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ABSTRACT 

A finite element method is presented for geometrically nonlinear 

large displacement problems in thin, elastic plates and shells of 

arbitrary shape and boundary conditions subject to externally applied 

concentrated or distributed loading. The initially flat plate or 

curved shell is idealized as an assemblage of flat, triangular plate, 

finite elements representing both membrane and flexural properties. 

The 'geometrical' stiffness of the resulting eighteen degree-of-freedom 

triangular element is derived from a purely geometrical standpoint. 

This stiffness in conjunction with the standard small displacement 

'elastic' stiffness is used in the linear-incremental approach to ob

tain numerical solutions to the large displacement problem. Only 

stable equilibrium configurations are considered and engineering strains 

are assumed to remain small. Four examples are presented to demonstrate 

the validity and versatility of the method and to point out its de

ficiencies. 
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PREFACE 

In recent years, the theory of thin plates and shells (curved 

plates) has been one of the more active branches of the theory of 

elasticity. This is understandable in light of the fact that thin

walled shell constructions combine light weight with high strength, 

as a result of which they have found wide applications in naval, 

aeronautical and boiler engineering as well as in reinforced concrete 

roof designs. The practical possibilities for the utilization of 

thin plates and shells have by no means been exhausted. The engineer 

is continually made aware of the extension of the range of their 

employment and of the need for a more thorough analysis of their 

properties (i.e. an improvement of the methods of stress analysis). 

The work presented herein is devoted to the analysis of nonlinear 

deformations and displacements in thin, elastic plates and shells. 

The nonlinearity of the problems treated in this dissertation is that 

associated with large displacements in the linear elastic range. In 

contrast to linear theory in which displacements must be small in 

comparison to the thickness of the plate or shell, the method presented 

is not restricted by the magnitude of the displacements provided that 

the engineering strains do not exceed the limit of proportionality and 

structural instability does not occur. 
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C~P~RI 

INTRODUCTION 

The search for minimum-weight, optimum structural design has 

tended to cast doubt on the validity of the assumptions leading to 

linear formulation of the structural analysis problem. This in turn 

has generated considerab~e interest in the nonlinear analysis of struc

tures. For example, in same cases it has become necessary to use more 

exact strain-displacement relations, to base the equilibrium conditions 

on the deformed configuration, and even to consider nonlinear material 

properties. 

For the flexible, minimum-weight structures utilized in aerospace 

applications (e.g. thin plates and shells), a significant portion of 

practical design problems involve geometrically nonlinear behavior 

with linear, elastic material response. This relevance to realistic 

design situations has motivated the extension of the powerful finite 

element technique to account for geometric nonlinearities. 

The objective of the work reported in this dissertation was to 

develop a finite element representation capable of predicting the geo

metrically nonlinear, large displacement behavior of thin, elastic 

plates and shells, and to demonstrate its validity. Plates and shells 

of arbitrary shape and boundary conditions subject to externally 

applied concentrated or distributed loading were considered. 
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CHAPTER II 

PREVIOUS WORK 

The finite element displacement method of structural analysis 

for linear structural systems is well established. Previous extensions 

of the method to treat the nonlinearities which may arise in the struc

tural system due to large displacements may be divided into two major 

areas according to the extent of nonlinearity treated. The first area 

includes those approaches which treat the geometric nonlinearities 

caused by large displacements (1-12).* The second area includes those 

approaches which account for material as well as geometric nonlineari

ties (13-14). 

The first area, the one of interest herein, can be further separated 

into three categories. The first includes those approaches that take 

geometric nonlinearity into account by solving a sequence of linear 

problems. These procedures are characterized by an incremental appli

cation of the loading, the use of stiffness matrices which include the 

influence of initial forces, and an updating of the nodal coordinates 

(1-5). The second category is composed of those techniques which ac

count for geometric nonlinearity by formulating the set of nonlinear 

simultaneous equations governing the behavior of the structural system 

and then proceeding to a solution by successive approximations (9-10). 

Finally, the third category consists of those approaches that employ 

nonlinear strain-displacement relations to construct the potential 

*Numbers underlined in parentheses refer to listings in Bibliography. 
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energy for each of the elements and hence for the entire structure, and 

then obtaining a numerical solution by seeking the minimum of the total 

potential energy (11-12). 

In reference to geometrically nonlinear large displacement problems 

in thin plates and shells, a number of contributions have been made in 

recent years. Martin (£) derived an 'initial stress' stiffness matrix 

for the thin triangular element in plane stress. This stiffness matrix, 

for use in the linear-incremental approach, was derived by formulating 

the total strain energy in terms of nodal displacements and applying 

Castigliano's first theorem. In the formulation, nonlinear strain

displacement relations were used, the nonlinearity being associated 

with the second degree rotation terms normally neglected in small 

displacement theory. As a closing comment, Martin suggested that for 

large deflection problems in thin plates and shells the behavior of the 

thin triangular element in bending could be satisfactorily described 

by using the 'initial stress' stiffness matrix for the triangle in 

plane stress plus a conventional 'elastic' stiffness which has been 

found to be suitable for the case of small deflections. Unfortunately, 

at that time no data from such calculations was available and to this 

author's knowledge, none has been published to this date. 

Argyris (~ derived the so-called 'geometrical' stiffness of the 

triangular element in plane stress for use in the linear-incremental 

approach to large displacement problems. The stiffness was formulated 

in terms of his 'natural' nodal force and displacement vectors. The 

derivation was made from a purely geometrical standpoint in which the 

'geometrical' stiffness accounted for the change in nodal forces 

3 



arising in an incremental step due to the fact that the direction of 

the original forces, previously in equilibrium, had been altered. 

Argyris gave no examples of application of this approach to large 

displacement thin plate and shell problems but indicated that work 

in this area was forthcoming. 

Murray and Wilson (~ solved the large deflection thin plate 

problem using triangular flat plate elements. The standard small 

displacement stiffness matrix was used in conjunction with an iterative 

procedure based on achieving an equilibrium balance. The precedure 

is equally applicable to large displacement shell problems since the 

initially flat plate becomes essentially a curved shell when the 

deflections become larger than the thickness. Comparison with known 

plate solutions was remarkably good. 

Stricklin, et al. (§) applied the matrix displacement method to 

the nonlinear elastic analysis of shells of revolution subjected to 

arbitrary loading. The method employed linearized the nonlinear equi

librium equations by separating the linear and nonlinear portions of 

the strain energy and then applying the nonlinear terms as additional 

generalized forces. The resulting equilibrium equations were solved 

by one of three methods: The load-increment method, iteration, or a 

combination of the two. The nonlinear terms, being functions of the 

generalized displacements, were evaluated based on values of the 

coordinates at the previous load increment or values obtained during 

the previous iteration. Good agreement with experimental results 

was indicated. 

Alzheimer and Davis (1Q) applied the method of successive 
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approximations to the nonlinear unsymmetrical bending of a thin annular 

plate. The nonlinear von Karman thin-plate equations were solved with 

an iteration technique utilizing the solution from linear theory as 

the first approximation. The results compared favorably to experi

mental data. 

Schmit, et al. (~ employed nonlinear strain-displacement rela

tions in constructing the potential energy for large deflections of 

rectangular plate and cylindrical shell discrete elements. The total 

potential energy for the entire structure was formulated with the in

clusion of geometric nonlinearities in the strain-displacement relations. 

An approximate solution was obtained numerically by direct minimization 

of this total potential energy. The principal limitation on the method 

is that the rotations of the deformed configuration relative to the 

undeformed structure must be small. 

Nowhere in the literature does there seem to be an implementation 

and verification of a method for geometrically nonlinear large displace

ment problems in arbitrary thin, elastic plates and shells. In particu

lar, the linear-incremental approach characterized by the so-called 

'geometrical' stiffness suggested by Zienkiewicz (12) and originated 

by Argyris (2), does not seem to have been utilized in the analysis of 

large displacement problems in thin plates and shells. This concept 

is the one utilized and demonstrated in this dissertation. 
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CHAPTER III 

REVIEW OF FINITE ELEMENT CON:JEPTS 

In the finite element method, the behavior of an actual structure 

is simulated by approximating it with that of a model consisting of 

subregions or 'elements' interconnected at nodal points. In each 

element the displacement field is restricted to a linear combination 

of pre-selected displacement patterns or '.~_hape functions. ' Thus the 

configuration of the model is determined by the magnitudes of the 

generalized coordinates associated with the shape functions. The 

displacement state which minimizes the total potential energy is deter

mined and this configuration is then interpreted as an approximation 

to the true configuration of the structure under a set of applied loads. 

How accurately the model represents the true behavior of the structure 

depends to a large extent on the displacement patterns selected and the 

compatibility conditions imposed along element boundaries. 

In an effort to ensure that the behavior of the model is a close 

approximation to the true displacement state, certain minimum require

ments of displacement functions should be adhered to. They are given 

by Zienkiewicz (12) on page 22 as follows: 

(i) Completeness Requirements: The displacement functions chosen 

should permit rigid body displacements (zero strain) and 

include the constant-strain states associated with the 

problem of interest. 

(ii) Compatibility Requirements: The displacement state produced 

should provide continuity of displacements throughout the 
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interior of the element and along the boundary with adjacent 

elements. 

The solution of the problem requires first the evaluation of the 

stiffness properties of the individual elements. The stiffness proper

ties of the entire structure are then obtained by superposition of the 

element stiffnesses. Finally, analysis of the structure is accomplished 

by solution of the simultaneous nodal point equilibrium equations for 

the nodal displacements. 
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A. STRUCTURAL IDEALIZATION 

CHAPTER IV 

SHELL THEORY 

A curved-shell structure is in essence a singly (or doubly) curved 

thin plate. The detailed derivation of the governing equations for 

curved-shell problems presents many difficulties which lead to alternate 

formulations depending upon the assumptions made. Various numerical 

procedures have been formulated to deal with special geometric shapes 

but these are severely limited in applicability. In the finite element 

representation of shell structures these difficulties are eliminated 

by assuming that the behavior of a continuously-curved surface can be 

adequately approximated by that of a surface built up of small, flat 

plate elements. 

In the work presented herein, the curved shell structure of 

arbitrary geometry is modeled as a surface built up of triangular 

flat plate elements, the corner (or nodal) points of which lie on the 

mid-surface of the actual shell as shown in Figure l(a). These elements 

are capable of adequately representing the arbitrary geometry considered 

and are assumed to exhibit the bending and in-plane behavior that the 

actual shell experiences. Any externally applied concentrated or dis

tributed loading is considered, no limitations are imposed with regard 

to boundary conditions, and the shell properties may vary in any specific 

fashion from one point on the middle surface to another. As suggested 

by Zienkiewicz' (!.2) on page 125, in accordance with the physical effect 

of replacing a curved surface with a collection of plane elements, any 
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distributed loading will be concentrated as statically equivalent nodal 

forces. 

It should be pointed out that the foregoing idealization of the 

shell introduces two forms of approximations. First, the collection 

of flat-plate elements provides only an approximation to the smoothly 

curved surface of the actual shell. Second, the stiffness properties 

of the individual elements are based upon assumed displacement patterns 

within the elements, imposing constraints on the manner of deformations 

of the shell. However, these imposed errors should diminish as the 

mesh size is reduced. 

As illustrated in Figure 1, two distinct right-handed cartesian 

coordinate systems will be considered. First, a 'global' coordinate 

system x-y-z, common to all elements, is defined. This coordinate 

system will be used for assembly of the overall structural properties. 

Second, a separate 'local' coordinate system* x'-y'-z' is defined for 

each element. The element properties will be evaluated first in the 

local coordinate systems and then transformed to global orientation 

for assembly. 

For the general three-dimensional shell problem six degrees of 

freedom per node will be considered. These are given by displacement 

components u, v, and w in the x, y, and z directions and rotations 

Bx• By• and Bz (directed according to the right-hand rule) about the 

x, y, and z axes, respectively. The corresponding generalized forces 

include the force components Fx, Fy, and Fz in the x, y, and z directions 

*Quantities referred to the local coordinate directions are denoted by 
primes to distinguish them from those associated with global coordinates. 
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and the moments Mx, My, and ~ about the x, y, and z axes, respectively. 

In matrix notation* the resulting 'global' displacement and force vectors 

for node 'i' are, respectively 

ui 

vi 

{at} wi 
-

ex. 
l. 

8Yi 

ez. 
l. 

and 

Fxi 

Fyi 

{ Fi} 
Fzi 

-
Mxi 

Myi 

Mzt 

The corresponding vectors for node 'i' in 'local' coordinates are, 

respectively 

*Matrix notation will be employed throughout this dissertation with 
symbolic representations defined on page x. 

**Numbers in parentheses refer to equations. 

(A-1)** 

(A-2) 
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(a) 

z 

y 

~· j 

X i 

Global Frame Local Frame 

(b) 

i i 
,• 

Global Components Loca 1 Components 

Figure 1. A Typical Finite Element Idealization of a Shell Structure. 
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ui 
I 

vi 
I 

{ 8i ·} 
W· t 
~ - (A-3) 

Bx·' 
~ 

Byi' 

BZil 

and 

Fx· 
I 

l. 

FYi 
r 

Fz. ' 
{ Fi '} - l. (A-4) 

M 
xi 

Myi 
I 

~- ' 
J.. 

These generalized displacements and forces in global and local coordinates 

are illustrated in Figure l(b) for a typical node 'k' of a typical tri-

angular element i-j-k. 

B. lARGE DISPlACEMENT FINITE ELEMENT ANALYSIS 

1. GENERAL lARGE DISPlACEMENT THEORY 

The general large displacement problem in finite element analysis 

may differ from the small displacement problem in the following respects: 

Due to large displacements --

(i) Geometric nonlinearities may arise as a result of 

i.l. product terms in the strain-displacement relation, and/or 

i.2. the effect of deformation on the equilibrium equations, 

and/or 



i.3. the effect of deformation on the size and shape of the 

elements. 

(ii) Material nonlinearities may arise in the individual elements 

due to the occurrence of large strains. 

2. LARGE DISPlACEMENT SHELL THEORY 

The large displacement problems treated in this dissertation are 

those in which the strains within the material are small and the material 

behaves in a linear-elastic manner. That is, all strains are assumed 

to be within the elastic limit. In addition, only well-defined, unique, 

and stable equilibrium configurations will be considered. Thus the 

buckling problem will not be treated, although post-buckling behavior 

is within the scope of the method presented. 

In accordance with the chosen finite element idealization and the 

above restrictions, the large displacement problem in thin, elastic 

shells (and plates) has been reduced to the geometrically nonlinear 

large displacement analysis of a thin, triangular, flat-plate element. 

The geometrical nonlinearity of the problem will be shown to be due 

primarily to the rigid body rotations associated with the out-of-plane 

displacement component, w'. 

(a) THIN-PLATE THEORY 

A thin plate is one in which the ratio of plate thickness to a 

characteristic lateral dimension is small. In the large deflection thin

plate problem the engineering strains, but not the rotations, can be 

considered as infinitesimal. The physical consideration which differ

entiates between small and large deflection plate theories is the 
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stretching of the middle surface as a result of out-of-plane bending 

deformation. In small deflection theory the resulting 'membrane' stresses 

are not accounted for. Small deflection theory can be considered appli

cable 11only if the stresses corresponding to this stretching of the 

middle surface are small in comparison with the maximum bending stresses." 

This will be true "if the deflections of a plate from its initial plane 

or from a true developable surface are small in comparison with the 

thickness of the plate."* 

Accepting the first quotation above as the distinguishing feature 

separating 'large' from 'small' deflection plate theories, the limit 

of applicability of small deflection theory cannot be associated with 

any absolute geometric restriction on displacements or rotations. 

However, the limit generally accepted is that the ratio of maximum 

deflection to plate thickness must be less than ~' although this can 

be influenced by factors such as boundary conditions. 

Since finite element solutions will, for some problems, be compared 

to solutions from classical plate theory it will be helpful to list below 

the equations from classical theory for small and large displacements 

and to point out the assumptions made in their derivation. 

Restrictions ~the Displacement Field. 

For thin plates the following restrictions can be placed on the 

displacement field: 

(i) Material points lying on normals to the middle surface before 

deformation remain in a straight line after deformation 

*Quotations are from pages 48 and 49 of Timoshenko (11). 
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(normals remain straight). 

(ii) The straight line through the material points referred to 

in (i) is also normal to the middle surface after deformation 

(normals remain normal). 

(iii) The strain in the direction of the normal can be neglected 

in establishing the displacement of a material point. 

(iv) The slope of the middle surface remains small with respect 

to the initial plane. 

Assumptions (i), (ii), and (iii) are usually referred to as the 'Kirchoff 

Assumptions.' In addition to the above, the following restrictions on 

displacement gradients also apply:* 

(:B-1) 

are required to be small quantities of second order and 

(:B-2) 

are required to be small quantities of first order such that the square 

of these quantities, which is of second order, is of the same order as 

the engineering strains and the quantities in (v). 

*In this section the coordinate x-y plane is the middle surface of the 
flat plate before deformation. In finite element theory this would be 
the local coordinate x'-y' plane. 

**The comma (,) denotes a partial derivative with respect to the 
variable subscript; e.g. u,x= au • 

ax 



Derivation of the Thin-Plate Equations 

The above restrictions on the displacement field are applied in 

deriving the following relations: 

(i) The Kirchoff Equations; 

u(x,y,z) - u0 (x,y) 

v(x,y ,z) - v0 (x,y) 

w(x,y,z) - w (x,y) 
0 

where u0 , v 0 , and w0 are the displacements of the middle surface in 

the x, y, and z directions, respectively. 

(ii) The engineering strain-displacement relations; 

E - u,x + }z(w,x) 2 
X 

Ey - v,y + }z(w,y)2 

yxy - u,y + v,x + w,x w,y 

16 

(B-3) 

{B-4) 

(iii) The stress-strain relations (homogeneous, isotropic, elastic 

material); 

CTX 1 v 0 Ex 

CTy - E v 1 0 E (B-5) 
l-v2 y 

Txy 0 0 1-V y 
2 

x:y 

where E is Young's modulus and Jl, Poisson's rati.o. 
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(iv) The equilibrium equations; 

Nx,x + Nyx,Y - 0 

+ - 0 Nxy,x Ny,Y 
(B-6) 

Mx,xx + 2Mxy,xy + My,YY -
- [ q + Nx w0 ,xx + 2 Nxy w0 ,xy + NY wo,YY] 

where Nx, NY' and Nxy are stress resultants, Mx, My, and Mxy are stress 

couples and q is the distributed loading. The stress resultants and 

couples are illustrated in Figure 2 and defined respectively as 

Nx h CTx 

NY = 1: CTy 
dz (B-7) 

Nxy 2 Txy 

and 

Mx =!-} CTx 

My CTy z dz (B-8) 

Mxy -h Txy 'T 

for a plate of thickness h. 

(b) SMALL DEFLECTION PlATE EQUATIONS 

The small deflection equations may be obtained by imposing re-

strictions (B-1) on !11 displacement gradients. The product terms in 

(B-4) may then be omitted since they are small quantities of higher 

order. The stress resultants and stress couples then become 
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y 

(a) 

Stress Resultants 

y 
(b) 

j1. ___ - ------

z 

X 

My 

Myx 

Stress Couples 

Figure 2. Stress Resultants and Stress Couples in Plate Theory. 



Nx 1 0 0 'V 

Ny - Eh Jl 0 0 1 
l-'V2 

Nxy 0 1-'V 1-'V 0 
2 2 

Mx 1 v 0 

My - - Eh3 'V 1 0 
12(1-112) 

Mxy 0 0 1-V 
2 

The displacement equations of equilibrium become 

{ l+v) (u0 ,yy 
2 

v2 v0 - (l+V) (v0 ,xx 
2 
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u0 ,x 

uo,Y 
(B-9) 

v0 ,x 

vo,Y 

w0 ,xx 

Wo,YY (B-10) 

2 w0 ,xy 

(B-11) 

whereV2 is the harmonic operator and v4 is the biharmonic 

operator 

The first two of Equations (B-11) represent the displacement 

equations of equilibrium of the plane stress problem and are coupled 

together. They are, however, uncoupled from the third equation which 

represents the equilibrium equation for out-of-plane displacement. 

Thus for small deflections, the in-plane and out-of-plane behavior 

of thin plates are independent although the in-plane equations must 

be solved first. 
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(c) LARGE DEFLECTION PLATE EQUATIONS 

The nonlinear von Karman equations for large deflection of thin 

plates are obtained by retaining the product terms in Equation (B-4) 

and proceeding in the same manner as for the small deflection theory.* 

The stress resultants and stress couples then become 

Nx - Eh (u0 ,x + (w,ux}2 + 11 ( v0 ,y + (wch:2l 2 } ) 
l-l/2 2 2 

NY - Eh { v0 ,y + (we I :2:22 + v(u0 ,x + {w2 =x}2}) (B-12) 
l-l/2 2 2 

Nxy - Eh (uo,Y + vo,x + w0 ,x w0 ,y) 
2(l+V) 

and 

Mx 1 ll 0 w0 ,xx 

My - - E h3 ll 1 0 wo,YY CB-13) 
12 (1-l/2) 

Mxy 0 0 l-V 2w0 ,xy 
2 

The displacement equations of equilibrium are given by 

+ ~ ((wo,x)2 + ll(wo,y)2)) 

+ v0 ,x + Wo,x Wo,Y) - 0 

+ ~ ( (w0 ,y)2 + ll (w0 ,x)2)) (B-14) 

+ v0 ,x + w0 ,xw0 ,y) - 0 

r:J4wo = 

*The detailed derivation of the small and large deflection plate equations 
is not of interest here and has not been included. The details can be 
found in the standard texts on plate theory. 



Now, however, the first two of Equations (B-14), which represent the 

in-plane behavior, are dependent on w0 • The third equation representing 

the out-of-plane equilibrium is dependent on the in-plane displacements 

u0 and v0 due to the presence of the stress resultants Nx, Ny, and Nxy 

(see Equation (B-12)). Thus the in-plane and out-of-plane behavior 

are completely coupled for large displacements. r 

It is significant to note that the only difference between the 

small and large displacement formulations is the inclusion of the 

product terms in the strain-displacement relations (B-4). These terms 

are physically the rotation terms associated with the out-of-plane 

displacement component, w. 

In the development of the finite element method which follows, 

restrictions (B-1) are placed on all displacement gradients with respect 

to 'local' coordinates for the displacement increments obtained in each 

linear-incremental step. However, since the local coordinate system 

translates and rotates with the element, all of the above restrictions 

on displacement gradients can be removed with respect to global coor-

dinates for the total displacements from the initial configuration. 

3. THE LINEAR-INCREMENTAL APPRO!\CH 

In the linear-incremental finite element approach to the 'geo-

metrically' nonlinear large displacement problem, the loading is 

divided into a number of equal or varied steps whose size is chosen 

to yield displacement increments sufficiently small such that linear 

theory applies. To the entire structure which is in equilibrium at the 

conclusion of step (n), an incremental external load vector ll{R} 
0+1 
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is applied to yield the incremental displacements /l f Sl . These l' 1n+ 1 

incremental displacements, which determine the incremental strains and 

stresses, are added to the previous nodal locations to establish the 

updated position vector defining the structural configuration at the 

end of step (n+l). This process is repeated until the entire load has 

been applied. For each step linear theory is applied in the form of 

a linear relationship between incremental loads and displacements. The 

stiffness matrix expressing this linear relation must, however, include 

the 'geometrical' effect of large displacements as well as the 'elastic' 

effect encountered during small displacements. 

For element 'e' the incremental stiffness called for above ca~ 

be determined by considering the element in equilibrium before and after 

the (n+l)st step. For the assumed conditions of small engineering 

strains and linear steps, the elemental 'elastic' stiffness suitable 

for small displacements clearly remains the same throughout the step 

relative to the local coordinate system attached to and moving with the 

element. This stiffness is denoted by [k~e .* The element undergoes 

a change of displacement ll {8}~+ 1 during step (n+l). The element 

'incremental' stiffness relates the incremental change in nodal forces 

to these incremental displacements. This stiffness is the one desired 

and is defined by the relation 

22 

(:S-15) 

*The superscript 'e' denotes those quantities associated with a particular 
element (e) to distinguish them from quantities associated with the 
assembled structure. 
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The elemental forces and displacements in local coordinates are 

related to the corresponding global quantities by the standard trans

formation matrix of direction cosines [TJ e between the two coordinate 

systems. This relationship is expressed by 

(B-16) 

At the conclusion of step (n) the element was in equilibrium under the 

local nodal forces { Fn 1 } e whose global components are identified as 

(B-17) 

by noting that the transformation matrix is orthogonal. 

During step (n+l) the transformation matrix [ Tn] e undergoes a 

change [ /j, Tn+l J e since it is a function of nodal coordinates and hence 

displacements. In addition, the local nodal forces { Fn 1 } e undergo 

a change /j, { F 1 } :+l due to straining of the element. Thus, at the 

conclusion of step (n+l) the element is in equilibrium under the nodal 

loads 

(B-18) 

in which the incremental nodal forces due to local straining are given by 

' . 
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(B-19) 

Applying the second of Equations (B-16), this becomes 

ll{F'} e = 
n+l 

By employing Equations (B-20) and (B-17), Equation (B-18) can be written 

as 

if the incremental nodal forces are defined as 

e 
n+l 

(B-21) 

(B-22) 

and the two terms on the right in Equation (B-21) are defined as follows. 

The first term represents the incremental nodal forces due to '!lastic' 

straining of the element and is expressed by 

For sufficiently small steps ( /lTn+l J e can be neglected in comparison 

to [ Tn] e such that Equation (B-23) becomes 

(B-24) 



in which [ kEJ is the standard small displacement 'elastic' stiffness 

in global coordinates given by 
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(B-25) 

Note that [ ~ J ~ is in terms of quantities defined at the conclusion 

of step (n) or the beginning of step (n+l). The second term in Equation 

(B-21) represents the incremental nodal forces due to the 'Qeometrical' 

effect of the change in the transformation matrix caused by the displace-

ment increments and is defined as 

e 
n+l - CB-26) 

Since [ T J T is a function of the displacements, for small displacement 

increments [ ll T J T can be written as 

Substituting Equation (B-27) into (B-26) and rearranging the order, 

ll { F G} :+l can be expressed as 

[ k ] e ll { a}e 
G n n+l 

(B-27) 

(B-28) 

in which [kG] : is the 'Q.eometrical' stiffness of the element in global 

coordinates. This stiffness is evidently a function of the total, local 

nodal forces { F n '} e existing prior to step (n+l) and of the partial 

derivatives of the transformation matrix, [ Tn] • 
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Thus, for small increments the change of internal element forces 

during the incremental step (n+l) can be obtained as 

(B-29) 

where Equations (B-21), (B-24), and (B-28) have been combined. This 

defines the desired 'incremental' stiffness [ k J ~+l in Equation (B-15) 

as 

(B-30) 

Hence, the solution of the assembly of all the elements is accom-

plished in the usual manner as if the stiffness of each element were 

simply a sum of the standard small displacement 'elastic' stiffness 

[ kE J : and the 'geometrical' stiffness [kG J : . The nonlinear problem 

has thus been reduced to a sequence of linear solutions. The increments 

in displacements, forces, and stresses are added to the previous values 

to give an up-to-date account of deformation as the load is increased 

incrementally. 

The following can be considered an algorithm for the linear-

incremental approach: 

During step (n) an incremental load vector~ { R} n was applied to 

the assembled structure to yield the incremental displacements 

~{8}n· For each element of the structure in equilibrium. at the 

conclusion of step (n) 

(i) Determine the new local coordinate transformation matrices 

corresponding to the updated nodal locations. 



(ii) Calculate the incremental nodal forces resulting from the 

displacements in step (n). these forces, when added to the 

previous values, define the totals at the end of step (n). 

the total nodal forces in local coordinate components are 

needed to define the 'geometrical' stiffness for step (n+l). 

(iii) Calculate the incremental ('elastic' plus 'geometric') 

stiffness in global coordinates, based on the configuration 

at the conclusion of step (n). 

(iv) Repeat steps (i), (ii), and (iii) for all elements and 

assemble the global stiffness matrix for the entire structure, 

[ k J n+l • 

(v) Apply the loading increment fl { R} n+l to the assembled 

structure and calculate the resulting displacement increments 

!l { 8} n+l by solution of the simultaneous displacement 

equations of equilibrium 
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(B-31) 

(vi) Compute the incremental strains and stresses. 

(vii) Update nodal coordinate locations. 

(viii) The above steps are repeated until the entire loading has 

been applied. 

In a previous section the reduction of large displacement shell 

problems to the analysis of the geometrically nonlinear large displace-

ment problem in thin plates was discussed. In applying the linear-

incremental approach to these problems, the displacements and hence 

displacement gradients per step can be reduced to the level such that 



'plate bending' and 1 in-plane 1 behavior are uncoupled. Hence in the 

following sections, the 'elastic 1 stiffness of the thin triangular ele

ment will be obtained in local coordinates by adding the independent 

bending and membrane stiffnesses suitable for small displacements. 

This stiffness will then be transformed to global orientation. The 

'geometrical' stiffness will be derived in global coordinates and add

ed to the global 'elastic' stiffness to form the total incremental 

stiffness. Matrix assembly and solution of the resulting displacement 

equations of equilibrium will then be described. 

C. SMALL DISPLACEMENT FORMUlATION 

The most critical step in the finite element formulation is the 

evaluation of the stiffness properties of the individual elements. The 

element properties, including the stiffness, will be evaluated first 

in local coordinates and then transformed to global orientation via 

the standard transformation law. 

It is assumed that the triangular elements are interconnected 

only at their corner (nodal) points. Thus, the element stiffness 

represents the forces at these nodal points resulting from unit dis

placements of the nodal points. Two types of element stiffness are 

considered for the flat-plate idealization in shell analysis; 

plate bending stiffness which accounts for displacements and rotations 

out of the element plane, and in-plane (membrane) stiffness which re

lates forces and displacements in the plane of the element. As noted 

in section B, there is no coupling between bending and in-plane 

behavior for small displacements. Therefore it will be convenient to 

consider the triangular element in bending and in plane stress separately 
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and then combine the resulting stiffnesses. 

In Figure 3 a typical triangular element is illustrated showing 

the local coordinate system considered. Also shown are the displace-

ments* and associated forces for the separated bending and in-plane 

actions in local coordinates. The choice of local coordinate directions 

is such that for a typical element with nodes i, j, k the x' andy' 

axes are in the middle-surface plane of the element. The x' axis is 

chosen along the edge i-j, positive in the direction i-.j. They' 

axis is perpendicular to the x' axis and chosen to pass through node 

k. The z axis is orthogonal to x' and y' and therefore to the plane 

of the element (assumed to be of uniform thickness) with direction 

defined by the right-hand rule. For uniformity, nodal points i, j, 

k will be chosen in a counterclockwise fashion when viewing from the 

exterior of the shell so that ~will always point outward. 

1. 'PLATE BENDING' FORMULATION (Local Coordinates) 

(a) DISPLACEMENT FUNCTIONS 

For plate bending, the state of deformation is given uniquely 

by the lateral displacement w'* of the 'middle plane' of the plate. 

In accordance with compatibility requirements, on the interfaces 

between elements, it is necessary to impose continuity not only on 

w• but also on its derivatives. This is to ensure that the plate 

*For the finite element analysis in this section, the assumed displace
ment functions and resulting nodal displacements are all for points on 
the middle surface. Hence the subscript (o) is dropped for convenience. 
Since all the quantities of interest are for a characteristic element 
•e•, the superscript (e) is also dropped. In addition, since all forces 
and displacements are understood to be small incremental values, the 
del (~) is dropped. 
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y' 

i j 

i j 

'Plate Bending' Displacements and Forces 

Bzj' (Mz/) 

vj '(FYj ') 

i j 

'Membrane' Displacements and Forces 

Figure 3. A Typical Element Subject to 'Plate Bending' and 

'Membrane' Actions in Local Coordinates. 
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(a) 

(b) 



remains continuous and does not 'kink. 1 (Note that in the limit as 

the number of flat-plate elements is increased, the idealization of a 

curved shell by these elements brings adjacent elements into the same 

plane). In finite element analysis of thin-plate bending, it is thus 

convenient to consider three degrees of freedom per node. These are 

given by the nodal displacement of the middle surface in the z'direc-

tion (wj') and the rotations of the normal to the middle surface about 

the x' andy' axes, ax· I and 8 1 , respectively (see Figure 3(a)). 
J Yj 

The rotation terms are obviously identical to the slopes ofw 1 (except 

for sign). That is 

,.., 

Bx I a'W· -
oyl 
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,.., (C-1) 
8 I ~· - -y 

' 

Hence in the bending formulation, the three degrees of freedom per 

node with three associated generalized forces (a force and two moments) 

are given for node 1 i 1 as 

*In the following, a tilde (-) will be used to indicate a quantity 
which is a function of the coordinates to distinguish it from the 
corresponding nodal quantities. 
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w f 

i 

{sib'}*= Bxi 
I 

' 8yi 
(C-2) 

FZi ' 
{Fib,} - Mx·' l. 

Myi' 

In an attempt to satisfy the aforementioned continuity require-

ments for bending displacements, the bending formulation adopted is 

that of Reference (~. Accordingly, a different displacement expansion 

is selected for each of the two subregions created by the previously 

chosen local axes system as shown in Figure 4. For inter-element com

patibility, w' must be a cubic function and the normal slope of w' 
must vary linearly on the boundaries of the element. Choosing a com-

plete cubic expansion in x' and y' for each subregion, eliminating the 

term x•2y• by requiring a linearly varying normal slope along i-j, 

and deleting two parameters by requiring the normal slope to vary 

linearly along sides i-k and j-k gives the normal displacement expan-

sions for subregions (1) and (2) as 

- (m}** ( } 2 w' = a1 + a2x' + a 3y' + a4 m x' + asx'y' 

+ a 6y•2 + (t(m)x•3 + x'y'2) a 8 

+ (r (m) X 1 3 + y 1 3) a 9 

*The superscript 'b' denotes those quantities associated with the 
Qending formulation. 

**The superscript in parentheses denotes for which subregion the 
quantity applies. 

(C-3) 



y' 

i 

. --J----- XI 

Figure 4. Element Subregions and Associated Dimensions. 
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with m == 1,2. The a's are constants to be determined in terms of 

nodal quantities. (m) (m) . 
The terms t and r are g~ven by 

t (m) - 1.[2-(_£_)2] 
3 ( am)2 

(2) m - 1,2 
r(l) - __£_ r - __£_ 

"' al a2 

with dimensions a1, a 2, and c defined in Figure 4. The nine a co

efficients in Equation (C-3) can be written in terms of the element's 

nine degrees of freedom (three for each node) by substituting appro-

priate coordinates into the expressions forw' and its derivatives as 

defined in Equations (C-1) and (C-3). Performing this substitution 

yields the element bending displacement vector 

where 

and [ Cl J is given in Appendix I. Equation (C-5) can be solved for 

{a} to yield 
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(C-4) 

(C-5) 

(C-6) 

(C-7) 

*The superscript in parentheses denotes for which subregion the quantity 
applies. 
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Also, Equation (C-3) can be written in the form 

"'• (m) w m - 1,2 (C-8) 

where 

[ 'P] (1) - [ 1, X 1 , y' x' 2 0 x'y' 
' ' ' ' 

y'2, t(l)x•3 

+ x•y•2, r(l)x•3 + y'3 J 
[ p] (2) - [ 1, x', y' 0 x 12 x'y' y'2, t(2)x•3 

' ~ ' , 
(C-9) 

2 (2) ,3 + y ,3] + X 'y I ' r x . 

The element displacement functions (C-3) have been chosen to 

satisfy the requirements of normal slope continuity along edges be-

tween adjacent elements and throughout the interior of the element. 

The transverse displacement w' satisfies continuity requirements along 

edges i-k and j-k but not along i-j. However, this incomplete fulfill-

ment of compatibility requirements is not significant as demonstrated 

by the excellent results obtained with this element for small displace-

ment plate bending in Reference (1§). 

(b) STRAIN AND STRESS MATRICES 

In accordance with classical thin-plate theory, the variation 

in stresses and strains on lines normal to the plane of the plate is 

prescribed to be linear. Accordingly, the normals to the middle plane 

remain straight, unstrained, and normal to the middle surface after 
,.... ,.... ....., 

deformation (i.e. E z' = Yx'z' = 'Yy'z' - 0). This is the classical 

Kirchoff assumption discussed in section B. 

The actual strains in any plane at a distance z' from the middle 

plane can be described in terms of the three curvatures of w'. These 
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generalized strains (curvatures) are defined as 

,.... b a2w' K I -
X 

~ 
,..., {i'b·} b a2w-· (C-10) - Ky' -

~ 
,..., b azw· Kx'y' - 2 

I e ax ay 

The 'engineering' strains at a distance z' from the middle plane can 

be expressed in terms of the generalized strains as 

,..., b 
Ex• 

,...., b 
Ey• 
,...., b 
Yx'y' 

(C-11) 

Similarly, the actual stresses at a distance z' above the middle 

surface can be found in terms of the stress resultant internal moments. 

Using the familiar notation and referring to Figure 5, three such moments 

are defined at any point fixing the stresses throughout the thickness. 
,...., ,...., ,...., 

These are M 1 , M 1 , and M 1 1 which represent the resultants of stresses 
X y X y 

acting per unit distance x' or y'. Therefore, the generalized stresses 

are defined as 

,...., b ,...., b Mx' h O"x' 

{Mb·} ,...., b 1: ,...., b - My' - O"y' z' dz' . (C -12) 
,...., b ,.... b M x'y' 2 't"x'y' 
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Figure 5. Stress Resultants for Plate Bending. 
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Corresponding to the engineering strains, the stresses at a distance 

Z 1 from the middle surface can be expressed in terms of the generalized 

stresses as 

(C-13) 

where 1h 1 is the thickness of the element. In general, the strains 

and stresses defined by Equations (C-11) and (C-13) are functions 

Of X I , Y 1 , and Z I • 

For subregions (1) and (2) (see Figure 4) the appropriate ex-

pression for~' from Equation (C-8) can be differentiated according 

to Equation (C-10) to give the generalized strain matrices 

{ '::bK 1 } (m) _ [,.., J (m) { } Q a , m _ 1,2 (C-14) 

in which [<r] (m), m = 1,2 are defined in Appendix I. Applying Equation 

(C-7), (C-14) can be written in terms of the nodal displacements as 

{'Kb ' } (m) _ ('ib J (m) { 8 b r } , m _ 1, 2 (C-15) 

where 

(C-16) 
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Note: It can be shown that the assumed displacement functions given 

by Equation (C-3) permit possible constant strain states and include 

the rigid body modes. They thus satisfy the completeness requirements 

set forth in Chapter III. 

(c) STRESS - STRAIN RELATION 

The linear relationship between stress and strain for an isotropic, 

homogeneous, elastic plate without initial strain* is given on page 81 

of Reference (ill as 

(C-17) 

where the elasticity matrix is given by 

1 Zl 0 

12(1-vZ) 
Zl 1 0 (C-18) 

0 0 1-JI 
2 

withE Young's modulus, h the thickness, and v the Poisson's ratio. 

These relations for subregions (1) and (2) yield 

(C-19) 

*Initial strains, that is strains caused by an initial lack of fit, 
temperature change, shrinkage, etc., have not been considered in this 
analysis. Their inclusion would introduce an initial strain matrix 
in Equation (C-17). 
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By utilizing Equations (C-13), (C-19), and (C-15) the stresses 

for subregions (1) and (2) can be written in terms of nodal displace-

ments as 

(C-20) 

This relation will be used later to calculate the stresses due to 

bending at nodes i, j, and k on the inner and outer surfaces (z '= +hl· 
2 

(d) STIFFNESS MATRIX 

The [9 X 9] plate-bending stiffness matrix defined by 

F·b' 
l. 

8. br 
l. 

F·bt 
J - [ kb'] 8.br 

J (C-21) 

Fkb' 8kbr 

relates the local nodal forces to the corresponding nodal displacements 

(refer to Equation (C-2» and is given by 

is defined in 

Equation (C-16). Recalling that (ib] (m) is valid for subregion m, 

m = 1,2 the stiffness matrix may be rewritten as 

(C-22) 

(C-23) 
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where A(l) and A(2) are the areas of subregions (1) and (2), respec-

tively. Substituting Equation (C-16) into (C-23), the stiffness matrix 

for bending can be written as 

where 

and 

(m) dA (m) 
' 

The matrices in Equation (C-26) have been integrated over the middle 

surface of the triangular element to yield the combined matrix 

( kb' J (1, 2) given in Appendix I. 

The inverse of [ Cl] will be obtained in the computer so that 

the bending stiffness can be calculated by performing the matrix 

multiplications in Equation (C-24). This stiffness matrix can then 

be partitioned and submatrices extracted according to 

k •. bt 
11 

k· .bt 
l.J kikb' 

[ kb'] kji 
b, kjjbt kjk 

bt -
kki 

bt k b• kkkbr kj 

where the subscripts on each of the [ 3 X 3] bending submatrices 

correspond to the nodes i, j, k of the element. 

(C-24) 

(C-25) 

(C-26) 

(C-27) 
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2. 'IN- PLANE' FORMULATION (Local Coordinates) 

(a) DISPLACEMENT FUNCTIONS 

For the in-plane or membrane behavior of the thin triangular 

element in plane stress, the state of deformation is given uniquely 

AJ -by two in-plane components of nodal displacement u' and v' in the 

local x' andy' directions, respectively (see Figure 3 (b)). The -rotation about the z' axis, 8 , must be small with respect to the z 

local coordinate axes and for shell theory, negligible compared with 

other displacement components. Hence there are two degrees of free-

dom per node with two associated generalized forces given for a typical 

node 1 i 1 as 

U· I 

{ 8 iP'} * 
~ 

-
V • I 

l. { } 
(C-28) 

{ F ip I} - r .. J F::~ 

If the displacement field is to be continuous between adjacent 

elements, which are is the same plane in the limit as the mesh size 

is reduced, it is necessary that each component of in-plane displace-

ment vary in a linear manner along the sides of the element. According-

ly, a linear expansion in x' and y' is chosen for each of the in-plane 

displacements. Thus, 

*The superscript 'p' denotes those quantities associated with the 
in-~lane formulation. 



U I - {31 + {3 2X I + {3 3y I 

v' - {34 + f3sx' + {36y' 
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(C-29) 

where the{3's are constants to be determined in terms of nodal displace-

ments. This can be accomplished by substituting the appropriate coor-

dinates for nodes i, j~ and k into Equation (C-29) and solving the six 

resulting simultaneous equations to yield 

{31 

{32 

{!3} 
{33 

[ CP] { 8 P'} -
{34 

-

{35 

{36 

where 

8iP' 

{ 8P'}= 8·P' J 

8kP' 

is the element in-plane displacement vector and (cp J is given in 

Appendix II. Equation (C-29) can now be written in the form 

u' - [ 1 x' y' 0 0 0 J { {3} 

(ooo 1 x' y'] {!3} 

(C-30) 

(C-31) 

(C-32) 
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(b) STRAIN Mill_ STRESS MATRICES 

The total strain at any point within the element can be defined 

by its three engineering strain components which contribute to internal 

work. These generalized strains for in-plane action are defined as 

- ,p att· Ex 
ax• 

-{':P•} 
p a'V· - Eyr - (C-33) 

ay' 

- a-· a-· Yx•y•P _JL+ .J_ 
jjy' ax' 

The above strain-displacement relations incorporate the assumption 

of small strains and small rotations such that second degree terms 

can be neglected. Differentiating the displacement expansions in 

Equation (C-32) according to (C-33) and employing (C-30), the engineer-

ing strains can be expressed in terms of nodal displacements as 

(C-34) 

with [BPJ defined in Appendix II. Since the terms of [BPJ are 

constants associated with the element geometry, the assumed displace-

ment expansions define a constant strain state throughout the element. 

Hence the tilde (-) is not needed in Equation (C-34). It can be shown 

that the assumed displacement functions also provide zero strain states 

for the possible rigid body motions. Thus the completeness requirements 

set forth in Chapter III are satisfied. 
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For the assumed plane stress condition, the non-zero stresses 

corresponding to the generalized strains in Equation (C-33) are defined 

as 

CT ,P 
X 

cry•P (C-35) 

Tx'y'p 

(c) STRESS - STRAIN RElATION 

For plane stress in an isotropic material without initial strains, 

the stress-strain relation is given by 

(C-36) 

with the elasticity matrix defined as 

1 0 

Jl 1 0 (C-37) 

0 0 1::J! 
2 

Since a condition of constant strain and hence stress exists 

throughout the triangular element, Equation (C-36) defined the stress 

state for nodes i, j, and k due to the in-plane action at both the 

inner and outer surfaces (z' = ::;:: !!). Thus, again the tilde has been 
2 

omitted. 
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(d) STIFFNESS MATRIX 

The [ 6 X 6 J in-plane stiffness matrix defined in the equation 

F .PI 8 P 1 
l. i 

FjPI - [ kP 1] 8-P 1 
J (C -38) 

F P' k 8kP• 

relates the local nodal forces to the corresponding nodal displacements 

(refer to Equation (C-28)). This stiffness matrix is defined by 

(C-39) 

where V is the volume of the element of uniform thickness h. The matrix 

[ BP J , given in Appendix II, can be partitioned in the form 

(C-40) 

Substituting Equation (C-40) into (C-39), performing the matrix multi-

plications indicated, and realizing that the matrices within the integral 

contain only constant terms, the [ 6 X 6 J in-plane stiffness matrix 

of the element is given by 

k pI 
ii kijP 1 kik 

Pr 

[ kP'] - kjip I kjj P• kjk 
p, (C-41) 

kki P• kkjp' kkkp, 
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where the (2 X 2 J submatrices are defined as 

(C-42) 

with r, s - i, j, k. 

3. COMBINED 'BENDING' AND 'IN - PlANE' FORMUlATIONS (Local Coordinates) 

(a) THE 'ElASTIC' STIFFNESS 

Before combining the 'plate bending' and 'in-plane' formulations, 

it is important to note two facts. The first, that the displacements 

prescribed for 'in-plane' action do not affect the 'plate bending' 

deformations and vice versa. This is due to the assumption of small 

displacements. Second, the rotation Bz' does not enter into either 

mode of deformation. It is convenient to include it now and associate 

with it a fictitious couple Mz'· The fact that it does not enter as 

a displacement variable can be accounted for by inserting appropriate 

zeros in the stiffness matrix. Its inclusion is advantageous when 

transformation to global orientation and assembly are considered. 

Redefining the combined nodal displacements due to bending ~ 

in-plane actions as 

U • I 
1 

Vi I 

W • I 

{8i'} 
1 

(C-43) -
Bxi' 

8yi 
I 

Bzi' 
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and the appropriate generalized 'forces' as 

FX· 
I 

~ 

FYi 
I 

Fz· 
I 

{ Fi '} 
~ (C-44) -

Mxi 
I 

~i 
I 

M 
Zi 

it is now possible to write 

F· I 
l. 8i I 

F. I - [ k'] 8·' 
J J 

(C-45) 

F I k 8k' 

or 

{ F'} - [ k ·] { 8'} (C-46) 

The ( 18 X 18] combined 'elastic' stiffness matrix in local coordinates 

is given in partitioned form as 

kii 
I 

kij 
I 

kik 
I 

[ k' J kji 
I 

kjj 
I 

kjk 
I (C-47) -

kki 
I 

kkj 
I 

kkk 
I 

and can be shown to be made up of the submatrices 
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[ krsp ']: 
0 0 0 0 

0 0 0 1 0 I 

-I- ,.. -
0 0 I I 0 

( krs '] -
[ krs b'] 

(C-48) 
0 0 I 0 

0 0 
I 

0 
- -~- I 

0 0 1 0 0 0 0 

r, s _ i, j, k, if it is noted that 

(C-49) 

The submatrices r~sb'] and [ ~8P'] are given in Equations (C-27) 

and (C-42), respectively. 

(b) COMBINED STRESSES 

The stresses at the inner and outer surfaces of the element due 

to combined bending and in-plane actions are the ones of interest. The 

extremum stress levels are obviously there since the bending stresses 

reach their maximum magnitudes there and are zero at the middle surface, 

while the in-plane stresses are uniform throughout the thickness. This 

fact is illustrated in Figure 6 for the stress component ~x 1 • 

For all three nodes, the stresses for in-plane action are given 

by Equation (C-35) throughout the thickness and need no further discussion. 

The bending stresses on the inner and outer surfaces are given in Equation 

(C-20) by substituting z' = -!1 & h. , respectively. Nodes i and j are 
2 2 



clearly in subregions (2} and (1}, respectively (see Figure 4). Node 

k being common to both subregions, it is convenient to calculate the 

bending stresses for subregions (1} and (2} at the node and to average 

the two. For all three nodes then, the bending stresses are 

Thus the combined stresses due to bending and in-plane actions 

at z ' = + h are given by 
2 

(C-50) 

(C-51} 

where the stresses due to bending are defined by Equation (C-50) upon 

specifying z 1 = + h/2. 

The stress components u , , u , , and T 1 1 , defined for nodes 
X y X y 

i, j, and k by Equation (C-51), will be used to calculate the principal 

stresses at both the inner and outer surfaces. For all elements having 

a particular node in common, these principal stresses will be averaged. 

This averaging effect will tend to reduce the error introduced when the 

smoothly-curved shell surface was approximated by one made up of flat 

triangular plates, each of which may be in a slightly different plane 

when joined at a particular node. 

The principal stress equations, being the standard ones for two-

dimensional stress, will not be included here. 
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Figure 6. Combined Stress due to Bending and In-Plane Actions. 
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4. GLOBAL TRANSFORMATION 

The element small displacement 'elastic' stiffness matrix derived 

in the previous sections used a system of local coordinates. Trans-

formation to a global coordinate system, common to all the elements, 

will be necessary for assembly. In addition, it will be more convenient 

to specify the element nodes by their global coordinates and to establish 

from these the local coordinates, thus requiring an inverse transformation. 

The two systems of coordinates have been shown previously in Figure 

1. The nodal displacement and force components in local coordinates 

transform from the global system by a matrix [ L J as 

with the force and displacement vectors defined in Equations (A-1) 

through (A-4). The transformation matrix [ LJ is defined as 

with [A J a [ 3 X 3 J matrix of direction cosines of angles formed 

between the two sets of axes. [A J is derived in Appendix III. 

For the entire set of forces acting on the nodes of an element 

it is now possible to write 

(C-52) 

(C -53) 
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By the rules of orthogonal transformation the relastic' stiffness matrix 

of the element in global coordinates becomes 

(C-55) 

with [ k 1 J given in Equation (C-47). In the above relations, [ T] is 

given by 

L 0 0 

0 L 0 (C-56) 

0 0 L 

A typical submatrix [krsE] of the partitioned (18 X 18] 'elastic' 

stiffness matrix 

k .. k .. k.k 

[ kE J 
~l.E ~JE l. E 

- k .. k .. k.k (C-57) 
J~E JJE J E 

kk. 
~E 

kk. 
JE kkk 

E 

can be shown to be 

(C-58) 

in which [krs'] is defined in Equation (C-48). 



D. lARGE DISPlACEMENT FORMUlATION 

1. THE I GEOMETRICAL I STIFFNESS 

In section B, the concept of the 'geometrical' stiffness matrix 

for use in the linear-incremental approach was outlined. In step 

(n+l), the incremental global nodal forces for an element, due to the 

geometrical effect of large displacements, were given in Equation 

(B-26) as 

in which 

e 

/1 T2,18 • • • 

For small steps, the terms in Equation (D-2) being functions of nodal 

coordinates can be expanded in the form 

*In this and the following sections the superscript (e) denotes those 
matrices associated with a particular element as opposed to those 
associated with the overall assembled system. 
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(D-1) 

{D-2) 
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e e e 
Av1 !J.T - 0 Tr~s Au.+ aT + . . . r,s l. 

~ a xi 
e 

+ aTr 1 s !J.uj + . . . . (D-3) 

axj 

Expanding each of the terms in Equation (D-2) in this manner, !J.{FG}:+l 

can be rearranged to the form 

where the 'geometrical' stiffness is given by 

{ kG } : = [ Tn J T e 

in which 

e 
Fii ' Fii 

I 
Fii 

I 

Fjj 
I F .. ' F .. I 

JJ JJ 

Fkk 
I 

Fkk 
I 

Fkk 
I 

n 

F ' F I F I F ' m m m m F '] e m n 

a 0 0 
aai 

0 a 0 

aaj 
0 0 L 

aBk n 

, m=i, j, k 

and [Fm'] is given in Equation (C-44). Also, the matrix of partial 

derivative operators with respect to the element's nodal coordinates 

is defined as 

a 0 0 0 0 0 
ClXm 

0 a o 0 0 0 
aYm 

0 o a 0 0 0 

[ g8m ]n = ozm , m = i, j, k. 
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 n 

(D-4) 

(D-5) 

(D-6) 

(D-7) 



Partial derivatives with respect to the angular coordinates do not 

appear in Equation (D-7) since they are zero in (D-3). This is so 

because the transformation matrix derived in Appendix III is formu-

lated in terms of x, y, and z coordinates of the element's nodal points. 

The subscript (n) can be dropped in the following with the understanding 

that all terms are referenced to the equilibrium configuration existing 

prior to the new loading step. 

By employing Equation (C-56) and performing the multiplications 

indicated in (D-5), a typical submatrix of the partitioned (18 X 18 J 
'geometrical' stiffness matrix 

e 
k .. 
~~G 

k .. 
l.JG k·k l. G 
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[kG] e - k-· Jl.G 
k .. 

JJG k.k J G 
(D-8) 

kk· l.G kkjG kk~ 

becomes 

[ L r• [ Frr'] e [ ta;] [ krsG] e - (D-7) 

with all matrices previously defined. All that remains is to perform 

the matrix multiplications called for in Equation (D-7) with the under-

standing that the partial derivatives apply to the direction cosines 

in the transformation matrix. The resulting elements of this 'geometri-

cal' stiffness submatrix are too lengthy to present here. For the in-

terested reader, they are included in Appendix IV. 

One further comment is appropriate here. The 'geometrical' stiff-

ness, as derived from a purely geometrical standpoint, is non-symmetric. 

This is unfortunate as will be pointed out later when problem solutions 

are discussed. 



2. THE INCREMENTAL STIFFNESS 

As previously described in section B, the element stiffness 

desired for use in the linear-incremental approach, the incremental 

stiffness, is merely the sum of the previously derived 'elastic' and 

'geometrical' stiffnesses. Thus a typical submatrix of the partitioned 

[ 18 X 18 J incremental stiffness matrix 

becomes 
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(D-9) 

with [ krsE J e and [ krsG] e given in Equations (C-58) and (D-7), 

respectively. Although the 'elastic' stiffness matrix is symmetric, 

the non-symmetric 'geometrical' stiffness renders the incremental 

stiffness matrix of the element non-symmetric. 

3. MATRIX ASSEMBLY 

For a shell with 'P' nodal points there are 6P degrees of freedom 

giving a structural stiffness matrix of dimensions [ 6P X 6P J . The 

[ 18 X 18 J incremental stiffness matrices for all elements of the 

structure must be evaluated as outlined in the previous sections and 

superimposed to form the overall structural stiffness. 

For element 'e' with nodes i, j, and k, the terms in the [ 6 X 6] 

incremental stiffness submatrix [krs] e, given by Equation (D-9), 

are added into the respective locations 



-5,6s-5, k6r-5,6s , k6r-5,6s-3, k6r-5,6s-2, k6r-5,6s-l, k6r-5,6s 

k6r-4,6s-5, -4,6s-3, k6r-4,6s-2, k6r-4,6s-l, k6r-4,6s 

k6r-3 6s-5 
> ' 

k6r-3, 6s -4, k6r-3 6s-3 
' ' 

k6r-3 6s -2 
) ' k6r-3 6s-l , > k6r-3,6s 

k6r-2,6s-5, k6r-2,6s-4, -2,6s-3, k6r-2 6s-2 
' ' 

k6r-2 6s-1 
) ' k6r-2,6s 

k k6r-l 6s-4 k6r-1 6s-3 k6r-1 6s-2 k6r-l 6s-l k6r-1,6s 6r-1,6s-5, 
' ' ' ) ' ' ' ' 

k6r 6s-5 k6r 6s-4 k6r,6s-3, k k k6r,6s 
' ' ' ' 

6r,6s-2, 6r,6s-l, 

in the overall stiffness matrix ( k J . The stiffness components due to 

all the elements will be superimposed (added) in this manner. 

As outlined in section B, the assembled stiffness matrix is then 
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(D-10) 

used in calculating the incremental displacements due to an incremental 

application of the loading according to the linear relation 

(D-11) 

with [ k J the assembled structural stiffness described above. 



CH!l.PTER V 

METHOD OF SOLUTION 

The large displacement finite element analysis using the linear

incremental approach requires the repeated formulation and solution of 

a large number of simultaneous equations expressed in Equation (D-ll) 

of Chapter IV. To accomplish this, a computer program was written for 

and executed on the IBM 360 machine at the University of Missouri at 

Rolla Computer Center. The program was limited in capacity to maintain 

an in-core solution. Effort was concentrated on developing an operating 

program which could produce solutions to the problems under considera

tion. However, no effort was devoted to optimizing numerical computa

tions. A listing of the program together with a brief description of 

the input format and output data is given in Appendix V. 

A. PROGRAM OUTLINE 

An outline of the program for the linear-incremental approach is 

shown in Figures 7 and 8. For problems in which extremely large displace

ments are expected which would require an excessive number of increments 

to maintain linear geometrical relationships for each step, an alternate 

iteration option is provided. 

1. ALTERNATE ITERATION OPTION 

For each loading increment in the program using iteration in con

junction with the incremental approach, a specified number of iterations 

are employed to cause the displacement state to converge to the equilib

rium solution corresponding to the total applied loading thus far. 
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jRead and Write Datal 

I No Further 
I 

Assembhr (see _, Figure 8) Load Stop 

I Increments 

Increment Load 

I 
Modify Equations for 

Displacement Boundary 

Conditions 

I 
Solve Equations for 

Displacement Increments 

I 
Compute Stresses 

I 
Write Nodal Coordinates 

and Load and Stress Levels 

I 
Increment Nodal Locations 

I 

Figure 7. Program Outline for Linear-Incremental Approach 
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j Select First Element J 

I 
I 

Compute Displaced Local Coordinate System 

I 
Extract Element Incremental Displacements 

I 
Compute In-Plane Stiffness 

Compute Bending Stiffness 

I 
Elastic Stiffness = In-Plane + Bending 

I 
Compute Incremental and Total Element Forces 

f 
Transfor.m Elastic Stiffness and Total 

Forces to Global Coordinates 

I 
Compute Geometric Stiffness 

I 
Incremental Stiffness = Elastic + Geometric 

I 
Assemble by Direct Stiffness Procedure 

I 
I 

I Return with all Elements ProcessedJ 

Figure 8. OUtline of Stiffness Assembly 



This is accomplished by seeking a force balance between applied loading 

and the nodal forces reacting the displacement state. Each iterative 

step is identical to the normal incremental step as shown in Figure 7 

except that: 

(i) The difference between the applied loads and the total reac

tion forces, the unbalanced loads, are determined and applied 

as the loading increment. 

(ii) The applied load level is left unchanged. 

(iii) The 'write 1 statement is skipped. 

B. COMPUTATIONAL EFFORT 

The principal shortcoming of the 'geometrical' stiffness approach 

to large displacement problems is the computational effort involved. 

As pointed out previously, the non-symmetrical 'geometrical' stiffness 

renders the incremental stiffness non-symmetrical. This necessitates 

handling the entire stiffness matrix and precludes usage of the more 

efficient routines developed for inverting symmetrical, positive definite 

matrices. Moreover, each incremental (or iterative) step requires the 

complete solution of a small deflection problem. For these reasons in 

addition to the fact that no effort was made to optimize computations, 

machine running time was understandably large. 

The total solution time depends of course on the number of elements 

employed and even more significantly on the number of nodal points which 

determines the dimensions of the assembled stiffness matrix to be handled. 

Computation time rose disproportionately fast with an increased number of 

nodes and to a lesser extent with an increased number of elements. The 
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program was limited to treating 21 nodal points and 30 elements. Sym-

metry was taken advantage of wherever possible. 

Some typical times for solutions on the IBM 360 for problems 

carried out in this investigation are as follows: 

SOLUTION PROCEDURE NUMBER OF SOLUTION TIME PER ELEMENT PER STEP . 
NODES (ITERATE) IN SECONDS 

Incremental 9 5.6 

15 8.1 

Incremental 20 13.7 
& Iteration 



CHAPTER VI 

VERIFICATION OF METHOD 

The large displacement finite element method presented was applied 

to four large deflection thin-plate problems for which experimental data 

or numerical solutions were available in the literature. This was done 

in order to demonstrate the validity and versatility of the method. The 

problems treated include various boundary conditions with concentrated 

as well as distributed loading. In this investigation distributed load

ings were replaced by statically equivalent, concentrated nodal loads 

according to assigned nodal areas. To facilitate the assignment of 

areas, uniform grids were employed. 

A. SIMPLY SUPPORTED SQUARE PlATE; 

EDGE DISPLACEMENT : 0 

The first example presented is that of a simply supported 10 inch 

square plate, 0.04 inches thick, subjected to a uniform normal pressure 

of 1.837 psi and edge forces such that edge displacements (but not 

rotations) on all sides are zero. The results can be compared with those 

obtained by Levy QYD. Levy solved the von Karman equations (see 

Equations (B-14) in Chapter IV) consisting of two coupled equations 

in which the dependent variables were the stress function and the 

out-of-plane displacement. The dependent variables were approximated 

by a truncated trigonometric series and convergence was examined as 

more terms were added. 
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The plate was assumed to have a modulus of elasticity of 27.6xl06 

psi and a Poisson's ratio of 0.316.* The uniform loading was applied 

in 40 increments without iteration. 

The center deflection vs. loading plot is shown in Figure 9.** 

A maximum central deflection of nearly twice the thickness (h) was 

attained. The stiffening of the plate with increasing deflection is 

indicated by the decreasing slope of the curve. Thus a given load 

increase would yield a much smaller displacement increment at a higher 

load level than near the unloaded state. This stiffening effect is 

due to the fact that appreciable lateral displacement induces a stretch-

ing of the middle surface thus stiffening the plate against further 

deflection. The deflection path for small deflection theory illustrates 

that such theory is applicable only for deflections less than ~ the 

thickness. This example is obviously one of large deflections. Note 

the excellent agreement with Levy's solution. 

The plot of principal stresses due to combined bending and in-

plane actions is shown in Figure 10. The agreement of stresses with 

Levy's solution is not as good as for deflections. The principal 

stresses plotted are average values at the nodes. 

The effect of grid size on the accuracy of the finite element 

model is shown in Figure 11 for this same problem. The square plate 

was idealized with 32, 72, and 128 element uniform meshes. 

*The value of 0.316 was chosen to agree with that in Levy's solution. 
Levy was primarily interested in Aluminum and adopted this value. 

**In the following figures, unless stated otherwise, the results of 
only every other loading step are shown for clarity. 
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Figure 9. Load-Deflection of Simply Supported Square Plate; Edge Displacement= 0. 
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For the center deflection, the convergence of the solution with refined 

mesh size is evident. This indicates that the displacement discon

tinuities introduced in the finite element model diminish as the mesh 

size is reduced. 
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To illustrate the step size effect, the above example was also 

solved using a uniform grid of 128 elements but with the loading applied 

in 10, 20, and 40 equal steps. The effect of step size on the solution 

for the center deflection is shown in Figure 12. Each loading step is 

included in the figure. The step size is evidently critical in obtaining 

an accurate solution. This is particularly true for the first few loading 

steps because the true deflection curve is more nonlinear there. The 

fact that the displacements for each loading step are the solution of 

a linear problem is illustrated in that for each loading application, 

the first step falls on the curve for linear, small deflection theory. 

A large first step would obviously yield displacements greater than 

those for the true solution. 

B. SIMPLY SUPPORTED SQUARE PlATE; 

~ COMPRESSION = 0 

A frequently encountered boundary condition is that of a simple 

support which constrains the edges to remain straight, prevents normal 

edge displacement, but allows unrestricted motion in the plane of the 

undeformed plate. A 6 inch square plate, 0.05 inches thick, subject 

to the above boundary conditions on all edges, was loaded with a uni-

form normal pressure of 60.28 psi. The loading was applied in 20 incre

ments with no iteration. The plate was assumed to have a modulus of elas

ticity of 25.0xl06 psi and a Poisson's ratio of 0.316. 
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In Figure 13 the finite element solution is compared to the solution 

by Levy (1§) in a plot of center deflection vs. loading. The agreement 

with Levy's solution is reasonable. A center deflection of nearly 3 

times the thickness was attained. This is evidently well into the large 

deflection range. The stiffening of the plate with increased loading 

is again appreciable. 

The comparison of the finite element principal stress solution 

to Levy's solution is given in Figure 14. The stress results from 

the finite element approach are evidently in error even though the 

displacements agreed reasonably well. A discussion of this discrepancy 

will be given in section E. 

C. RIGIDLY CLAMPED SQUARE PLATE 

The deflection of a plate subject to large normal loads depends 

to a large extent on the edge boundary conditions imposed. As suggested 

previously, any constraint which promotes stretching of the middle 

surface for accompanying lateral deflection enhances the plate stiffness. 

Hence a rigidly clamped edge can be expected to have a significant 

stiffening effect for deflections larger than 1/4 to 1/3 the plate 

thickness. 

An 8 inch rigidly clamped square plate, 0.05 inches thick, was 

considered as the next example. A uniform normal pressure of 16.0 psi 

was applied in 40 incremental steps. Iteration was not employed. A 

modulus of elasticity of 27.6xlo6 psi and a Poisson's ratio of 0.3 

were chosen as material properties. The results can be compared to 

those obtained by Timoshenko (!1). Timoshenko obtained an approximate 

solution to this problem by use of the energy method, Displacement 
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functions for the in-plane and out-of-plane displacements were chosen 

to satisfy the clamped boundar.y conditions. The energy equations from 

the principal of virtual displacements were solved by the method of 

successive approximations. 

The center deflection vs. loading plot is given in Figure 15. 

The stiffening effect of the induced membrane forces with increased 

loading is again evident. The deflections from the finite element 

solution were slightly larger than those obtained by Timoshenko7 but 

'Wliformly so throughout the loading. A number of finer mesh and smaller 

step size combinations were employed to obtain finite element results 

all of which essentially agreed with those in Figure 15. This would 

suggest that the finite element solution may be more accurate than the 

results obtained by Timoshenko. Timoshenko indicated that his solution 

was only an approximate one due to the use of a finite number of con-

stants in the displacement expansions. 

Figure 16 shows a plot of principal stress vs. load. The finite 

element stress was less than Timoshenko t s solution by approximately 

5% throughout the loading. Timoshenko indicated that his calculated 

stresses were in error on the safe side (i.e. 1 too large) lending added 

confidence to the finite element solution. 

D. Cantilevered Plate 

In order to compare the finite element method to published ex-

perimental results, a problem with extreme nonlinearities was selected. 

A cantilevered plate, 0.0194 inches thick and rigidly clamped on 

one edge to expose a 6 inch square surface, was subjected to a concen

trated corner load of 1.544 pounds. A modulus of elasticity of 18.5x106 
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psi and a Poisson's ratio ·Of 0.3 were used. A nonuniform mesh (see 

Figure 17) was employed utilizing a finer grid near the applied load 

and along edge A-B. The loading was applied in 10 equal steps with 

3 iterations per step. 

The deflections of a cantilevered plate of Berylco 25 beryllium

copper alloy, having the above dimensions and properties and subject 

to concentrated corner loads of 0.772 pounds and 1.544 pounds, were 

measured e~perimentally by Lin, et al. (12). A comparison between the 

experimental deflections of edge A-B and those from the finite element 

solution is given in Figure 17. Note the e~cellent agreement with the 

experimental values. This is encouraging in light of the fact that 

the ma~imum tip deflection was on the order of 100 times the plate 

thickness. Also, the ma~imum tip rotation was approximately 25 degrees. 

The finite element solution for the load of 1.544 pounds also yielded 

the solution for half the loading (0.772 pounds) and for each of the 

other loading levels as well. This applicability to progressive load 

increases is one of the assets of the incremental approach. 

E. DISCUSSION OF RESULTS 

The preceeding e~amples include problems involving various types 

of boundary conditions, the presence of large in-plane forces (examples 

A, B, and C), and large geometric displacements and rotations (example 

D). The results indicate that the macroscopic structural behavior is 

generally well represented by the model. The validity of the procedure 

for bending in two directions, as might occur in an arbitrary shell, 

has been demonstrated. It should be emphasized that although the tech

nique and formulation have been used for specific large deflection 
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problems for plates of common shapes, the method can be applied to 

plates and shells of arbitrary geometry and boundary conditions for 

which no classical solution exists. 

The extremely nonlinear cantilevered plate problem (example D), 

far beyond the scope of exact analytical solution, demonstrates the 

applicability of the proposed finite element method to geometrically 

nonlinear problems in shells. All the examples presented are essen

tially shell problems since appreciable deflection of a plate yields 

a doubly curved shell surface with bending in two directions, 

The noticeable stiffening of the plates with increased loading 

in examples A, B, and C is due primarily to the induced membrane forces 

which resist further deflection. The 'geometrical' stiffness has been 

formulated to account for such an effect. 

It was noted in the examples that agreement with the stress 

solutions of Levy and Timoshenko was not as good as for deflections. 

An accurate determination of stresses from a displacement model is 

always more difficult to achieve than a determination of displacements. 

The displacement model employed maintains normal slope compatibility 

along the element interfaces in the limit as the mesh size is reduced, 

but curvatures and hence stresses are discontinuous. The averaging of 

the stresses at the nodes, discussed in Chapter IV, hopefully minimizes 

this. Also, a discrepancy in stress results might be expected because 

the published results of Levy and Timoshenko employ a Lagrangian descrip

tion. The finite element results are the true stresses. This is so 

because the stress increments for each step of the finite element method 

are based on the existing geometry at the beginning of that step. 
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The results of this chapter indicate that the proposed finite 

element method seems to be well adapted to obtaining solutions to 

nonlinear large deflection proble~ in thin plates and shells, which 

are sufficiently accurate for engineering purposes. 
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CHAPTER VII 

CONCLUSIONS 

A finite element method has been presented for obtaining numerical 

solutions to geometrically nonlinear large displacement problems in thin, 

elastic plates and shells. It has been demonstrated that this method is 

capable of solving a number of problems in which in-plane and out-of

plane behavior are coupled and that the results for displacements are 

sufficiently accurate for engineering purposes. The procedure has been 

shown to be sensitive to the step size and grid mesh employed. 

The stress results did not compare as well with published results 

as did the displacements. A finer grid size along the boundaries and 

careful interpretation of results might yield a favorable comparison to 

experimentally measured stresses when they become available. 

Further extensions of the proposed method to improve the results 

and to treat other classes of problems would be o£ considerable interest. 

These extensions can be itemized as follows: 

(i) Optimization of numerical computations. 

(ii) Refinement of the displacement model to ensure complete 

displacement compatibility. 

(iii) Derivation of a symmetric 'geometrical' stiffness matrix 

from the energy approach. 

(iv) Extension of the method to include nonlinear material proper

ties as well as temperature effects. 

(v) Utilization of the 1 geometrical 1 stiffness concept to treat 

the eigenvalue problem in buckling instability. 
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APPENDIX I 

MATRICES FOR BENDING FORMUlATION 
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a2 0 
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1 0 0 al 

0 -2a1 0 0 

c 0 0 0 

1 0 0 0 

0 0 0 -c 

0 -2 0 0 
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0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

K44 0 0 K47 K48 K49 

[ kb'] (1,2) E h3 K55 0 K57 K58 K59 - 12(1-v2) 

where 

K66 0 K68 0 

SYMMETRIC K77 K78 K79 

K88 K89 

K99 

K44 = 4A (1), K47 = 4 71 A (1), K48 = (12t (1) + 4 71 )B1 (1) 

K49= 12r(l)B1(1)+ 1271B2(1), K55= 44(2), K57= 471A(2) 

K58 = (12t (2) + 4 71 )B1 (2), K59 = l2r(2)B1 (2) + 12 71B2 (2) 

K66 = 2(1- v)A12, K68 = 4(1-v) (B2(1) + B2(2)), K77 = 4 A12 

K78 = (12t (1)u + 4)B1 (1) + (12t (2) v + 4)Bl (2) 

K79= 12r(l)vB1(1) + 12(B2(1)+ B2(2)) + 12r(2)vB1(2) 

K88 = (36(t(1))2 + 2471t(l)+4)B4(1)+ (36(t(2))2+2471 t(2)+ 4)B4(2) 

+ 8 (1-71) (B5 {1) + B5 (2)) 

K89 = (36r(l)t{l)+ 12r(l)71 )B4(1)+ (36r(2)t(2)+ 12r(2) 71 )B4{2) 

+ (12 + 36t(1)71 )B3(1)+ (12 + 36t(2)71 )B3(2) 

K99 = 36(r(1))2B4(1)+ 36(r(2))2B4(2) + 72 71 (r(l)B3(1) + rC2)a3(2)) 

+ 36 (B5 (1)+ B5 (2)) 
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APPENDIX II 

MATRICES FOR IN - PlANE FORMUlATION 

ca1 0 ca2 0 0 0 

-c 0 c 0 0 0 

[ CP] = 
-al 0 -a2 0 (al + a2) 0 

1 
c(a1 + a 2) 0 ca1 0 ca2 0 0 

0 -c 0 c 0 0 

0 -al 0 -a2 0 (al + a2) 

-c 0 c 0 0 0 

1 0 0 0 (a1+a2) 

-c c (a1 + a2) 0 



APPENDIX III 

DERIVATION OF TRANSFORMATION MATRIX 

The transformation matrix of direction cosines of angles formed 

between the local and global axes systems, [A], has components defined 

by 

A x'x 
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[A] - Ay'x Ay'z 

A z 'z 

(III-1) 

in which Ax'x =cosine of the angle between the x' and x axes, etc. 

These axes systems and the characteristic dimensions of the triangular 

element in question are repeated in Figure 18 for convenience. The 

lengths of the sides i-j, j-k, and k-i, denoted respectively by lij• 

ljk• and lki• can be defined in terms of nodal locations in global 

coordinates as 

lij - ( (xj - xi)2 + (yj - Yi)2 + (zj 

ljk - ( (xk - xj)2 + (yk - Yj)2 + (zk 

lki - ( (xi - xk) 2 + (yi - Yk) 2 + (zi 

By trigonometry it can be seen that 

lij = al + az 
Iki 2= c2 + az2 

ljk2= c2 + al2 

- zi) 2) ~ 
.k 

_ zj)2) 2 

- zk) 2) 
~ 

(III-2) 

(III-3) 
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from which 

a2 = (lij 2 + lki 2 - ljk 2) /2 l_tj 

al = lij - a2 

c = (lki2 - a22) ~ 
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(III-4) 

The direction cosines of the x' axis are seen to be the same as 

for side i-j and are given by 

A , = (x. 
X X J 

Ax'y = (yj 

- xi)/1 .. 
l.J 

- y.)/1 .. 
l. l.J 

A , = (z . - z . ) I 1 .. 
X Z J l. l.J 

(III-5) 

The components of a unit vector in the direction of the y' axis can be 

shown to be 

Ay'x = (xk - xi - a2 A x•x)/c 

Ay•y = (yk - Yi - a2 A x'y)/c (III-6) 

Ay•z = (zk - zi - a2 A x'z)/c 

by subtracting the position vector of the origin of the primed system 

from the position vector of node k. For a right-handed local coordinate 

system, the unit vector in the z' direction is given in terms of unit 

vectors along the x' and y' axes by the cross product 

(III-7) 
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The components of the unit vectors in the x' and y' directions, ~x' and 

"' ey' , respectively, are given in Equations (III-5) and (III-6). Per-

forming the cross product gives the components of ~z' (the direction 

cosines of the z' axis) as 

Az'x=Ax'y Ay'z - Ax'z Ay'y 

Az'y = Ax•z Ay•x - Ax•x Ay'z (III-8) 

Az'z = Ax•x Ay'y - Ax•y Ay•x 

thus defining all the terms in Equation (III-1). 
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APPENDIX IV 

GEOMETRICAL STIFFNESS SUBMATRICES 

The [ 6 X 6 J geometrical stiffness submatrices given in Chapter 

IV, section D by the matrix relation 

(IV-1) 

will be defined in the following. 

In expanded form, Equation (IV-1) becomes 

RS(l,l) RS(1,2) RS(l, 3) 0 0 0 

RS(2, 1) RS(2,2) RS(2,3) 0 0 0 

[ krsa] e = 
RS (3, 1) RS (3, 2) RS(3, 3) 0 0 0 

(IV-2) 
RS(4,1) RS(4,2) RS(4,3) 0 0 0 

RS(5, 1) RS (5, 2) RS(5, 3) 0 0 0 

RS (6, 1) RS(6,2) RS (6, 3) 0 0 0 

where 

RS (1, 1) Fx 
I OAx'x F 1 a Ay'x F I o Az'x - r + Yr + zr 

a x5 Ox5 Ox5 

RS(1,2)= FXz- ' OAx'x F ' a Ay'x F I o A.z 'x + Yr + Zr 
0 Ys 0 Ys 0 Ys 

RS(1,3) = Fx ' a Ax'x F I 0Ay1x F 1 a Az•x 
+ Yr + zr r 

0 z 5 0 z 5 0 ZS 

RS(2, 1) = Fx I 0 Axly F • OAyly F I a A. z 'y 
r + Yr + Zr 

Ox Ox Ox 
s s s 

RS(2,2) = Fxr I OAxly+F 1 OAy'y F I 0Az'y 
Yr + Zr 

0 Ys 0 Ys Oys 



RS (2' 3) = F X I 
r 

RS(3,1) = Fx ' r 

RS(3,2) = F I 
xr 

RS(3,3) = FXr' 

RS(4, 1) = ~ I 
r 

RS(4,2) = ~ ' 
r 

RS (4, 3) = Mx ' r 

RS(5, 1) = ~ ' 
r 

RS(5,2) = Mx ' 
r 

RS (5' 3) = Mx I 
r 

RS(61)=M I 
' &"'Xr 

RS(6 2) = M ' ' Xr 

RS(6 3) = M 1 
' xr 

OAx'v F 1 ----"''--'-"'- + y r 

0 z 8 

OAx•z F ' ----;;;.....;;;.. + Yr 
oxs 

OAx'z + FYr' 

aYs 

oAx•z F I + Yr a z 8 

aA.x•x M ' 
-__,;o"-= + y r 

ax8 

a>.. x'x M __ 1 
--=:....:.::.+ --yr 

ays 

a Ax'x M __ I ---=:.....:::::.+ --yr 

a zs 

a>..x'y + Myr' 

axs 

aA.x•y M ' + Yr 
Oys 

aA.x'y + Myr' 

a z 8 

aA.x'z+~r' 
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a>..x'z M ' ----::....:..+ Yr 
ay5 

aA.x'z+Myr' 

a z 5 

a>..y'z + Fzr' 

oxs 

OAy'z F ' --.t.--= + zr 

Oys 

OAy'z F ' - + Zr 
azs 

aA.y•x M ' + Zr 
ax5 

OAy'x + Mzr' 
oy5 
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a z 5 

a>..y'z + Mzr' 
ax5 

a>..y'z + Mz ' 
r 

a Ys 

OAy'z +M ' Zr 
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a Az 'z 
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a Az 'z 

a z5 
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a Ys 
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a z 8 

In the above equations, it is understood that r,s = i, j, k where i, j, 

and k are the nodes of the element in question. The partial derivatives 
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of the direction cosines appearing in these equations will be presented 

next for all values of s (i.e. s ::: i, j, k). For a definition of the 

direction cosines refer to Appendix III. 

The following term groupings will be helpful in defining the 

partial derivatives: 

A2XI - a az ::: - Ax'x + (xi - xk + az A x•x) /lij 

a xi 

A2XJ ::: aaz - (~ - X. - a2 Ax 'x) /lij l. a;; 
A2XK ::: aa2 - Ax'x 

~ 
AZYI ::: aa2 - - Ax'y + (yi - yk + a2 A x'y)/lij 

ayi 

A2YJ = aa2 - (yk - Yi - az A X 'y) /lij 

aYj 

A2YK ::: aaz - Ax'y 
aYk 

A2ZI aaz - - Ax•z + (zi - zk + az A x'z)/lij 

azi 

AZZJ ::: aaz - (zk - zi - az Ax'z)/lij 

azj 
A2ZK ::: a az Ax'z 

a zk 

CXI - a {lLcl == (xk - xi + a 2 A2XI)/c3 

a xi 

CXJ - a (lLc} - a2 A2XJ/c3 
axj 

CXK - a{l/c} - (xi - xk + a 2 A2XK) /c3 

a xk 
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CYI - oPLcl - (yk - Yi + a2 A2YI)/c3 

a Yi 

CYJ' - o~tLcl - az A2YJ/c3 

OYj 

CYK - Q~l/cl - (yi - Yk + az A2YK)/c3 

oyk 

CZI - 0~1/cl - (zk - zi + az A2ZI) Jc3 

Ozi 

CZJ - 0{1/cl - a2 A2ZJ/c3 

OZj 

CZK - tl ~lLcl - (zi - zk + a2 A2ZK) /c3 

a zk 

The partial derivatives of the direction cosines, with respect to the 

global nodal coordinates of the element in question, can now be defined 

as follows: 

OAx•x - - (1 -Ax•x 2)/lij 

OXi 

OAx•x - (1 - Ax 'x2) /lij 

clxj 

clAx•x - 0 

clxk 

dAx'x - Ax•x Ax•yllij 

oyi 

0Ax•x - - Ax'x Ax•yllij 

oyj 

dAx'x - 0 

0Yk 
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aAx:'x - Ax•x Ax:'z/lij 

a zi 

a.Ax'x - A x'x Ax'z/lij -
azj 

aAx'x - 0 

a zk 

aAx'y - Ax'x Ax'y/lij 

a xi 

0Ax'y - Ax:'x Ax •yllij -
Oxj 

0Ax'y - 0 

Oxk 

o.Ax•y - (1 - A x'y 2) /lij -
a Yi 

aAx•y - (1 - A X 'y 2) /lij 

a Yj 

aAx'y 0 -
0Yk 

OAx'y - Ax'y Ax'z/lij 

a zi 

OAx'y - Ax'y Ax•zl1ij -
a zj 

aAx'y 0 -
a zk 



OAx•z - Ax•x A I /1.. 
X Z ~J 

c) xi 

dAx•z - - Ax•x Ax'z/lij 

Oxj 

dAx•z - 0 

Oxk 

c)X.x'z - Ax•y Ax 'z/1 ij 

oyi 

OAx•z - - Ax•y Ax• zllij 

oyj 

OAx•z - 0 

a Yk 

OAx•z - - (1- Ax•z 2)/lij 

a zi 

OAx•z - (1- Ax'z2)/lij 

Ozj 

OAx'z - 0 

0 zk 

oAy•x - - 1/c + (xk - xi) CXI - Ax'x A2XI/c 

0 x· l. 

o X.y 'x 

OX· J 
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+ (xk - xi) CXK - A x'x A2XK/c 

- a2 Ax'x CXK- az OAx'K I c 

0Xk 

- az A X' X CYI - a2 a A K f X I c 

a Yi 

- a2 A ' CYJ - a2 a A ' I X X X X C 

aYj 

- az A X 'x CYK - az a A x'x I c 

dYk 

- az Ax'x CZI- az aAx'x I c 

a zi 

_ (xk - xi) CZJ - Ax 'x A2ZJ/c 

- a2 A X' X CZJ - a2 a A X' X I c 

a zj 

OAy'x = (xk- Ki) CZK- Ax'x A2ZK/c 

ozk 
- a2 A x'x CZK - az a A x'x I c 

a zk 
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oA.y•y 
a Yj 

(yk - Yi) CXJ - A x'y A2XJ/c 

- a2 A X 'y CXK - a2 a A X 'y I c 

Oxk 

- 1/c + (yk - Yi) CYI - A x'y A2YI/c 

- az Ax'y CYJ- az OAx'y I c 

a Yj 

1/c + (yk - Yi) CYK - Ax'y A2YK/c 

_ (yk - Yi) CZI - Ax 'y A2ZI/c 

- az Ax'y CZI - az a A x'yl c 

a zi 
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(yk - Yi) CZJ - Ax'y A2ZJ/c 

- az Ax'y CZJ- az ax.x'y I c 

a Zj 

- a2 A X I y cz K - a 2 a A X I y I c 

a zk 

_ (zk - zi) CXJ - A x'z A2XJ/c 

_ (zk - zi) CXK - Ax 'z A2XK/c 

- az Ax'z CXK - a2 aAx'z I c 

axk 

_ (zk - z 1) CYI - A x'z A2YI/c 

- a2 Ax'z CYI - az ax.x'z I c 

a Yi 

_ (zk - z 1) CYJ - Ax 'z A2YJ/c 
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aAz 'x 

oxi 

OA z'x 

axj 

OAz'x 

axk 

OAz'x 

a Yi 

(zk- z1) CYK- Ax'z A2YK/c 

- a2 A X' z CYK - a 2 a A X' z I c 

OYk 

- - 1/c + (zk - z1) CZI - A x'z A2ZI/c 

-

-

-

-

- a 2 Ax'z CZI - a2 OAx'z I c 

a z1 

- a2 Ax'z CZJ - a2 aAx'z I c 

0 Zj 

- a2 A X I z CZK - a2 a A X I z I c 

a zk 

Ax'y oAy•z + Ay•z oAx'y - Ax'z oAy'y 

0 xi 0 x1 iJ xi 

A x'y OAy'z + Ay'z oAxly - Axlz a Ay•y _ 

(Jxj ax. 
J o xj 

Ax'y OAy'z + Ay'z oAx'y - Ax 1z CJAy'y 

axk axk (Jxk 

Ax 1y dAy'z + Ay'z OAx'y - Ax•z aAy•y 

0Yi a Yi a Yi 

100 

Ay'y iJ Ax 1z 

(}xi 

Ay'y iJAx'z 

dxj 

Ay'y dAx'z 

(Jxk 

Ay'y a Ax'z 

a Y1 
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a.X.z'x - Ax•y o.X.y'z + Ay'z a>..x'y - Ax'z a.x.y'y _ .X.y•y o.X.x'z 

0 Yj aYj ay-
J a Yj a Yj 

a A. z 'x - A.x'y oA.y'z + Ay'z dA.x'y - Ax 'z o.X.y'y - A.y'y OAx'z 

oyk ayk oyk oyk ayk 

OAz'x - Ax'y a.x.y'z + Ay'z 0Ax•y - Ax 'z a .x_ 1 ,1 - Ay'y OAx•z 

a zi a zi a zi a zi a zi 

aA.z 'x - Ax'y d.X.y'z + A. y 'z o>..x'y - Ax•z a.x.y'y - A.y 'y aAx'z 
a zj a zj a zj Ozj a zj 

OAz'x = Ax'y a.x.y'z + Ay'z a.x. x'y - Ax'z o.X.y'y - Ay'y 0Ax•z 

azk a zk a zk dzk a zk 

o>..z 'y - Ax•z oA.y'x + Ay 'x OAx'z Ax•x 0Ay•z - Ay'z OAx'x 

ax1 oxi a xi a xi a xi 

o Az 'y = Ax'z o>..y'x + Ay'x OAx 'z - Ax'x dAy'z - Ay•z OAx•x 

Ox. ox. ox. ox. ax. 
J J J J J 

a .x. z 'y - Ax'z d.X.y•x + Ay 'x OAx•z Ax•x a.X.y'z - Ay 'z OAx'x 

Oxk dxk oxk a xk oxk 

a>..z'y - Ax•z o.X.y'x + Ay•x a>..x'z Ax•x aA.y'z - Ay'z OAx'x 

OYi a Yi OYi a Yi ayi 

oA.z'y - Ax•z aA.y'x + Ay'x aA.x'z Ax •x a >..y 'z - Ay 'z a>..x'x 

0Yj 0Yj OYj aYj aYj 

aA.z'y - Ax'z oA.y•x + Ay'x dAx'z A.x•x oA.y'z - Ay•z 0 A x'x 

ayk ayk OYk ayk aYk 

a A. z 'y - Ax•z oA.y'x + Ay 'x aA.x'z - Ax'x OAy'z - Ay 'z OAx•x 

a z. 
~ 

a zi a zi a zi a zi 

a A. z 'y = A.x'z oA.y'x + A.y'x aA.x'z - Ax'x OAy'z - Ay'z aA.x'x 

a zj a z. 
J 

azj a zj a z. 
J 
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- Ax•z OAy•x + Ay'x oAx•z - Ax•x oA.y•z - Ay'z o.X.x'x 

0 zk a zk a zk a zk 

0 Az 'z - Ax 'x 0 Ay 'y + Ay•y OAx'x - Ax 'y iJ A:l! 'x - Ay•x o.X.x 'I 

oxi a xi dx1 Ox. ox. 
l. l. 

OAz•z - Ax•x 0Ay'y + Ay'y OAx'x - Ax•y oA.y•x - Ay•x a>.x'y 

Oxj oxj Oxj oxj Oxj 

OAz•z - Ax•x oA.y'y + Ay•y OAx•x - Ax•y oA.:l! •x - Ay•x o.X.x'y 

0~ 0~ a~ a~ a~ 

OAz 'z - A x'x a>.y'y + Ay•y OAx'x Ax•y iJA.y'x - Ay•x o.X.x'y 

aYi OYi oyi 0Yi OYi 

aAz'z - Ax•x oAy•y + Ay'y dAx•x - Ax•y oA.y•x Ay'x a>.x'y 

0 yj oyj iJyj oyj OYj 

OAz•z Ax 'x oAy•y + X.y'y oAx•x - Ax•y oA.y•x X.y'x o.X.x':l! 

OYk OYk OYk iJyk OYk 

OAz'z - Ax•x oAy•y + Ay'y oAx•x Ax•y iJ).:l!'x - Ay 'x o.X.x 'y 
a z. a z. oz. Oz. 0 z. 

l. l. l. l. l. 

OAz 'z - Ax'x oXy'y + Ay•y OAx•x Ax'y oA.y'x Ay•x o.X.x'y 
ozj ozj ozj ozj a z. 

J 

OAz 'z - Ax'x a>.y•y + Ay'y o.Ax•x Ax•y dA.y•x - Ay'x o.X.x•y 

a zk ozk Ozk dzk ozk 

The preceeding relations completely define the geometrical stiffness 

submatrices [ k ] e for element 'e' with nodes i, j, and k. rsG 
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APPENDIX V 

COMPUTER PROORAM 

The computer program written for this investigation was specialized 

to apply only to large displacement problems in initially flat plates. 

For specification of prescribed displacements, the global x-y plane was 

chosen as the mid-surface plane of the plate. 

The program provides the option of specification of displacements 

along boundaries in the x-y plane that are oblique to the x and y direc

tions. An iteration option can be utilized by supplying the number of 

iterates per incremental step as input data. Also, an option is avail

able to allow the machine to calculate a 'consistent' load matrix cor

responding to a uniform normal pressure on the entire plate. This elim

inates the necessity of hand calculating and inputting the statically 

equivalent nodal loads corresponding to a uniform pressure. 

Due to the length of the main line and the limited core storage 

available for the compiler, it vas necessary to run the program under 

single partition. Computing time estimates for a specific problem can 

be obtained by referring to the discussion in Chapter v. 

The input instructions and program listing could not be included. 

However, they are available from the author. 
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