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ABSTRACT

A differential method is proposed for the prediction of a broad
range of turbulent boundary layers of engineering and scientific interest.
A digital computer program is presented which is applicable to boundary
layers with positive, negative, and zero pressure gradient in the main-
stream direction as well as boundary layers with suction, blowing or
zero mass addition at the wall. The turbulence kinetic energy equation
is solved simultaneously with the longitudinal momentum and continuity
equations to provide an independent means for determining the effective
viscosity which makes allowance for '"history'" effects in the flow. It
is shown that the prediction method may be easily extended to cover the
energy and species equations when the need arises to predict boundary
layers with thermal gradients and/or those comprised of a mixture of
gases. Mathematical models have been found which adequately close the
system of governing equations as evident by the successful prediction
of the behavior of a wide range of equilibrium and non-equilibrium tur-

bulent boundary layers.
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volume density of fluid j
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mass flux at the wall (eqn. 31)

mass flux at the outer edge of the boundary

layer (eqn. 31)

static pressure
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distance from centerline of axisymmetric body
radius at the outer edge of the boundary layer
radius at the wall

instantaneous velocity in the streamwise direction
mean velocity in the streamwise direction

wall shear velocity (eqn. 39)

fluctuating velocity component in the streamwise

direction
free stream velocity

mean velocity normal to the wall
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I. INTRODUCTION
The behavior of turbulent boundary layers is of great importance in
many situations. Turbulent boundary layers in the presence of a pressure
gradient and heat and mass transfer occur in meteorological, hydrological,
and engineering design applications. Accurate prediction of the behavior
of these boundary layers is the first step in understanding the structure
of the turbulent flow field. Once the structure is well understood, con-
trol of these boundary layers can be more reliably accomplished so that

engineering goals can be met.

The polluted air flowing over a city can be considered as an out-
sized turbulent boundary layer. If the coupling between thermal gradi-
ents, velocity gradients and concentration gradients as well as the
basic conservation of these quantities were better understood, pollutant
control could be made more effective. Similarly, accurate prediction of
the spread of thermal and particulate pollutants in flowing streams
coupled with an understanding of the ecological effects could lead to
more reasonable policies for the disposal of such wastes. The fluid
mechanical aspects of this problem can also be approached by considera-

tion of the turbulent mixing between the polluted and clean streams.

Turbulent boundary layers are much more common in engineering
applications than any other kind of boundary layer. Turbulent boundary
layers play an important role in the operation of jet propulsion systems
for instance. The turbulent boundary layer in an engine inlet system
must be controlled to provide efficient inlet operation. This usually

means the prevention of boundary layer separation by proper diffuser



design which may include bleeding off part of the boundary layer through
the surface of the diffuser. On the other hand, in the combustor it is
desirable to maintain as high a working fluid temperature as possible to
maximize thermodynamic cycle efficiency. The walls of the combustion
chamber and the surfaces of the turbine (in the case of a turbojet) are
often protected by transpiration of cooler air through the exposed sur-
faces. Another example of the importance of understanding turbulent
boundary layers is the protection of high speed flight vehicles from
aerodynamic heating caused by the relative kinetic energy of the air.
Protection is usually afforded by modification of the boundary layer
structure by mass injection at the wall either by transpiration or abla-
tion. The hybrid rocket motor is a dramatic example of the importance
of understanding a turbulent boundary layer. Although the hybrid motor
is a mixture of solid and liquid types, progress on the efficient opera-
tion of hybrid rocket systems was slow until it was realized that the
combustion is strongly dependent on the boundary layer structure in the
motor and, therefore, actually unrelated to the design techniques used

in solid and liquid systems.

The design of many devices dependent on the behavior of turbulent
boundary layers is often accomplished by relying heavily on empiricism
and experience. The structure of turbulent boundary layers is not well
understood and historically methods have been devised to handle a narrow
range of conditions since the development of a more general method could
not be justified., Extrapolation to new operating conditions has thus

been risky.



Figure 1 is a schematic drawing of the phenomena of interest. When
a body is immersed in a flowing fluid, a boundary layer is created in
which the fluid properties differ from those of the free stream. At some
distance along the body, the boundary layer will change from a laminar
flow in which the velocity is steady to a turbulent flow in which the
velocity at any location fluctuates with time. It is common for turbulent
boundary layeré of engineering interest to grow under the influence of
free stream conditions in which the static pressure is either increasing
or decreasing in the direction of the flow. It is also common for boundary
layers to be controlled by either mass addition or removal at the wall.
The shear stress and heat transfer at the wall will depend on the pressure
gradient impressed by the external flow field and the mass transfer at

the wall.

The objective of this research then has been to develop a suitable
engineering tool for the prediction of the behavior of turbulent boundary
layers with as large a range of application capability as possible. This
tool was to be flexible enough to permit eventual application to boundary
layers with heat transfer, concentration gradients (including mass injec-
tion or removal at the surface), and combustion so that it could be ex-
panded to a broader range of application in the future. Empirical informa-
tion required and mathematical models used had to be inserted in such a
way that they could be easily changed as more is learned about the struc-
ture of turbulent flow so that the tool would not become obsolete, but
could easily be modified to take advantage of more accurate understanding

of the phenomena.



turbulent boundary layer

Figure 1. The Turbulent Boundary Layer



IT. REVIEW OF PREVIOUS PREDICTION METHODS
There are basically two groups of prediction theories; the integral
methods and the differential methods (sometimes called field methods).

These groups get their names from the form of the governing equations

used.

A. Integral Methods

One of the first to use the integral method for the study of turbu-

¢

lent boundary layers was T. von Karman. By integrating the streamwise
mean momentum equation across the boundary layer, the effects of the
shear stress can be considered in a global way so that information con-
cerning the local shear stress is lost and need not be known. However,
relations between the displacement thickness, the momentum thickness

and the wall shear must be assumed. The philosophy of this approach is
that given enough experimental data one could arrive at empirical rela-

tions between these three quantities. Von Doenhoff and Tetervin(z) have

used this approach more recently.

Efforts to minimize empiricism with the integral approach have been
made by considering additional equations. One approach has been to create
a mean energy integral equation by multiplying the streamwise momentum
equation by the streamwise velocity and integrating across the boundary
layer. Before integration, the momentum and mean energy equations do
not offer independent information. The integration process causes dif-
ferent information to be lost by each equation so that the integral

3)

equations provide independent information. Zwarts makes use of the

mean energy integral equation by making a local assumption about the



Reynolds stress distribution while Alber,(4) Rotta,(s) and Escudier and
Nic011(6) make global assumptions about the relationship between the re-
sulting dissipation integral of the mean energy integral equation and
properties of the mean field. Head(7) has used an entrainment equation
as an auxiliary equation to be solved in addition to the momentum inte-
gral equation. The entrainment equation is derived from the concept

that turbulent boundary layers grow by entraining laminar fluid into the
turbulent boundary layer. He then used a postulated relationship between

the entrainment rate and the turbulence.

A "“moment of momentum™ integral equation can be formed by multiplying
the momentum equation by a suitable function. Abbot and Deiwert(s) have
used this method. The resulting equation contains an integral of the
turbulent stress over the layer and an assumption about this term is

required.

Additional integral equations can be generated by integrating only
over a segment of the boundary layer. These "strip' methods require
knowledge of the turbulent shear stress at intermediate points within
the layer and assumptions must be made to permit evaluation of these

terms,

Except for the momentum integral equation, all of these integral
equations involve the turbulent stress. The assumptions required to
evaluate these terms amount to implicit consideration of the turbulence.
Hirst and Reynolds(g) formed a turbulence energy integral by integrating
the turbulence kinetic energy equation across the boundary>1ayer and re-

lating the production and dissipation of turbulence kinetic energy within



the boundary layer to a combination of the turbulence and mean field

velocity scales.

The advantages of the integral methods lie in the global way in
which turbulence effects can be handled and the ability to avoid solving
the partial differential equations. However, these methods require a
large amount of empirical information. As discussed by Spalding(lo),
the extension of the integral methods to more complex situations demands
a greater amount of empirical information.than can be provided. Thus, a
massive experimental research program must precede extension of these
methods to larger ranges of applicability involving fluid density varia-
tions or mass transfer at the wall for example., The prediction method
sought in this research should develop detailed dependent variable pro-
files which react to changes in boundary conditions and disturbances in
these profiles to allow a better understanding of the structure of turbu-
lent flow. Since integral methods can not provide this information, they

were not considered to be relevant to the present research objectives and

are not included in the remainder of this thesis.

B. Differential Methods

Various differential methods are based on the numerical solution of
finite element approximations to the governing partial differential equa-
tions. The equations to be solved may be parabolic or hyperbolic in form
depending on the mathematical model used to evaluate the Reynold's shear
stress terms. If a gradient diffusion model is used, the boundary layer
equations are parabolic and may be solved by marching downstream with a
rectangular net, If the Reynold's shear stresses are modeled in such a

way that they are not of the gradient diffusion type but are independently



calculated, then the governing equations are hyperbolic in form and can
be solved using the method of characteristics. In general, some sort of
transformation is made to simplify the form of the equations before com-
putations are made. Most methods have restricted the computational field
to the "active" boundary layer (where significant gradients exist) and
thereby increased their computational efficiency by not carrying on
calculations where no change is taking place. Virtually all of the
differential methods using an effective viscosity, as introduced by

(11)

Boussinesq » may be modified to accept any model for effective viscosity

that one chooses to investigate,

A basic division exists among the various investigators concerning
the closure of the system of equations (i.e., how the Reynold's shear
stress terms are to be modeled). The mixing length approach has been
used by many because of its relative simplicity and demonstrated value
in the solution of engineering problems. It has been argued by others
that there is strong evidence that the shear stresses are closely related
to the turbulence kinetic energy. The mixing-length approach suffers from
the fact that it sometimes fails to give accurate predictions when extended
to situations where sufficient empirical information is not known before-
hand (i.e., the effective mixing-length is not known). Proponents of models
which link the shear stresses with the turbulence kinetic energy hypothesize
that this occurs because the mixing-length approach, in which the shear
stresses are related directly only to local conditions, can not adequately
account for the history of the flow. It is argued that the history of the
flow can be adequately taken into account and more of the physics of the

flow brought into play when the turbulence kinetic energy equation is



employed. They state that the shear stresses are closely related to the
turbulence kinetic energy which is of course not governed by the 1local
mean velocity profile but has its own history dependent on the upstream

balance of the turbulence kinetic energy equation.

Having thus completed a brief sketch of the similarities and differ-
ences between the approaches used by previous investigators, the remainder
of this section gives a description of some of the major differences in
detail and tells why the chosen approach has been used. First, the
precedence for the mixing-length concepts are reviewed*, Then, two
examples of mixing-length models are discussed in which the effective
viscosity is assumed to be dependent solely on the mean velocity profile.
Three other methods are also discussed in which the Reynold's shear stress
terms are related to the turbulent kinetic energy equation through dif-

ferent proposed models.

Prandtl(lz) originally introduced the "mixing-length'" hypothesis in
which the effective turbulent viscosity may be written as the product of
the square of the mixing-length and the cross stream derivative of the mean
velocity. In working with free turbulent mixing Prandtl assumed: (1) the
mixing-length is constant in a cross section of the mixing zone in a free
turbulent flow and (2) the mixing length is proportional to the width of
the mixing zone. Prandtl arrived at the mixing-length hypothesis after
experimentally observing several free turbulent mixing situations. He

concluded that a lump of fluid carries with it a constant amount of

* Mixing length concepts are equally applicable to the integral methods
discussed earlier but this review is presented in this section for

convenience.
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momentum, as it moves in the cross stream direction, which is not dis-
turbed by the movement until it arrives at its destination. Prandtl

later found that this original theory disagreed with measured distribu-
tions particularly at locations where the cross stream derivative of the
mean velocity was zero. Prandtl(IS) then amended his original theory to
include an additional term for evaluating the effective viscosity. This
additional term contained the second derivative of the mean velocity in
the cross stream direction as well as an additional length parameter.

A fundamental objection to this momentum transport theory has been made
by Hinze(14). As the "lump" of fluid moves in the cross stream direction,

it will be subjected to pressure fluctuations and therefore the momentum

of the lump can not remain constant during this passage.

(15)

Von Karman made a different assumption concerning the value of

the mixing length. He assumed that it is determined by the local flow
conditions and that it may be described in terms of quantities determined
by these local conditions. His equation for mixing length contains the
first and second derivatives of the mean velocity in the cross stream
direction. The von Karman theory also results in some unreasonable
predictions at certain points in the boundary layer. In particular, it

is possible for the effective viscosity to become infinite when Bzu/ay2 =0

and du/oy # 0 since von Karman defines the mixing length by,

1€ ———13‘2‘/3 )
o u/oy



11

(16)

Van Driest made a significant contribution to the mixing-length
theories more recently when he considered the turbulent flow near a wall.
He assumed that the mixing length (1) is constant in the outer part of the
boundary layer, (2) is proportional to the distance from the wall in the

center region of the boundary layer, and (3) decays exponentially very

near the wall,

The mixing-length theory exhibits some serious weaknesses but has
found wide acceptance because of its simplicity and probably more basically

17)

because it can be made to work. As Bradshaw points out, it strictly
applies only to equilibrium boundary layers and can not be expected to

work in the case of a non-equilibrium boundary layer since the approach
does not consider the history of the boundary layer. The first two dif-

ferential methods described below are examples of more recent application

of the mixing-length concept.

Patankar and Spalding(ls) use a mixing-length hypothesis based on

(16) to compute the effective

the method first proposed by van Driest
viscosity of the flow. They do not solve the turbulence kinetic energy
equation or draw a correlation between shear stress and turbulence kinetic

energy. The effective viscosity is defined as,

_ 2 |du
e = plx |§; (1)
where: p = the fluid density

= the mixing-length

L
‘§2| = the absolute magnitude of the streamwise velocity
oy in a direction normal to the streamlines
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The shear then becomes,

_ 2
T = pl* dy oy ()

The mixing length is a continuous empirical function of distance from

the wall (y) of the form,
|
1, = 435y {1 - exp (~y /T p/25.3u)jfor y/y1 <.207 3)

where p is the molecular viscosity and ¥y is the farthest distance from
the wall at which the local mean velocity differs from the inviscid
velocity by only ome percent. In the outer part of the boundary layer

the mixing-length is determined by,
1, = .09 ¥y for y/y1 > ,207 4)

The exponential term is active only very near the wall and represents
the damping of the eddy motion of the fluid due to the presence of the
wall. Patankar and Spalding used the local value of shear stress in the
exponential term. Van Driest had used the wall shear stress instead,
but he was concerned with boundary layers in which the shear stress gra-
dient at the wall was zero whereas Patankar and Spalding have generalized
the expression to include other cases (i.e., those of pressure gradient
and mass transfer at the wall). One unique feature of this method which
should be mentioned is that it makes use of the fact that the partial
differential equations can be reduced to ordinary differential equations
near the wall since the longitudinal velocity becomes small and hence
the gradient of longitudinal velocity in the longitudinal direction term

can be neglected. They then proceed to numerically solve these ordinary
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differential equations with parametric variations and express these
solutions algebraically in terms of the finite difference notation.
This feature has the added bonus of allowing the calculations to pro-
ceed in the boundary layer region of relatively lower gradients and
conserves computation time. The calculations proceed in typical para-
bolic fashion except that two "slip" nodes are added near each boundary
to take advantage of the ordinary differential equation solutions men-

tioned above.

(19)

Smith and Cebeci used a physical hypothesis very similar to
that of Patankar and Spalding to compute the effective viscosity. They
also break the effective viscosity model down into two regions, but
switch from one model to the other where the two functions produce
identical effective viscosities. This approach is necessary to give

a continuous model because of the model used in the region away from

the wall. Near the wall they compute the mixing length from

L = .y {1 - exp (-y /' Typ /26M)} )

The effective viscosity is then computed using equation 1. Once again
the influence of van Driest's hypothesis is evident. There are slight
differences in the empirical constants between this model and that of
Patankar and Spalding. In this case the wall shear has been used in

the exponential term. In the outer region of the boundary layer they

compute the effective viscosity from,
*
€ = .0168 pu_8 ¥y (6)

where 6% is the momentum thickness and the intermittency factor
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Y 1is defined as

v o= 3{1- eres|yry, - 78]} ©)

The empirical intermittency factor is simply a curve fit of the inter-
mittency data measured by Kebanoff for flow along an impermeable flat
(20)

plate. In a more recent publication » the authors change the mixing

length expression for the inner region to,

-.5 N
= - -yp 'Tw _ dp |
L = .4y {1 exp FE5 | 57 + o g}lj j (8)

in an effort to account for pressure gradients.

2 . .
Nee and Kovasznay( L use an auxiliary governing equation closely
related to the turbulence kinetic energy equation to close the system
of equations. They assume that the effective viscosity obeys a rate

equation of the form,

d¢ %e _ 3 (. 2= Su _ pe(e - p)
u S5 -l--V'ay = (e ay) + A (e W) >y B >
71
- cie =) e 2w (9)
2 dx oy
U
(-]
where A = 0.1, B = 1.0 and C = 1.0. The "universal constants" A,

B and C were obtained empirically. In this case the effective viscosity
is not entirely dependent on the local average velocity profile and since
this additional rate equation must be solved simultaneously with the mo-
mentum equation, it is possible for flow history effects to influence the

solution.

Glushko(zz) solves the continuity, longitudinal momentum and tur-

bulence kinetic energy equations simultaneously. He relates the
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turbulent shear stress to the local value of turbulence kinetic energy

by means of
T = oap H (r) /k Q%}i — (10)
y
where o is a proportionality constant, H(r) is an empirical function
related to the local value of turbulence kinetic energy (k), and Q is
taken as a '"universal function' related to the distance from the wall.

The H(r) function is defined as:

e 0 < X-<.75
ro ro
- r r 2 Tr
= S - (= - < X
H(r) pops (ro 0.75) o75 pros < 1.25 (11)
1 1.25 < E <o
Tro
where r = plLJ/k/u
1 '2 l2 l2 . .
k = 3 (u™"+v " +w?7) (turbulence kinetic energy)
ro = constant

Glushko writes the turbulence kinetic energy equation as

r

and defines the production term as,

du du = du, 2
- —_— = —_— = Q (= 13
pulviys =T 5o =ap H) V4 Cy) (13)

and the dissipation term as

€y = %]--ZC{1+I-{(Kr) dKr}k (14)
*
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H (kr) is the same function as H (r) except that r 1is replaced
by kr . C is a constant. Glushko assumed that the total diffusion of
turbulence kinetic energy was due to the gradient of k and assumed the
diffusion term to be of the form,

§§{ul~v'@'+wﬂ'=§§@[1+ﬁ“”“kr]%§

(15)

His basis for the various models assumed above was analysis of the
measurements of Klebanoff. The generality of these assumed expressions
for the production, dissipation, and diffusion of turbulence kinetic
energy can only be determined by comparison of final results with data,
Beckwith and Bushne11(23) tested modifications of Glushko's models to

a wider range of boundary layers and concluded that "simple modifica-
tions to the turbulence scale function and to the turbulent fluctuation
terms as modeled by Glushko result in accurate predictions of mean and
fluctuating characteristics of turbulent and transitional boundary layers
with arbitrary boundary conditions.”

L (24

Bradshaw et a convert the turbulent kinetic energy equation
into a shear stress equation which then forms a hyperbolic system of
equations with the momentum and continuity equations. This conversion
requires three empirical functions relating the turbulent intensity,

turbulent kinetic energy diffusion, and turbulent kinetic energy dissi-

pation to the shear stress profile. Their converted equation becomes
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1 3
S T 9o, T T du ™mZ 3 T T/0)2
Y @ TV @ oyt ) 55 @ + LR e
where
a; = T/p q2
q2 = u'2 + v'T 4+ w!
L o= (1/p)37?% se
Elvl _]; 2
_ p_ Ftzav
(t_/pyllie 1
m 5 e'= £ dur /oK' )?
P 31 =1,2,3
j-= 132’3 17)

They assume that aps L, and G are functions which depend on the shape
of the shear profile. L is the most important of the three functions
because the dissipation of turbulence kinetic energy is much larger than
the advection or diffusion over most of the boundary layer. The accuracy

of predictions then depends on the adequacy of the functions a L, and

1’

G. Based on the measurements of Klebanoff and two additional test cases

generated by Bradshaw et al, they have chosen these functions as,

a, = .15
L = y,5G/y))
¢ = (/e 5, Gl (18)

where f1 and f2 are simply empirical functions and Tm is the maximum

shear in the profile which is evaluated at y/y1 = ,25 if a higher shear

value does not occur at a greater distance from the wall.
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Conclusions from the Review of the Prediction Schemes of Previous

Investigators

The following conclusions were reached as a result of a review

of the literature:

(1)

(2)

3)

4)

There are a large number of prediction schemes which can be
made to give reasonable predictions at least over a narrow
range of conditions.

Integral techniques are valuable from a historic standpoint
and can be a valuable design tool once a large amount of
empirical data is available at conditions close to those
encountered in practice. Integral techniques are not likely
to be of much help in the understanding of the structure of
turbulent flow since they lose the detail of the boundary
layer in application.

A parabolic equation approach to the simulation of the dif-
ferential equations of motion is preferable since it appears
to allow easier extension to more complicated boundary layer
situations.

The method of Patankar and Spalding is one of the best com-
putation schemes available since it takes advantage of the
one dimensional character of the flow very near the wall and
may be easily modified to accept more dependent variable

equations when they are desired.
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Simultaneous solution of the turbulence kinetic energy
equation and its use in predicting the shear stress is
advisable since a definite correlation between the two
has been established and it allows for the history of

the flow to be considered.
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ITII. APPROACH

The criteria used in searching for a boundary layer prediction
technique to be used as an engineering tool were established as:
(1) the method should have ample flexibility for extension to problems
involving heat and mass transfer at the wall including the injection
of a foreign gas and chemical reaction, (2) the method should be reason-
ably inexpensive in terms of computer time so that it can be used in
engineering design, and (3) empiricism should be minimized to facili-
tate application to as broad a range of situations as possible. In
other words, what one would like to have is an inexpensive method to
analyze a wide range of complex turbulent boundary layer problems. The
chosen approach then has been to apply modified versions of Bradshaw's

(24) using a modification of the calculation scheme of Patankar

(18)

models
and Spalding in which provisions are made to add the turbulence
kinetic energy equation to be solved simultaneously with the momentum
and continuity equations. A similar technique has been used by Lee and
Harsha(zs) for the prediction of free mixing flows. The turbulence
kinetic energy equation is used to define the shear stress because

it brings more of the physics of the flow into play and should therefore
have a wider range of applicability than the mixing length theories.

An effective viscosity formulation is used rather than the hyperbolic
approach of Bradshaw since it appears that the parabolic equations are
more easily extended to more complicated flow situations such as those
with heat transfer, density fluctuations, chemical reactions, etc. The

computation scheme of Patankar and Spalding was chosen since it conserves

computer time to a high degree and could be easily modified to accept the
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addition of the turbulence energy equation (as well as any additional
dependent variable equation one might want to add later). The models
used by Bradshaw to express the dissipation and diffusion have been

modified to reduce the amount of empiricism.

The remainder of this section describes the governing equations,
the transformation of these equations, the empirical models used to
close the system of equations, the methods used to produce the "slip"
boundary conditions at the wall, and provides a brief introduction to

the computer program.

A. Governing Equations

The governing equations of the two dimensional compressible tur-
bulent boundary layer are those of continuity, momentum, turbulence
kinetic energy, total enthalpy, and species. These equations are simply
stated here to enumerate the assumptions used and to provide a working
explanation of the nomenclature., The reader interested in the derivation
of these equations is referred to Appendix A where the derivations are
explained in detail following the approach of Goldstein(26). X and y
are a set of orthogonal coordinates with the x-axis along the wall on
which the boundary layer is developing. r is the perpendicular dis-

tance from the body axis in the case of axisymmetric flows (see Figure

A-1).

The "steady'" state continuity equation is an expression for the

conservation of matter. It may be written as,

%; (r%pu) +-%; %v) = o0 (19)
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where p 1is the mean fluid density and u and v are the mean
velocities in the x and y directions, respectively. a is
equal to zero in the case of planar flows and equal to one in the case

of axisymmetric flows.

The longitudinal momentum equation (an expression for Newton's
second law of motion) may be condensed from the Navier-Stokes equations
using order of magnitude arguments by assuming that: (1) distances in
the cross stream direction are small compared to longitudinal distances,
(2) the mean velocity in the direction normal to the x-y plane is
small, and (3) the velocity in the x direction is large compared to
the velocity in the y direction. This leads to the conclusion that
the velocity gradient normal to the wall is large compared to the velo-
city gradients along the wall. By neglecting normal stress terms
(which will be relatively small except near separation), the longitudinal

momentum equation can be written as,

puSt+pv - % S (20)

where dp/dx is the static pressure gradient in the flow direction.

The static pressure gradient is imposed by the external inviscid flow.

€ is the effective viscosity of the fluid as defined by,
T
= —_— 21
€ du/dy (21)

where T is the shear stress.

The turbulence kinetic energy equation is an expression for the

conservation of turbulence energy. It is probably the least well known
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of the governing equations. The instantaneous value of each fluctuating
component in a turbulent flow is assumed to consist of a mean component
and a fluctuating component. For example, the instantaneous longitudinal

velocity (U ) is conceived to be,
U = u+u'

where u represents the mean component of the velocity and u' represents

the fluctuating component. A superscript indicates time averaging
as, tz
U = g }t I udt
2 1 t1

By definition of wu then,

U = u+u' = u

The kinetic energy in the longitudinal direction then becomes,

KE oC U2 = (u+u')2 = u2 + 2uu' +u'2

Time averaging of this component of the fluid kinetic energy then gives,

KE &£ U2 = u2 + 2uu' + u'2 = u2 + u'2

Therefore, we see that for turbulent flows, the kinetic energy of the
flow depends not only on the mean velocity but also on the fluctuating
component of the velocity. Obvious extension of the above reasoning leads

to a definition of turbulence kinetic energy as,

k = -;— @?+v?+w? (22)

The turbulence kinetic energy equation as derived in Appendix A is,

3k 2k _ _~ad o 3k CLNC 23
pusptPvyy = o5 @ ckay)+e(3y) (23)
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The terms on the left hand side of equation 23 represent the advection
of turbulence kinetic energy due to the mean velocities of the flow.

The first term on the right hand side of equation 23 represents the dif-
fusion of turbulence energy due to the gradient in turbulence energy.
€/0k is the diffusion coefficient for turbulence kinetic energy. A
model must be found or assumed for oy . Oy has been assumed to be
constant throughout the flow field in this research., The second term on
the right hand side of equation 23 represents the generation of tur-

bulence energy caused by mean velocity gradients while D represents

k

the dissipation of turbulence energy by the molecular viscosity of the

fluid.

If the boundary layer is composed of more than one fluid, a conserva-

tion of species equation may be written as,

dc %¢cj _ -xd [ ae e
pu 3§1 + PV dy r 3y £ ch 3§1} + Rj (24)

where dj is the volume density of fluid j , Rj is the volume rate
of the net destruction of fluid j by means of chemical reaction, and
e/GCj is the diffusion coefficient of fluid j . The assumption
has been made that the diffusion of fluid j in the cross stream direc-
tion is large compared to the longitudinal diffusion of fluid j due to
the larger concentration gradients and momentum diffusion in the cross
stream direction. When analyzing a boundary layer composed of a group
of fluids, a species equation may be written for all but one constituent

which is then handled implicitly by the continuity equation.

Application of the first law of thermodynamics with the typical boundary

layer assumptions on the diffusional terms produces an equation for the
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conservation of total enthalpy (see Appendix A).

pu %% + pv g% = r“ gy rae (ay E__
+j% [—' - 1] [ - 1.' _%1;&2 )} (25)

where e/oh is the diffusional coefficient for the stagnation enthalpy
which is defined as

n
E=h+%—j:k+2 h.c, (26)

hj is the energy released during chemical combination of fluid j. If
there is no energy generation or dissipation due to chemical reaction,
the summation terms on the right hand side of the last two equations

become zero.

The governing equations are closed if one has a method for deter-
mining the effective viscosity and the various diffusional coefficients.
It is this point where the firm physics of the fluid ends and the various
forms of empiricism take over. The empirical models used in this study
are described in subsection C of this section.

B. Coordinate Transformations and the Generalized Parabolic Equation

The governing equations are transformed twice before they are solved
to reduce by one the explicit number of equations which must be solved
and to allow the computational net to grow with the boundary layer so
that only that part of the flow field in which significant transverse
gradients exist is treated. All of the governing equations with the ex-

ception of the continuity equation are of the form,

u %% + pv g? = r@ %; (raDc %?) + R, 27)
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where ¢ represents the dependent variable under consideration, D
represents the diffusional coefficient and Re represents the remainder
of terms in the ¢ equation. This allows one to examine one of the
governing equations and solve the remainder in a similar fashion. As
will be seen, this is also the case after transforming the equations

so that the typical parabolic equation "marching'" solution may be
carried out by simply solving as many dependent variable equations as
are of interest at each succeeding longitudinal step. In contrast to
the hyperbolic equation method of characteristics approach preferred

by Bradshaw, the dependent variables are solved at the same location
downstream since the solution need not proceed along characteristic
lines which may be different for each set of equations solved. Because
of the similar form of the various equations, the following coordinate
trans formation discussion is applied only to the longitudinal momentum

equation for illustration.

The initial physical plane for which the governing equations have
been derived is represented by a set of orthogonal X and y coordinates
(see Figure 2-a). The X axis lies along the surface on which the
boundary layer is developing while the 'y axis is perpendicular to the
surface. The coordinate r 1is the perpendicular distance from the axis
of symmetry in the case of axisymmetric flows. The y coordinate is
first stretched by a von Mises transformation which also insures that

the continuity equation is satisfied. Thus, x,y —3 x,¥Y

o)
where %% = - PV, 3% = - pu (28)

and the resulting orthogonal computation net appears as in Figure 2-b.

Application of this transformation to the longitudinal momentum equation
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produces (see Appendix B)

du _ _1l.dp,3 [, 2 3
ox pu dx Y ipur €3¢ (29)

The transverse coordinate is next nondimensionalized to limit the com-
putational net to the "active'" boundary layer (i.e., the part where

significant gradients exist), Thus, x, Y—>» x, ®

Y - YI
where w = T;—:—TI (30)
YI = the wall at a given x location
YE = the outer edge of the "active" boundary layer

at a given x location

and the resulting computational net appears in Figure 2-c. The longi-

tudinal momentum equation then becomes (see Appendix B),

o
+{I iy *‘”(‘“Er B Bl L Sl 3
— YI dw pu dx ' dw
fegurza
‘L(Y =¥ )2 amf (31)
where ﬁI = PrVp evaluated at the inner boundary of the
computational net.
gy = PEVE evaluated at the outer boundary of the

computational net.

Thus it is possible to carry out the computation in an orthogonal
net which automatically conserves the computation time by excluding the
inviscid flow field. This hinges on the ability to adequately predict

the entrainment of fluid (ﬁI and &E) between longitudinal computation
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steps. Although this at first appears to be a critical part of the scheme,
in practice almost any manner of estimating the entrainment is suitable

as long as it entrains enough flow to include all significant dependent
variable transverse gradients. This point is very important when the
method is expanded to include the energy equation since in some acceler-
ated boundary layers, the thermal boundary layer may be much larger than

the velocity boundary layer.

The above transformations reduce the governing equations to the

common form,

¢ o0 .9 (2%
= T (a + bw) Se = S0 (c aw) + d (32)
where ¢ = the dependent variable of interest (u, k, T, etc.)
a = mI/(‘%- YI) d = d(¢)
b = (mp - m )/ - ¥p)
c = £ ur2® 5

The longitudinal momentum equation (31) is non-linear because of the last
term on the right hand side of the equation. The equation has been
linearized for purposes of this analysis by evaluating "c'* at the previous
x location. Due to this linearization, it is possible for the intrinsic
non-linear nature of the equation to manifest itself as an instability

in the solution of the linearized equation even though a fully implicit
finite difference scheme is used (see subsection E of this section). This
phenomena, which was observed infrequently during this research, was con-
trolled by simply reducing the integration step size when instability

obviously occurred. Coupling between equations occurs in the diffusion
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coefficient (“*c'") and source ("d") terms of the various equations, In
the present analysis for instance, the effective viscosity and hence all
of the diffusional coefficients are related to the turbulence kinetic
energy. Therefore, all of the governing equations are coupled to the
turbulence kinetic energy equation and the momentum equation since

¢ = c(k,u). Similarly, the turbulence kinetic energy equation is
coupled to the longitudinal momentum equation because the generation of
turbulence kinetic energy is a function of the mean velocity gradient;
d = d(u). The coupling has been broken by computing the effective vis-
cosity from the turbulence kinetic energy at the previous x step. In
this way iteration can be avoided and the momentum equation solved
directly. The resulting mean velocity profile is then available for

use during integration of the turbulence energy equation,

The finite difference scheme is based on a miniature integral con-
cept which is fully implicit and removes the necessity for equal spacing
of nodal points in the transverse direction, This is of some help since
the computation may be started by using data input in physical coordi-
nates directly without modifying it to achieve equally spaced nodes in

the transformed cross stream coordinate.

C. Empirical Models

To solve equations 19, 20 and 23 simultaneously, it is necessary to
have an empirical model relating the local turbulence kinetic energy to
the local shear stress, to be able to compute the dissipation of tur-
bulence kinetic energy, and to have an acceptable model for the diffusion
of turbulence kinetic energy. If these empirical models are known adeq-

uately, these equations may be solved and predictions of the behavior of
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the turbulent boundary layer made. Unfortunately, there is a paucity of
information either analytical or experimental to guide the selection of
these models as the large difference in models of this kind in the liter-
ature reveals. The models described below are based on the models of
Bradshaw modified to reduce the amount of empiricism without changing

the accuracy of the solutions obtained. The models of Bradshaw have
been chosen over those of Glushko to avoid the larger amount of empir-

icism involved in Glushko's models.

The shear stress has been assumed to be related to the turbulence
kinetic energy through the relation

T = .3pk (33)

Correlations between measured values of shear stress and turbulence

kinetic energy are presented for a variety of flow conditions in Figure

3. Although the rather simple relation given above is not entirely
justified by the data correlation, no better trend could be found to

hold in general. As can be seen in Figure 3b, the correlation definitely
breaks down very near the wall and at the outer edge of the boundary layer.
The discrepancy at the outer edge of the boundary layer is not of parti-
cular significance since the shear is very low here anyway and errors in
the computation of the shear force here will not significantly affect the
balance of the momentum equation., The discrepancy near the wall is signi-
ficant however, since this is a region of high shear where the shear forces
are of the same ofder of magnitude as the advection momentum forces. Ini-
tial attempts were made to follow the suggestion of Lee and Harsha(zs) as

they dealt with a similar problem in free turbulent mixing. Their approach



40 (a) boundary layers on walls
«35 —
«30 —
e25 —
«20 from Reference 17
.15 —
.10 T l T | L | ! ! l
0 .2 4 .6 .8 1.0
y/y,
107t _ |
7 (b) free turbulent jets
= o
102
T -
pu
- [e]
10 3 | o} Plane Jet
o
- g Radial Jet
T Z Plane Jet
o ° Radial Jet
- o®
A from Reference 27
10 ] 1 LA 2 1 UL 1 1
1073 10~ 107
k
2
u
Figure 3. Correlation Between Shear Stress and

Turbulent Kinetic Energy

32



33

was to modify the above relationship near the axis of symmetry where the
shear goes to zero while the turbulence kinetic energy does not, Between

the axis of symmetry and the point of maximum shear they change the re-

lation to,
(2u
=) 1
du

T = .3pk
S;) Tm

(34)

P
where <<§$> the local mean velocity gradient

1

o
o)
(<g§> = the mean velocity gradient at the point of
Tm maximum shear.

A similar approach was attempted with wall boundary layers in this study.

The relation was modified to the form

T = .3pk (Bu/By)yi/(au/ay)l (i.e., (Bu/ay)yi) (35)

where (Bu/ay)yi is the velocity gradient at the location of maximum shear
stress if it did not occur at the wall or at some arbitrary non-dimensional
location if the maximum shear stress occurred at the wall. This approach
was successful in the case of Klebanoff's zero pressure gradient case but
could not be made to work with cases in which a pressure gradient was
present. The success or failure of the predictions was found to be very

sensitive to the location at which (au/ay)yi was evaluated.

In the present analysis, equation 33 has been assumed valid over the
entire boundary layer. This assumption implies that there must be a
positive value of turbulence kinetic energy at the wall when there is
shear stress at the wall. Experimental measurements of fluctuating

velocities very near a wall indicate that the turbulence kinetic energy
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approaches zero at the wall (see Figure 4). These measurements are in
agreement with the physical reasoning that since there can be no slip
between the fluid and the wall (i.e., the fluid next to the wall is at
rest relative to the wall), there can be no fluctuating velocity at

the wall. The approach then has been to use the measured values of
turbulence kinetic energy in the boundary layer except in the region
very near the wall (say y/yl < .1) and to substitute a fictitious non-
zero turbulence kinetic energy "slip"™ value at the wall. The “slip"
value is determined based on equation 33 using the measured wall shear
stress. This manipulation is justified since the goal in solving the
turbulence kinetic energy equation is to provide a means for deter-
mining the shear stress throughout the boundary layer, not to determine
the turbulence kinetic energy profile. In other words, modification of
the turbulence kinetic energy equation is justifiable if it leads to
acceptable results for the remaining dependent variable profiles and
hence a better understanding of the structure of the turbulent boundary

layer.

The dissipation term of the turbulence kinetic energy equation was

represented as,
Dk = a,pk>?/y, (36)

In the case of profiles with a shear peak located at a distance of

y/yl > 0.25, a, was computed from

a = 1.8 y > ymm
2 (37)

a, = 1.8 ytm/y y = ymm
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where yTm is the location of the maximum shear point. When no shear

peak occurred at a distance of y/yl 2 0.25, a, was computed from,

a, = 1.8 y > yl/4
(38)

a, 1.8 yl/4y y = yl/4

The value 1.8 was determined by numerical experiments with the solution
procedure and agrees well with the values of 1.5 to 1.7 determined by
Lee and Harsha as being reasonable for cases of free turbulent mixing,
This model is plotted along with Bradshaw's model in Figure 5 for com-
parison. As can be seen, the amount of empiricism has been reduced. It
is not claimed that the present model is more accurate than that of
Bradshaw. However, the outer part of the boundary layer is very similar
to a wake flow and the demonstrated success of a constant value of a,

in free mixing studies of Lee and Harsha seems to justify the present

model.,

The diffusion coefficient of the turbulence kinetic energy equation
(e/ck) was taken as the effective viscosity divided by 0.7 (i.e., o = .7).
The physical reason for a simple model of this kind is that when one
observes turbulent flow, the most prominent change from laminar flow
is the movement of "clumps"™ of fluid from one streamline to another.

These clumps carry momentum, total enthalpy, turbulent kinetic energy,
etc, with them. Therefore, since the diffusion mechanism is the same,

it is reasonable to expect the diffusion coefficients to be linearly
related., It was found that the solutions were relatively insensitive

to the value of o, indicating that diffusion of turbulence kinetic energy

k
did not play a major role in the boundary layers investigated. Of plays
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the same role in the turbulence kinetic energy equation that Prandtl

Number does in the energy equation.

D. Boundary Conditions

The initial profiles and the boundary conditions in the direction
the solution is to proceed must be known in order to fully define the
problem. 1In the case of the longitudinal momentum equation, this means
that the initial velocity profile and the free stream velocity as a
function of downstream location must be known. The longitudinal velocity
at the wall is assumed to be zero since the fluid does not slide over
the wall. The free stream velocity distribution is determined by the
inviscid flow field and may be expressed as a longitudinal pressure

gradient through the Euler equation.

In the case of the turbulence kinetic energy equation, the initial
turbulence kinetic energy profile must be known or estimated. The free
stream turbulence kinetic energy is assumed to be small. Physically,
the turbulence kinetic energy becomes zero at the wall since the fluid
actually in contact with the wall sticks to the wall and must have zero
velocity. However, as discussed previously in the section concerned
with the empirical closure equations, the turbulence kinetic energy
equation has been modified so that equation 33 is wvalid all the way to
the wall. Therefore, if the wall shear stress is known, the turbulence
kinetic energy wall boundary condition may be computed from equation 33.
Figure 4 presents a comparison between the measured values of turbulence
kinetic energy and those derived from the measured shear stress by means
of equation 33 for the data of Klebanoff(zs). The extent of the modifi-

cation is quite clear. The computed and measured values of turbulence
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kinetic energy agree very well as close to the wall as y/y1 = ,09. Closer
to the wall however, the measured turbulence kinetic energy climbs to a
high value and then decays rapidly to zero at the wall. Extrapolation

to the wall of the computed turbulence kinetic energy profile from

Y/y1 > .09 gives good agreement with the computed turbulence kinetic

energy based on measured shear at the wall, however.

One of the quantities a boundary layer prediction scheme should
predict is the wall shear since this is often one of the primary reasons
for the analysis. The paradox here is thatlit is also required as a
boundary condition for the turbulence kinetic energy equation. This
has been resolved in the present study by predicting the shear at the
wall from the mean velocity profile in the vicinity of the wall using a

"Law of the Wall" equation of the form,

u_ o l.{ pyu* |
o -k In m + cj (39)
where u* = J/Tw/p wall shear velocity

k= .41
M1

P1%

- dp
c 1.85 - .0075 3= + 200

An assumption used in forming the finite-difference equations by
the miniature integral approach is that the variation of the dependent
variable between grid points in the cross stream direction is linear.
This assumption is valid everywhere except near the wall. Near the wall,
gradients may become very steep in which case the assumption of a linear
variation of the dependent variable between the first node away from the

wall and the wall value would be a poor approximation (consider the
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velocity profile for instance). Therefore, a "slip" value of the de-
pendent variable (¢p) is used very near the wall so that the P vs., W

line passing through this value gives a better approximation for this
region. To determine a suitable "slip velocity'"™ at the wall for in-
stance, it is assumed that in this region the velocity profile is of

the power-law type:

ua(y - yw)B (40)
The definition of w leads to,

ua (w - QW)B/(I + 8 41)

By matching the slope at a point half way between the wall and the first
node away from the wall and the velocity at the first node away from the

wall, the "slip velocity"™ may be computed from
-1 . 42)

the velocity at the first mode.

where u

Very near the wall, the advection term pu %ﬁ becomes comparatively
small and may be neglected. 1In this case the equations become ordinary
differential equations. These equations have been solved numerically
by Patankar and Spalding(ls) with parametric variations on the various
constants (dp/dx in the longitudinal momentum equation). The results

have then been combined into algebraic expressions for B.

In the case of the turbulence kinetic energy equation this approach

has not been applied because of the modification of the turbulence
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kinetic energy equation as justified previously. The k vs. w varia-

tion has been assumed linear in this region.

E. Solution of the Finite Difference Equations

The following is a brief introduction to the solution scheme
used. It is included here for the sake of continuity. A much more
detailed description is given by Patankar and Spalding in reference
18 which should be consulted if the reader wishes more than a cursory

knowledge of the technique.

As shown in subsection "B'" above, the governing equations can be

reduced to the common form,
e 09 . 9 (o
= T @+ bw) 30 e (c3) +d (43)

This equation is solved by a "marching" forward integration procedure
with the equation simulated by a finite difference element subdivision
of the boundary layer. Therefore, at each step in the integration the
values of ¢ will be computed at discrete values of w for chosen steps
in the longitudinal direction., The discrete values of w and the inte-
gration steps in the x direction form a rectangular mesh which serves
as a basis for the finite difference approximation of equation 43. The

nomenclature for the approximation scheme is shown in Figure 6.

Rather than use the popular Crank-Nicholson scheme(zg), a fully
implicit scheme based on a miniature integral has been employed to
remove the necessity for equal spacing of node points in the w direc-
tion., It is assumed that in the w direction, ¢ varies linearly with

® between mesh points. The variation in the x direction is considered
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to be stepwise evaluated over the interval at the downstream location.
To linearize the equations, the coefficients a, b and ¢ of Equation 43

are evaluated at the upstream mesh points.

In Figure 6, the u subscripts indicate the upstream location while
the D subscripts indicate downstream locations. The + subscripts indi-
cate nodes where the value of w is larger while - subscripts indicate
nodes where the value of w is smaller. Double letter subscripts indi-
cate midpoint locations in the w direction. For instance, P,y 18 half
way between P, and Pt while all three are at the same upstream x loca-
tion. The shaded area represents the projection of the surface of
interest (i.e., Py Py ¢vv+’ ®op+> Pp* Ppp-° wvv-) on the x, w plane.
Frequent reference to this figure will help in an understanding of the

finite difference scheme described below.

The convection terms of Equation 43 are expressed as,

Xp Ypp+ .
Xp/ax ~ {Jf J (p/dx) dwdxj/q (xp - x,)(app, - ‘“DD-)}
Xu  Wpp-
(44)
b+ 3
(@ + bw) Go/ow) ~ { | a + bu) /o0, duj/(upp, = upp )
- “pp-
(45)

i.e., (a + bw)
Remembering the assumed linear variation of ¢ between w points leads to

the approximations

- - 46
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Note that all g's are expressed in terms of known quantities.

The diffusion term of Equation 43 may be expressed as,

@ = P Py - P4
% (c éEE) ~—2 {C + D+ D -C D D }
R T R
(50)
By defining
2C
= uu+
g =
= (wpy = op ) (o, = wp)
2C
g = uu-
6 Capy - g Gy - )
the diffusion term may be written as,
<) fo! ,
S CSE) =~ 85 (9, - ¥ -8, @ - ) (51)

As previously discussed in subsection B of this section (see also Equa-
tion 32), the longitudinal momentum equation has been linearized by
evaluating the "C" of Equation 51 at the upstream location. The method

may be plainly seen by reference to the Cuu and Cuu_ terms in Equation

-+
50.

The source term "d™ of Equation 43 is assumed uniform throughout

the area of integration and equal to the value at the downstream mesh

45
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line. '"d" may not be linear in ¢ but it is evaluated from the linearized

formula,

= od '
dy = d_ + 5 oy - @) (52)

The source term for the momentum equation is evaluated from

r’wDD+ ( )
' d dw
JQbD- D

a4 = (53)
(Wppy = 9pp.)

since the velocity is assumed to vary linearly with w between mesh points.

The source term for the momentum equation may be written then as,

d = S, U +S,U_ +S + 8 (54)

1D 2D 3 "D- 4

where
*1 dp
S, = (x, - x )
1 P U2, & D Tu
P
- 2 dp -
SZ TP y2 dx <xD xu)
u u
P
3 dp -
SS = Pu Uzu- dx (xD xu)
P P P ~
d [ 1 2 3 |
s, = -22%B -x ) {— + + J
4 dx (xD u Lpu+ Uu+ pu Uu pu- Uu-

By grouping all of the finite difference terms goether, the equa-
tion may be written for each node point in implicit form in terms of the
dependent variables at the downstream location of the node of interest
and the two nearest nodes. In this manner the nodes of the boundary

layer form a set of simultaneous linear algebraic equations of the form,
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The transfer matrix for this set of equations

and is easily solved by back substitution.
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?y Dy
?y D,
© D
. 3| = 3
A7 D,
BnJ ¢nj Dn
(55)

is tri-diagonal in form
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IV, DISCUSSION OF PREDICTIONS

A logical progression of increasingly complex turbulent boundary
layers was used in developing the mathematical models described in the
previous section. A wide range of boundary conditions were investiga-
ted since the prediction scheme being sought was to have as broad a
range of application as possible. The empirical information needed to
define a prospective model was established by forcing the model to
provide adequate predictions for the simplest cases. As the model was
applied to more complex cases, minor modifications were made to the
model in an attempt to obtain adequate predictions without invalidating
the previous predictions with the model. It is necessary to evaluate
models in this manner since it is possible to develop a model which
will adequately predict a narrow range of complex turbulent boundary
layers but provide erroneous predictions in other cases. The mathe-
matical models finally selected are those which provided the best
predictions with accelerated, neutral, and decelerated boundary layers

and with positive, zero and negative mass addition at the wall.

The first case each model was tested against was flow along an

impermeable flat plate in zero pressure gradient. The test case used

f(28). This was a particularly

was the experimental results of Klebanof
good starting point because Klebanoff measured the mean velocity pro-
file, and enough fluctuating velocity information so that the turbulent

kinetic energy and shear stress profiles could be determined for this
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the simplest of all equilibrium boundary layers.* All empirical informa-
tion for the models being tested was then arranged to maintain the non-
dimensional velocity boundary layer and a reasonable shear profile for
forty initial boundary layer thicknesses downstream. Assuming this
condition could be met, the models were then tested against an initially
disturbed, relaxing boundary layer on an impermeable flat plate in zero

h(30) were used for this purpose.

pressure gradient. Some data of Levitc
These data appear to be somewhat in question because of the discontinuity
in the shear stress profile at the wall. However, a valid model should
predict the correct trend in this case. Next, the models were tested
against two equilibrium boundary layer cases with adverse pressure
gradient (decelerating flow). Experimental information for these two
cases was that of Bradshaw.(24) Finally, the models were tested against
several cases of favorable pressure gradient (accelerating flow) along
an impermeable wall and along a permeable wall with blowing and suction
1(32)

at the wall. The data of Julien(31) and Thielbahr, et a were used

for these cases. Unfortunately, no shear or turbulence kinetic energy
measurements were made in these cases. 1In these cases, the initial tur-
bulence kinetic energy profiles had to be assumed and the accuracy of
the downstream kinetic energy profiles could be tested only indirectly
by the resulting shape of the downstream velocity profiles and the
predicted wall shear stress. A matrix of test cases is given in

Table I to describe the range of conditions covered and give the

reader an easy cross reference to use if he should like to

have been
*For purposes of this study, equilibrium boundary layers
defi:egpas those where the,non-dimensionalized mean velocity profile

remains constant.
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TABLE I.

Ref.

28
30
24
24
31
32
32
32
32
32
32

MATRIX OF TEST CASES
-2 -
dp/ox (1bfft ft 1)

0

0
0491
.602

-.635
-.787
-.787
-.787
-.787
-.787

©O O O o o o

.001
.004
-.001
-.002

50



51

make comparisons other than those given below. The columns containing
information about pressure gradient and wall mass transfer indicate

. . . 2 .
relative order of magnitude. Case 1 is Klebanoff's( 8 experiment, Case

p (30)

2 is that of Levitc , and Cases 3 and 4 are the positive pressure

gradient results of Bradshaw(24). Cases 5 thru 11 are those of Julien(Bl)

and Thielbahr, et a1(32).

Figure 7a provides a comparison of the free stream velocity sched-
ules among the cases investigated. Cases 1, 2 and 5 are zero pressure
gradient cases of various free stream velocities. Cases 3 and 4 are
cases of positive pressure gradient while the remainder are negative
pressure gradient cases. A comparison between the experimental and
analytical wall shear velocities (see Equation 39) is presented in Fig-
ure 7b. The comparison between the analytical and experimental wall
shear velocities indicates adequate prediction capability for wall shear

stress.

A. The Impermeable Wall in Zero Pressure Gradient

Klebanoff (Case 1) made measurements in an equilibrium boundary
layer. 1In an equilibrium boundary layer it is necessary to make measure-
ments at only one streamwise location since the shape of the non-dimen-
sional velocity profile is invarient if the cross stream distance is non-
dimensionalized with respect to the boundary layer thickness and the

velocity magnitude is non-dimensionalized with respect to the free stream

velocity. The prediction method was started using the measured velocity

profile and the measured turbulence kinetic energy profile modified close

to the wall as discussed previously. The analysis was carried out to a

downstream distance of forty initial boundary layer thicknesses. The
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resultant shear and velocity profiles for Klebanoff's case are presented
in Figure 8. The non-dimensionalized velocity profiles throughout were
virtually the same. The shear stress profile while maintaining the same
shape decreased slightly in magnitude in keeping with the expected reduc-
tion in wall friction coefficient for boundary layers of this type. It
is evident from these results that the chosen mathematical models and

prediction technique provide excellent predictions for this case.

Julien's experiment (Case 5) is similar to the experiment of Case
1 and was carried out on the same apparatus used for Cases 6 through 11.
No hot-wire anemometry data is available for Cases 5 through 11. There-
fore, a method had to be found to generate the initial turbulence kinetic
energy profiles. These profiles were generated by using profiles of the
same shape as the data of Klebanoff and stretching it to fit the width
of the boundary layer of interest and matching the wall value of turbu-
lence kinetic energy with the measured wall shear stress through Equation
33, This analysis then was conducted for two reasons: (1) to determine
how the assumption of an initial turbulence kinetic energy profile would
affect the solution, and (2) to determine the feasibility of using the
data from this épparatus. The assumption is that if the profile shapes
dan be satisfied and if the downstream wall shear stresses are adequately
predicted then items (1) and (2) above are satisfactory. Figure 9 pre-
sents the measured and predicted velocity and shear stress profiles for
the initial profile and two others, the last of which is some 35 initial
boundary layer thicknesses downstream. The agreement among the velocity

profiles is excellent in terms of boundary layer growth and shape. The
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shear stress profile maintains the same shape as the prediction progresses.
The agreement between the measured and the predicted wall shear stress is
good. The predicted variation of wall shear stress with distance down-
stream goes in the correct direction and is probably as good as the meas-

ured value since wall shear stress is a difficult quantity to measure.

Case 2 (Levitch) is an interesting non-equilibrium boundary layer.
It was created by blowing into a turbulent boundary layer for some dis-
tance to perturb the normal velocity and shear stress profile shapes and
then abruptly terminating the blowing and observing these profiles as the
boundary layer '"'relaxed'" toward an equilibrium condition. The velocity
and shear profiles were measured with a hot-wire anemometer. The results
of the predictions for this case are presented in Figure 10. The pre-
dicted wall shear stress proceeded in the correct direction but was 10
percent lower than the reported measured results. The velocity profiles
are good except in the inner 20 percent of the boundary layer. When the
experimental velocity profiles were carefully plotted, a definite inflec-
tion point occurred at the place where the predicted and experimental pro-
files begin to diverge. It is entirely possible that the measurement
probe might have encountered a "wall effect" in this inner region. The
agreement between the predicted and measured shear stress profiles is
adequate. The "hook'" in the predicted shear stress profile which develops
in the first 24 inches is gradually damped out and good agreement is
evident at the 72 inch station. This "hook" may be caused by inferior
starting conditions for the turbulence kinetic energy profile. In any

event, Case 2 which was the first and strongest non-equilibrium boundary

layer examined exhibited reasonable agreement between measurement and

theory.
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Since the prediction scheme provided reasonable results for bound-
ary layers without free stream pressure gradient, it was next applied to

boundary layers in the presence of pressure gradients.

B. The Impermeable Wall in the Presence of a Pressure Gradient

Most real boundary layers develop in the presence of a pressure
gradient in the flow direction. Flow conditions with a negative pres-
sure gradient are normally referred to as favorable or accelerating con-
ditions whereas flow conditions with a positive pressure gradient are
referred to as unfavorable or decelerating conditions. Four cases with
pressure gradient along an impermeable wall were examined in this study:

two accelerating and two decelerating.

Bradshaw (24) performed experimental measurements of mean veloc-
ity and turbulent shear stress in two equilibrium boundary layers with
adverse or decelerating pressure gradient. The experimental apparatus
was adjusted so that the free stream velocity varied exponentially with
distance as,

a
uu,cx; X

The two experiments reported were for a = -.15 and a = -.255. The non-
dimensionalized velocity profiles at various stations were found to be
coincident in each case. The predictions were started using the meas-
ured mean velocity profiles and initial turbulence kinetic energy pro-
files were derived from the measured shear profiles using Equation 33.
en in Figure

The results of the predictions for a = -.15 (Case 3) are giv

11. The non-dimensional velocity profile remained essentially unchanged

for thirty boundary layer thicknesses. The shear stress profile shape
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remained the same as the prediction advanced in the downstream direction.
Figure 12 shows similar results for a = -,255 (Case 4). The predictions

for both cases appear to be very good,

The two cases examined for the effects of an accelerating bound-
ary layer (Cases 6 and 7) come from the results of Thielbahr et a1(32).
Unfortunately, Thielbahr did not make hot-wire anemometer measurements
and therefore no data is available on shear stress or turbulence kinetic
energy. However, wall shear stresses are reported. In each case the
pressure gradient was relatively low at the station of the initial pro-
file. Therefore, the initial turbulence kinetic energy profile was
assumed by making use of Klebanoff's measured turbulence kinetic energy
profile and proceeding as indicated for Julien's data (see subchapter A
of this chapter). Figure 13 presents a comparison between the experi-
mental and predicted velocity profiles and the predicted shear stress
profiles for a slightly accelerating boundary layer at various down-~
stream locations as noted. The agreement between predicted and measured
velocity profiles is excellent. The fact that the outer portion of the
shear stress profiles are almost the same indicates that the assumption
concerning the initial turbulence kinetic energy profile was adequate.
Figure 14 presents similar results for a more rapidly accelerating
boundary layer. Once again, the agreement between the experimental
and predicted velocity profiles is excellent. The good agreement be-

tween the measured wall shear and the predicted shear profiles seems

to indicate that the models are adequate for this case also.
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In summary, it appears that the mathematical models used are
quite adequate for flows along an impermeable wall with positive or

negative pressure gradient at least throughout the range tested.

C. Accelerated Boundary Layers with Blowing or Suction

As mentioned in Section I, turbulent boundary layers are often
controlled by mass transfer at the wall in engineering applications.
A truly useful prediction method should then also have this capability.
Four accelerated boundary layers with varying amounts of mass transfer
at the wall have been investigated to demonstrate the capability of the

present prediction method. A blowing parameter "F'" has been defined as,

where the subscript "I" indicates conditions at the wall; thus, vy is
the gas transpiration velocity at the wall. The four values of F inves-
tigated were -.002, -.00l, +.001, and +.002. The experimental data used
was once again that of Thielbahr et 31(32) and the initial conditions
were established in the same manner as that used for Cases 5 through 7.
It is unfortunate that no hot-wire anemometer data is available for
these cases because the shape of the shear stress profile measured by
Levitch just downstream of a blowing section indicated a maximum shear
stress at some location away from the wall. Therefore, the use of the
Klebanoff turbulence kinetic energy profile shape may not be realistic

here. It was used however, for lack of better data. All of the Cases

(8-11) investigated with mass transfer at the wall had the same free

stream velocity schedule as did Case 7, the larger maximum pressure

gradient case for the impermeable wall situation. The results for



Cases 8 through 11 are giveﬁ in Figures 15 through 18. Cases 8 and 10,
the lowest blowing and suction cases, respectively, predict very good
velocity profiles. Cases 9 and 11 do not produce velocity profiles
which are in as good agreement with the experimental data but the pre-
dictions are reasonable. Inadequacy of the initial turbulence kinetic
energy profiles may account for these deviations. Suction Cases 10 and
11 produce what appear to be reasonable velocity profile and wall shear
stress predictions. However, the shear stress profiles change rapidly
from the initial shear stress profiles indicating that the initial pro-
files which were assumed were of the wrong shape. The shear stress pre-
dictions of blowing Cases 8 and 9 develop definite '"hooks" in the pro-
files near the wall. These hooks are consistent with the experimental
results of Levitch and are to be expected with blowing since this will
force the location of maximum shear stress away from the wall. It is
impossible to say quantitatively at the present time just how accurate
the predictions are for cases with mass addition at the wall. The

urgent need for experimental hot-wire anemometer data is obvious.
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V. CONCLUSIONS AND RECOMMENDATIONS

The feasibility of using the turbulence kinetic energy equation as
an aid in predicting the behavior of several classes of turbulent bound-
ary layers has been investigated. Since turbulence kinetic energy must
be conserved in turbulent boundary layers, the proper addition of a con-
servation of turbulence kinetic energy equation to the more generally
applied conservation equations of momentum and mass allows more of the
physics of the flow to be considered. The following conclusions have
been reached based on the successful prediction of the wide variety of

turbulent boundary layers analyzed in this investigation:

1. It has been shown that a single computation method can be used to
predict the behavior of accelerated, decelerated, or neutral (nega-
tive, positive or zero pressure gradient) turbulent boundary layers

along an impermeable wall.

' 2. It has also been shown that the same computational method can be
used to predict the behavior of turbulent boundary layers with

blowing or suction.

3. Four empirical models (three for the turbulence kinetic energy
equation and one for the momentum equation) are needed to close
the system of governing equations when the conservation equations

of turbulence kinetic energy, momentum and mass are employed.

These models are for:
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a. Production of turbulence kinetic energy.

b. Dissipation of turbulence kinetic energy.

c. Diffusion of turbulence kinetic energy.

d. Diffusion of momentum.

Sufficient experimental data exist for adequate definition of two
of these models (a and d), whereas the remaining two are not so well

defined.

4. Adequate empirical models can be defined for the outer (nearer the

free stream) 80 percent of the turbulent boundary layer flow field.

5. A "“law of the wall" expression has been developed which can be
applied to the flow field behavior very near the wall. Consistent
results of accuracy suitable for engineering application can be

obtained with this model.

6. The computer program modified for this research is an effective tool
for solving simultaneous parabolic equations of the boundary layer

type and testing the validity of proposed empirical relations.

Based on the demonstrated correlations between predictions and
experiments for the wide variety of cases, it is felt that this approach
should be extended to boundary layers of increased complexity. It is

recommended that the approach be extended to the following engineering
applications:

1. Turbulent boundary layers with significant thermal gradients should

be attacked. It has been demonstrated in Section II above that the
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energy equation may be added to the group of governing equations.
Some of the data of Thielbahr et a1(32) can be used for this purpose.
If the wall boundary condition can be successfully modeled, the
method could be extended to cover many heat transfer applications

of engineering importance.

The method should be applied to the analysis of meteorological
phenomena such as reactions caused by the air-sea interface and air
pollution. The big problem in this application is obtaining suffi-
cient data on the air mass involved. If a typical situation could
be scaled down sufficiently to conduct tests in a wind tunnel,
measurements could be relatively easily made. Assuming that mathe-
matical models could be found which produced correlations between
experiment and theory as good as those in Section IV, full scale
experiments could be justified which would lead to possible control

of these phenomena.

This prediction method should be considered for use in prediction
of the effects of thermal and particulate waste diffusion in flowing
streams. In this case the flow field is not really a boundary layer
as such but actually a free mixing process. Understanding of the
diffusion mechanism of the wastes could lead to less effect on the

stream ecology or more efficient location of inlet and outlet points

for waste disposal systems.
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A final recommendation which must be made concerns the philosophy
of approach to the understanding of turbulent boundary layers.
Research in both experimental and analytical investigations into

the nature of turbulence should be more clearly related. During

the course of this research, numerous situations were encountered

in which turbulent boundary layers had been carefully experimentally
constructed and measured. However, no hot-wire anemometer measure-
ments had been made. Without these measurements, only secondary
comparisons can then be made between experiments and theory. On

the other side, an equal number of situations can be sighted where
analytical schemes are proposed in which experimental verification
of the models used is very difficult if not impossible. If research
into the nature of turbulence is to be successful, a conscientious
effort must be made to consider experiment and analysis when con-

ducting either.
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VI. APPENDICES

Three appendices have been added to this thesis to guide those

readers interested in more than a cursory observation of this research,

Appendix A provides the philosophy for arriving at the governing
equations for the type of turbulent boundary layer analyzed here.
Appendix B describes the transformation of the governing equations
used to perform efficient numerical calculation. Appendix C is a
FORTRAN listing of the computer program used in the predictions des-
cribed in the body of the thesis. Copies of the program deck can be

made available to those interested in serious application of the pre-

diction method.
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APPENDIX A
GOVERNING EQUATIONS OF THE TURBULENT BOUNDARY LAYER
This appendix contains the derivation of the governing equations of
a turbulent boundary layer. The finite element used in the derivation
of these equations is shown in Figure A-1. The flow is assumed to be

"steady" so that there is no variation of a mean fluid property with

time.

A. Continuity

The fluid in the turbulent boundary layer is governed by the con-
servation of mass. Since mass is neither created or destroyed in the
boundary layer, an account of the rate of mass entering and leaving an

elemental volume can be made.

The rate of mass entering the left face of the element in Figure A-1

p(2mrdy)u (A-1)
while the rate of mass entering the inner face of the element is,

p(2mrdx)Vv (A-2)
The rate of mass leaving the element through the right face is,

w‘ -
p(2mrdy)u + -a—}-ac- {p(andy)uJ’ dx -3)

while the rate of mass leaving through the outer face is,

p(2mrdx)v + -é% {p(andx)v} dy. (A-4)
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Figure A-1.

The Element of Integration
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Therefore, the net rate of fluid leaving the element must be zero and,
=2 (pur) + =2 (pvr) = 0 (A-5)
ax oy

after obvious algebraic manipulation.

The case of planar flow may be thought of as flow over a body of
revolution with a very large body radius compared to the boundary layer

thickness. In this case,

E—E:O

ox oy

so that equation A-5 may be reduced to the form

2 (ow) + 32 (pv) = 0 (4-6)

By making use of a "keying" integer o, equations A-5 and A-6 may be
handled in the common form,

2 {2 o) -

where o = 0 in the case of planar flows and o = 1 in the case of axi-

symmetric flows.

B. Longitudinal Momentum

. []
Another governing equation can be obtained by applying Newton's

Second Law of Motion in the longitudinal direction. There are pressure,

momentum, and shear forces acting in the boundary layer which must be

balanced if "steady' motion is to be maintained.



The pressure force on the left face is
p2trdy
while the pressure force on the right face is

p2mrdy + S% {pandy} dx

The longitudinal momentum force at the left face is,
pu(2mrdy)u

while the longitudinal momentum force at the inner face is,
pv(2mrdx)u

The longitudinal momentum force at the right face is,

-2 d
pu(2mrdy)u + - {pu(andy)u } X

while the longitudinal momentum force at the outer face is,

ov(2mrdx)u + 33 {pvczmdx)u } dy

The shear force at the inner surface is
T(27rdx)
while the shear force at the outer surface is

T(27rdx) + Ss- {T(andx)} dy

78

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

A-14)

(A-15)

The shear forces due to f£luid dilation have been assumed to be relatively

negligible.
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If the flow is '"steady", summation of forces in the longitudinal
direction must be zero. Therefore, summing Equations A-8 through

A-15 and dividing through by 27T dx dy produces,

2 o) + 3 (oo - 3 0} - B o

or,

rpu %— + rpv —— + u {B (rpu) +-—— (rpv)}

2 dp _p gL A-17
oy {rT} " Tax " P 3k ( )

The last term on the left hand side of Equation A-17 is equal to zero

because of the continuity equation. From Figure A-1,

r = Ry + Y cos B (A-18)
Therefore,
R
dr _ I <] (A-19)
ox = 8% tYox (o8 ®

Assuming that R, and cos B vary relatively slowly in the longitudinal

I
direction, then 3r/3dx = 0. Equation A-17 may then be written as,

du du _ @3 aq -3 (A-20)
puzx t PV oy Ty (r* ™) - x

nd
Assuming that the pressure does not vary across the boundary layer a

i-
that the shear may be described by an effective viscosity ¢, the long

tudinal momentum Equation A-20 becomes,
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Qu du -0 3 .o du, _dp
pu = + pv >y >y (r-e ay) - dx (A-21)

C. Conservation of Energy

When boundary layers with significant temperature gradients are
analyzed, conservation of energy produces an additional governing equa-
tion. In the following derivation, diffusion of energy in the cross
stream direction is assumed to be much larger than diffusion in the

streamwise direction.

The total enthalpy of the fluid is assumed to be composed of four
parts: (1) the static enthalpy due to temperature, (2) the kinetic
energy due to the mean velocity, (3) the kinetic energy due to the

fluctuating velocity, and (4) chemical energy released during chemical

reaction.
- 2 n
h = h+3%+k+Z he (A-22)
2 j=1 13
where:
h = Stagnation enthalpy
h = Static enthalpy
u = Mean velocity
k = Turbulence kinetic energy
h. = Enthalpy of reaction for species j
J
cj = Concentration of species j

The net energy convected out of the differential element by the mean

flow velocity is,
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1) - =
2 dx dy Sz (rpuh) + g—y (zovh) | (A-23)

By applying the continuity equation, Equation A-23 may be reduced to,
2h é_E}
21 dx dy {rpu 35 T TPV oy (A-24)

The net diffusion of energy out of the differential element due to a

static enthalpy gradient may be written as,

=21 dx dy a {E_ r By (A-25)

where G/Gh is defined as the exchange coefficient of heat flux. o, may
be thought of as an effective Prandtl number. Equation A-25 may be

expanded using Equation A-22 to,

- 2 n aC, -
- dh _ d(u7/2) _ 3k _ i A-26
-2 dx dy 3= 10 T Gy " oy >y j2=: hi &5 )} (A-26)

The net diffusion of energy out of the differential element due to the

turbulence kinetic energy gradient may be written as,
o {g- ok (A-27)
=21 dx dy 3y N ay

where e/ak is defined as the exchange coefficient of the turbulence

kinetic energy flux.

The net diffusion of energy out of the differential element due to the

reacting species gradient may be written as,
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3 fg = %57
A x4y 55 {J-,E__l o, ThEJ (a-28)

h|
where e/ccj is defined as the exchange coefficient of the reacting species

flux. ccj may be thought of as an effective Lewis number for the reacting

species.

By setting the sum of Equations A-24 through A-28 equal to zero in order
to satisfy the first law of thermodynamics, the energy equation may be

written as,

dh oh _ -3 [r% 3h , h .73k
pu 35 * eV 5y T dy {7;— (ay + Ldk 1 3y
: [ch 1] s TN o, - 1] /) u’/2 )} (A-29)
+ jil 523- dy h dy

D. Turbulence Kinetic Energy

The turbulence kinetic energy equation is normally obtained by
multiplying each momentum equation by the velocity in that direction,
time averaging and then summing the modified momentum equations together.
A different approach will be used here. 1In applying the turbulence
kinetic energy to boundary layer prediction the assumption is made that
turbulence kinetic energy is a dependent variable quantity of the flow
which must be conserved. It may be convected, diffused, generated, and
dissipated but it must be accounted for so that the net amount in evi-

dence at any point in the boundary layer can be determined.

The net amount of turbulence kinetic energy convected out of the control

volume is, (see Figure A-1 for coordinate system and Equation 22 for

definition of k)
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2m dx dy il (purk) + 21 dx dy 2 (pvrk)

or

Jok

ok 3 o) 1
2T dx dy {pur 3% + pvr 'a—y + k 3% (pur) + 5"; (pvr)—l }

which on application of the continuity equation becomes,

ok ok
2mr dx dy {pu 3 + pv g; (A-30)

The net amount of turbulence kinetic energy diffused from the control

volume 1is

Zﬂdxdya (x 3

where Jk is the diffusional flux of turbulence kinetic energy in the
y direction. Assuming that the diffusional flux ean be represented by
a diffusion coefficient and the turbulence kinetic energy gradient in

that direction, i.e.

o
]

1
le
0102
< =

k

then, the net diffusion of turbulence kinetic energy out of the control

volume may be written as

) e 2k (A-31)
=21 dx dy 5; (r o Sy

Describing the dissipation of turbulence kinetic energy in terms of a

rate per unit volume per unit time, the dissipation of turbulence kinetic

energy within the control volume may be written as
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2nr dx dy Dk (A-32)

Turbulence kinetic energy is generated by the mean velocity gradient of
the flow. If Gk is defined as the rate of generation of turbulence
kinetic energy per unit volume, per unit of time, per unit of velocity

gradient, the generation within the control volume may be written as

Qu , dv , 3du , Ov
2mr dx dy G (Fr +t 35 T oy t 3R

but %? is much larger than the other three gradients so that the genera-

tion term becomes,

Qu (A-33)
21y dx dy Gk Sy °

Summation of Equations A-30 through A-33 then creates the conservation

of turbulence kinetic energy equation as

3k Bk _ L 3, & Bk _ du
Puzx PV 3y r Oy (r Oy By) Dy *+ Gy dy
However, Gk = %2 consistent with the formulation of € in the streamwise
y .
momentum equation. Therefore,
ok ok _ lp & 3% w2 _p (A-34)
Puss+PVS, = Ty (r o ay) + € (By) K
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APPENDIX B

TRANSFORMATION OF THE GOVERNING EQUATIONS

This appendix explains the coordinate transformations used to simplify
the governing equations. A general equation, typical in form to each
of the governing equations is carried through two transformations to

the final form.

A. The Von Mises Transformation
All of the governing equations with the exception of the continuity
equation may be written in the general form (see Appendix A):

QE ga = o é— o 2(2 B-1
Pu 35 + pv oy TSy (r” D, Oy) + R, (B-1)

where ¢ represents the dependent variable of interest, Dc represents
the diffusion coefficient for this equation and Re represents the re-

maining terms of the equation.

The first transformation is a stretching of the y coerdinate used to
incorporate the solution of the continuity equation with each dependent

variable equation. The continuity equation is:

o) o o oy _ (B-2)
3% (pur’) + 3y (pvr ) 0

Let a stream function Y be defined such that,
o} 4 o oY = purd (B- 3)

3% - -pvr and 3y

Substitution of B3 into B2 shows that this stream function will satisfy

the continuity equation.
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The general Equation Bl is then transformed from the x, y coordinate

system to the x, Y coordinate system by stretching the y coordinate,

thus -
3 . 2,3 W_ D ad
3k - oxox T ax - x " PVT 3y
2 _ 2 dx,d ¥ _ _ ad
3y = dx oy T3 3y - Pur g (B-4)

Therefore, the transformation of Bl using B4 results in

[e! a 9 -a 3
pu {gz - pvra 3% + pv {pur S% =r pura v

oY
{r"‘ D, pur® %3 + R (B-5)
or
R
Xp _ 9 2 O _e -
.SE:E = ¥ {Dc pur 7Y + ou (B-6)

B. The Nondimensional Stream Function Transformation
To make the computation as efficient as possible it is desirable that
the computation net expand or contract with the physical boundary layer.
This has been accomplished in this case by defining a nondimensional
stream function w as,
Y - YI (8-7)
where YE is the stream function at the outer edge of the boundary layer
and YI is the stream function at the inner edge of the boundary layer.

The effect then is to nondimensionalize the cross stream variable.

There fore,
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and

or

so that

Applying
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3. .2 2,2 3% _ 3 _ 2w
ox 0x O0x = Ow O0x  ox + dx dw
(B-8)
oY ox Y 7 dw oY oY dw
2w _ 1
oY YE - YI
(B-9)
BYE
dw (YE YI) (-BYI/BX) - (Y - YI) (3;— - BYI/BX)
¥ 2
(YE - YI)
dw PLVLT - O (vaprIa)
ox YE - YI
o o
3 _ 2 {pIVIrI - @ (PpvyTr - PEVETE ) | 23
ox ox YE - YI dw
(B-10)
o 1 o
oY YE - YI ow
transformation equations B1l0 to equation B6 gives:
o o
o, (P71 C wPrvrr " PeEE ) ) 2
ox Y. - Y ow
E I
2c
r R
1 é.{.c_p_‘f__ L, e (B-11)
v - ¥ dw Uv - ¥ 2w/ Thu

and by defining m = pv, equation Bll may be written in its final form

as:

-w (r
-YI

)%
w

.t

D pur 20 3 R, (B-12)
{(w-\r)Z am} *+ ou
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APPENDIX C

COMPUTER PROGRAM FOR SOLUTION OF THE
PARABOLIC BOUNDARY LAYER EQUATIONS

COMMON /MXFER/BLOW
COMMCN/DUDYF/DUDY2591SLOsDUDYS509ISLOS

COMMON /GEN/PEI o AMI s AME9sDPDXsPREF(3)9PR(I3)9P(3)9sDENY
1AMUI XU s XD XP o XL oDX9s INTGICSALFAYXPCG
1/1/NsNPLsNP2 oNP3sNEQINPHIKEXsKINIKASEIKRAD 9 KPRAN
1/B/BETAsGAMA(3) 9 TAUI 9 TAUEWAJI(3)9sAJE(3) 9 INDI(3 )
1INDE(3)
1/V/7UL43) 9F(3943)9R(43)9RHO(43)sCOM(43)9Y(43)
1/7C/SC(43) s AU(43)9BUII43) s CUIL3) sA(3943)9B(3943)9C(3943)
1/7L1/YLyUMAXSUMINSFReYIPYEM

COMMCN/PR/UGUUGD

COMMON /L/AK 9 ALMG
COMMON/AUXP/TEMPE(43) o TEMP(43) sPO(43) s AMACH(43)
COMMON/BAR/GABAR(43)9yRBAR(43)
COMMON/AUXY/ZYY(43) 9 XXUsRR1

COMMON /SHEAR/ SHEAR(43)9SCSHI(43)

COMMON /ASD/ ASD19ASD2

COMMON /IDIN/ INDIC

COMMON/DUD/DUDOM(43) s DUDY(43)y ADUDY(43)9 ADUDYM
COMMON/DCON/DXC

COMMON /KE/ AKEM

COMMON/STORE/0OLDU(43)

COMMON /FREE/FREVEL(35)

COMMON /TAUW/CFW(25)

COMMON /1JAN/TDUDY» MTKE

COMMON/WRITE/QUTI(T)

INDIC=0

READ (548000) NCASE

FORMAT(2I5)

CONT INVE

INDIC=INDIC+1

X = Ce0

INTG=0

AKEM=0,0

YL=0e01

I0UT=1

CALL CONST

CALL BEGIN

UGU=U(NP3)

UGD=UGU

AMI=0s

AME=0Cs

GO TO 25

CALL READY

CONTINVE

CALL CDUDOM(UsOM9DUDOM)

INTG=INTG+1

CALL LENGTH.



CALL SHEARS

CALL ENTRN

C

C CHOICE OF FORWARD STEP
FRA=405
DXCN=g4+DXC
DXA=DXCN#YL

IF(AM]I eEQqeOe ¢ ANDeAME+EQeOs) GO TO 1000
DX=ABS(FRA #PEI/(R(1)*AMI=R(NP3)#AME)
IF(DXeGTeDXA) GO TO 1000
IF (DXeLTeOe) GO TO 85
GO TO 1001
1000 Dx=DXA

1001 XD=XU+DX
IF(XDelLTeOUT(IOUT)eOReXUsEQeOQUT(IOUT)) GO TO 77
XD=QUT (IOUT)
DX=XD=XU

77 CONTINUE

C CALCULATES CHANGE IN FREE STREAM VELOCITY

CALL FREEU(XUsXDsUGUIUGD)
U(NP3)=UGD
CALL PRE(XU9sXDsOPDX)
IF(KASE+EQe2) GO TO 26
IF(KINeEQe1)CALL MASS(XUsXD9sAMI)
IF(KEXeEQel) CALL MASS(XUsXDoAME)
CALL WALL

26 XXU=12,0#XU
RR1=12,0%#R(1)
DO 90 I=19NP3
oLou(l)I=u(l)

90 YY(I)=1240%Y(I)
CALL FUGA2(F sYoDUDYsYLsNP1sTOUDY sMTKE)
DUDY25s=TDUDY
I1SLO=MTKE

CALL COEFF
IF(XUelLToOUT(IOUT)) GO TO 555
CALL OUTPUT
I0UT=10UT+1
555 CONTINUVE
CALL SOLVE(AU3sBU»CUSUINP3)
C SETTING UP VELOCITIES AT A SYMMETRY LINE
IF(KINoNEe3) GO TO 71
Ulli=su(2)
IF(KRADOEOQOIU(1".75'U¢Z)+025i0(3)
71 IF(KEX.EO.!)U(NP!)-.75*0(NP2)4025*U¢NP1)

72 CONTINUVE

89



46
47

1003
1002

48

90

IF(NEQeEQel) GO TO 30

DO 45 JU=]1oNPH
IF(JeEQel)CALL TKEW(XDOUINP3)9F(1e1))
DO 46 I=24NP2

AU )=A{Jel)

BU(TI)=B(Jsl)

CUll)=sC(Jel)

DO 47 I=14NP3

SClI)=F(Jel)

CALL SOLVE(AUIBUsCUSCeNP3)
IF(JeNEel) GO TO 1002

DO 1003 JJU=1eNP3
IF(SC(JJ) ol Te0s) SC(JJ)=0s
CONTINUE

DO 48 I=1eNP3

FlJesl)=SC(1)

IF(KASE+EQe2) GO TO 81

C SETTING UP WALL VALUES OF F

50
51

IF(JeEQel) GO TO 50
IF(KINGeEQe1eANDOINDI(J)eEQe2)F(Jol)=((1e+BETA+GAMA(J))

1#F(J92)=(1e+BETA=GAMA(J) ) %#F(J9e3) ) #e5/GAMA(J)

IF(KEXeEQele ANDe INDE(J)eEQe2)F(JsNP3)=(( 1e+BETA+

1GAMA(J) I #F(JoNP2)=(1e+BETA=GAMA(J) )#F(JoNP1) ) #e5/
2GAMA (J)

GO TO 51
CALL TKEW(XDsU(NP3)sF(1ls1))
CONTINUVE

C SETTING UP SYMMETRY=LINE VALUES OF F

81

82
45
30

IF(KINeNEe3) GO TO 82

FlJel)=F(Je2)
IF(KRADGEQeOIF(Jol)meT5#F(J9s2)+e25%F(Je3)
IF(KEXOEQ.3)F(JONP3)1075*F(JONPZ)+025'F(JQNPl’
CONTINVE

XP=XU

XU=XD

UGU=UGD

CALCULATION OF AUXILLARY PARAMETERS

CALL DENSTY
PEI=PEI+DX#(R(1)*AMI=R(NP3)#*AME)

C THE TERMINATION CONDITION

IF(OUT(IOUT)OEQOOOQANDOXPQNEQOO) GO TO 85
IF(IOUT+EQeB) GO TO 85

IF(XUelLTeXL)GO TO 15

IF(XUeGEeXL)GO TO 85

GO TO 16

85 CONTINUE
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IF (INDICeNESNCASE) GO TO 16

CALL EXIT

END

SUBROUTINE BEGIN

COMMON /MXFER/BLOW

COMMON/WRITE/QUT(T)

COMMON /L1/YLsUMAXsUMINSFRsYIPsYEM

COMMON /FREE/FREVEL(35)

COMMON /GEN/PEI sAMI sAMEsDPDXsPREF(3)sPR(3)9P(3)sDENS
1AMUs XU s XD o XP o XL o DX 9o INTGosCSALFA 9 XPCG
171/NosNP1sNP2 NP3 sNEQINPHIKEXsKINsKASEsKRAD 9 KPRAN
1/8/BETAsGAMA(3) s TAUI 9 TAUESAJI(3)9AJE(3)sINDI(3)
1INDE(3)
1/V/UL43)sF(3943)9R(43)9RHO(43)s0OM(43) Y (43)

COMMON/AUXP/TEMPE (43) o TEMP(43)9PO(43) s AMACH(43)

COMMON/BAR/GABAR(43) sRBAR(43)

COMMON /XPLOT/NPLOT

COMMON /ASD/ ASD1s»ASD2

COMMON /L/AK9ALMG

COMMON /SHEAR/ SHEAR(43)9SCSH(43)

COMMON/DCON/DXC

COMMON /COM/COMT (80)

COMMON /TAUW/CFW(35)

C PROBLEM SPECIFICATION
READ(5+8001) (COMT(1I)s1=1+80)
8001 FORMAT(20A4)
READ (5942) KRADsKINIKEXONEQsNos INTKEs KPRANIKSST +KSEV
42 FORMAT (915)

READ (543) XLOXPCG'ASDIOASDZOALMGOPREF(I)OPREF‘Z’o

1PREF(3)sDXCoSHS o BLOW
43 FORMAT (11E540)
44 FORMAT (2E1060)

KASE=2

IF(KINOEQel1eOReKEXeEQel)KASE=]

XU=0oe

NPH=NEQ~1

NP1=N+1

NP2=N+2

NP3=N+3

C INITIAL VELOCITY PROFILE
READ (5e464) Y(1)e (Y(I)s I=3sNP1)» Y(NP3)

READ (50464) Ul1l)se (UlI) I1=39NP1)s UINP3)
IF(INTKEeEQeO) READ(Ss444) (F(ls1)el=1s21)
lF(INTKE.NE.O)READ(5-444)F(101)o(F(IOI)oI-BoNPl)o

1F(19NP3)
lF(&EQoGEoBiREAD(5'444)F(2’1)0(F(29!)ol-3oNP1)9

(29NP3)
C 1;(2:13 ARE STAGNATION TEMPERATURES IN RANKINE
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IF(NEQeLTe3) GO TO 113
DO 112 I=1sNP3
112 F(2e1)=F (291 )#6000,
113 CONT INUVE
444 FORMAT (7F1045)
Yt 1)=Y( 1)/12e
DO 111 [=3¢NP1
Y(1)=Y(1)/12s
111 CONTINUVE
Y{(NP3)=Y(NP3)/12s
READ (59444 )FREVELYCFW
READ(5¢444) OUT
DO 302 KK=ls7
302 OUT(KK)=QUT(KK) /12
CALL LENGTH
IF(INTKEONESO) GO TO 446
CALL TKEW(XUSUINP3)sF(19l))
CALL GOTKE(UsYsYLONPLoF)
446 CONTINUE
C CALCULATION OF SLIP VELOCITIES AND DISTANCES
BETA=e143
GO TO (71972s73)eKIN
71 U(2)=U(3)/(1e+2#BETA)
Y(2)aY(3)*BETA/ (2¢+BETA)
GO TO 74
72 Ull=U(1)#U(l)
V13=U(1)%#U(3)
U33=U(3)%U(3)
SQAmB44%UL1=12,%#U13+9,#U33
U(Z)“160*011-4.*U13+U33)/IZ.*(U(I)+U(3))+SQRT(SQ))
Y(Z)'Y(B’*(U(Z’+U(3)'20’U(ll)*05/(U(2)+U(3)*U(1))
GO TO 74
T3 IF(KRADeNELO) GO TO 89
U(2)=(b4e®U(1)=U(3)) /30
Y{2)=0e
GO TO 74
89 U(2)=y(l)
Y(2)=Y(3)/3e
74 GO TO (T5eT6sT7)sKEX
75 UINP2)=U(NP1}/(1e+2e¢#BETA)
Y(NPZ)*Y(NPB)-(Y(NPS)-Y(NPI)3’BETA/(20+BETA)
GO TO 78

76 UINP2)=UINPI)
Y(NPZ)-Y(NP3’-‘Y(NP3)-Y(NPI))*(U(NP2)+U(NP1)-2.*U(NP3!

1)#¢85/tUINP2)+U(NP1)+UINP3))

GO TO 78 |
77 UINP2)=(4o#UINP3)=U(NP1})/3e

Y(ﬂPZ!-Y{NPQ! - B



78

CONTINUVE
IF(NEQeEQel) GO TO 45

C CALCULATION OF OTHER DEPENDENT VARIABLE SLIP VALUES
DO 88 J=l¢NPH
GAMA(J)=e143

CRERR BN R

C LINEAR VARIATION OF TKE AND Y NEAR THE WALL
IF(JeEQel) GAMA(J) =1,

C #3559 3% % %%

8l

82

83

84

GO TO (81982983)sKIN
FUJe2)=F(Jel)+(F(J93)=F(Jsl))#(1e+BETA=GAMA(J))/(1l0e+
1BETA+GAMA(J)}

GO TO 84
G=(Ul2)+U(3)=Be#Ul1))/(5e#(U(2)+U(3))+8o%U(1))
GF=(1e~PREF(J))/(1e+PREF(J)})
GF=(G+GF )/ (1 ¢ +GH*GF)
F(Js2)1=2F (J93 ) #GF+(1e=GF)#F(Jsl)

GO TO 84

FlJe2)=F(Jsl)
IFI(KRADSEQeO)IF(Jo2)=(be*F(Jsl)=F(J93))/3

GO TO (85986987 )sKEX

93

85 F(JINP2)aF(JINP3)+(F(JINPL)=F(J9NP3))#(1e+BETA=GAMA(J)

86

87
88
45

1)/(1e+BETA=GAMA(J))
GO TO 88

G=lU(NP2)+U(NPL)=8¢#U(NP3))/(5¢%#(U(NP2)+U(NPL1))+8e%
1UINP3))
GF=(1e=PREF(J)}/(1e+PREF(J))
GF=(G+GF)/(1e+G*GF)
FIJINP2)I=F(JoNPL)#GF+{1e=GF )#F (JINP3)
GO TO 88

FIJINP2) a4 e®F(JoNP3)=F(JsNP1)) /30
CONTINVE
CONTINUVE

CALL DENSTY

C CALCULATION OF RADII

28

27
30
29

CALL RAD(XUsR(1)+CSALFA)
IF(CSALFAJEQeOs sORsKRADsEQeO) GO TO 27
DO 28 I=2yNP3

R(I)=R(1)+Y(I)#CSALFA

GO TO 29

DO 30 1=2yNP3

R(I)=R(1)

CONTINVE

C CALCULATION OF OMEGA VALUES

49

OM(1)=0,
OM(2)=0e

DO 49 1=34NP2
OM(I)=OM(1=1)#¢5% (RHO(I)#U(1)#R(1)+RHOCI=1)%U(I=1)%



1YY )

59

69

94

IR(I=1))I#(Y(I)=Y(I=1))

PEI=OM(NP2)

DO 59 [=3,4NP1
OM{1)=0OM(])/PE!
OM(NP2)=1,0

OM(NP3 =],
IF(NEQsEQe1)RETURN

DO 69 J=1yNPH
IF(KEXeEQel) INDE(J) =]
IF(KINGEQel) INDI(JY)=]1
CONTINUVE

DO 1 JUs=1yeNPH

P(J) = 3¢68%#(PR(J)/PREF(J)=10)#((PR(J)/PREF(J) )=

1(=¢25))

RETURN

END

SUBROUTINE CDUDOM(U»OM»DUDOM)

REAL U(43)¢0M(43)sDUDOM(43)
COMMON/1/NsNP1oNP2oNP3 sNEQINPHIKEX sKINsKASE s KRAD s KPRAN
COMPUTES THE VELOCITY GRADIENT IN NON=DIMENSIONAL
STREAM FUNCTION COORDINATE FROM A SECOND ORDER FIT OF
THE NEAREST THREE POINTS.

DO 1 I=39NP1

A2 ((U(1+1)=U(I=1))/(OM(1+1)=OM(I=1))=(U(I)=U(I=1))/

1(OM(1)=0M(I=1)))/(OM(I+1)=0OM(]))

Al==(OM(I)+OM(I=1))#A2+ (U(I)=U(I=1))/(OM(1)=OM(I=1)})
DUDOM(1)=A1+2%#A2%0M(1])
DUDOM(2)=s(U(1)=U(3))/(OM(1)=0M(3))

GO TO (20393)9KIN

DUDOM(1)=DUDOM(2)

GO TO &

DUDOM(1)=0¢

DUDOM(NP2 )= (U(NP1)=UINP3))/(OM(NP1)=OM(NP3))
DUDOM(NP3) =0+

RETURN

END

SUBROUT INE COEFF

COMMON /GEN/PEI sAMI s AME 9 DPDXoPREF (3) osPR(3) 9P (3 ) sDEN?»

1AMUs XUs XD s XP s XL DX ¢ INTG9 CSALFA» XPCG
1/I/N0NP10NP2oNPBQNEQQNPHOKEXQKINoKASE'KRADtKPRAN
1/B/BETAoGAMA(3)'TAUIQTAUEOAJI(3).AJE(B!:INDI(3).
1INDE(3)

1/V/U(43)0F(3043)oR(43)9RHO(43)00M(¢3)9Y(43)
1/C/SC(43)0AU(43)OBU(43)'CU€4319A¢3a43108l3.43)0C(3'43)

COMMON /L/AKsALMG

COMMON /MXMN/ RHUMX s RHUMN s RHU (43 ) o AL

COMMON /SHEAR/ SHEAR(43)9SCSH(43)
COMMON/DUD/DUDOM(43) ¢ DUDY(43)9 ADUDY(43)s ADUDYM
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COMMON /RUH/ RAAUH(43)
COMMON/DUDYF/DUDY25+1SLOsDUDY50+ISLOS
DIMENSION Gl(43)9G2(432)9G3(43)9D(3943)951(43)952(43)
183(43)
C CALCULATION OF SMALL C 'S
DO 99 I=2,NP1
RA=¢S5#(R(1+1)+R(I))
RH= ¢ 5# (RHO(I+1)+RHO(1))
UM 5# (U(TI+1)+U(]))
CALL VEFF(lsI+leEMU)
99 SC(1)sRA®RA#RM®*UM#EMU/PE]/PE]
C THE CONVECTION TERM
SA=R(1)#AMI/PE]
SB=(R(NP3)®AME=R(1)#AMI)/PE!
DX=XD=XU
DO 71 1=3,NP1
OMD=OM(I+1)=OM(I=1)
P2=¢25/DX
P3=P2/0MD
Pls(OM(I+1)=0OM(1))#*P3
P3=(OM(I)=0OM(]=1))2pP3
P2=34%#P2
Q=SA/0OMD
R2==3SB#*,25
R3=R2/0MD
Rls=(OM{I+1)+3#0M(]))#R3
R3=(OM(I=1)+3,#0M(]))#R3
Gl(1)=Pl+Q+R1
G2(1)=P2+R2
G3(1)=sP3=Q+R3
CUl1)==Plau(l+1)=P2#U(])=P3#U(]I=-1)
C THE DIFFUSION TERM
AU(I)=24/0MD
BU(I)-SC(I-l)*AU(I’/(QM(l)-OH(I‘I))
AU(I"SC(I)*AU(I)/(OM(I*I)-OM(I)D
IF(NEQeEQel) GO TO 33
DO 34 Js=19NPH
C(Joli'-PI'F(JDI+1)‘PZ*F‘J’l"P3'F(Jol‘1)
CALL SOURCE(Js19CSeD(JeI))
C(Jol)--C(JOI)+CS-F(J'I)’D(Jo!’
AlJs I)=AU(T) /PREF(J)
B(Js1)=BU(1)/PREF(J)
34 CONTINUE
C SOURCE TERM FOR VELOCITY EQUATION
33 PMI = 040
$1(1) = (DPDX + PHI)#DX
SZ(I)-PZ*SI(I’/‘RHO(I)*U(I)’
$3(1)=P38s1(1)/{RHO(I=1)#U(I=1))
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S1(I)=P1#S1(I)/(RHO(I+1)#U(1+1))
CU(I )u=CU(I)=2e#(S1(I)+S2(1)+S3(1))
S1(I)=S1(1)/U(l+1)
S2(I)=82(1)/Ull)
S3(1)=83(1)/U(l=1)
71 CONTINUE
COEFFICIENTS IN THE FINAL FORM
DO 91 1=34NP1
RL=1e/(G2(1)+AU(1)+BU(TI)=82(1))
AUCI)=(AULI)+S1(1)=G1(I))*RL
BUCI)=(BU(I)+S3(1)=G3(]))#RL
91 CU(I)aCU(I)#RL
IF(NEQeEQel) GO TO 76
DO 92 J=1eNPH
DO 92 I=34NP1
RL=14/(G2(I)+A(Jeo1)+B(JsI)=D(JrI})
AlJsI)=C(A(JoI)=Gl{]I}))#RL
BlJeI)=(B{(Je1)=G3(1))®RL
92 ClJeI)=ClJol)eRL
76 CALL SLIP
RETURN
END
SUBROUT INE CONST
COMMON /GEN/PEI +»AMI sAME sDPDOXsPREF(3)sPR{3)sP(3)sDENy
1AMU s XU XD s XP o XL 9 DX o INTGoCSALFA 9 XPCG
COMMON /L/AK9ALMG :
1/I/NONPI!NPZ'NP3'NEQ!NPH’KEX’KIN’KASEOKﬂADQKPRAN
1/L1/YLsUMAXSUMINSFReYIP»YEM
COMMON /ASD/ASD1sASD2
AK= 4 &4
AK=q 435
FR=401
PR(1)=e7
PR(1)=1,
PR(2)=e7
PR(3) = 0,435
AMU = 0,000012
RETURN
END
SUBROUT INE DENSTY
COMMON /GEN/PEIoAMIQAMEvDPDX.PREF(B)9PR(3)9P(3)oDENv
IAMUsXUvXDoXPoXLoDXoINTG;CSALFA9XPCG
1/V/U(43)0F¢39h3)’R(¢3)0RH0(43300M¢431’Yt43)
1/I/NoNPloNPZoNP3oNEQoNPHaKEXoKINoKASEoKRADyKPRAN
COMMON/AUXP/TEMPE(43!oTEMP(43)oPO(43)oAMACH(#S)
CONMON/BAR/GABAR(#BIaRBAR(“S)
COMMON/TEM/TEMPT(43)
PINF=14eTR1&4,e
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CP1l=3,442
CP2=0424
DO 45 I=1eNP3
IF (NPHeLTe3) GO TO 46
CPFsCP1#F(391)+CP2%(1e=F(391]))
CPFaCPF#25000,0
GABAR(I)=1e28%#F(39])+1e40%(1e=F(351]))
RBAR(1)=766e6#F (33]1)+53435%(1e=F(391))
GO TO 44

46 CPF=424%25000,
F(3eI)=1,
GABAR(I)=]144
RBAR(1)=53435
IF(NPHeLTe2) F(201)=CPF#520,

44 TEMP(I)=(F(291)=e5%U(L)RU(I))/CPF
RHO(I)sPINF/(TEMP(] )#RBARI(I))
TEMPT(I)=sF(201])

45 CONTINVE
RETURN
END
SUBROUTINE ENTRN
COMMON /GEN/PEI sAMI sAME sDPDXoPREF (3)9sPR(3)9sP(3)sDENY

1AMU s XU s XD 9 XP o XL o DX 9 INTG»CSALFA» XPCG

COMMON /L/AK9sALMG
1/V/UL43)sF(3043)9R(43)9sRHO(43)9s0M(43)9Y(43)
1/I/NoNPloNPZoNP3oNEQ'NPHcKEXoKINoKASEoKRAD.KPRAN
1/L1/YLsUMAXSUMINFReYIP s YEM

COMMON /SHEAR/ SHEAR(43)9sSCSH(43)
COMMON/DUD/DUDOM(43)

COMMON /ASD/ ASD1lsASD2

GO TO (T71+72973)sKIN

71 CONTINUE
GO TO 74

72 1IF (KPRANONEsOsOReNEQeEQel) GO TO 722
AMI= ABS((SHEAR( 2)+SHEAR( 3)=2e#SHEARI 1))/

1 (U(2)+U(3)=2e%U(1)))
GO TO 74
722 ANI'&.*RHO(I)*((ALMG*YL)/(Y(2)+Y(3)))*’2*ABS(U(2)+U(3)
1=2,#U(1))
GO TO 74
73 AMI=0,
74 GO TO (81982983)9KEX

81 RETURN
82 AME--G.*RHO(NP3)*((ALMG*YL)/(Y(NPI)*Y(NPZ)-Z.’Y!NP3)i)

1"2*AB$(U(NPI)+U(NPZ”20’U(NP3))
RETURN
83 AME=Q,
RETURN
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END

SUBROUTINE FBC(XsJe INDAJUFS)

COMMON /GEN/PEI sAMI sAMEsDPDXsPREF(3)9PR(3)sP(3)sDENs
1AMU s XUs XD o XP o XL o DX o INTGoCSALFA XPCG
1/V/Y(43)eF(3943) 9R(43)9RHO(43)9sO0M(43) Y (43)

COMMON /KE/ AKEM

IF(JeNEe2) GO TO 2

IND=1

H MUST HAVE UNITS FTeFT/SECeSEC

AJFS=¢341712E+7

GO TO 3

CONT INVE

IND = 1

AJFS=F(1s1)

CONTINUVE

RETURN

END

SUBROUTINE FREEU(XUsXDsUGU»UGD)

DETERMINES THE DOWNSTREAM VELOCITY FROM FREVEL ARRAY

WHICH IS INPUT AT 3 INCH INTERVALS IN BEGINe
COMMON/FREE/FREVEL(35)

IF(FREVEL(1)eEQeOe) GO TO 1

XDIN=XD#*#12,

IX=XDIN/3e+1

XS=(IX=1)%3,

DELX=XD IN=XS
UGD=FREVEL{IX)+(FREVEL(IX+1)=FREVEL(IX))#DELX/3,
RETURN

APPLICABLE TO ZERO PRESSURE GRADIENT CASE.
UGD=UGY

RETURN

END

SUBROUT INE FUGA2(FoYsDUDYsYLsNP1eTDUDYIMTKE)
REAL F(3943)9sDUDY(43) Y (43)

MTKE=0

TKEM=F(193)

DO 1 I=4sNP1

IF(F{191)ebLTeTKEM) GO TO 1

TKEM=F(1s1)

MTKE=]

CONT INVE

DO 3 I=39NP1

YRsY(I)/YL

IF(YReGTee25) GO TO &

CONTINUVE

CONT INVE

IF(1eGESsMTKE) GO TO 5

TDOUDY=DUDY (MTKE)

98
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99

RETURN
S DELVG=DUDY(I1)=DUDY(I~1)

DELYR=(Y(I)=Y(I=1))/YL

YY=YR=4 25

MTKE=]

TOUDY==YY/DELYR#DELVG+DUDY(I)

RETURN

END

SUBROUTINE LENGTH

COMMON /VELBDY/Y995
1/1/NsNP1sNP2sNP3sNEQsNPHIKEXsKINsKASEsKRADsKPRAN
1/V/U043) 9F(3943)9R{43)9sRHO(43)sOM(43)9Y(43)
1/L1/7/YLsUMAXIUMINIFRoYIPYEM

THIS IS AN ABREVIATED VERSION TO BE USED WITH THE

BRADSHAW DISSIPATION MODELe IT ASSUMES THE I BOUNDARY

IS A WALL AND SEARCHES THE OUTER VELOCITY PROFILE TO

FIND Y WHERE U=,995%UFREE (Y995)

PROFILE TO FIND Y WHERE U=e¢995#UFREE (Y995)

ULOC=4995%U(NP3)

DO 1 I=29sNP3

1I=NP3=]

IF(U(ITI)eLTeULOC) GO TO 2

1 CONTINUE
2 IF(I1+EQeNP1l) GO TO 3

Y99S=Y (II)+(Y(II+1)=Y(II))I®(ULOC=U(II))/(U(II+1)~
wierm

YL=Y995

RETURN

3 Y995=Y(NP1)+(Y(NP3)=Y{NPL1) ) #(ULOC~U(NPL1))/(U(NP3)=
1U(NP1}))

YL=Y995

RETURN

END

SUBROUTINE MASS(XUsXDsAM)

COMMON /V/U(43)QF(3o43)oR(43)’RHO(43),OM(43)9Y(43)
I/I/NoNPIONPZoNP3oNEQoNPHoKEXgKINoKASEoKRADoKPRAN
2/MXFER/BLOW

AM=BLOW#RHO(1)#U(NP3)

RETURN

END

SUBROUTINE OUTPUT
COMMON /GEN/pEIQAMI’AME!DPDXOPREF(3)’PR(3’OP‘3)’DEN!

IAMUQXUOXDOXPOxLGDXOINTG’CS?L;?';:?EB’ (43)
IN/JL43)oF(3943)9R(43)9RHO 43) ’
i/C/SCl#3loAU(43)oBU(43)vCU¢43)nA(3943)9B(3'43)9C(3o43)
1/MXFER/BLOW

COMMON /L /AK s ALMG

1/L1/YL0UMAX0UMIN-FR0YIPtYEM

153956



100

1/1/NoeNPLINP2 sNP3IsNEQsNPHIKEXsKINSsKASE9KRAD » KPRAN
1/B/BETAsGAMA(3) s TAUIsTAUESAJI(3)sAJE(3)9INDI(3)
1INDE(3)
COMMON/AUXP/TEMPE (43) s TEMP(43) oPO(43) 9 AMACH(43)
COMMON/AUXY/YY(43) s XXU9RR1
COMMON /XPLOT/NPLOT
COMMON /SHEAR/ SHEAR(43)9SCSH(43)
COMMON /IDIN/ INDIC
COMMON/MXMN/RHUMX s RHUMN 9 RHU (43 ) s AL
COMMON/DUD/DUDOM(43)s DUDY(43)s ADUDY(43)9s ADUDYM
COMMON /ASD/ ASD1sASD2
COMMON/TEM/TEMPT (43)
COMMON/UMUM/UMUZ (43 ) » YMU
COMMON /COM/COMT(80)
COMMON/ATKE/GEN(43)¢DIS(43)sDERIV(43)
DIMENSION URATIO(43)sYRATIO(43)
DIMENSION YYYY(45)
DIMENSION DIFt43)9DIF1(43)
IFCINTGeNEsl) GO TO 15
WRITE(6+8000)
8000 FORMAT(*1")
WRITE(69+8001)(COMT(1)sI=1980)
8001 FORMAT(20A4)
WRITE(6+49)(OM(I)9I=1eNP3)
49 FORMAT(' THE VALUES OF OMEGA ARE '/(11F10e4))
15 CONTINUE
UOUT=4995#U(NP3)
DO 60 1I=1sNP3
URATIO(I)=U(])/UOUT
YRATIO(1)=Y(I)/YL
60 CONTINVE
WRITE(6+51) XXUsRR1eYLPEI
51 FORMAT('1 XUs '92PElle2s’ RI = '92PElle2s' IN'>»
1 yL= !
292PElle 2! PEI= *92PE1142)
WRITE(6954)
CF1224#ASD1#F(191)/U(NP3)/U(NP3)
NRITE(6055)ASDI’ASDZQPREF(1)oPREF(ZioPREF(3)9U(NP3)9

551§géMAT(’ ASD1=Y9F3e29" ASD2='sF53s' PREF1="'9Fhe2s

2 PREFZ..’F Fhe29! UFREE=' FTe39' CFu!oF645)

2F4e29' PREF3='yFbecy 2F7e

NR;Té(b.Bé)GAMA(I)96AMA(2)06AMA(3)¢AHI.AME oDPDX.?LOH-
56 FORMAT('OGAMAl="'sE10e4s' GAMA2=',E10e49 ' GAMAI='H

' I=?
2E1004s¢ AME= ' sE10s4s? DPDX='sE10e4s’ BLOW='sEL004)
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53
54

10

8002
C HE
c
C
15
17
18
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WRITE(61952)

FORMAT (4X 9 * YRATIO' 95X 9 'URATIO " 96Xs 'DUDY* 9 7TXe ' TKE' 98X s
1'GEN'+8X9'DIS
2'98X 9! A2 "o IX9'H's1lO0Xs'CleBXs'RHO'98Xs!' U '98Xe'Y!)

FORMAT(1X +1P12€1143)

FORMAT(1HO )

DO 10 JlsleNP3

J2aNP2=J1+2

YYYY(J2)=YY(J2)/YY(NP3)

WRITE(6053)YRATIO(J2) sURATIO(J2) sDUDY(J2)9eF(19J2)
1GEN(J2)9eDIS(J2) s
2DERIVI(J2)9F(20J2) 9SHEAR(JZ2)yRHO(J2) UlJ2)eYY(J2)

WRITE(6+8002) TAUI

FORMAT (¢ PATANKAR SHEAR AT THE WALL ='4E1347)

RETURN

END

SUBROUTINE PRE(XUsXDsDPDX)

COMMON /PR/UGUsUGD
1/V/UL43)sF(39643)9sR(43)9sRHO(43)sOM(43)eY(43)
1/1/NoNPLsNP2 NP3 INEQINPHIKEXeKINIKASE sKRADs KPRAN
RE UGU AND UGD STAND FOR FREE~STREAM VELOCITIES AT XU
AND XD

DPOX= (UGU+UGD ) # (UGU=UGD ) #4 5#RHO(NP3) / ( XD=XU)

RETURN

END

SUBROUT INE RAD(XeR19CSALFB)

APPLICABLE TO AXISYMMETRIC MIXING LAYER AND JET

COMMON /GEN/PEIOAMI’&ME’DPDX9PREF(3,0PR(3IOP(3’ODENO
1AMU s XU s XD o XP o XL oDX s INTG 9 CSALFA» XPCG
1/V/U(43)0F(3o43,9R(43)9RHO‘43)00M(43)0Y(43,
I/I/NONPIONPZONPBONEQ'NPHOKEXDKINOKASEOKRAD’KPRAN

COMMON/UMUM/UMUZ (43) s YMU

CSALFB=1le

IF (KRADeEQeO) GO TO 18

IF(KINGEQe3) GO TO 17

IF(XsEQeOe) GO TO 15

Rl'R(l).(R(l)-ZO*AMI*(X-XP)/(RHO(I)’U(l)))

IF(R14LTe0e)R1=00¢

R1=SQRT(R1)

RETURN

RO=¢25/124

R1=RO=YMU

RETURN

R1=0s

RETURN

Rl=1,

RETURN

END
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SUBROUTINE READY
COMMON /GEN/PEI+»AMI 9AME+sDPDXsPREF(3)sPR(3)9sP(3)9DENS
1AMUs XUs XD XP o XL o DX o INTG»CSALFAS XPCG
1/V/70043)9F(3943)9R(43)9RHO(4L3)9OM(43)9Y(43)
1/1/NsNP1sNP2 sNP3sNEQsNPHIKEXsKINsKASE s KRAD 9 KPRAN
1/B/BETAsGAMA(3) s TAUIsTAUESAJLI(3) sAJE(3)9INDI(3)
1INDE(3)
CALL DENSTY
CALL RAD(XUSR(1)9CSALFA)
Y NEAR THE 1 BOUNDARY
IF (R(1)eEQeQs) KIN=3
GO TO (T71972973)oKIN
71 Y(2)=(14+BETAI#OM(3) %40/ ({3 4#RHO(2)+RHO(3) )% (U(2)+
1U(3))
GO TO 74
72 Y{(2)=124%#0M(3)/((34*RHO(2)+RHO(3))#{U(2)+U(3)+4e#U(1))
1)
GO TO 74
73 Y(2)=e5#0M(3)/(RHO(1)#U(1))
T4 Y(3)aY(2)+e25%0M(3)%(1e/(RHO(3)#U(3) )42/ (RHO(3)%UI(3)+
1RHO(2)#U(2)))
Y 'S FOR INTERMEDIATE GRID POINTS
DO 50 I=&4sNP1
50 Y(I)=aY{I=1)+e5%#(OM{I)=OM(I=1))#(1e/(RHO(II*U(I))+10e/
1(RHO(I=1)#U(1=1)))
Y NEAR THE E BOUNDARY
Y(NP2)=Y(NPL1)4¢425%#(OMI(NP2)=OM(NP1) )#(1e/(RHO(NP1)*
1UINPLl) ) +24/
2{RHO(NP1)#U(NP1)+RHO(NP2)*#U(NP2)))
81 Y(NP3)=Y(NP2)+(1e+BETA)*(OM(NP2)=OMINPL1))%4e/ (!
1IRHO(NP1)+3¢#RHO(NP2)
2 Y#(U(NPLI+UINP2)))
GO TO 84
82 Y(NP2)=Y(NP2)+12s%#(OM(NP2)=OM(NP1) )/t (RHO(NP1)+3¢#
LRHO (NP2 ) ) # (U(NP2)
2 +UINPLl)+4o*UINP3)))
GO TO 84
83 Y(NPB)-Y(NPZ)+05‘(0M(NPZ)~ON‘NP1})/(RHO(NP3)*U(NP3))
84 IF(CSALFASEQeOesOReKRADeEQeO) GO TO 51
0O 52 I=2sNP3
52 s(l)=20*Y(I)*PEI/(R(l)+$0RT(R(1)*Rl1)+20*Y(I)*PEIQ
1CSALFA))
GO TO 56
51 DO S4 1s=2eNP3
54 Y(I)=pPEI®Y(I)/R(1)
56 Y(2)m2e%#Y(2)=Y(3)
Y(NP2)=248Y(NP2)=Y{(NPL)
CALCULATION OF RADI1
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96
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70
71
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DO 57 I=2yNP3

IF(KRADCEQeOIR(II=R(1)
IFIKRADONESQ)IR(I)=R(1)+Y(I)#CSALFA
CONTINUE

RETURN

END

SUBROUT INE SHEARS

COMMON /GEN/PEI sAMI sAMEsDPDXsPREF{3)sPR{3)sP(3)9sDEN
1AMU o XU s XD o XP o XL o DX 9 INTG o CSALF A9 XPCG
17/1/NeNPLoaNP2 sNP3sNEQsNPHIKEXsKINsKASEsKRAD9KPRAN
1/V/U(43)9F(3943)9R(43)9RHO(43)9s0M(43)9Y(43)
1/L1/YLsUMAXSUMINSFReYIP» YEM

COMMON /SHEAR/ SHEAR(43)9SCSH(43)

COMMON /ASD/ ASD1sASD2
COMMON/DUD/DUDOM(43 )y DUDY(43) s ADUDY(43)9 ADUDYM
COMMON /RUM/ RAAUH(43)

COMMON/AVDU/AVDUY

COMMON/KJU/KMU
COMMON/DUDYF/DUDY25QISLOODUDYﬁovISLcﬁ

DO 97 I=14NP3

RAAUH(I)=R(] )#RHO(I)#U(])
IF(U(]1)eEQeOoeANDel oNEeNP3)IRAAUH(I)=R(]) #RHO(] )% o5%
1(ULI)I+U(TI+1))

SCSHI(I)=RAAUH(I)/PEL

RAAUH (1 )=RAAUH(I)®*R(1)

DUDY (1)=DUDOMLTI )#SCSHI(I)
ADUDY(1)=ABS(DUDY(]I))

DUDY (2)=(U(3)1=U(2))/(Y(3)=Y(2))

ADUDY (2)=ABS (DUDY(2))

DUDY (NP2)=(U(NP2)=U(NPL))/(Y(NP2)=Y(NPL))
ADUDY(NP2)=ABS{DUDY(NP2))

DO 96 I=1sNP1

YRATIO=Y(1)/YL

IF(YRATIOoGTeel0) GO TO 98

CONT INVE

YRLOW=Y (I=1)/YL

ISLO=]

DELYR=YRATIO=YRLOW

DELDU=DUDY (1 )=DUDY( I=1)
DUDYZS'DUDY(l-l’+(olO-YRLOﬂ)lDELDU/DELYR
DO 70 I=ISLONP3

YRATIO=Y(1)/YL

IF(YRATIOLGTeeS) GO TO T1

CONTINVE

YRLOW=Y{(I-=1)/YL

18LO05=]

DELYRsYRATIO=YRLOW
DELDU-DUDYCI’f990¥(I-117
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DUDY50=DUDY(1=1)+{e5=YRLOW)#DELDU*DELYR
DO 101 J=2sNP2
IF(KPRANeNE«OesORNEQeLTe2) GO TO 35
DUM=ASD1#RHO(JI#F(1sJ)
SHEAR(J)=SIGN(DUMsDUDY(J) )
IF(NPHeGEs2) GO TO 100
SHEAR(J)=SHEAR(J) +¢000012#DUDY( J)
GO TO 101
100 SHEAR(J)=sSHEAR(J)+VISCO(J)*DUDY(J)
GO0 TO 101
35 F(leJ)=0oe
101 CONTINUE
GO TO (21922+22)9KIN
21 CALL WALL
GO TO 23
22 SHEAR(1)=0s
23 SHEAR(NP3)=0e
RETURN
END
SUBROUTINE SLIP
COMMON /GEN/PEL s AMI sAME s DPDXsPREF (3) oPR(3)9P(3)9DENS
1AMUs XU s XD o XP o XL sDX o INTGoCSALFAY XPCG
1/71/NsNP1oNP2 sNP3 sNEQoNPHIKEX s KINsKASE s KRAD s KPRAN
1/B/BETAsGAMA(3) o TAUI s TAUEWAJI(3)9AJE(3)sINDI(3)
1INDE(3)
1/V/Ut63)9F{3043)sR(4&3)sRHO(&3)9OM(43)9Y(43)
COMMON /L /AK s ALMG
1/C/SC(433oAU(43)cBU(43)9CU(43)cA(3'43)oB(3943)-C(3003)
COMMON /KE/ AKEM
SLIP COEFFICIENTS NEAR THE ! BOUNDARY FOR VELOCITY
EQUATIONs
CU(2)=0,
CUINP2) =0,
GO TO (T1eT72s73)9KIN
71 8U(21)=0,
AU(2)=le/(1le+24*#BETA)
GO TO 74
72 SQCBG.*U(I)*U(I)-120*0(1)*U(3)+90*U(3)*U(3)
BU(Z3880’120*0(1)+U(3))/(2’*U(1)+7o*U(3)+SORT(SG))
AU(2)=14-BUL2)
GO TO 74
73 BU(2)=0,
CALL VEFF(2939EMU)
AKl'l./DX-DPDX/(RHOCI)*U(II*UIIIl
AKZ'-UC1)*AK1¢DPDX/(RHO‘1)*U(l))
AJ'RHO‘I)*U(1)#.25*(Y(2I+Y(3))’52/EMU
IF(KRADEQeO) GO TO 75
ALIf2)m24/ (26 +AJ*AK])
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CU(2)==gSHAIRAK2RAU(2)

GO TO 74
75 CU(2)=1a/(2e+34#AJRAK])

AU(2)sCU(2)%(24=AJ*AK])

CU(2)==CU(2) %4¢RAJRAK2
SLIP COEFFICIENTS NEAR THE E BOUNDARY FOR VELOCITY

EQUATIONs
T4 GO TO (Ble82+83)sKEX
81 AU(NP2)=0,

BUINP2)=14/(1e+2¢%BETA)

GO TO 84
8213?32:0*U(NP3’*U(NP3)'120*U(NP3)*U(NPI’+90'U(Npl)‘

NP1)

AUINP2) 38 ¢ #(2e#UINP3)+UINPL) I/ (26#UINP3)+TeRU(NPLl)+

1SQRT(SQ))

BUINP2) =l 4=AU(NP2)

GO TO 84
83 AU(NP2I=0,

CALL VEFF(NP1oNP2yEMU)

BK1lzl,/DX=DPDX/ (RHO(NP3)#U(NP3)®#U(NP3))

BKZ"U(NP3,*BK1¢DPDX/(RHO(NP3F*U(NP3"

BJ=RHO (NP3 )#U(NP3)# 425 (2e%Y(NP3)=Y(NPLl)=Y(NP2))##2/

1EMU

CUINP2)sle/ (243 e%BJRBK]1)

BUINP2)=CU(NP2)#(2,~BJ*BK1)

CUINP2)==CU(NP2 ) %4, #BJ%BK2
84 IF(NEQeEQesl)RETURN
SLIP COEFFICIENTS NEAR THE 1 BOUNDARY FOR OTHER EQUATIONS

DO 54 J=1eNPH

CtJe2)=0s

Cl(JoNP2)=0y

GO TO (41942943)9KIN
41 CALL FBCI(XDs»JsINDI(J) QL)

IF(INDI(J)eEQel) GO TO 61

AJI(J)=Q]

AlJes2)=1,e

B(Js2)=0oe ,

C(JQZ)SBO'(10+20*BETA3*PREF(J)*AJIIJ)/(AK*AK*BETA*(I-*

1BETA)#(le+

2557A’*(30*RH°(2)+RHO(3))*U‘3))

GO TO 44
61 F(Jel)=Ql

A(JO?)’(I.+BETA‘GAMA‘J))/(10+BETA+GAMA(J))

B(JoZ)'io*AlJ»Z)

0 &

42 2?4:2)3(U¢2)+Ul3’-80*0(1))/(5.*(0(2)+U(3l)+8‘*U(1"

GF=(1e=PREF(J))/(1e+PREF(J))

AlJe2)m (A9 2)+GF )/ (1a+AlJ92)#GF)
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BlJe2)=le=Al(J92)
GO TO 44
43 B(Je2)=0,
CS=0,
DS=0.
AKl=]l,/DX=DS
AK2==AK1#F(Jsl)=CS
AJF=A RPREF (J)
IF(KRADGEQeO) GO TO 45
AlJ92)=2e/(2e4+AJFRAK]L)
ClUo2)mmgSRAJFRAKZ¥#A(J92)
GO TO 44
45 ClJ92)3le/(2e+34%AJFRAK])
A(JiZ"C(JQZ)*(20'AJF*AK1)
ClJ92)2=C(Jr2) %4 RAJFHAK2
SLIP COEFFICIENTS NEAR THE E BOUNDARY FOR OTHER EQUATIONS
44 GO TO (51052953) sKEX
51 CALL FBC(XDeJsINDE(J) »QE)
IF(INDE(J)eEQel) GO TO 31
AJE(J)=QE
Bl(JosNP2)=1s
AlJsNP2)=0s
C(JONPZ)'-80*(1.+2.*BETA)*PREF(J’*AJE(J’/(AK*AK*EETA*
1(1e+BETA)*
2{1¢+BETA)®#(RHO(NP1)+3+#RHO(NP2) )}*UINP1))
GO TO 54
31 F(JeNPI)=QE
B(JINP2)=(le+BETA=GAMA(J) ) /{1e+BETA+GAMA(J))
A(JINP2)m]le=B(JsNP2)
GO TO 54
52 B(JONPZ)-(U(NP2)+U(NPI)‘Bt*U(NP3))/(5.*(U(NP2)+U(NP1)i
1+8¢*#U(NP3))
GF=(1le=PREF(J))/(1s+PREF(J))
BlJsNP2)=(B(JsNP2)+GF )/ (1a+B(J9NP2)#GF)
A(JoINP2)=]le=B(JsNP2)
GO TO 54
53 A(JINP2)=0s
CALL SOURCE(JsNP39CSeDS)
BK1l=1l,/DX=DS
BK2==BK1#F(JsNP3)=CS
BJF=BJU#PREF (J)
ClJINP2)=1e/(2e+3e#BJIF*BK])
B(JONPZ)'C(J'NPZ)*(ZQ*BJF*BKIl
ClJsNP2)==C(JINP2) #4o#BJIF#BK2
54 CONTINVE
RETURN
END
SUBROUTINE SLOPE(I'00Q§:£L'
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2§A%‘g(1$9OM(1)
=((U(I+1)=U(]=1))/(OM(I+1)=0OM(I=1))= -U(l=
1{OMII)=OM(1~1) in=uiI=ing
2Y)/(OM(I+1)=0OM(1))
Al==(OM(I)+OM(I=1))%A2+(U(I)=U(I=1))/(OM(]I)=OM(]=
Z=Al+24#A2%#0M(]) =i
RETURN

END

SUBROUTINE SOLVE(AsBsCsFsNP3)

THIS SOLVES EQUATIONS OF THE FORM

F(I) = A(I)*F(I+1l) + B(II®F(I-1) + C(1)

FOR I=2sNP2 RO
DIMENSION A(NP3)9sB(NP3)sC(NP3)sF(NP3)
NP2aNP3=]

B(2) = B(2)#F(1) + C(2)

DO 48 I=34NP2

T = 1lg/(le=BlI)%AlLI=1))

All) = A(]1)»T

B(I) = (B(I1#B(I=1) + C(L))#T
DO 50 I=24NP2

JNP2=]+2
FlJY=AtJ)RFJU+1)+B(J)
RETURN

END

SUBROUTINE SOURCE(Je1+CS9eDS)
COMMON /1JAN/TDUDYsMTKE

C FOR CONSERVATION OF STAGNATION ENTHALPY

C CA
C

11

UTION= USE CONSISTENT UNITS

THE DOT PRODUCT OF E WITH J IS NEGLECTED

COMMON /GEN/PEIOAMIOAMEODPDXQPREF(3!0?R(3$0P(3)00€N0
1AMUoXU’XD¢XPOXLoDX’INTGOCSALFAQXPCG
l/V/U(#3)oF(3'4399R143)0RH0(43)oOM(43)9Y(“3)
1/I/NONPIONPZtNPBoNEQoNPHoKEXoKINOKASEOKRADOKPRAN
17/L1/YLsUMAXsUMINSFReYIP s YEM
1/C/SC(43)0AU(43)’80(43)OCU(AB)oA(3943)98(3043)'C(3043i
COMMON/ASD/ASD]19ASD2

COMMON /SHEAR/ SHEAR(43) 9SCSH(43)
COMMON/DUD/DUDOM(43) s DUDY(43) ADUDY (43) 9 ADUDYM
COMMON/AVDU/AVDUY
‘COMMON/DUDYF/DUDYZSolSLOnDUDYSO’ISL05
COMMON/RUM/RAAUH (43)
COMMON/ATKE/GEN(&S)0DI$(43)oDERIV(43)

COMMON/STORE /0LDU( 43}

DIMENSION A2(43)

I1F (JeGTa3) GO TO 12

GO TO (13911912)9J
C&'SC(!I*CU(I*IH*U(I+1)°U(I)*U(Il)/(ONll#l)-OM(ll)

CS'CSOGC(I*I)*(U(])'U!I)-0(1‘11*Ul}f}¥l/(036})-OH(!-I)
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1)

gg:él;;};/PREFCJ))*CS/(OM!I+1)-0M(I-17!

= ) # (F +1l)=

1 (OM(1+41)=0OM(I)) (1el+d)=Flls1n)/
CESKEsCSKE=SC(I=1)#(F(lel)=F(loI=1))/1OM(I)=OM(I=1))
1?3'C5+20’(10/PREF(1)-lo/PREF(J))*CSKE/!OM(I+l’-0NlI-1)
CS=CS+CSKE

DS=0s

GO TO 3

CONTINUVE

CS = 060

DS = 0460

GO TO 3
CS=ASDI#RMO(II®F{1e1)#R(I)%2R(1)*ABS(DUDOMI(])) /PEI
IF(INTGeLEsl) YLO=YL

ASD2=1,8

ASD2M=ASD2

IF(]l oLTeMTKE)ASD2M=ASD2ZM*Y(MTKE) /Y (1)
DERIV{I)=ASD2M

A2(1)=ASD2M

DK=ASD2M#F(lel)®®1,45/YL

DK=DK/OLDU(I)

GEN(1)=CS

D1S(1)=DK

CS=CS=DK

DS=0.

IF(INTGeGTel) DS“I.S*AZII)*SQRT‘F(IOI))/YLO/OLDU(X)
IF(IeEQeNP1l) YLO=YL

CONTINUE

RETURN

END

SUBROUTINE TKEW(XeUFeTKE)

COMMON /TAUW/CFW(35)/ASD/ASD1sASD2

COMMON /V/U‘43)’F(3043)DR(43)0RHO(43’00M(43)0Y(43’
IILIIYL!UMAX’UMIN’FROY!POYEM/MXFER/BLOH
COMNON/GEN/PEIOAMIOAMEO0PDX.PREF(3’QPR(3’0P(3)ODENOAMU

19XUs XDoXP o XL DX 9 INTGsCSALFAIXPCG

GET THME WALL SHEAR FROM LINEAR ITERATION USING THE

LOGARITHMIC LAWe
IF(INTGeEQeO) GO TO 6
USTAR=SQRT(F(1s1))

DO 1 I=1e42
YR=Y(I)/YL
IF(YReGEeel0) GO TO 2
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CONTINVE

CONTINVE

C=1e85=40075%DPDX+2004*#BLOW

DO 3 J=1v10
USTAR=U(1)/(2¢44%#(ALOG(Y(I)®#USTAR/400016)+C) )
AVERAGE WITH THE NEXT CLOSEST NODE

VSTAR=USTAR

DO 5 J=1910

IF(VSTAReGTeOe) GO TO 5

VSTAR=USTAR

GO TO 8
VSTARSU(I=1)/(2¢44#(ALOG(Y(I=1)*#VSTAR/e00016})+C) )
TKE= 5% (USTAR*USTAR+VSTAR®*VSTAR) /ASD1

RETURN

CONTINUE

TKE=CFW(1)®UF*UF/(2e*ASD1)

RETURN

END

SUBROUTINE VEFF(IsIP19EMU)
COMMON/GEN/PEI s AMI » AME s DPDX9PREF (3)9PR(3) 9P (3 ) »DENsAMY

19XUeXD9XP o XL 9oDX 9 INTG9CSALFAIXPCG
1/V/UL63)eF(3943) 9R(43)9RHO(43)9sOM(43)9Y(43)
171/NsNP1LoNP2 NP3 sNEQsNPHIKEX9sKINsKASE 9 KRAD s KPRAN

1/L17/YLoUMAXsUMINOFRYIPYEM

COMMON/SHEAR/SHEAR(43)9SCSH(43)
COMMON/MXMN/RHUMX s RHUMN s RHU (43} 9 AL

1/ASD/ASD1+ASD2
2/DUD/DUDOM (43 ) yDUDY (43) s ADUDY (43) s ADUDYM

3/DUDYF/DUDY25+1SLOsDUDY50sISLO5

ASD1M=ASD1
DUDYM'Q5*(RHO(I)+RHO(IPI))*.S*(U(I)+U(IP1))/PEI*.5*

1(R(II+R(IP1)I#(UCIPL)I=ULI))/(OM(IPL1)=OM(I))

IF(DUDYMeEQeOe) GO TO 68
EMU‘.S*(RHO(IPl)*RHO(I))'oﬁ*(F(loIP1)+FlloI))*ASDIM/

1DUDYM

RETURN
EMU=0,
RETURN
END

SUBROUTINE WALL
COMMON /GEN/PEIoAMIcAMEoDPDX¢PREF(3)oPR(B)oP(3)9DENo

1AMU.XUOXDoXP:XLoDXoINTGOCSALFAsXPCG
1/V/U(43’0F(3043)0R(43)’RHO(43)90M(43)’Y(43)
I/I/NONPIONPZONPBONEQ’NPHtKEXoKINoKASEoKRAD’KPRAN
I/B/BETAOGAMA(B)oTAUIoTAUE’AJI(3)9AJE(3).INDI(3)'

1INDE(3)

COMMON /SHEAR/ SHEAR(43)9SCSH(43) |
COMMON/DUD/DUDOM (43 ) s DUDY(43)s ADUDY(43)s ADUDYM
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COMMON /L/AKsALMG
COMMON /ASD/ ASD1»ASD2
C CALCULATION OF BETA FOR THE E BOUNDARY

IF(KEXeNEsl) GO TO 15
YI=Y(NP3)=eS5#(Y(NPL)+Y(NP2))
Ul=eS5#(U(NP2)}+U(NP1))

RH=¢ 25% (3 ¢ #RHO(NP2)+RHO(NP1))
RE=RH#UI*#YI/VISCO(NP3)
FP=DPDX#*#YI/(RH®#UI*JI)

AMaAME/ (RM®#UT)

CALL WF1(REsFPsAM»S)
BETA=SQRT (ABS (S+FP+AM) ) /AK
TAUE=S*RH*UI *U1

IF(NEQeEQsl) GO TO 36

C CALCULATION OF GAMA 'S FOR THE E BOUNDARY

DO 35 U=1sNPH

CALL WF2(REsFPsAMPR(J) sPREF(J) 9P (J) o SF)
GAMA{J) ={ SF+AM)#PREF(J)/ (AK*AK#BETA)
IFUINDE(J)eEQel)AJE(J) =SFARHYUIR(F (JINP2I+F (JaNPL) =24 %
1F(JoNP3 ) ) #e5

35 CONTINUE

36 IF(KINeNE+1)RETURN

C CALCULATION OF BETA FOR THE I BOUNDARY
15 YI=e5#(Y(2)+Y(3))
Ul=e5#(U(2)+U(3))
RH=¢25# (3 4 #RHO(2)+RHO(3))
RE=RH#UI*#YI/VISCO( 1 )
FP=DPDX#YI/(RH®UI*UI)
AM=AMI/ (RH*UI)
CALL WF1(REsFPsAMsS)
BETA=SQRT (ABS(S+FP+AM) ) /AK
TAUI =S#RH#UI#UI
IF(NEQeEQs1) RETURN
C CALCULATION OF GAMA 'S FOR THE 1 BOUNDARY
C NOTE CALCULATION ASSUMES H = le SEE PAGE 64
DO 38 J=1oNPH
CALL WF2(REsFPsAMsPR(J) 9sPREF(J) 9P (J) sSF)
GAMA (J) ={ SF+AM) #PREF (J) / (AK*AK#*#BETA)
IF(INDIQJ)OEQol)AJI(J)'SF*RH*UI*(Z.*F(Jo1)-F(JcZ)-
1F(Je3))%e5
C LINEAR RELATION BETWEEN TKE AND Y
IF(JeEQel) GAMA(JU) =1,

38 CONTINUE
SHEAR(I"ASDI*RHO(1)*F(lvl)*DUDY(1)/ABS(DUDY(1))
RETURN
END
SUBROUTINE WF1(RoeFeAMsS)

COMMON /L/AK sALMG
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1/WL/STOsAKS9sRTyFT»AMT
AKS=AK#*AK
RT=R*AKS
(ST=1e/RT=01561xRTH% (~045)+4087234RT#* (=0 3) +4037134R T2
-9
STO=ST
IF(FeEQeOe) GO TO 15
FT=F/AKS
FM=]1 o=l o #FTH*RT/ (585 +RTH%245) %% o4
IF(FMeLTeOs)FM=Q,
ST=STRFMR®]146
GO TO 16
IF(AMeEQeQe) GO TO 16
AMT=AM/AKS
AMME 1 g =AMT/ (ToT4%RTHR# (=117 )+e956%RTRR(=425))
ST=STRAMMRR4
S=STHAKS
RETURN
END
SUBROUTINE WF2(ResFesAMs PR sPRTsP»S)
COMMON /L/AKsALMG
1/WL/STOsAKSsRTeFTeAMT
ST1=STO/(1e+P#SQRT(STO) )
IF(FeEQeQOe¢) GO TO 15
SSEP=14725%#RT#% (=e3333)%(P+648) *#%(=16165)
FO= o 25%#FT*RT/(1e+e0625%RT)
ST1l=ST1#(1le=FD)+FD*SSEP
STaST1/PRT
S=ST#AKS
RETURN
END
FUNCTION VISCO(I)
COMMON /GEN/PEIQAMI9AMEODPDX9PREF(3)9PR(3)0P(3)’DENQ
1AMUs XU XD e XP o XL 9DX 9 INTG9 CSALFA I XPCG
1/V/UL43) 9Ft3943) sR(43) sRHO(43) sOM(43)9Y(43)
1/I/NONPI'NPZQNPBsNEQ0NPH¢KEX9KIN9KASE$KRAD9KPRAN
CQMMON/AUXP/TEMPE(43)’TEMP(QB)’PO(43)’AMACH(QB)
VISCO=AMU*(F {2+ 1) /F({2eNP3))%*e76
RETURN
END
FUNCTION SLOPE(A1sA2sA39B19B2+B3)
Cl=B1=B2
C2=B1l=B3
C3=Bl#Bl-B2#B2
CK=B2-B3
IF(CleEQeQeeOReC20EQsQesOReCKeEQeOs) GO T0 1
CamAl=A2
AAZ'(C#*C2~C1*(A1-A3))/(CZ*CB-CI*IBI*BI—BB*BB))
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AALl= (CH4=AA2%C3)/C1

SLOPE=AALl+2+ #AA2%B3

RETURN

ClsAl=A2

C2=Al=A3

C3a=AIRAl=A3HAS

CK=A2=A3
IF(CleEQeOeeORsC2eEQeOesOReCKeEQeOe) GO TO 2
CazBl=-B82

AA2= (C4nC2=-Cl1#(B1=B3))/(C2%#C3=Cl*(A1l*A1=A3%A3})
AAl=(C4=AA2#C3)/C1

SLOPE=AAL1+2e¢%AA2%*A3

IF{(SLOPESEQeOe) GO TO 2

SLOPE=14/SLOPE

RETURN

SLOPE=0,

RETURN

END
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