert failure strain distribution is broad, showing that there are some
heterogeneities serving as ‘weak points’ or ‘Griffith flaws’ [12] in the glass bulk or on
the glass surface (discussed in Appendix F). To understand the broad failure strain
distributions, it isimportant to study the sources of the heterogeneities and hopefully their
sizes, shapes and distribution. The presence of these critical flaws is difficult to detect
dueto their small size [2]; however, it is possible to grow crystals on the flaws and then
they can be detected (see Appendix D).

2.2.2. Environmental Fatigue Effect. The other maor enemy of the useful

strength of glassis the environmental fatigue effect, which was discussed in Paper 3 and
4. It was found that the fatigue mechanism and the fatigue susceptibility vary with glass
compositions and structures. The dominant fatigue reaction for cross-linked silicate
glassesis Si-O bond hydrolysis, whereas for alkali modified silicate glasses, the ion-

exchange reaction with water speciesis dominant. The power law model [13,14] is used
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to predict the fatigue behavior, including reaction order and fatigue parameter (reaction
rate). The fatigue parameter isfound to depend on the relative humidity, whereas power
law suggests that fatigue parameter should be independent of environment. This suggests
that the power law has some deficiency describing the fatigue of freshly-drawn fibers. A
further study might be focused on the modeling of the fatigue. The change in fatigue
reaction order at around ~10% RH suggests that the fatigue reaction is complex and it is
likely that more than one reaction occurs at the strained surface of glass. The fatigue
reactions of silicawere thoroughly studied by Matthewson’s group [15,16,17,18]. It
would be interesting to study the fatigue of one of the simple compositions of akali
modified silicate glasses, for example 33%Na,0-67%Si O, glass. The understanding of
different fatigue mechanism might contribute to help develop glasses with greater useful
strength in different environments.
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VISCOSITY MEASUREMENTS FOR COMMERCIAL GLASSES
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VISCOSITY MEASUREMENTS FOR COMMERCIAL GLASSES

The viscosity-temperature characteristics for glass melts were determined with a
standard method described in ASTM C1276-94 and C965-96 using a Haake high
temperature viscometer (Model: ME-1700, shown in Figure A.1).

P Viscometer

Viscometer

Support - Spindle

a— FLIMace

Crucible |
|_—Heating
Molten Glass e Elements
Sample
Thermocouple Control
-
Thermocouple

== Pedestal

Figure A.1. Schematic diagram of a high temperature viscometer measuring system

The viscometer features a platinum crucible (diameter R) and spindle (length L
and diameter r), and viscosity (h) is determined by measuring the torque (T) required to
maintain a constant spindle spinning speed (w) as afunction of melt temperature
(Equation (1)).

1 (1 1)T 1)

"= anL\2 " R2) W
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In a particular experiment, a glass sampleis crushed to small pieces and about 50
grams of crushed glass were re-melted in the viscometer platinum crucible in the
viscometer at about 1400°C for at least 4 hours to produce bubble free melt. After a
homogeneous melt was obtained, the platinum spindle was lowered into the melt and
rotated. The rotation speed is adjusted so the corresponding torque is in the detect range
of the viscometer. The furnace was cooled to about 1000°C at the rate of 10°C/min,
when the torque and the spindle speed were recorded and used to calculate the melt
viscosity. Each melt was then re-heated at 10°C/min and the viscosity was again
recorded as a function of temperature. The temperature was cycled severa times for each
melt and an average viscosity-temperature was determined.

Thisviscometer is calibrated using several different glasses with known viscosity-
temperature characteristics, including SRM717a, a standard borosilicate glass provided
by NIST, and BK-7, acommercia borosilicate optical glass provided by Schott Glass
North America. Figure A.2 shows an excellent agreement between the melt viscosity-
temperature curve for BK-7 measured at Missouri S& T and that reported by Schott.
Figure A.3 shows similar curves obtained for the SRM717aglass.
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Figure A.2. Viscosity-temperature curves for BK-7 glass, measured at Missouri S& T and
reported by Schott Glass North America (reference).
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Figure A.3. Viscosity-temperature curves for NIST SRM717aglass, measured at
Missouri S& T and reported by NIST.

The viscosity curve provides valuable information for glass manufacturing in
industry, and also benefits this research. The isokom temperature of 1000 Poise is
referred to as the forming temperature (Tg), due to the ease of manufacturing glass at this
temperature. It isalso used as the “well-conditioned” melting temperature baseline in the
thermal history study.

Figure A.4 to Figure A.7 show the viscosity-temperature curves collected for each
of the four Ol samples. These curves were fit using the V ogel—Fulcher—Tammann (VFT)

equation (Equation (2)):

b

T—-c @)

logn =a +

where a, b and c are VFT fitting parameters. Table A.1 liststhe VFT parameters for each
respective average data set.
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Table A.1. VFT parameters and 1000 P isokom temperatures for four Ol SLS bottle

glass samples.

Glass Samples provided VFT parameters Forming Temperature
by Owens-llinois a b c 10 P isokom (°C)
OI-A (clear) -041 2549 463 1220 +19

Ol-B (emerald green) -0.586 2550 465 1175+ 5

OI-C (amber) -0.504 2550 474 1202+ 4

OI-D (dead leaf green) -0.529 2553 487 1210+ 5
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Figure A.8 to Figure A.11 show the viscosity-temperature curves collected for
four of the five PPG samples, except for PPG-E glass, for which the viscosity curve
provided by PPG isused. The VFT parameters and the 1000 P isokom temperatures
(Forming temperatures) for each sample arelisted in Table A.2. The measured values for

the Forming temperatures are very close to reported values provided by PPG.
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Figure A.8. Viscosity-temperature curve of PPG-C glass.
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Figure A.9. Viscosity-temperature curve of PPG-P glass.



Log Viscosity (Poise)
¥

o |

154

Measued 51
Mcasured =2
Ideasured #3
—Mdcasured +4

—Average

110y 1130

1200 1250 3000 13300 1400 1430
Temperatue (°C)

Figure A.10. Viscosity-temperature curve of PPG-D glass.

Log Viscosity (Poise)
e

3
Measured =1
3 Meased =2
1 Measured =3
—Measured =4
3 —Average
3
5
2 |
1 LiH L1350 1200} 1250 1300 1350 1400

Temperature (°C)

Figure A.11. Viscosity-temperature curve of PPG-H glass.

Table A.2. VFT parameters and 10° P isokom temperatures for four PPG glass samples.

Glasses provided VFT parameters Forming Temp.10° P isokom (°C)
by PPG a b C Measured Reported (PPG)
C-glass -0.597 2554.2 498.8 1209+ 3 1217
P-glass -0.520 2555.3 506.2 1232+ 6 1223
D-glass -0.684 2569.2 603.4 1301+ 3 1288
H-glass -1.027 2567.1 555.7 1295+ 8 1293
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LIQUIDUSTEMPERATURE MEASUREMENTS
FOR COMMERCIAL GLASSES

The liquidus temperature (T.) of amelt is the maximum temperature at which the
primary crystalline phase isin equilibrium with the melt. T, is measured using the
gradient furnace technique described in ASTM C829-81. In aparticular experiment,
approximately 40 grams of glass powder was spread evenly onto aten-inch-long
platinum foil boat. The boat was kept in the gradient furnace with a temperature range
from ~800 to ~1100°C in air for 24 hours. During this period, the temperature profile of
the furnace was recorded at 0.25 inch intervals. After 24 hours, the boat was removed
from the furnace and the sample quenched in air to room temperature. The sample was
then examined under alight microscope to identify the position of the crystal/melt
interface. From the recorded temperature profile, the liquidus temperature was
determined. Based on the precision of the position measurement and the uncertainty in
the temperature profile, the experimenta uncertainty of this measurement is about +10°C.

Figure B.1 shows a photograph of the platinum strip with a sample of OI-A after
24 hoursin the gradient furnace. Superimposed on this photograph is the temperature
gradient recorded for this sample. The distinct line between the crystallized portion of
the sample and the clear (glassy) portion corresponds to 999 + 10°C, and thisis defined
as T, for thisglass.

The liquidus temperatures measured in this study are listed in Table B.1. Also
listed are reported values from glass provider. The liquidus temperature of PPG-C glass
is 1092°C, compared favorable to reported value of 1095°C. for PPG-P glass the
measured value is 1110°C, compared favorable to reported value of 1118°C. The

difference is within error of this experiment.
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Figure B.1. Liquidustemperature measurement for SLS glass OI-A.
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TableB.1. Liquidus Temperatures for Ol and PPG glass samples.

Glass Samples T, measured (+10°C)

T. reported by glass

provider (°C)
Ol-A 999 N/A
Ol-B 1005 N/A
OlI-C 1018 N/A
OI-D 1050 N/A
PPG-C 1092 1095
PPG-P 1110 1118
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MELT HISTORY EFFECT ON FAILURE STRAINSFOR
COMMERCIAL SODA-LIME SILICATE GLASSES

Strength of glass was considered an extrinsic property for along time, because
extrinsic flaws are the most decisive factorsin determining the strength of glass[1].
Measured strength can vary several orders of magnitude according to the surface
conditions of the sample[2]. Attempts have been made to measure intrinsic strength of
glass by testing ‘flaw-free’ pristine samples[3]. Some reports of strength measurement
have approached the theoretical values of strength by measuring pristine samplesin inert
conditions [4,5,6], whereas others found that strength distribution of glass can be broad,
and that is related to the melt history of the glasy[7,8]. Otto [9] measured tensile strength
of pristine calcium aluminoborosilicate glass fibers with different diameters and with
different forming conditions. He found that the strength of fibers of different diameters
were identical within the experimental limits, as long as the forming conditions are nearly
identical, and that fibers of same diameter exhibited greater strength when formed at
higher temperatures. Thisindicates that, when the effects of surface flaws are minimized,
some other imperfections that are generated during the forming process limit the ultimate
strength of glass. Griffith [1] suggested that, other than extrinsic flaws on the surface of
the samples, melt preparation and conditioning play an important role in glass strength.
Batch purities, melting temperature and forming temperature, etc. have influences on the
measured strength of glass.

Lower et a. [10,11] showed that in general, longer melting times and greater
melting temperatures ensure greater average failure strain and narrower strain distribution.
Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM) and Scanning
Electron Microscopy (SEM) were used to characterize sources of broad failure
distribution of the fibers, but no distinct sources for strength-limiting flaws were detected.
If the broad strength distributions are due to some heterogeneity from the melt, they are
expected to be so small in size (nanometer scale) that they are beyond the delectability of
these techniques.

In the present work, failure strains of a commercial soda-lime silicate glass are
measured and the melt history effects on the strength distribution are studied.
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Commercial flint soda-lime silicate (SLS) clear glass bottles (termed ‘OI-A’)
provided by Owens-1llinois were remelted in platinum cruciblesin air. Fiberswere
drawn from the surface of the melt onto a rotating cage which was designed to prevent
fiber overlap and damage. Fiber diameter was monitored by eye and controlled by the
fiber pulling temperature and the drawing speed. All fibers are drawn into a diameter of
125 + 20 pm.

Failure strains of freshly drawn fibers were measured using the two-point bending
(TPB) technique [12] with fibers either immersed in liquid nitrogen or tested in air at
room temperature (21+2°C) with arelative humidity of 50+2%. The relative humidity is
controlled by blowing a mixture of wet and dry air onto the surfaces of the fibers, and is
monitored using adigital psychrometer (Extech RH305). The fibers drawn from melts
were tested immediately after they were formed. No aging effects were observed.

In a TPB test, a pristine section of glass fiber, diameter d, is bent into a U-shape
between two parallel face plates, one of which travels towards the second at a constant
faceplate velocity (vip), compressing the ‘U’ until failure. The gap distance at failure (D)
isrecorded, and the failure strain (g) is then calculated from: [13]

1198 x d

& = W @D
OI-A SLS glass bottles were crushed and remelted in platinum cruciblein air at

1120°C, 1220°C (1000 Poise isokom temperature) and 1320°C for different lengths of
time. Inert failure strains of fibers drawn from each melt with different melt time were
measured using TPB technique under liquid nitrogen. For glass melted at 1120°C, failure
strains were also measured in room temperature air (21+2°C) with 66+2% relative
humidity. The Weibull distributions for these failure strains were shown from Figure C.1

to Figure C.3.
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Figure C.1. Failure strain distribution of OI-A SLS glass fibers measured using TPB
technique. The glasswas melted at 1120°C for different lengths of time prior to fiber
pulling. Open data points are measured in liquid nitrogen, solid data points are measured
in air at room temperature (21+2°C) with arelative humidity of 66+2%.

From Figure C.1, it can be seen that when melted at 1120°C, the inert failure

strain distributions for OI-A glasses tighten as the melting time increases from 1.5 to 16

hours. The failure strains measured in humid air do not show such distinct dependence

on melting time dependence.
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Figure C.2. Inert failure strain distribution of OI-A SLS glass fibers measured in liquid
nitrogen using TPB technique. The glass was melted at 1220°C for different length of
time prior to fiber pulling.

When melted at 1220°C, the failure strain distribution initially startsto tighten as
the melting time increases. The tightest failure strain distribution is from glasses melted
for 4 hours at 1120°C, and then the failure strain distribution starts to broaden for longer
melting time. The tightest distribution in Figure C.2 istighter than the tightest
distribution in Figure C.1, and it takes shorter time, indicating that melting at 1220°C
makes the glass melt reach its homogeneous state faster than melted at 1120°C. But for

some reason, this homogeneous state discontinued after longer melting time.
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Figure C.3. Inert failure strain distribution of OI-A SLS glass fibers measured in liquid
nitrogen using TPB technique. The glass was melted at 1320°C for different lengths of

time prior to fiber pulling.

Melting time dependence of inert failure strain distributions for 1320°C melt
(Figure C.3) issimilar to that for 1220°C melt (Figure C.2). Thefailure strain
distribution tightens at first than broadens after longer time of melting.

A summary of melt history and corresponding failure strains are listed in Table C.

to Table C.3, where gmax IS the average of 3 maximum failure strain measured for a

particular set of fibers, emiqg IS the medium failure strain, emin 1S the average of 3 minimum

failure strain, and m is the Weibull modulus, which is the slope of datain the Weibull

plot. The Weibull modulusis a measure of the tightness of adistribution. The tighter the

distribution is, the steeper the lope is, and the greater value of mis.



Table C.1. Mdlt history (1120°C) study on OI-A glass.
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Melt History  Pull#, Condition emax (%0)  &mig (%)  &min (%) m
1120°C 1.5h  P1, RH 66% 6.20 594 5.40 25.7
P1, LN 17.82 16.32 10.18 5.8
1120°C 4h P2, RH 66% 597 5.79 5.61 58.1
P2, LN 17.48 16.13 11.68 8.7
1120°C 8h P3, RH 66% 5.88 5.53 5.04 224
P3,LN 16.64 14.50 13.39 15
1120°C 16h P4, RH 66% 591 5.52 5.38 33
P4, LN 17.24 16.23 14.39 215
Table C.2. Mdlt history (1220°C) study on OI-A glass.
Melt History  Pull# Condition ema (%)  €mig (%) emn(%) m
1220°C 1h P1, LN 18.03 17.18 12.22 104
1220°C 2h P2, LN 17.94 17.07 14.22 18.4
1220°C 4h P3,LN 18.34 17.27 16.69 43.9
1220°C 8h P4, LN 18.08 17.22 14.02 18
1220°C 22h P5, LN 17.91 1711 11.65 9.2
Table C.3. Mdlt history (1320°C) study on OI-A glass.
Melt History  Pull#, Condition &max (%)  €mig (%) &min (%) m
1320°C 1h P1, LN 18.08 16.65 11.43 9.5
1320°C 2h P2, LN 18.02 16.92 14.65 20.8
1320°C 4h P3, LN 18.23 17.08 13.96 15.3
1320°C 8h P4, LN 17.77 16.49 13.18 14.3
1320°C22h  P5,LN 17.54 16.83 12.10 10.7
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Figure C.4 plots failure strain and Weibull modulus as a function of melting time

at 1120°C, for both in liquid nitrogen (LN) and in relative humidity (RH). Inert failure

strain distribution tightened as melting time increases. A clear trend of increase can be

found in Weibull modulus. However, failure strain distribution in RH does not seem to

have a melting time dependence, except that the Weibull modului of failure data at 4

hoursis abnormally high. It can also be seen that the inert failure strains are much

greater than failure strains measured in RH, whereas the Weibull modulusis smaller in

LN than in RH. Thisindicates that the failure mechanisms for the two conditions are

different.
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Figure C.4. Médlt history study for OI-A SLS glass melted at 1120°C, (a) Failure strain;
(b) Weibull modulus of OI-A SLS glass fibers measured using TPB technique. Solid data
points are measured in liquid nitrogen, open data points are measured in air at room

temperature (21+2°C) with arelative humidity of 66+2%.
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Figure C.5. Failure strain of OI-A SLS glass fibers measured in liquid nitrogen using
TPB technique. Glass were melted at 1120°C (a), 1220°C (b), and 1320°C (c), for a
certain period of time prior to fiber pulling. (d) Weibull modulus of corresponding data.

Figure C.5 shows the melting time dependence of the inert failure strains and the
Weibull modulus for OI-A glass melted at 1120°C, 1220°C and 1320°C. The greatst
failure strain in every distribution is lying at about 18%, which is probably the greatest
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TPB failure strain for OI-A glass measured at this condition (LN, 4000 um/s). If this
value represents the inert failure strain of a ‘perfect’ homogeneous OI-A glass fiber, then
any failure strain which is smaller than 18% is due to some structural flaw present in the
bent region of afiber.

The Weibull moduli at 1120°C increase with increasing melting time, while for
1220°C and 1320°C melts, the Weibull modulus reach their highest values at 4 and 2
hours respectively. The reason for the decreasing Weibull modulus is unknown.

A continuous melt history study is shown in Figure C.6. Fibers were drawn from
the same melt held at different temperature for different length of time. Generally, the
average failure strains pulled from melts conditioned at Tr or above T, increased with
increasing melting time. Air quench of melt resulted in adecreasein faillure strain. The
average failure strain melted below T decreased with increasing melting time.
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Figure C.6. Thermal history study of SLS container glass OI-A (grey lines show melt
history, corresponding to left Y-axis; Colored symbols show failure strains,
corresponding to right Y-axis; black bars represent average number of each set of data;
highlighted open symbols represent five worst failure strains from each set of data).
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The viscosity-temperature curves for 4 Ol bottle glasses and 4 PPG fiber glasses
were determined using a high temperature rotational viscometer. The 1000 P isokom
temperatures, or the forming temperatures (Tr) are comparable to the available reported
values from the glass providers. The liquidus temperatures (T,) for 4 Ol bottle glasses
and 2 PPG fiber glasses were determined using a gradient furnace, and they are
comparable to the avail able reported values from the glass providers.

Failure strains for OI-A soda-lime silicate glass fibers were determined using two-
point bending technique. The failure strain distributions are dependent on the melt
history of the glass prior to the fiber drawing. Melt history study are performed based on
Teand T, for OI-A glass. It was observed that the inert failure strain distribution tightens
with increasing melting time at a temperature close to Tg at the beginning, then the failure
strain distribution starts to broaden. The reason for the broadening of the failure strain
distribution is unknown. The melting history effect on inert failure strains was not
observed on failure strains measured in room humidity. The small failure strainsin broad
inert failure strain distributions might due to some structural flaws which are not big
enough to have an effect on failure strains measured in room humidity. When the glassis
melted below Ty, inert failure strains decrease with increasing melting time. This
degradation can be recovered by melting the glass above T,.

Fibers drawn from glasses melted at Tr and below T, are heat treated at its
crystallization temperature. ‘Bad’ fibers (melted below T, and yielded abroad failure
strain distribution) grow more and bigger crystals on the surface than ‘good’ fibers
(melted at Tr and yielded atight failure strain distribution). This might indicates that the
heterogeneities that are responsible for broad failure strain distribution can serve as nuclel
in crystallization behavior. Further study has to be done to confirm this specul ation.

Fibers etched in acid has smaller inert failure strains and tighter failure strain
distribution, indicating that the etching process produced similar sized and evenly
distributed flaws on the fiber surfaces. The existence of the ‘low strain tail” suggests that
the heterogeneities which are responsible for the broad failure strain distribution are
located in the fiber instead of on the fiber surface.
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FIBER HEAT TREATMENT

It isdiscussed in Appendix C that theinert failure strain distributions are
dependent on the melt history of the glass. It is possible that these weak points are due to
‘Griffith’ flaws [1] that are too small to be detected using nuclear magnetic resonance
(NMR), atomic force microscopy (AFM) or scanning el ectron microscopy (SEM) [2].

A hypothesisisthat such heterogeneities can serve as nucleation citesin
crystalization process. If so, crystals can grow on these heterogeneities upon an
appropriate heat treatment. A differential thermal analysis (DTA, Perkin-EImer DTA7)
is performed on about 100 mg of commercia soda-lime silicate flint clear bottle glass
(Ol-A) powders (<150 pm). Sampleswere heated in air in an aluminacrucible at
2°C/min from 700°C to 1100°C ina. Figure D.1 showsthat an exothermal peak at
880°C was detected and it is expected to be the crystallization peak.
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Figure D.1. DTA patterns of OI-A soda-lime silicate glass heated in air at 2°C/min (two
identical runs).
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Figure D.2. Weibull distributions failure strains for OI-A soda-lime silicate glasses with
different melting histories, failure strains were measured using two-point bend technique
in 21°C distilled water and in liquid nitrogen (LN) at afaceplate velocity of 4000 um/s.

Fibers with different melt histories and different failure strains were heat treated
in atube furnace at 880+2°C for 1 hour. The temperature is examined using a second
thermocouple at the location of thefibers. Fibers are arranged in aternate way so that
‘good’ fibers and ‘bad’ fiber are scattered. Heat treated fibers were examined using an
optical microscope (Nikon Optiphot-POL) (shown in Figure D.3).

Before heat treatment, there is no difference for ‘good’ fibers and ‘bad’ fibers
under microscope. Both fiberslook immaculate. After 1 hour of heat treatment, there are
more crystals grown on the surface of ‘bad’ fibers and less on ‘good’ fibers, shown in
Figure D.3. If these crystals are grown from the nuclel that are responsible for weaker
fibers, this may indicate that the Griffith flaws are on the surface of the fibers. Assuming
al Griffith flaws are on the surface of the fibers, such flaws can be eliminated by etching

the fiber surface before failure test.
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Figure D.3. Optical microscope images for heat treated fibers, upper three images from
‘bad’ fibers and bottom three images from ‘good’ fibers.
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FAILURE STRAINSFOR ACID ETCHED FIBERS

Etching test was performed on soda-lime silicate glass provided by Asahi Glass.
The SLS glass sample was remelted in air in a platinum crucible at 1450°C for 4 hours.
Fibers with adiameter of 125+20 um were pulled from the surface of the melt at 1170°C
using afiber drawing system. After the fibers are drawn from the melt, they are etched
in an acid solution (8% HF and 10% HCI in weight) for 30 seconds. After the etching,
the fibers were washed by dipping in distilled water in the #1 bottle for 10 seconds,
dipping in distilled water in the #2 bottle for 10 seconds, dipping in distilled water in the
#3 bottle for 10 seconds, dipping in ethanol in the #4 bottle for 10 second, dipping in
acetone in the #5 bottle for 10 seconds, and drying in the air. By dipping severa times,
acid on the surface can be removed. Water on the fiber surface is removed in ethanol and
acetone. A control group of fiber were ‘etched’ using the same process but with distilled
water replacing the acid solution, in order to rule out the effect of the extra handling
effect on thefibers. Fiber diameters were measured before and after etching. An
average of 3.3+0.5 pm decrease in diameter isrecorded. Inert failure strains for etched
fibersare shownin Figure E.1.

The failure strains for the original fibers and fibers ‘etched’ in water are amost
identical, indicating that the extra handling does not have much effect on the inert failure
strain. The greatest failure strain decreases from 18.0% to 13.4% after etching, and the
medium failure strain decreases from 16.7% to 12.7%. It is suggested that the pristine
surface of the fibers become etched and relatively coarse, after dipping in the acid. Itis
interesting that after etching, there are still 10% data points fall in the weak tail of the
failure strain distribution, and the failure strain distribution below 10% probability for
three sets of data are amost identical. This probably suggests that the Griffith flaws are
in the body of the fibers.
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Figure E.1. Inert failure strains for etched soda-lime silicate glass fibers
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RAMAN STUDY OF BENT FIBERS

The glass structure is believed to change when the glassis under stress. Using
Raman (Horiba Jobin Yvon, LabRAM ARAMIS Confocal Raman Microscope) to exam a
bent fiber which is under both positive and negative stress, a shift of the structure peak is
expected to be discovered. A new custom-built two-point bending apparatus was
designed to examine the bent fibers under micro Raman spectrometer (shown in Figure
F.1). Thisapparatusisworking as a small-sized two-point bender, with two polished
paralel faceplates bending the fiber into U-shape.

L

Figure F.1. Two-point bend apparatus design for Raman spectroscopy.

In this study, asilicafiber with adiameter of 124 microns was bent into U-shape
and tested under Raman spectroscopein air. The distance between two faceplates was
3.08 mm, providing a strain of 5.17% and a maximum stress of 3.7 GPa. Diode laser was
focused on the stress-concentrated regions and the stress free region.

Figure F.2 shows Raman spectra of the stress-free, tensile, and compressive
region of abent fiber. We were able to observe peak shift in the 423 cm™, 482 cm™*, 596
cm?, and 802 cm™* bands. No significant shift observed at 1050 cm™. Generally, in
tensile region, the Raman peak shifted to lower frequency; in compressive region, the

Raman peak wave number shifted to higher frequency. Central force models predict that
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under tensile stress, Si-O-Si angle increase, with decreasing frequency of 440 cm™ and

800 cm™ band, whereas under compressive stress, Si-O-Si angle decreases, with

increasing frequency of 440 cm™ and 800 cm™ band.
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Figure F.2. Raman spectrum for silicafiber under stress.

This apparatus does not allow bending in liquid nitrogen or other inert conditions,
thus the highest strain for silicawithout failureis ~5%. If it can be improved to allow

bending in liquid nitrogen or other conditions, a silicafiber can be bent to >15% strain,

and much more significant Raman peak shifts are expected.
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