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ABSTRACT

A mobile, wide-band antenna system has been developed around the ANSER-

LIN antenna element and a 3-dB splitter design. The size of the antenna elements

was reduced over previous versions by introducing dielectric substrates. Additionally,

new variations of the antenna were designed to influence radiation characteristics. To

further reduce the number of components in the array, a very low profile splitter was

designed and mounted below one of the antenna elements, doubling as the return

plane for the antenna.

The partial-element equivalent circuit (PEEC) method has been used for 3D

interconnect analysis and numerous other applications. Being based on the same

ideas as the method of moments, the PEEC method generates dense matrices for

its cell interactions. This thesis contains research focused on efficiently using a lim-

ited number of cells for accurate results. This has been approached with a hybrid

method and also with grid refinements. Additionally, the accuracy of PEEC coupling

over electrically long distances has been addressed using wide-band accurate partial

parameter calculations.
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1. SIZE REDUCTION WITH DIELECTRIC SUBSTRATES AND
BEAM STABILIZING FOR ANSERLIN ANTENNA

GEOMETRIES

The ANSERLIN class of antennas are meant to provide wide-band, circularly

polarized (CP) radiation. The original ANSERLIN antennas were built in air with

low permittivity spacers supporting the radiating line [5]. These antennas achieved

better than -10 dB return losses over 8:1 bands in some cases and radiation efficiencies

of 60% at the m′ = 1 frequency.

The two-port, traveling-wave characteristics of the ANSERLIN antenna allow

it to be used in a series-fed array [6]. Rotating one antenna in the array relative to

the others is equivalent to a phase shift but without the need for delay lines. More

recently, a four-element series fed array was used in conjunction with conducting

loading rings in order to suppress the sidelobes of the array [23].

At the m′ = 1 frequency the farfield radiation of ANSERLIN antennas is a

maximum at broadside. As the operating frequency increases beyond the m′ = 1

frequency, more radiating modes contribute to the overall pattern. As a result the

primary radiating lobe tilts off-axis as frequency increases and eventually separates

into two lobes of approximately equal magnitude. Steering the main lobe of a four

element array of ANSERLIN was shown to be possible by exciting both ports of the

antenna with inputs of a certain phase difference.

For some of the antennas described in this report, dielectrics of εr > 1 have

been used to reduce the size of the antenna. Using a higher permittivity decreases

the antenna radius required for the same electric length. Dielectrics with εr = 9.7

have been used to reduce the 50-Ω width-to-height ratio from approximately 3:1 to

1:1. Although the dielectrics decrease the antenna size, this size reduction results in

some loss of radiation efficiency in the lower end of the radiation band.

The frequency range of the ANSERLIN antenna is limited below the m′ = 1

frequency as it is an inefficient radiator. The upper frequency range may be deter-

mined by the return loss as the mismatch of the annular sector, the transitioning fin,

or the feed geometry becomes significant. Alternatively, if the beam shape is critical,

the upper frequency is determined by nulls at broadside as higher order modes are

excited. Beam steering was previously shown by feeding the two ports with phased

inputs [22]. This report will demonstrate that the radiation pattern can also be

preserved at higher frequencies using different ground shapes.
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1.1. SYNTHESIS OF ANSERLIN ELEMENTS WITH DIELECTRIC
SUBSTRATES

The ANSERLIN antennas are radiating-line antennas, which radiate effieciently

when the circumference of the antenna is one wavelength or higher. As with other

antenna designs, as the desired operating frequency decreases, the size of the antenna

increases. Due to the requirement of maintaining width-to-height ratios, the antenna

size will also increase as the height of radiating element is increased. The size of the

antennas for a particular operating frequency can be decreased substantially by using

dielectrics with εr > 1. The dimensions for several antennas are shown in Table 1.1,

and a rendering of Antenna #1 is shown in Figure 1.1. Antenna #1 is a round version

of the ANSERLIN design. Two other variations of the ANSERLIN design are also

described in this report. The cupped-ground described as cupped-ground antennas

are described in Section 1.3, and the flat-feed variation is described in Section 1.4.

Table 1.1 Antenna construction parameters

#
f(m′ =

1)
(GHz)

h
(cm)

a
(cm)

b
(cm)

Fin
w/h

Annular
Sector
w/h

Description

1 1.8 1 0.68 1.4 0.975 0.72 Round (εr = 9.7, 2.7-in ground
diameter)

2 1.8 1 0.68 1.4 0.975 0.72 Round (εr = 9.7, 2.7-in ground
diameter, larger port separation)

3 1.8 1 0.7 1.4 1̃.6 0.7 Round (εr = 9.7, 2.7-in ground
diameter)

4 1.8 1 0.7 1.4 1̃.6 0.7 Round (εr = 9.7, 2.1-in ground
diameter)

5 1.65 1.5 0.3 1.4 0.98 0.73 Cupped-Ground (εr = 9.7)
6 1.3 1.5 1 1.8 1.33 0.53 Cupped-Ground (εr = 9.7)
7 1.65 1.45 1 4.5 N/A 2.4 Flat-Feed (FR4 and Foam)

The antenna behavior is dependent on the design feed port, the fin shape, the

transition from the fin to the annular sector, and the annular sector itself. The di-

ameter of the ground plane relative to the outer diameter of the annular sector is

also important. The basic structure of these antennas can be determined using a few

simple equations for microstrip transmission lines and effective permittivity calcula-

tions. However, if more precise tuning is required, time-domain reflectometry (TDR)
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Figure 1.1 Perspective view of a round ANSERLIN (Antenna #1)

measurements can be used while adjusting the antenna element. TDR measurements

of the antennas in this report is covered in Section 1.2.1.

1.1.1. Feed Ports and Fins. The dielectric version of the ANERLIN

antenna can be fed by coaxial cables connected through the return plane. However,

an alternative feed configuration is presented in Section 1.4. The center conductor

connects to a flat tab through a thin section of the dielectric. The width of these

tabs is commonly made the same as a 50-Ω microstrip, assuming that the antenna

is made for a 50-Ω system. The length of the tab can be adjusted to balance the

inductance of the feed conductor.

The feed tab connects to the fin structure. To minimize reflections along the

line, the fin maintains the same width-to-height ratio as that of the tab. Microstrip

equations for the characteristic impedance like those [21] are adequate for determining

the width-to-height ratio of the fin.

1.1.2. Annular Sector. The annular sector is joined to the top of the fin

by a transition section constructed of straight segments. This length of the transition

section is dependent on a, the inner radius of the annular sector, the width-to-height

ratio of the fin, and the fin position. Although the fin sections can be designed

from microstrip equations for characteristic impedance, the annular sector due to its

curvature does not conform to these equations. The characteristic impedance for a

curved microstrip was discussed in [34] with more detail found in [9] and also in [29].

The extent to which these calculations may be useful depends on the transition

section and the length of the annular sector. The annular sector in Antennas #3

and #4 from Table 1.1 comprises only a little more than 90◦ of the radiating line.

The radiating lines of these two antennas were designed using parametric sweeps in a
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frequency-domain solver with Antenna #2 as a reference. The long transition section

and shorted annular sector leave little distance for higher-order fields to attenuate.

Reasons for the distorted shape of these two radiating lines are explained by TDR

measurements in Section 1.2.1.

1.1.3. Determining the Radiation Band. The first radiating mode

of the ANSERLIN design occurs when the phase progresses at one degree per one

degree of the arc length. The modes of the antenna are dependent on the mean

radius of the annular sector and the effective permittivity seen by the radiating line.

A fair approximation of the effective permittivity may be obtained using microstrip

expressions like the following:

Ea =


εr+1

2
+ εr−1

2

[
1√

1+ 12h
W

+ 0.04
(
1− W

h

)2]
, W/h < 1

εr+1
2

+ εr−1

2
√

1+ 12h
W

, W/h ≥ 1
(1.1a)

εreff =

Ea − (εr − 1)
(
t
h

)
4.6
√

W
h

 . (1.1b)

However, it is important to mention that this expression pertains to a straight mi-

crostrip line. The accuracy will be much less for antennas with long transitions from

fin to annular sector and antennas with small radius of curvatures, for example.

The estimate for m′ is calculated as

m′(< r >, εreff , f) =
2πf < r >

√
εreff

c0
(1.2)

or the mean radius for a particular frequency can be calculated by

< r >=
c0

2πf
√
εreff

(1.3)

assuming m′ = 1. The inner and outer radii, a and b, respectively, can be calculating

from < r > and the width-to-height ratio for the annular sector. The result can

be verified with field measurements referenced to the phase at the input port. For

m′ = 1, there should be one degree of phase shift per degree rotation about the

antenna.
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1.2. TDR ANALYSIS AND TUNING

Time-domain reflectometry (TDR) is extremely useful in ensuring minimal re-

flections on current paths through the antenna. Frequency-domain S-parameter mea-

surements are also useful but do not normally yield information about the location of

the feature responsible for the measurement. TDR measurements using pulses with

fast rise times can fairly accurately point out discontinuities and the degree to which

they may affect the overall behavior of the antenna. Section 1.2.1 discusses the TDR

measurements on the antennas of Table 1.1 and common behaviors of the ANSERLIN

class of antennas. Section 1.2.2 looks specifically at Antennas #5 and #6, and the

changes to the radiating line structure that led from #5 to #6.

1.2.1. TDR Analysis of the ANSERLIN Structures. ANSERLIN

antennas are generally fed by coax to microstrip transitions. The microstrips in

turn transition to the wider, elevated radiating-line element. These common features

translate to the TDR measurements also. Figure 1.2 shows TDR measurements for

the seven antennas.

The common TDR response among the ANSERLIN antennas in this report is an

area of high impedance located around the top of the fins and a very low impedance

over the annular sector. The better matched responses in Figure 1.2 compensate for

the high and low impedance regions by slightly wider areas at the top of the fin and

very narrow annular sectors. Care must be taken with these adjustments, as they may

improve the match of the antenna, they may also adversely affect either the radiated

power, the radiation pattern, or both.

1.2.2. Reducing Reflections using TDR Measurements. Because the

ANSERLIN antennas radiate by traveling waves, any reflected waves are detrimental

to the radiation efficiency. The guidelines for synthesizing ANSERLIN structures on

dielectrics given in Section 1.1 can be improved on using TDR measurements as a

guide. Antennas #5 and #6 from Table 1.1 have the same return plane, dielectric

shape, and feed locations. However, the annular sector of Antenna #6 has been

reshaped to reduce reflections.

As a rule material in the path is removed to increase the inductance per unit

length, and thus, increase the characteristic impedance. Then, adding material in-

creases the capacitance per unit length, lowering the characteristic impedance. Fig-

ure 1.3 shows the outlines of the radiating line shapes in the steps that it was tuned.

Figure 1.4 shows the TDR measurements at each step.
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Figure 1.2 Collected TDR measurement plots for all seven antennas

The first step shown in Figure 1.3(b) is the increase in the outer radius of the

annular sector. This change causes more reflections than the original because of the

added capacitance to an already low characteristic impedance. The reason for the

change was to set the antenna up for the further alterations. Next, the inner radius

was increased while maintaining the fin positions. This increased the characteristic

impedance of the annular sector close to 50-Ω . After these changes, the impedance of

the transition section between the annular sector and the fin was too low. In addition,

the impedance at the top of the fin was slightly high. Circular cuts were made at

the inner edge of the transition section. This has the added bonus of increasing the

length of the annular sector. The fin width was also increased slightly to reduce the

impedance there.

1.3. CUPPED GROUND STRUCTURE

The radiation pattern of the ANSERLIN antenna has nulls at broadside for all

modes besides the m′ = 1 mode. This change in the radiation pattern as frequency

increases can limit its usefulness when that radiation pattern is critical, i.e., when a

directional antenna is required. It has been found that modifying the geometry of the

ground surface can reduce the effect of the higher order modes on the radiation patter,

or in some cases it may accentuate the higher order modes. Radiation patterns are
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(a) The original version
identical to Antenna #5

(b) The outer radius in-
ceased to the outer edge of
the fins

(c) The inner radius in-
creased progressively to get
a good match with the char-
acteristic impedance of the
annular sector

Figure 1.3 Outlines of the tuning steps to Antenna #6

Figure 1.4 TDR measurements from tuning Antenna #6 matching the illustrations
in Figure 1.3

compared from cupped-ground and round dielectric antennas. Additionally, radiation

from ANSERLIN with very large ground planes is shown.

The cupped-ground antenna design uses a cup shaped return plane, which when

applied properly maintains the broadside beam direction better than larger flat planes.
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The radiating line geometry is the same as in previous round antennas, although the

cupped-ground version may require significantly more tuning to account for the added

capacitance from the elevated edges of the return plane. The slope of the return plane

is defined by the angle θcup defined as

tan
(
θcup

)
=

h

GNDrad,h −GNDrad

(1.4)

and shown in Figure 1.5. The slope of the return plane is approximately 45◦ for

Antennas #5 and #6. This angle is not required, but seems a good compromise

between vertical side walls and the regular round ANSERLIN designs.

(a) Side view (b) Perspective view of a cupped-ground antenna

Figure 1.5 The cupped return plane makes the angle θcup with the flat return plane

Realized gain measurements on Antennas #1 and #5 were conducted. The

far fields are considered in two vertical planes; the orientations for these planes are

shown in Figure 1.6. The ANSERLIN antennas are symmetric about a line drawn

between the feed points through the middle of the antenna. The first plane is drawn

orthogonal to this symmetry line; it cuts across the annular sector and is labeled as

the cross cut. Figure 1.6(a) shows the positive orientation of θ, the elevation, with

respect to the annular sector for the cross cut; θ = 0 denotes the broadside radiation

direction. The second plane is parallel with the symmetry line, cutting through the

notch between the feed points. Figure 1.6(b) shows orientation of θ for this plane.
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(a) Cross cut orientation (b) Notch cut orientation

Figure 1.6 Orientations of the vertical planes for gain measurements

The realized gain is defined as

Realized Gain =
4πU(θ, φ)

Pinc
, (1.5)

where U(θ, φ) is the radiation intensity with units of watts per unit area, and Pinc is

the incident power at the input port. The radiation intensity is defined as in [3],

U(θ, φ) =
r2| ~E(r, θ, φ)|2

2η
≈ | ~Ef (θ, φ)|2

2η
, (1.6)

where ~Ef is the electric far-field, and η is the intrinsic impedance of the medium.

Gain differs from realized gain in that the expression contains the accepted power

instead of the incident power. Thus, the gain is higher than the realized gain. When

S11 ≈ 0, gain and realized gain are nearly identical.

Figures 1.7 through 1.12 show the realized gain measured and simulated from

Antenna #5, the cupped-ground antenna, with Antenna #1 as the round comparison.

For the frequencies below 2 GHz, the cupped-ground antenna has higher realized gain

than the round antenna despite the smaller mean radius, and thus, higher m′ = 1

frequency, of the cupped-ground antenna. Above 2 GHz, the round antenna has

better realized gain.
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(a) Cross cut

(b) Notch cut

Figure 1.7 Realized gain of Antennas #1 and #5 measured and simulated at 1.35
GHz
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(a) Cross cut

(b) Notch cut

Figure 1.8 Realized gain of Antennas #1 and #5 measured and simulated at 1.65
GHz
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(a) Cross cut

(b) Notch cut

Figure 1.9 Realized gain of Antennas #1 and #5 measured and simulated at 1.95
GHz
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(a) Cross cut

(b) Notch cut

Figure 1.10 Realized gain of Antennas #1 and #5 measured and simulated at 2.25
GHz



14

(a) Cross cut

(b) Notch cut

Figure 1.11 Realized gain of Antennas #1 and #5 measured and simulated at 2.55
GHz
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(a) Cross cut

(b) Notch cut

Figure 1.12 Realized gain of Antennas #1 and #5 measured and simulated at 2.7
GHz
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The original goal for creating the cupped-ground version of the ANSERLIN

antenna was to provide a ground shape for focusing the radiated power broadside.

For the cupped ground to have an effect on the radiation pattern, the flat portion

of the ground must have a radius approximately equal to the outer radius of the

annular sector, b. Then, if θcup = π/4, the distance from outer edge of the annular

sector to the top of the cupped ground is approximately the same as the height of

the annular sector above the flat part of the ground. In particular in Figure 1.11(a)

and Figure 1.12(a), the pattern is better centered broadside for the cupped-ground

antenna. For most of the other frequencies, the two antennas have a comparable

patterns, but overall, the cupped-ground antenna has fewer deep nulls than the round

antenna.

In Figure 1.11(a) the simulated realized gain for Antenna #1 has a deep null

near broadside that is largely absent in the measured data. Suspecting that the gain

may be sensitive to the ground diameter, a modified version of Antenna #1 with

a larger ground plane was simulated. The realized gain for this antenna is shown

in Figure 1.13. These simulated results have more distinct nulls than the simulated

results for the original Antenna #1.

Since Antennas #1 and #5 have different radiating lines and even heights,

a cupped-ground variation of Antenna #1 was also simulated to make a more di-

rect comparison between the round and cupped-ground versions. The results for the

cupped-ground version of Antenna #1 are shown in Figure 1.14. In this case, the

realized gain of the cupped-ground antenna is approximately 8 dB below that of the

round antenna. However, the pattern shape has no distinct nulls at broadside and

very little tilt to the beam.

It has been found that the size and shape of the ground plane have a significant

effect on the radiation patterns produced by ANSERLIN antennas. Smaller ground

planes and cupped ground planes tend to produce better gain patterns with fewer

nulls to broadside. There are applications, however, where nulls are beneficial. If

properly positioned, a null in the radiation pattern can be used to avoid interference

from unwanted sources. With a large ground plane it may be possible to achieve nulls

that can be used to avoid interference. Arrays of ANSERLIN antennas can be used

to produce even more significant nulls.
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(a) Cross cut

(b) Notch cut

Figure 1.13 Simulated realized gain for antenna based on #1 with a 4.7-in diameter
ground plane
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(a) Cross cut

(b) Notch cut

Figure 1.14 Simulated realized gain for a cupped-ground antenna based on An-
tenna #1
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1.4. MODIFIED FEED DESIGN FOR THE CUPPED GROUND
ANTENNA

The feeds for the ANSERLIN design have typically been positioned below the

ground with a center conductor or via connecting to the fin section. On dielectrics

the fin is often much wider than the annular sector, requiring the transition section.

All of these modifications affect the radiation pattern to some degree. In some cases

the antenna becomes more linearly polarized.

The flat-feed antenna replaces the fin structure of previous ANSERLIN antennas

by a tapered line that retains an approximately constant width-to-height ratio as the

cupped reference plane drops away from beneath it. Figure 1.15 shows two examples

of the flat-feed antenna. The annular sector and end-launch connectors were laid out

on a 60-mil FR4 board. A foam block was cut with 45◦ edges and glued to the bottom

of the board. The entire bottom of the antenna was covered in copper to provide the

ground structure. This design is similar to the cupped ground antenna in Section 1.3.

The flat-feed radiating line can be cut from a single piece of copper. In contrast the

fins of the other ANSERLIN antennas are often too long to be cut out of a single piece

of copper. When flat, the fins overlap. So, the radiating line is made in two pieces

and soldered together. An array created from flat-feed ANSERLIN may be printed

on a substrate with whatever other circuits needed. Then, the cupped cavities can

be attached below the substrate.

Antenna #7 was first built with a radiating line shown in Figure 1.15(a). TDR

measurements, shown in Figure 1.16, were used to find where the radiating line could

be adjusted for a better match. The transition from microstrip to the annular sector

had too high a characteristic impedance. An round addition of copper was laid over

the existing fin to lower the characteristic impedance, as shown in Figure 1.15(b).

The addition greatly improved the match without altering the main portion of the

annular sector.

Both versions of this antenna extend the annular sector from 270◦ to nearly a

complete circle. In [5] it was predicted that an antenna using more than 270◦ could

radiate a larger percentage of its power. The S-parameters of this antenna indicate

that it should radiate slightly more than 80% of the power incident on the antenna at

its m′ = 1 frequency around 1.65 GHz. The total radiation with respect to frequency

is further discussed in Section 1.5.

The realized gain was simulated for both versions of the flat-feed antenna, An-

tennas #7a and #7b. Like the previous cupped-ground antennas, Antenna #7a is
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(a) Before tuning (b) After tuning

(c) Side view of the flat-feed ANSERLIN

Figure 1.15 Two examples of flat-feed ANSERLIN antennas

Figure 1.16 TDR measurements of the flat-feed antenna before and after tuning

shown in Figure 1.17 to have no distinct nulls at broadside. On the contrary, the

tuned version of the flat-feed, Antenna #7b, has a substantially more distinct null at

broadside in Figure 1.18. This is one example of how tuning for return loss may have

adverse effects on the radiation pattern.
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(a) Cross cut

(b) Notch cut

Figure 1.17 Realized gain of the untuned flat-feed antenna
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(a) Cross cut

(b) Notch cut

Figure 1.18 Realized gain of the tuned flat-feed antenna
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1.5. RETURN LOSS AND FRACTION RADIATED POWER OF THE
RADIATING LINE WITH DIELECTRICS

Using dielectric materials for substrates for the ANSERLIN antennas allows

smaller antennas to be made for the same frequency range. Microstrip equations can

be used to calculate conductor widths approximately, but as discussed in Section 1.2.1,

further tuning is commonly required to match the annular sector. Although some of

these antennas were tuned using S-parameter or TDR measurements, the availability

and speed of full-wave solvers has allowed many of the antennas to be designed using

parametric sweeps of critical variables.

This capability was of special importance in designing the cupped-ground an-

tennas and the flat-feed antennas, which do not conform necessarily to microstrip

equations for straight or curved geometries. As pointed out in Section 1.2.1, the

annular sectors typically have a lower characteristic impedance than the rest of the

radiating line. Parametric sweeps can be used to tune the annular sector width re-

gardless of the ground shape.

The S-parameters were measured for several of the antennas list in Table 1.1.

Full-wave models of the same antennas were also generated. The results for |S11| are

compared in Figure 1.19 through Figure 1.23 for Antennas #1, #2, #5, #7a, and

#7b, respectively. Antennas #1, #2, and #5 use a dielectric with εr = 9.7; #7a and

#7b are built on a 60-mil layer of FR4 above 1.3 cm of foam.

Figure 1.19 Return loss simulated and measured for Antenna #1
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Figure 1.20 Return loss simulated and measured for Antenna #2

In addition to the return loss, the fraction radiated power is calculated as

FPrad = 1− |S11|2 − |S21|2 . (1.7)

Several of the antennas discussed have their second port terminated by a 50-Ω re-

sistor rather than a coaxial probe. Therefore, the simulated results for S11 and S21

are used to calculate the radiated power. The results are shown in Figure 1.24. An-

tennas #5 and #7a have distinct peaks in Figure 1.24. The round antennas have

a nearly monotonic behavior in their radiated power. However, the radiated power

for Antenna #7b is very flat compared with that of the other antennas. Tuning on

Antenna #7b had some adverse effects on its radiation pattern, but the flatness of

the total radiated power may be very useful in applications where directionality is

not an issue.

In Section 1.3 the effect of large and small ground planes on round ANSERLIN

antennas was discussed. Simulations on a version of Antenna #1 with a larger ground

indicated that the radiation pattern for such an antenna had more distinct nulls at

broadside. However, there is evidence in Figure 1.24 that indicates that reducing the

size of the ground plane may also reduce the radiated power. Antennas #3 and #4

are identical except for their ground diameters. The radiated power of Antenna #4

is as much as 25% lower than that of Antenna #3 in the simulated results.
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Figure 1.21 Return loss simulated and measured for Antenna #5

Figure 1.22 Return loss simulated and measured for Antenna #7a

Figure 1.23 Return loss simulated and measured for Antenna #7b
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Figure 1.24 Fraction radiated power from simulated S-parameters for antennas in
Table 1.1

1.6. SUMMARY

Previous studies of ANSERLIN elements have shown the antenna to have excel-

lent wideband behavior with CP radiation. Dielectric substrate materials have been

introduced in order to reduce the size of the element, and the annular sectors of the

antennas have been tuned to achieve good return losses despite the added complexity

of designing in the mixed media environment.

Additional work has been done on the return structures of the antennas. By

cupping the ground structure near the ANSERLIN element, higher order modes are

suppressed while maintaining reasonable levels of gain. Larger diameter ground struc-

tures have an inverse effect, accentuating these higher order modes to the extent that

the m′ = 1 mode is not observed at all. The result is a very distinct null at broadside

for higher frequencies.

Considering the capabilities of the cupped-ground antennas, another new AN-

SERLIN configuration was designed that does not require the rising fin structures of

previous antennas. This flat-feed ANSERLIN antenna uses the slope of the cupped

ground antenna to make a matched transition to from microstrip to the annular

sector. The flat-feed antenna can be printed completely on a substrate unlike other

ANSERLIN antennas. The cupped-grounds may be fabricated separately an attached

to the substrate. Several flat-feed antennas can be fabricated on the same substrate

to form series or parallel connected arrays.
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2. MODELING AND DESIGN OF A ANSERLIN MOBILE
ANTENNA SYSTEM

The wide bandwidth and low-profile characteristics of the ANSERLIN antenna

has led to its use for a mobile two-antenna array. The 3-dB power splitter for the

system is incorporated into the base of one of the antennas. Several design factors

come into play, requiring a full link-path model of the system. The system is elec-

trically larger than what is easily handled by full-wave simulation. The output ports

have different geometries, which make the output unbalanced. The unbalanced out-

put results in a ripple in the S21 and S31. The splitter itself requires matching and

optimizing to ensure maximum power coupling and radiating from each antenna el-

ement. A previous version of the splitter is analyzed to find the cause for its poor

performace. Then, the splitter is redesigned using the findings from the analysis.

The mobile antenna system is required to be both light-weight and compact.

ANSERLIN antenna elements are used because they are a circularly polarized, radi-

ating line antenna that can be matched across a large frequency range [5, 6]. These

antennas can be reduced in size using dielectrics to the extent that they are two inches

across and only a centimeter thick while retaining good radiation characteristics.

While the system could be constructed using two antennas and a commercial

RF splitter, this leads to the added complexity of having three units to the design.

A balun suiting this purpose was considered in [19]. Since ANSERLIN antennas

are built over a finite ground plane, a custom splitter was designed using stripline

geometries and built beneath the first antenna of the two-antenna system. Thus, the

first antenna and the splitter share a reference.

The splitter board consists of two signal layers within two reference planes. The

upper plane additionally acts as the return plane for the antenna. The planes are

shorted at points for low impedance current returns and for basic splitter functioning.

The stackup is given in Figure 2.1.

Unlike stand-alone board designs, the power splitter described in this report is

designed for a specific antenna load. In addition, the splitter is integrated into the

base of one of the two antennas of the system. The system is referenced to 50-Ω

impedance. However, as needed, the splitter outputs can be modified to match the

antenna input impedance. The layout of each splitter is specific to the antenna it

is designed for since the antenna feed ports are relocated to match the feeds of the

antenna design.
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Figure 2.1 Stackup for the splitter board design

The design of the 3-dB splitter is complicated by the asymmetry of its output

geometries. On a stand-alone board, the simplest design would entail laying out the

input and two output lines with absolute symmetry, including identical connector

geometries on the outputs. Because this power splitter is built into the base of one

of the antennas, there are design constraints that eliminate the possibility of perfect

symmetry.

A Marchand splitter design was originally considered for this design, and it

is the configuration for the splitter analyzed in Section 2.1. The Marchand balun

ideally provides a balanced, 180◦ output [35]. However, the output phase difference is

irrelevant. The second antenna of the system requires a cable that will be a different

length depending on the application. Thus, a simpler, less sensitive configuration,

also using broadside-coupled lines, was considered for the redesign.

The port geometries are rebuilt in full-wave simulation in Section 2.1.1. These

models themselves require care to ensure the circuit equivalents, derived from the

model results, mimic the field structure when replaced in the system model. Equiva-

lent circuits matching the simulation data are derived in Section 2.1.2. In addition to

the port models, other parasitic quantities are introduced into the system model and

manually tuned to achieve a close match to measured results in Section 2.1.3. Fur-

ther discrepancies were corrected using several partial full-wave models. The splitter,

minus the connecting striplines, was simulated in a full-wave solver in a fashion so

that the results could be linked back to the port models.

The information gleaned from the analysis in Section 2.1 is utilized in Sec-

tion 2.2 to design a new splitter with less output imbalance and better return loss.
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In Section 2.2.1 a different termination scheme for the coupled lines is considered

analytically. This new configuration is incorporated in the steps to build a splitter

matched to the characteristics of the ports in Section 2.2.2. Lastly, the characteristics

of the new splitter are compared with that of previous versions.

2.1. SYSTEM-LEVEL ANALYSIS OF THE PREVIOUS SPLITTER
DESIGN

The previous splitter was measured and found to have substantially different S-

parameters than previous simulations of the splitter geometry. The difference could

not be explained by either full-wave or SPICE simulations of the splitter element

alone. This reasoning placed the focus of the analysis on the port geometries, which

had not been analyzed with the level of detail that the splitter element had.

Full-wave analysis and circuit extraction are used to further understand the

behavior of the port geometries. First, the port geometries are simulated with full-

wave modeling techniques. Then, equivalent circuits are designed that relate directly

back to the geometry. Additionally, a transmission line model of the splitter element

is constructed, and the port models are included to get the full-system model.

2.1.1. Full-Wave Models of the Port Geometries. The complete splitter

board is too large and complex to easily model in a single full-wave model. It is not

impossible, but impractical in most cases. For example, the number of tetrahedron

for a finite element solve required for a satisfactory model can exceed one hundred

thousand. This number of tetrahedron is large, but not impossible to run on a

computer with 2 GB or more RAM. In this paper the system is considered separately

first and then pieced together to get a full system response. The port geometries

are first considered. Figure 2.2 shows the port geometry models referenced to their

position in the layout.

Two of the three port geometries are nearly identical. The input port, Port 1,

and the second output, Port 3, are both fed by a coaxial cable soldered horizontally

to the upper plane of the splitter. The difference in the two models comes from the

output traces being on the lower signal layer while the input trace is on the upper

signal layer. The first output, Port 2, is connected to a vertically mounted coaxial

cable. In the assembled system, this port feeds the antenna element mounted above

the splitter. When assembled, a wire is fed through the splitter board to the antenna

element above, but for the characterization measurements a semi-rigid coax is used.

This difference in testing and final implementation further complicates the design
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Figure 2.2 Port geometries associated with their respective positions in the splitter
layout

process, as the test measurements may differ significantly from the behavior of the

assembled system.

Constructing a full-wave model that accurately represents the physical device is

often difficult. Regardless of the full-wave method employed, two important elements

can render the model completely inaccurate: excitation and boundary conditions. If

applied in a way that does not represent the proper physics, the modeled results will

not match the physical device. Proper excitation and stripline modeling are critical

in the port models, because the geometry cannot be measured separate from the rest

of the board. However, in the models, the port geometries can be cut away from the

rest of the board geometry provided the boundary conditions are matched such that

the models fit seamlessly back into the system model.

In the port models considered in this section the most important elements in

each model include the stripline termination and excitation. The SPICE model of

the splitter uses transmission line elements that assume a stripline field distribution.

The full-wave models or their equivalent circuits are constructed to minimize the

reflections from the interface of the port models and the splitter model.

Assume that a stripline in a full-wave model is excited against only one of its two

references. Figure 2.3 shows the current distribution associated with this excitation
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and also shows the current distribution associated with a stripline excited against

both references. The microstrip style excitation leads to a larger current density on

the lower reference and a much lower current density on the upper reference. This

distribution is not suitable to match with the field distribution of the transmission

line model.

(a) Excitation against a
single reference plane

(b) Excitation against
both references planes

Figure 2.3 Stripline excitations and the current distribution

In addition to exciting the stripline in a way that matches the transmission line

model, it is also important to model enough of the stripline so that non-TEM modes

are attenuated. The traces separating the ports and the splitter geometry are too

short for full attenuation of the non-TEM modes. So, the traces are extended in

the model, and the added electrical length is removed in post-processing. This step

is referred to as de-embeddin the port. Figure 2.4 and Figure 2.5 show the input

port and the first output port, respectively. The effective port locations with de-

embedding are indicated. In order to define a port to connect to lumped circuits, the

voltage must be clearly defined at the port boundary. An accurate voltage definition

is possible with an electrically small conductor separation and TEM fields present

at the port. This condition is also required to extract an equivalent circuit of the

geometry, which has lumped circuit ports itself.
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Figure 2.4 The splitter input port model with arrows to indicate the effective port
locations after de-embedding

Figure 2.5 The model of the output feeding the attached ANSERLIN antenna with
arrows to indicate the effective port locations after de-embedding
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When completed, an ANSERLIN antenna element with dielectrics will be at-

tached to the upper surface of the splitter. This condition is different than in the

models shown in Figure 2.4 and Figure 2.5. The final forms of the port geometries

include dielectrics similar to those represented in the models in Figure 2.6. However,

the coaxial connections are needed for the splitter measurements. So, two sets of port

models are required: one for matching measurements and a second for system design.

(a) Antenna feed geometry (b) Feed with antenna dielectric
and cable clamp

Figure 2.6 Full-wave models for the feed ports for the completed system

The port geometries have been assumed to be the most significant factor in the

poor characteristics of the design. While the connections must remain the same in

general, the antipad radii for the via connections can be changed. Parametric studies,

using the full-wave models described previously, were used to find a radius for each

port that minimizes reflections. Making the antipads too small results in excessive

coupling from the via stub to the lower plane. However, if the antipad is made too

large, the connection may have too much inductance. Finding the balance is essential.

For the antenna feed, S11 was observed to decrease as the antipad size increased

in Figure 2.7. However, a dip around 2.1 GHz occurs for larger radii. While the

simulation indicates this as being a great match at the center of the frequency band,
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it may also indicate that the sensitivity of the response at that size is high. Small

variations in the antipad size in construction may result in narrow band response as

a worst case.

Figure 2.7 |S11| for the antenna feed geometry given different antipad sizes

The input feed geometry presents a slightly different behavior with respect to

the antipad size. The constants in the goemetry are the 15-mil via diameter and the

25-mil via pad. Figure 2.8 indicates that the return loss initially decreases, and then

increases. Increasing the antipad diameter by approximately 20 mil brings the return

loss back to almost the same as the initial diameter. At this point in the analysis the

accuracy of the model must be considered. The return loss is low enough for any of

the cases, and the difference in the return loss is roughly 6 dB. In this case, a median

antipad diameter was chosen.

2.1.2. Current Mapping and a Physics-Based Circuit Extraction.

Translating complex geometries into equivalent circuits provides an alternative model

that can be simulated quickly and connected to other models in SPICE simulators.

Then, anything that can be simulated in SPICE can be tested with the geometry.

Often it is possible to match the behavior of complicated structures at low frequencies

with very simple second or third order circuits. However, the simplest circuit that

fits may not always be the best circuit to use. Designing an equivalent circuit based
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Figure 2.8 |S11| for the coax feed geometry given different antipad sizes

on the physics of the geometry can yield a circuit that not only matches the behavior

of the struture but also gives interpretation of how the individual elements of the

structure affect the overall response. This idea is demonstrated with the splitter port

geometries.

Two-dimensional representations of the port geometries are shown in Figure 2.9

and Figure 2.10. The analysis begins by mapping all possible current paths, both con-

ducted and displacement, on the diagram. Conducted currents (in green) translate to

inductances, and displacement currents (in red) translate to capacitances. Then, the

equivalent circuit components can be drawn directly over the diagram and connected

to get the circuit. From this procedure the geometry is directly related to the equiv-

alent circuit, and behaviors associated with particular circuit elements are directly

related to an element of the geometry. Therefore, if the behavior of the circuit can be

improved by adjusting an equivalent circuit value, then, the physical change required

to achieve the functional change is straight forward.

Optimizations in Agilent’s Advanced Design System (ADS) were combined with

the S-parameters simulated in Ansoft HFSS to match the parasitic values. Table 2.1

shows the circuit quantities determined from the optimization in ADS. Figure 2.11

shows the equivalent circuit structure. Although the port geometries differ, their

current paths lead to the same equivalent circuit structure. Each port has different

values for the equivalent circuit elements.
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(a) Current paths (b) Equivalent circuit elements overlaid
on the geometry

Figure 2.9 A 2D diagram of the geometry for the input and second output ports with
the conduction and displacement current paths indicated

(a) Current paths (b) Equivalent circuit elements overlaid
on the geometry

Figure 2.10 A 2D diagram of the geometry for the first output port with the conduc-
tion and displacement current paths indicated

Table 2.1 Equivalent circuit quantities
Lcenter Ltrace Lsvia Ccenter Cmid Ctrace Cstub
(nH) (nH) (nH) (pF) (pF) (pF) (pF)

Input 1.91 1.27 0.013 0.309 0.341 0.258 0.391
Output 1 0.715 1.00 0.263 0.362 0.165 0.168 0.252
Output 2 1.94 1.48 0.052 0.326 0.259 0.223 0.427

These equivalent circuits are by no means the only possible structures that

could match the S-parameters, but they are sufficient for matching the simulated

S-parameters and reflect the physics of the geometry. Note that the components in
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Figure 2.11 The equivalent circuit used to model the port geometries

Figure 2.11 match the circuit elements overlaid on Figure 2.9 and Figure 2.10. Pre-

viously, the antipad radii for each of the ports was determined to be too small. That

is evident in the value of Cstub. This parameter can be tuned in SPICE simulations

to quickly find the best response. Then steps may be taken to find the antipad size

to achieve a close match to the optimal parameter value.

2.1.3. Transmission Line System Model with Port Circuit Models.

The splitter design comprises offset stripline, broadside coupled striplines, shorting

vias, and the port geometries. The port geometries have been considered in detail

in the previous sections. To complete the system level model, the splitter element

itself is represented by transmission line elements and multiconductor transmission

line models. A schematic representation was assembled in ADS. Subcircuits for the

port equivalent circuits are added to the transmission lines. Figure 2.12 shows the

schematic representation of the system.

Initial simulations showed significant discrepancies between the simulated and

measured results. Assuming the port models to be correct, the rest of the splitter

geometry was scrutinized. Like the port geometries, there are discontinuities in the

splitter that exhibit non-TEM fields. The previous model, based on transmission lines

did not account for the non-TEM fields. Therefore, additional parasitic components

were added to the previous model where significant discontinuities existed. After the

additional parasitics were added and manually tuned, the simulated and measured

data matched fairly well although there are still some discrepancies. It has been

demonstrated on the port geometries that physics-based equivalent circuits can be

constructed to match the complex behavior exhibited. The same could be done for
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Figure 2.12 The system level model including equivalent circuits for the ports, trans-
mission lines for the splitter, and additional parasitic components to ac-
count for other non-TEM mode effects

parts of splitter. Instead a frequency domain full-wave model of just the splitter was

constructed.

Figure 2.13 shows the full-wave model of the splitter. As with the port ge-

ometries, the conductors were extended to allow the non-TEM modes distance to

attenuate prior to reaching the simulation ports. De-embeding was then used to re-

move the excess length of conductor. The extra length of line is important to avoid

reflections from the port. Such reflections would not occur in the real device and

must be avoided in the model.

The S-parameters from the simulation of the model in Figure 2.13 are used with

the equivalent circuit models for the port geometries. This schematic is shown in

Figure 2.14. The results for both the transmission-line based model and the full-

wave splitter based model are shown in Figures 2.15 to 2.20. In general, the full-

wave (FW) splitter model agrees with the measurements better than the hand-tuned

transmission-line (Tx) model for the splitter.
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Figure 2.13 The reduced full-wave model isolating the complex fields associated with
the coupler and its connecting traces

Figure 2.14 The combined system model including the port equivalent circuits and
the full-wave splitter model from Figure 2.13
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Figure 2.15 Splitter modeling and measurement comparison (S11)

Figure 2.16 Splitter modeling and measurement comparison (S22)
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Figure 2.17 Splitter modeling and measurement comparison (S33)

Figure 2.18 Splitter modeling and measurement comparison (S21)
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Figure 2.19 Splitter modeling and measurement comparison (S31)

Figure 2.20 Splitter modeling and measurement comparison (S32)
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2.2. SPLITTER REDESIGN

Given the knowledge of the port behavior from the previous design, a new design

is constructed. Some modifications are made to the splitter element itself, allowing

the coupled output lines to be connected in parallel rather than in series. Figure 2.21

shows a simplified diagram of this new splitter. The reasoning for that change is

presented in the next section.

Figure 2.21 The new splitter configuration using two sets of coupled lines in parallel

2.2.1. Analysis of the Coupled Lines. The new splitter design functions

using two coupled-line sections in parallel. The design is a variation of the Marchand

balun, which provides 180◦ phase difference in its outputs. This splitter uses a very

similar coupled line combination, but feeds them in parallel instead of series. In addi-

tion, the input inpedance seen at the input to the coupled line pair is approximately

50 Ω. Then, the transmission line widths selected are only slightly narrower or wider

than a 50-Ω trace.

First, consider a single coupled line section. Figure 2.22 shows Line 1 shorted

at the far end while Line 2 is open. The near side of Line 1 is assumed to be the

input of the structure, and the near side of Line 2 is the output, which have a load

connected. Cross-sectional analysis yields the per-unit inductance matrix for the pair

of lines to be

L =

[
ls lm

lm ls

]
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Figure 2.22 Circuit model for the broadside coupled striplines

and the per-unit capacitance matrix is

C =

[
cs −cm
−cm cs

]

These lines have symmetry and could be analyzed using simplifications for symmetric

coupled lines. However, in this case, the lines and their terminations were analyzed

using a multiconductor transmission line (MTL) formulation.

A modal transformation is used to relate the line voltage and current to even

and odd mode signals. The transformation matrix is given by

T =
1√
2

[
1 1

1 −1

]
. (2.1)

The modal progagation is determined using

γ2
m = T−1(jω)2CLT = (jω)2

[
(cs − cm)(ls + lm) 0

0 (cs + cm)(ls − lm)

]
(2.2)

Then, the propagation matrix is given as

γm = jω

[√
(cs − cm)(ls + lm) 0

0
√

(cs + cm)(ls − lm)

]
(2.3)

or more simply, let βm = 1.58 · 10−13 rad/mil.
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Define a characteristic impedance as in C. R. Paul MTL:

Zc = (jω)−1C−1TγmT
−1 . (2.4)

Then, the solution to the MTL equations can be expressed as

V (z) = ZcT
(
e−jβmzI+

m + ejβmzI−m
)

(2.5)

I(z) = T
(
e−jβmzI+

m − ejβmzI−m
)

(2.6)

where I+
m are I−m are the coefficient vectors for the forward and reverse modal currents,

respectively.

The coupler works on a λ/4 effect. This effect is similar to a quarter-wave

transformer implementation. However, the lines are terminated in open and short

circuit combinations. Additionally, the multiconductor geometry allows for more than

one propagating mode: an even mode and an odd mode. These boundary conditions

and the propagating modes are further analyzed to determine the input impedance

required to match the load impedance.

Let βmz → θ so that θ = 0 represents the near end of the lines, and θ = π/2

represents the far end. The boundary at the near side is

0 = −Vs + ZsI(0) + V (0)

= −Vs + ZsT (I+
m − I−m) + ZcT (I+

m + I−m)

= −Vs + (Zs + Zc)TI
+
m + (−Zs + Zc)TI

−
m .

(2.7)

The source impedance is given by [
Zin 0

0 Zout

]
, (2.8)

where Zin is the source impedance, and Zout is the load impedance. The far side

boundary conditions are mixed. Line 1 is shorted. So,

0 = V1(θ = π/2) = −j
[
Zc11 Zc12

]
T (I+

m − I−m)

=
−j√

2

[
Zeven Zodd

]
(I+
m − I−m)

, (2.9)
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where Zeven = Zc11 + Zc12 and Zodd = Zc11 − Zc12. The boundary conditions can be

combined into a matrix equation
Zs
in + Zeven Zs

in + Zodd −Zs
in + Zeven −Zs

in + Zodd

Zout + Zeven −Zout − Zodd −Zout + Zeven Zout − Zodd

Zeven Zodd −Zeven −Zodd
1 −1 1 −1


[
I+
m

I−m

]
=


√

2Vs

0

0

0


(2.10)

After solving for I+
m and I−m the input impedance can be found from

Zin(z = 0) =
V1(z = 0)

I1(z = 0)
, (2.11)

which can be found using (2.5) and (2.6). The input impedance calculation can be

used get a load profile. The approximate relation is

Zin(z = 0) ≈ 2Zload . (2.12)

When two roughly 50-Ω loads are connected to the input in parallel with the coupled

sections, the input impedance is also approximately 50 Ω.

The Marchand balun design uses line terminations opposite to those described

above. The input line of the coupled pair is open circuited while the ouput line

is shorted. Analysis like that above leads to the approximate relation that Zin ≈
Zload/2. This combination is impractical in parallel, but it suits the series layout of

the Marchand balun.

2.2.2. Line Width Selection and Layout Considerations. The an-

alytical models presented in the last section give a good first approximation to this

design. However, real geometries and transmission lines will not have the same ideal

behavior. For a more accurate perspective, transmission line models with some para-

sitics are used. These transmission line models have been developed in Agilent ADS

in steps working from the coupled lines outward to the ports.

As with the analysis of the previous splitter, full-wave models are used for the

port geometries. These models are the similar to those shown in Figure 2.6. The

results of the parametric studies in Section 2.1.1 have been used to choose appropri-

ate antipad sizes reduce reflections from the port feeds. With the new coupled line

configuration presented in the last section, the transmission lines can be made very

close to 50 Ω . The line impedance is varied slightly to match the effects of the input

and output ports.
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The Thevenin impedance seen looking from the coupled lines towards the split-

ter is 49 Ω at the center of the band, 2.1 GHz. Figure 2.22 shows the schematic

representation for the coupled lines and their terminations. This simulation uses

terminations with parasitic models rather than the ideal boundary conditions in Sec-

tion 2.2.1. A parametric simulation steps the inductance associated with the shorting

via, and Figure 2.23 shows equivalent load impedances that match the input as sim-

ulated previously.

The output paths with port models included are simulated in SPICE, and the

quarter-wave transformer impedance needed to match the input calculated at band

center. The results are shown in Figure 2.24.

Figure 2.23 Load and via inductance sweeps for tuning the input impedance

2.2.3. Splitter Layout. With all of the line widths defined such that the

match at band center is almost perfect, the complete board model can be synthesized

as shown in schematic representation, Figure 2.25. To maintain as much symmetry as

possible at the output ports, the output trace length is kept as equal as is possible. To

do so requires shifting the coupling section. Care must be taken not to route output

traces too close to the coupling section, which could lead to unintentional coupling

that may increase the output imbalance or reduce the amount of signal reaching the



48

Figure 2.24 The impedance looking from the splitter into the outputs and the match-
ing λ/4-transformer impedance, denoted by the green box

outputs. This practice also limits the amount of parasitic analysis required to validate

the model. The layout of the splitter for an example antenna is shown in Figure 2.26.

The schematic representation shown in Figure 2.25 uses port models as was the

case in the system analysis of the previous splitter. The schematic also includes a

transmission-line representation of the coupled-line geometry. Additionally, a full-

wave model for the coupled-line geometry was generated as shown in Figure 2.27.

The schematic representation of this model is shown in Figure 2.28. Both system

models were simulated and compared with measured results in Figures 2.29 to 2.33.
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Figure 2.25 Final schematic representation of the redesigned splitter system
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(a) Splitter layout

(b) ANSERLIN antenna

Figure 2.26 Splitter layout for an ANSERLIN antenna
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Figure 2.27 Reduced full-wave representation of the revised splitter

Figure 2.28 The revised splitter including HFSS models of the new port geometries
and a separate HFSS model of the splitter
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Figure 2.29 Revised splitter modeling and measurement comparison (S11)

Figure 2.30 Revised splitter modeling and measurement comparison (S22)
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Figure 2.31 Revised splitter modeling and measurement comparison (S33)

Figure 2.32 Revised splitter modeling and measurement comparison (S21)
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Figure 2.33 Revised splitter modeling and measurement comparison (S31)

2.3. SUMMARY AND CONCLUSIONS

An RF splitter for a two-antenna system has been shown in two configurations.

After building an initial version of the splitter, an alternate configuration for the

broad-side coupled lines was found to be a preferrable option. The new design can

be built to match 50-Ω systems without extra matching circuits. In addition to the

inherent difficulties of working with the first splitter configuration, the port geometries

negatively affected both the return loss and the output balance of the splitter. A

combination of full-wave models and SPICE models were used to build complete

system models of the splitter. The SPICE models were derived from full-wave models

of the port geometries to identify the sensitive design areas in the ports and find the

best solution for the redesign. For the redesign, system models were again developed

to predict the behavior of the new splitter design. After construction these results

were compared with the measured data.

For system models, full-wave methods based on Maxwell’s equations are to be

preferred when the situation allows. However, most systems are far too complicated

to model in one simulation. If special care is taken to match boundary conditions

between models, even vastly different modeling methods may be combined to achieve

full-system models.



55

3. DERIVATION OF THE PEEC METHOD

Many previous papers have described the basic derivation of the PEEC method

[25–28]. However, these derivations only touch on particular results and lack many

of the details. In addition, constant scaling factors for the nonorthogonal PEEC

formulation are omitted. The missing factors are misleading and if not noticed lead

to solutions with somewhat correct behavior but completely inaccurate results. The

following section includes the specifics of these scaling factors with the generalization

of an unspecified Green’s function.

3.1. NONORTHOGONAL PEEC FORMULATION FOR A GENERAL
GREEN’S FUNCTION

The quasi-static form of the free-space Green’s function, given by

Gs(~r, ~r
′) =

1

4π|~r − ~r′|
, (3.1)

is often used as the kernel for the vector magnetic potential and the scalar electric

potential. For most situations this choice is adequate for accurate results. However,

the phase relations between PEEC cells are lost. In the time domain the effect of

the phase term is incorporated as a time delay, and in the frequency domain center

to center phase approximations are used to approximate the phase information for a

pair of cells. For many of the results presented elsewhere in this work the dynamic

form of the free-space Green’s function is used as shown in (3.2).

G(~r, ~r′) =
e−jk|~r−~r

′|

4π|~r − ~r′|
(3.2)

It is not necessary to include the form of the Green’s function for the majority of the

partial parameter derivation. Therefore, it is left unspecified in this section.

The PEEC derivation begins with the electric field integral equation (EFIE),

expressed in the frequency domain as

~E(~r) = ~Ei(~r)− jω ~A(~r)−∇φ(~r) (3.3)
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This brief derivation will consider only the conductors of the models and will also

exclude the incident fields. Therefore, let

~E(~r) =
~J(~r)

σ
and ~Ei(~r) = 0,

and (3.3) becomes
~J(~r)

σ
+ jω ~A(~r) +∇φ(~r) = 0 (3.4)

The geometry is discretized into general hexahedra, which may be described in

terms of a local coordinate system for each hexahedron given by

~r(a, b, c) =
1

8

8∑
k=1

(1 + aka)(1 + bkb)(1 + ckc)~r
m
k . (3.5)

where ~rmk for k ∈ {1, ..., 8} are the corners of the hexahedron. Let the volume enclosed

by the mth hexahedron as Vm. Then, ~r ∈ Vm ∀ a, b, c ∈ [−1, 1]. This particular

coordinate system and nonorthogonal formulation was discussed in [26]. The EFIE

expression in (3.4) is enforced in a weighted integral sense by

∫
Vm

~wm ·

[
~J(~r)

σ
+ jωA(~r) +∇φ(~r)

]
dV (~r) = 0 ∀ m (3.6)

where ~wm is a weight function described by

~wm(~r) = Πm(~r)

(
∂~r
∂am

4Jm

)
. (3.7)

The weight function is composed of Πm(~r), a pulse function that is 1 for ~r ∈ Vm and

0 otherwise; the directional vector, ∂~r
∂am

; and the Jacobian, given by

Jm =

∣∣∣∣ ∂~r∂am ·
(
∂~r

∂bm
× ∂~r

∂cm

)∣∣∣∣ . (3.8)

The current density is discretized by

~J(~r) =
∑
n

In ~wn(~r) . (3.9)

The basis function for the current discretization and the weight function in (3.6) are

the same, making this Galerkin approach.



57

Consider each term from (3.6) separately. The potential term becomes

∫
Vm

~wm(~r) · ∇φ(~r)dV (~r) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
∂~r
∂am

4Jm

)
· ∇φ(~r(a, b, c))Jmdadbdc

= 0.25

∫ 1

−1

∫ 1

−1

∫ 1

−1

∂~r

∂am
· ∇φ(~r(a, b, c))dadbdc .

(3.10)

The integrand can be expanded in terms of partial derivatives. The result is a chain

rule expression that simplifies,

∂~r

∂am
· ∇φ(~r(a, b, c)) =

∂φ

∂x

∂x

∂am
+
∂φ

∂y

∂y

∂am
+
∂φ

∂z

∂z

∂am
=

∂φ

∂am
. (3.11)

Then, the integral with respect to a can be evaluated as

0.25

∫ 1

−1

∫ 1

−1

∫ 1

−1

∂φ

∂am
dadbdc

=0.25

∫ 1

−1

∫ 1

−1

[φ(~r(1, b, c))− φ(~r(−1, b, c))]dbdc

=φ(a = 1)− φ(a = −1) .

(3.12)

The mean voltage is calculated over the end faces of the current cell. While this

is technically correct, the result to the end formulation would be an asymmetric

potential coefficients matrix. The target and source regions would not be equivalent

for all cases. For example, there is another current cell that extends orthogonally

from charge cell m. Since both cell directions must be considered equally in the

formulation, a volume average is taken. This decision leads to an offset gridding of

the current and charge cells.

The vector electric potential term leads to the partial inductance expression,∫
Vm

~wm ·
(
jω ~A(~r)

)
dV (~r) = jω

∫
Vm

~wm ·
∫
V

G(~r, ~r′)µ~J(~r′)dV (~r′)dV (~r)

=


jω

M∑
n=1

In
16

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
∂~r

∂a
· ∂~r
∂a′

)
×G(~r, ~r′)da′db′dc′dadbdc

 = jω

M∑
n=1

InLmn .

(3.13)
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Therefore, the partial inductance is

Lmn =
1

16

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
∂~r

∂a
· ∂
~r′

∂a′

)
×G(~r, ~r′)da′db′dc′dadbdc

(3.14)

Similarly, the leading current term leads to a resistance. The result is given by

∫
Vm

~wm ·
(

1

σ
~J(~r)

)
dV (~r) = Im

1

16σ

∫ 1

−1

∫ 1

−1

∫ 1

−1

∣∣∣ ∂~r∂am

∣∣∣2
Jm

dadbdc = ImRm . (3.15)

The partial potential coefficient derivation is shown in Section 3.2.2 to demonstrate

the idea of subgridding for partial parameter accuracy.

3.2. FAST ELEMENT EVALUATION TECHNIQUES

Both the orthogonal and nonorthogonal formulas for partial inductance and

potential coefficients produce dense matrices, requiring N(N + 1)/2 calculations per

matrix, assuming symmetry. Additionally, the diagonal elements of both matrices

require integration of singular integrands. This section shows the development of

integration formulas to decrease the calculation time while providing accurate answers

for even the diagonal elements.

3.2.1. Adaptive Quadrature Order Selection. The proximity of cells,

whether potential or current, influences the quadrature order required to accurately

calculate the partial parameters. Using a high-order numerical quadrature on param-

eter calculations may be sufficient, but it is not always necessary. Nearest neighbor

cells require significantly more quadrature points for accurate calculations than cells

separated by significant distance. An adaptive quadrature order selection is applied

to select the quadrature order. This procedure is similar to using a fast multipole

method (FMM) [1].

The cell interactions are divided into a fixed number of groups, with each group

using a predefined quadrature order. The group is found for each numerical inte-

gration based on the ratio of the mean length in the integration direction to the

center-to-center cell distance. This relation is illustrated in Figure 3.1. In general,

the quadrature orders for an element determined are the same for all three dimen-

sions of the element. But for a PCB, cell thickness is often much thinner than the
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Figure 3.1 Relative cell dimensions used for quadrature order selection

length and width. Thus, a low-order quadrature is sufficient for the integration of the

thickness of the PCB.

3.2.2. Subgridding Cells for Convergent, Iterative Calculation of Par-

tial Element Integrals. Subgridding schemes that do not add unknowns have

been considered before for PEEC [7]. In this paper subgridding is used iteratively to

ensure convergence of the partial coefficients being evaluated. It is common to use

Gaussian integration to evaluate integrals such as expressed in Section 3.1. Accurately

calculating the partial coefficient integrations may require a high order integration.

Iterations of increasingly higher order integrations may be used to converge to a

solution. Alternatively, iterative subgridding may be used to perform the same task.

Most of the integrands discussed so far have a 1/R dependence. For simplicity,

consider

f(x) =

∫ b

a

1

x
dx . (3.16)

It has been observed that Gaussian integration of (3.16) can be calculated accurately

with low order integrations provided that log10(b/a) ≤ 1. This rule is not strict.

Table 3.1 shows the error for different quadrature orders and values of log10(b/a).

The left column is meant to represent log10(Rmax/Rmin). This data can serve as a

criterion for selecting integration degrees.

The final expression for the potential coefficient illustrates the concept of the

subgridding scheme. The coefficients are found by discretizing the charge on a poten-

tial cell. The charge is limited to the surfaces of the conductors. Therefore, let the
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Table 3.1 The integral
∫ b
a

1/x dx calculated with different degree Gauss, Bond, and
Gauss-Patterson quadrature weights and roots

log10(b/a) Gauss Gauss Err Bond Err ∆ G-B Pat Base
Degree (%) (%) (%) 2 Err (%)

0.25 2 0.059 2.7 2.7 0.059
3 0.0012 2.1 2.1
4 0.000026 0.030 0.030
5 0.00000052 0.044 0.044 0.0000075
6 0.000000011 0.00043 0.00043

0.5 2 0.83 9.8 9.4 0.83
3 0.068 7.7 7.5
4 0.0054 0.39 0.40
5 0.00043 0.62 0.62 0.0013
6 0.000034 0.022 0.022

1 4 0.68 2.6 3.2
5 0.19 6.1 6.1 0.028
6 0.051 0.67 0.62
7 0.014 1.6 1.6
8 0.0038 0.12 0.13
9 0.0010 0.44 0.44

2 4 17.3 10.0 8.4
5 11.9 29.3 22.0 8.3
6 8.1 11.6 3.8
11 1.2 4.5 5.6 0.16
12 0.81 0.23 0.58
18 0.076 0.20 0.12

3 4 40.3 34.4 9.3
5 34.7 49.7 26.0 30.7
6 30.3 33.5 4.8
11 16.1 6.7 10.6 9.6
23 3.9 0.73 4.7 0.75
35 0.90 1.3 2.2

charge be discretized as

q(~r) =
P∑
j=1

Πj(~r)
Qj

Sj
(3.17)

where Sj is the total exterior surface area of the potential node, and P is the total

number of charges in the model. Take the weighted average of the potential over the

surface of potential cell i. Assume that the ith cell has Ni exterior sides, and the
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integration is broken up over the sides.

Φi =

∫
Si

1

Si
φ(~r)dS(~r) =

1

Si

Ni∑
m=1

∫
Sim

φ(~r)dS(~r)

=
P∑
j=1

Qj
1

SiSjε

Nij∑
m=1

Nji∑
n=1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

G(~r, ~r′)

[
∂~r′

∂a′
× ∂~r′

∂b′

]
da′db′ ×

[
∂~r

∂a
× ∂~r

∂b

]
dadb

(3.18)

Then, the partial potential coefficients are then given by

pij =
1

SiSjε

Nij∑
m=1

Nji∑
n=1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

G(~r, ~r′)

[
∂~r′

∂a′
× ∂~r′

∂b′

]
da′db′ ×

[
∂~r

∂a
× ∂~r

∂b

]
dadb

(3.19)

In the above expressionsNi → Nij andNj → Nji to indicate that the number of plates

used in the calculation may vary depending on the other cell in the calculation. In

this formulation the coefficient represents the whole potential cell rather than the

individual surface plates. Since there is already a sum over the individual plates,

the equation is essentially unchanged when the integration is further divided over

more plates to increase the integration accuracy. A convergent calculation of the

partial coefficients is achieved by iteratively subdividing the original regions along

their longest dimension and recalculating the coefficient.

3.2.3. Fast Evaluation of the Partial Potentials. An analytical solution

for the surface integral can be employed to decrease calculation time for the evaluation

of the coefficients of potential [18]. In [20] a general solution to∫
S

dξdη

|~r − ~r ′|

was developed for quadrilaterals in the xy plane with vertices (ξn, ηn), given in clock-

wise order, as shown in Figure 3.2. The solution is given as

Ψ =

∫
S

dξdη

|~r − ~r ′|
=

4∑
n=1


[
(x− ξn)

δηn
sn

− (y − ηn)
δξn
sn

]
× log

(
Rn +Rn+1 + sn
Rn +Rn+1 − sn

)
− zΦ , (3.20)
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Figure 3.2 Definition of the quadrilateral panel

and

Φ =
4∑

n=1

{
tan−1

[
δηn[(x− ξn)

2 + z2]− δξn(x− ξn)(y − ηn)

Rnzδξn

]
−
∫

tan

[
δηn[(x− ξn+1)

2 + z2]− δξn(x− ξn+1)(y − ηn+1)

Rn+1zδξn

]}
,

(3.21)

where δξn = ξn+1 − ξn, δηn = ηn+1 − ηn, Rn =
√

(x− ξn)2 + (y − ηn)2 + z2, and

sn =
√

(δξn)2 + (δηn)2.

The singularity in the integrand of the self potential coefficient occurs when

the observeration point, ~r, and the source point, ~r ′, are equal. Using (3.20) and

(3.21), the integration domain is changed from the quadrilateral to the boundary of

the quadrilateral, and the abscissae for Gaussian integration are all in the interior of

the integration domain. Therefore, the problem of the singularity is avoided by using

the above formula for one of the surface integrations and a Gaussian quadrature for

the other surface integration.

In general, the quadrilateral will require rotating and shifting to position it in

the xy plane. This can be accomplished using an Euler rotation of the form

RQ = RQ(φ, θ, ψ) =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1


1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 ,

(3.22)

illustrated in Figure 3.3.
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Figure 3.3 The Euler angle rotations to rotate the quadrilateral parallel to the xy
plane

The potential coefficients are found starting from

Pij =

∫
Si

si(~r)

∫
Sj

G(~r, ~r ′)sj(~r
′)

εo
dS(~r ′)dS(~r) , (3.23)

a more general form than used in Section 3.2.2. Let si use the basis function

si(~r) = Πi(~r)
1∣∣∣ ∂~r∂ai
× ∂~r

∂bi

∣∣∣ , (3.24)

let sj using the basis used for (3.17), and substitute (3.1) for the Green’s function.

Then, the fast integration form of the potential coefficients is given by

Pij =
1

4πεoAj

∫ 1

0

∫ 1

0

[∫
Sj

1

|~r − ~r ′|
dS(~r ′)

]
daidbi . (3.25)

3.2.4. Fast Evaluation for the Partial Inductances. Referring to (3.14)

for zero-thickness conductors, the volume integral becomes a surface integral which

is nearly identical to the form of the previous calculation. Thus, the same approach

used on the potential coefficients can be adapted to use on the inductance calculation.

As with the potential cofficient calculation, the goal in this section is to derive an

integration formula to decrease the number of numerical integrations and also handle

the singularity in the self inductance with a lower order quadrature. The derivation

that follows here is nearly identical with that shown in [11], which used an approach

similar to that in [2].
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Start again with a general form of the partial inductance expression,

Lmn =

∫
Vm

~wm(~r) ·
∫
Vn

G(~r, ~r ′)µo ~wm(~r ′) dV (~r ′)dV (~r) . (3.26)

For ~wn, use the basis function

~wn(~r) = Πn(~r)
ân
An

, (3.27)

where Πn(~r) is a pulse function supported over cell n, ân is the unit vector in the

direction of the current, and An is the cross sectional area of the cell. Being constant

over the cell, these quantities can be pulled out of the inner volume integral. Then,

use (3.7) for ~wm. Approximate ân and An by their mean values. Once constant, they

can both be pulled from the integrals. Denote the means as ân and An. Then, (3.26)

can manipulated such that we can apply Gauss’s theorem,

Lmn =
µoân
4πAn

·
∫ 1

0

∫ 1

0

∫ 1

0

∂r

∂am

[∫
Vn

1

|~r − ~r ′|
dV (~r ′)

]
damdbmdcm . (3.28)

Utilize the expression ∇ · r̂/2 = 1/r, and apply Gauss’s theorem such that

Lmn =
µoân
4πAn

·
∫ 1

0

∫ 1

0

∫ 1

0

∂r

∂am

[
1

2

∫
Vn

∇ · (~r ′ − ~r)
|~r ′ − ~r|

dV (~r)

]
damdbmdcm

=
µoân
4πAn

·
∫ 1

0

∫ 1

0

∫ 1

0

∂r

∂am

6∑
k=1

[
1

2

∫
Snk

n̂k ·
(~r ′ − ~r)
|~r ′ − ~r|

dV (~r)

]
damdbmdcm ,

(3.29)

where the Snk are the quadrilateral sides of Vn with n̂k as the outward normals. Note

that since Snk is planar,

ζk = n̂k · (~r ′ − ~r) (3.30)

is constant for the source integral. Then,

Lmn =
µoân
8πAn

·
∫ 1

0

∫ 1

0

∫ 1

0

∂r

∂am

6∑
k=1

[
ζk

∫
Snk

1

|~r − ~r ′|
dV (~r)

]
damdbmdcm , (3.31)

and (3.20) can be used to solve the source integral analytically. The formula in

(3.31) is valid for self and mutual partial inductances, but is essential for self partial

inductances, as it efficiently deals with the singularity in the integrand.
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3.3. MATRIX FORMULATION

The original PEEC formulation takes the partial parameters described in the last

section and create a SPICE netlist to calculate frequency and time domain results.

This section describes a matrix formulation alternative to the netlist. The three

matrix equations that make up the matrix solution are

(R + jωL+
1

jω
Ce

−1)IL + ΓΦ = 0 (3.32a)

PQ = Φ (3.32b)

−ΓT IL + jωQ = IT . (3.32c)

The matrix descriptions are given in Table 3.2. The charges are removed from the

solution by inverting P and substituting for Q in the continuity equation yielding

the block matrix equation. Let Z = R + jωL+ 1
jω
Ce

−1. Then, the combined matrix

equation is [
Z Γ

−ΓT jωP−1

][
IL

ΦC

]
=

[
0

IT

]
. (3.33)

This equation can be further condensed by solving the first row for IL and substituting

it in the second row equation to get

[
ΓTZ−1Γ + jωP−1

]
Φ = IT , (3.34)

and the impedance matrix for the structure is

Zp =
[
ΓTZ−1Γ + jωP−1

]−1
. (3.35)

Note that Zp is not equivalent to the Z in (3.33).

3.3.1. Controlled Impedance Ports. The solution for the admittance

matrix of the system was given in the last section as

Y V = IT (3.36)

where Y is the admittance matrix from the PEEC discretization, V is a vector of the

node voltages, and IT is a vector of impressed currents on the nodes. The impedance

and admittance matrices are well suited for analyzing some models. However, the

S-parameter matrix is more commonly used in RF applications. The S-parameter

matrix can be found from the impedance and admittance equations in most cases.
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Table 3.2 Description of matrix terms for the PEEC formulation
Matrix Description
R Resistances
L Partial Inductances
Ce Excess Capacitances
P Partial Potential Coefficients
Γ Connectivity Matrix
IL Inductor Currents
Q Charges
Φ Potentials
IT External Terminal Currents

However, for nearly open or shorted devices, the calculations may prove inaccurate.

This issue is avoided if the S-parameters are calculated directly, which is the topic of

this section.

After adding some constraints into the formulation, the S-parameters can be

solved directly. The additional equation on the nodes connecting the port is

Vp − Vn + Zoλ = Vs (3.37)

where Vp and Vn are the positive and negative voltage nodes respectively, λ is the

port current directed into the positive node, and Vs is the driving voltage source.

Each port adds one equation to the system of equations. In addition, the equa-

tions involving Y must be adjusted to consider the additional current. Define the row

vectors ek for each port k such that

{ek}i =


1 i is the positive node

−1 i is the negative node

0 otherwise

(3.38)

with

A =


e1

e2
...

 (3.39)
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Then, the new matix equation is[
Y AT

A ZoIQ×Q

][
Φ

λ

]
=

[
IT

Vs

]
(3.40)

where Q is the number of ports and I is the identity matrix. Rather than solving the

matrix for each port excitation individually, the new matrix is inverted. The form of

this matrix can be divided into block matrices, only one of which is needed for the

final solution. [
Φ

λ

]
=

[
· · · · · ·
· · · YT

][
IT

Vs

]
(3.41)

The KVL at port m is

Vm = V +
m + V −

m = −Zoλm + Vsm (3.42)

where λ = YTVs and V +
m and V −

m are, respectively, the forward and backward traveling

voltages seen at port m. Assume that the nth port is excited. The forward voltage

wave from port n is given as V +
n = Vns/2, and

λm = YTmnVsn = 2YTmnV
+
n . (3.43)

Then, (3.42) becomes

V −
m = −2Zo(YTmn)V

+
n + V +

m (3.44)

However, V +
m = 0 unless m = n. Therefore, V +

m = δmnV
+
n , and the S-parameters can

be calculated as

Smn =
V −
m

V +
n

= δmn − 2ZoYTmn . (3.45)

3.3.2. Multinode Controlled Impedance Ports. Using only a single node

for each terminal of the model ports is the simplest way to set up a port excitation,

however, it invites inaccuracies associated with current spreading from the single

node. This section describes the connectivity matrices and matrix algebra required

to introduce multinode terminals.

The original port connectivity matrix was called A. This derivation relies on

three connectivity matrixes, two of which are derived from the first, called B. The

number of rows in B is twice the number of ports, and the number of columns in B
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is the same as the number of charge cells. The matrix is defined as

Bmn =

1 , cell n is in port terminal m

0 , otherwise
(3.46)

From this matrix C andD are derived. The additional variables Λ (the port currents),

VT (the port terminal voltages), and λ (the nodal port currents) are used in the

auxiliary port equations.

C maps the elements of VT onto potential nodes that are connected to terminals

and provides a mapping for the equation that keeps potentials connected to a specific

terminal the same.

CVT −DΦ = 0 (3.47)

D maps the PEEC nodes onto the port terminals. It is used additionally to map the

terminal nodal currents λ on the PEEC nodes, as in

Y Φ−DTλ = 0 (3.48)

and

BDTλ− ĨΛ = 0 . (3.49)

Λ̃ is defined as

Λ̃ =

[
I

−I

]
, (3.50)

where I is an identity matrix the same size as the number or ports.

The last expression introduced enforces the lumped condition between the ter-

minal voltages, the port currents, and the port source voltages. The entries in VT are

ordered such that all of the positive terminal voltages are listed first, and the negative

terminal voltages are listed last, and the boundary condition at the port is expressed

as

ZpΛ + ĨTVT = Vs . (3.51)

The Zp is the port impedance matrix. In the most general case, port coupling terms

beyond the scope of the PEEC goemetry could be included in this matrix. These

port conditions could include coupling between the ports, port extensions through

transmission lines, or even connections to other PEEC models.
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The solution to these equations for the S parameters is not trivial.

DΦ = (DY −1DT )λ (3.52)

CVT = (DY −1DT )λ (3.53)

λ = (DY −1DT )
−1
CVT (3.54)

BDTλ− ĨZp
−1
(
Vs − ĨTVT

)
= 0 (3.55)

BDT (DY −1DT )
−1
CVT − ĨZp

−1
(
Vs − ĨTVT

)
= 0 (3.56)

BDT (DY −1DT )
−1
CVT + ĨZp

−1ĨTVT = ĨZp
−1Vs (3.57)

VT =
[
ĨZp

−1ĨT +BDT (DY −1DT )
−1
C
]−1

ĨZp
−1Vs (3.58)

The terminal voltages are then related to the wave voltages by

V + + V − = ĨTVT , (3.59)

and

Vs = 2V + . (3.60)

Then,

V + + V − =

{
ĨT
[
ĨZp

−1ĨT +BDT (DY −1DT )
−1
C
]−1

ĨZp
−1

}
2V + , (3.61)

and

V − =

{
2

{
ĨT
[
ĨZp

−1ĨT +BDT (DY −1DT )
−1
C
]−1

ĨZp
−1

}
− I

}
V + . (3.62)

The expression for the S-parameters above is useful in that it is a direct expression,

using the PEEC parameters. No further post processing is required. However, the

number of inversions in the formula make it less efficient than solving the block matrix

formulation by Gaussian elimination.

The construction of C and D follows from B. The following is an example of

how to construct C given a B matrix of the form

B =

[
Positve Terminals

Negative Terminals

]
=


1 0 0 0 1 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0

 . (3.63)
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Then, C can be derived with the Matlab algorithm shown in Figure 3.4, resulting in

a matrix of the form

C =



1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1


. (3.64)

% Construct the C matrix from B

C = zeros(sum(sum(B)), size(B,1));

nodecounts = sum(B’);

ind1 = 1;

for m = 1:size(B,1)

ind2 = ind1 + nodecounts(m) - 1;

C((ind1:ind2), m) = 1;

ind1 = ind2 + 1;

end

Figure 3.4 Algorithm for the construction of the C connectivity matrix

The construction of D can be handled with matrix operations in Matlab using

the algorithm shown in Figure 3.5. Some experimentation revealed that CT = BDT ,

a term in (3.49). This is the only use of B in the formulation. Thus, the formulation

can be reduced to using C and D for connectivity alone.

3.4. IMPRESSED FIELDS

In general, the field equation that the PEEC method stems from includes im-

pressed electric fields. These were previously ignored, but are considered in this
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Construct the D matrix from B

D = zeros(size(C,1), N); % Maps nodes onto port node connections.

[ind1, ind2] = find(B==1);

ind1 = [1:length(ind2)]’; % put each entry on a separate row.

indconverted = ind1 + (ind2-1)*size(D,1);

D(indconverted) = 1;

Figure 3.5 Algorithm for the construction of the D connectivity matrix

section. The PEEC problem is first posed as

~E(~r) = ~Ei − jω ~A(~r)−∇Φ(~r) , (3.65)

where the potential field quantities compose the scattered field. Enforce (3.65) in a

weighted integral sense as in Section 3.1. The result of integrating the impressed field

over a current cell, α, is given by

V i
α =

∫
Vα

~wα(~r) · ~Ei(~r)dV (~r) . (3.66)

The form of the impressed electric field is left general. The matrix equations previ-

ously discussed become

ZIL + ΓiΦi + ΓΦe = V i (3.67a)

Φe = PQ (3.67b)

− ΓTe IL + jωQ = IT e (3.67c)

− ΓTi IL = IT i . (3.67d)

The connectivity matrix Γ has been split into internal (i) and external (e) parts. The

internal potential nodes do not have any charged surfaces. Therefore, they do not

require an entry in the potential coefficient matrix. Solve the equations simultaneously

to get an admittance matrix with an impressed electric field source.[(
ΓTZ−1Γ

)
+

[
jωP−1 0

0 0

]]
Φ = IT + ΓTZ−1V i (3.68)
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4. ANALYSIS OF DISTRIBUTED COUPLING ALONG
NONPARALLEL TRACES USING PEEC WITH A DYNAMIC

GREEN’S FUNCTION AND PHASE TERM EXPANSIONS

Electrically large problems require full-wave calculations that can be handled

using PEEC using either static phase approximations, phase term expansions, or the

dynamic Green’s function directly. When distributed coupling is significant between

traces, parallel or nonparallel, a quasi-static approximation will return incorrect re-

sults in the coupling terms. Nonparallel coupled lines pose a problem that is not

easily solved by transmission lines, but may in some cases be analyzed by lumped

element models or quasi-static models when near-end coupling dominates.

Unintentional coupling must be considered when designing printed circuit boards.

If the coupling is primarily from parallel trace sections, then the design can be ana-

lyzed with transmission line theory. However, where the dominant coupling sections

are not parallel, a more complex calculation is required. The problem can be further

divided into geometries where the near side coupling is dominant and the more general

case where significant coupling is present at separations on the order of a wavelength.

The near-side dominant case was discussed in [17]. In that paper a quasi-static Green’s

function extension of the the partial element equivalent circuit (PEEC) method was

used to achieve good results. A similar problem was addressed with a circuit based

approach in [10]. Other full-wave methods, like the finite-difference time-domain, may

also be applied to such a problem [31]. It is important to note that with coupled lines

that are neither parallel nor perpendicular, rectangular gridding methods will have

to deal with staircasing issues in the coupling as well as with the electrical length of

at least one of the lines. For that reason the nonorthogonal formulation is applied in

this paper for the analysis [26].

For the more general case, however, coupling may occur over distances where

there is a significant phase difference. In that case a dynamic Green’s function for-

mulation is required that is valid over the whole frequency range of concern. Such

calculations were done in [4], however, this process is not efficient for practical prob-

lems, because of the need to recalculate the partial parameters. For that reason, a

compromise was derived that produces accurate results across a band of frequencies

without the need to recalculate the partial parameters.
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4.1. EXTRACTION OF THE SINGULARITY IN THE DYNAMIC
GREEN’S FUNCTION

If the partial coefficient integrations include singularities, high order numerical

integrations will be required to achieve the desired accuracy. This problem is avoidable

if the singularity can be extracted from the integrand and integrated separately by an

analytic expression. The integrations of the self coefficients in the PEEC formulation

include such singularities. Formulas to calculate the integrals for the self terms are

available for the quasi-static Green’s function formulation. These same formulas can

be used for a dynamic Green’s function formulation with by separating the quasi-

static portion of the function from the rest.

The quasi-static form of the Green’s function is extracted from the dynamic

form to get

G(~r, ~r′) =
e−jk|~r−~r

′|

4π|~r − ~r′|

=
1

4π|~r − ~r′|
+
e−jk|~r−~r

′| − 1

4π|~r − ~r′|
= Gs(~r, ~r

′) +Gp(~r, ~r
′) .

(4.1)

The first term contains the singularity while the second is numerically integrable for

all ~r and ~r′, including when R = |~r − ~r′| → 0. That limit is given by

lim
R→0

Gp(R) = lim
R→0

e−jkR − 1

4πR

= lim
R→0

−jke−jkR

4π
=
−jk
4π

.

(4.2)

When the two components of (4.1) are included separately in the PEEC parameter

calculations, the quasi-static component need only be calculated once for the whole

frequency band, while the numerically integrable phase term must be recalculated

at every frequency point. This method is used in the following section to accurately

calculate the coupling between nonparallel lines in the next section. The results are

compared with the quasi-static results using the same meshing. The recalculations

associated with the dynamic Green’s function add a significant and often prohibitive

amount of time to the overall calculation. For that reason a more efficient approach

is suggested and developed in Section 4.3.
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4.2. NONPARALLEL COUPLED TRANSMISSION LINE
CALCULATION WITH A DYNAMIC GREEN’S FUNCTION

Nonparallel calculations can be done using quasi-static calculations so long as

the near side coupling dominates. When a significant portion of the coupling occurs

outside this region, a dynamic Green’s function may provide more accuracy. The

geometry shown in Figure 4.1 was designed to allow for coupling on the near side but

still have significant coupling at the far end of the traces. The separation at the far

end is roughly λ/3 at 3 GHz, allowing for a significant phase difference between the

two far ends.

Figure 4.1 A nonparallel microstrip geometry with a far end separation of approxi-
mately λ/3 at 3 GHz

The geometry was simulated on two different PEEC solvers: one using a quasi-

static Green’s function and the other using a dynamic Green’s function. For validation

the geometry was also simulated in Ansoft Designer and Agilent ADS. The S11 results

from the simulations are shown in Figures 4.2 and 4.3. There are no major discrep-

ancies between the simulations in these plots. The return loss is dominated by the

conducted currents on each trace, which propagate from current cell to current cell

with a fairly small phase difference. Therefore, the quasi-static formulation and the

dynamic formulation function equally well.

The near side coupling, S31, is plotted in Figures 4.4 and 4.5. In these plots the

quasi-static results exhibit spikes at a few frequency points in both the magnitude and

phase plots. Any signal at port 3 must be coupled to it from the other trace, which
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at the far end is λ/3 away at 3 GHz. The quasi-static Green’s function contributes

the correct magnitude for coupling across these distances. However, the resulting

phase difference between the source point and the target point is zero since there is

no phase component in the quasi-static Green’s function. When the coupling distance

is λ/2, the coupled signal is π radians out of phase from what it should be. Thus,

where certain coupled signals should have canceled one another, they may instead

add constructively.

There is 100 MHz between the frequency points in the previous PEEC simula-

tions. The S-parameters were recalculated with a smaller frequency step about 2.5

GHz, since the most significant spike in S31 phase occured there. Figure 4.6 shows

the phase results from 2.38 GHz to 2.62 GHz with 15 MHz between points. While the

phase at 2.395 GHz is close to the other simulations, the phase at 2.38 GHz is even

farther from other simulations than the error at 2.5 GHz. The dynamic Green’s func-

tion results do not exhibit any of these spikes, and follow the other two simulations

closely.

Figure 4.2 |S11| results for four simulation methods
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Figure 4.3 The phase of S11 results for the four simulations

Figure 4.4 |S31| showing the magnitude of the coupling between the two ports on the
near side of the coupled transmission lines
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Figure 4.5 The S31 phase with similar quasi-static discrepancies as |S31|

Figure 4.6 The |S31| phase for a narrow-band region about 2.5 GHz
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4.3. WIDE-BAND PEEC SOLUTIONS USING TAYLOR
EXPANSIONS OF THE GREEN’S FUNCTION

The PEEC method takes a Maxwell equation solution and translates the ma-

trix quantities into circuit parameters. Take the partial inductance term, for example.

Within the PEEC formulation there exist a matrix term with a jω multiplier. Con-

sider this voltage drop over a single current cell, which can be expressed as

VLm =
∑
n

jωLmnIn , (4.3)

where In is the current through the nth current cell. Lmn are partial inductance terms

which in circuit terms are expressed as either self or mutual inductances. However,

(4.3) can be modified so that the mutual terms become dependent sources. That

expression is given as

VLm = jωLmmIm +
∑
n6=m

Lmn
Lnn

V ′
Ln , (4.4)

where V ′
Ln = jωLnnIn, which is not the total drop over the current cell, but rather

just the drop associated with the self inductance term.

The partial inductance Lmn is calculated by an expression of the form

Lmn = µ0

∫
Vm

∫
Vn

~wm(~r) · ~wn(~r ′)G(~r, ~r ′)dV (~r ′)dV (~r) . (4.5)

The permeability is assumed to be constant or it would also be within the integrals.

G(~r, ~r ′) is a Green’s function. Commonly, the quasi-static Green’s function approxi-

mation for free-space is used. This approximation is convenient because it yields real

results for Lmn. To be fully accurate in the time domain, a delay must be included to

account for the speed of light in the medium [8]. This delay is also commonly used in

PEEC solvers, but the stability of such solvers using this method is often question-

able. Reasons for the instability have been proposed, which suggest that step changes

at the arrival of a delayed reaction imply infinite bandwidth [13]. Filtering schemes

have been suggested to limit the bandwidth required maintain stability.

This problem can be addressed from a different angle starting with the dynamic

Green’s function,

G(~r, ~r ′) =
e−jkR

4πR
, R = |~r − ~r ′| . (4.6)
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The dynamic Green’s function is the most accurate form to use in the problem solu-

tion. However, using this form, requires that the partial parameters be recalculated

at each frequency step. For any practical problem, this extra step is too time con-

suming to make the accuracy worthwhile. Full-wave PEEC solutions use time delays

to retain the phase accuracy. These delays may be approximated by center-to-center

cell distances. Or, another method used calculates the partial parameter at a partic-

ular frequency with the dynamic Green’s function. This complex partial parameter

provides a weighted-integral estimate of the phase and thus, the delay.

First, take a Taylor expansion of the exponential term about jω0

e−jkR = ejω(−R/c0)

= e−jω0R/c0

[
1 + (jω − jω0)

(
−R
c0

)
+

(jω − jω0)
2

2

(
−R
c0

)2

+ · · ·

]

= e−jω0R/c0

∞∑
n=0

(jω − jω0)
n

n!

(
−R
c0

)n
.

(4.7)

Then, combine (4.7) with (4.6) to get

G(~r, ~r ′) =
e−jω0R/c0

4πR

∞∑
n=0

(jω − jω0)
n

n!

(
−R
c0

)n
=

∞∑
n=0

gn(~r, ~r
′) .

(4.8)

Note that g0(~r, ~r
′) is simply the quasi-static Green’s function with a exponential

phase term fixed in frequency.

When the expansion is introduced into (4.5), the single partial element matrix

can be considered as multiple matrices with jω multipliers.

Lmn =
∞∑
k=0

µ0

∫
Vm

∫
Vn

~wm(~r) · ~wn(~r ′)gk(~r, ~r ′)dV (~r ′)dV (~r)

=
∞∑
k=0

(jω − jω0)
kµ0

k!

∫
Vm

∫
Vn

~wm(~r) · ~wn(~r ′)

× e−jω0R/c0

4πR

(
−R
c0

)k
dV (~r ′)dV (~r)

=
∞∑
k=0

(jω − jω0)
kLkmn

(4.9)
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Lkmn is kth expansion term of the partial inductances. The same process is used to

find the expansion terms for the partial potentials.

When integrating the expansion terms, the only singularity is in the integrand

of the 0th order term, which is given by

g0(~r, ~r
′) =

e−jω0R/c0

4πR
. (4.10)

The term in (4.10) is identical to the dynamic Green’s function calculated at f0.

Therefore, the integrations previously developed for Sections 4.1 and 4.2 can be reused

again for this integration. The higher-order terms of the expansion do not have any

finite singularities. So, these terms can be integrated numerically.

In practice, the term matrices are calculated once and stored. Then, at each

frequency point the term matrices are recombined using (4.5). The process of multi-

plying the term matrices by the next frequency and summing takes a small fraction

of the time required for the solution of the system of equations, making it a much

preferable choice to the parameter recalculations required for the dynamic Green’s

function.

As an example, the model described in Section 4.2 was recalculated using the

wide-band PEEC solution for several terms in Figure 4.7. As the number of terms in

the calculation is increased the results converge.

Figure 4.7 |S31| for the nonparallel lines with expansions from 1 to 7 terms
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4.4. WIDE-BAND PEEC SIMULATIONS ON COUPLED TRACES

In this section a similar model to that of Figure 4.1 is considered. This general

layout of this model is shown in Figure 4.8. The parameter calculations described

in Section 4.3 have many factors determining the accuracy of the solution. Some

factors, like the number of terms used and the choice of center frequency, are inherent

in the expansion. An additional factor is introduced limiting the support of the

approximation to avoid using inaccurate parameter calculations. In addition, three

positions for Line 1 in Figure 4.8 are considered, and results for each are discussed

where they provide insight to the workings of the wide-band PEEC solution. The

grids for these calculations are shown in Figure 4.9.

Figure 4.8 Two coupled traces with Line 1 rotated relative to Line 2

4.4.1. Number of Expansion Terms. In general Taylor expansions

converge as more terms are added. The speed of this convergence depends on the

function in question. Progressively adding terms seems like it should only be able to

add accuracy. However, there are exceptions. Using n = 1 provides an approximation

exact at the center frequency and approximate over a small band. The n = 1 approx-

imation is also bounded. Conversely, n = 2, 3 provide more accurate approximations

at nearby frequencies but are unbounded. For increasing f − f0, n = 1 will actually

retain more accuracy, or rather less inaccuracy, than an approximation with a few

more terms.
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The S-parameters were calculated for the grids shown in Figure 4.9 using a center

frequency of 3 GHz. The return loss, S11, and the through loss, S31, are not affected

by the trace orientation or the number of terms used. Figure 4.10 shows |S11| for the

parallel traces. All of the PEEC traces overlap with the dynamic Green’s function

result. More terms are required for the 30◦- and 45◦-trace pairs than the parallel

traces. The coupling terms for the parallel traces are shown in Figure 4.11 through

Figure 4.13. With the exception of the n = 1 solution, there is is little distinguishing

the other expansion solutions from the dynamic Green’s function solution.

(a) Parallel Traces (φ = 0◦)

(b) Nonparallel Traces (φ = 30◦) (c) Nonparallel Traces (φ = 45◦)

Figure 4.9 Coupled trace grids for PEEC
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Figure 4.10 |S11| for parallel traces using the quasi-static, dynamic, and expansion
Green’s function solutions

Figure 4.11 |S21| for parallel traces using expansion solutions and a dynamic Green’s
function solution
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Figure 4.12 |S41| for parallel traces using expansion solutions and a dynamic Green’s
function solution

Figure 4.13 |S43| for parallel traces using expansion solutions and a dynamic Green’s
function solution

The coupling parameters for the 30◦-trace pair are shown in Figure 4.14 through

Figure 4.16. The near-side coupling, S21 calculation is fairly accurate with all of the

expansion calculations. However, it requires seven or more terms for the traces to

start to converge near the edges of the calculation band. The far-side coupling, S43,

is even slower to converge. Solutions with up thirteen terms are shown to see the

convergence.
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Figure 4.14 |S21| for nonparallel traces with a 30◦ separation using expansion solutions
and a dynamic Green’s function solution

Figure 4.15 |S41| for nonparallel traces with a 30◦ separation using expansion solutions
and a dynamic Green’s function solution

Figure 4.16 |S43| for nonparallel traces with a 30◦ separation using expansion solutions
and a dynamic Green’s function solution
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The coupling parameters for the 45◦-trace pair are shown in Figure 4.17 through

Figure 4.19. The results here are similar to the results for the 30◦-trace pair, but more

terms are again required to converge for the entire frequency band. Only with eleven

and thirteen terms do the traces get close to converging across the full frequency

band. Actually, the traces for the expansion calculations significantly diverge below

2 GHz and above 4 GHz. The expansion calculations are well-grouped in 2-GHz span

about the center frequency. Clearly, the greater separation of the far ends for the

45◦-trace pair requires the phase component of the Green’s function to be accurate to

calculate the correct coupling terms. The near-end couplings require fewer terms to

get very close the dynamic Green’s function calculation than the far-end couplings.

Overall, the one-term approximation provides better solutions than the three-

term approximations. This may be owed to the unbounded nature of the three-

term approximation. As more terms are added, the approximation converges to the

dynamic solution. However, even considering the far-end coupling in Figure 4.19, the

one-term approximation is not bad over a span of 1 GHz.

Figure 4.17 |S21| for nonparallel traces with a 45◦ separation using expansion solutions
and a dynamic Green’s function solution

4.4.2. Center Frequency Effect on Result Accuracy. The 30◦-

separated pair of traces is used in this section to investigate the effect of the center

frequency, f0, on accuracy at other frequencies. The placement of the center frequency

determines the most accurate frequency region in the calculation. Ultimately, error

estimates like the one presented in the next section can be used to predict when the
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Figure 4.18 |S41| for nonparallel traces with a 45◦ separation using expansion solutions
and a dynamic Green’s function solution

Figure 4.19 |S43| for nonparallel traces with a 45◦ separation using expansion solutions
and a dynamic Green’s function solution

Green’s function approximation has reached the limit of its accuracy with respect

to frequency. Once the limit has been reached, a new center frequency can be set,

and new partial parameters calculated. Depending on the number of terms used in

the approximation, a single parameter calculation may be all that is needed for a

wide-band calculation, spanning many gigahertz.

The nonparallel trace geometry was simulated with three different center fre-

quencies, using a 7-term approximation. As should be expected, the results are most

accurate for the simulation using f0 = 2.5 GHz, which is in the middle of the band.
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The S-parameters calculated are shown in Figure 4.20 through Figure 4.23. The

return loss results are nearly unchanged by the choice of f0. However, the far-end

coupling calculations are very different. For f0 = 0.1 GHz, the results are only accu-

rate up to 1 GHz. For f0 = 2.5 GHz the approximation matches the dynamic solution

within a dB up to 4 GHz. From 3 GHz and to 5 GHz, the approximation centered at

4.9 GHz is accurate with respect to the dynamic solution.

Figure 4.20 |S11| calculated for three center frequencies

Figure 4.21 |S21| calculated for three center frequencies



89

Figure 4.22 |S41| calculated for three center frequencies

Figure 4.23 |S43| calculated for three center frequencies

4.4.3. Green’s Function Error Approximation and Range Limiting.

As the difference in f and f0 increases, so does the difference in the dynamic Green’s

function and the Taylor expansion of Green’s function used in the previous sections.

An error estimate for the complex exponential part of the Green’s function is devel-

oped based on Taylor’s formula. This estimate is used to determine frequencies and

distances where the expansion exceeds an arbitrary error limit.
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For a N -time continuously differentiable real-valued function of a real variable,

f(x), Taylor’s formula gives the following equality:

f(x) =
N−1∑
n=0

f (n)(x0)

n!
(x− x0)

n +
f (N)(a)

N !
(x− x0)

N , (4.11)

for some a between x0 and x. The function that has been expanded in this report is

a complex exponential, which can be decomposed into its real and imaginary parts

and treated separately by Taylor’s formula and recombined. The result is

ejx =
N−1∑
n=0

ejx0

n!
(x− x0)

n + (−j)N cos(a1) + j sin(a2)

N !
(x− x0)

N , (4.12)

for a1 and a2 between x0 and x. Then, the error is given as

εN =

∣∣∣∣(−j)N cos(a1) + j sin(a2)

N !
(x− x0)

N

∣∣∣∣
=
| cos(a1) + j sin(a2)|

N !
|x− x0|N .

(4.13)

Let a = a1+a2

2
and δa = a1−a2

2
. Then, the cosine and sine portion of (4.13) becomes

| cos(a1) + j sin(a2)| =
∣∣eja cos δa+−je−ja sin δa

∣∣
=
√

1− sin(2a) sin(2δa) ,
(4.14)

which is always greater than 0 and less than 2. Assuming that δa ≈ 0, then (4.14)

becomes 1. This error estimate will be used as a guide in the calculations. Using the

assumption, the error estimate from (4.13) becomes

εN =
|x− x0|N

N !
. (4.15)

Replace x and x0 with jkR and jk0R, respectively. Then, two useful forms of the

error can be formed. The first is a frequency limit given by

|flim − f0| =
(εNN !)1/N

2πR/c0
. (4.16)

The frequency limit is meant to be used to determine at what frequencies the partial

parameters should be recalculated. Several parameter calculations may be required
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for very large frequency ranges. The second expression is a limit on R given by

Rlim =
( c0

2π

) (εNN !)1/N

|f − f0|
(4.17)

The phase error estimate is tested against the actual error calculated for different

values of N in Figure 4.24 through Figure 4.26. The error estimate is given in red,

and the black and gray regions mark values of R and f for which the error is below

the set limit. While the red curve is an error estimate, the acceptable error region (in

black and grey) is calculated by a direct comparison of the dynamic Green’s function

and the value of the estimate. So, the error estimate is accurate and acceptable for the

use of determining valid cell interactions on a phase error basis. It is worth noting that

the error for a 1-term approximation or a quasi-static approximation never exceeds

2, however, approximations with more than 1 term are unbounded, and require the

error bound to avoid excessive error.

For the simulations described in this report, a limit for R is calculated given the

highest frequency of interest and the number of terms used in the Green’s function

approximation. This is a static approximation with respect to frequency after the

initial calculation. When the partial parameters are calculated, the center-to-center

distance of the cells is calculated, and if this distance exceeds the limit on R, the

partial parameter is set to zero. Alternatively, the limit can be enforced at each

calculation of the Green’s function approximation. This application of the limit was

used for results in Figure 4.7. This method tends to produce more accurate results

when larger cells are used. However, it is troublesome when applied with iterative

integrations.

Figure 4.27 shows a diagram of how the static limit on R works with the error

estimate. Provided f0 is not set in the middle of the calculation band, the error limit

is exceeded at some lower frequencies. Additionally, in the middle of the band, the

limit is much lower than necessary. When f → f0, the approximation becomes exact

and valid for all R. These problems can be avoided by initially calculating all of the

partial parameter interactions for each term. Then, when the partial inductance or

partial potentials matrix is being assembled for each frequency step, interactions that

fall outside the error limit for that frequency can be set to zero. This method requires

a separate matrix storing the cell distances.
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Figure 4.24 The region of accuracy for the Green’s function approximation for n = 1
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Figure 4.25 The region of accuracy for the Green’s function approximation for n = 3
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Figure 4.26 The region of accuracy for the Green’s function approximation for n = 9
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Figure 4.27 Limits set on R given the center frequency and error tolerance

Table 4.1 shows the maximum distance for cell interactions allowed for the three

error levels. Figure 4.28 through Figure 4.31 show the S-parameters calculated using

a 3-term approximation with a center frequency at 3 GHz. The error is allowed to be

0.1, 1., or 1050. A limit of 1050 effectively allows all cell interactions in this model.

Table 4.1 R limits based on a 7-term Green’s function approximation with the upper
frequency set at 5 GHz and the center frequency at 3 GHz

ε7 Rlim (cm)
0.1 5.81
1.0 8.07
1050 1.1× 108
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When compared with HFSS and each other, the near-end coupling, S21, shown

in Figure 4.29 is not severely effected by these error settings. Since Rlim is significantly

greater than the near-end trace separation for this model, the dominant interactions

are captured in all three simulations. The near to far end coupling, S41, in Figure 4.30

is represented well by ε7 = 1. and ε7 = 1050, but the ε7 = 0.1 simulation is less

consistent. This trend continues in the far-end coupling shown in Figure 4.31, where

only the ε7 = 1050 simulation allows enough terms to retain accuracy through the full

frequency range. Allowing such a large error is not a good idea for approximations

with few terms, but in this case, the results are not bad. A lower error tolerance of

10 or lower would be preferable.

Figure 4.28 |S11| calculated using a 7-term approximation with different Green’s func-
tion error tolerances for the 45◦-trace pair

4.5. SUMMARY AND CONCLUSIONS

For nonparallel traces a quasi-static PEEC formulation may be used, but the

results may include some errors due to the lack of in phase information. These phase

differences are incorporated by using a dynamic Green’s function in the formulation.

The dynamic Green’s function requires new calculation algorithms to deal with the

complex exponential in the integrand. However, the singularity in the Green’s func-

tion can be extracted with a little algebra to get the original quasi-static term and

another numerically integrable term associated with the phase information. Thus,
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Figure 4.29 |S21| calculated using a 7-term approximation with different Green’s func-
tion error tolerances for the 45◦-trace pair

previous analytical expressions for quasi-static formulations may be reused, and the

phase term calculated separately without compromising the dynamic Green’s func-

tions accuracy. Further accuracy in these calculations is obtained by using a subgrid-

ding method that does not increase the number of unknowns.

Wide-band PEEC solutions can be generated using a Taylor expansion for the

phase term in the dynamic Green’s function. These approximations to the Green’s

function have accuracy over a band of frequencies, where as the dynamic Green’s

function is exact a single frequency. For a true dynamic Green’s function solution,

the partial parameters need to be recalculated at every frequency point. The ap-

proximation allows large bands to be calculated with a single parameter calculation.

The accuracy of this method is subject to the number of terms used in the Green’s

function approximation, the expansion frequency, and an error tolerance that was

derived.
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Figure 4.30 |S41| calculated using a 7-term approximation with different Green’s func-
tion error tolerances for the 45◦-trace pair

Figure 4.31 |S43| calculated using a 7-term approximation with different Green’s func-
tion error tolerances for the 45◦-trace pair
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5. HYBRID PEEC-CAVITY MODELS FOR INTERCONNECTS ON
POWER BUSES

The cavity model has been applied to power buses of various shapes and sizes.

These models are effective at simulating decoupling capacitors on power buses. The

partial-element equivalent-circuit (PEEC) method is effective for modeling complex

interconnect structures in a full-wave sense. However, due to the full-matrix nature of

the PEEC matrices, it is impractical to model large power bus structures. Combining

the two methods may achieve the best characteristics from both methods.

Power distribution network (PDN) analysis is a crucial component in design. Bit

errors are more likely when sufficient power is not available for circuits during fast

transients. Cavity model based solvers have been used for some time now to calculate

the input and transfer impedances for a power bus structure [16]. SPICE files may be

generated from the cavity models. Then, via circuit models and component parasitics

can be introduced at the ports to get an accurate answer over wide bandwidths

[14,15,32,33]. This approach will work well as long as their is a circuit equivalent for

the power bus interconnect in question.

The partial-element equivalent-circuit (PEEC) method is very good for calcu-

lating equivalent circuits for general, 3D interconnects. However, a large number of

unknowns is required for modeling large power bus structures in PEEC, which is

not typically feasible. This work endeavors to combine the best capabilities of the

PEEC and cavity methods to solve interconnect problems for PDNs and interconnect

problems in the presencet of PDNs.

5.1. TRACE-FED PATCH ANTENNA

A trace-fed cavity, or a microstrip patch antenna, is shown in Figure 5.1. The

PEEC and cavity model division will be made along a line for simplicity. This problem

will be handled in at least two different divisions. For the first hybrid model the trace

alone is simulated by PEEC, and the cavity is completely handled by the cavity

model. For the second hybrid model PEEC is used to model the trace and part of

the cavity.

The connecting trace is 1 cm long by 0.2 cm wide, and the cavity is 5 cm long

by 4 cm wide to avoid degenerate modes. A dielectric constant of εr = 9.8 is used for

the substrate. The bottom of the structure is a solid copper sheet, which is modeled
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Figure 5.1 A trace-fed cavity with the model split at two different points, once at the
trace end and the other on the patch

with volume cells. The trace is also modeled with volume cells. The ports connecting

the cavity model to the PEEC model are only present at the end of the trace. This

leaves the rest of the return plane on the PEEC model disconnected from the cavity,

which is not ideal.

For the second model, the break between the PEEC model and the cavity model

is made on the patch rather than at the trace-patch interface. The cavity model is

valid where TMz fields dominate. The models should be connected where both have

a nearly pure TMz field distribution. Then, the tangential fields should theoretically

match.

The models were combined 1 cm past the end of the trace. This location was

chosen after viewing the tangential E-field components calculated in HFSS and shown

in Figure 5.2. Provided √
|Ex|2 + |Ey|2 � |Ez| (5.1)

is satisfied over the whole cavity region, the model division should be valid. The

hybrid model setup is shown in Figure 5.3.
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Figure 5.2 The tangential E-fields plotted in HFSS

Figure 5.3 The division between the PEEC and cavity models on the patch

The two connection schemes were simulated and S11 calculated from 0.1 GHz to

2.5 GHz. The |S11| from both models and an HFSS model are shown in Figure 5.4.

Hybrid 1 denotes the model with a PEEC model for the trace only. This model

is matches the HFSS results at most of the resonance points. Hybrid 2 denotes

a PEEC model for the trace and 1 cm of the patch and cavity for the remaining

patch. This model has multiple resonances close to single resonances of the HFSS

and Hybrid 1 models. The Hybrid 2 model has perhaps too few PEEC cells to be

accurate. However, adding many more cells to the PEEC model will make it much

more time and memory consuming. The main goal of a hybrid PEEC and cavity
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method is accuracy and speed over other full-wave solution methods. Adding too

many PEEC cells defeats that purpose.

Figure 5.4 |S11| for a trace-fed cavity simulation plotted with simulations using the
hybrid method and HFSS

5.2. VIA SHORTING TO A PLANE

The second problem considered is a 1.5-in by 1-in board with 20-mil plane

spacing, pictured in Figure 5.5. A via shorting to the lower plane is positioned

125 mil in from the lower and left edge of the board. A 250-mil square section of the

board is modeled by PEEC, shown in Figure 5.6. This problem could be simulated

by a cavity model alone. However, the goal with this model is to combine the PEEC

and cavity methods in a way that the same results are obtained as with the cavity

model alone.

There are two differences in this model compared with the patch model. The

coupling from the upper plane to the lower plane in the PEEC model has been

removed. This is accomplished by setting up zones in the model such that PEEC cells

only couple with other cells in their own or the immediately adjacent zone. Conducted
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Figure 5.5 The PEEC model connected to the cavity model through ports along two
adjacent sides

Figure 5.6 PEEC model for a via connecting a trace to the return planes

currents pass freely through the boundary, but the mutual partial potentials and the

partial inductances are zero for the interactions between the upper plane and the

lower plane. The via metal is between the two planes and allowed to couple to each.

Thus, the parasitic inductance and capacitance of the via is still calculated in PEEC.

The cavity model is used to replace the missing couplings. Instead of segmenting

the cavity, it is left in one piece, so that the space occupied by the PEEC model is

also covered. At present it is believed but not verified that through the connections of
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the two models, the cavity model satisfies the coupling that is removed. Experiments

to verify whether this is true are still being considered.

The model was simulated for frequencies between 0.1 GHz and 5 GHz. S11

was calculated and is shown in Figure 5.7. In this model, the hybrid model almost

exactly matches the cavity model. After this success a difficult problem was posed.

This problem is considered in the next section.

Figure 5.7 The S-parameter results for the hybrid model shown in Figure 5.6

5.3. VIA TRANSITION THROUGH A SHORTED CAVITY

A via passes completely through the two planes of the cavity in this problem.

The DC return path is through a shorting pin on the other side of the board. This

problem is again attempted with a PEEC model with all of its couplings in similar

fashion with the method used on the patch in the first model.

The PEEC part of the model is shown in Figure 5.8. The PEEC portion spans

the full width of the board and accounts for the end 200 mil of the length of the board.

The shorting via is at the upper portion of the model, and a via connects port 1 to

port 2 at the bottom of the figure. The model was simulated from 0.1 GHz to 5 GHz.

S11 is shown in Figure 5.9. The resonances are all present in the hybrid model but

the magnitude is high compared with the results from both CST Microwave Studio

and Ansoft HFSS.
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Figure 5.8 The PEEC portion of the hybrid model for a via transitioning through a
shorted cavity

Figure 5.9 The S-parameter results for the hybrid model shown in Figure 5.8
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The second PEEC model used for this problem is shown in Figure 5.10. The

via in this model is positioned in the same location as the via in Figure 5.8, but the

shorting via is handled by a SPICE model connected to the cavity model. Addition-

ally, the PEEC to cavity connections are at the via instead of the edge of the model,

and no coupling is allowed between the upper and lower planes in the PEEC model.

The coupling terms are nonzero only when the cells are in the same or adjacent region

of the model as in the hybrid model of the last section. Two hybrid traces are shown

in Figure 5.11 and compared with MWS and HFSS. The first hybrid result in Fig-

ure 5.11 uses a very small resistance for the shorting via connection, and the second

uses a 0.25 nH inductance. The result of the model using the inductance matches

CST and HFSS well.

To be thorough, another hybrid model was generated with the same PEEC ge-

ometries, but the hybrid connections were made by a perimeter of 40 ports connecting

the PEEC and cavity models. The same frequency range was simulated. The PEEC

model was divided into three zones. One zone includes everything below the cavity

dielectric. The second zone includes only the via cells. The third zone includes cells

above the cavity dielectric. The results for the simulations of this model are shown

in Figure 5.12. Hybrid 1 allows coupling only between cells in the same zone in the

PEEC model. Hybrid 2 also allows coupling between cells in adjacent zones. The

coupling from adjacent zones retains the effects of capacitive coupling from the via

to the planes, which is not accounted for in any way in the cavity model. The two

hybrid models deviate from one another slightly through the calculation band, but

both agree well with the results from HFSS and MWS.

5.4. SUMMARY AND CONCLUSIONS

Two approaches to creating hybrid PEEC and cavity model simulations were

tried. The first approach on a trace-fed patch antenna failed to match the results of

other simulators. It is unknown why this approach failed when a more complicated

and less understood approach succeeded. One possible cause may be a coarse PEEC

mesh. The second approach used PEEC models with some of their coupling elements

removed. The removed coupling is assumed to be compensated by the cavity model,

but the physics of the interaction are not fully understood. Experiments to verify the

effects of combining the two methods in this fashion are still being considered.
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Figure 5.10 The second PEEC model used for the via transitioning through a shorted
cavity

Figure 5.11 The S-parameter results for the hybrid model shown in Figure 5.10
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Figure 5.12 The model from Figure 5.10 altered for cavity connections at the edge of
the model rather than at the via
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6. THREE-DIMENSIONAL INTERCONNECT AND ANTENNA
ANALYSIS USING A STATE-VARIABLE SOLUTION FOR PEEC,

INCLUDING EXCESS CAPACITANCE

The PEEC method utilizes a two step process. First, the structure is discretized

and partial parameters are calculated. Second, the partial parameters are organized

into a netlist for a SPICE solution. Alternatively, the partial parameters can be used

to formulate a state-variable model of the structure. Previous work has demonstrated

power electronic applications of a state-variable formulation. However, those exam-

ples did not include a formulation for dielectrics. State-variable formulations without

dielectrics and with dielectrics are both presented and tested on a microstrip and a

cupped-ground ANSERLIN antenna.

6.1. STATE VARIABLE FORMULATION FOR PEEC

PEEC returns partial inductances and partial capacitances or their equivalent,

as well as other circuit quantities. Often these circuit elements are used to construct

SPICE models. In this section, a state variable formulation is derived using the partial

parameter matrices.

6.1.1. State Variable Formulation without Excess Capacitances. The

state variable formulation is straight forward when excess capacitances are excluded.

This omits the possibility of dielectrics in the model. One matrix solution possible is[
Z Γ

−ΓT jωγTP−1γ

][
IL

VC

]
=

[
0

IT

]
(6.1)

This matrix is in general full. It can be solved by direct methods, and I have solved

it with Gaussian elimination and partial pivoting both in serial and parallel codes in

a slightly different form presented in an earlier section.

Decomposing the matrix solution into its block matrices yields two coupled

matrix equations,

ZIL + ΓVC = 0 (6.2)

−ΓT IL + jωγTP−1γVC = IT . (6.3)
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Both equations are frequency domain relations, but the time domain version is

RiL(t) + Li̇L(t) + Γvc(t) = 0 (6.4)

−ΓT iL(t) + γTP−1γv̇C(t) = iT (t) . (6.5)

The state variables in the formulation are the inductor currents, iL, and the capacitor

voltages, vC . Solving for the first order derivatives of the state variables yields

i̇L(t) = −L−1RiL(t) +−L−1ΓvC(t) (6.6)

v̇C(t) = (γTP−1γ)
−1

ΓT iL(t) + (γTP−1γ)
−1
iT (t) (6.7)

Then, the state variable equation is[
v̇C(t)

i̇L(t)

]
=

[
0 (γTP−1γ)

−1
ΓT

−L−1Γ −L−1R

][
vC(t)

iL(t)

]
+

[
(γTP−1γ)

−1

0

]
iT (t) (6.8)

The output equation is then just the difference in the potential states associated with

the port nodes, assuming that the output is the port voltages. The input along this

whole development is the terminal or port currents induced.

vPorts(t) =
[
ε 0

] [vC(t)

iL(t)

]
+
[
0
]
iT (t) (6.9)

where ε is a connectivity matrix of 1 and −1 entries describing the port connection

to the nodes.

6.1.2. State Variable Formulation using Sources and Terminations

with Zo Impedance. This formulation combines the ideas of the last section

and with the controlled impedance sources described in Section 3.3.1. Use the port

equation

vm(t)− vn(t) + Zoλ = vs(t) (6.10)

where m marks the positive node, n marks the negative node, λ is the port current

into the m node, and vs is the port voltage. Unlike in the frequency domain, to get a

state equation model, it is easier to work the constraint directly into the equations.

Solving for λ,

λ =
1

Zo
vn −

1

Zo
vm +

1

Zo
vs (6.11)
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A port connectivity matrix, A, is required to include these expressions in the overall

matrix solution.

A =

[
0 1 0 −1 0 · · ·
1 0 −1 0 0 · · ·

]
(6.12)

The A matrix is Q by N , where Q is the number of ports. The 1 entry in each row

marks the connection to the positive node, and the −1 entry marks the negative node

connection.

Consider λ as a vector of the port currents.

λ =
1

Zo
(−Avc + vs) (6.13)

Then, the currents can be added into the KCL state equations used in the the previous

sections.

(γTP−1γ)v̇c − ΓT iL − ATλ = iT (6.14)

and

v̇c = (γTP−1γ)
−1
[
ΓT iL −

1

Zo
ATAvc +

1

Zo
Avs

]
(6.15)

Then, the new state equation is[
v̇C(t)

i̇L(t)

]
=

[
−1
Zo

(γTP−1γ)
−1
ATA (γTP−1γ)

−1
ΓT

−L−1Γ −L−1R

][
vC(t)

iL(t)

]
+[

1
Zo

(γTP−1γ)
−1
AT (γTP−1γ)

−1

0 0

][
vs(t)

iT (t)

] (6.16)

6.1.3. State Variable Formulation Including Excess Capacitance. The

essential addition in adding excess capacitance into a state variable formulation is rec-

ognizing that it can be included as yet another set of state variables. The definition

of excess capacitance is given in [28]. Previously, there was a inductive current state

and a capacitive node voltage state. The excess capacitance effectively adds a series

capacitance between nodes.

Neglecting any incident electric field, the field equation is

0 = ~E(r, t) +
∂ ~A(r, t)

∂t
+∇Φ(r, t) (6.17)

For a conductor, the total electric field would be replaced by a current divided by the

conductivity of the conductor. After integration and discretization, the electric field
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term is reduced to a potential over the body of the cell of interest. Label that voltage

vC+
α to represent the voltage drop in the direction of the current cell α. Ignore mutual

inductance terms on cell α for now, and the KVL expression becomes

φi − φj = Li̇Lα + vC+
α (6.18)

and vC+
α is further governed by equation

C+
α v̇C+

α = iLα (6.19)

where C+
α is the excess capacitance of α. In Equation 6.18 the φ’s are the node

voltages of nodes i and j to which α connects. The notation φ is used to distinguish

the node voltage states from the excess capacitance voltage states.

Assume that every cell is a dielectric cell, and introduce vC+ as a new vector of

state voltages for the excess capacitances. Equations 6.18 and 6.19 become

Li̇L + IvC+ + Γφ = 0 (6.20)

C+v̇C+ = iL , (6.21)

where I is the identity matrix. Combining these two equations with the KCL expres-

sion,

−ΓT iL + γTP−1γφ̇ = iT , (6.22)

a new state matrix is constructed i̇L

v̇C+

φ̇

 =

 0 −L−1 −L−1Γ

(C+)
−1

0 0

(γTP−1γ)
−1

ΓT 0 0


 iL

vC+

φ

+

 0

0

(γTP−1γ)
−1

 iT . (6.23)

At this point there are no losses built into the system, and any models would likely

be only marginally stable. Adding resistance into the formulation will introduce the

loss to damp the response.

Without resistances the circuit branch for a dielectric cell is an inductance in

line with a capacitor, connecting to two potential nodes. The PEEC derivation leaves

some ambiguity as to how a lossy dielectric might be represented with a combination

of a resistance and a capacitor. It appears that they should be connected in series.

However, the entries in the resistance and excess capacitance matrices must be disjoint

for that formulation to work. A more detailed development of the integral equation
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will show that the excess capacitance and the resistance are in parallel with the

inductance in series with the pair.

Expanding the ~A(~r) term in (6.17) yields

~E(r) = − ∂

∂t

{
µo

∫
V ′
G(r, r′)

(
~Jc(r

′) + εo(εr − 1)
∂ ~E(r′)

∂t

)
dV (r′)

}
−∇Φ(r) . (6.24)

The electric field term is again vC+ , and the KVL equation is the same as in (6.18).

Not all of the current passing through the inductance also passes through the capac-

itance. Therefore, (6.19) is not valid when resistive losses coincide with dielectrics.

Current is contributed by both the resistance and the capacitance. Therefore,

C+v̇C = iL −
1

R
vC , (6.25)

which includes some loss to add stability to the system.

In matrix form complications arise, and another connectivity matrix is defined

in order to map the inductive currents onto the excess capacitance voltages. Call

this matrix T . In addition, leave the R matrix as it was, a diagonal matrix that has

nonzero entries only on pure conductor cells. Then, the KVL expression in matrix

form becomes

Li̇L + T TvC+ + Γφ+RiL = 0 (6.26)

Introduce a new matrix G to contain any conductance losses in the dielectric cells.

Write the new excess capacitance relation

C+v̇C+ = TiL −GvC+ (6.27)

where G is diagonal. Finally, the new state matrix expression is i̇L

v̇C+

φ̇

 =

 −L−1R −L−1T T −L−1Γ

(C+)
−1
T −G 0

(γTP−1γ)
−1

ΓT 0 0


 iL

vC+

φ

+

 0

0

(γTP−1γ)
−1

 iT (6.28)

6.2. TIME-DOMAIN SIMULATIONS

A microstrip model was constructed to test the time domain state-variable for-

mulation. A trapezoidal integration method was used on the state-variable PEEC
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formulation to calculate the time domain waveforms. The comparisons were calcu-

lated with an length transmission line in SPICE. The SPICE model used ideal short

and open conditions, where as the PEEC model automatically includes via inductance

and stub capacitances. To short the model in PEEC, a section of the dielectric was

recast as a conductor to form a shorting via through the substrate. Figure 6.1 shows

the view of the microstrip model. Figure 6.2 and Figure 6.3 both show responses to

a pulse with a 20-ps rise time. Figure 6.4 shows the response to a pulse with a 2-ps

rise time.

Figure 6.1 A top view of the shorted microstrip structure

For a second experiment a similar trapezoidal integration code was used to

simulate a pulse at the feed of the cupped-ground ANSERLIN antenna shown in

Figure 6.5. The PEEC simulations are compared with time domain simulations from

Microwave Studio in Figure 6.6 and Figure 6.7.

6.3. CONCLUSIONS

A state-variable model with or without dielectrics can be used effectively for

simulating transmission lines in the presence of dielectric. However, thick dielectrics

like those required for small-scale ANSERLIN antennas are not gridded fine enough

to simulate in this manner. Additionally, delays are realizable in the state-variable

simulations, but these delays may need filtering to maintain stability.



115

Figure 6.2 Response of a shorted microstrip to a pulse with a 20 ps rise time

Figure 6.3 Response of an open-ended microstrip to a pulse with a 20 ps rise time
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Figure 6.4 Response of an open-ended microstrip to a pulse with a 2 ps rise time

Figure 6.5 A cupped-ground version of the ANSERLIN antenna, shown here without
its dielectrics
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Figure 6.6 TDR (Port 1) result for a cupped-ground ANSERLIN without dielectrics

Figure 6.7 TDT (Port 2) result cupped-ground ANSERLIN without dielectrics



118

7. ADAPTIVE MESHING WITH A LOCAL EQUIDISTANCING TO
REDUCE TRUNCATION ERROR IN PEEC FORMULATIONS

SCATTERING AND INTERCONNECT PROBLEMS

The number of unknowns available for PEEC models is limited due to the mem-

ory and time constraints associated with the full matrices that are produced. For that

reason, it is essential to utilize those unknowns available efficiently. Grid generating

has numerous approaches that may be applied to generate grids conforming to a phys-

ical model. Elliptical and other partial differential equation based gridding methods

can provide smooth uniform grids, but preparing forcing functions to control the grid

density is difficult [12]. Another method called equidistribution was chosen instead

due to the degree of control it allows over mesh spacing. Equidistribution is typically

a 1D method by which the variation in the output parameter over length is distributed

evenly among the unknowns of the model [30]. The higher dimensional equivalent of

this method is best applied in a local, iterative fashion. Field calculations from initial

PEEC calculations are used with a local equidistribution approach to divide field or

current gradients evenly among the current and charge cells of the PEEC model.

In addition to the grid refining aspects of this section derviations for the field

calculations required for the grid refining are given. These field calculations are based

on the hexahedral gridding system used elsewhere in this thesis.

7.1. LOCAL EQUIDISTRIBUTION FOR 1D AND 2D GRID
REFINEMENT

Equidistribution as a 1D method is a process of balancing a arbitrary monitor

function across the divisions of a line. In integral terms the criterion to be met is

given by ∫ xi

xi−1

m(u)dx =

∫ xi+1

xi

m(u)dx = c ∀ 2 ≤ i ≤ N − 1 , (7.1)

where m(u) is the monitor function over the solution u(x). The criterion in (7.1)

ensures that m(u) is equally distributed over the grid divisions. For this section the

arc length of u(x),

m(u) =
√

1 + ‖ux‖2 , (7.2)

is chosen for the monitor function. While equidistribution is a 1D approach, there

are some 2D approximations to the method that differ from 1D original approach,
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which had issues with overlapping grid components. This method may described as

a local equidistributional method.

The 1D equidistibution method is exact. Once the monitor function is known

over the line, the new grid divisions are found by closed-form expressions. However,

the 2D local equidistribution method considers only the adjacent points. Thus, the

local method will require more than one pass through the grid to distribute the points.

For the 2D method each interior grid point will have eight surrounding grid points, as

shown in Figure 7.1. Let smn,ij represent the weight function for the equidistribution,

described by

smn,ij =

√√√√K

(
|~rmn − ~rij|

max |~rmn − ~rij|

)2

+

(
| ~Emn − ~Eij|

max | ~Emn − ~Eij|

)2

(7.3)

for m ∈ {i − 1, i, i + 1} and n ∈ {j − 1, j, j + 1} but not (m,n) = (i, j). K is an

adjustment factor typically between 0 and 1 that determines whether the distance

or the field dominates the grid density. A balance of the two is sought. K typically

depends on the application. The weight function above uses the change in electric field

to indicate the truncation error in present grid. The goal of the equidistribution is

that the change in the electric field per distance between points be the same uniformly

throughout the grid. Thus, the grid unknowns are better utilized where high field

gradients exist. The electric field is only chosen as an example; the magnetic field or

the current is an equally good choice.

Figure 7.1 Eight neighbor points surrounding an interior grid point
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To find the new location for ~rij, renumber the smn,ij according to the neighbor

point locations in Figure 7.1. So, smn,ij → sl,ij. Let Sij =
∑7

l=0 sl,ij, and let

λl,ij =
sl
Sij

. (7.4)

Assuming that the eight points make a convex polygon, the new location of the center

grid point can be described

~rn+1
ij =

7∑
l=0

λl,ij~r
n
l . (7.5)

Once the new value is set, the field components associated with the old grid location

are no longer valid. Recalculating the fields after each grid change is unfeasible.

Instead a 2D Lagrangian interpolation is used to estimate the field using the fields of

the neighbor points.

Mesh entanglement can occur after one or more iterations. Mesh entanglement

is a state when grid points are positioned such that grid lines cross. Figure 7.2 shows

a case of mesh entanglement along with a legal grid movement. Two conditions

combine to cause mesh entanglement. First, the bounding polygon formed by the

neighbor points will not be convex. Second, the sl,ij value associated with one of

the points will be much larger those of the other points. The center point will be

drawn to the dominant point so that it lies outside of the bounding polygon. The

2D algorithm seldom recovers after a mesh entanglement occurs. Typically, the shift

causes a cascade of further entanglements.

(a) Mesh entanglement (b) Legitimate grid movement

Figure 7.2 Shifting of a grid point during a step of the local equidistribution
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In order to avoid mesh entanglement, a damping effect has been added, reducing

the amount of shifting each point can take in each iteration. Also, rather than using

the global coordinates the local coordinate system is used in the shifting. Local

coordinates make it easier to check for grid errors since in local coordinates, ai,j <

ai+1,j for all points. This fact cannot be said for global coordinates where a curving

shape has no such ordering in the xy plane. Let q represent either a or b, and let q̂n+1

represent the new grid point from my previous formulation, defined by

q̂n+1 =
∑
k

Snk q
n
k +

∑
l

Sn+1
l qn+1

l . (7.6)

The first term accounts for neighbors that have not moved yet, and the second terms

accounts for the neighbors that have moved previously in this iteration. The previ-

ously shifted neighbor points are with the red dotted line in Figure 7.2(b). Let the

total change in q be defined by subtracting qn from the previous expression.

dqn+1 = q̂n+1 − qn =

[∑
k

Snk q
n
k +

∑
l

Sn+1
l qn+1

l

]
− qn . (7.7)

Then, let γ represent the fractional distance that the grid point will actually travel.

The new point will be at

qn+1 = γdqn+1 + qn

= γ

[∑
k

Snk q
n
k +

∑
l

Sn+1
l qn+1

l

]
+ (1− γ)qn ,

(7.8)

where γ ∈ [0, 1]. A good working choice is γ = 0.1.

Despite careful preparation of the method, the 2D local equidistribution method

still fails in some cases. For example, a PEEC model driven at one port has very large

gradients surrounding the port and much lower gradients elsewhere. The cells around

the port typically get distorted such that later integrations of the partial parameters

are not accurate. This method works well, however, for scattering from plates. An

example of a scattering plate is given in Section 7.3. This sort of grid refining may

also work well for interference problems with some experimentation.

Iteratively solving a complex PEEC problem is prohibitive in most cases. The

reason for solving the PEEC problem prior to refining the grid is to generate fields to

act as weighting functions for the refinement. Using these fields poses a few practical

problems. The fields are based off a particular excitation of the model ports. For
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an antenna, this is typical for operation. However, exciting one port with a pair of

coupled microstrip lines leads to high field gradients around the source line and low

gradients around the target line, where fine gridding is also needed. Additionally,

standing wave patterns cause nonuniform gridding along lines which is frequency

specific.

A method for avoiding these issues is defining a weighting function based on

the geometry itself. Fields will tend to be more intense around the edges of the

conducting bodies. Therefore, the grid points at the edge of objects are treated like

source points generating fictitious fields. The fictitious fields may take the form of a

Gaussian pulse like

P (~r) =
∑
i

e|~r−~ri|
2/(2σ2) , (7.9)

or offset 1/R type expressions like

P (~r) =
1

R +R0

, (7.10)

where R0 is selected greater than zero and large enough to avoid sharp gradients near

other objects. Instead of summing over the grid points of the body, which has mixed

results for nonuniform grids, the weighting functions could be integrated over the

outer surface of the object.

7.2. SCATTERED FIELD CALCULATIONS

The PEEC method handles impressed, or incident, electric fields by treating

them as voltage sources [24]. These impressed fields and other impressed lumped

sources combined with the boundary conditions of the conductors and dielectrics of

the models lead to scattered currents and potentials. These scattered currents and

potentials are the unknowns of the PEEC formulation. This section presents deriva-

tions associated with calculating the scattered fields from the unknowns, assuming a

nonorthogonal hexahedral cell type.

7.2.1. Common Components of the Scattered Fields. A few quantities

occur commonly among the field calculations and are derived here for reference in later

sections. Summation notation of the form

xnan =
∑
n

xnan (7.11)
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is used to keep the derivations more compact. Summation is implied if a superscript

and subscript of the same index coincide in a term.

The gradient of the source and observation point distance, R, is found in most

of the following expressions. Let ~R = ~r− ~r ′, and find the gradient of R = |~R|. First,

note that the gradient acts on the unprimed coordinates with loss of generality let

~r ′ = ~0. Then, ~R→ ~r, and

∇r = ∇
√
~r · ~r

= x̂n∇n

√
xmxm

= x̂n
(

1

2

)
[xm∇nxm + xm∇nx

m] /
√
xmxm .

Use the metric tensor for cartesian coordinates, gmj = δmj, to change covariant com-

ponents to contravariant components. Then,

∇r = x̂n
(

1

2

)[
xmδmj∇nx

j + xm∇nx
m
]
/r

= x̂n
(

1

2

)[
xmδmjδ

j
n + xmδ

m
n

]
/r

= x̂nxn/r ,

and the final result is

∇r =
~r

r
(7.12)

after summation. This result is invariant under translation, so that

∇R =
~r − ~r ′

|~r − ~r ′|
. (7.13)

Another useful result is

∇~r = x̂m∇mx̂nx
n = x̂mx̂nδm

n

= x̂mx̂m
(7.14)

with the sum implied in the last result.

The free-space Green’s function is defined as

G(~r, ~r ′) =
e−jk|~r−~r

′|

4π|~r − ~r ′|
. (7.15)
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Let R = |~r − ~r ′| and G(~r, ~r ′) → G(R) to simply the following expressions. Take the

gradient of the Green’s function as

∇G(R) =
e−jkR

4π
∇
(
R−1

)
+

1

4πR
∇e−jkR

=
e−jkR

4π

(
−R−2∇R

)
+

1

4πR

(
(−jk)e−jkR∇R

)
= −e

−jkR

4πR2
(1 + jkR)∇R ,

and after simplification and letting R→ |~r − ~r ′|, the result is

∇G(~r, ~r ′) = − e−jk|~r−~r
′|

4π|~r − ~r ′|3
(1 + jk|~r − ~r ′|) (~r − ~r ′) . (7.16)

The Hessian is a second order tensor. Let ~r ′ = ~0 without loss of generality, and

start the derivation with

∇∇G(r) = ∇(∇G(r)) .

The term in parathesis is the gradient given in (7.16). So, the first gradient operator

is dispatched immediately. Then,

∇∇G(r) = −e
−jkr

4πr3
(1 + jkr)∇~r − e−jkr

4πr3
~r∇ (1 + jkr)

− e−jkr

4π
(1 + jkr)~r∇r−3 − 1

4πr3
(1 + jkr)~r∇e−jkr

= −e
−jkr

4πr3
(1 + jkr) x̂mx̂m −

e−jkr

4πr4
(jk)~r~r

− e−jkr

4π
(1 + jkr)~r

(
−3r−5~r

)
− 1

4πr3
(1 + jkr)~r

(
(−jk)e−jkr~r/r

)
=
e−jkr

4π

{
−r−3 (1 + jkr) x̂mx̂m − jkr−4~r~r

+3r−5 (1 + jkr)~r~r + jkr−4 (1 + jkr)~r~r
}

=
e−jkr

4π

{
−r−3 (1 + jkr) x̂mx̂m +

[
(jk)2r−3 + 3r−5 (1 + jkr)

]
~r~r
}
.

(7.17)

The Hessian can be represented in matrix form as well. In that form the x̂mx̂m term

is only on the diagonal.

7.2.2. Near-Field Calculations. The near-field calculations all use the

solution for the cell currents in order to make the calculations. Calculating the electric

and magnetic fields requires operations on the vector magnetic field, which could be

done numerically. However, for these operations finite differences are required. The
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finite differences with a coarse mesh will be less accurate than a complete expression

in terms of the currents. Therefore, all of the following derviations will be in terms of

the cell currents. The derivations for the vector magnetic potential, the electric field,

and the magnetic field follow.

The vector magnetic potential, ~A, is present in all the following field calula-

tions. So, the expression for ~A will be calculated followed by the derivations for some

operations on the field. In Section 3.1 the current was discretized with

~J(~r) =
∑
n

InΠn(~r)

(
∂~r
∂an

4Jn

)
. (7.18)

This discretization will be used for the rest of the field derivations in Section 7.2.1.

The Green’s function solution for the vector magnetic potential is given as

~A(~r) =

∫
V

G(~r, ~r ′)µ0
~J(~r ′)dV (~r ′) , (7.19)

where V contains the full support of ~J(~r ′). After discretization the expression be-

comes

~A(~r) =
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

G(~r, ~r ′)
∂~r ′

∂an
dandbndcn , (7.20)

where the 4 in the denominator in front of the equation is a scaling factor left after

cancelling the Jacobian of dV (~r ′).

The next quantity of interest with respect to ~A(~r) is the curl, which is derived

as

∇× ~A(~r) =
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇×
(
G(~r, ~r ′)

∂~r ′

∂an

)
dandbndcn

=
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇G(~r, ~r ′)× ∂~r ′

∂an
dandbndcn .

(7.21)

The divergence is given by

∇ · ~A(~r) =
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇ ·
(
G(~r, ~r ′)

∂~r ′

∂an

)
dandbndcn

=
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇G(~r, ~r ′) · ∂~r
′

∂an
dandbndcn .

(7.22)
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The gradient of the divergence is given by

∇(∇ · ~A(~r)) =
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇
(
∇G(~r, ~r ′) · ∂~r

′

∂an

)
dandbndcn

=
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

[∇∇G(~r, ~r ′)] · ∂~r
′

∂an
dandbndcn .

(7.23)

The gradient and Hessian for the Green’s function can be inserted in using (7.16) and

(7.17), respectively.

The electric field is defined in terms of its potentials as

~E(~r) = −jω ~A(~r)−∇φ(~r) , (7.24)

which with the Lorentz gauge,

φ(~r) =
−1

jωµ0ε0

(∇ · ~A(~r)) , (7.25)

becomes

~E(~r) = −jω ~A(~r)− j
1

ωµ0ε0

∇
(
∇ · ~A(~r)

)
. (7.26)

Then, substitute the (7.20) and (7.23) into (7.26) to get

~E(~r) =− jω
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

G(~r, ~r ′)
∂~r ′

∂an
dandbndcn

− j
1

ωµ0ε0

∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

[∇∇G(~r, ~r ′)] · ∂~r
′

∂an
dandbndcn

=
∑
n

In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

[
−jωG(~r, ~r ′)

∂~r ′

∂an
− jω

k2
[∇∇G(~r, ~r ′)] · ∂~r

′

∂an

]
dandbndcn ,

(7.27)

where k2 = ω2µ0ε0 is used to reduce the number of variables in the equation.

The expression for the magnetic field is simply

~H(~r) =
1

µ0

(
∇× ~A(~r)

)
. (7.28)
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Thus, the magnetic field is the same as (7.21) with the added 1
µ0

multiplier. So, the

final form of the magnetic field is

~H(~r) =
∑
n

In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇G(~r, ~r ′)× ∂~r ′

∂an
dandbndcn . (7.29)

7.2.3. Far-Field Calculations. The far-field calculations are accomplished

using a far-field calculation for the vector magnetic field, which can then be used

to directly calculate the far-field approximations for the electric and magnetic fields.

The condition for a far-field approximation are kr � 1. R can be expressed as

R =

√
r2 + r′2 − 2r r′ cosψ,

and then is approximated as

R =

r − r′ cosψ for phase

r for magnitude
, (7.30)

where

cosψ =
~r · ~r ′

r r′
.

Then, the far-field approximation to the free-space Green’s function is

GFF (~r, ~r ′) =
e−jk(r−r

′ cosψ)

4πr
. (7.31)

Then, substitute (7.31) into (7.20) to get

~A(~r)
∣∣∣
kr�1

≈
∑
n

µ0In
4

∫ 1

−1

∫ 1

−1

∫ 1

−1

e−jk(r−r
′ cosψ)

4πr

∂~r ′

∂an
dandbndcn . (7.32)

The r dependent factor, given by e−jkr/r, can be brought outside the integral and

removed from expression for the far-field calculation. So, the final form of the far-field

approximation for the vector magnetic potential is

~A(~r)
∣∣∣
kr�1

≈
∑
n

µ0In
16π

∫ 1

−1

∫ 1

−1

∫ 1

−1

ejkr
′ cosψ ∂~r

′

∂an
dandbndcn . (7.33)
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The far-field electric field is expressed as

~E(~r)
∣∣∣
kr�1

≈ −jω
[
~A(~r)

]
kr�1

, (7.34)

and the far-field magnetic field is

~H(~r)
∣∣∣
kr�1

≈ −jω
η

[
r̂ × ~A(~r)

]
kr�1

, (7.35)

where η is the intrinsic impedance of the media, which is likely air or vacuum.

7.3. PLANEWAVE REFLECTIONS FROM A CONDUCTING
RECTANGLE

A 10 mm by 6 mm conducting plate was illuminated with a plane wave refer-

enced at z = 0 with a propagation direction of x̂ /
√

2− ẑ /
√

2 with Ex = 1 V/m. The

scattered field from the rectangle was calculated and combined with the incident field

to get the total fields. An initial PEEC solution was calculated prior to refining the

grid. The solution for the magnetic field on planes above and below the rectangular

plate is shown in Figure 7.3. Using the results previously calculated with PEEC, the

magnetic field was used to refine the grid. The refinements to the grid are shown

in Figure 7.4. A second PEEC calculation using the refined grid produced the fields

shown in Figure 7.5. The pattern in Figure 7.5 closely matches the fields calculated

by Ansoft HFSS, which are shown in Figure 7.6. The pattern from Figure 7.3 is

different from Figure 7.6 due to the lack of cells near the edge of the conductor. It

is well known that charge collects on edges and corners more than the center. Thus,

it makes sense intuitively that more cells will be needed near the edge, and the grid

refining code found the same solution through the local equidistribution algorithm.

The electric field from PEEC and HFSS are shown in Figure 7.7 and Figure 7.8,

respectively. Additional, calculations of the magnitudes and phase of the fields along

lines above and below the rectangular plate are shown in Figure 7.9 through Fig-

ure 7.12.

7.4. SUMMARY AND CONCLUSIONS

A grid refining strategy for PEEC was proposed and implemented on a conduct-

ing plate. Field calculations using the PEEC solutions were also shown and used in
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Figure 7.3 The magnetic field calculated 10 mm above and below the rectangular
plate before grid refinement

the refining process. The method works well for simple structures like the conducting

plate and under incident fields. At the present time the method requires user direc-

tion in the form of a few adjustment factors to achieve good grids. In the future,

these might be automated and algorithms for checking the shape of cells might be

applied to ensure better final grids.

(a) No grid refining (b) After grid refining

Figure 7.4 Reflecting plate grid before and after refining
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Figure 7.5 The magnetic field calculated 10 mm above and below the rectangular
plate after grid refinement based on the magnetic field

Figure 7.6 The magnetic field calculated 10 mm above and below the rectangular
plate using HFSS
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Figure 7.7 The electric field calculated 10 mm above and below the rectangular plate
after grid refinement based on the magnetic field

Figure 7.8 The electric field calculated 10 mm above and below the rectangular plate
using HFSS
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Figure 7.9 The phase of Ex on a y-directed line at x = -10 mm and z = -10 mm

Figure 7.10 The phase of Ex on a y-directed line at x = -10 mm and z = 10 mm
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Figure 7.11 |Ex| on a y-directed line at x = -10 mm and z = -10 mm

Figure 7.12 |Ex| on a y-directed line at x = -10 mm and z = 10 mm
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