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ABSTRACT 

Some lattice-ordered subrings of C(X) containing 

C*(X) are examined where X is a completely regular space. 

Each realcompact spaceY betweenvx and Sx is associated 

with a lattice-ordered subring of C(X) which is isomorphic 

to C(Y) and contains C*(X). The cardinal number of 

(SOC - vX) is a lower bound for the cardinal number of 

these subrings. Every prime ideal in each of these sub­

rings is comparable with the intersection of the subring 

and a maximal ideal in C(X). 

The structure space of maximal ideals is studied 

for special subrings in C(X) containing CK(X), the 

continuous functions of compact support, and C00 (X), the 

continuous functions converging to 0 at infinity. Examples 

of structure spaces are given which are homeomorphic to 

finite point compactifications of R. A study is made of the 

free maximal ideals in CK(X) + P(X) where P(X) is a 

subring of C(X) such that CK(X) () P(X) = {~} and X is a 

locally compact, non-compact, Hausdorff space. 
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I. INTRODUCTION 

Let X be a completely regular space, let C(X) be the 

ring of real-valued, continuous functions on X, and let 

1 

C*(X) be the ring of bounded, real-valued, continuous 

functions on X. The basic problem is to determine properties 

for special subrings in C(X) similar to those known for 

C*(X) and C(X). The properties of prime ideals, convex 

ideals, and the structure space of maximal ideals are 

examined. 

We first consider properties of some special lattice­

ordered subrings of C(X) containing C*(X). An onto iso­

morphism is established between the ring of all real-valued, 

continuous functions on a realcompact subspace of the Stone­

~ech compactification of X and a lattice-ordered subring of 

C(X) containing C*(X). Using this isomorphism we study 

the prime ideal structure of these lattice-ordered subrings 

and we also study some conditions on the ideals in these 

lattice-ordered subrings which make the quotient ring 

totally ordered. The structure space of these lattice­

ordered subrings is easily found with the aid of this 

isomorphism. 

Another problem is to determine the structure space 

of maximal ideals for different subrings of C(X). A 

larger problem is the characterizing of different compacti­

fications of X using algebraic properties of a subset of 
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real-valued functions. We consider a lattice-ordered 

subring of C(R) containing the polynomials. We also study 

certain subrings of C(X) containing CK(X), the continuous 

functions of compact support on X, and C00 (X), the continuous 

functions which converge to 0 at infinity. For a completely 

regular, non-compact, locally compact space X some of these 

structure spaces are finite point compactifications of 

X while other structure spaces are not Hausdorff. 

Almost all of the notations and definitions are in [5]. 

Many of the authors listed in the bibliography follow the 

notation in [5]. In this dissertation a proper subset is 

denoted by c. The basic source for the results involving 

rings of real-valued, continuous functions and for the 

background of this dissertation is [5]. 
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I I . REVIEW OF THE LITERATURE 

., 
In 1937, Stone in [27] and Cech in [2] independently 

produced a compactification of a completely regular spa.ce 

X and proved many of the essential results of this compacti-

fication. We denote this compactification by Sx and call 

it the Stone-Cech compactification of X. In [27] Stone 

also developed much of the theory of the ring C*(X) and 

showed that all maximal ideals are fixed if X is a compact 

space. In 1939, Gelfand and Kolmogroff in [3] developed 

Sx as a structure space of C(X) using the Stone topology on 

the set of maximal ideals in C(X). They characterized all 

maximal ideals in C(X). In 1948, Hewitt in [8] defined and 

investigated "Q-spaces 11 , which we call realcompact spaces. 

He established the existence of a unique realcompactification 

of a completely regular space X and derived many properties 

of realcompact spaces. He gave a systematic study of free 

ideals and fixed ideals and is responsible for much of the 

terminology of free ideals and fixed ideals. Hewitt 

studied properties of C(X) using zero sets of the functions 

in C(X). Much of the research in rings of continuous 

functions has been an outgrowth of the above papers. 

In 1958, Kohls in [11] and [12] made the first general 

investigation of the prime ideals in C(X). Chapter 14 in 

Gillman and Jerison's book [5] has many of Kohls' results. 

The 1968 paper by Mandelker [14] investigated the prime 

ideal structure of C*(X). 
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Many different subrings of C(X) have been investigated. 

CK(X) or C00 (X) were investigated by Kohls in [10] and [11] 

and by Shanks in [25]. Gillman and Jerison in [5] showed 

that CK(X) is the intersection of all free maximal ideals 

in C(X) whenever X is a realcompact space. In recent 

papers Pursell in [21] and [22] investigated the structure 

space and properties of the subrings CK(X) + (constant 

functions) and C (X) + (constant functions). Pursell intro-
oo 

duced the concept of a real function ring in [20] and showed 

that X and the set of fixed maximal ideals in a real 

function ring are in one-to-one correspondence. Riordan 

in [23] characterized the ring of functions with Pseudo-

compact support as CK(vX). 



III. SPECIAL SUBRINGS CONTAINING C*(X) 

A. Realcompact Spaces and Subrings 

In this section preliminary theorems are given about 

maximal ideals, the Stone-~ech compactification, and real-

compact spaces. Theorem 15 gives a characterization of 

realcompact spaces from [5]. Using this characterization, 

Theorem 16 shows how a realcompact space can be associated 

with a lattice-ordered subring of C(X), the ring of real-

valued continuous functions on X. Theorem 17 gives an 

isomorphism between the continuous functions on a real-

compact space and a lattice-ordered subring. Corollary 

19 gives a lower bound for the cardinal number of these 

lattice-ordered subrings. The isomorphism in Theorem 17 

is used throughout Section III C. 

In this thesis X denotes a non-empty, completely 

regular, Hausdorff space and RX denotes the ring of all 

real-valued functions on X. Ring operations of addition 

and multiplication are defined pointwise. An isomorphism 

5 

denotes a ring isomorphism. There are times when C(X) will 

be denoted by C and C*(X) will be denoted by C*. Consider 

any function fin RX and let Z(f) = {x in X: f(x) = 0}. 

ZX(f) or Z(f) is called the zero set of f. If A is a 

subset of Rx, then Z[A] = {Z(f): f is in A}. A z-filter 

refers to a filter of zero sets. Theorem 1 indicates why 
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only completely regular spaces are used when dealing with 

subrings of C(X). Theorem 2 gives some important con-

nections between zero sets and the topology on X. 

THEOREM 1. [5, Theorem 3.9] For every topological 

space X, there exists a completely regular space Y and a 

continuous mapping e of X onto Y, such that the mapping 

g ~go e is an isomorphism of C(Y) onto C(X). 

THEOREM 2. [5, Theorem 3.2] 

(i) A Hausdorff space X is completely regular if and only 

if the family Z[C(X)] is a base for the closed sets of X. 

(ii) Every neighborhood of a point in a completely regular 

space contains a zero set neighborhood. 

THEOREM 3. [5, Theorem 2.5] Let Z be a mapping that 

takes fin C(X) to Z(f) in Z[C(X)]. 

(i) If M is a maximal ideal in C(X), then Z[M] is a z-

ultrafilter on X. 

(ii) If U is a z-ultrafilter on X, then Z +[U] =~in C(X): 

Z(f) is in U} is a maximal ideal in C(X). 

DEFINITION 1. Let B be an ideal in a subring of Rx. 

In this thesis an ideal always denotes a proper ideal. B 

is said to be a fixed ideal if ~ Z(f) ~ ~; otherwise, 
fEB 

B is said to be a free ideal. In a similar manner we can 

define a fixed or free z-filter. Since the fixed (free) 

maximal ideals in C(X) are in one-to-one correspondence 
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with the fixed (free) z-ultrafilters on X, we will often 

interchange maximal ideals and z-ultrafilters when working 

with C(X). 

The fixed maximal ideals in C(X) were characterized by 

Gelfand and Kolmogoroff in [3, Lemma 2] and the fixed 

maximal ideals in C*(X) were characterized by Stone in 

[27, Theorems 79, 80]. 

THEOREM 4. [5, Theorem 4.6] 

(i) The fixed maximal ideals in C(X) are precisely the 

sets M = {f in C(X): f(p) = 0} for p in X. The ideals 
p 

MP are distinct for distinct p. For each p, C/MP is 

isomorphic with the real field R; in fact, the mapping M (f) 
p 

~ f(p) is the unique isomorphism of C/M onto R. 
p 

(i*) The fixed maximal ideals in C*(X) are precisely the 

sets M* ={fin C*(X): f(p) = 0} for pin X. The ideals M* 
p p 

are distinct for distinct p. For each p, C*/M* is isomorphic 
p 

with the real field R; in fact, the mapping M* (f) ~ f(p) 
p 

is the unique isomorphism of C*/M~ onto R. 

From Theorem 4, the fixed maximal ideals (or fixed 

z-ultrafilters) in C(X) can be associated in a natural 

way with X, i.e., pin X is associated with M. The Stone­
p 

Cech compactification of X is denoted by Sx. SX is a 

compact, Hausdorff space in which X is dense. Each point of 

SX can be associated with exactly one z-ultrafilter on 

X (or one maximal ideal in C(X)). Each free z-ultrafilter 



on X is associated with one point in Sx - X. For p in 

-~, the associated maximal ideal in C(X) is denoted by MP 

where Mp = M when p is in X. Theorems 5 and 6 give 
p 

properties of the Stone-~ech compactification. 

DEFINITION 2. Let S be a subspace of X. S is C*-

imbedded in X if every function in C*(S) can be extended 

to a function in C*(X). In a similar manner we define S 

to be C-embedded in X. 

THEOREM 5. [5, Theorems 6.4, 6.7] Let X be dense in 

T. The foilowing statements are equivalent. 

(1) Every continuous mapping T from X into any compact 

space Y has an extension to a continuous mapping from T 

into Y. 

(2) The space X is C*-embedded in T. 

8 

(3) Any two disjoint zero sets in X have disjoint closures 

in T. 

(4) For any two zero sets z 1 and z 2 in X, ClT (Z 1 Az 2 > = 

ClT(z 1 ) n ClT(z 2 ) where ClT(Zl) is the T-closure of z 1 . 

(5) Every point of T is the limit of a unique z-ultrafilter 

on X. 

(6) The spaces satisfy X~ T ~ SX. 

(7) The spaces satisfy ST = SX. 
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THEOREM 6. [5, Theorem 6.5] Compactification Theorem. 

Every (completely regular) space X has a compactification 

sx, with the following equivalent properties. 

(I) (Stone) Every continuous mapping T from X into any 

compact space Y has a continuous extension T* from SX into Y. 

(II) (Stone-Cech) Every function f in C*(X) has an extension 

to a function fS in C(SX). 

(III) (~ech) Any two disjoint zero sets in X have disjoint 

closures in SX. 

(IV) For any two zero sets z 1 and z 2 in x, Clsx<z 1 () z 2 ) = 

clsxz 1 f'\ clsxz 2. 

(V) Distinct z-ultrafilters on X have distinct limits on 

sx. Furthermore, SX is unique in the following sense: if 

a compactification T of X satisfies any one of the listed 

conditions, then there exists a homeomorphism of SX onto 

T that leaves X pointwise fixed. 

The mapping (f ~ fS): C*(X) + C(SX) is an isomorphism 

of C*(X) onto C(SX). 

At the present time our main interest will be in real-

compact spaces. Every residue class field of C(X) or C*(X) 

modulo a maximal ideal M contains a copy of the real field 

R by identifying M(~) with r in R where ~ is the "constant" 

function on X that takes each x in X to r in R. Let A 

be a commutative ring with unity. From [5, Section 0.15], 

A/M is a field if and only if M is a maximal ideal in A. 
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DEFINITION 3. An ideal M in a commutative ring A with 

unity is said to be a real ideal if A/M is isomorphic to 

the real field. If M is not a real ideal, we call it a 

hyper-real ideal. 

DEFINITION 4. A completely regular space X is said to 

be realcompact if every free maximal ideal in C(X) is hyper­

real; or equivalently, if every real maximal ideal in C (X) 

is fixed. 

From Theorem 4, every fixed maximal ideal in C(X) 

and also in C*(X) is real. Many of the commonly used 

spaces are realcornpact. The space of real numbers R is 

a realcompact space [5, Section 5.10]. Every compact 

space is a realcompact space [5, Theorem 5.8]. An example 

of a space which is not a realcornpact space is the space 

of all countable ordinals [5, Section 5.12]. 

DEFINITION 5. Let R* be the one point compactification 

of R where R* = R V {oo}. Let f be in C(X). Using Theorem 

6(I), we extend f to a function f*: SX + R* such that f*lx = 

f. f* is called the Stone extension of f. 

THEOREM 7. [ 5' 8.4] The following conditions on p 

J..n SX are equivalent. 

(l) The ideal Mp is a real ideal in C (X) • 

(2) For all f in C (X), f* (p) of 00 

(3) For all f in C (X) , f*(p) = Mp (f) . 

(4) For all f in C (X), f*(p) = 0 implies Mp (f) = o. 
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The set of points in Sx satisfying the conditions of 

the above theorem is denoted by vx. If p is in X, then 

f*(p) = f(p) ~ oo Thus X is a subset of vx. 

COROLLARY 8. [5, Corollary 8.5] 

{i) The space vx is the largest subspace of Sx in which 

X is C-embedded. 

(ii) The space vx is the smallest realcompact space between 

X and Sx. The space X is realcompact if and only if vx = X. 

The following theorem is similar to the compactification 

theorem and was first shown by Hewitt. A realcompactifi-

cation ~f X is a realcompact space in which X is dense. 

THEOREM 9. [5, Theorem 8.7] Every (completely 

regular) space X has a realcompactification vx, contained 

in Sx, with the following equivalent properties. 

{I) Every continuous mapping T from X into any realcompact 

space Y has a continuous extension T 0 from vx into Y. 

(II) Every function f in C(X) has an extension to a 

. v 
funct~on f in C(VX). (Necessarily, fv = f*lvx). 

(III) If a countable family of zero sets in X has empty 

intersection, then their-closures in VX have empty inter-

section. 

(IV) For any countable family of zero sets z in X, 
n 



(V) Every point of vx is the limit of a unique z-ultra­

filter on X, and it is a real z-ultrafilter. 

Furthermore, the space vX is unique in the following 

12 

sense: if a realcompactification T of X satisfies any one 

of the listed conditions, then there exists a homeomorphism 

of vX onto T that leaves X pointwise fixed. 

The mapping (f ~ fv): C(X) ~ C(vX) is an isomorphism 

of C(X) onto C(vX). Several useful results involving 

functions and points in SX - vX are given in Theorem 10. 

THEOREM LO. 

(i) If p is in SX - vX, then there exists a function f 

in C*(X) such that Z(f) =~and f 8 (p) = 0. 

(ii) If f is in C*(X) and f is a unit in C(X) but not a 

unit in C*(X), then f 8 (p) = 0 for some pin SX- vx. 

PROOF. (i) If pis in SX- vx, then from Theorem 7, 

there is a function g in C(X) such that g*(p) = oo. Let 

h(x) = 1 v lg(x) I for x in x. Then his in C(X), h*(p) = oo, 

and h ~ !· Let f(x) = 1/h(x) for x in X. Then f is in 

c*(X), Z(f) =~'and fs(p) = o. 
(ii) Iff is not a unit in C*(X), then using the isomorphism 

between C*(X) and C(SX), fS is not a unit in C(SX). Since 

any h in C(Y) is a unit of C(Y) if and only if Z(h) = ~' 

fS(p) = 0 for some pin SX. Using the isomorphism between 

c{x) and c<vx), fV, the image off, is a unit in C(vX). 

Therefore P is not in vX.// 
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THEOREM 11. [5, Theorem 8.2] Every Lindelof space 

is realcompact where X is a Lindelof space if every open 

cover has a countable subcover. 

THEOREM 12. [5, Theorem 8.9] An arbitrary inter-

section of realcompact subspaces of a given space is real-

compact. 

THEOREM 13. [5, Theorem 8.26] In any space, the 

union of a compact subspace with a realcompact subspace 

is realcompact. 

Let vf X= {pin SX: f*(p) f oo}. 

THEOREM 14. [5, Problem 8 B.2] For f in C(X), the 

space vf X is locally compact and a-compact. 

THEOREM 15. [5, Problem 8 B.3] The realcompact 

subspaces between X and ~ are precisely the spaces 

(\ 
gEe• 

v X for any subset c• of C(X). 
g 

PROOF. From Theorem 14, v X is a-compact. Every g 

a-compact space is a Lindelof space. From Theorem 11, 

v xis a realcompact subspace of Sx for each gin C(X). 
g 

From Theorem 12, A v X is realcompact. Now let Y be a 
gEe• g 

realcompact subspace of SX. From Theorem 5 and Corollary 

8, vX S vY = Y S sx = SY. Define c• = {g in C(X): Y 

is a subset of v X}. g 
Clearly Y is a subset of (\ v X. 

gEe• g 



Let p be in SX - Y = SY - vY. From Theorem 7, there is a 

function f in C{Y) such that f*(p) = oo. Let f' = fix. 

Then p is not in vf' X. 

of vf, X and f' is inC'. 

The result follows.// 

Since f is in C(Y), Y is a subset 

Thus p is not in 
gt.C I 

v 
g 

X. 

THEOREM 16. Let Y be a realcompact subspace of SX. 

Then C' ={fin C{X): Y is a subset of vf X} is a 

lattice-ordered subring of C(X) which contains C*(X). 

PROOF. If f is inC*, then from Theorem 6, vf X= X. 

Therefore C* is a subset of c• and, in particular, ~ and Q 

are inC'. Iff is in c•, then (-f) is inC' since vf X= 

v(-f) X. Now let f and g be in c• where X~ vx ~ Y ~ 6X = 

SY. Clearly X is dense in the compact, Hausdorff space 

SX = SY. R*, the one point compactification of R, is 

Hausdorff. A continuous mapping from a space X' into a 

Hausdorff space is determined by its values on any dense 
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subspace of X', [5, Section 0.12]. On the space X, (f + g)* 

= f* + g*, (fg)* = f*g*, (f V g)* = f* V g*, and (fA g)* 

= f* 1\ g*. From above we see that the equalities also are 

true on the space Y. Since f and g are inC', f*[Y] and 

g*[Y] are contained in R. From the equalities above, 

f + g, fg, f v g and fAg are inC'. The other properties 

of a subring easily follow.// 



Example 1 is given to show that not every lattice-

ordered subring of C(X) containing C*(X) has the form C' 

given in Theorem 16. 

EXAMPLE 1. Let X = R. Consider the subring A of 

functions in C(R) which are polynomials in X with coeffi-

cients from C*(R). Clearly, C*(R) is a subset of A. We 

use A to generate a lattice-ordered ring B by taking all 

functions f v g, fAg, etc., where f and g are in A. 

For each h in B there are positive integers m, n, and k 

such that jh(x) I ~ kxm for all x > n. Let exp(x) X = e . 

15 

It is not true that ex < k xm for all large x and positive 

integers k and m. The function exp is not in B. Since i, 

the identity function on R, in in B, A vf X = R. Since 
fEB 

v X contains R but exp is not in B, B does not have the 
exp 

form C' in Theorem 16. 

THEOREM 17. Let Y be a realcompact subspace of SX 

and let c• be the subring defined in Theorem 16. Then C' 

and C(Y) are isomorphic under the mapping that takes f 

inC' to f*jY in C(Y). 

PROOF. Let fy = f*IY where f is inC'. The Stone 

extension f* is unique, thus the mapping described in the 

theorem is well-defined. Since Y is a subset of vf X, 

fy is in C(Y). To show that the mapping is one-to-one, 

consider f and g inC' where f(x) f g(x) for some 

x in X. Then ~ f gy. To show that the mapping is onto, 

consider gin C(Y). Since R is a Hausdorff space and 



X is dense in Y, (gix>y = g and thus the mapping is onto. 

For the same reason, fy + gy = (f + g)Y and fygy = (fg)Y 

where f and g are inC'. The desired result follows.// 

THEOREM 18. The cardinal number of realcompact 

subspaces of SX containing vX is at least as large as the 

cardinal number lsx- vxl. 

16 

PROOF. Let p be in SX - vX. vx is realcompact and 

{p} is a compact subspace of SX. From Theorem 13, vx V {p} 

is realcompact. The above procedure works for any p in 

SX - vx, and hence the desired result follows.// 

COROLLARY 19. The cardinal number of lattice-ordered 

subrings properly contained in C(X) and containing C*(X) is 

at least lsx- vxl. 

PROOF. From Theorem 17, each realcompact subspace Y 

of SX can be associated with a lattice-ordered subring C' y 

{fin C(X): Y is a subset of vf X}. 

realcompact spaces with p in Y1 - Y2 , then there is a 

function f in C' - C' such that f(p) 
y2 yl 

= oo, hence C' ~ C~ . 
yl 2 

The result follows from Theorem 18.// 

From known results about the cardinal number of 

lsx- vxl we can use Corollary 19 to determine a lower 

bound for the cardinal number of lattice-ordered subrings 
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in C(X) containing C*(X). From [5, Section 9.3], 

!SN- N! = !SR- R! 
c 

= 2 where c is the cardinal number of 

the continuum and N is the space of positive integers. The 

cardinal number of lattice-ordered subrings which contain 

c C* is at least 2 for these spaces. 

B. Some Equivalence Relations 

First we consider two theorems which will help in 

relating several of the equivalence relations with isomorphic 

rings. 

THEOREM 20. [5, Theorem 4.9] Two compact spaces X 

and Y are homeomorphic if and only if C(X) and C(Y) are 

isomorphic. 

Using the Stone-~ech compactification and the isomer-

phism between C(SX) and C*(X), we obtain the following 

corollary. 

COROLLARY 21. For any spaces X andY, SX and SY are 

homeomorphic if and only if C*(X) and C*(Y) are isomorphic. 

THEOREM 22. [5, Theorem 8.3] Two realcompact spaces 

X and y are homeomorphic if and only if C{X) and C{Y) 

are isomorphic. 

For any space X, C{VX) is isomorphic to C(X). We 

obtain the following corollary. 



COROLLARY 23. For any spaces X andY, vX and vY are 

homeomorphic if and only if C(X) and C(Y) are isomorphic. 

We now define two relations between completely 

regular spaces. 

DEFINITION 6. Let R1 be the following relation: 

X R1 Y if SX is homeomorphic to SY; equivalently, from 

Corollary 21, X R1 Y if C*(X) and C*(Y) are isomorphic. 

DEFINITION 7. Let R2 be the following relation: 

X R2 Y if vX is homemorphic to vY; equivalently, from 

Corollary 23, X R2 Y if C(X) and C(Y) are isomorphic. 

LEMMA 24. The relations R1 and R2 are equivalence 

relations. 

PROOF. This easily follows from definitions.// 

18 

THEOREM 25. [5, Theorem 1.9] Let t be a homomor?hism 

from C(Y) to C(X) whose image contains C*(X). Then t 

takes C*(Y) onto C*(X). 

THEOREM 26. If X R2 Y, then X R1 Y. 

PROOF. From Theorem 25, C*(Y) and C*(X) are isomorphic 

whenever C(X) and C(Y) are isomorphic. The result follows.// 

EXAMPLE 2. This example shows the converse of 

Theorem 26 is not true. Let X = R and Y = SR where R is the 

space of real numbers. C*(SR) and C*(R) are isomorphic, 
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however, from Theorem 25, C(R) and C*(SR) = C(BR} are not 

isomorphic. This shows X ~l Y. Since SX = BY = BR, 

X R2 Y. 

The relation R1 puts all spaces Y such that X ~ Y ~ BX 

into the same equivalence class while the relation R2 puts 

all spaces Y such that X ~ Y ~ vx into the same equivalence 

class. 

Realcompactness is a topological invariant since, from 

Theorem 20, a homeomorphism induces an isomorphism of 

continuous functions, and the homeomorphism together with 

the isomorphism take real, fixed maximal ideals into real, 

fixed maximal ideals. This implies every realcompact 

space between vx and BX can be put into a one-to-one 

correspondence with the realcompact spaces between vY and 

BY whenever X and Y are homeomorphic. Suppose C(X) and 

C(Y} are isomorphic under an isomorphism a. Theorem 25 

implies a[C*(X)] = C*(Y). In general, a takes a subring 

in C(X} into a subring in C(Y). All subrings between 

C*(X} and C(X} can be put into one-to-one correspondence 

with subrings between C*(Y} and C(Y}. 

Let X and Y be spaces such that the set of subrings 

between C*(X) and C(X) are associated in a one-to-one 

correspondence with the set of subrings between C*(Y) 

and C(Y) where associated subrings are isomorphic. Since 

isomorphisms take proper subrings into proper subrings, 



C(X) and C(Y) are isomorphic. From Corollary 23, vx is 

homeomorphic to vY and from Theorem 26, SY = SvY is 

homeomorphic to SX = SvX. 

DEFINITION 8. Let R3 be the following relation: 

X R3 Y if the realcompact spaces between vx and SX can be 

put into a one-to-one correspondence with the realcompact 

spaces between SY and vY. 
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LEMMA 27. The relation R3 is an equivalence relation. 

PROOF. This easily follows from definitions.// 

THEOREM 28. If X R2 Y, then X R3 Y. 

PROOF. This follows from the discussion preceding 

Definition 8.//. 

EXAMPLE 3. This example shows the converse of Theorem 

28 does not hold. Let N be the discrete space of positive 

integers and let E = N V {p} where p is in SN - N. Some 

of the properties of E are in [5, Problem 4M]. E is not 

a discrete space since {p} is not open. E and N are not 

homeomorphic, since N is a discrete space while E is not a 

discrete space. N is a realcompact space. From Theorem 

13, E is also a realcompact space. From Theorem 22, C(N) 

is not isomorphic to C(E). Thus E ~2 N. We now show 

Let N1 be a realcompact space between N and ~ 
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with p not in N1 . From Theorem 13, N1 V {p} is a real-

compact space and it lies between E and SE. We conclude 

that there are at least as many realcompact spaces between 

I and SE as there are realcompact spaces between N and SN 

which do not contain p. We now consider realcompact 

spaces containing p. Let Y be a realcompact space between 

I and SE. Since pis in E, pis in Y. Using Theorem 15, 

we write Y = A vf E for some subset c• in C(E) 
fEC' 

If f 

is inC', let f 1 = fjN. f 1 is in C(N) and fi(p) = f(p) 

Thus Y = A 
fEC 1 

v E = f 

space between N and 

~ vf N. Thus Y is a realcompact 
1 l 

SN. Now consider a realcompact space z 

between N and SN with p in z. In a manner similar to 

working with Y, we see that Z is a realcompact space between 

I and ~I. We have shown a one-to-one correspondence 

associating the realcompact spaces between N and SN 

containing p with the realcompact spaces between E and SE. 

The cardinal number of realcompact spaces between E and SI 

is at least jSE - Ij = JSN- Ij = 2c. Since the cardinal 

number is not finite and the cardinal number of realcompact 

spaces between N and BN is not greater than ''twice" the 

cardinal number of realcompact spaces between I and SI, 
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THEOREM 29. The relations R3 and R1 are not comparable, 

i.e., neither relation implies the other relation. 

PROOF. If X= RandY = SR, then X R1 Y but X , 3 Y. 

To show the other implication does not hold, let X and Y 

be discrete spaces where X = {a,b} and Y = {b}p Then 

X = vx = SX andY = VY = SY. Thus, X R3 Y, however, 

SX = X is not homeomorphic to SY = Y. Hence X 'l Y.// 

We now define an equivalence relation on subrings in 

C(X) for a fixed X. 

DEFINITION 9. Let A and B be any subrings of C(X) 

and let R4 denote the following relation: A R4 B if 

A 
fEA 

v X = 
f 

~ v 
g 

X. 

LEMMA 30. The relation R4 is an equivalence relation. 

PROOF. This easily follows from definitions.// 

THEOREM 31. Each equivalence class of subrings in 

C(X) induced by R4 has a maximal element, i.e., there is a 

subring in the equivalence class which contains all other 

subrings in the equivalence class. This maximal element 

is C' defined in Theorem 16. 

PROOF. Let A and B be in the same equivalence class. 

Let Y = A vf X = A 
fEA gEB 

Theorems 15 and 16.// 

v g 
X. The result follows from 
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C. Order Structure of Prime Ideals 

The order structure of the family of prime ideals in 

C(X) has been studied by several people. Kohls gives 

results of this structure in [10], [ll], and [12]. Gillman 

and Jerison devote chapter 14 of [5] to prime ideals in 

C(X). Mandelker in [13] and [14] proves some results 

involving prime ideals and prime z-ideals in C*(X) and 

C(X). The first part of this section is devoted to examples 

and preliminary results of prime ideals. The latter part 

of this section states and extends some of Mandelker's 

results found in [14]. As in [14] a proper subset is 

denoted by c: • 

DEFINITION 10. Let A be a subring of C(X). A is said 

to be closed under pointwise inversion if ~/h is in A 

whenever his in A and Z(h) = ~- A is said to be closed 

under bounded pointwise inversion if ~/h is in A whenever 

h is in A and h is bounded away from Q. 

C(X) and the subring in C(X) of all constant functions 

on X satisfy both parts of Definition 10. C*(X), in general, 

satisfies only the second part of definition 10. 

THEOREM 32. Let A be a lattice-ordered subring in 

C(X) containing C*(X). If A~ C(X), then A is not closed 

under pointwise inversion. A is clearly closed under 

bounded pointwise inversion. 



24 

PROOF. If A f C, then there is a function g in C - A 

such that lgl is unbounded. Since A contains the constant 

functions, ~ + g is in C - A for each r in R. We consider 

two cases to show that if there is a function g in C - A, 

then there is a function h in A such that Z(h) =~but 1/h 

is not in A. 

Case 1. Suppose g is inC- A and g is bounded below, i.e., 

g > -~ for some r in R. A similar proof can be used when 

g is bounded above. Since 1 + ~ + g ~ 1, h = 11<1 + ~ + g) 

is in C* and A. Also 1 + ~ is in C* and A. If 1 + ~ + g is 

in A, then 1 + ~ + g - (1 + !;) = g is in A. This contradic-

tion shows that 4,/h is not in A. Clearly h is in A and 

z (h) = ~-

Case 2. Suppose g is in C - A where g lS not bounded 

below and is not bounded above. g = (g V Q) + (g A 2>. 
Since g is not in A, the function g V 2 or the function 

g A 2 is not in A. Now case 1 applies to g V 2 or g A 2 

and the desired result follows.// 

The conclusion of Theorem 32 applies to rings other 

than lattice-ordered subrings inC containing C*. For 

example, consider X = R and let C00 (R) denote the subring 

of C(R) of all infinitely differentiable functions. Let 

C* 00 (R) denote the subring of all bounded infinitely 

differentiable functions in C(R). 
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COROLLARY 33. Let A be a subring containing C* 00 (R) 

and properly contained in C 00 (R). Then A is not closed 

under pointwise inversion. 

00 

PROOF. The subring C (R) is closed under pointwise 

inversion. 
00 

Case 1. Let g be in C (R) - A where g is bounded below 

or above. The proof is the same as case 1 of Theorem 32. 
00 

Case 2. Let g be in C (R) - A where g is not bounded below 
2 

and is not bounded above. The functions t = e-g and gt are 

in C* 00 (R) and hence in A. 
00 

Also ~It is in C (R) . If ~It is 

in A, then (gt) (~It) = g is in A. This contradiction shows 

that ~It is not in A. Clearly tis in A with Z(t) =~-II 

Let C' be any subring of C containing C*. Assume the 

function rings are defined on the same space when the space 

is not explicitly stated. 

THEOREM 34. Let P be an ideal in C. P is a prime 

ideal inC if and only if P n C' is a prime ideal inC'. 

PROOF. The procedure of the proof is similar to the 

case C' = C* in [5, Problem 2 B.l]. 

Assume P is a prime ideal in c. Let f and g be inC' 

with fg in PAC'. Since fg is in P and P is a prime ideal 

in C, f is in P or g is in P. Suppose f is in P. Then 

f is in PAC'. In a similar manner, g in P and g in C' 

gives gin PAC'. Clearly PAC' is an ideal inC'. The 

result follows. We note that this part of the proof works 

for any subring C' of C if PAC' C C'. 
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Assume PAC' is a prime ideal in c•. If P is not a 

prime ideal in C, then there are functions f and g in c 

with fg in P but g and f not in P. We know~+ f 2 , 1 + g 2 , 

1/(~ + f 2 ), and~/(~+ g 2 ) are in C. Since P 

fg/(~ + f 2 ) (~ + g 2 ) is in P. Also f/(1 + f 2 ) 

are inC* and c•. Thus fg/(~ + f 2 ) (~ + g 2 ) is 

which is a prime ideal in c•. Thus f/(~ + f 2 ) 

is an ideal, 

and g/(~ + g2) 

in p " c I 

or g/(~ + g2) 

is in P fl c • . Suppose g/(1 + g 2 ) is in PAC'. Then 

2 2 <1 + g )g/(1 + g ) = g is in P. This type of contradiction 

can also be found iff/(~+ f 2 ) is in PAC'. The result 

follows.// 

EXAMPLE 4. This example shows that not all prime 

ideals in C' can be written in the form P n C' for some 

prime ideal P in c. Let X= Nand C' (N) = C*(N). The 

function, j, where j(x) = 1/x for x inN, is in every free 

ideal in C*(N), [5, Section 4.3]. Since j is a unit of 

C(N) and C*(N) has free ideals, the free ideals of C*(N) can-

not be written in the form PAC*. 

EXAMPLE 5. If P is a prime ideal in C, this example 

shows PAC' is not necessarily an ideal inC'. Let C' = oP 

for some pin 8X where oP ={fin C(X): c1 8x Zx(f) is a 

neighborhood of p}. Every prime ideal PC C is between oP 

and Mp for some pin SX, [5, Theorem 7.15]. Hence PAC'= C' 

for all prime ideals P inC containing oP. 
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Let a be a mapping from the set of prime ideals in 

C(X) into the set of prime ideals in C 1 (X) where C 1 is a 

subring of C containing C*. Define a by P n C 1 = a(P). 

THEOREM 35. The mapping a is a one-to-one mapping. 

PROOF. From Theorem 34, a is a well-defined mapping. 

Suppose a(P 1 ) = a(P") where P 1 and P" are different prime 

ideals in c. Then a(P 1 ) = a(P") iJTlplies P 1 ('\ C 1 = P" (\ C 1 • 

Suppose f is in p1 - P". Then f/(J, + f2) is in p1 and c I • 
Since c I" p1 = c~ (\ P", f/(,l + f2) is in P". Thus (,l + f2) 

f/(J, + f2) = f is in P". This contradiction shows that p1 

is a subset of P". In a similar manner P" is a subset of 

P 1 • Hence P' = P" and the result follows.// 

Let C' now be a lattice-ordered subring of C containing 

C*. Let a be the mapping defined preceding Theorem 35. 

THEOREM 36. The mapping a is onto if and only if X 

is pseudocompact. 

PROOF. By definition, X is pseudocompact if C(X) = 

C * (X) • 

Assume X is pseudocompact. Since C = C*, the result 

easily follows. 

Assume a is onto. Suppose C ~ C* and let C* ~ C 1 c c. 

From Theorem 32, there is a function fin C' such that Z(f) 

=~and J,/f is not inC'. The principal ideal (f) is in 

a maximal ideal in C', since every ideal is contained in 
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a maximal ideal when working with a commutative ring with 

unity [5, Section 0.15]. Let P' be one maximal ideal in c• 

such that (f) is a subset of P'. Then P' is a prime ideal 

in C'. If a is onto, then there is a prime ideal P in c 

such that a(P) = Pn c• = P'. This implies f is in P. 

f is a unit of C and cannot be in any ideal in C. This 

contradiction establishes the result.// 

We now consider a theorem proved by C. w. Kohls. 

Theorem 38 will extend this result to a certain class of 

lattice-ordered subrings containing C*. 

THEOREM 37. [11, Theorem 2.4] In the ring C(X) and 

also in C*(X), the prime ideals containing a given prime 

ideal form a chain. 

THEOREM 38. Let X' be a realcompact subspace of SX 

containing vX. Let C' (X) ={fin C(X): vf X contains X'}. 

Let P' be a prime ideal in C' (X). The prime ideals in C' (X) 

which contain P' form a chain. 

PROOF. From Theorem 16, C' (X) is a lattice-ordered 

subring. From Theorem 17, C' (X) and C(X') are isomorphic 

under the mapping t taking gin C' (X) to g*jX' in C(X'). 

If P' is a subset of P" where P' and P" are prime ideals 

in c• (X), then tis order-isomorphic, i.e., t(P') is a 

subset of t(P"). 
+ 

Similarly t = a is an order-isomorphic 

mapping from C(X') onto C' (X}. Let P 1 be a prime ideal in 



C(X') containing a prime ideal P. From Theorem 37, the 

prime ideals in C(X') containing P form a chain. The 

mapping a takes prime ideals into prime ideals and is 

order-isomorphic. Each prime ideal P 1 containing P is 
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mapped into a prime ideal a(P1 ) inC' (X) containing the prime 

ideal P' = a(P) inC' (X). Since C' (X) and C(X') are 

isomorphic, the prime ideals are in a one-to-one corres-

pondence, hence the desired result is obtained.// 

DEFINITION 11. [14] An ideal P in a ring A is called 

a z-ideal if h is in P whenever h is in A and h is contained 

in the same maximal ideals as some function in P. 

All maximal ideals in C(X) are z-ideals and prime 

ideals. For pin X, oP ={fin C(X): ClSX Z(f) is a 

neighborhood of p} is a z-ideal in C(X), and in general, 

is not a prime ideal in C(X). For every z-filter on X 

there corresponds a unique z-ideal in C(X), namely, all 

functions in C(X) whose zero set is in the z-filter. 

Theorems 39 and 40 will be needed shortly in proving 

some results on the order structure of prime ideals. 

THEOREM 39. [5, Section 14.2(a)] The union and 

intersection of any chain of prime ideals are prime. 



30 

THEOREM 40. [5, Section 14.7] If I is a z-ideal in 

C(X) and Q lS minimal in the class of prime ideals in C(X) 

containing I, then Q is a z-ideal. Every minimal prime 

ideal in C(X) is a z-ideal. 

THEOREM 41. [14, Theorem I] Let p be in SX. Every 

prime ideal P in C*(X) contained in M*p is comparable with 

Specifically, P is a suo~et of MP A C* if and 

only if P contains no units of C, while MPA C* is a 

proper subset of P if and only if P contains a unit of C. 

THEOREM 42. [14, Theorem II] Let p be in SX and let 

X be locally compact and a-compact, or equivalently, let 

SX - X be a zero set in SX. 

(i) The family of prime z-ideals in C*(X) contained in 

Mp n C* is order-isomorphic with the family of prime z­

ideals in C(X) contained in MP. 

(ii) The family of prime z-ideals in C*(X) properly 

containing MPA C* (when pis not in X) is order-isomorphic 

with the family of prime z-ideals in C(SX - X) contained 

in p 
Msx-x 

DEFINITION 12. A space Y is an F-space if the prime 

ideals contained in a given maximal ideal form a chain. 
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COROLLARY 43. [14, Corollary 1] If X is locally 

compact and a-compact, then l3X - X is a compact F-space. 

Let MP (or M~) denote the z-fil ter z [MP] on X, let eP 

(or 0~) denote the z-filter Z[OP] on X, and let 

Np = {Z in Z[C(l3X)]: pis in Cll3X(Z n X)}. Then Np is a 

prime z-filter on l3X. 

DEFINITION 13. [14] For any space T, a point p in 

l3T is called a remote point in l3T if every member of ~ 

has a non-empty interior. A point p in T is called a 

P-point of T if every zero set containing p is a neighborhood 

of p, or equivalently, if ~ is a minimal prime ideal. 

COROLLARY 44. [14, Corollary 3] Let X be a locally 

compact, a-compact metric space and let p be in l3X. Then 

the following conditions are equivalent. 

(i) The prime ideals in C* contained in M*p form a chain. 

(ii) Mp A C* is a minimal prime ideal in C*. 

(iii) p is a remote point in l3X. 

COROLLARY 45. [14, Corollary 4] Let X be locally 

compact and a-compact, and let p be in l3X - X. Then M*p 

is the immediate successor of Mp A C* in the family of 

prime z-ideals in C*(X) if and only if pis aP-point of 

sx - x. 
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COROLLARY 4 6 . [14, Corollary 5] Let X be a locally 

compact, a-compact metric space, and let p be in SX - X. 

Then the family of prime z-ideals in C* contained in M*p 

consists of the ~deals M*P and MPn C* if and only if pis 

both a remote point in SX and a P-point of SX - X. 

Since any space Y, such that X~ Y ~ SX, has the 

property SY = SX, the previous theorems and corollaries 

give results for the prime ideals in C*(Y). We now 

consider a realcompact space x 1 where vx ~ x 1 ~ sx. The 

proofs of the following theorems will be essentially the 

same as the proofs of the previous theorems and corollaries 

from [14] when x 1 = SX. Theorem 38 is basic for the proof 

of some of the following theorems. Theorem 47 is also 

used and can be found in [13], [7], and [9]. 

THEOREM 47. [9, Section 3.1] A prime z-filter Q on 

a space T is minimal if and only if for every zero set z in 

Q there exists a zero set w not in Q such that z v w = T. 

From Theorem 4, the maximal ideals in C* are M*p = 

{f in C*(X): f s (p) = 0} and the maximal ideals in c are 

MP ={fin C(X): pis in Clsxzx(f)} for pin Sx. The 

following theorem is often used in proofs without specifi­

cally being mentioned. 

THEOREM 48. [5, Theorem 7.15] Every prime ideal P in 

C(X) contains oP for a unique pin SX, and MP is the unique 

maximal ideal containing P. 
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Let x 1 be a realcompact subspace of SX. From Theorem 

17, c• (X) ={fin C(X): vf X containing x 1 } and C(X1 ) are 

isomorphic using the mapping that takes f in c• (X) to fv = 

f*lx1 in C(X1 ). Let MP be a maximal ideal in C(X). From 

Theorem 34, Mp f'l c I (X} is a prime ideal in c• (X) . Since 

ZX(f} is a subset of ZX (fv}, fin MP implies fv is in 
l 

M~ under the isomorphism between c• (X} and C(X1 }. Then 
1 

M'p is the unique maximal ideal containing the prime ideal 

MPn C' (X}. Under the isomorphism, prime z-ideals in 

c• (X} are in one-to-one, order-preserving correspondence 

with the prime z-ideals in C(X1 }. 

THEOREM 49. Consider M'p and c• (X} as stated above. 

Let p be in Sx. Every prime ideal P in c• (X} contained in 

lv1 1 P is comparable with Mp (\ C • (X} . P is a subset of Mp () 

c• (XJ if and only if P contains no units of C(X}, while 

MP() c• (X} is a proper subset of P if and only if P contains 

a unit of C(X}. 

PROOF. Let o•P correspond to the ideal 0~ under 
1 

the isomorphism between C' (X} and C(X1 }. Every prime 

ideal p in c• (X} is between o•P and M'P for some p in sx. 

Let u be the set of all prime ideals between o•P and M'P 

which are comparable with the prime ideal P. P is in U. 

Partially order U by set inclusion. From Hausdorff's 

Maximal Principle, P is in a maximal chain of prime ideals. 
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From Theorem 39, the intersection of this chain is a 

prime ideal, Q, which is a minimal prime ideal in C 1 (X) 

contained in P. From Theorem 38, the prime ideals in 

C 1 (X) containing Q form a chain. If we can show Q ~ Mp I) 

C 1 (X), then Theorem 38 gives the comparability of P and 

Mp {) C 1 (X) . The prime ideal in C (X1 ) corresponding to 

Mp (\ c 1 (X) is {gv in c (X1 ): p is in Cl(3X zx (g \.)}. This 

ideal is clearly a z-ideal. We denote the corresponding 

z-filter on x 1 by Nl. From Theorem 40, the minimal prime 

ideal Qv in C(X1 ) corresponding to Q in C 1 (X) is a z-ideal. 

We denote the corresponding minimal prime z-filter on 

\) x1 by Q • 

In order to show Q ~ N.P () C 1 (X) , we need to show p is 

~n Cl(3XZX(f) for each f in Q. We obtain this result by 

using z-filters on x 1 and showing that for every element 

Z in Qv, pin in Cl(3X(Z n X). Let Z be in Qv and let V 

be any (3X zero-set-neighborhood of p in (3X. We have 

The set v1 = V n x 1 is not empty, since x 1 is 

dense in (3X and V contains a non-empty interior. Hence 

in eP and Qv is in Z[M~ ]. 
xl 1 

Since 0 1 P ~ Q, 0~ ~ Q v. 
1 

Using Theorem 47, there is a zero set Win x 1 such that W 

is not in Q\) and (Z /1 Vl) u w = xl. Suppose Vll) z has an 

empty interior in xl. Then w is dense in xl. Since w is 

an xl zero set, c1x w = xl = w. Thus w = xl is in Q \) , 

1 
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but this is a contradiction. Therefore v1 (\ Z must have 

a non-empty interior in x1 • Thus V 1 rt z f) X = V f'\ ( z () X) 

is not empty. V was an arbitrary SX zero-set-neighborhood 

of p. From Theorem 2 (ii) , every neighborhood of p in 

SX contains a SX zero-set-neighborhood. Thus every 

neighborhood of p meets Z rt X where Z is a fixed member in 

Qv. Thus pis in ClSX(Z n X) and the result of the first 

part of the theorem has been shown. 

Assume P is a prime ideal in M1 p which does not contain 

a unit of C(X). Let f be in P and let V be any SX zero-set­

neighborhood of p. Let Pv be the extensions to x1 of the 

functions in P. Z[Pv] is a prime z-filter on x1 containing 

The set v1 = V n x1 is in 0~ and thus v1 is in 
1 

If f is in P, then V1 n Z (fv) is in Z [Pv] or 

V n Z(f) is in Z[P]. V () Z(f) is not empty since P does 

not contain a unit of C(X). Hence pis in ClSXZ(f) and 

f is in Mp. Thus p s;; Mp () c I (X) . Assume p s Mp n c I (X) . 

P clearly has no units of C(X). 

If P contains a unit of C (X) , then Mp (\ C 1 (X) C P. 

Now assume Mp (\ C 1 (X) C P. Then from above, P contains a 

unit of C(X) .// 

DEFINITION 14. Let Y be a subset of X. Then Y is 

said to be z-ernbedded in X if for every Z in Z[C(Y)], 

there exists a Win Z[C(X)] such that Z = W n Y. 
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THEOREM 50. [13, Theorem 5.2] If Y is Z-embedded in 

X and F is a z-filter on X every member of which meets Y, 

then FjY is a z-filter on Y; ifF is prime, so is FjY. 

'J From [5, Section 8.8], zvxf = ClvXZX(f). Thus every 

non-empty zero set in vX meets X. Mandelker in [14] con-

siders SX - X as a zero set in SX for some results. In 

this case, X can be shown to be realcompact. Let x 1 be a 

realcompact subspace of SX and let x 1 - X be a non-empty 

zero set in SX. x 1 - X is closed in SX. SX is a compact, 

Hausdorff space and hence is normal. From [5, Problem 

3D.l], x 1 - X is C*-embedded in SX and hence x 1 - X is 

C*-embedded in x 1 . 

LEMMA 51. Let x 1 - X be a non-empty zero set in SX. 

If pis in X -X, then MPn C 1 is a proper subset of 
l 

PROOF. Clearly Mp/1 C 1 ~ M1 P. Let Z(gv) = x 1 - X. 

Then g is in M1 p but g is not in r.1:P.;; 

LEMMA 52. If Mp () C 1 is a proper subset of M 1 P, 

then p is not in X. 

PROOF. From the hypothesis, there exists a function 

f in C 1 such that p is in Clsxzx (fv) but p is not in 
l 

ClsxZx(f). The function f can be chosen bounded. If p 



\) 
is in X and p is in Clsxzx (f ) , then p 

1 
is in 

s This means pis in ZX(f) and ZSX(f ). and thus p is in 

ClsxZx(f). This contradiction establishes the result.// 
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THEOREM 53. Let x 1 - X be a non-empty zero set in SX 

where x 1 is a realcompact subspace of SX. Let p be in sx. 

The family of prime z-ideals in C' (X) contained in Mp n C' (X) 

is order-isomorphic with the family of prime z-ideals in 

C(X) contained in MP. 

PROOF. Under the isomorphism from c• (X) onto C(X1 ), 

prime z-ideals in c• (X) are in one-to-one correspondence 

with prime z-ideals in C(X1 ). Place the prime z-ideals 

contained in M'p into order-preserving correspondence with 

the z-filters on x 1 contained in MP = Z[M~] using the 
xl 1 

one-to-one mapping P ~ Z[Pv]. Under this mapping, Mp n C' 

goes to Nl = {Z in Z[C(X1 )]: pis in ClSX(Z n X)}. 

Let P be a prime z-filter on x 1 contained in Nl. Each 

member of P meets X. From Theorem 50, PIX= {Z A X: 

Z is in P} is a prime z-filter on X. If P S Nl, then 

PIX~ M~. If Q is any prime z-filter which is a subset 

of M~, then the prime z-filter Q# = { Z in Z[C(X1 )]: 

z A X is in Q} ~ Nl. The mapping P ~PIX for P ~ Np is 
l 

onto the family of prime z-filters on X which are contained 

. Mp 
l.n x· Clearly P ~(FIX)#. We now show (PIX)#~ P. Let 

Z be in (PiX)#. Then there exists a Win P such that Z n X= 

wAx. Since Wand Z have the same X points, W ~ Z V (X1 - X). 
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Since P is a z-filter on x1 containing w, z U (x1 - X) 

is in P. Since P ~ Nl and P is prime, x1 - X is not in P, 

and therefore Z is in P. We have shown that if Z is in 

(PiX)#, then Z is in P. Thus (PjX)# ~ P. Thus the mapping 

P * P lx is one-to-one and onto for the appropriate 

domain and range. From this mapping we obtain the order-

isomorphism.// 

THEOREM 54. Let p be in x1 - X where x1 is a real­

compact subspace of ax and x1 - X is a non-empty zero set 

in ax. The family of prime z-ideals in C' (X) properly 

containing MP A c• (X) is order-isomorphic with the family 

of prime z-ideals in C(X1 - X) contained in M~ -x· 
1 

PROOF. Let P be a prime z-filter on x1 which properly 

contains Nl where p is in x1 - X. Then x1 - X is a closed 

set in the normal space SX. From [5, Problem 3D.l], x1 - X 

is Z-embedded in SX, and also in x1 . From Theorem 50, the 

trace, P ., (X1 - X) is 

p c M~ ' pI ( X 1 - X) ~ 
1 

a prime z-filter on x1 - X. Since 

M~ -X for p in x1 - X. 
1 

Let Q be a 

prime z-filter on x1 - X which is a subset of M~ -X and 
1 

let Q# = {Z in Z[C(X1 )J: Z n (Xl- X) is in Q}· We first 

show Q# is prime. Consider z1 U z2 in Q#. Then (Zl U z 2 ) n 
(Xl - X) = [Zl (\ (Xl - X)] \) [Z 2 n (Xl - X)] is in Q. 

Since Q is prime, one of the sets, say z1n<x1 - X), is in Q. 

rhus z1 is in Q#. Hence Q# is a prime z-filter. 
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From definitions, Q#l (Xl - X) = Q and Nl!;; Q#. If 

Q ~ 
p then Q# ~ 

p The is in MX -X' Mx • zero set x1 - X Q# 
1 1 

but not in p 
Nl' hence Q# ~ 

p 
Nl. From Theorem 49, if p is a 

prime ideal in c I (X) contained in M1 P, then p is comparable 

with MP I"\ C 1 (X) . Under the mapping P ~+ z [P \)] , MP/) c ·'(X) goes 

to Nl. The mapping P ~+Pi (x1 - X) for P ~ Nl is onto the 

set of prime z-filters on x1 - X which are subsets of M~ -X 
1 

We will show P = (Pj (X1 - X))#, then P ~Pi (x1 - X) is a 

one-to-one, onto mapping for the appropriate domain and 

range. From the definition of"#", P ~ (Pj (X1 - X))#. 

Let z be in (PI (Xl - X) ) #. Then there exists a W in P 

such that z "' (Xl - X) = w f) (Xl - X) • Since p properly 

contains p 
Nl, Theorem 49 implies that the prime z-ideal in 

X corresponding toP contains a unit of C(X). Then x1 - X 

is in P. P is a prime z-filter and W n (X1 - X) is in P. 

Thus W () (x1 - X) = Z fl (x1 - X) is in P. Since Z 2 Z (l 

(x1 - X), z is in P. We now have P 2 (Pj <x1 - X))# when 

P j Nl. From these results, P = (Pj (X1 - X))#. From the 

mapping P ~ Pi (X1 - X) for P j Nl, we obtain the result.// 

COROLLARY 55. If x1 - X is a non-empty zero set in 

SX where x1 is a realcompact subspace of SX, then x1 - X 

is a compact F-space. 



PROOF. Since x 1 - X is a non-empty zero set in the 

compact space SX, it is a closed subspace of a compact 
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space, and thus is a compact subspace. From Theorems 38 and 

54, the prime ideals in C 1 (X) properly containing Mp n C 1 (X) 

form a chain, and thus the prime z-ideals of c(x1 - X) 

contained in M~ -X form a chain when p is in x 1 - X. From 
1 

Theorem 39, the intersection of this chain of prime z-ideals 

in C(X1 - X) is a prime ideal. From [5, Problem 14 B.2], 

0~ -X is the intersection of the prime z-ideals containing 
1 

it. Hence oP is prime and from [5, Section 14.12], the x1 -x 

ideals between 0~ -X and M~ -X form a single chain. Thus 
1 1 

x 1 - X is a compact F-space.// 

THEOREM 56. [13, Theorem 11.2] Let X be a separable 

metric space and let p be in SX. The following statements 

are equivalent. 

(i) The prime ideals contained in Mp 
X form a chain. 

( ii) Mp is a minimal prime ideal in C (X) • 
X 

(iii) p is a remote point in sx. 

COROLLARY 57. Let x 1 be a realcompact subspace of 

SX such that x 1 - X is a non-empty zero set of Sx. Let X 

be a separable metric space and let p be in SX. Then the 

following statements are equivalent. 

(i) The prime ideals in c I (X) contained in MIP form a chain. 

(ii) Mp 
X 

() c I (X) is a minimal prime ideal in c I (X) • 

(iii) p is a remote point in sx1 = !3X. 
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PROOF. Assume pis a remote point in SX = SX1 . Then 

M~ is a minimal prime ideal in C from Theorem 56. 

is a minimal ideal in C' from Theorem 53. All prime ideals 

contained in M'P are comparable ~ith the prime ideal MPn C' 

from Theorem 49. The prime ideals in C' contained in M'p 

form a chain from Theorem 38. 

Now suppose the prime ideals in C' contained in M'p 

form a chain. Under the isomorphism between C' (X) and 

C(X1 ), the prime· ideals in MP form a chain. From Theorem 
xl 

56, p is a remote point of SX1 ~ SX.// 

COROLLARY 58. Let x1 be a realcompact subspace of SX 

such that x1 - X is a non-empty zero set in SX and let p 

be in x1 - X. Then M'p is the immediate successor of MPn C' 

in the family of prime z-ideals in C' if and only if p is 

a P-point of x1 - X. 

PROOF. We first show the only if part. From Theorem 

54, is a minimal prime ideal and the only prime z-ideal 

in X) • This implies p is a P-point of x1 - X. 

Assume p is a P-point of x1 - x. Then from the 

definition of a P-point, there qre no prime z-ideals 

between Mp " C ' and M' P. I I 
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COROLLARY 59. Let X be a separable metric space with 

x1 and x1 - X as given in Corollary 58. Let p be in x1 - X. 

Then the family of prime z-ideals in c• contained in M'p 

consists of exactly two ideals--M'P and MPn C'--if and 

only if p is both a remote point and a P-point of x1 - X. 

PROOF. We first show the only if part. From Corollary 

58, p is a P-point of x1 - X. Then p is a remote point of 

S(X1 - X) from Corollary 57 and Theorem 54. Since X - X 
l 

is a (closed) zero set in the compact space SX, x1 - X is 

compact. Therefore, S(X1 - X) = x1 - X. 

Assume p is both a remote point and a P-point of 

x1 - x. Then M'P is the immediate successor of MPn c• 

from Corollary 58, and Mp n c• is a minimal prime ideal of 

C(X1 - X) from Corollary 57. The result now follows from 

Theorem 54.// 

D. Totally Ordered Quotient Rings 

In this section we work with convex ideals, absolutely 

convex ideals, and ideals with a property similar to z-ideals. 

We consider these ideals with regard to totally ordered 

quotient rings. In investigating the distribution of 

ideals in a ring A one advantage in knowing about totally 

ordered quotient rings is that if A/P is totally ordered, 

then all ideals containing P form a chain. Let A denote a 

subring in RX which has the partial ordering inherited 
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X from R, i.e., f > g if f(x) > g(x) for all x in X. The 

subring A does not necessarily contain C(X) or C*(X). 

Many results in this section are extensions of results in 

Chapters 5 and 14 of [5] where A= C(X) or A= C*(X). 

DEFINITION 15. An ideal I in A is said to be convex 

provided x is in I wherever x is in A, 2 ~ x ~ y, and y is 

in I. An ideal I is said to be absolutely convex provided 

xis in I whenever xis in A, y is in I, and 2 ~ 1x1 < IYI. 

An absolutely convex ideal is also a convex ideal. 

EXAMPLE 6. This is an example of a convex ideal 

which is not absolutely convex. Consider the ideal I = (i) 

in C(R) where i(x) = x for all x in R. Then I contains 

all functions in C(R) which vanish at 0 and have a 

derivative at 0. Hence I is convex. Clearly 2 ~I Iii I < 

Iii but lilis not in I. Hence I is not absolutely convex. 

DEFINITION 16. Let I be an ideal in a partially 

ordered ring A. In the quotient ring A/I we say I(a) > 

I(2) or I(a) > 0 if there is a function f in A such that 

f > 2 and a= f (mod I). 

THEOREM 60. [5, Theorem 5.2] Let I be an ideal in a 

partially ordered ring A. Then A/I is a partially ordered 

ring according to Definition 16 if and only if I is convex. 



DEFINITION 17. Let A be a subring of a ring B con-

t . d . X a1ne 1n R . A is said to satisfy condition II relative 

to B if whenever f is in A, then A contains all functions 

gin B such that Z(g) = Z(f). 

EXAMPLE 7. Let 0 0 ={fin C(R): Z(f) is a neighbor-

hood of 0}. o0 satisfies condition II relative to C(R). 
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An example which does not satisfy condition II relative to 

a ring B will be given in Example 9 at the end of this 

• 
section. 

THEOREM 61. Let A satisfy condition II relative to Rx. 

(i) Iff is in A, then lfl is in A. 

(ii) Every ideal P in A is absolutely convex. 

PROOF. Part (i) is clearly true. To show ( ii) 1 

let ~ < - I fl < Jgl with g in p and f in A. We must show f 

is in P. Let h(x) = f(x)/g(x) for X in X - z (g) and h(x) 

for X in z (g) • Clearly h is in Rx. If If I < I g I I then 
-

Z(f) contains Z(g). Thus Z(h) = Z(f). Since A satisfies 

condition II relative to Rx, h is in A. Since P is an 

ideal in A, hg = f is in P.// 

COROLLARY 62. Let A be a subring in C(X) (or C*(X)) 

which satisfies condition II relative to C(X) (or C*(X)). 

Every ideal P in A is absolutely convex. 

= 0 



PROOF. The proof follows the procedure of the proof 

of Theorem 61 with h(x) = f 2 (x)/g(x) for x in X- Z(g). 
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Note that f(x)/g{x) 2 1 for all x. It is clear that h Ls in 

C(X) (or C*(X)) except for those x in Z(g) where every 

neighborhood N of x contains a y' such that g(y') ~ 0. 

For y in N, I h (y) - h (x) I = I h (y) I 2 If (y) - f (x) I = If (y) I . 

Since f is continuous, his in C(X) (or C*(X)).// 

DEFINITION 18. Let A be a subring of RX. Then A is 

said to satisfy condition III if for every f and g in A 

such that~ 2 lfl 2 lgl there exist positive integers m 

and n and a function h in A such that h(x) = fn(x)/gm(x) 

for x in X- Z(g) and h(x) = 0 for x in Z(g). 

THEOREM 63. Let A be a subring of RX which satisfies 

condition III. Every prime ideal P in A is absolutely 

convex. 

PROOF. Let ~ < If I < lgl where g is in p and f is in - -
A. We must show f is in P. Let m, n, and h be the same 

in Definition 18. If > 1 and is in P, then m-1 
as m g g 

is in A. Since p is an ideal, (hgm-1) g hg m fn in = = lS 

If m = 1, hg = fn is in P. Since P is a prime ideal in A 

and f is in A, f is in P.// 

P. 



46 

The following corollaries give examples which satisfy 

condition III. In Section IV C we will work with a subring 

A of RX which has some absolutely convex prime ideals and 

some maximal ideals (and thus prime ideals) which are not 

absolutely convex. From Theorem 63, this A does not 

satisfy condition III. 

COROLLARY 64. Let Y be a realcompact subspace of SX. 

Let C' (X) and C(Y) be as in Theorems 16 and 17. Every 

prime ideal P in C' (X) is absolutely convex. In particular, 

the prime ideals in C*(X) and C(X) are absolutely convex. 

PROOF. An isomorphism takes prime ideals to prime 

ideals. 

c I (X) • 

Let 2 ~ ifl ~ lgl where g is in P and f is in 

Let h(x) = f 2 (x)/g(x) for x in X- Z(g) and let 

h(x) = 0 for x in Z(g). Let fv be in C(Y) where f is in 

C' (X) and fv = f*IY. 

· 11 62 (fv) 2/gv = hv Using the method of proof ~n Coro ary , 

is in C(Y) and hence h is in C' (X). The rest of the proof 

follows from Theorem 63.// 

COROLLARY 65. Let c1 (R) be the subring of all functions 

with a continuous first derivative on R. Then every prime 

ideal p in c1 (R) is absolutely convex. 



PROOF. Let~~ lfl ~ lgl where g is in P and f is 

in C L(R) . Let h (x) = f 4 (x) /g (x) for x in R - Z (g) and 

let h(x) = 0 for x in Z(g). If his in c1 (R), then 
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Theorem 63 will give the result. Clearly, if(x)/g(x) I < 1 

for x in R. The function h is easily seen to be continuous 

at all points of R except those points a in Z(g) where there 

is a sequence fxn} with xn 4 a and xn not in Z(g). First 

we show h' (a) exists. lim f 4 (xn)/(xn-a)g(xn) = f' (a) lim 
x 4a x 4a 

n n 

f 2 (xn) f(xn)/g(xn) = 0. An arbitrary sequence {xn}such 

that xn 4 a may have some xn in Z(g) and some xn not in 

z (g) • In any case h' (a) = lim 
x 4a 

n 

(h(xn) - h(a))/(xn- a) = 0. 

Now we show h' is continuous at a. Suppose x is not in n 

z ( g ) . 1 im h 1 ( x ) = 1 im [ 4 f 1 ( x ) g ( x ) f ( x ) ( f ( x ) I g ( x ) ) 2 
n n n n n n x 4a x 4a 

n n 

- f 2 (xn)g' (xn) (f(xn)/g(xn)) 2 ] = 0. For an arbitrary 

sequence {x }, lim h 1 (x ) = 0 = h 1 (a). Thus h 1 is in 
n x 4a n 

n 

c1 (R) and the result follows.// 

Theorem 66 gives sufficient conditions for a quotient 

ring to be totally ordered. The theorem is [5, Problem 

5G.l] for the subring C(X). 

THEOREM 66. Let A be a subring o£ RX such that lfl is 

in A whenever f is in A. If J is a convex ideal in A 

containing a prime ideal P, then J is absolutely convex and 

A/J is totally ordered. 
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PROOF. To show that J is absolutely convex consider 

2 ~ lfl ~ lgl where g is in J and f is in A. Then (g + lgl) 

(g- Jgj) is in the prime ideal P. Suppose g + lgl is in 

P. Since g is in J, (g + lgj) - g = Jgj is in J. Since 

J is convex, ifl and- ifl are in J. Also (f- ifi) 

(f + jfj) is in P. In a manner similar to the above 

procedure, f is always in J. Hence J is absolutely convex. 

For f in A, f- ifl or f + ifl is in P. This implies 

f = lfl (mod J) or f- lfl (mod J). Hence J(f) > 0 or 

J(f) < 0 for each f in A. Since every element of A/J is 

comparable with 0, A/J is totally ordered.// 

EXAMPLE 8. This example shows that an ideal J in A 

does not need to be prime in order that A/J be totally 

ordered. The results for this space are in [5, Problems 

4M and 5 G.3]. Let~= NU{cr} where cr is in BN- N. Let 

j = (j*) where j* is the extension to L of j(x) = 1/x for 

x inN. Then Ocr c Jcr C Mcr. Also J is not a prime ideal in 

C(L), ocr is a prime ideal in C(L), and C(L)/J is totally 

ordered. 

THEOREM 67. [16, Theorem 2.45, Exercise 4.9] Let 8 

be a homomorphism of a ring B onto the ringS= 8[B], with 

kernel K. Then each of the following is true. 

(i) If I is an ideal in B, then 8[I] is an ideal ins. 

(ii) If u is an ideal inS, then e~[U] is an ideal in B 

which contains K. 
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(iii) If I is an ideal in B which contains K, then I = 
+-e [G[I]]. 

(iv) The mapping I~+ G[I] defines a one-to-one mapping of 

the set of all ideals in B which contain K onto the set of 

all ideals in S. 

(v) If I and I 1 are ideals in B which contain K, then 

I is a subset of I 1 if and only if G[I] is a subset of 

8[I 1 ]. 

(vi) The mapping I~-+ G[I] defines a one-to-one mapping of 

the set of all prime ideals in B which contain K onto the 

set of all prime ideals in S. 

Some of the results through Theorem 71 are implied in 

[5, Section 14.3]. 

THEOREM 68. [5, Theorem 14.3] If I is convex ideal 

in a partially ordered ring A and J is any convex ideal 

containing I, then J/I is a convex ideal in the partially 

ordered ring A/I. 

DEFINITION 19. An interval in a partially ordered 

set A is a chain Y in A such that if x andy are in Y, 

t is in A, and x < t ~ y, then t is in Y. An interval Y 

in A is called a symmetric interval if (-y) is in Y when-

ever y is in Y. 
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LEMMA 69. An ideal I in a totally ordered ring A is 

convex if and only if I is a symmetric interval. 

PROOF. The totally ordered ring A does not have to 

be a ring of real-valued functions. Assume I is a symmetric 

interval and let 0 < f < g where f is in A and g is in I. 

Since 0 and g are in the interval I, f is in I. 

is convex. 

Hence I 

Now assume I is convex and let x < t ~ y where x and 

y are in I and t is in A. We must show t and (-t) are in 

I. Since A is totally ordered, every element is comparable 

with 0. 

Case 1. 

Consider two cases. 

0 < t ~ y. Then t is in I from the definition of 

a convex ideal and (-t) is in I from the definition of an 

ideal. 

Case 2. Let x < t < 0. Then this inequality yields 

0 < -t < -x. we know (-x) is in I. From the definition of 

a convex ideal, t and (-t) are in I.// 

LEMMA 70. If Y1 and Y2 are symmetric intervals in a 

totally ordered ring A, then Y1 is a subset of Y2 or 

Y2 is a subset of Y1 • 

PROOF. Suppose s is in Y2 - Y1 and t is in Y1 - Y2 . 

Then s ~ 0 and t ~ 0. Since A (not necessarily a subring 

of RX) is totally ordered, s is comparable with 0 and t. 
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Let s > 0 and s < t. Then -t < -s < 0 < s < t. Since 

Y1 is a symmetric interval, the interval from -s to s is 

This contradicts s in Y2 - Y1 . This type of 

contradiction can be established for the different order 

relations of s, t, and 0.// 

THEOREM 71. Let A be a partially ordered ring and let 

P be a convex ideal such that A/P is totally ordered. The 

convex ideals in A containing P form a chain. 

PROOF. Let I be a convex ideal in A containing P. 

From Theorem 69, I/P is a convex ideal in A/P. From 

Lemma 69, I/P is a symmetric interval. From Lemma 70, 

any two symmetric intervals are comparable. This and 

Theorem 67 (v) give the desired result.// 

we now consider results involving totally ordered 

quotient rings of subrings that satisfy condition II with 

X respect to R • Similar results for C(X) are in [5, 

Theorem 2.9, Section 5.4]. 

THEOREM 72. If I is an ideal in a lattice-ordered 

subring A of RX satisfying condition II relative to A, 

then the following are equivalent. 

~i) The ideal I is prime. 

(ii) The ideal I contains a prime ideal. 

(iii) For h and g in A, hg = Q implies g is in I or h 

is in I. 
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(iv) For each fin A, there exists a zero set in Z[I] 

on which f does not change sign. 

PROOF. It is clear that (i) implies (ii) and (ii) 

implies (iii) . To show (iii) implies ( i v) , we see that 

f v 0 and fl\ Q are in A for each f in A, and (f v ~) (f A ~) 

= ~ in I. From (iii), at least one of the functions is 

in I. The zero set of this function satisfies ( iv) • To 

show (iv) implies (i), let gh be in I where g and hare 

in A. From (iv), there exists a zero set z1 in Z[I] 

h 2 does not change sign on z1 . Suppose 

g 2 ~ h 2 . Then every zero o£ g in z1 is also a zero in h. 

Then z (h) 2 Z 1 I) z (h) = Z 1 (\ Z (gh) in z [I] • If z1 f\ z (gh) 

= ~~ then I = A. This, however, is a contradiction. Hence 

Z (h) a z1 f\ Z (gh) f ~. From condition II, h is in I. 

Hence I is a prime ideal in A.// 

THEOREM 73. [5, Theorem 5.3] The following conditions 

on a convex ideal I in a lattice-ordered ring A are 

equivalent. 

(i) The convex ideal I is absolutely convex. 

(ii) If x is in I, then lxl is in I. 

(iii) If x and y are in I, then x v y is in I. 

(iv) I (a v b) = I (a) V I (b). 

(v) I (a) > 0 if and only if a - I a I (mod I) . 



THEOREM 74. Let I be an ideal in a lattice-ordered 

subring A of RX which satisfies condition II with respect 

to A. Then I(f) > 0 if and only if f is non-negative on 

some zero set of Z[I]. 

53 

PROOF. From Theorem 61 (ii), I is absolutely convex. 

From Theorem 73, I(f) ~ 0 if and only if-f+ lfl is in I. 

This is true if and only iff agrees with lfl on the zzro 

set Z(-f + lfl) in Z[I]. Thus f is non-negative on a zero 

set of I. 

Assume f is non-negative on some zero set z 1 in Z[I] 

where Z(g) = z 1 with gin I. 

z 1 , so Z(g(f- lfl)) = z<lfl 

Then Z(f- lfl) contains 

-f). Since g(f lfl) is in 

I, condition II shows lfl -fin I. Theorem 73 gives the 

result.// 

THEOREM 75. Let I be an ideal in a lattice-ordered 

subring A of Rx. Let I satisfy condition II with respect 

to A. Then A/I is totally ordered if and only if I is a 

prime ideal in A. 

PROOF. If A/I is totally ordered, then I(f) > 0 or 

I(-f) ~ 0 for each fin A. From Theorem 74, for (-f) 

is non-negative on some zero set in Z[I]. From Theorem 72, 

I is a prime ideal in A. The previous steps are reversible~/ 
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EXAMPLE 9. The following ideals are examples of 

absolutely convex ideals in C(R) which neither satisfy 

condition II relative to C(R) nor are prime ideals. Let 

In= {fin C(R): f(x)/xn is bounded on a deleted neighbor-

hood of 0} for n = 1,2,3, •.• Clearly lgl is 1.n I if n 

and only if g is in I n 

C (R) and g is in I . 0 n 

X =/ 0. This shows lfl 

i(x) = x for x in R. 

. Let 2 < If I < I gl where f is -
< llf(x)l/xnl < llg(x) l/xnl for 

is in I and thus f is in I . n n 

I does not satisfy condition II 
n 

in 

Let 

with respect to C(R) since Z(lil 1 / 2 ) = Z(in) for each n 

but < 1 i 1 > 1 ; 2 is not in I for any n. 
n 

The function in 

is in In- In+l' hence In+lC In for each n. In general, 

<liln/ 2 ) 2 = liln is in In but liln/ 2 is not in In' hence 

I is not a prime ideal. 
n 2 

-1/x k(x) = e for x =I 0 

If I =n In' then o0 c I. 
n 

and k(O) = 0, then k is in 

If 

EXAMPLE 10. This example involves the real "entire" 

analytic functions. Properties of special ideals are 

given in Lemma 76 below. We call A the ring of real 

"entire" functions on R if whenever f is in A, then for 

each ~ in R, f and all of its derivatives exist on R, 

and the Taylor series of f in powers of x - x 0 converges 

to f on a neighborhood of x 0 . Let M0 = {f in A: f(O) = O}. 

Since A/Mo is isomorphic to the real field R by using 



M0 (f) = f(O), M0 is a maximal ideal in A and hence is a 

2 prime ideal in A. Let M0 be the ideal in A generated by 

functions of the form fg where f and g are in M0 . 

LEMMA 76. Let f be in A where A, M0 , and M~ are 

defined above. 

(i) The function f is in M2 if and only if f(O) = 0 and 0 

f I ( 0) = o. 

( ii) The ideal M2 
0 is not a prime ideal in A and M2 

0 
is a 

proper subset of M0 . 

(iii) The ideals M~ and M0 are absolutely convex. 

( . > h . t . I 2 . 1v T e quot1en r1ng A M0 1s not totally ordered, 

however, A/M0 is totally ordered. 

PROOF. 

(i) The only if part is clearly true. If f(x) = 0 and 

f I ( 0) o, then f(x) 2 + 3 + Let i (x) = = a 2x a 3x . . . . = X 
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and g(x) + 
2 + Then g ( 0) O,and has the = a 2x a 3x ... = g 

same radius of convergence as f. Hence g is in M0 and 

f = ig. The function i is clearly in M0 • Thus f is in 

2 
Mo. 

(ii) Since i 2 is in i is 2 in M0 - M0 , the results 

follow. 

(iii) Let~~ If! ~ jgj where f is in A and g is 
2 3 Then g(x) = b 2x + b 3x + ••• and f(x) = a 0 + a 1 x 

for a neighborhood of 0. Clearly f(O) = 0, since g(O) = 0. 

Hence a 0 = 0. Let h be a non-zero number, then 

0 .2_ jf(h)/hl .2. jg(h)/hj. This implies If' (0) 1 ~ lg' (0) 1 = 0. 



2 Thus a 1 = 0 and from above, f is in M0 • In a similar 

manner M0 can be shown to be absolutely convex. 

(iv) Suppose M2 (i) > M2 (0) where i is the identity 0 - 0 = 
function, then there is a g in A such that g ~ 2, g(x) = 

2 a 0 + a 1 x + a 2x + •.. in a neighborhood of 0, and g- i 
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is in M~. Thus (g - i) (0) = (g i) • (0) = 0. This implies 

a 0 = 0 and a 1 = l. Then g(O) = 0 and g' (0) = l, which ls 

not possible for a non-negative, continuous function. 

This type of contradiction can be found for all possible 

inequalities. 

To show that A/M0 is totally ordered, it is easy to 

show M0 (f) = M0 (~) where r = f(O) .;; 
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IV. STRUCTURE SPACES OF SPECIAL SUBRINGS OF C(X) 

A. Real Function Rings 

Let A be a ring of real-valued functions on a non-

empty set X. Let MA = {f in A: f(x) = 0}. If Y is a sub-
X 

set of X, let MtY] = {M~: x is in Y}. We consider a 

definition and a lemma from [20]. 

DEFINITION 1. [20, p. 1] By a real function ring (X,A) 

we mean a ring A of real-valued functions on a non-empty 

set X such that, 

(i) the ring A separates points of X, i.e., if x andy 

are in X with x ~ y, then there is a function f in A such 

that f(x) ~ f(y), and 

(ii) for each x in X, {f(x): fin A} is the set of real 

numbers. 

LEMMA 1. [20, Lemma 1.4] Let (X,A) be a real function 

ring. For each X in X, MA is a fixed maximal ideal; 
X 

every fixed maximal ideal has the form MA for some x; and 
X 

the mapping (x >+ ~): X+ A is M [X] one-to-one. 
X 

PROOF. From definitions, MA is clearly a fixed ideal. 
X 

The mapping (f o+ f(x)): A+ R is a ring homormorphism 

with MA as its kernel. From the definition of a real 
X 

function ring, this mapping is onto R. Hence A/MA is 
X 

isomorphic to the real field R. Thus M~ is a maximal ideal. 



58 

Every fixed ideal must be contained in MA for some x. 
X 

Let I be a fixed ideal contained in MA. If I is a maximal 
X 

ideal, then it must be ~-X 

To show the mapping that takes x in ~n 

is one-to-one, suppose x and y are in X with x ~ y. From 

the definition of a real function ring there exists a 

g in A such that g(x) ~ g(y). Hence the homomorphisms 

f » f(x) and f » f(y) are different homomorphisms onto 

R. Their kernels, MA and MA must be different ideals 
X y 

from [5, Section 0.23].// 

DEFINITION 2. Let vA X be the set of real homomor­

phisms on A, i.e., homomorphisms from A onto R. Let fv 

be a function from vA X into R defined by fv(t) = t o f 

for each t in vA X. Let Av = {fv: f is in A}. 

THEOREM 2. Let (X,A) be a real function ring. The 
v v 

mapping taking f in A to f in A is one-to-one from A 
v 

onto A • 

PROOF. If f ~ g, then there exists an x 1 in X such 

that f(x1 ) ~ g (xl) • Let tl be the real homomorphism 

taking h in A to h (x1 ) in R. From the definition of a 

real function ring, tl is in v A X. Clearly tl 0 f ~ tl 

If fV = gv, then t 0 f = t 0 g for each t in VA X. In 

f tl Thus fv v and f ~ particular, tl 0 = 0 g. = g g 

0 g. 
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cannot occur simultaneously. Therefore the mapping f ~ fv 

is one-to-one. The mapping is onto from the definition of 

THEOREM 3. Let (X,A) be a real function ring. Then 

(vA X,Av) is a real function ring where fv + gv = (f + g)v 

and fvgv = (fg)v. 

PROOF. Clearly Av is a ring of real-valued functions 

on VA X. To show Av separates points of VA X, let t 1 

and t2 be in VA X where tl =J t2. Then there exists an f 

in A with tl 0 f =J t2 0 f. Thus tl 0 f = fv(tl) =J fV(t2) 

= t 2 o f. Therefore Av separates points of vA X. 

For a fixed x, the mapping (f ~ f(x)): A+ R is a 

real homomorphism, hence vA X is not empty. We now 

show that {fv(t): fv is in Av} is the set of all real 

numbers for each t in VA X. v f (t) = t o f. Since t 

maps A onto R, the condition is satisfied.// 

COROLLARY 4. The mapping taking f in A to fv in Av is 

v an isomorphism from A onto A . 

PROOF. This follows from Theorem 2 and the equalities 

(f + g)v = fv + gv and (fg)v = fvgv.// 

COROLLARY 5. Let (X,A) be a real function ring. Then 
v 

~ , for t in vA X, is a fixed maximal ideal 

every fixed maximal ideal in Av has the form 

t in VA X. 

in A v; and 
Av 

Mt for some 
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PROOF. The results follow from Theorem 3 and Lemma 1.// 

The process in Theorem 3 can be continued, since 

(VA X, Av) is a real function ring. Denote the real homo-

morphisms v by v X. Let fvv be function from on A a . v 
A 

v X 
Av 

to R defined by (fvv) (h) = h 0 fv for all h in v X. 
Av 

THEOREM 6. There exists a one-to-one mapping between 

the real homomorphisms on A and the real homomorphisms on 

i.e., between vA X and v X. 
Av 

PROOF. Let t be in VA X. Define tv to be a real­

valued mapping on Av defined by tv(fv) = t o f for each 

fv in A v. The mapping tv is onto R since t is a mapping 

fv v 
(f g)v fvgv v v 

onto R. Since + g = + and = ( fg) 1 t 

v 
is a real homomorphism on A • If tl and t2 are in VA X 

with tl t t2, then tv 
1 t v 

t2. Thus the mapping 

to tv is one-to-one from VA X into v v X. 
A v 

Now let a be a real homomorphism on A • 

= rf in R. 
v 

Then a((f +g) } = rf+g 
v 

= a(f } + 
v v v 

and a((fg} } = a(f g} = rfg = rfrg. = rf + rg 

mapping t from A into R by t o f = a(fv} = rf. 

t o ( f + g) = t o f + t o g and t o (fg} = (t 

taking t 

v 
Let a(f } 

v 
a(g } 

Define 

Then 

0 f) (t 0 

The mapping t is a real homomorphism on A since a is a 

a 

g) • 

real homomorphism on Av. Thus a= tv. The result follows.// 
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From the mappings given in Theorem 6 and Corollary 4, 

(VA X,Av) and (v v X,(Av}v) can be identified with each 
A 

other. This process is somewhat similar to a completion. 

We might call it a real completion. We get no new infor­

v mation from taking the real completion of (vA X,A ). 

THEOREM 7. Every real maximal ideal in Av is a fixed 

ideal. 

PROOF. Let Mv be a real maximal ideal in Av. Ring 

isomorphisms take ideals to ideals and real ideals to 

real ideals. From the isomorphism given in Corollary 4, 

M = {f in A: fv is in Mv} is a real ideal in A. Define a 

mapping a from A onto R by a(g) = M(g) for g in A. Then 

a is a real homomorphism with M as its kernel. Hence a 

is in vA X; and if mv is in Mv, then mv(a) =a o m = 0. 

Therefore Mv is a fixed maximal ideal.// 

COROLLARY 8. A maximal ideal in Av is fixed if and 

only if it is a real ideal. 

PROOF. Using Corollary 5, every fixed maximal ideal 

in Av is real. Theorem 7 gives the other result.// 
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B. Piecewise Rational Functions 

DEFINITION 3. The piecewise rational functions on R 

will be denoted by A. Let A be a subset of C(R) where f 

is in A if there exists a finite number of closed intervals 

I 1 , I 2 , ... ,In of R such that f(x) = pi(x) I qi(x) for 

x in I., i = 1,2,3, ... ,n; p. (x) and q 1. (x) are polynomials 
1 1 

with no common factors and with qi(x) 1 0 when xis in 

n 
! . ; and R = 

1 u 
i=l 

I. • 
1 

Without loss of generality we may assume Ii (\ Ii+l 

is one number of R fori= 1,2, ••• ,n-l; 

and y is in Ii+l' then x < y. 

and if xis in I. 
1 

The set A will be shown to be a lattice-ordered 

subring of C(R) containing the polynomials. Some results 

on the prime ideals in A will be given and the structure 

space of A will be shown to be a two point compactification 

of R. 

LEMMA 9. 

(i) The set A contains the polynomials and the constant 

functions on R. 

(ii) If f is in A, then df/dx exists at all but a finite 

number of points of R. 

(iii) Iff is in A, then lfl is in A. 



PROOF. Parts (i) and (ii) are obvious. To show 

(iii), let f be in A where f(x) = p. (x)/q. (x) for x in 
1. 1. 

If, i = 1,2,3, ... ,n. In each subinterval I~ there exists 

a finite number of points r in R such that the polynomial 

pi satisfies pi(r) = 0 and pi(x) is positive as well as 

negative in each neighborhood of r. Since lfl is also 

continuous, we can construct lfl so that it is in A.// 

LEMMA 10. The set A is a lattice-ordered subring of 

C (R). 
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PROOF. Clearly A is a subring of C(R). Let f and g 

be in A where f(x) = p. (x)/q. (x) for x in I~, i = 1,2, ... ,n, 
1. 1. 1. 

and g(x) = r.(x)/s.(x) for x in I~, j = 1,2, ... ,m. In 
J J J 

each non-empty subinterval of the form I~ n I~ where f 
J 1. 

and g are not identical, there exists a finite number of 

points where f(x) = g(x). Then we can construct f v g 

and fAg so that they are in A.// 

The ring A does not contain the arctangent function 

on R and does not contain the exponential function. Hence 

A does not contain all of C*(R) and does not contain all 

of the functions in C(R) - C*(R). II 

LEMMA 11. The ring A is a real function ring which 

has the pointwise inversion property. 



PROOF. Since the identity function i is in A, A 

separates points. of R. Clearly A satisfies the other 

conditions of a real function ring. We must show that 

~/f is in A whenever f is in A and Z(f) = ~- If Z(f) = ~ 

and f(x) = pi(x)/qi(x) in a subinterval, then pi(x) f 0 

in this subinterval and 1/f(x) = q. (x)/p. (x) is well-
1 1 

defined and continuous in this subinterval. Since 1/f 

is in C(R), the result follows.// 

The following theorem is similar to [8, Theorem 37] 

originally proved by Hewitt for the ring C(X). 

THEOREM 12. Let B be any subring of C(X). An ideal 

I in B is free if and only if for each compact set S 

there exists a function f in I having no zeros in S. 

PROOF. Assume the ideal I is free. For each x in S 

there is a function fx in I such that fx(x) ~ 0. Cover 

each x inS by an open set of the form X- Z(f ) • From 
X 
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the compactness of S, pick a finite subcover. This finite 

subcover is generated by a finite number of functions, 

call them f , 
xl 

• • • I Then ~ 
i=l 

is in I and is greater than zero on S. 

To show the if part we note that {x} is a compact 

subset of X. By hypothesis there exists a function f 
X 

in I such that f (x) ft 0 for each x in X. Hence I is a 
X 

free ideal.// 
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COROLLARY 13. If M is a free ideal in any subring 

B of C(X) such that B has the pointwise inversion property, 

then Z(f) is not compact for each fin M. 

PROOF. If Z(f) is compact, Theorem 12 tells us that 

there is a gin M such that g is not zero in Z(f). Then 

Since B has the 

pointwise inversion property, we have a contradiction.// 

LEMMA 14. [5, Corollary 0.17]. Let B be a commutative 

ring with a unity element. Let I be an ideal in B with a 

an element in B. If no power of a belongs to I, then there 

exists a prime ideal containing I but not a. 

LEMMA 15. There exist prime ideals in A which are not 

maximal ideals. 

PROOF. Let 0~ = {fin A: Z(f) is a neighborhood of 0}. 

Let i be the identity function on R. No power of i is in 

0~. From Lemma 14, there is a prime ideal P containing 

0~ but not i. One such prime ideal is the following: 

P ={fin A: Z(f) contains [O,r]for some positive number r}. 

Clearly P properly contains 0~ and is properly contained 

in~-// 

THEOREM 16. Every prime ideal P in A is absolutely 

convex. 



PROOF. Let lfl .::_ lgl where g is in P and f is in A. 

Let h(x) = f 2 (x)/g(x) for x not in Z(g) and h(x) = 0 for 

x in Z(g). Then h can be shown continuous using the 

procedure in the proof of Corollary 62 in Section IIID. 

Let If, I~, ... , I~ be the subintervals of g. The 

zeros of g are either isolated in I~ or g[I~] = {O}. 
l. l. 

Let I 1 , I 2 , ... , Im be the subintervals for f 2 . DivideR 

into subintervals with endpoints at the endpoints of I~ 
l. 

and I. where i = 1,2, •.• ,n and j = 1,2, ..• ,m, and also 
J 

at the isolated zeros of g. There are a finite number 

of subintervals with the above endpoints since there are 

only a finite number of isolated zeros of g. Clearly 

h can be written as a rational function in each sub-

interval. Since h is continuous, h is in A. If h is in 

A and g is in P, then hg is in P. Since hg = f 2 , £ 2 

is in P. Since P is a prime ideal in A, f is in P.// 

COROLLARY 17. The quotient ring A/P is totally 

ordered for each prime ideal P in A. 

PROOF. This easily follows from Theorem 66 in 

Section IIID.// 

EXAMPLE 1. The ideal 0~ was defined in the proof 
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of Lemma 15. This ideal satisfies condition II with 

respect to A, is not prime, is absolutely convex, and A/0~ 

is not totally ordered. The last result can be shown by 

showing that O~(i) and 0~(-i) are not comparable with O~qp. 
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EXAMPLE 2. We consider ideals in A similar to those 

of Example 9 in Section IIID. Let M~ = {f in A: f(O) = O} 

and IA = {g in A: g(x)/xn is bounded on a deleted neighbor­n 

hood of 0}. If f is in M~, then f(x) = xp . ( x) I q . ( x) 
~ ~ 

in some interval(s) I. such that 0 is in I .• Since f(x)/x 
~ ~ 

is bounded for x in Ii - {O}, f is in I~. Hence~~ I~. 

Also I~ C ~- Thus IA 
1 = ~; therefore I~ is a prime ideal 

and an absolutely convex ideal. A A A Also I 2 C. I 1 and In 

is not a prime ideal in A for n > 1. Let IA = (\ IA n· In 

this case 0~ = 
n 

DEFINITION 4. The support of a function f is the 

Cl (X- Z(f)). Let CK(X) denote the set of all functions 

in C(X) with compact support. Let ~denote the set of 

functions in A with compact support. 

LEMMA 18. 

(i) The function f is in AK if and only if there is a 

number a such that Z(f) contains (-oo,-a] U [a,oo). 

(ii) The set Ak is a free ideal in A. 

PROOF. Part (i) easily follows from definitions. 

To show (ii) we use the fact that a closed subspace of a 

compact space is compact. Clearly ~ is in AK. If f is in 

~, then (-f) is in AK, since the support of (-f) is equal 

to the support of f. Let f and g be in AK. Since z (f) 

is a subset of z ( fg) 1 the support of ( fg) is a subset of 

the support of f. Thus the support of fg is compact and 
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fg is in ~- Since Z(f +g) contains Z(f) ~ Z(g) 1 the 

support of (f + g) is contained in the compact set which is 

the union of the support of f and the support of g. Thus 

f + g is in AK. The other subring properties are easily 

shown, hence AK is a subring of A. From (i), AK is 

easily shown to be an ideal or equal to A. Since ~ is in 

A - ~, AK is an ideal. For each r in R 1 fr is in AK 

where f (x) = ((jx- rl - 1) A 0). r 

AK is a free ideal.// 

Since f (r) =;i 0, 
r 

'I'HEOREM 19. The ideal ~ is in every free maximal 

ideal in A. 

PROOF. Suppose M is a free maximal ideal in A and g 

is in AK - M. From Lemma 18 (i) 1 there is a real number 

a such that Z(g) contains (-oo,-a] V [a,oo). Since M is a 

maximal ideal with g not in M, ~ is in (M,g). There 

exist functions f in A and m in M such that ~ = fg + m. 

Then m(x) = 1 for x in (-00 1 -a] U [a,oo). Thus Z(m) is 

compact, but m is in M. From Corollary 13, this is not 

possible. Hence g is in M for each g in AK.// 

DEFINITION 5. The following notation will be used: 

M+ = {h in A: Z(h) contains [a,oo) for some a in R} 1 

M = {h in A: Z(h) contains (-oo,-a] for some a in R}. 
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LEMMA 20. + The sets M and M are distinct, free, 

prime ideals in A. 

PROOF. The sets M+ and M are clearly ideals con-

taining AK and are free ideals since AK is a free ideal. 

. - + + Since i V ~ is 1n M - M and ( -i) V ~ is in M - M , 

+ the ideals are distinct. To show M is a prime ideal in 

A, suppose fg is in M+. Then Z(fg) contains [a,oo) for 

some a in R. If f is not in M+, then there is an interval 

[b,oo) such that Z(f) n [b,oo) = ~. Then Z(g) contains 

[b,oo) A [a,oo); hence g is in M+. This type of argument 

shows M+ is a prime ideal. In a similar manner we can 

show that M- is a prime ideal in A.// 

LEMMA 21. The ideals M+ and M are free maximal 

ideals in A. 

PROOF. From Lemma 20, they are free ideals. To show 

that M+ is maximal let h be in A-M+. S . + 1nce M is a 

prime ideal in A, h 2 is in A-M+ if h is in A-M+. From 

Lemma 18 (i), Z(h2 ) A [r,oo) =~for some r in R. Define 

m as follows: 

m(x) = l :_::(: < :r + 1)) if r < x < r + 1 

0 if x > r + 1. 

' ' M+ d Z ( h 2 ) rx Th + h 2 ' . t Then m 1s 1n an m + = ~· us m 1s a un1 

in (M+,h). The result follows.// 



THEOREM 22. The ideals M+ and M are the only free 

maximal ideals in A. 

PROOF. From Lemma 21, M+ and M are maximal ideals 

in A. Let M be a free maximal ideal which is not equal 

to M+ or M • If f is in M- M+, then, from Corollary 13, 

f_ is in M • If . . th . . + g 1s 1n M - M , en g 1s 1n M • Since 

M is not contained in M+ or M , the functions f and g 

exist. Then f 2 + g 2 is in M, but Z(f 2 + g 2 ) is compact. 

This is a contradiction from Corollary 13. The result 

follows.// 

We now give two definitions and one theorem for a 
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general commutative ring B with unity. These results will 

later be applied to the ring A. 

DEFINITION 6. Let S be the set of all maximal ideals 

in B. Let S be a subset of S. The closure of S in S is 

defined by Cl (Sj ={Min : M 2 () S} where{\S = (\ M'. 
M'ES 

This defines a topology on S called the Stone (or hull-

kernel) topology. The set S with the Stone topology is 

called the structure space of B. 

The Stone topology was first defined by Stone [27, 

Theorem 1]. Gelfand and Kolmogoroff in [3] applied the 

Stone topology to C(X) and C*(X) and used the structure 

space as a model for Sx. Theorem 23 will give some of 

the properties of this structure space. 



THEOREM 23. [5, Problem 7M] and [3] Let B be a 

commutative ring with unity. The space S will refer to 

the set of maximal ideals in B with the Stone topology. 

(i) The space S is a T1 space. 

(ii) The space S is a Hausdorff space if and only if, 

for each pair of distinct maximal ideals M and M', there 

exist a and a' in B such that a is not in M, a' is not 

in M' , and aa' is in (\ S. 

(iii) If S is a Hausdorff space, then it is compact. 

(iv) Any ring which is isomorphic to C(Y) has SY as its 

structure space; hence sxl = sx is the structure space of 

C' used in theorems following Theorem 49 of Section IIIC. 

Some previously shown results will be proved using 
, 

the Stone-Cech compactification along with results from 

[17] . From [17], MA denotes the collection of maximal 

ideals in A with the Stone topology. For p in i3X, Mp = 
A 

{fin A: (fg)*(p) = 0 for all gin A} where (fg)* refers 

to the Stone extension of fg. Let A be the subring of 

piecewise rational functions. From Lemma 1, M~ is a 
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fixed maximal ideal for p in X. For p in SX, M~ is a 

prime ideal in A. Let GA = {M~: p is in SX}. The subring 

A is a subalgebra of C(R). 



THEOREM 24. [17, Proposition 2.7] The following are 

equivalent for a subalgebra A of C(X). 

(i) The subalgebra A is closed under bounded pointwise 

inversion. 

(ii) If I is an ideal in A, then n Z(f*) ~ ~. 
fEI 

(iii) Every ideal in A is contained in some Mi. 

(iv) The set MA is a subset of GA. 

(v) Every M in MA is absolutely convex. 

THEOREM 25. See Theorem 19. The ideal Ax is con­

tained in every free maximal ideal. 

PROOF. The ring A is a real function ring. From 

Lemma 1, {Mi: p in R} contains all of the fixed maximal 

ideals in A. From Theorem 24 (iv), every free maximal 

ideal has the form Mi. Since Mp is fixed for p in R, A 

the free maximal ideals have the form Mi for p in SR - R. 

Since Ax is a free ideal, A contains free maximal ideals. 

If f is in Ax, then f is in Mi for each p in SR - R. The 

result follows.// 
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THEOREM 26. See Theorem 22. The ideals M+ and M are 

the only free maximal ideals in A. 

PROOF. Suppose there is a function f in some free 

maximal ideal in A such that f is not in AK. Then there 

is an interval [a,oo) or (-=,-a] for some a in R such 

that f is non-zero on this interval. Suppose f is not zero 

on [a,oo). + Let R denote the subspace of non-negative 
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real numbers and R denote the subspace of non-positive 

real numbers. From [ 5, P· 92] , SR - R = (SR+ - R+) v 
- -(SR SR+ R+. p - R ) . Consider p in - If f is in MA' then 

f* (p) = 0. If there is no interval [a, co) such that f[[a,oo)] 

= {0}, then there is a real number b such that f (x) ~ 0 

for x in [b,oo). If g (x) = 1/f (x) for x in [b, 00) and g(x) 

= 1/f (b) for X in [-co 1 b) 1 then (gf)*(p) = l. Thus if f 

is in MP for p in SR+ - R+, f must be 0 on some interval A 

[a,oo) • Similar results can be obtained for functions 

in M~ with pin SR-- R • Let p and p' be in SR+ - R+. 

Then f is in M~ if and only if f is in Mi: A similar 

result can be stated for p and p' in SR- - R The only 

possibilities for free maximal ideals are M+ and M- of 

Definition 5. Lemma 21 gives the desired result.// 

We now check the structure space of A. The fixed 

maximal ideals have the form M~ = MA for X in R. 
X 

THEOREM 27. [20] Let X be a completely regular, 

Hausdorff space and let (X,B) be a real function ring. If 

B Z[B] is a subbase for the closed sets of X, then M[X] with 

the Stone topology is homeomorphic to X. 

PROOF. The proof is similar to the proof given by 

Gelfand and Kolmogoroff [3) for the case where X is a compact 

Hausdorff space and B = C(X). The proof is also similar 

to the one given in [21, Theorem 2.3]. From Lemma l, the 

fixed maximal ideals are MB for x in X and the mapping 
X 



B (x »- M ) : 
X 

B 
X ~ M[X] is one-to-one. We show this 

mapping is a homeomorphism. From Definition 6, if 

M~S] is a subset of ~X]' then Cl (M~s]> = {M~: M~ con-
B tains nM[S]}. SupposeS is a non-empty subset of X and 

let x be in Cl (S). Iff is in AM~X]' then f(s) = 0 for 

sins. This means Sis a subset of Z(f). Since Z(f) is 
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closed by hypothesis, Cl (S) is a subset of Z(f) and f{x) 

= 0. Therefore f is in M~. We have shown that A ~S] is 

a subset of M~ if xis in Cl (S); then from the definition 

of closure in the Stone 

Now we start with MB in 
X 

t 1 MB . . Cl (MB ) opo ogy, x 1s 1n [S] . 

Cl (M~S]) which means M~ contains 

n M~S]" Iff is in B such that Z(f) contains S, then f 

is in AM~S] and thus f(x) = 0. We know Z[B] is a subbase 

for the closed sets of X. Since no function in B has a 

zero set containing S but not containing x under the 

conditions M~ is in Cl (M~S]), x must be in Cl (S). Thus 

the mapping is a homeomorphism.// 

COROLLARY 28. 
A 

The subspace M[R] is homeomorphic to 

·R where A is the ring of piecewise continuous functions on 

R. 
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PROOF. The space R is a completely regular, Hausdorff 

space and (R,A) is a real function ring. Since Z[A] con­

tains closed sets of the form (-oo,-a] and [a,oo) for all 

a in R, Z[A] is a subbase for the closed sets of R. 

Using Theorem 27, the set of fixed maximal ideals with 

the Stone topology is homeomorphic to R.// 

THEOREM 29. Let S be the structure space of A. Then 

s is a two point compactification of R. 

PROOF. It is easy to find functions satsifying the 

condition of Theorem 23 (ii); hence Sis Hausdorff. From 

Theorem 23 (iii), Sis compact. From Corollary 28, 

the subspace of fixed maximal ideals in S is homeomorphic 

to R. The subspace of fixed maximal ideals in S is 

dense in s. Since there are only two free maximal ideals 

in S, S is a two point compactification of R.// 

We now consider whether any maximal ideals are 

principal. 

LEMMA 30. Let H be a subring of RX which is closed 

under pointwise inversion. If I is a principal ideal in 

H, then I is fixed. 

PROOF. Let I = (f) = {gf: g is in A}. Since H is 

closed under pointwise inversion, Z(f) =~is not possible. 

Thus A Z(h) contains Z(f). Hence I is a fixed ideal 
hE I 

in H.// 



LEMMA 31. No maximal ideals in A are principal. 

PROOF. From Lemma 30, no free maximal ideal in A 

is principal. Every fixed maximal ideal has the form 

~ for x in R. Suppose f is a generator for M~. Then 
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Z(f) must be {0} since i is in~- Thus f(x) = xp1 (x)/q1 (x) 

for x in r 1 = [-a,O] and f(x) = xp2 {x)/q2 (x) for x in 

r 2 = [O,a] for some positive number a. Since Iii is in 

r~, we obtain -lim q 1 (x)/p1 (x) =lim+ q 2 (x)/p2 (x). 
~0 ~0 

The functions q1 , p 1 , q 2 , and p 2 are polynomials, con-

tinuous and non-zero at x = 0. We obtain q 1 (0)/p1 (0) = 

-q2 (0)/p2 (0). Fori in~ we obtain q 1 (0)/p1 (0) = 

q 2 (0)/p2 (0). This contradiction establishes the result 

for ~- The same procedure shows that M~ is not a 

principal ideal for any x in R.// 

c. Special Subrings Containing CK(X) 

Let A be a subring of C(X) and let~ denote the 

set of functions of A with compact support, i.e., f is 

in AK if Cl (X- Z(f)) is compact. We often denote the 

support of f by Supp (f). The set CK{X), defined in 

Definition 4, has been extensively studied. Results 

involving CK(X) are given by Kohls in [10] and [11], 

by Shanks in [25], by Gillman and Jerison in [5], and by 

Pursell in [21]. Riordan in [23] worked with functions 

in C(X) with pseudocompact support. 



In this section several special subrings containing 

AK are considered. Emphasis is given to the structure 

space of subrings of the form CK(X) + P(X) where P(X) is 

a subring of C(X) with CK(X) n P(X) = {~}. The space 

X = R is used for some of the subrings. In some cases 

CK(X) is the only free maximal ideal in CK(X) + P(X); 

in other cases, CK is a proper subset of the free maximal 

ideals. The results through Theorem 37 are related to 

the properties of CK(X) given in [5, Problem 4D]. 

LEMMA 32. If X is compact, then AK = A. 
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PROOF. The support of f is a closed subspace of the 

compact space X, and hence is compact for each f in A.// 

LEMMA 33. Let A be a subring of C(X) containing 1· 

If X is not compact, then ~ is an ideal in A. 

PROOF. The proof follows the proof of Lemma 18 (ii) .// 

THEOREM 34. Let A be a subring of C(X} containing 

C*(X). Then~ is a free ideal in A if and only if X 

is locally compact but not compact. 

PROOF. Assume ~ is a free ideal in A. If X is 

compact, then AK = A from Lemma 32. This is not possible; 

hence X is not compact. We now show that X is locally 

compact. Since ~ is a free ideal, for each y in X there 

is a function fy in AK such that fy(y) ~ ?· There exists 



an open neighborhood N containing y such that 0 is not 
y 

in f [N ]. Then Cl (N) is a compact neighborhood of y y y y 

since it is a closed subspace of Supp (fy). Thus X is 

locally compact. 

Assume X is locally compact but not compact. From 

Lemma 33, Ax is an ideal in A. Each y in X has an open 

neighborhood NY whose closure is compact. Since X is 

completely regular, there exists a function f in C* 
y 

such that f (y) = 1 and f [X - N ] = {0}. y y y Supp (f ) is 
y 

compact since it is in Cl (NY). Thus fy is in AK. Hence 

~ is a free ideal in A.// 

In Section IV B we worked with the subring A of 

piecewise rational functions on R. This subring did not 

contain C*(R) and AK was a free ideal contained in every 

free maximal ideal in A. 

We denote the interior of a set S by int (S) or 

int s. 
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LEMMA 35. [5, Problem l.D.l] Let f and g be in C(X). 

If Z(f) is a neighborhood of Z(g) and X int Z(f) is 

compact, then there exists a function h in C*(X) such 

that f = hg. 

LEMMA 36. Let f be in C(X). Then Cl (X- Z(f)) 

=X- int Z(f). 



PROOF. This follows easily from definitions.// 

THEOREM 37. Let A be a subring of C(X) containing 

C*(X). Then AK is contained in every free ideal in A. 

PROOF. Let I be a free ideal J..n A. Let f be in AK 

and let s be the support of f. From Theorem 12, there 

a function g in I such that g (x) f 0 for each x in s. 

Then z (g) ~ X - s ~ z (f) and z (f) is a neighborhood of 

Z(g). From Lemma 36, X- int Z(f) = S. From Lemma 35, 

there is a function h in C*(X) such that f = hg. Thus 

f is in I. This procedure works for any function in 

AK, hence AK is a subset of I.// 

1. CK(X) Plus Constants 

is 
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In Pursell's paper [21] results are obtained for the 

ring CK(X) + R(X) where R(X) is the ring of real constants 

on X. The main results are stated in the following theorems. 

We will obtain similar results for subrings containing 

CK(R) and CK(X). 

THEOREM 38. [21, Theorem 2.1] Let T be a commutative 

ring with a unity 1 containing a field K and an ideal M 

such that 1 is in K and T = K + M. Then: 

(i) The ideal M is a maximal ideal in T. 

(ii) The ring Tis the direct sum of K and M, i.e., 

every tinT has a representation t = y(t) + o (t) where 

Y(t) is a unique element of K and 8 (t) is a unique element 

of M. 
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(iii) The mapping y is a homomorphism from T onto K 

having M as its kernel. Hence T/M is isomorphic to K. 

PROOF. 

(i) Suppose M is not a maximal ideal in T. Let M1 be a 

maximal ideal containing M. If h is in Ml - M, then 

h = kl + m where 0 'I k I I kl is in K, and m is in M. Hence 

h - m = kl is in Ml • Then (k 1) -1 kl = 1 is in M I 0 This 

implies Ml = T. This contradiction establishes the result. 

(ii) Since M is an ideal in T, M cannot contain any 

element of K except 0. Hence M n K = 0. By definition, 

every tinT can be written as t = y(t) + o(t) where y(t) 

is inK and o(t) is in M. Suppose t = Y1 (t) + o' (t) 

where y 1 (t) is inK and 0 1 (t) is in M. Then y(t) - y 1 (t) 

= 0 1 (t) - o(t) where y(t) - y 1 (t) is inK and 0 1 (t) - o(t) 

is in M. Since K fl M = 0, q•(t) = o(t) and y(t) =y'(t). 

The result follows • 

(iii) To show y is a homomorphism onto K, let x and y 

be any elements of T. Then 

X+ y = (y(x) + O(X)) + (y(y) + o(y)) = (y(x) + y(y)) 

+ ( o (x) + o (y) ) • 

Since y(x) + y(y) is inK and O(x) + o(y) is in M, it 

follows from (ii) that y(x + y) = y(x) + Y(y). Also 

X • y = (y(x) + O(X)) (y (y) + o (y)) = y (x) • y (y) + y (x) 

· 0 (Y) + 0 (x) • y (y) + o (x) • o (y) • Since y (x) · y (y) is 

in K and the sum of the last three terms is in the ideal M, 



( ii) implies y (x • y) = y (x) • y (y) • Clearly y is 

onto K.// 

THEOREM 39. [21, Theorem 2.2] Let F be a ring of 

real functions on a Hausdorff space X such that 

(i) F contains R(X), 

(ii) F is closed under pointwise inversion, and 

(iii) zero sets are closed. 

If a proper ideal I in F contains a function f such that 

Z(f) is compact, then I is fixed. 

PROOF. The proof is similar to the proof of Theorem 

12.// 

THEOREM 40. [21, Theorem 2.3] Let F be a ring of 

real functions on a regular, Hausdorff space X such that 

(i) F contains R(X), 

(ii) zero sets are closed, and 

(iii) F separates points from closed sets, i.e., if sis 

any closed subset of X and x is in X - s, .there is a 

function f in F such that f(x) f 0 and S is a subset of 

z (f) • 
F Then M[X]' .the set of all fixed maximal ideals in 

F with the relative Stone topology, is homeomorphic to X. 

PROOF. The method of proof is similar to the method 

of proof of Theorem 27.// 
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Let X be a locally compact, non-compact, Hausdorff 

space. The ring CK(X) + R(X) is closed under pointwise 

inversion and zero sets of CK(X) + R(X) are closed. 

LEMMA 41. [21, Section 3) The set CK(X) is a real 

maximal ideal in CK(X) + R(X). 

PROOF. This easily follows from definitions and 

Theorem 38.// 

LEMMA 42. [21, Section 3] Every f in CK(X) + R(X) 

has a unique representation f = y(f) + o(f) where y(f) 

is a constant and o(f) is a continuous function with 

compact support. 

PROOF. This follows directly from definitions and 

Theorem 38.// 

LEMMA 43. [21, Section 3] For f in CK(X) + R(X), 

Supp (f) is compact and Z(f) is not compact if and only 

if y(f) = 2; Z(f) is compact and Supp (f) is not compact 

if and only if y(f) ~ 2· 

PROOF. Since X is not compact and X = Supp (f) U 
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Z(f), Supp (f) and Z(f) cannot both be compact. If y(f) = 2' 
then Supp (f) is compact. If y(f) ~ 2' then Z(f) is 

compact since Z(f) is contained in the compact set Supp 

(o(f)). The results follow.// 



THEOREM 44. [21, Section 3] The ideal CK(X) is a 

free maximal ideal. Every free ideal in CK(X) + R(X) is 

contained in CK(X). Hence CK(X) is the only free maximal 

ideal in CK(X) + R(X). 

PROOF. From Lemmas 33 and 41, CK(X) is a free 

maximal ideal. From Theorem 39 and Lemma 43, y(f) = 0 

for all functions f in a free ideal in CK(X) + R(X), and 

hence every free ideal in CK(X) + R(X) is contained in 

CK(X).// 

THEOREM 45. [21, Section 3] The space M[X] of all 

fixed maximal ideals in CK(X) + R(X) with the relative 

Stone topology is homeomorphic to X. 

PROOF. Since X is locally compact and Hausdorff, 

it is completely regular. Therefore CK(X) + R(X) 

separates points. The result follows from Theorem 40.// 

THEOREM 46. [21, Theorem 3.8] If X is a locally 

compact, non-compact, Hausdorff space, then the space X~ 

of all maximal ideals in CK(X) + R(X) with the Stone 

topology is the one point compactification of X. 

PROOF. Theorem 23 is used. For two distinct, 

fixed maximal ideals Mx and My in CK(X) + R(X), we can 

construct functions f and g in CK(X) + R(X) such that 

f(x) ~ 0, g(y) ~ 0, and fg = 0. From the proof of Theorem 

40, the fixed maximal ideals in CK(X) + R(X) are Mx 
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{fin CK(X) + R(X): f(x) = 0}. Thus the fixed maximal 

ideals satisfy Theorem 23 (ii). Now consider a fixed 

maximal ideal Mx and the free maximal ideal CK(X). Let 
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u be an open neighborhood of X with compact closure. There 

exists a function h in CK(X) + R(X) such that h(x) = 1 

and h[X - U] = { 0}. Define v = {y in X: h (y) > 3/4} and 

v• = {y in X: h(y) < 1/4}. Then V and v• are disjoint 

open sets in the compact, Hausdorff, hence normal, space 

Cl (U). From Urysohn's lemma there is a real continuous 

function~ defined on Cl (U) such that ~[V] = {0} and 

~[V'] = {1}. If we define ~(y) = g(y) for y in U and 

g(y) = · 1 for y in X- U, then g is in CK(X} + R(X) but 

not in CK(X). There also exists a function f in CK(X} 

+ R(X) such that f(x) = 1 and f[X- V] = {0}. Then f is 

not in M and fg = 0. Hence X* is compact. From Theorem 
X K 

45, the mapping that takes x to Mx imbeds X into XK. From 

Theorem 44, XK- M[X] consists of a single ideal CK(X). 

From Theorem 23 (iii), XK is a one point compactification 

* of x. That XK is "the' one point compactification follows 

from Alexandroff's theorem about the uniqueness of the one 

point compactification [1, p. 92].// 
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2. CK(R) Plus Polynomials 

Let B be a commutative ring with B = P + M where p 

is a subring of a ring H, M is an ideal in H,and p n M = {0}. 

LEMMA 47. The ring B is the direct sum of P and M. 

PROOF. The proof is similar to the proof of 

Theorem 38 (ii) .// 

LEMMA 48. Let a be in B where a = p + m with p in P 

and m in M. Let y be a mapping from B into P defined 

by y(a) = p. Then y is a homomorphism from B onto P. 

PROOF. The proof is similar to the proof of Theorem 

38 (iii).// 

Under the conditions given for B, P, and M, M is 

not necessarily a maximal ideal in the ring B. 

We now restrict ourselves to X = R, the space of real 

numbers, and consider subrings of the form CK(R) +A'. 

Results will be given where A' is the ring of polynomials, 

and later, where A' is the ring of piecewise rational 

functions. Let A be a subring of C(R) such that f is in 

A iff is eventually a polynomial, i.e., there exists a 

real number r and a polynomial p on R such that f(x) 



= p(x) for all lxl > r. Then A is the subring CK(R) 

+ P(R) where CK(R) is the set of continuous functions on 

R with compact support and P(R) is the set of polynomials 

on R. We often denote CK(R) by CK and P{R) by P. From 

Lemma 47, A is a direct sum of CK and P. 

LEMMA 49. The set CK is an absolutely convex, free 

ideal in A. 
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PROOF. Clearly CK is a free ideal in A. If 2 ~ jfj~ jgj 

where g is in CK and f is in A, then Z(f) contains Z(g). 

Therefore Cl (R- Z(f)) is a subset of Cl (R- Z(g}) 

and f is in CK. Since ~ is in A - CK, CK ~A.// 

In [7] the ideal CK is mentioned as an example of an 

ideal in A(R+) which is maximal in the set of absolutely 

convex ideals but is not a maximal ideal in A. The same 

situation applies for A as the next theorems show. 

THEOREM 50. The ideal CK is maximal in the class of 

absolutely convex ideals in A. 

PROOF. From Lemma 49, CK is an absolutely convex 

ideal. Suppose there is an absolutely convex ideal M 

such that CK C M. Then there is a function f in M - CK 

and a real number r such that f(x) I 0 for lxl ~ r. 

Suppose f(x) = k for lxl > r where k is a non-zero constant. 

Let g = ~ - f. Then g is in M and ~ = g + f is in M. 

Hence ~ is in M. This implies M = A. This contradiction 

shows that f must eventually be a non-constant polynomial 
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if CK is not maximal in the class of absolutely convex 

ideals. Suppose f is eventually a non-aonstant polynomial; 

then lim lf(x) I = 00 • Then there are positive numbers r' 
lxl-+oo 

and k such that lf(x) > k for lxl > r'. There exists a 

function g' in A and a number r 2 > r' such that g' (x) = 

lf(x) I for lxl < r', g' = jg• I ~ lfl, and g' (x) = k for 

lxl > r 2 . Then~~ lg'l = g' ~ lfl. Since f is in M 

and M is absolutely convex, g' is in M. Let h = ~- g'. 

Then h is in M and h + g' = ~ is in M. Thus ~ is in M and 

this is a contradiction. The conclusion of the theorem 

follows.// 

LEMMA 51. The ideal CK is not a maximal ideal in A. 

PROOF. Let i(x) = X for all x in R. If CK is a 

maximal ideal in A, then (CK,i) = A. This means there are 

functions g in A and m in CK such that ~ = m + ig. Since 

m is in CK, there exists a positive number rm such that 

m(x) = 0 for lxl ~ rm. This implies 1 = xg(x) for 

lxl ~ rm. This is not possible for a function in A. Hence 

CK is not a maximal ideal in A.// 

THEOREM 52. The ideal CK is contained in every free 

ideal in A. 
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PROOF. Suppose M is a free ideal in A with f in M - CK. 

Then Z(f) is contained in some compact set of the form 

[- r,.r] for a positive number r. From Theorem 12, there is 

a function£ in M which is not 0 in [-r,r]. Let t 2 + f 2 =h. 

Then h is a positive function in M. Let m be any function 

in CK where m(x) = 0 for lxl 

define ~ (x) by, s 

> r > 0. 
m 

Let s > r and m 

1/h{x) for x in [-s,s] 

the constant 1/h{s) for x > s and 
£s{x) = 

x < -s - 1 

a linear function for -s - 1 < x < -s. 

Then £s is in A, and hence £sh is in M with £sh{x) = 1 

for x in [-s,s]. Since M is an ideal, (£ h)m = m is in M. s 

Since m was an arbitrary element of CK, CK is a subset of 

M.// 

From Lemma 1, the fixed maximal ideals in A have the 

form MA = {f in A: f(x) = 0} for a fixed x in R. The 
X 

maximal ideals in the ring of polynomials on R are 

principal ideals generated by either f or g t where r s, 

in R and g s , t ( x) 
2 

+ + t f (x) = X - r for r = X sx 
r 

real numbers with 2 4t < 0. where s and t are s -

THEOREM 53. Let fr and gs,t be the functions defined 

above. The free maximal ideals in A are the ideals 



(CK,fr) and CK,gs,t). The mapping that takes the real 

number r to (Ck,fr) is one-to-one and the mapping that 

takes the ordered pair of real numbers (s,t) to (C ,g ) 
K s,t 

. . 2 1s one-to-one 1f s - 4 t < 0. 

89 

PROOF. From Theorem 52, CK is in every free maximal 

ideal in A. From Lemma 51, CK is not a maximal ideal. 

The sets in the theorem are clearly free ideals if they 

are not equal to A. 

ideal for a fixed r. 

We show that (CK,fr) is a maximal 

If (CK,f ) = A, then 1 = m + f g r - r 

for some m in CK and some g in A. This implies g(x} = 

1/{x - r) for large lxl. This is not possible, so 

(CK,fr) t A. Similarly (CK,gs,t) t A. We need to show 

((CK,fr),h) =A for all h in A- (CK,fr). Let ph be the 

"eventual" polynomial of h. 

is not a factor of ph(x}. 

Since his not in (CK,fr)' x- r 

Since (f ) is a maximal ideal in 
r 

P, there are polynomials p 2 and p 3 such that ~ = frp 2 + php 3 • 

Let m = ~ - (p2fr + p 3h) . Clearly m is in CK and ~ = 

m + p 2 fr + p 3h. Hence~ is in ((CK,fr),h). This procedure 

works for any h not in (CK,fr)' hence (CK,fr) is a maximal 

ideal for each r in R. Similarly (CK,gs,t) is a maximal 

ideal in A for each pair of numbers (s,t) satisfying 

s 2 - 4t < 0. 

Now we need to show that there are no other free 

maximal ideals in A. Suppose M is a free maximal ideal 

which differs from each maximal ideal listed in the 
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theorem. For each r in R there is a function f in 

M - (CK, fr) • Let pf be the 11 eventual' polynomial of f 

for a fixed r. Then pf is a non-zero polynomial and is 

not a multiple of f . Suppose f I f , • • • If are r rl r2 r n 

factors of pf. The following procedure also works with gs,t 

as factors of f. Since M is not completely contained in 

any of the ideals (CK,f ) , r. 
l. 

functions g. in M such that 
l. 

i = 1,2,3, ••• ,n, there are 

Pg. does not have fr. 
. l. l. 

as a 

factor~ Then h = 
n 2 
L g. is in M and ph does not have 

i=l l. 

any fr.' i = 1,2,3, ••• ,n, as a factor. Thus ph and pf 
l. 

have no common non-constant factors. Therefore there are 

polynomials pl and p4 such that plph + p4pf = 1· =' hence 

1 - (plh + p4f) is in CK ~ M. We know plh + p4f is in M. 

Hence 1 is in M. The results follow.// 

We now consider the space of maximal ideals in A. 

From Theorem 27, the structure space of fixed maximal 

ideals in A is homeomorphic to R. Since R is a Hausdorff 

space, the subspace of fixed maximal ideals in A is a 

Hausdorff subspace. To determine whether the structure 

space of A is Hausdorff we use Theorem 23 (ii). We have 

(\ s ~ (') ~ = 2 where s is the structure space of 
XER 

maximal ideals in A. Let (CK,fr) and (CK,fs) be two 

distinct, free maximal ideals in A. 

then Z(a) is a compact set, and if a' is not in (CK,~), 



then Z(a') is a compact set. Then Z(aa') = Z(a) V Z(a') 

is compact and not R. Hence aa' f 2 = n S and the 

structure space of A is not Hausdorff. 
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We further consider the subspace of free ideals in s. 

If a set S contains a countable number of free maximal 

ideals, then As= CK and Cl (S) is the subspace of free 

maximal ideals in S. The subspace of free maximal ideals 

has the finite complement topology, i.e., a subspace is 

closed if and only if it is a finite set. This subspace 

is not Hausdorff. The subset of free maximal ideals in 

S can be identified with a "folded" complex plane by 

identifying (CK,fr) with the complex number (r,O) and 

2 
(CK,gs,t) with (- ~, l4t ; s where the last complex 

number comes from a solution of the quadratic equation 

x 2 + sx + t = 0. 

We consider whether the maximal ideals in S are real. 

From Lemma 1, the fixed 

fixed maximal ideals in 

ideals have the form MA. The 
X 

A are real since MA (f) _ MA(r) 
X X = 

where f (x) = r. If (CK,fr) is a real ideal, then 

(CK,fr) (gs,t) - (CK,fr) (~') for some r' in R. 

Thus gs,t - ~· is in (CK,fr). Then for la~ge !xl there 

exists a function ~ in A such that x 2 + sx + t - r' = 

(x - r) .Q.(x) • Since ~ must be a polynomial for large 

lxl, we can user'= r 2 + rs + t. Then (CK,fr) (gs,t)­

(CK,fr) (~'). Also (CK,fr) (fs) - (CK,fr) (~ - g). This 
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shows that (CK, frJ is areal ideal for each r in R. If 

(CK,gs,t) is a real ideal, then (CK,gs,t) (f0 ) - (CK,gs,t) (~) 

for some r in R. For large jxj, x- r = t(x) (x 2 + sx + t) 

for some polynomial t(x). This is not possible, hence 

(CK,gsrt) is a hyper-real ideal. 

We now consider whether A/(CK,fr) or A/(CK,gs,t) are 

totally ordered. From Theorem 50, no maximal ideal is 

absolutely convex. All maximal ideals are prime ideals 

and no maximal ideal contains J:· A function m in CK can 

be found such that J: < m + f2 
r (or J: < m + 2 

gs,t) · If 

the maximal ideal is convex, then J: would be in it. This 

contradiction shows that no free maximal ideal is convex 

and from Theorem 60 in Section III, the quotient rings are 

not partially ordered. 

A subring is now considered that is closely related 

to the subring just studied. Let A* be the subring of 

C(R) such that f in A* implies there is a real number r 

and polynomials p 1 and p 2 on R where f(x) = p 1 (x) for x > r 

and f(x) = p 2 (x) for x < -r. + The notation M and M 

is analogous to that in Definition 5. 

LEMMA 54. The sets CK, M+ and M are ideals in A* 

with the following properties. 

(i) + - + 
M fl M = CK. Hence CK ~ M and CK cf:_ M • 

(ii) + CK C M and CK C M • Hence CK is not a maximal 

ideal in A*. 

(iii) CK, M+, and M are absolutely convex, free ideals inN. 
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PROOF. The results easily follow from definitions.// 

THEOREM 55. The ideals M+ and M are maximal in the 

class of absolutely convex ideals in A*. 

PROOF. The proof is similar to the proof of Theorem 

50.// 

THEOREM 56. The ideal CK is contained in every free 

ideal in A*. 

PROOF. Let M be a free ideal in A* with f in 

M - CK. Consider two cases. 

Case 1. If Z(f) is a compact set, then the proof follows 

the procedure of the proof of Theorem 52. 

Case 2. If Z(f) is not compact, then Z(f) is an unbounded 

set. Since f is eventually a "pair of polynomials", 

at least one of the polynomials has an unbounded set of 

zeros. The only polynomial with this property is the 

zero polynomial. Hence f is in M+ or f is in M • Let 

m be in CK(X). Then m(x) = 0 for lxl > r for some r in 

R. + Suppose f is in M and f is in M - CK. Then 

{x in R: x <rand f(x) = 0} is compact. Using the method 

of proof of Theorem 52, a function h can be found in M 

such that h > ~ for x < r. Then there is a function ~ 

in A* such that h(x)~{x) = 1 for lxl 2 r. Hence (~ h)m = 

m is in M. In this way we can show CK £ M.// 
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THEOREM 57. + The free maximal ideals in A* are (M ,fr)' 

gs,t(x) = 

(M+,gs,t), and ~-,gs,t) where fr(x) = x- rand 

x 2 + sx + t for real numbers r, s, and t such 

that s 2 - 4t < 0. If r 1 , s 1 , and t 1 , are real numbers 

2 such that r t r 1 and (s,t) t (s 1 ,t1 ) where s 1 - 4t1 < 0, 

(M+, gs t ) , and (M-, gs, t) t (M-, g t ) . 
1 ' 1 sl, 1 

PROOF. The sets mentioned in the theorem are clearly 

free ideals. The procedure of the proof of Theorem 53 

can be used to show that these ideals are maximal. We 

must also show that there are no other free maximal ideals 

in A*. Suppose M is a free maximal ideal in A* different 

from those listed in the theorem. Let f be in M- (M+,fr) 

for some fixed r. Since f 2 is not in M+, there is a non-

2 zero polynomial p 3 such that f = mk + p 3 • Suppose p 3 

has factors f , f , ••• ,f . Factors of g t work just 
r 1 r 2 rn s, 

as well. For each f there is a g. in M - (M+ ,f ) such r. 1 r. 
1 1 

·chat Pg. does not have f as a factor, i = 1,2, ... ,n. r. 
]_ 1 

Let h = 
n 2 I g.. Then h is in M and h = hK + ph is in 

i=l 1 

Since ph and p 3 have no common non-constant factors, 

there are polynomials p 1 and p 2 such that p 1p 3 + p 2ph = ~· 
2 2 

Let~= (p1 f + p 2h) . Then ~(x) = 1 for large x. Also ~ is 

2 in M since p 1 f and p 2h are in M. For any r in R there is 



a function Jl.r in CK <;. M such that J1, (x) + Jl,r {x) is greater 

than (1/2) for all x > r. A function £2 can be found in 

M such that Jl,' (x) 
2 

= 1/[JI.(x) + J1, (x)] 
r 

for x > r. Then 

Jl.' (JI, + J1, ) is in M and has the value 1 for x > r. If 2 r 

m is in M with m(x) = 0 for x ~ rr then £2(£ + Jl.r)m = m 
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is in M. We obtain M-~ M. Similarly we can obtain M+ ~ M. 

There are functions Jl,' 
3 

and Jl, I 

4 where Jl, I 

3 
is in M c:: M, Jl, I - 4 

is in M+~ M, and Jl, I + Jl, I = 4:· This implies J: is in M 
3 4 

or M = A*. This is not possible. The results follow.// 

The structure space is similar to the subring just 

studied. The structure space of free maximal ideals can 

be identified with two "folded" complex planes. The 

structure space of free maximal ideals is not Hausdorff, 

for if a is in (M+,f ) - (M+,f ) and a' is r s 

in (M+, f ) - (M+, f· ) , then aa' cannot be zero for arb i-s r 

trarily large x. Clearly 2 = n S*. 

3. CK(R) Plus Rational Functions. 

We now consider some subrings of rational functions 

in place of the ring of polynomials. Let A be the subring 

of C(R) such that· f is in A if f is eventually one rational 

function, i.e., there exists a number rand polynomials 

p and q such that f(x) = p(x)/q(x) with q(x) ~ 0 for 

lxl ~ r. Then A can be considered as the sum of CK and 

a subring of piecewise rational functions where the first 

and last rational functions are the same. 



LEMMA 58. The ring A has the property of pointwise 

inversion. 

PROOF. We must show Z{f) =.~if and only iff is 

a unit of A. The result follows since C(R) and the 

rational functions have this property.// 

LEMMA 59. The set CK is a hyper-real, free maximal 

ideal in A. 

PROOF. Clearly CK is a free ideal in A. To show 

that CK is a maximal ideal we show that J: is in { CK, f) 

for each f in A - CK. If f is in A - CK, then there is 

a number r such that f (x) f 0 for lxl > r. Let g (x) = 

1/f (x) for lxl > r and let g (x) be linear for lxl < r. - -
Then g is in A. Let m(x) = 1 - f(x)g(x). Then m(x) = 

for lxl > r; hence m is in CK. Thus J: = m + fg. If 

CK(i) - CK(~) for some r in R, then i - ~ must be in CK. 

This is not possible. The results follow.// 

THEOREM 60. The ideal CK is the only free maximal 

ideal in A. 

PROOF. As in Corollary 13, if M is a free maximal 

ideal in A containing f, then Z(f) is not compact. 

Every rational function which is not 2 has its zeros in 

a compact set. Hence f in M implies f is eventually 2· 
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0 



Then f is in CK. Then M is a subset of CK. This and 

Lemma 59 give the desired result.// 
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From Lemma 1, the fixed maximal ideals have the form 

M = {f in A: f(x) = 0} for a fixed x in R. We now con­
x 

sider the structure space S of maximal ideals in A. 

THEOREM 61. The structure space of A is a Hausdorff 

space. 

PROOF. Theorem 23 (ii) is used. Consider two distinct, 

fixed maximal ideals M and M where r < s. There is a r s 

function f not in M s such that R- Z(f) = (s - s - r 
2 ,s 

+ s; r). There is a function g not in Mr such that R- Z(g) 

has s- (s- r)/2 as an upper bound. Then fg = 2 is in ~s. 

Now consider the free maximal ideal CK and a fixed maximal 

ideal M . There exist functions f and g such that f is 
r 

not in Mr' R- Z(f) = (r- 1, r + 1), g is not in CK, and 

Z(g) contains [r- 1, r + 1]. Then fg =~is in ~s. Thus 

the structure space is Hausdorff.// 

THEOREM 62. The structure space of A is the one point 

compactification of R. 

PROOF. The spaceS is compact from Theorem 23 (iii). 

The subspace of fixed maximal ideals in S is homeomorphic 

to R from Theorem 27. The subspace of fixed maximal ideals 

is dense in s. The result follows.// 
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Let A* be the subring of C(R) where f is in A* if 

there are numbers r and s such that f is a rational 

function for x > r and f is a (possibly different) rational 

function for x < s. Then A* can be considered as the 

sum of CK(R) with the subring of piecewise rational functions. 

We consider the notation M+ and M- analogous to that in 

Definition 5. 

LEMMA 6 3. The set CK equals M+" M and is properly 

t . d . + d con a1ne 1n M an M . 

PROOF. This lemma follows from definitions and the 

observation that ( i V £P is in M - CK and ( ( -i) V £P 
. . + II lS 1n M - CK. 

THEOREM 64. The sets M+ and M are the only free 

maximal ideals in A*. 

PROOF. + Clearly M and M are free ideals. To show 

that M+ is a maximal ideal, consider fin A* - M+. Then 

there is a number r such that f(x) 1- 0 for x > r. We 

+ must show~ is in (M ,f). Define g by g(x) = llf(x) 

for x > r and g(x) = llf(r) for x < r. Then g is in A*. 

+ Let m = J: - fg. Since m+(x) = 0 for x > r, + . . m 1s 1n 

+ + Then J: = m + fg, hence M is a free maximal ideal in 

A*. In a similar manner M can be shown to be a free 

maximal ideal in A*. 
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+ To show that M and M are the only free maximal 

ideals in A*, let M be a free maximal ideal in A*. Since 

A* has the pointwise inversion property, Corollary 13 

implies Z(k) is not compact for each kin M. This means k 

has an unbounded set of zeros. The only rational function 

with this property is the zero function. Thus k is in M+ 

or M • + - + Since M cannot properly contain M or M , and M 

and M- cannot properly contain,M, there exist functions ~ 

in M - M+ and m in M - M • The function h = m2 + ~ 2 

is in M and Z(h) is compact. This contradicts Corollary 

13. + -Hence M and M are the only free maximal ideals in A*.// 

We now consider the structure space S* of maximal 

ideals in A*. In this case AS* = 2· The results are sim-

ilar to the results involving the subring with one eventual 

rational function. 

THEOREM 65. The structure space of A* is a Hausdorff 

space. 

PROOF. Theorem 23 (ii) is used. From Theorem 27, 

R is homeomorphic to the subspace of fixed maximal ideals 

in S*, and hence this subspace is Hausdorff. Using the 

method of proof of Theorem 61, functions whose product 

is 2 can be found satisfying the condition in Theorem 23(ii). 

Hence S* is a Hausdorff space.// 
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THEOREM 66. The structure space of A* is a two 

point compactification of R. 

PROOF. The spaceS* is compact from Theorem 23 (iii). 

The subspace of fixed maximal ideals is homeomorphic to 

R from Theorem 27. The subspace of fixed maximal ideals 

is dense inS*. Hence S* is a two point compactification 

of R.// 

LEMMA 67. The free maximal ideals in A* are hyper-

real. 

PROOF. If M+ is a real ideal in A*, then M+(i) - M+(r) 
= 

for some r in R. This means i - r is in M+ for some 

real number r. This is not possible. Thus M+ is not a 

real ideal. Similarly M- is not a real ideal in A*.// 

We now consider the subring A** of C(R) such that 

f is in A** if there are real numbers r and s where f 

is a polynomial for x < r and f is a rational function 

for x > s. h C M+, T e sets K' and M will denote sets of 

functions in A** which are analogous to those defined 

earlier. 

LEMMA 68. 

(i) 
+ The sets CK' M , and M are absolutely convex, free 

ideals in A**· 

(ii) The sets satisfy CK C M+, CK C M , and CK = M- (\ M+ · 



(iii) The set M+ is a maximal ideal in A**· 

PROOF. Parts (i) and (ii) easily follow from 

definitions. Part aii) can be shown using the same 

procedure as that in the proof of Theorem 64.// 

If (M-,i) =A**, then there 
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are functions g in A** and m in M such that ~ = m + ig. 

This implies g(x) = 1/x for x less than some real number. 

This is not possible, thus M- is not a maximal ideal in A**· 

THEOREM 69. If M is an ideal in A** with f in M 

such that Z(f) is compact, then M is a fixed ideal in A** 

or M contains M . 

PROOF. Consider the following three cases for Z(f). 

Case 1. Let Z(f) =~and let the eventual polynomial pf 

of f be a nonzero constant function ~ for x < r. In this 

case 1/f is in A**r and hence 1 is in M. This contra-= -
diction implies that M contains no functions of this form. 

Case 2. Let Z(f) =~and let pf is a non-constant poly-

nomial for x < r. Let g (x) = 1/f(x) for x > s and g (x) s s 

= 1/f(s) for X < S. This can be done for each s in R. 

Then gs is in A** and gs f is in M with (gsf) (x) = 1 

- (x) 0 for for X > s. Let m be in M such that m = 

X < s. Then -m (gsf) = - is in M. This procedure applies m 

for any m in M-. Hence M is a subset of M. 
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Case 3. Let z (f) = zl where zl is a non-empty, compact 

subspace of R. From Corollary 13, M cannot be a free ideal 

in A**· Thus M is a fixed ideal.// 

THEOREM 70. The free maximal ideals in A** + are M , 

(M-,f ), and(M-,g t) where f and g tare the functions r s, r s, 

defined in Theorem 57. If r 1 ,s1 , and t 1 are numbers such 

2 that (s,t) ~ (s1 ,t1 ), r I r 1 , and s 1 - 4t1 < 0, then 

(M-,fr) I (M-,fr1 ) and (M-,gs1 ,t1 > ~ (M-,gs,t). 

PROOF. The above subsets of A** are clearly ideals. 

Since M+ and M are free ideals, the above ideals are 

free ideals. Using the procedure in the proofs of Theorems 

64 and 53, the above ideals can be shown to be maximal. 

Suppose M is a free maximal ideal which is not equal to 

any of the free maximal ideals listed above. Then there 

functions f and g in M such that f is not in M+ and g are 

is not in M • Then f 2 + g 2 is in M and has a compact 

zero set. From Theorem 12, there is a function h 1 in M 

2 2 such that Z (h1 ) () Z ( f + g ) = ~. From Theorem 69, 

M is a subset of M. Clearly M cannot contain fr or gs,t" 

Suppose g is in M - M and has an eventual polynomial p g 

for x < rg with factors fr1 ' 

53, there is a function ~ in 

f , .•. ,f . As in Theorem 
r2 rn 

M such that p and p have 
~ g 

no common non-constant factors. There are polynomials p 

and q such that pp~ + qpg = ~· Then~= [1- (p~ + qg)] 

+ (p~ + qg) is in M. The resultsfollow.// 
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The structure space S** .of maximal ideals in A** is 

one that follows previous results. It can be jescribed 

as the one point compactification of R union with a "folded" 

complex plane. As before, R is homeomorphic with the 

subspace of fixed maximal ideals in S**· The subspace 

consisting of {M+} union with the set of fixed maximal 

ideals in S** is Hausdorff and compact. The subspace 

of free maximal ideals is not Hausdorff and has the finite 

complement topology as its subspace topology. 

4. CK(X) plus a Subring of C(X) 

Let X be a locally compact, non-compact, Hausdorff 

space. Let A* = CK(X) + P(X) where CK(X) is the set of 

functions in C(X) with compact support, and P(X) is a 

subring of C(X) containing~ with F(X) n CK(X) = {2} . All 

of the previous subrings studied in Section IIIC are 

special cases of this A*. From Lemma 47, A* is the 

direct sum of CK and P. 

LEMMA 71. The set CK is an ideal in A*. 

PROOF. The proof follows that of Lemma 18 (ii) .// 

LEMMA 72. The ideal CK is a free ideal in A*. 

PROOF. From Lemma 71, CK is an ideal in A*. For 

each y in X there is an open neighborhood NY such that 

Cl (N ) is compact. Since X is completely regular, there 
y 

is a function fy in C(X) such that fy(y) ~ 0 and 



104 

f[X- N ] = {O}. Then Z{f ) contains X-y y Hence 

Supp {f ) is a closed subspace of Cl {N ) 
y y 

and therefore 

is compact. Thus f is in CK. This procedure works for y 

any y in X: hence CK is a free ideal in A*.// 

The following lemma is closely related to [26, 

Theorem 37A]. 

LEMMA 73. Let S be a compact subspace of X. Any 

continuous function on S can be extended to a function in 

PROOF. The proof is an exercise in general topology 

and is similar to the proof of [26, Theorem 37A].// 

THEOREM 74. The ideal CK is in every free ideal in 

A*. 

PROOF. Let g be in CK{X) and letS= Cl [X- Z{g)]. 

Then s is a compact subspace of X. Let M be any free 

ideal in A*. From Theorem 12, a function h is in M such 

that 0 is not in h[S]. Let f 8 {x) = 1/h{x) for x ins. 

Then fs is in C{S). From Lemma 73, f 8 can be extended to 

a continuous function fin CK(X). Since his in M, 

fgh = g is in M. Hence CK is a subset of M.// 



DEFINITION 7. A subring P of C(X) has property P1 

if for each non-zero p in P there is a non-empty compact 

subspace S of X and a function p' in P such that pp' (x) 

= l for all x in X - s. 

THEOREM 75. The ideal CK is a maximal ideal in A* 

if and only if P has property P1 . 
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PROOF. Assume CK is a maximal ideal in A* and let p 

be in P with p ~ ~- Then p is not in CK. Since CK is a 

maximal ideal in A*, there are functions g = m1 + p 1 

in CK + P and m in CK such that ~ = m + p(m1 + p 1 ) 

on X. Let h = m + m1 p and letS= Cl [X- Z(h)]. Since 

his in CK' Sis compact with pp1 (x) = l for x in X- s. 

Since X is not compact, X ~ s. 

Assume P has property P 1 . We know CK is an ideal in 

A* from Lemma 72. Let f be in A* - CK. Thenthere is a 

non-zero p in P such that f = fK + p with fK in CK. 

Using property P1 , there is a function p' in P and a 

compact subspace s such that pp' = ~ on X - S. Define 

~ = ~- pp'. Then Supp (~) ~Cl (S) = s. Thus~ 

is in CK. The function~ = (~ - p'fK) + fp' 

(CK,f). Hence CK is a maximal ideal in A.// 

is in 

DEFINITION 8. An ideal M in a subring P of C(X) has 

property P 2 if for each p in M and all non-empty compact 

subspaces S of X, PI (X - S) ~ ~-



THEOREM 76. Let P 1 be a non-empty subset of p and 

let (P 1 ) ={pp 1 : pis in P and p 1 is in P 1 l Let (CK ,P 1 ) 

and g is in A*}. ={m+gp 1:m;s;nc 1 ..... ..... K' p is in P 1 ~ 
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(i) The set (CK,P 1 ) is a free maximal ideal in A* if and 

only if (P 1 ) is a maximal ideal in P. 

(ii) The free maximal ideals in A* have the form (CK,P 1 ) 

where (P 1 ) is an ideal in P which is maximal with respect 

to property P 2 in the sense that there is no function f 

in P- P 1 such that (P 1 ,f) is an ideal in P satisfying 

property P 2 • 

PROOF. 

(i) If (CK,P 1 ) is a free maximal ideal in A*, then for 

each pin P- P 1 , ~is in ((CK,P 1 ),p) or l = m + p 1 p 1 

+ p 2p for some functions m in CK, p 1 in P 1 , and p 1 and 

p2 in P. Then ~ - plpl - p2p = m where 1 - plpl - p2p is 

in p and m is in CK. Since PI\ CK = {fP , 1 = plpl + p2p. 

Hence (PI) is a maximal ideal in P. Clearly ( CK' pI) is a 

maximal ideal in A* if (P') is a maximal ideal in P. 

(ii) From Theorem 74, CK is in every free ideal in A*. 

Since g is in CK, (P') is an ideal in P whenever (CK,P 1
) is 

an ideal in A*. If there is a function p' in (P') and a 

compact subspace S of X such that p' (x) = 1 for x in X - S, 

then~= {~- p 1 ) + p' is in (CK,P 1 ). This is not possible, 

hence (P') has property P 2 • In order that (CK,P 1 ) be 

a maximal ideal in A*, part (i) implies that (P 1
) be 

maximal with respect to P 2 .// 
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We now consider sufficient conditions on a space X 

such that the structure space is an n point compactification 

of X. Let X be a locally compact, non-compact, Hausdorff 

space. Let K be a non-empty, .compact subspace of X. Let 

Y1 , Y2 , Y3 , ••• ,Yn be distinct, non-compact components of 
n 

X - K with X = K U ( U Y . ) . 
i=l :1. 

Let A be a subring of C(X) with the following properties, 

where i is any member of the set {1,2,3, •.. ,n}. 

(a) If f is in A, then there is a compact subspace Kf 

containing K such that f[Yi- Kf] = {O}or 0 is not in 

f [Y. - Kf] • 
:1. 

(b) Let Mi = {f in A: there is a compact subspace Lf 

with f[Yi - Lf] = {0}}. The ring A has the pointwise 

inversion property; if g is in A - Mi' there is a function 

h in A and a compact space L such that (gh) (x) = 1 

for x in Y. - L. 
:1. 

(c) Let s be any compact subspace of X. For each i 

there is a function g. in A-M. such that Z(g.) contains 
:1. :1. :1. 

n 
s u <U y.) • 

j=l J 

j~l 

(d) The ring A contains CK(X) and the set of constant 

functions on X. 

THEOREM 77. The sets M1 , M2 , ••• ,Mn are distinct, 

free maximal ideals in A. 
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PROOF. Property (c) implies that the M. are distinct. 
]_ 

We prove M1 is a free maximal ideal. Since ~ is not in 

M1 , M1 ~ A. Clearly M1 is an ideal which contains CK. 

Since {x} is compact for a fixed x in X, M1 is a free 

ideal in A from Lemma 73. To show that M1 

is a maximal ideal in A, let g be in A- M1 • From property 

(a), g(x) ~ 0 for x in Y1 - Kg. From property (b), there 

is a function h in A and a compact set L such that 1 = 

hg(x) for x in Y1 - L. Then ~ = (~ - hg) + hg is in 

(M1 ,g). Therefore M1 is a free maximal ideal in A.// 

THEOREM 78. The ideals M1 , M2 , ••• ,Mn are the only 

free maximal ideals in A. 

PROOF. Suppose I is a free maximal ideal in A which 

differs from each M .. From Corollary 13 and property (a), 
]_ 

f in I implies f is in some M .. 
]_ 

If I ~ M. 
]_ 

for each i, 

then there are functions f, in I - M. satisfying f. (x) ::/ 0 
]_ ]_ ]_ 

for all X in y, - K. where K. 
]_ 

is a compact set satisfying 
]_ ]_ 

property (a). Let h = 
n 
L: 

i=l 

2 
f .. 

]_ 
Then Z (h) ~ 

n 
u 

i=l 
K. = K; 

]_ 

hence K is compact. Since Z(h) is closed, Z(h) is 

compact. This contradicts Corollary 13. The desired 

result follows.// 

THEOREM 79. The structure space S of A is an n 

point compactification of X. 
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PROOF. Theorem 23 is used. In {21], CK(X) + R(X) 

is stated as having the property of separating points from 

closed sets. Since CK(X) + R(X) is a subset of A, Theorem 

40 implies that the subspace of fixed maximal ideals in 

A is homeomorphic to X. Consider two distinct, free 

maximal ideals in A. From property (c), _the condition of 

Theorem 23 (ii) can be satisfied. Now consider a fixed 

maximal ideal in S and a free maximal ideal in s. From 

Lemma 1, the fixed maximal ideals have the form MX = 

{f in A: f(x) = 0}. For each x in the locally compact 

space X there is an open neighborhood N about x such that . X 

Cl (Nx) is compact. Since X is completely regular, there 

is a g in CK(X) with g(x) = 1 and g[X- Nx] = {0}. 

From property (c), h. exists in A- M1. with h. [Cl N] = {0}. 
1 1 X 

Since X is homeomorphic to the subspace of fixed maximal 

ideals, this subspace is Hausdorff in the subspace 

topology. Since there are only n free ideals and Theorem 

23 (ii) is satisfied for the cases described above, S is 

Hausdorff. From Theorem 23 (iii), S is compact. The 

subspace of fixed maximal ideals is dense in S and there 

are n free maximal idea~s. Hence S can be considered an 

n point compactification of X.// 

The subrings of c (R) plus constant functions and CK(R) . K 

plus rational functions can be set up to satisfy properties 

(a), (b), (c), and (d). 
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EXAMPLE 3. Let K be the unit circle in the xy­

plane with its center at the origin. Let X be K along 

with the interior of K, the x-axis, and the y-axis. Each 

axis intersects the complement of K in 2 components. If 

A is the set of continuous functions on X which are 

eventually constant, then the space of maximal ideals is 

a 4 point compactification of R. 

D. Special Subrings Containing C00 (X). 

Let X be a locally compact, non-compact, Hausdorff 

space. We say f in C(X) converges to a at infinity and 

write lim f =a if for each£ > 0, {x in X: if(x) - al > £} 
00 

is compact. We denote the set of functions converging to 

0 at infinity by C00 {X) or C00 • The set C00 is a subring of 

C. Previously we worked with CK, the functions of compact 

support. We now obtain some similar results for Coo or a 

subring contained in Coo. 

In [21] results are given for the subring Coo(X) + 

R{X) where R(X) is the set of real constant functions on 

x. We state some results from [21] and later prove 

similar results using methods like those employed in the 

study of subrings containing CK. 
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LEMMA 80. [21, pp. 16, 17] 

(i) Every function f in C00 (X) + R(X) has a unique repre­

sentation f = y{f) + o(f) where y(f) is a constant and 

o(f) is a continuous function vanishing at infinity. 

(ii) The ring C00 (X) is a real, maximal ideal in C (X) + 
00 

R(X) • 

(iii) The ring C00 (X) is the only free maximal ideal in 

PROOF. The proofs of (i) and (ii) follow the pattern 

of the proof of Theorem 38. To show (iii), we consider the 

one point compactification of X obtained by adjoining an 

ideal point w to X. Let f* be in C(X V {w}). There is a 

function f in C 00(X) + R(X) such that f* I X = f and f* (w) = 

lim f. From [26, p. 166], the mapping that takes fin 
00 

C 00(X) + R(X) to f* in C (X U {w}) is a one-to-one mapping 

onto C(X U {w}). Since X V {w} is compact, from [3] 

or [5], all maximal ideals in C(X U {w}) have the form 

M* = {f* in C(X U {w}): f*(x) = 0} where xis in XU {w}. 
X 

If x ~ y, then M~ ~ M~. The above mapping is an isomorphism 

onto C(X U {w}). From this isomorphism, the only free 

maximal ideal in C00 (X) + R(X) is the maximal ideal corres-

* pending to Mw in C(X U {w}). This ideal is Coo(X). 

Hence C00 (X) is the only free maximal ideal in Cro(X) + 

R(X) .// 
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THEOREM 81. [21, p. 18] The structure space of 

Coo(X) + R(X) is (homeomorphic to) the one point compacti­

faction of X. 

PROOF. Under the isomorphism (.f* '+f): C(X V{w})-+ 

Coo(X) + R(X), the maximal ideal M* in C(X U {w}) corres­
x 

ponds to the fixed maximal ideal M = {f in c (X) + 
X 

R(X): f(x) = 0} if and only if xis in X. From [3], 

X U {w} is homeomorphic to the structure space of C(X L/{w}). 

Since C(X l){w}) is isomorphic to C (X) + R{X), the 

result follows.// 

We now consider X = R and prove some of the previous 

results using techniques similar to those used in working 

with CK. Let R denote the space of real numbers or the 

subset of real constant functions on the space of real 

numbers. From Lemma 80 (i), f can be written uniquely 

in C(R): lim f(x) = O}. 
lxl-+oo 

For X = R, c = -If 
00 

THEOREM 82. The set C00 is a free maximal ideal in 

C00 + R. 

PROOF. Clearly C is an ideal in C + R. 
00 00 

Since CK 

is a subset of C00 and CK is a free ideal in Coo + R, 

C must be a free ideal. 
00 

To show C is a maximal ideal 
00 

in c + R, consider f = f 00 + ~where r ~ 0. Then 
00 

1 = (1- (r-l)f) + (~-l)f is in (C 00,f). The desired 
= = = -
result follows.// 
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THEOREM 83. If M is an ideal in C + R with a 
00 

function f in M - c 
00 I then M is a fixed ideal in C00 + R. 

PROOF. Let f be in M - C • Then f = f + r for some 
00 00 

non-zero r, and Z(f) is compact. If M is a free ideal in 

Coo + R, then we can find a positive function h in M - c 

using Theorem 12. 

lim 1/h(x) = s-l 
lx!-+oo 

( -1) . . c s 1s 1n + R. = 00 

Let h = h 00 + g for same s ~ 0. Then 

The function~= (1/h- (g-l)) + 

Then h~ = ~ is in M. This contra-

diction shows that M is not a free ideal in C00 + R.// 

00 

COROLLARY 84. The ideal C00 is the only free maximal 

ideal in C00 + R. 

PROOF. From Theorem 82, C00 iS a free maximal ideal 

in C00 + R. From Theorem 83, no free maximal ideal can 

contain a function which is not in Coo ; hence Coo is the 

only free maximal ideal in C00 + R.// 

THEOREM 85. The structure space of C00 + R is the one 

point compactification of R. 

PROOF. The proof is similar to the proofs of 

Theorems 61 and 62.// 

Let M(R) be a subset of C (R) such that f is in M(R) 
00 

if lim lxnf (x) I = 0 for all non-negative integers n. 
lx!-+oo 

Let P(R) denote the set of polynomials on R. The sets 

P(R) and M(R) will often be denoted by P and M respectively. 



The subring CK(R) is in M(R). 
2 -x If g(x) = e , then g 

is in M- CK. Clearly Mn P = {~}. Let A= M + P. 

LEMMA 86. 

(i) The set A is a subring of C(R). 

(ii) The set A is the direct sum of M and P. 
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(iii) Let f = m + p in M + P and let y(f) = p in P. Then 

y is a homomorphism of A onto P having M as its kernel. 

Hence A/M is isomorphic to P. 

PROOF. The proofs of (i) and (iii) follow the same 

pattern as the corresponding parts of the proof of Theorem 

38. We show A is closed under multiplication. The other 

properties of a subring easily follow. Let p be in P and 

m in M. The function mp is a linear combination of terms 

of the form xnm. From the given condition on M, these 

terms approach 0 as lxl gets large. Hence mp is in M 

for all p in P. Clearly mm' is in M if m and m' are in 

M. The result follows.// 

LEMMA 87. The set M is an absolutely convex, free 

ideal in A. 

PROOF. The function 1 is in A - M so M ~ A. The 

set M is clearly an ideal in A and contains the free ideal 

cK. Hence M is a free ideal in A. Using the inequality 



~ _:::: If I _:::: I g I with g in M and f in A., lim lxnf ( x) I = 0 
lx 1-+oo 

for each fixed, non-negative integer n. The result 

follows.// 

The ideal M is not a maximal ideal in A. This can 

be shown in several ways. One method is to show ~ is in 

(M,g) for g in A - M. This conclusion can also be £ound 
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with the help of Lemma 86 (iii). From [16, Corollary 2.46lr 

M is maximal in A if and only if A/M is a simple ring. In 

this case A/M is isomorphic to P but P is not a simple 

ring. Thus M is not a maximal ideal in A. 

THEOREM 88. The £ree maximal ideals in A are (M,f ) 
r 

and (M,gs,t) where fr and gs,t are the functions defined 

in Theorem 57. If r 1 , s 11 and t 1 are numbers such that 

2 
r~r1 , (s1 ,t1 ) ~ (s,t), and s 1 - 4t1 < 0, then {M,fr1 ) 

~ {M,fr) and (M,gsl,tl) ~ (M,gs,t). 

PROOF. From Lemma 87, M is a free ideal. Since ~ 

is not in any of the above subsets o£ A1 (M 1 f ) and (M,g t) r s, 

are free ideals. To show that these ideals are maximal 

we can use the same methods as those employed in the proof 

of Theorem 53. To show that there are no other free 

maximal ideal, suppose M1 is a free maximal ideal in A 

which differs £rom each of the ideals listed in the theorem. 

Let f be in M1 - (M,f1 ) where f = m1 + p 1 in M + P. 

Then p 1 ~ ~ and p 1 does not have f 1 as a factor. Working 

as we did in the proof of Theorem 53, we can find a non-
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negative function h in M1 such that h = hm + ph where ph in p 

and P1 have no common non-constant factors. There are 

polynomials p 2 and p 3 such that~= p 2ph + p 3p1 . Then 

P 2h + p 3 f is in M1 and has ~ as its polynomial. Let 

2 
m2 + ~ = (p2h + p 3f) • As in Theorem 52, AK is a subset 

of M1 . Then there exists a function m + ~ in M1 such that 

m is in M and m > ~- Since (-m)/(m + 1) is in M, (m + ~) 

(-m)/(m + ~) = -m is in Ml. This implies ( -m) + (m + ~) 

= ~ is in Ml. The results follow.// 

LEMMA 89. The structure space of A is not Hausdorff. 

PROOF. Using Theorem 23 (ii) we obtain the result by 

observing that if a is in A- (M,f0 ) and a' is in A- (M,f1 ), 

then aa' ~ 0 = {'\S./1 
= 

To generalize the previous results we consider the 

following definition. Let X be a locally compact, non-

compact, Hausdorff space. Let A* be a subring of C(X) such 

that A* = M* + P* where M* is an ideal in A* containing 

CK (X), P* is a subring of C (X) containing ~' and P* A M* 

= {g}. 

Using the procedure of the proof of Lemma 80 {i), 

A* is the direct sum of M* and P*. 

THEOREM 90. The set CK{X) is in every free ideal in 

A*. 

PROOF. The proof is similar to the proof of Theorem 

74.// 
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THEOREM 91. Let P 1 be a non-empty subset of P*p 

Then (M*,P 1 ) is a free maximal ideal in A* if and only if 

(P 1 ) is a maximal ideal in P* where (P 1 ) = · {pp': p is in 

P* and p' is in P 1 }. 

PROOF. The proof is similar to the proof of Theorem 

76 (i).// 
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V. SUMMARY, CONCLUSIONS, AND FURTHER PROBLEMS 

The set of continuous functions on any realcompact 

space between vX and SX is isomorphic with a lattice-

ordered subring of C(X) containing C*(X). The cardinal 

number of these subrings is at least as large as the 

cardinal number of SX - vx. This isomorphism was used 

to establish properties of prime ideals and prime z-

ideals of these lattice-ordered subrings. The prime 

ideal structure of C*{X) was examined by Mandelker in 

[14] and many of his results generalize to these lattice-

ordered subrings. In [14] the immediate successor of 

M A C*{X) in the family of prime z-ideals of C*{X) was 
p 

found when SX - X was a zero set of SX. Neither a 

corresponding result nor a contradiction was found for the 

other lattice-ordered subrings that were studied in this 

dissertation. Mandelker has recently defined "real-

compact" for non-Hausdorff spaces. One further problem 

is to see which results in this dissertation carry over 

for these spaces. 

Another problem is the characterizing of different 

compactifications of a space X by using algebraic pro­

perties of a subset of real-valued functions. The structure 

space of the piecewise rational functions was shown to be 

a two point compactification of R. The initial interest 

in working with the piecewise rational functions was 



that this subring was a latt~ce-ordered subring with the 

pointwise inversion property which contained the poly-

nomials on R. A further problem is to find proper, 

lattice-ordered subrings of C(X) which contain the ring 

of infinitely differentiable functions and to study the 

structure space of each subring. 

The free ideals and the structure space of subrings 

of C(X) of the form CK(X) + P(X) were studied where 
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CK{X) n P(X) = {2} and X is a locally compact, non-compact 

Hausdorff space. Some results were also given for 

C {X) + P{X). The free maximal ideals in these subrings 
00 

partly depended upon the ideals of P(X). Some of the 

structure spaces were compact and some were not Hausdorff. 

A further problem is to find smallest subrings whose 

structure space is a particular compactification of X. 
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