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ABSTRACT 

Spatial-temporal reasoning is the ability to reason with spatial images or 

information about space over time. In this dissertation, computational intelligence 

techniques are applied to computer Go and computer network applications. Among four 

experiments, the first three are related to the game of Go, and the last one concerns the 

routing problem in computer networks.  

The first experiment represents the first training of a modified cellular 

simultaneous recurrent network (CSRN) trained with cellular particle swarm optimization 

(PSO). Another contribution is the development of a comprehensive theoretical study of a 

2x2 Go research platform with a certified 5 dan Go expert. The proposed architecture 

successfully trains a 2x2 game tree. The contribution of the second experiment is the 

development of a computational intelligence algorithm called collective cooperative 

learning (CCL). CCL learns the group size of Go stones on a Go board with zero 

knowledge by communicating only with the immediate neighbors. An analysis 

determines the lower bound of a design parameter that guarantees a solution. The 

contribution of the third experiment is the proposal of a unified system architecture for a 

Go robot. A prototype Go robot is implemented for the first time in the literature. The last 

experiment tackles a disruption-tolerant routing problem for a network suffering from 

link disruption. This experiment represents the first time that the disruption-tolerant 

routing problem has been formulated with a Markov Decision Process. In addition, the 

packet delivery rate has been improved under a range of link disruption levels via a 

reinforcement learning approach. 
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1. INTRODUCTION 

1.1. OBJECTIVE 

The main theme of this dissertation is spatial-temporal reasoning applications in 

computational intelligence (CI). Spatial-temporal reasoning is a process of drawing 

conclusions from facts or spatial images over time. CI is a field of study that uses 

intelligent algorithms, such as artificial neural networks (ANN), evolutionary computing 

(EC), swarm intelligence (SI), and fuzzy systems (FS) [1]. In this dissertation, spatial-

temporal reasoning concepts are combined with various CI techniques. In the process, 

research was conducted regarding how to draw conclusions over time for problems in 

computer Go, robotics and computer networks that require a mental perception of the 

problem space. 

  

1.2. GAME OF GO AND COMPUTER GO RESEARCH 

1.2.1. Game of Go. Go, also called Baduk in Korea and Weiqi in China, is a two-

player board game that is popular in East Asia and is gaining more popularity in other 

regions. Chess could be considered its Western counterpart. Go is as popular, or perhaps 

more popular, in East Asia as Chess is in the Western world. Professional players 

associations exist in South Korea, China, Japan and Taiwan as evidence of the game’s 

popularity. A Weiqi tournament was even held at the 2010 Asian Games in Guanzhou, 

China.  

The basic Go rules are so simple that a complete beginner can learn to play within 

an hour. One Go player possesses black stones; the other controls white stones. The two 

players alternately place a stone on the Go board. A typical Go board is a 19-by-19 
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square lattice, which represents an imaginary land under territory dispute. A player’s 

objective is to obtain more territory on the board according to the Go rules [2]. Interested 

readers may refer to Appendix A for the game rules in further detail. 

Unlike learning the basic rules, mastering the game is another story. Life time is 

required to master the art of playing Go. Go is so profound that experts believe no 

identical game has been played since the game was invented. In general, about a decade 

of intense and dedicated effort is a prerequisite to pass the professional test. 

1.2.2. Game Rules and Norms. There are three major sets of Go rules (Chinese, 

Japanese and Korean), and some professional tournaments make minor modifications to 

the major rules after careful review. The three major rule sets fall into two categories: 

area rules and territory rules. Chinese rules follow the area rules, while Japanese and 

Korean rules are territory rules. These rules differ in how they dictate that the final score 

be counted, so they affect game play. On the other hand, the essential rules for both 

categories are identical and straightforward. 

Rule 1 (Go board): A Go board is an n-by-n grid on whose intersections stones 

are placed. Currently, the norm for a typical game is a 19x19 board, but smaller board 

sizes of 5x5, 6x6, 9x9 and 13x13 can be used for educational and research purposes.  

Rule 2 (Players): Two players, black and white, alternately place a stone on the 

board. Who places the first stone is determined by the type of game. 

Rule 3 (Purpose of the game): Go is a territory game, so, according to territory 

rules, the purpose of the game is to gain more territories on the board than the opponent. 

A territory is an empty intersection seized by a player. According to area rules, on the 
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other hand, a player with more areas wins the game. An area is a territory with stones 

surrounding it. 

Rule 4 (Types of games: even and handicapped): Black plays first in an even 

game, and white in a handicapped game. When both players, whether amateur or 

professional, are equally strong, they play an even game that starts from an empty board. 

When amateurs at different levels play a game, handicap stones are placed on the board 

before the game begins to allow two players with different ranks to play a competitive 

game. 

Rule 5 (Compensation for a white player): A black player gains a significant 

advantage by playing the first move in a competitive game. In order to compensate for 

black’s advantage, a white player receives a score compensation of 6.5, 7.5, or 8, 

depending on the rules.  Though their accuracy remains under debate, these values, 

except for 8, are agreed-upon scores resulting from many game plays by professionals. 

Rule 6 (Liberty, group and capture of stones and an eye): A group of stones refers 

to one or more stones of the same color that are connected vertically or in parallel. A 

group of stones is captured when the last liberty for that group is removed. A liberty is an 

empty, adjacent intersection of a stone connected by lines drawn on the board. Typically, 

a group of stones is captured when it is completely surrounded by the opponent's stones.  

Rule 7 (Illegal moves: suicide and Ko rules): A suicide move is prohibited. 

Therefore, placing a stone in an eye surrounded by the opponent's stones is illegal unless 

this placement captures the opponent's group. Another illegal move is one that repeats the 

board’s status at the player’s previous move. This rule is called a Ko rule and was 

established to avoid infinite game play. In order to avoid the infinite loop of repeatedly 
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capturing the opponent's stone, each player must wait one move to capture an opponent's 

stone in the disputed territory. 

1.2.3. The Grading System to Measure the Computer Go Program’s 

Strength. A human player’s skill level is indicated by his/her ranking within the player’s 

community, as well as by a grade [3,4,5]. A professional player’s ranking is his current 

score in competitions, while the grade reflects the player’s history. In general, a computer 

Go engine’s strength is measured with respect to other Go engines. Say a Go engine wins 

more games against the other; the former is considered to be stronger. Occasionally, 

matches between a computer and a human player are held to measure the strength of the 

top Go engines. As a result, the Go engine’s strength can be assessed with respect to a 

human’s grade system.  

Several professional Go associations exist in East Asia, including the Korea 

Baduk Association[6], Chinese Weiqi Association [7], Nihon Ki-in (Japan) [8], Kansai 

Ki-in (Japan) [9], and Taiwan Chi Yuan [10]. Two professional associations exist in the 

Western world, American Professional Go Association and European Go Professionals 

[11], but the former is considered to be defunct, and the latter is less influential within the 

professional societies compared to the associations in East Asia. 

As of July 2011, nine of the top ten nationally-ranked players in Korea are 

professional 9 Dan; one player (Jiseok Kim) is professional 7 Dan. Most top-ranked 

professional players become 9 Dan as the result of career achievements. A player is 

promoted to the next grade when he/she accumulates enough points during tournaments. 

Therefore, Kim will be promoted to 9 Dan eventually if he keeps playing well. There are 

55 professional Go players at the professional 9 Dan (top grade) level among the 254 



5 

professionals in the Korea Baduk Association [6]. It is possible for a player at the top 

rank with a lower grade to defeat a player at a lower rank with a higher grade. 

Consequently, a time will come when computer Go programs will be stronger than they 

are now, and a player’s ranking will need to be considered when discussing a computer 

Go’s strength.  

A huge gap in strength exists between professional and advanced amateur players 

in general. For a professional player, the ranking is more important than the grade as a 

measure of the player’s current strength. This is especially true for international 

competitions because grading system standards vary among nations. In general, the 

national associations have a trainee system to prepare the pro exam and the degree of 

competition differs from nation to nation. 

Typically, only the general structure of a grading system is explained in the 

computer Go literature (as in Figure 1.1.a). The grading system is largely divided into the 

advanced level and the remaining levels similar to those found in the martial arts, such as 

Taekwondo, Karate and Judo. An advanced player is granted Dan analogous to a black 

belt in martial arts; the grades for a weaker player are called Kyu in Japanese, Geup in 

Korean, and Ji in Chinese. Dan is divided further into a professional Dan and an amateur 

Dan if a large pool of professionals exists in the community. Kyu (Geup or Ji), amateur 

Dan, and professional Dan (when these distinctions exist) are abbreviated as k, d, and p in 

this dissertation, respectively. For example, professional 9 Dan is abbreviated to 9p. 

However, the aforementioned grading system does not sufficiently capture the 

current stance in the Go world. No single grading system is internationally standardized. 

Nihon Ki-in in Japan set the contemporary grading system, and other organizations  
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Figure 1.1. Grading systems in Go.  

(a) certified grading system of a national association,  
(b) uncertified grading system of an online Go server,  
(c) Kiwon Geup-soo or Go club house grading system.  
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referred to it in general when devising their own systems, which remain diversified. 

Currently, the grading systems differ in professional associations, national/regional 

associations, online Go servers, and club houses. To name a few, the American Go 

Association [12], Canadian Go Association [13], Singapore Weiqi Association [14], and 

European Go Federation [15] are examples of national/regional associations. Examples of 

famous online Go servers include TYGEM [16], Cyberoro [17], HANGAME [18], KGS 

[19], and IGS [20]. Even given the existence of the International Go Federation [21], 

attempts at standardization have failed because this federation is less influential to the 

professional societies than the major professional associations. Traditions and localisms 

have not yet been broken to reinvent a single grading system. 

Figure 1.1 summarizes the grading systems currently used in Go. The grading 

systems are categorized into three groups: professional Go associations, national/regional 

Go associations and online Go servers, and Go club houses. All players in professional 

Go associations certify as professional 1 Dan to 9 Dan and an honorary 10 Dan (not 

depicted in the figure). Japan’s Nihon Ki-in and Kansai Ki-in certify amateur Dans up to 

8 Dan, unlike other East Asian countries. The grading systems for Kyu level players are 

identical in all East Asian nations. 

Other countries do not certify professional players even if professionals belong to 

the association. Only amateur Dan and Kyu level players are certified. Note that players 

from these associations start from 30 Kyu as opposed to 18 Kyu in professional Go 

associations. Online Go servers employ the same structure even if the criterion to 

determine a grade may differ. The top grade for an amateur Dan may vary from 7 to 9 

depending on the association. 
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The last category is that of a Go club house, called Kiwon in Korean and Ki-in in 

Japanese, which serves as a focal point for local Go communities. In South Korea, the 

traditional grading system of using only Geup remains in place. Regardless of the efforts 

by the Korea Baduk Association, the newer amateur Dan system has not been 

implemented fully. The contemporary Japanese club house’s grading system with Dan 

levels is depicted for comparison purposes. 

1.2.4. Why Research Computer Go? Computer Go [22,23,24,25] is a field of 

study that aims to develop computer programs associated with the game of Go and 

developing a strong program that can defeat human champion is an unconquered 

challenge in the Artificial Intelligence and Computational Intelligence societies [26,27].  

The history of computer Go research traces back to computer Chess, regarding 

which the research objective was to construct a chess-playing computer program. 

Wiener’s book published in 1948 [28] describes how a computer Chess program could be 

developed with a depth-limited minimax tree search [29] with an evaluation function. 

Wiener’s method is conceptually similar to how a human plays Chess. A computer 

program can play Chess if it can foresee the future possible moves and properly evaluate 

the goodness of each move. The minimax tree search searches for moves that maximize 

the player’s chance to win while minimizing the opponent’s chance to win. A tree of 

board statuses called a game tree is constructed in this process, and each node of the tree 

is evaluated by an evaluation function. In 1950, Shannon published a paper [30] 

dedicated to a computer Chess program with a tree search and evaluation function, and 

Turing discussed the first program capable of playing a full game in 1951 [31,32]. Within 
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half a century, the IBM supercomputer Deep Blue [33] defeated the human Chess 

champion Garry Kasparov in May 1997. 

The primary focus of computer Go research is to develop an intelligent computer 

program called a Go engine that generates a sequence of moves to play the game. The 

first Go engine capable of playing a full Go game against a human was published by 

Zobrist in 1970 [34]. Computer Go’s technical significance was rediscovered in the quest 

for a more complicated problem than Chess after Deep Blue’s breakthrough in computer 

Chess. Currently, computer Go is considered one of the most challenging unsolved 

problems in the Artificial Intelligence and Computational Intelligence societies. Unlike 

Chess, the best Go engine cannot beat a human champion even with the fastest computer 

to date, making computer Go an excellent test bed for computer intelligence. 

Additionally, it serves as an excellent test bed for novel applications to practical problems 

because of its clear-cut objective and the vast amount of sub-problems that allow for tests 

of practicality. 

1.2.5. Why is Go Difficult for a Computer? Go is more difficult than Chess 

because its tree searches are far more complex, and its game tree size is much larger. In 

addition, developing an accurate evaluation function and ending the game is difficult in 

Go. In other words, these three challenges complicate move generation in Go. 

First of all, constructing a game tree in Go is more challenging than in Chess 

because of Go’s high branching factor. Go has a much larger number of possible moves 

in each position, and the length of a game is longer than Chess [35]. The game tree size 

of a 19x19 Go board is estimated to be between 10575 to 10620, while that of a Chess 

board is 10123 [36].  
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Figure 1.2 compares the complexity of Go to other board games. (Refer to [37] 

for more board games.) Using an analogy, the complexity of Go compared to Chess is 

greater than that of Chess to Tic-tac-toe. Secondly, the evaluation function in Go is more 

difficult to build than that in Chess. Unlike Chess pieces to which various values can be 

assigned [26], all Go stones are identical, and a stone’s value should be evaluated in the 

context of the geometrical and strategic importance of its location. A single stone at one 

location can be more valuable than one at another location depending on the other stones 

on the board. Creating an accurate evaluation function is difficult [35] because scoring a 

stone is challenging.  

 
 

 

 
Figure 1.2. State-space and game tree complexities of board games. 
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Lastly, the endgame in Go is somewhat ambiguous because of three problems 

specific to Go [35]. Most importantly, judging whether a position is terminal is difficult, 

unlike in most board games [35,24,38]. Judging the terminal state is easy in Chess; the  

game is over when the king is taken (checkma  te) or when any legal move would place 

the king in check (stalemate). In Go, two players must agree when to finish the game 

unless a player forfeits. The game also ends if both players make two consecutive passes. 

Computer Go uses the latter method because the former is difficult for computers to 

negotiate. Therefore, a pass move should be added to the tree search. When a player 

passes on a move that may end a game, the entire board status must be assessed for the 

correct decision. Correctly judging the terminal position is challenging because board 

status assessment is non-trivial. Even though passes are allowed, passing a move should 

be considered only toward the very end of the game, in general, because a pass may not 

be beneficial during the game. This is especially true for a close game. Additionally, the 

Ko rule that disallows a repeated board status further complicates the pass judgment. A 

full board position repetition is illegal in Go, but local position repetition may occur [35]. 

 

1.3. HOW A COMPUTER CRACKS GO 

1.3.1. Computer Go Programs: Overview. The term computer Go program is 

polysemous. It could signify a program that has the intelligence to generate a move (Go 

engine, or engine for short), a program that displays the Go board status (Go GUI), a 

program that allows a human to connect to an online server and play online (Go client, or 

client for short), or a program that helps humans learn to play Go (Go Learning Tool). 

This research is interested in the first two types. The purpose of a Go engine is to 
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generate a computer’s next move. A Go engine is also referred to as computer Go 

intelligence or a Go-playing program. Several famous Go engines include The Many 

Faces of Go, MoGo, GNU Go, Crazy Stone, Silver Star, and Fuego. Go GUI is the 

frontend to a human user in that the GUI (Graphic User Interface) displays the Go board 

and stone placements. Popular open-source Go GUIs include CGoban [39] and GoGui 

[40]. Go GUI is also called a Go editing program to emphasize that users can store and 

edit game records with it. Most Go clients incorporate Go GUI. Therefore, a well-

designed Go client also provides the editing feature. For example, the Go GUI software 

CGoban serves as a Go client for a popular Kiseido Go Server (KGS) [19] and also as 

editing software. 

A Go communication protocol is a program that allows Go programs to 

communicate with each other. The Go Modem Protocol (GMP) [41] and the newer Go 

Text Protocol (GTP) [42] represent the de facto standard for open source Go programs. 

The former was developed by Bruce Wilcox with input from other Go programmers to be 

used for computer Go competitions. The latter is a modern alternative to GMP. A 

common usage of a Go protocol is to pair up Go engines in a computer Go competition. 

Two Go engines with identical Go protocols can be paired up by a matching program. 

Another popular usage is to connect a Go GUI to a Go engine. While a Go engine can be 

combined with a Go GUI (along with a Go client), they typically are separate programs. 

For example, GoGui, which is written in Java, incorporates GTP. It can be linked to any 

Go engine with GTP written in any programming language. Fuego in C++ implements 

GTP, so a human can play against Fuego on GoGui. 
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1.3.2. Popular Approaches Used for Go Engines. Both Go and Chess are 

perfect information two-player board games. That is, no information is hidden from the 

players, and no forced random factor exists, such as dice rolling in Backgammon. 

According to Claude Shannon, a perfect information two-player board game can be 

solved if the game tree and the evaluation function are available, meaning that a player 

can choose the best moves if all the possible moves and their values are known. 

Shannon's prediction worked for Chess because Deep Blue, the computer Chess program, 

defeated a human champion, Garry Kasparov, using, in essence, a game tree search 

combined with board evaluation. For Go, both a game tree search and board evaluation 

are extremely challenging to perform because Go has a large branching factor, and the 

values of Go stones are hard to evaluate. Therefore, the methods successful for Chess 

have not been successful for Go. 

To proceed in computer Go, new methods had to be developed. In general, a well- 

designed, contemporary computer Go program follows a multitude of design 

philosophies. In other words, contemporary computer Go researchers employ hybrid 

methods combining different methods and algorithms [27]. Most Go engines combine 

several approaches; using a single approach is rare. 

Traditionally, the design philosophies are categorized into (1) influence function, 

(2) tree search, (3) pattern matching, (4) knowledge-based systems, (5) Monte-Carlo 

(MC) methods, and (6) machine learning. It is the computer Go researcher's decision to 

select which philosophies to use in order to create a stronger program. For example, 

Crazy Stone, one of the strongest Go engines, combines the MC evaluation technique, 

tree search, and a pattern learning algorithm[43]. 
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In this dissertation, we categorize the conventional design philosophies into 

search-based approaches and non-search-based approaches. The former includes (2) tree 

search, (5) MC methods, and a part of (6) machine learning approaches, such as 

reinforcement learning and temporal difference learning. The latter includes (1) influence 

function, (3) pattern matching, (4) knowledge-based systems, and the remainder of (6) 

machine learning approaches. What distinguishes the former from the latter is the search 

mechanism, or an algorithm to explore the game tree. 

1.3.2.1. The search-based approaches and advances in the reinforcement 

learning-based approach. A tree search is an algorithm used to search a game tree, 

which is a hierarchical tree structure with linked nodes that correspond to a snapshot of a 

Go board during a game. Mathematically, the tree is ordered and directed because the 

root is an empty Go board and an ordering is specified for the children of each vertex. 

Constructing the full game tree is impractical because of Go’s large branching factor. 

Therefore, the game tree mentioned here is an abstraction in the mind to organize the 

progress of Go games. 

Finding winning rather than optimal moves against the opponent is the objective 

of a game because truly optimal moves may not be known to human experts. In this 

context, the objective of a tree search is to find winning moves against the strongest 

opponent in existence. Humans’ limited knowledge of truly optimal moves is explained 

through the discussion of a professional’s game by other professionals. The selection of 

Fuseki and Joseki, i.e., the well-established theories for opening moves, is debated 

frequently. Often, the soundness of an opening move selected by a professional player is 

analyzed by other professionals. This fact implies that the optimal moves are not 
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understood fully even by professionals. The situation is even more ambiguous for the 

middle and end of a game because the theories regarding these portions are not as well-

established as the opening. 

Assuming optimal moves are unavailable, the question is how to find winning 

moves via a tree search. Inspired by success in Chess, exhaustive searches with limited 

depth have been applied to Go. Computer Chess uses minimax algorithms with alpha-

beta pruning [24]. The minimax algorithm selects nodes that minimize the opponent’s 

chance to win but maximize the player’s chance to win. Alpha-beta pruning decreases the 

number of nodes evaluated by the minimax algorithm. Even after the exponential 

increase in computational power provided by Moore’s law since 1997, the brute-force 

search successful for Chess has not brought success to Go thus far. It is a common belief 

in the computer Go society that an exhaustive game tree search using a pruning technique 

does not work for Go because Go has a higher branching factor than Chess, and an 

accurate node evaluation is unavailable. However, Feng-Hsiung Hsu, the principal 

designer of the IBM Deep Blue, predicted in [26] that the exhaustive search will play a 

pivotal role in computer Go. 

In computer Go, three types of tree searches are commonly used: a full-board 

search, a single-goal localized search and a multiple-goal search [23]. A full-board search 

is challenging, as explained in Section 1.2.4. A single-goal localized search is used 

widely in current Go programs to achieve particular tactical goals, such as ladder [44], 

single group capture [44], life and death [45,46], and Semeai [47]. A multiple-goal search 

is used to achieve a combination of two or more goals. Even if this approach is more 
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desirable than a single-goal-based search, its implementation remains rudimentary 

because of its complexity [23].  

The Monte Carlo (MC) approach [48,49,50] has brought the most success to 

computer Go. The advantage of the MC approach over the conventional tree search 

methods is that MC is a value-based reinforcement learning (RL) method [51,48]. Unlike 

the conventional tree search that requires a separate evaluation function, this RL 

approach plays many random games to compute the value of a node. More experience is 

gained as more games are played, leading to more accurate results. Ideally, an accurate 

approximation of a node’s value can be computed if enough games are played. 

Conversely, insufficient number of sample games, e.g. random games played till the end, 

leads to false values of the candidate nodes.  

The first MC tree search Go program, Gobble, was developed by Bruegmann and 

appeared in 1993 [52]. The architecture of Gobble is simple, but its drawback is that it 

does not make living groups or finish games properly [49]. Domain-dependent and 

OLEG also use domain-specific knowledge to define eyes to random games and also 

knowledge was added to define eyes1 by Fotland [53] and Chen and Chen [54]. OLGA 

apply techniques such as progressive pruning, all moves initially being heuristic, the 

concept of temperature, simulated annealing and depth-two tree search within the MC 

framework [49,55]. 

A recent breakthrough by Go engines was made using a variant of the MC 

method, i.e., the Upper Confidence bound applied to Trees (UCT). The UCT was first 

                                                 
1 An eye is an empty space of intersection where the opponent can neither play on nor force it to be filled 

[149] . 
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applied to Go by Kocsis and Szepesvari [56]. Theoretically, the finite-horizon discounted 

Markov Decision Process (MDP) [57] allows for the attainment of near-optimal 

solutions. Formulated by MDP, a multi-arm bandit approach [48] allows the program to 

look ahead at future moves. The Upper Confidence Bound (UCB) [58] is a type of bandit 

algorithm [56], and the UCT applies UBC1 to the tree search. The first successful 

implementation of the UCT was in MoGo, developed by Wang and Gelly for 

[59,60,51,61,62]. MoGo is considered one of the strongest computer Go programs to 

date. The executable version is available at [62] and the pseudocodes of the UCT 

approach are published in. However the details of the program are unknown because the 

source codes are not available to the public. Gelly’s publications [59,60,51,61] discuss 

how the UCT is modified for Go[61] and improve the UCT with patterns and offline 

knowledge [51,60,59]. Chaslo et. al. also combined expert, offline, transient and online 

knowledge into an MC tree search [63]. 

MoGo has achieved master-level play on a 9x9 game board [64] and has won 

computer Go tournaments, such as KGS international tournaments [65] and the World 

9x9 Computer Go Championship held at the National University of Tainan (NUTN) in 

Taiwan [66]. In [66], it is described that MoGo has reached the level of 3 Dan. Even if 

this description is correct, MoGo’s strength remains controversial given the level 

differences in different countries, as presented in Section 1.2.3. and Figure 1.1. On the 

other hand, the computer Go community was excited about MoGo’s achievement during 

the US Go Congress [67] organized by the American Go Association [12] in 2008. The 

MoGo Titan program using the Dutch supercomputer Hyugens played a 9-stone handicap 

game on a 19x19 board against Myungwan Kim, an 8 Dan professional from Hangook 
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Kiwon [6], on August 7th, 2008 [68]. This official match resulted in MoGo’s triumph by 

1.5 points. Interested readers may investigate the game record available at [69]. 

Even though this event is considered a breakthrough by the computer Go 

community, the correct assessment of MoGo’s strength must be explored. Surprisingly, 

the computer Go community was not as impressed by this victory, claiming that MoGo 

did not reach a Dan level because a 9-stone handicap against a 9 Dan player is assessed 

as 1 Kyu. Considering that the opponent was a professional player, MoGo’s win is 

encouraging, and other official matches have substantiated MoGo’s strength against other 

professional players. On February 10-13 at the Taiwan Open 2009, MoGo TITAN ran on 

Huygens in Amsterdam, Netherlands, and won two 19x19 games, one with a 6-stone 

handicap against Li-Chen Chien, a 1 Dan professional Go player from Taiwan Qiyuan 

[10], and the other with a 7-stone handicap against Jun-Xun Zhou, a 9 Dan professional 

from Taiwan Qiyuan [70]. The latter event is impressive even with the 7-stone handicap 

because Zhou won an international title LG Cup in 2007. 

The MC approach has become trendy owing to MoGo’s success. Other engines, 

such as Orego [71], Crazy Stone [43], The Many Faces of Go [72], Fuego [73], Indigo 

[74,75], and Phantom Go [76,77] use this approach. An MC method that recursively 

extends nodes and plays effective moves has been implemented and has improved the  

performance of Crazy Stone [78]. 

The temporal difference (TD) learning method, which has been applied to various 

board games [37] such as Tic-Tac-Toe [79], Chess, Othello, and Backgammon, also has 

been applied to Go. This method proved most successful in Backgammon; TD-Gammon 

[79], developed in 1992 by Gerald Tesauro at IBM, uses a variant of TD learning called 
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TD-lambda [48,37]. The drawback is that table-based reinforcement learning suffers from 

the curse of dimensionality [48]. Backgammon’s state space is about 1020 states [80], 

which is too large for table-based reinforcement learning. To tackle the curse of 

dimensionality, Tesauro used a backpropagation-based, three-layer neural network and 

implemented the outcome from a self-play game as the reinforcement signal [80,79]. As a 

result, TD-Gammon reached the level of human experts [48,37,79].  

In [81], Schraudolph et. al. experimented with Tesauro’s approach to apply TD 

learning to Go, but a fully-connected 82-40-1 backpropagation network by self-play on a 

9x9 Go board was not very successful. Next, they tried using a network with less than 

500 weights and TD learning so that Go positions on a 9x9 board could be evaluated. 

Three computer opponents were used to train the network: a random move generator, 

Wally, and The Many Faces of Go. Schraudolph et. al. tested training the architecture by 

self-play and playing against Wally, concluding that the latter  method outperforms the 

former when the engine is tested against both Wally and The Many Faces of Go. First, 

they trained with the weaker Wally for about 2000 games and then switched the training 

partner to the much stronger The Many Faces of Go for another 1000 games. They 

achieved some success against The Many Faces of Go set to a medium level.  

Another Go engine using neural networks trained with TD learning is NeuroGo 

 [82], developed by Markus Enzenberger at the University of Alberta. NeuroGo uses a 

feedforward backpropagation architecture trained with TD learning and self-play [83,84]. 

In this architecture, the number of neurons and connections changes depending on both 

the board’s size and status [85]. NeuroGo achieves a moderate level of strength compared 

to other famous Go engines, but it actually is a crossover program. It leans heavily 
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towards the soft AI technique of machine learning but also incorporates expert 

knowledge, which ultimately must come from human experience. 

Other research has investigated using neural networks and TD learning. Chan et. 

al. also trained a feedforward neural network with TD-lambda from self-play [86]. They 

tested various lambda values and found that the non-zero value outperforms TD(0). 

However, this network has not been tested against an existing Go engine, so its strength 

is unclear. Additionally, Zaman and Wunsch developed a neural network trained with TD 

learning [80,87]. The board evaluation function was learned by three 2-layer feedforward 

neural network experts trained by a hybrid mixture of experts (HME) and Meta-Pi. This 

network can beat Wally on a 9x9 board. In [88], Zaman et. al. explored the possibility of 

using another type of neural network that can learn to play Go. A heuristic dynamic 

programming (HDP)-type adaptive critic design (ACD) was used to play games against 

Wally. The trained network did not perform strongly, but this actor-critic design learned 

to play Go from zero knowledge, showing that the principle of dynamic programming 

can be applied to Go. In [89], Wu and Baldi used another type of neural network with 

recursion, a type of Bayesian network called a directed acyclic graph recursive neural 

network (DAG-RNN) with six layers. They used game records on 9x9, 13x13, and 19x19 

board settings. However, whether or not the trained networks learned to play Go well 

against existing Go engines remains unclear. Previous research with various neural 

networks has shown interesting results, and some networks have learned to play Go. 

Unfortunately, it is unclear whether or not neural networks alone can serve as a strong Go 

engine. However, as Ramon and Blockeel suggest in [90], CI techniques can be utilized 
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to learn aspects other than move generation, such as candidate move ordering, leaf node 

static evaluation, temperature or urgency of a position, and game opening techniques.  

Mayer [91] studied the impact of three different board representations for neural 

networks and the optimality criteria for TD learning on a 5x5 board. Mayer used 

feedforward neural networks with TD learning, the Neural Go players learning from self-

play, and a tournament of the players. The resulting Neural Go player won a computer 

Go program called Gojen. A new neural network architecture with TD learning also was 

used. Blair used a cellular neural network (CNN) trained with TD learning and self-play 

[92]. The CNN used an identical feedforward neural network in a cellular architecture 

trained with TD-lambda at λ=0.9. This network has been tested on an internet computer 

Go server, CGOS [93], and it achieved a rating of 500 on a 9x9 board and 1000 on 19x19 

board. The network was parallelized on a GPGPU, NVIDIA GeForce 8800 graphics card 

to achieve a faster speed.  

Runarsson and Lucas introduced another CI technique to the previous TD 

learning research. They compared two methods for acquiring position evaluation on a 

5x5 board: coevolution learning (CEL) and a self-play feedforward neural network with 

TD learning (TDL) [85]. A neural network needed to be learned, for example, a single-

layer perceptron with a linear output. Afterward, Krawiec and Szubert applied 

coevolutionary TD learning (CTDL) to a 5x5 board, thus combining a coevolutionary 

search and TD learning [94]. In this work, a board evaluation function was computed 

from a linear combination of the board’s state and a weight matrix called a weighted 

piece counter (WPC). The weights were updated with CTDL. The strength of this 

architecture remains unclear because the opponent is a random player, a WPC, and the 
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performance is compared among the methods given in the paper, i.e. pure TD, pure 

coevolution, and CTDL. 

Recent advances in computer Go can be explained by the reinforcement learning 

framework. In [48], Sutton and Barto explain the relationship among search methods in 

terms of the depth and breadth of the search. Figure 1.3 depicts the relationship between 

an exhaustive search, the MC approach, and temporal-difference learning as presented in 

[48]. All these algorithms find a node’s value in the game tree but differ in the depth and 

width of their game tree search. For example, the exhaustive search covers both depth 

and breadth. If the search starts from depth, the method uses a depth-first search [95]; if 

all the child nodes are visited first, the method uses a breadth-first search [95]. On the 

other hand, the MC method searches the tree in depth with game samples. In other words, 

a sample of a random game is played until the end of the game. More samples are 

generated when more computational power is consumed, and the estimated value more 

closely approximates the true value when enough sample games are played. 

1.3.2.2. The non-search-based approaches. Using an influence function is a 

legacy approach to generating a move. The first Go engine that played a full Go game 

against a human was reported by Zobrist in 1970 [34]. Zobrist used an influence function 

to evaluate a board’s status as the sum of all the stones’ influences on the board. The 

influence function is a way to quantify a stone’s influence as it decreases with distance 

from the stone’s location. The move with the highest influence is chosen for game play. 

Pattern matching is an important topic in computer Go because patterns are a 

simple but effective way to incorporate a human expert’s knowledge or offline 

knowledge into a Go engine [23]. If the entire Go board is seen as a graph, a 
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Figure 1.3. Tree search methods in depth and breadth dimensions. 

 
 
 
 

pattern would be considered its sub-graph. Typically, the size of the sub-graph or pattern 

is much smaller than the full 19x19 board. A well-designed Go engine is equipped with a 

pattern database. In order to utilize the database, the patterns must be matched to the full 

board representation. Therefore, a pattern-matching subsystem is necessary. The 

advantage of using patterns in a Go engine is that human knowledge and experience can 

be incorporated into the computer program. On the other hand, the shortcoming to using 

patterns is the additional cost imposed for both the programmer and the computational 

resources. Constructing and maintaining an efficient pattern database consumes a 

programmer’s time and requires knowledge about Go. Additionally, matching patterns to 

the Go board’s status is computationally expensive. 
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Several approaches exist to mitigate the burdens of these drawbacks, some more 

useful than others. One approach is automatic pattern extractions. Several methods have 

been proposed to extract patterns automatically from readily available professional game 

records. In [96,97,98], Kojima used an evolutionary approach to build a system that 

learned to acquire the knowledge necessary to perform at an expert level. Patterns are 

obtained by statistically analyzing game records (Coulom) [99] or real-time game play 

(Sutton et. al.) [100].  

Due to the grand scale of the computer Go problem, it is divided into many sub-

problems [2]. Humans and computers understand endgames relatively well compared to 

game openings and mid-games. In [101], Berlekamp and Wolfe detailed the analysis of a 

late endgame from combinatorial game theory. The problems relating to their research 

are two-fold. The first problem arises out of an underlying assumption. The boundaries of 

all the blocks are clearly separated in their work, so the endgame is analyzed 

independently from one group to the other. In practice, the boundaries remain unclear 

until the very end of a game, leaving this approach impractical. Another problem is that 

their book is so esoteric that understanding it becomes difficult. In [102,103,104], 

Mueller et. al. introduce a method by which to analyze a Ko threat situation for endgames 

with thermography, i.e. a tool for analyzing combinatorial games. A thermograph 

graphically represents the value of a Go board’s position at different temperatures. In this 

2D graph, the horizontal axis represents the count, and the vertical line represents the 

temperature, which is a measure of the urgency of playing a move. In [105,106], Mueller 

further investigated Go endgames and relaxed the independent conditions of groups.  
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The life-death problem is one of the key problems for endgames, of which the 

complexity is PSPACE-hard [107]. The answer to the problem provides essential 

information for judging the life and death of the group [108,109]. In general, the life and 

death of a group significantly impacts the entire game. In [110], Benson introduces 

Benson’s algorithm, which presents a graph-theoretic static analysis of the board 

arrangement for unconditional life. The notion of unconditional life for a group of stones 

is well-defined mathematically, and the conditions for unconditional life are 

mathematically established. In essence, this fine work is mathematically equivalent to a 

statement in Go, “Two true eyes are necessary for a group to survive unconditionally.” In 

practice, Benson’s algorithm is insufficient to perform well in an actual game, and it 

requires further research. In [111], Mueller addresses one of the important topics during 

an endgame via static rules and a local tree search, i.e., how to recognize secure 

territories in computer Go. Vila and Cazenave address more practical situations to 

determine the safety of a group when the group has large eye shapes or one eye [112]. In 

[113], Kishimoto and Mueller apply the depth-first proof-number (df-pn) search 

algorithm, which was applied to Othello in [114], and enhance the algorithm by 

comparing knowledge-based and tree-search-based approaches for the life-death problem 

in [115]. Additionally, Kishimoto and Mueller present a divide-and-conquer approach 

that dynamically decomposes a tree search to solve the one-eye problem [116]. Niu and 

Mueller improved the safety solver by developing a search-based region merging 

technique, efficiently strengthening weakly depending regions [117]. The series of work 

by Mueller et. al. attempted to improve their safety-of-territory solver. In [118], Niu et. 
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al. further improve this safety-of-territory solver by studying more complex situations in 

Go, that is, Seki, or the dual-life of a group.   

While Mueller et. al. conducted a series of related research, other studies also 

should be mentioned. Chen and Chen performed a static analysis of the life-death 

problem in [54]. Fotland explained the static eye analyzer built into The Many Faces of 

Go in [53]. In [119], Lee extensively used various CI techniques to solve the life-death 

problem. An unsupervised learning method, more specifically, a two-layered Kohonen 

neural network (KNN), clusters similar life-death patterns and analyzes eye shapes to 

conclude the life-death of a group. To predict the life-death problem, Van der Wert et. al. 

trained feedforward neural networks with gradient descent with momentum and adaptive 

learning, as well as RPROP backpropagation from learning examples extracted from 

game records [120]. GoTools, developed by Thomas Wolf, undisputedly has been the 

strongest tsumego solver or life-death problem solver [121,122,123]. It incorporates 

many functionalities such as a table, rules, and a depth-first alpha beta search algorithm 

[115].  

Other CI techniques, such as evolutionary computing and the support vector 

machine (SVM), also are used in Go. Richards et. al. used symbiotic adaptive neuro-

evolution (SANE) to train a three-layer neural network [124]. Lubberts and Miikkulainen 

used a co-evolving architecture [148]. Churchill et. al attempted to combine soft methods, 

such as neural networks, and hard AI methods, such as the alpha-beta pruned minimax 

game tree search [125]. An SVM was used to detect the community structures or loosely 

connected stones [126]. 
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1.4. PARTICLE SWARM OPTIMIZATION BACKGROUND 

The goal of an optimization problem is to find the optima of the objective 

function, which represents the quality of each solution, with respect to given constraints. 

The optima can be either minima or the maxima of the objective function. Figure 1.4 

shows the various optimization methods according to Rui Mendes [150] modified for this 

dissertation.  

 
 
 

 

Figure 1.4. Various optimization methods. 
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Particle swarm optimization (PSO) is originally proposed by James Kennedy in 

1995 [146] as a simulation of social behavior, and was introduced as a tool to solve the 

global optimization problem. We employ PSO because of its simplicity and the ability to 

escape a local minimum. PSO is one of the population-based probabilistic meta-heuristic 

optimization methods. In the CI literature, PSO belongs to the swarm intelligence (SI) 

inspired by the study of swarm organisms such as a school of fish, flock of birds, and 

colony of ants. Our literature review reveals that no one has used PSO to train the neural 

network architecture we use for the computer Go research. 

Since PSO is a population-based algorithm, the number of whole population is 

set, say 20, and the location of each individual is updated according to equations 1 and 2. 

The subscript i  indexes each individual or particle. 
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 iii VXX 1                  (2) 

 

These equations represent vectors in the problem space. The velocity update 

equation equation (1) updates the velocity iV  of particle i ; the location update equation 

equation (2) renews the location iX  of particle i . The velocity update equation consists of 

3 parts: the momentum, the cognitive acceleration, and the social acceleration parts. 

Influence of each part to the current velocity is controlled by two memories iP , bestG  and 

three parameters w , 21 , cc .  This velocity is moving towards both the local best of the 

given particle and the global best positions of the whole population with certain inertia. 
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The first part of the velocity update equation, i.e. momentum part Vw  , 

determines the ratio of the previous velocity reflected to the current velocity where the 

ratio is determined by inertia constant w . This concept of inertia was not in the initial 

PSO equations. It was developed by Shi and Eberhart in 1998 [147] from the desire to 

reduce or even eliminate the importance of maxV  because the choice of maxV  seemed too 

problem specific and has no rule of thumb. 

The second and third parts are the cognitive acceleration term )(11 ii XPrandc 

, which reflects the particle’s own experience, and the social acceleration term

)(22 ibest XGrandc  , which forwards the population toward the best location found so 

far. These two terms are balanced by the acceleration constants 21 , cc . The cognitive term 

utilizes information on the best location of the particle in its history, i.e. the local best iP . 

On the other hand, the social term is governed by the global best bestG  , the best location 

of the entire population.  

The global best is the best of the local best. Therefore, we compare the fitness of 

the best of the local best to the fitness of the global best. If the current global best is 

worse, the global best is updated. 

 

1.5. DISSERTATION PROBLEM STATEMENT 

In this dissertation, the following four problems are tackled: 

1. How to learn a Go game tree autonomously under constraints of myopic scope 

and information exchange limited to the immediate neighbors when the elements are 

connected only vertically and horizontally (computer Go). 
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2. How to estimate the group size of elements under the same constraints as in the 

previous work (computer Go). 

3. How to innovate the traditional interface with a novel human-machine interface 

(Go robotics). 

4. How to deliver more packets in highly disrupted computer networks (computer 

networks).  

The above topics are related to the main theme as follows. 

1. A Go player decides the next move from the current board status, which is 

spatial information. To select the best possible move, the player must possess the ability 

to foresee a sequence of future board statuses when a sequence of moves is chosen. A 

game tree in Go is a collection of board statuses. Learning the game tree means learning 

about the spatial information that is used to select the best possible moves over time. 

2. An autonomous computing device perceives the system from the limited 

information about the space provided by the immediate neighbors. The device’s 

perception of the system changes over time. The goal of each device is to estimate the 

size of the group to which it belongs. 

3. The proposed human-machine interface is a system that perceives the current 

board status and places/removes a Go stone or stones on the Go board over time. In other 

words, actions must be taken based on the perceived spatial image over time. 

4. In order to route a packet to the destination, each node or router in a computer 

network perceives the network status and selects the best possible route (or routing 

scheme, in this case) over time. 
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1.6. TECHNICAL APPROACHES AND CONTRIBUTIONS 

1.6.1. Technical Approaches. According to Engelbrecht [1], CI is categorized 

into four paradigms: artificial neural networks (ANN), evolutionary computing (EC), 

swarm intelligence (SI), and fuzzy systems (FS). These four paradigms are classified 

further into sub-domains, which are depicted in Figure 1.5. On the other hand, artificial 

intelligence (AI) can be seen as a combination of several research disciplines, such as 

computer science, physiology, and philosophy [1]. The CI algorithms in Figure 1.5 also 

interact with machine learning, which is a category in AI. In other words, these CI 

algorithms also can be categorized as machine learning techniques. How an intelligent 

algorithm is grouped may depend on the scientist/engineer’s background. 

In this dissertation, two paradigms of CI techniques are used: ANN and SI. ANN 

has three major training principles and we use all of them: supervised learning, 

unsupervised learning, and reinforcement learning. The method used by the first 

experiment employs cellular simultaneous recurrent network (CSRN) trained with a 

variant of PSO called cellular PSO (CPSO). CSRN is a supervised learning neural 

network (SLNN). The proposed algorithm for the second experiment is called 

collectively cooperative learning (CCL) and it falls into the category of the supervised 

learning. The last experiment employs Q-learning, which is a reinforcement learning 

approach. 

On the other hand, the third experiment combines robotics, network 

programming, and image processing techniques. In order to reduce the development time 

of the prototype Go robot, we used an off-the-shelf robot arm and an image processing 

library.   
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Figure 1.5. Four paradigms of CI and sub-domains of those paradigms 
according to Engelbrecht’s classification of CI. 

 
 
 
 

1.6.2. Contributions. The first experiment represents the first training of a 

modified cellular simultaneous recurrent network (CSRN) trained with cellular particle 

swarm optimization (CPSO). Another contribution is the development of a 

comprehensive theoretical study of a 2x2 Go research platform with a certified 5 dan Go 

expert. The proposed architecture successfully trains a 2x2 game tree.  

The contribution of the second experiment is to develop a computational 

intelligence algorithm called collective cooperative learning (CCL). CCL learns the 

group size of Go stones on a Go board with zero knowledge by communicating only with 

the immediate neighbors. An analysis determines the lower bound of a design parameter 

that guarantees a solution.  

The contribution of the third experiment is that we are the first, to our knowledge, 

to contribute research on Go robots and to articulate the human-computer interface in the 

existing literature. Another contribution is the proposed unified system architecture 
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interfacing Go Text Protocol (GTP) [9], which is the de facto standard for open-source 

computer Go engines to interface with a Go GUI program.   

The last experiment tackles a disruption-tolerant routing problem for a network 

suffering from link disruption. Our contribution is to model this problem with MDP and 

to propose a solution to make the popular link state routing scheme more robust to link 

disruptions. The packet delivery rate has been improved under a range of link disruption 

levels. 

 

1.7. ORGANIZATION 

This dissertation is organized as follows. The four problems described in Section 

1.5 are presented in each chapter followed by conclusions in Section 3. The chapter titles 

of the four experiments are listed here for convenience: 

1. Modified Cellular Simultaneous Recurrent Networks with Cellular Particle 

Swarm Optimization (Section 2). 

2. Recursive and Nonrecursive Algorithms for the Group Size Counting Problem 

in Computer Go (Paper 1). 

3. Robotic Go: Exploring a Different Perspective on Human-Computer Interaction 

with the Game of Go (Paper 2). 

4. Reconfigurable Disruption Tolerant Routing via Reinforcement Learning 

(Paper 3). 
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2. MODIFIED CELLULAR SIMULTANEOUS RECURRENT NETWORKS 
WITH CELLULAR PARTICLE SWARM OPTIMIZATION 

2.1. INTRODUCTION 

The CSRN possesses the potential to outperform the popular MLP [135,136] in 

that it can solve the connectedness problem that the MLP architecture has yet to solve. 

On the other hand, the added complexity of the CSRN architecture is a two-edged sword 

in that training the network itself proves challenging. Along with this complexity, the 

inherent structure interconnecting adjacent cells further complicates the training process 

and may be a limiting factor in using CSRNs for new problems. Regardless of these 

complexities in both the architecture and training of the network, studying CSRNs to 

solve novel problems is an interesting, scholarly endeavor because of their potential to 

surpass the popular MLP. The CSRN was proposed by Werbos and Pang [128] to solve 

the maze navigation problem and has been improved by Ilin et. al. [130,131,132,133] and 

Wunsch, who proposed the closed solution for CSRNs in [129]. CSRNs have been 

applied to image processing [137,138,139] and power applications [140]. Iftekharuddin et. 

al. applied clustering to solve the maze problem in [141]. 

Computer Go is considered more than just an unsolved problem; it also serves as 

an excellent test bed for novel applications to practical problems because of its clear-cut 

objective and the vast amount of sub-problems that allow for tests of practicality. For the 

purpose of this study, using the full Go board size is inappropriate because CSRNs are at 

their infancy. Instead, the smallest meaningful board size of 2x2 is used with the hope 

that the CSRN’s operation can be analyzed in full. The 2x2 game tree is much more 

involved than expected. For example, even in cooperation with a Go expert, constructing 
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the game tree required weeks of work, including the time used to modify the full board 

rules for the 2x2 case. 

Various types of neural networks are applied to computer Go problems. Chan et. 

al. [86] and Zaman and Wunsch [87] used feed forward networks with temporal 

difference (TD) methods for position evaluation. Mayer [142] applied a similar approach 

to learn board representation. Cai and Wunsch used the heuristic dynamic programming 

(HDP) method [143], and evolutionary algorithms were used by Kendall et. al. [144] and 

Mayer and Maier [145]. Wu and Baldi [89] applied recurrent neural networks to learn the 

evaluation function, and they are the only researchers who the current authors found in 

reviews of the literature who have applied a recurrent neural network structure in 

computer Go. 

The authors make several contributions through this chapter. We are the first, to 

our knowledge, to use a CSRN to solve a problem in computer Go. We propose a CSRN 

trained with cellular PSO. We also developed an accurate and comprehensive 

mathematical foundation and game tree for the 2x2 board.  

This chapter is organized as follows. Section 2.2 describes the problem by 

providing an overview of Go, developing a mathematical foundation for the problem 

under investigation, and presenting the game tree of a 2x2 Go board. Sections 2.3 and 2.4 

propose the neural network architecture and training algorithm used to solve the problem, 

explaining CSRNs and cellular PSO as a training algorithm for CSRNs. The simulation 

results, conclusions and future research follow. 
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2.2. GAME OF GO 

2.2.1. The 2x2 Game Rules. Even if the norm for playing contemporary Go is to 

use a19x19 board for a regular game, several examples show that this norm can be 

broken for educational and historical purposes. 5x5, 6x6, 9x9, and 13x13 boards have 

been used for educational and research purposes. Historical records show that Go’s board 

size for typical games progressively enlarged from its original 9x9 size. An example of a 

larger board is the 25x25 board at the museum in the Department of Baduk Studies at 

Myongji University. The norm for a Go board can be broken not only for size, but also 

for shape. A non-square Go board with 361 play points is being exhibited at the Go Hall 

of Fame and Museum of Nihon Ki-in. 

What the above facts signify is that the board size may be changed to suit one’s 

purpose. For this study, a 2x2 Go board was chosen. Before discussing the 2x2 board, it 

is necessary to settle the white player’s compensation. Even if determining the accurate 

compensation for a white player is a prerequisite to properly evaluating a game, no 

comprehensive theoretical study has been conducted for this board size. This work may 

have been neglected because computer Go researchers rely on the Go literature for this 

kind of information, but the literature focuses on the 19x19 board. A 2x2 board looks 

trivial from a Go expert’s perspective, as well as for many computer Go researchers. 

However, it is non-trivial from a CSRN perspective. The regular board size is too large to 

perform a thorough analysis and must be scaled down to a level at which analysis is 

possible. No comprehensive study of the 2x2 board was found in the literature, so this 

tedious study had to be conducted as part of the current study in close cooperation with a 

Go expert. The results show that most of the rules remain identical. The tricky and 
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critical component is the compensation for white, which is zero according to Theorem 1 

in Appendix A. 

2.2.2. 2x2 Go Game Tree. A complete game tree of a 2x2 board for a starting 

move on the left bottom play point (Figure 2.1.c.1) is depicted in Figure 2.2. This figure 

is only one-fourth of the game tree when both players play randomly, and all the bottom 

states in the figure are recurring states that return to one of the states in the tree. This 

figure is presented to emphasize the fact that an accurate analysis of the 2x2 game tree is 

non-trivial. The remainder of the game tree is omitted because of space and time 

limitations. See Appendix B to view the actual game tree. 

 
 
 

(a) (b)

(c)

(d)

(e)

Type of a play point
vacant
occupied by black
occupied by white

Type of a liberty
for both
black’s liberty
white’s liberty

 

Figure 2.1. Sample 2x2 board status and graph notation.  
(a) 2x2 Go board, (b) G2 graph representation of (a), (c) representative board statuses 
(labeled 1 from the left). A representative board status can be rotated and flipped to 

match other possible board statues. The stone color can also be switched,  
(d) a graph representation of (c), (e) liberties of (c). 
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Figure 2.3. Selected game trees for optimal moves in territory rules.  

(a) both players play optimally, (b) black plays optimally and white plays randomly, 
(c) black plays randomly and white plays optimally. 

  



40 

switches from black to white and vice versa. One difference is that white’s pass results in 

a draw, but this is not white’s optimal move because white has a chance to win by 

continuing the game. The other difference is that the branches on the right bottom equal 

sign or rotation invariance in Figure 2.3.b is explicitly illustrated in Figure 2.3.c. Rotation 

invariance is a property of a board status that rotates and flips the status results in an 

identical end state. 

 

2.3. CELLULAR SIMULTANEOUS RECURRENT NETWORK 

2.3.1. Conventional Cellular Simultaneous Recurrent Network. A CSRN is a 

neural network architecture that consists of SRNs in the cellular structure. Each SRN or 

cell is interconnected with the neighboring cells. This internal structure provides a 

framework that allows SRNs in the system to share their outputs throughout the system. 

Figure 2.4 illustrates the general architecture of a CSRN system, and Figure 2.4.a shows 

the cellular architecture. Cells are connected vertically and horizontally. As illustrated in 

Figure 2.4.d, each cell has a neural network whose output is fed back to its input. The 

popular MLP is chosen as the neural network structure. The timing of the neural network 

output being sent out to the cell determines the cell’s overall structure. If the feedback is 

iterated only once, the cell is a recurrent network. Multiple iterations make the cell a 

simultaneous recurrent network. Eight inputs, excluding the bias, are presented to the 

neural network because the four neighboring cells each contribute a pair of data. The 

input flow from the neighboring cells is depicted in Figure 2.4.b. The raw input to a cell n 

is xn, and the cell’s output is yn. The center cell is labeled zero, and labeling continues 

clockwise from the top. Note that a pair (xn, yn) is an element of the system’s input and  
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output, too. Figure 2.4.b shows the input flows from neighboring cells, but the cell 

receiving the flows also passes a pair of its raw input and cell output to the neighboring 

cells. Figure 2.4.c shows that the center cell receives pairs of data from neighboring cells 

and sends its own pair of data to them. 

 
 
 

 

Figure 2.4. The CSRN structure.  
(a) The general cellular architecture of a CSRN system,  

(b) The input data from neighboring cells to a single cell,  
(c) The structure of a single cell with emphasis on the input-output flows,  
(d) The structure of a single cell from the neural network’s perspective. 
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Visualizing the data flow in 3D helps to clarify the overall data flow. Consider 

Figure 2.4.c and Figure 2.5 together in order to understand how a CSRN operates. In 

Figure 2.5, a batch of training input planes is provided to the system. The system is 

illustrated as a grid of cells connected vertically and horizontally. A matrix of inputs to 

called an input plane to emphasize the fact that the raw input data forms a layer in the 

entire training data set. Given the batch of input planes, the corresponding batch of output 

planes are given out at each epoch of the training process. In this figure, only a batch of 

output planes is presented for simplicity. With this training process in mind, turn again to 

Figure 2.4.c. Imagine that the raw input to the cell comes from the bottom, and the  

 
 
 

 

Figure 2.5. The big picture of the learning process over time. 
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neighboring bottom, and the neighboring cells pass their raw inputs and the current cell 

outputs to the side. This data exchange occurs at the cell level at each epoch. The neural 

network in Figure 2.4.d computes all the received data, iterates its output several times, 

and then outputs the last neural network input outside the cell, which is the cell output. 

This process occurs in all the cells of the system simultaneously, so the CSRN 

architecture is quite complex. 

2.3.2. Modified Cellular Simultaneous Recurrent Network. One problem 

under investigation is to learn the optimal moves in the 2x2 game tree. Therefore, the 

general CSRN architecture is reduced to a 2x2 cell architecture, as given in Figure 2.6.a. 

Each cell has two neighboring cells; thus, there are six neural network inputs, excluding 

the bias (Figure 2.6.b): the cell’s raw input x, the neighbors’ raw input xn1 and xn2, the 

cell’s recurrent output yi+1, and the neighbors’ feedback outputs yn1 and yn2. An index i is 

added to emphasize the internal loop within the cell. The conventional CSRN does not 

utilize the normalized input dimension reduction (NIDR) in Figure 2.6.b, and all six 

inputs are fed directly to the neural network. 

 
 
 

 

Figure 2.6. The proposed modified CSRN structure. 
(a,b) Proposed modified CSRN for the 2x2 Go board,  

(c) An error floor in the learning curve caused by the multi-valued function problem. 
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Applying the conventional CSRN to this problem fails to produce a solution. 

Rather, the learning curve hits an error floor, as illustrated in Figure 2.6.c. In other words, 

it does not converge to a target error, which is very small; rather, it converges to a much 

higher error than the target. An analysis of this phenomenon reveals that the conventional 

architecture suffers from the multi-valued function problem. A neural network is a 

function approximator. A function demonstrates one-to-one correspondence between the 

input and the output. The CSRN’s training data is a function in that an input plane is 

mapped to an output plane. In other words, there exists one-to-one correspondence 

between a batch of input planes and a batch of output planes. However, one-to-one 

correspondence between a batch of neural network inputs in a cell and a batch of outputs 

is impeded because of the CSRN’s internal structure. Some data exhibit one-to-many 

correspondence, which is a multi-valued function. A multi-valued function is not a 

function in a strict sense, so this name is a misnomer. Therefore, a neural network is 

prone to more errors than the samples with one-to-many correspondence. 

Two techniques are introduced to overcome this problem: ternary coding of the 

Go board’s representation and a normalized input dimension reduction. The former 

technique changes the numerical mapping of the Go board’s stones or symbols to a 

ternary number. A popular Go board representation is to map black, empty, and white 

stones to a combination of (-1,0,1). For example, black, empty, and white are mapped to 

(1,0,-1), while the mapping in this study is (2,1,0). Converting a board’s status to a 

ternary number enables the employment of other techniques used in the ternary world. 

This perspective change introduces the next. The normalized input dimension reduction 

converts a ternary number to a decimal number normalized to the range of [0,1]. This 



45 

technique reduces the complexity of the CSRN structure. Without this technique, a neural 

network in a cell receives seven inputs, including the bias; with the technique, it receives 

only three inputs, resulting in fewer synaptic weights. This savings is seen in the number 

of total cells, which is four in the current case because there are four cells in the CSRN. 

 

2.4. CELLULAR PARTICLE SWARM OPTIMIZATION 

The PSO algorithm should be modified to fit into the CSRN framework. A 

cellular PSO is proposed in Equations (3)-(8). It takes a divide-and-conquer approach to 

discover the desired weights for all the cells distributed throughout the topology. The 

total number of particles in the system Np is the sum of the number of particles in all 

cells. 
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where Np,c is the number of particles in cell c, and Nc is the total number of cells. The 

particles are allocated equally to the cells for simplicity. That is, 
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The domain size d of each PSO in all cells is equal to the number of weights Nw,c 

in the corresponding cell.  

 
C,  cNd cw         (5) 

 



46 

where c is the cell index, and C is the set of cells. In all the cells, each PSO is trained by 

Equations (6)-(8). An activation delta function δa is introduced in Equation (8). The cell 

is activated or awake when it needs to be trained; otherwise, it hibernates. 
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where xc,p and vc,p  are the location and the velocity of particle p in cell c; wc, cc,1, and cc,2 

are the design parameters; rand() is a uniform random variable distributed over [0,1]; and 

pbestc,p and gbestc are the particle best for particle p and the global best for all the 

particles in cell c, respectively. Equations (6) and (7) are the velocity update equations 

based on [147,148]. 

Hibernation may save a significant amount of computational resources when a 

cell reaches its target. However, the hibernating cell must awaken when a neighboring 

cell’s output changes. 

 

2.5. SIMULATION CONFIGURATION, RESULTS AND DISCUSSIONS 

2.5.1. Configuration. The modified CSRN trained with cellular PSO learns the 

optimal moves for black on a 2x2 Go board. Tables 2.1 and 2.2 summarize the simulation 

configurations. Managing the clocks needed for simulation, the internal and external 

clocks, is tricky. The internal clock is the time clock used to iterate the feedback output 
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within a cell. This clock is similar to the time stamp used in training conventional neural 

networks, such as MLP. While the internal clock exists at the cell level, the external clock 

exists at the system level. All the cells output and exchange pairs of data with neighbors 

in reference to the external clock. Conceptually, all the cells compute simultaneously, so 

their data exchange must be synchronized appropriately in order to emulate this 

simultaneous operation. The training data is carefully chosen. The current board status is 

an input plane to the CSRN, and the desired board status is the output plane. For black, a 

batch of training data is taken from Figure 2.3.b. The initial neural network weights 

follow a uniform distribution between [0,1]. 

 
 
 

Table 2.1. Simulation configurations for the CSRN. 

Parameters Values 

Number of cells Nc 4 

Data representation/data offset value Ternary/1.0 

Activation function (most layers/output layer) Tansig/modulo-3 

Tansig slope parameter/initial cell output value 1.0/1.0 

Number of neurons in hidden layer/output layer 7/1 

Number of weights Nw,c 56 

 
Table 2.2. Configuration for cellular PSO. 

Parameters Values 

Target error (system/cell) 0.0/0.0 

Maximum iterations for the outer/inner loop 100/5 

Particle size Np/Np,c 40/10 

Design parameters wc/cc,1/cc,2 0.20/2.0/2.0 

Range of xc,p / Initial value for vc,p [-100.0,100.0]/10-15 
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2.5.2. Performance Metric. A cell error cne , of cell c at time n is the overall error 

between the target cell output p
cn,T and the estimated cell output p

cn,T̂ for all the output 

planes. An absolute error is chosen because it is easier to assess the amount of cell errors 

than the mean squared error.  
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where p is an index for an output plane, and Np is the total number of output planes. The 

system error ne at time n is the sum of all cell errors for the system. That is, 
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2.5.3. Selected Result. Due to this chapter’s space limitations, only one of the 

simulation results is presented, which explains the CSRN’s properties well. Figure 2.7.a 

shows a successful training of black’s optimal game tree. The CSRN is trained so that the 

optimal game tree for black can be learned with a system error of zero. In Go, accuracy is 

important because a single mistake may lead to losing a game. Training a CSRN to 

achieve a system error of zero is the most challenging part of this process. Both the 

neural network structure and the PSO design parameters should match in order to achieve 

this accuracy. 

Figure 2.7.a presents the system-level training result. The cell-level training result 

is presented in Figure 2.7.b, which also shows two types of learning curves. The bigger 

learning curve is a cell error for the external loop, and the smaller one is for the loop 
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within a cell. The latter is presented to demonstrate the simultaneous part of the SRN, 

which facilitates learning. The first three samples in the former learning curve correspond 

to the samples at the internal clock settings 0, 5, and 10 of the latter curve. For example, 

Cell 1’s initial error is 8 in both learning curves. After five iterations within a cell 

(smaller curve), the cell’s error reduces to one, which is shown at no=1 in the bigger 

curve and at ni=5 in the smaller curve. The cell errors at no in Figure 2.7.b add up to the 

system error at no in Figure 2.7.a. 

 
 
 

 
Figure 2.7. Learning curves for the 2x2 CSRN 

(a) The system error with respect to the external loop no,  
(b) Cell errors for the external and internal loops no and ni, respectively. 
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2.6. CONCLUSIONS 

In this chapter, a thorough theoretical study of a 2x2 Go case was performed. 

Based on the outcome, a modified CSRN trained with cellular PSO that learns the 

optimal moves of the 2x2 game tree was proposed. The CSRN’s supervisory signal was 

constructed from the game tree. 

The conventional CSRN suffers from a multi-valued function problem. A neural 

network learns a function whose input and output lie in one-to-one correspondence. The 

CSRN architecture takes the neighboring cells’ output as a feedback input, along with 

raw input data. This structure converts the input and output blocks of a CSRN that 

exhibits one-to-one correspondence into one that exhibits one-to-many correspondence 

from the internal cell’s (or neural network’s) perspective. The term multi-valued function 

is a misnomer as it is not a function in a strict sense. 

The problem is overcome by introducing two techniques: ternary coding of the Go 

board representation and a normalized input dimension reduction. The former changes 

the numerical mapping of a Go board’s stone or symbol into a ternary number. One 

perspective change introduces the next. The normalized input dimension reduction 

converts a ternary number to a decimal number normalized to the range of [0,1]. This 

technique reduces the complexity of the CSRN structure. Without this technique, a neural 

network in a cell receives seven inputs, including the bias; with the technique, it receives 

only three inputs, resulting in fewer synaptic weights. This savings is reflected in the 

number of total cells, which is four in this case because there are four cells in the CSRN. 

The simulation results show that the optimal game tree of a 2x2 Go board is 

trained successfully with cellular PSO. Each cell’s internal loops facilitate learning the 
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training data, and the outer loop of the CSRN is synchronized at each epoch in order to 

feed cells’ outputs back to cells’ inputs at the next epoch. The number of total epochs 

required to finish the CSRN training varies because of the random nature in which PSO 

explores the problem space. 

 

2.7. FUTURE RESEARCH 

Even if the results presented in this chapter are thrilling, this work can be 

extended further. A number of future research directions include comparing the cellular 

PSO to other population-based training algorithms, such as the evolutionary algorithm, to 

implement this work in general purpose graphics processing units, and replacing the 

supervisory signal with a temporal difference signal in order to learn a larger board size. 
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PAPER 

1. RECURSIVE AND NON-RECURSIVE ALGORITHMS FOR THE GROUP 
SIZE COUNTING PROBLEM IN COMPUTER GO 

ABSTRACT 

Computer Go has been recognized as an unconquered challenge to the Artificial 

Intelligence and Computational Intelligence societies since 1997 when Garry Kasparov, 

the human Chess champion, was defeated by the IBM supercomputer Deep Blue. 

Computer Go is considered more than just an unsolved problem; it also serves as an 

excellent test bed for novel applications to practical problems because of its clear-cut 

objective and the vast amount of sub-problems that allow for tests of practicality. We 

propose novel recursive and non-recursive approaches to count the size of groups of 

connected stones on a Go board. The simple and elegant recursive approach always 

answers the correct group size. Inspired by the former’s tree traversal mechanism, the 

non-recursive approach guarantees to return the correct answers in an autonomous and 

scalable manner. 

 

1.1. INTRODUCTION 

Computer Go [2,8] is a field of study aiming to develop a computer intelligence 

that can generate a sequence of moves that successfully plays a game of Go. Go, also 

called Baduk in Korea and Weiqi in China, is a two-player board game of which the 

Western counterpart is Chess; it is as popular, or perhaps more popular, in East Asia as 

Chess is in the Western world and is gaining more popularity in other regions. Computer 

Go’s technical significance was rediscovered in the quest for a more complicated 

problem than Chess after the IBM supercomputer Deep Blue defeated the human Chess 
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Master Garry Kasparov in May 1997. It is far more complex than computer Chess; the 

game tree size of a 19x19 Go board is estimated to be between 10575 to 10620, while that 

of a Chess board is 10123 [7]. The implication is that computer Go cannot beat a human 

champion with the fastest computer available to date, making computer Go a novel test 

bed for computer intelligence. Currently, computer Go is considered one of the most 

challenging unsolved problems in the Artificial Intelligence and Computational 

Intelligence societies [3,6]. 

Due to the grand scale of the computer Go problem, it is divided into numerous 

sub-problems [5]. One of the sub-problems of interest in the current study is to count the 

size of connected stones or a group of stones. In other words, the target in this chapter is 

to develop an algorithm that can solve the problem in an autonomous and scalable 

manner. The answer to the problem provides essential information for judging the life 

and death of the group [10,13]. In general, the life and death of a group significantly 

impacts the entire game, of which the purpose is to gain more territories than the 

opponent. The game’s full rules [5] may confuse a reader without experience with the 

game, possibly concealing the game’s technical depth. Thus, only the relevant rules are 

covered in Section 1.2. 

This chapter proposes both recursive and non-recursive algorithms guaranteed to 

solve the group size counting problem. Theoretically, the non-recursive approach with 

minor tweaks works for wired networks in a mesh topology and a wireless sensor 

network with limited connectivity, but the proposed solution does not claim to solve these 

cases or to avoid the fallacy of over-generalization. 
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This chapter is organized as follows: Section 1.2 describes the group size 

counting problem in computer Go, and Section 1.3 explains the proposed algorithms. The 

following section discusses the simulation settings and results, respectively. Conclusions, 

acknowledgements and references conclude the chapter. 

 

1.2. GROUP SIZE COUNTING PROBLEM IN COMPUTER GO 

The group size counting problem in computer Go is a simpler sub-problem than 

the full computer Go problem, and its solution provides the essential information for 

determining the life-death of a group of stones. Figure 1.1 shows a snapshot of a match 

between two top professional Go players [1] used to describe the problem. Figure 1.1.b 

shows a fraction of the raw board status depicted in Figure 1.1.a. A popular board 

representation in computer Go is to assign -1 for white stones, 0 for empty intersections, 

and 1 for black stones, so Figure 1.1.c. provides such a data representation of Figure 

1.1.b. The target answer for Figure 1.1.b is depicted in Figure 1.1.d. Each square cross 

Flocation in Figure 1.1.e is a board segment of Figure 1.1.a centered around a location. For 

instance, the top left square cross F16M is a board segment centered around 16M and its 

adjacent locations (15M, 17M, 16L, 16N). 

The goal of the group size counting problem is to obtain the size of a group or 

connected stones of the same color. According to Go rules, adjacency is defined 

vertically and horizontally, not diagonally. Therefore, there are three groups of connected 

black stones and one group consisting of a single white stone in Figure 1.1.b. The former 

group includes the vertical straight line of three stones (left), the horizontal straight line 

of two stones (middle), and a single black stone (top right). The sign of the white stone in 
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Figure 1.1.c. and the group size in Figure 1.1.d. are negated to distinguish them from 

those of black. The final correct answer is the group sizes for the entire board, but Figure 

1.1.d. is shown here to explain the problem. 
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Figure 1.1. Group size counting problem example. 
(a) A snapshot of a Go game, (b) a fraction of (a), (c) data representation of (b),  

(d) the target answer or group size for (b),  
(e) Each square cross Flocation is a board segment of (a) centered around a location. 

 
 
 

Three reasons exist for tackling the group size counting problem. First, a Go 

board’s status forms a 2D grid world with vertices; it is a special case of a grid world that 

can be related to graph theory. The differences are: (1) a standard Go board is square with 

a size of 5, 6, 9, 13, or 19; (2) only two different types of stones are used in Go, so black 

and white stones are placed alternately on Go board intersections; (3) the maximum 

number of edges for a vertex is limited to four in Go. The second reason is historical 

because the property of the group size counting problem was discovered while 
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performing research to combine cellular simultaneous recurrent networks [4,11,12] with 

computer Go. Lastly, it is convenient to test unexpected shapes formed during game play. 

 

1.3. THE PROPOSED RECURSIVE AND NON-RECURSIVE ALGORITHMS 

Both recursive and non-recursive solutions for the group size counting problem 

are proposed in this study. The perspective of the former is that of an arbiter overlooking 

a Go board, as given in Figure 1.1.a. In contrast, the visibility of the latter is limited 

locally to the immediate neighbors, as given in Figure 1.1.e. 

1.3.1. The Recursive Approach. The proposed recursive algorithm counts the 

group size like a human, and this mechanism is implemented elegantly with function 

recursion. The idea is to traverse a board as a human moves his eyes and counts the group 

size. Assume one starts from the top left corner in Figure 1.2.a.; the top row is traversed 

quickly because no stone is placed. The attention, or one’s eyes, stops on the black stone 

marked with the square. The attention then moves down to the black stone marked with 

the triangle, then back to the stone with the square, and then on to the black stone marked 

with the circle. As the human’s attention travels from stone to stone, the group size is 

counted in the back of one’s mind. Take as another example the group with nine white 

stones. For this group, the attention moves along the path 

“1→2→3→2→4→5→6→7→8→9,” where each stone’s number is indicated in Figure 

1.2.a. Notice that stone 2 is visited twice. It should not be counted on the second visit, but 

returning to stone 2 retains the forward path of attention. In this manner, a human can 

count the group of nine white stones. This process is called the counting phase. 
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On the other hand, each element of the estimated group size matrix G in Figure 

1.2.c knows the group size of the corresponding location. After the counting phase, the 

estimated group size g, or g=9 in this example, is delivered to all stones in the group. The 

attention path traces back to Stone 1. The backward path is “9→8→7→6→5→4→2→3 

→2→1”. This process is called the group size propagation phase or propagation phase 

for short. 

 
 
 

 

Figure 1.2. An example of the data structure for the proposed recursive scheme. 
(a) A raw board status, (b) Board status matrix B, (c) Estimated group size matrix G, 

(d) Dummy status matrix D, (e) Visit mark matrix V. 
 
 
 

 

Algorithm 1.1 is the pseudocode of the proposed scheme. The current estimate of 

the group size g at location (x’,y’) is incremented by the player color index p (line 2). The 

visit is marked to avoid repeated counting (line 3). One must look around at the neighbors 

(lines 4-7) to recursively count the group size only if the consanguinity visit test (line 1) 

is satisfied. The consanguinity visit test checks if the neighbor is from the same 

kind/blood and, if so, whether or not it was visited earlier. 

Notice that both black (p=1) and white (p=-1) are counted by a single equation 

(line 2), and child functions are spawned recursively (lines 4-7). Whether or not a child 
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function spawns its descendants depends on the consanguinity visit test. This solution is 

gracefully simple because the genealogy of a function is automatically managed by stack. 

Also note that the algorithm belongs to the depth-first search algorithm category [9]. 

 
 
 

Algorithm 1.1. The proposed recursive algorithm. 

 
 
 

1.3.2. The Proposed Non-recursive Approach with Cellular Structure. 

Cellular structure and the concept of baton passing play key roles in the proposed non-

recursive scheme. The cellular architecture of the system is depicted in Figure 1.3.a. The 

system, in this example, consists of 361 cells interconnected only vertically and 

horizontally according to the adjacency definition in Go. Each (square-shaped) cell is an 

autonomous processing unit (APU) mounted with the proposed non-recursive algorithm. 

Therefore, all the cells can process the input simultaneously at each time clock.  

Figure 1.3.b. illustrates the cell’s structure. A cell exchanges information with the 

neighboring cells in the four cardinal directions, i.e., CTOP, CBOTTOM, CRIGHT, CLEFT, 

limiting the visibility and communication range of a cell accordingly. When an input is 

given to a cell, that cell communicates with the neighboring cells and then outputs the 
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computed value. As the input to the system is a matrix, it is computed in parallel with all 

the other cells in the system. In essence, a batch of system input is mapped to cells in the 

system at n=1. The system learns about the group size from zero knowledge and outputs 

a batch of estimated group size at n=Nend. In this figure, it is assumed that the system 

learns about a 19x19 Go board’s status. The system input is a 19x19 board status matrix 

B; hence, the cellular architecture is 19x19, as is the system output. 

 
 
 

 

Figure 1.3. System architecture and macroscopic view of its operation. 
(a) The cellular system architecture, (b) The structure of a single cell. 

 
 
 
 

The baton-passing concept should be explained first to clarify the counting and 

propagation phases (Phases 2 and 3) of the non-recursive algorithm. The concept is 

explained best with an analogy. In a team of relay runners, only one runner with a baton 

runs for the team even if all the team members have the ability to run. When n teams are 
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in a stadium, n runners with batons are running, and the remainders are resting. The baton 

is passed to another runner in order to change the turn. This concept is borrowed to 

explain passing control from cell to cell in the same group. All the cells in a group except 

for the cell with the baton are hibernating. Only one cell per group is activated. A passer 

who passes a baton enters hibernation as soon as the baton is passed to a receiver who 

receives the baton. Obviously, the receiver is activated as soon as the baton is passed. It 

should be stressed that the system activates n cells when n groups exist in the input board 

status. 

Two states are defined: the non-steady-state (NSS) and the steady state (SS). SS 

means that the leader (root cell) of a group is decided. In SS, only one cell per group is 

active. Conversely, all the cells are awake in NSS. In other words, parallel processing 

occurs blindly in NSS but in a controlled manner through baton passing in SS. In this 

study’s implementation, processing block 1 in Figure 1.3.b. processes the root cell 

discovery phase (Phase 1) during NSS; processing block 2 is responsible for the phases 

(Phases 2 and 3) occurring during SS. A cell manager judges the current phase and 

selects the appropriate processing block. It not only allocates tasks to the processing 

blocks, but also controls the information flow. This information includes a cell’s input 

and output, the baton, the current estimate of the root cell and group size exchanged with 

neighbors, and the decision regarding whether or not to release the cell output. Each 

phase has a purpose that can be omitted only if the phase is unnecessary. 

The three phases are explained here in further detail. The goal of Phase 1 is to 

discover a group’s root cell because of the differences between the recursive and non-

recursive solutions. Recursive solutions know where to start (the root node) by iteratively 
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assigning a location on a board; in contrast, non-recursive solutions require that a group 

of cells agree on where to start. The leader of a group is called a root cell because a root 

cell corresponds to the root node in the tree constructed by the recursive algorithm. A cell 

exchanges its own estimate of the root cell (ERC), initialized to its cell index, with 

neighbors of the same kind or color. If this cell sees a smaller ERC than the current 

estimate within the acceptable scope (the cell’s neighbors and the cell itself), it updates 

the current estimate to the smallest. This procedure spreads the smallest cell index to the 

entire group, as when water is poured at the entry point of a dried canal and spreads along 

the canal’s waterway. Using the largest ERC works the same way but with a minor tweak. 

Once a cell is sure that all the cells in the group share the same ERC, it switches its 

internal state from NSS to SS. In steady state, all cells within the group share the same 

ERC. In other words, different groups can be identified by their ERC. 

The idea behind Phases 2 and 3 is similar to the counting and propagation phases 

of the recursive solution, respectively. However, the implementation differs because the 

tree traversal mechanism in the recursive solution must be performed autonomously. In 

Phase 2, the estimated group size is incremented only when the consanguinity visit test is 

satisfied. In some shapes, this is not too complicated; all the cells in the same group may 

have the correct group size at the end of Phase 2. The root cell always has the correct 

group size as long as the cell traversal mechanism does not terminate prematurely. Phase 

3 ensures that the correct answer is shared with all the group members via the cell 

traversal mechanism identical to that in Phase 2. 
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1.4. SIMULATIONS AND DISCUSSIONS 

Both recursive and non-recursive schemes are tested on various Go board sizes, 

returning the correct answers for all possible configurations on 2x2 through 6x6 boards. 

For 13x13 and 19x19 boards, thirty game records are used to verify the correctness of the 

algorithms. The reason that all possible board configurations are not tested on 13x13 and 

19x19 boards is two-fold. First, the proposed algorithms scale well for 13x13 and 19x19 

boards because the logic regarding how to count the group size remains the same even for 

larger board sizes. Secondly, it is impossible to do so because of Go’s large branching 

factor [2,8].  

As an example, Figure 1.4 shows an input of a 19x19 Go board and the 

corresponding output, or the estimated board size. The proposed recursive algorithm 

correctly counts all the groups on the Go board; the proposed non-recursive approach 

learns the correct group sizes for all groups in an unsupervised manner. The non-

recursive solution is correct only if the design parameter excess waiting time (EWT) ε is 

larger than the lower bound of guaranteed excess waiting time (GEWT) εg.  

 

g 
      (1) 

   
Each cell internally counts its own waiting time and moves to the steady state 

when the waiting time exceeds the EWT. This parameter is introduced as a measure by 

which to ensure that all the cells learn the root cell correctly. 

Figure 1.5 shows the relationship between the board size b and the EWT for fully 

connected boards. In other words, all the intersections on a board are occupied by the 

same color stones. The solid line with asterisks is GEWT εg. Note that EWT ε above this 
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line always results in the correct group size; ε below it does not always lead to the correct 

answer. Carefully chosen, the correctness and the execution time are tradeoffs. 
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Figure 1.4. An example of a 19x19 Go game. 
(a) The board status matrix B for Figure 1.1.a. as an input for both proposed schemes,  

(b) The estimated board size matrix G for both schemes. 
 
 
 
 

An equation to choose ε within the given boundary is suggested in Equations (2) 

and (3), shown as dashed lines in Figure 1.5. The suggested Equation (2) is simple 

because it is in a quadratic form. If EWT ε is selected according to these equations, the 

chosen ε is close enough to, but larger than, GEWT, which guarantees a correct counting 

of the board’s size. The lines with asterisks in Figure 1.5 illustrate GEWT with respect to 

a board size b. GEWT is determined experimentally.  
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Figure 1.5. Board size vs. the excess waiting time ε in linear and log scale. 
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1.5. CONCLUSIONS 

The proposed recursive and non-recursive approaches for the group size counting 

problem are successfully developed and tested. The recursive scheme always returns the 

correct answer to the given inputs. The non-recursive scheme gives the correct answer 

when the design parameter excess waiting time   is larger than the guaranteed excess 
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waiting time g . Various sizes of Go boards are used, and both of the proposed schemes 

scale well and work for all the tested sizes. 
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2. ROBOTIC GO: EXPLORING A DIFFERENT PERSPECTIVE ON HUMAN-
COMPUTER INTERACTION WITH THE GAME OF GO 

ABSTRACT 

The advent of computers and the World Wide Web diversified the way in which 

the game of Go is played. While traditional human-to-human play still remains an 

important form of game play, amateur players, along with some professional players, 

have shifted the play domain from “off-line” club houses to “on-line” Go servers. 

Computer Go is an important field of study to develop a software to play Go or a Go 

engine. In addition to human-to-human play, a Go engine or computer intelligence to 

play Go adds another axis to play configuration: human-to-computer play and computer-

to-computer play. These revolutions in the game of Go happened in an extremely short 

period of time compared to the history of the game, which is more than 4,000 years. We 

summarize this unavoidable change for the first time in the literature, to our knowledge, 

and propose a novel way to interact with the current technological advances. We present 

the new Human-Machine-Computer-Network Interface concept and our implementation 

of the machine interface with a robot arm.  This Lynxmotion robotic arm named 

Cheonsoo-I successfully places stones on a board under the proposed architecture.  

 

2.1. INTRODUCTION 

The entertainment industry is an established market, and the entertainment robot 

is at its dawn and growing quickly. The day will come when robots play an inevitably 

important role in the entertainment industry. However, only about two decades have 

passed since the traditional way of playing a board game face-to-face has been 
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diversified. The advent of computers and the World Wide Web (WWW) revolutionized 

the conventional human-to-human player pattern. 

The game of Go [1] is a two-player game especially popular in East Asia and is 

gaining more popularity in other regions. The game is called Baduk in South Korea and 

Weiqi in China; its history spans more than 4,000 years. The popularity of Go in the East 

exceeds or is comparable to that of Chess in the West. In the meantime, the 

Artificial/Computational Intelligence society has been paying increasingly more attention 

to Go. Now,  computer Go [2, 3] is considered to be a new, unconquered challenge in 

these fields similar to when IBM's computer Chess program Deep Blue defeated human 

Chess master Garry Kasparov in 1997. 

While Go has received a great deal of attention, an extensive literature search 

reveals no paper publications about Go robotics. Therefore, the literature survey should 

be stated in the context of entertainment robotics. Dautenhahn et. al. in [4] provide a 

solution to an intellectual question regarding what constitutes a robot companion. Their 

survey results show that a majority of people favor the idea of a robot companion. The 

current work was performed based on the hypothesis of a favored robot companion. In 

[5], Goodrich and Schultz review human-robot interaction and discuss it as a growing 

field of research and application requiring interdisciplinary understanding. They explore 

human-computer interaction, artificial intelligence and cybernetics as important fields of 

study. The experiences of the current authors support their view on the multi-disciplinary 

nature of human-robot interaction. While unique challenges exist in Go robotics, one of 

the technical challenges for the authors was gathering knowledge and experience across 

multiple fields of study. That is, a background regarding computer Go, socket 
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programming, image processing, and robotics was prerequisite. Very few papers exist in 

the literature about board game robots. They mostly are limited to Chess-playing robots 

[6,7,8], probably because of the game’s popularity.  

The authors make several contributions through this chapter. The first and most 

important is that they are the first, to their knowledge, to contribute research on Go robots 

and to articulate the human-computer interface in the existing literature. Another 

contribution is the proposed architecture interfacing Go Text Protocol (GTP) [9]. GTP is 

the de facto standard for open-source computer Go engines to interface with a Go GUI 

program that displays a Go board and stones.   

This chapter is organized as follows. Section 2.2 overviews Go and computer Go. 

Section 2.3 presents the high-level view of the human-computer-network interface for 

Go, and then the architecture is proposed in Section 2.4. Section 2.5 summarizes the 

current study’s implementation of a Go robot based on the proposed architecture. Section 

2.6 concludes the chapter, and the following sections present acknowledgments and 

references.  

 

2.2. GAME OF GO AND GO SOFTWARE 

2.2.1. Game of Go: Basic Game Rules. The basic rules of Go are simple. Players 

place stones to capture territories, which are intersections that remain empty at the end of 

the game. Figure 2.1 shows two top professional players discussing the territories on the 

board. The placed stones form a group with adjacent stones, and they remain on the board 

unless they are captured. Adjacency is defined only in parallel or vertically along the 

lines, not diagonally. In Figure 2.2, the stones on the top row form groups. On the right 
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corner, eleven stones construct a group. Conversely, none of the stones on the second row 

are grouped because all of them are located diagonally. 

 
 
 

 

Figure 2.1. Final at the 27th KBS Baduk-wangJeon (Battle of the Baduk King), 
Changho Lee vs. Sedol Lee, Mar. 16, 2009, South Korea [14]. 

 

 

Figure 2.2. Artificially placed stones to explain adjacency (top)  
and liberty (bottom) concepts. 

 
 
 
 

A group of stones (including a group of one stone) is captured when the last 

liberty of a group is removed, i.e., surrounded fully by the opponent's stones. A liberty is 
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defined as an empty adjacent intersection of an occupied stone position. On the bottom 

left of Figure 2.2, a liberty is marked with a square or a triangle. A triangle is used to 

emphasize that the corresponding liberty is from an occupied stone located either 

vertically or in parallel, but not diagonally. The black stones on the bottom right should 

be removed as captured stones because all the liberties are taken by the opponent, or 

white stones. Another basic rule is the Ko rule to avoid an infinite loop of recurring board 

status. One cannot place a stone that causes the board’s status from the previous play to 

be repeated. 

2.2.2. Categories of Go Software. The term Go software [10] is so polysemous 

that the accurate meaning should be clarified before further discussion. Firstly, computer 

Go is a field of study that aims to create a computer program that plays Go. Its ultimate 

goal to date is to defeat the human champion. Such a program is referred to as a Go 

engine, computer Go program, or computer Go intelligence. Some famous Go engines 

are The Many Faces of Go, MoGo, GNU Go, Silver Star, and Fuego. 

Other categories of Go software of interest are the Go client program and the Go 

editing program. The Go client program connects a Go server with a pool of Go players. 

It follows the client-server model and allows one player to play against another from the 

pool, as illustrated in Figure 2.3. The Go editing program, more specifically the Go GUI 

(Graphic User Interface) program, provides a GUI that displays the board’s status. One 

can also store and edit game records with it. For example, Figure 2.2 shows a screen 

capture of the editing program GoGui. Typically, a well-designed Go client also provides 

the editing feature. 
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Figure 2.3. Go client program: (a) the client-server concept that overcomes spatial 
constraints to connect Go players around the world, (b) list of connected players at 

Cyberoro, a  server recognized by the Korea Baduk Association. 
 
 
 
 

Here, two new terminologies are defined: Go Interface Software (GIS) and Go 

Interface Protocol (GIP). GIS refers to a computer program that serves as a front end to a 

human player. For example, both the Go client program and editing program are GIS 

with different features. GIP is a protocol used by GIS to communicate with a Go Engine. 

GIP sets a group of standard commands/procedures so that GIS can exchange information 

about game plays with a Go engine. The de facto standards are the Go Modem Protocol 

(GMP) and the newer GTP. 
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2.3. BIG PICTURE: PLAYER CONFIGURATIONS AND THE INTERFACE 
ISSUES 

GIS plays a central role in interconnecting human and computer players over the 

network. The interface issues can be best explained with block diagrams. Figure 2.5 

summarizes the existing player configurations and the corresponding interface issues. 

Additionally, Figure 2.4 illustrates the unified block diagram that explains how humans, 

computers, and networks interconnect. Note that both figures are coherent; Figure 2.4 

unifies the existing structures in Figure 2.5. 

In general, a human player can choose to play against another human player or a 

computer player (Go Engine); the opponent’s location can be local or global. A global 

opponent is one who is located across the network. Given that the opponent is chosen to 

be a local human player, the interface between them can be a traditional board and stones, 

represented in Figure 2.5.a, or a computer, represented in Figure 2.5.b. Typical input and 

output devices for the latter are a mouse and computer monitor. 

 
 
 

 

Figure 2.4. Block diagram of unified structure for human–computer-network interface. 
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Figure 2.5. Player configurations and the corresponding interface issues: 
(a) HHP (Human-to-Human Player) with HTI (Human-Traditional equipment Interface), 
(b) HHP with HCI (Human-Computer Interface), (c) HCP (Human-to-Computer Player) 
with HCI-CHI (Computer-Human Interface), (d) CCP (Computer-to-Computer Player), 
(e) HHP/N (HHP over the Network) with HCNI (Human-Computer-Network Interface)-
HCNI, abbreviated as HCNI2, (f) CCP/N (CCP over the Network) with CNI (Computer-
Network Interface)-CNI, abbreviated as CNI2, (g) HCP/N (HCP over the Network) with 
HCNI-CNI. The notation is (Player configuration, Interface of a player [left] – Interface 
of a player [right]). If interfaces for both players are identical, a square abbreviates the 

notation, e.g., HCI2 instead of HCI-HCI. 
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Human-human physical interaction with a board and stones will be discussed 

further in the following section. Another popular configuration is to play against other 

human players over the network, denoted as (HHP/N, HCNI2). Typically, the counterpart 

computer is a Go server, so GIS serves as a Go client program. In a Go program, an 

Internet socket serves as the universal gateway to the network interface, as well. 

The structure of (HCP, HCI-CHI) evolved from the monolithic structure in [11], 

in which GIS and the Go engine are not modularized. While some programs still maintain 

the monolithic structure, it is recommended that GIS and Go engine be modularized 

separately because there is a de facto standard protocol to communicate between them. 

Another HCP configuration is depicted in Figure 2.5.g, (HCP/N, HCNI-CNI). This is a 

setting to play against a global computer player. On the other hand, CCP (Computer-to-

Computer Player) is becoming more important as the development of a strong Go engine 

becomes an important research topic. Figures 2.5.d and 2.5.f present the two existing 

settings. The former is a local test that sets matches between two Go engines. A tool such 

as twogtp that interfaces GTPs of two Go engines corresponds to GIS. The latter is the 

structure for a global test to a computer Go server (CGOS), which automatically 

organizes matches between Go engines. CGOS mandates using a custom client program 

and implementing GTP as the GIP. 

In summary, Figure 2.4 and Figure 2.5 are tabulated in Table 2.1 and Table 2.2, 

respectively. The former summarizes the existing interface issues under different player 

configurations, and the latter provides a framework to unify Figure. All the player 

configurations and interfaces are consolidated nicely in Figure. Go Interface Software 

selects the input among the Go engine, network interface, and input/output devices. 
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Table 2.1. Summary of play configuration and interfaces. 

 Human Computer 

Human 
(HHP,  HTI2), 
(HHP,  HCI2) 

(HHP/N,  HCNI2) 

(HCP,  HCI-CHI) 
(HCP/N, HCNI-CNI) 

Computer Reciprocal to HCP 
CCP 

(CCP/N,  CNI2) 

 
Table 2.2. GIS's counterpart block for different opponents. 

 
Player 

Human Computer 

Local Input/Output Devices Local Go Engine 

Global Network Interface Network Interface 

 
 
 

 

2.4. PROPOSED ARCHITECTURE FOR HUMAN-MACHINE-COMPUTER 
INTERFACE 

2.4.1. Dilemma of a Contemporary Player: Traditional Board and Stones or 

Online Go Server? Contemporary players suffer from a dilemma regarding how best to 

enjoy a Go game. One can choose HHP or HHP/N. Choosing between a human or 

computer opponent currently is not a dilemma because the computer is much weaker than 

a human. An intermediate player can easily defeat, generally speaking, most Go engines 

available on Go servers. 

A unique feature of this game is that the sound of placing a stone plays an 

important role in the enjoyment of Go. A beginner learns how to hold a stone properly in 

order to make a pleasant sound when it is placed on the board. Figure 2.6.a shows the 

proper technique for holding a stone between the index and middle fingers. The stone 

should be smashed down by the middle finger. The impact of the sound is considered to 
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reflect the player's level and experience. Figure 2.6.b shows a world top-level 

professional, Sedol Lee (9 Dan), placing a stone with curvy fingers and wrist to magnify 

the stone placement sound. This small gesture reflects his experience and skill in this 

game. 

The dilemma occurs because of interface issues. One advantage of HHP is the 

stone placement sound and the physical feel of the stone, which increase the pleasure of 

playing Go. The disadvantage is the limited range of opponents caused by space-time 

constraints. On the other hand, players on the HHP/N setting typically use a mouse and 

computer monitor as the input/output devices. Its obvious advantage is a large pool of 

opponents that overcome the space-time constraints of HHP. The drawback is the 

absence of the pleasant tactile and auditory sensations. Most players prefer (HHP, HTI2) 

over (HHP, HCI2) due to the unstimulating nature of a mouse and computer monitor. 

 
 
 

(a)

(b)

 

Figure 2.6. Stone placement. 
(a) proper way to hold a stone [15],  

(b) Sedol Lee’s stone placement exposing his experience in the game. 
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2.4.2. Playing on a Go Server Inevitably Decays Amateur Club Houses. A 

club house, which serves as a pool of players, is a part of Go culture. As its domain is 

shifted online, the amateur club house culture decays. A traditional club house 

compensates somewhat for the space-time constraints of HHP. It is referred to as kiwon 

in Korean, ki-in in Japanese, and qiyuan in Chinese, which also may refer to a nationwide 

association. National associations such as HangukKiwon (Korea Baduk Association), 

Nihon Ki-in (Japan Go Association), and ZhongguoQiyuan (Chinese Weiqi Association) 

operate club houses for professional players and supporting organizations. 

In the arena of amateurs, the club house culture is declining. The popularity of Go 

servers directly impacts the industry. For example, once-popular club houses in South 

Korea are disappearing. Playing Go online is now an unavoidable social phenomenon. 

2.4.3. Proposed Architecture to Solve a Go Player’s Dilemma. Figure 2.7 

depicts the proposed architecture to solve a Go player's dilemma of choosing between 

traditional equipment and a Go server. The key idea is to use a robot or machine as a 

frontend to play a game for the opponent. Two additional blocks are added to the  

 
 
 

 

Figure 2.7. The proposed Human-Machine-Computer-Network Interface architecture. 
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structure shown in Figure 2.4 to create the structure shown in Figure 2.7. The traditional 

equipment consisting of a board and stones is placed between the human user on the left 

and the machine. Figure 2.8 details the unified structure in Figure 2.7, illustrating the 

possible player configurations and the corresponding interface issues. They all 

correspond nicely to the existing structures explained in Figure 2.7. 

 

2.5. IMPLEMENTATION OF A GO ROBOT: CHEONSOO-I 

The implementation of a Go robot in this study successfully places stones on the 

custom-made 9x9 board. The stones have a diameter of 19mm and are 6.5mm thick. The 

computer’s interaction with the physical board is separated into two independent 

functions: identifying where the pieces are located on the board and when the human 

player has made a move, and manipulating stones during the robot’s turn. The first task is 

passive and is accomplished by using a standard webcam, Logitech QuickCam for 

Notebooks, positioned above the board as shown in Figure 2.9.b. The images are 

processed with Roborealm software, RoboRealm v.1.8.22.1 [11], in order to determine 

both the position of the playing board in the image and which intersections contain 

stones. The second task is accomplished using the Lynxmotion robotic arm, Lynx 6 

Robotic Arm Combo Kit for PC [12], with a modified gripper attachment to move stones. 

2.5.1. Vision System and Image Processing. Roborealm is used to sample and 

process images from the webcam in order to determine the board’s state. Red markers 

located at the corners of the board are used to crop and transform the image so that the 

board’s intersections occur at known locations. Then, the image is processed using basic 

threshold and blob filtering tools, as shown in Figure 2.10, to isolate each stone. After the 

image is filtered, each blob’s center of gravity is compared with the intersection locations  
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Figure 2.8. Player configurations and interface issues. 
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and is marked with the closest intersection. If the stone is not within the area of the 

playing board, it is marked as being off the board, and its coordinates are stored. If 

motion is detected in the images (by comparing several consecutive frames), the image 

processing sequence is suspended until the image stabilizes. The board’s state then can be 

compared to the state held in the memory to determine if the human player has made a 

move. 

 

 

 

 

Figure 2.9. Cheonsoo-I. 
 (a) Ideal model of robotic arm,  

(b) Hardware implementation of the machine input/output interface. 

 

(a) (b)

Side view

Top view
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Figure 2.10. Example of an image processing sequence. 
 

2.5.2. Stone Manipulation with Robotic Arm. The Lynxmotion robotic arm has 

six degrees of freedom and is controlled by the Roborealm software through the 

Lynxmotion SSC-32 servo controller board. If the robotic arm is modeled as an ideal 

mechanism, as represented in Figure 2.9.a, the Cartesian coordinates of the “wrist,” along 

with the angle of the hand from a vertical position, can be transformed into the necessary 

angles for each servo using the following equations: 
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414

 
     (5) 

 
In order to compensate for the non-ideal characteristics of the actual arm caused 

by backlash in the servo gears and gravity-induced sag, the Cartesian coordinate input 

necessary for each intersection was found manually. Roborealm accepts input specifying 

the board positions at which a stone should be placed, and the necessary coordinates are 

looked up and used to calculate the servo angles. 

The stones used for playing Go are difficult for a two fingered machine to 

manipulate due to their rounded shape, smooth surface and low profile. The standard 

rubber tips of the gripper mechanism were not able to pick up the stones reliably. 

Through experimentation, a successful design was achieved through a wire attachment to 

the tips of the gripper mechanism. 

Figure 2.11 shows the configurations that were tested during the process of 

designing the modified tips. The original robotic grippers with rubber tips, shown in 

Figure 2.11.a, were not able to pick up the stones due to the stones’ low profile. When the 

rubber tips were removed, as shown in Figure 2.11.b, the stones could be picked up; 

however, a very slight error in positioning the tips would cause the stone to slide out from 

between the grippers, which could catastrophically wreck the arrangement of the stones 

while playing an actual game. Figure 2.11.c shows a four-pronged wire attachment to the 

grippers that proved somewhat successful, but it still required fairly precise positioning. 

The last design, shown in Figure 2.11.d, proved to be successful in consistently picking 

up the stones, even under positioning errors of up to one quarter of the distance between 

grid intersections. 
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Figure 2.11. Gripper tips for Cheonsoo-I. 
(a) unmodified with standard rubber tips, 

(b) unmodified without rubber tips, 
(c) four-pronged wire attachment, 

(d) final design. 
 

2.6. CONCLUSIONS 

This chapter presented two major contributions. First, it introduced a unified 

architecture that explains the existing player configurations and interface issues. 

Secondly and more importantly, it proposed a unified Human-Machine-Computer-

Network Interface implemented with a Lynxmotion robot arm. 

Regarding the first contribution, the existing player configurations and interface 

issues were summarized, and a unified structure was introduced to explain the current 

settings. In this process, two new terminologies were defined: Go Interface Software and 

Go Interface Protocol. The former refers to any software that interfaces with the existing 

components. For example, Go software, such as the Go client program, Go editing 

program, and twogtp, fall nicely into the category of Go Interface Software. The latter, 

Go Interface Protocol, is defined as a protocol used by Go Interface Software to 

communicate with a Go engine. It is a group of standard commands/procedures that 



85 

allows Go Interface Software to exchange information about game plays with a Go 

engine, and the current de facto standard is Go Text Protocol.  

The second contribution can be reinterpreted as a solution to “a Go player’s 

dilemma.” This dilemma has existed since a computer was first used to play a Go game. 

Modern players must choose between the pleasantness of the traditional human interface, 

i.e., a Go board and stones, and ease of access to a pool of other Go players or a Go 

server by using a computer’s “unstimulating” input/output devices. The proposed 

Human-Machine-Computer-Network interface concept, along with a “Go-playing robot,” 

addresses this issue. 

The proposed prototype robot arm, Cheonsoo-I, successfully places stones on a 

9x9 board. The implementation requires a multi-disciplinary background in computer Go, 

socket programming, image processing, and robotics, as well as an extensive amount of 

time to experiment with the proper shape of a robot arm’s tip to stably pick up and place 

stones of slightly varied shapes.  
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3. RECONFIGURABLE DISRUPTION TOLERANT ROUTING VIA 
REINFORCEMENT LEARNING 

ABSTRACT 

This paper shows packet delivery rate can be improved by adopting learning-

based hybrid routing strategies when a wired network suffers from severe link disruption. 

The dynamics of the link disruptions complicate the routing problem; successful and 

stable routing operations of conventional routing approaches are hindered as the level of 

disruption increases. The target is to develop a robust and efficient routing approach in a 

single structure. A robust routing approach means a packet should be delivered to a 

destination even under severe disruptions. Efficient routing should deliver a packet with 

the shortest path at no disruption. These goals should be achieved with the maximum 

utilization of preexisting network components and with the minimal human intervention 

once installed. Therefore, we chose a popular conventional routing scheme, Link State, 

and add-ons that can learn changing network environment. Our approach is to add a 

learning agent and a simple routing scheme to Link State in order to automatically select 

a better routing scheme at an arbitrary level of disruption. Markov Decision Process is 

employed to model this problem. The simulation results show robustness and packet 

delivery rate are increased up to 35% at acceptable cost of computational and 

architectural complexity even when Link State approach is close to be collapsed. 

 

3.1. INTRODUCTION 

The Internet is an essential part of society. With its increased significance, 

unstable operations of (wired) networks have increasingly large socioeconomic impacts, 

and unexpected network failures could even lead to catastrophe. For example, a 7.1 
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magnitude earthquake off the coast of Taiwan on December 27, 2006, exposed the 

Internet’s vulnerability to disruption. Most South-East Asian network traffic was 

compromised, and the backbone network suffered from low Internet bandwidth 

availability [1]. Lessons from this “choke” point, or single loop, encourage the creation of 

more robust “mesh” networks. 

A literature review shows that no research has been conducted thus far, to the best 

of the authors’ knowledge, directly related to the proposed approach. A few papers in the 

arena of fault-tolerant networking share some common elements. Bolding and Yost [2] 

emphasize the importance of a fault-tolerant design for multicomputer networks. Doley 

et. al. [3] model a fault-tolerant network as a graph in which a node represents a 

processor and an edge represents a communication link. They provide a mathematical 

background relevant to the current work in that a network can be modeled as a graph. 

However, their simplified assumptions about the link disruption behavior do not 

sufficiently explain the complicated disruptions in the current work. On the other hand, 

the literature on disruption/delay tolerant networks [4] is irrelevant to the results of this 

study even if the goals may share common points. The disruptions in disruption/delay 

tolerant networking are caused by long delays that the TCP/IP architecture cannot 

tolerate. Conversely, it is assumed that the TCP/IP architecture and disruptions are 

limited to link disruptions. 

Reinforcement Learning (RL) [5] is employed as an optimization technique to 

select between two standalone routing schemes. A Markov Decision Process (MDP) [6] 

is used to formulate an RL problem. RL techniques can be classified as associative 

learning or non-associative learning. The associative property in RL means that actions 
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are associated with particular situations. More specifically, the action that should be 

selected is associated with the current state. The assumption is that the selected action 

will affect the next state in a possibly non-deterministic but predictable way. The 

approach used here lies somewhere between associative and non-associative learning. 

The basic philosophy of this approach is to select the routing scheme (action) that 

maximizes the expected packet delivery rate (value) for the given network status (state) 

in this sequential decision problem.  However, due to the actions of other agents in the 

network, the true state of the environment is only partially observable, and the next state 

is not predictable. 

The Link State protocol family is a popular routing scheme on the Internet. It 

finds the shortest path between a source and a destination with Dijkstra's algorithm [7]. 

Inherently, Link State is susceptible to frequent link disruptions that are widespread 

throughout the network. A throughput drop can be caused by these “soft” disruptions, and 

the entire network can be paralyzed because Link State breaks down at a certain level of 

disruptions. 

Another protocol, Gossip [8], is a probabilistic flooding routing protocol. It 

spreads a received packet to all of the neighboring nodes except the original sender of the 

packet. The decision regarding transmission is determined probabilistically. This protocol 

is light-weight but inefficient under preferable network conditions because it “floods” the 

network with duplicated packets. 

The authors are the first, to their knowledge, to model this problem with MDP and 

to propose a solution to make the popular routing scheme more robust to link disruptions  

at a high frequency. 
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This chapter is organized as follows. MDP and RL are overviewed briefly in 

Section 3.2. The proposed MDP formulation and RL model are presented in Section 3.3. 

The simulation environment and results are presented in Sections 3.4 and 3.5, 

respectively. The conclusions follow in Section 3.6. 

 

3.2. MARKOV DECISION PROCESS AND REINFORCEMENT LEARNING 

MDP provides a mathematical background to model a sequential decision 

problem. An MDP is formulated as a collection of objects: the decision epoch T, the 

action space A, the state space S, the transition probability function )a,s|(sp tt+tt 1 , and 

the reward function )a,(sr ttt , where ts and ta  represent an element of state and action 

space at time t, respectively. An MDP’s goal is to find the best policy under the given 

optimality criteria by solving the Bellman equation in (1).  
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where )a,(sq ttt  is the probability of taking action ta  when the current state is ts . The 

value function (s)V π  is defined as the expected total reward (or return) under the 

expected total reward optimality criterion [6]. Note that π  is a policy, s is a state, Rt is a 

reward as a random variable at time t, rt(st, at) is a scalar reward for ts and ta , and ϒ is 

the discount rate between 0 and 1. 

The optimal policy *  can be defined in terms of the value function (s)V π , i.e., 
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In other words, * is any policy π  that maximizes the value function (s)V π  for all  

states s . 

The drawback of MDP is that it requires a complete model of the environment; 

therefore, it suffers from the “curse of dimensionality.” RL often is used to solve MDP 

problems as it can mitigate the curse of dimensionality. It is a machine learning scheme 

that learns from interactions with the environment through trial and error. RL 

approximates the optimal solution to an MDP problem. RL’s strength is that it does not 

require the complete model of the problem. However, developing an RL model can be a 

complex task if the number of states is large. 

Figure 3.1 depicts the interaction between the agent and the environment. The 

agent learns about the environment by evaluative feedback, rewards tr , and maintains 

estimates of the expected total reward, the value function (s)V π . A policy of action 

choice is determined in order to maximize the value function, in a statistical sense.  

 
 
 

 

Figure 3.1. Agent-environment interaction in an RL model. 
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3.3. PROPOSED MARKOV DECISION PROCESS FORMULATION AND 
REINFORCEMENT LEARNING MODEL 

3.3.1. System Architecture of the RL Model. Figure 3.2 is a simplified block 

diagram depicting the proposed RL model, which is consistent with Figure 3.1. An RL 

agent resides in a network node, and each node makes an independent decision. A routing 

agent on the left of Figure 3.2 receives state and reward information, st and rt, and outputs 

an action at. Parts other than the routing agent are considered to be elements of the 

environment. Nodes contain components other than communication networks, and each 

node in the network has the same perspective. Namely, each node in a mesh topology 

(Figure 3.4) possesses its own routing agent, routing strategy selector, knowledge bases 

(KBs), and reward converter. 

 
 
 
 

 

Figure 3.2. Simplified block diagrams of our RL model. 
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The roles of each component in Figure 3.2 are explained below. The routing agent 

is an RL agent that makes routing decisions. It maintains the action value function table 

a)Q(s,  and selects a routing strategy based on the value function. The routing strategy 

selector is a bank of routing schemes, including the Link State (LS) and Gossip (GS) 

schemes. The KBs (Knowledge Bases) block is a module used to estimate the current 

network status ts  maintained in the KBs by disseminating control packets. The routing 

strategy selector has a pool of candidate routing strategies and selects one for each packet 

based on the action selected by the routing agent. The reward converter converts an 

acknowledgement packet (ACK) into a reward for the routing agent. It generates a reward 

of 1 if an acknowledgement is received and 0 otherwise. 

3.3.2. Markov Decision Process Formulation. An MDP formulation of this 

problem is challenging in that the next state does not depend on the choice of current 

action. In other words, the Markov property is broken. Sutton and Barto [5] note that the 

Markov property does not have to be maintained in order to apply RL to some real-world 

problems. Therefore, this problem can be formulated with MDP. 

The proposed MDP formulation is explained below. Above all, the state space S , 

which is a representation of the network, consists of the state space of the Adjacency 

Knowledge Base (AKB) and the Reachability Knowledge Base (RKB), denoted as AS  

and RS , respectively. 

 

RA SS=S         (3) 
 
While the representation’s resolution may vary, the state space S  is discretized 

into five binary digits, four bits to the AKB and one bit to the RKB, so that the action-
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state value function is not too large. With this in mind, the number of states sN  is set to 

6425 = . The least significant bit signifies RS whether or not the destination is currently 

reachable, and the remaining bits reflect the current network reliability of AS , as derived 

from information in the AKB. 

The adjacency in the AKB is the average link availability al ranging from 0 to 1. 

 

}10:{  aaA llS       (4) 
 
Reachability in the RKB is a Boolean value indicating whether a path to the 

destination exists or not. The path to the destination is found by recursively searching the 

AKB. 

 

  }1 ,0{RS        (5) 
 
Figure 3.3 shows an example of a discrete state space S . The average link 

availability is 4375.0375.0  al , and this node has an end-to-end route to the 

destination at this particular time. 

 
 
 

 

Figure 3.3. An example of the discrete state space S of the knowledge bases. 
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Figure 3.4. 5-by-5 mesh topology with wired links. 
 
 
 
 

An average link’s availability is the moving average of its available up-time over 

an observation time interval. The AKB disseminates control packets called AKB update 

packets in order to share information about the network. On each node, the AKB and 

RKB update their neighborhood information by using the information in the AKB update 

packets and provide an estimate of the current state to the routing agent. 

The action space A  is simple in terms of MDP formulation. The number of 

actions aN is two because two candidate routing strategies are considered, GS and LS.  

 

  }StateLink { },{  where},{ 2121  aGossipaaaA   (6) 
 

Both LS and GS are full routing schemes, so their implementation is fairly large. 

The reward tr  is based on the ACK packets. This reward structure is consistent 

with the goal of the routing agent because the state-action value a)Q(s,  is an estimate of 

the probability that the routing protocol can deliver a packet to the destination. This is the 
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expected percentage of delivered packets. In the current implementation, a)Q(s,  is a 

225   table because the size of the table a)Q(s,  is as NN  .This design is reasonable 

because more value is attributed to the action that results in a higher number of delivered 

packets. 

 

3.4. SIMULATION ENVIRONMENT 

The major simulation parameters are summarized in Table 3.1. Given the 

simulation run time, the time required to generate the data packets is 370 seconds. The 

first 30 seconds are used to exchange control packets, and traffic is not generated during 

the last 10 seconds. 

 
 
 

Table 3.1. Simulation parameters. 

Parameters Values Remarks 

Simulation run time 410 seconds  

Simulation warm-up time 30 seconds beginning 

Simulation idle time 10 seconds end 

Traffic generation rate 240 kbps CBR 

Traffic source-sink 100 pairs  

Packet size 2000 bytes  

Packet Time-To-Live 100 seconds TTL 

Link bandwidth 1 Mbps  

Link delay 10 ms  

Link queue size 100 packets  

Link change interval 10 seconds  In average 

Minimum number of hops 4 Source - Sink 

Q-learning discount/learning rate 0.9/0.85  
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Mesh topology is employed to experiment with disruptions on backbone 

networks. The number of source-sink (destination) pairs is larger than the number of 

nodes in the network. A mesh topology was chosen that models backbone networks 

because the mesh topology has multiple links at the intermediate nodes, and packet 

congestion can be caused by multiple traffic sources. A single node can host numerous 

sources and sinks because a backbone network is assumed. Traffic source-sink pairs are 

uniformly distributed over the network. 

Constant-Bit-Rate (CBR) traffic sources generate data packets of 2000 bytes at 

240 kbps. This is equivalent to 15 packets per second. A packet’s time-to-live (TTL) is 

set to 100 seconds in order to ensure that no packet is dropped because of its TTL. One-

hundred pairs of traffic source-sinks are assigned randomly to nodes with the restriction 

that the source-sink pairs are separated by the minimum number of hops Nh. Nh is 

important because it affects the packet delivery performance. In an extreme case in which 

1=N h , Link State and Gossip perform similarly because both schemes can deliver 

packets to the destination with about the same performance. The probability of a link 

being down between the source and the destination is proportional to Nh because there is 

a greater chance of packet delivery failure. For simulations, each source is set to be 

separated at least 4 hops from its corresponding sink, i.e., Nh=4. UDP is used because of 

its small overhead. 

The links go up and down dynamically to model disruptions in the network. The 

uniform link disruption model [10] is used. The ratio between a link’s up interval and 

down interval is defined as network availability. These up/down intervals specify the 
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mean of the random distribution, defining the time that the links go up and down, 

respectively. 

A custom network simulator, ADPNetsim [9], was developed, which is 

modeled after a popular network simulator, NS-2 [10]. ADPNetSim resembles NS-2 in its 

Links State implementation, job scheduler, trace file format, etc. The key difference is 

that ADPNetsim implements an RL algorithm, Q-learning [5], and can choose between 

two routing schemes on a per-packet basis. 

 

3.5. SIMULATION RESULTS 

The simulation results in this section show that the “on-node” local learning agent 

improves the packet delivery rate at all levels of disruption at an acceptable cost of 

computational and architectural complexity presented in previous sections. Additionally, 

the proposed approach adds more disruption resistance over Link State. Gossip chosen by 

the learning agent at a severe disruption level is more robust in nature than Link State 

because it sends out duplications of the received packet to all the neighboring nodes. 

Figure 3.5 compares the performance of local learning to that of standalone Link 

State and Gossip under the given simulation environment, showing the average packet 

delivery ratio with respect to network availability. Network availability on the x-axis 

indicates the degree of disruption. Network availability 1 implies no disruption, while 0 

implies that all the links are down continuously during simulation runs. The packet 

delivery rate on the y-axis is a ratio between the number of delivered packets and the total 

number of sent packets. Thirty-two simulation runs at a given network availability are 

averaged to obtain the resulting graph. Note that conventional network performance 

metrics such as delay, jitter, and packet drop with quality of service in mind are less 
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meaningful as disruption becomes more severe. Rather, the packet delivery rate gains 

importance as the chance for delivery failure increases.  

 
 
 

 
Figure 3.5.  Comparison of average packet delivery rates in a 5-by-5 mesh topology: 

Local learning, Link state and Gossip. 
 
 
 
 

When there is no disruption (network availability 1.0), all learning agents learn to 

select Link State. One can visualize that all the nodes in the mesh topology are marked as 

Link State at all times during simulation runs. When there is severe disruption (network 

availability between 0.2 and 0.55), Gossip is selected. Therefore, all the nodes are now 

marked as Gossip at all times. 
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Performance under mild disruption (network availability between 0.75 and 1.0) is 

worth noting. The delivery rate of the local learning case is higher than that of either 

standalone scheme. It was expected that the delivery rate graph would overlap that of 

Link State under no/mild disruption and that of Gossip under severe disruption. A closer 

look at the intermediate behaviors reveals that the learning agents learn to mix Gossip 

with Link State. The agents select Link State when the neighboring links are up most of 

the time and switch to Gossip when they experience more disruptions in terms of the 

moving average. At a specific time, nodes in favorable conditions tend to choose Link 

State, while those in more disrupted regions tend to select Gossip, which helps to increase 

the packet delivery rate compared to the case with a standalone Link State. One can 

visualize this desirable feature as some nodes in the mesh topology being marked as Link 

State and the others as Gossip at one time point, and then these marks changing 

dynamically as the “contaminated regions” vary over time. In effect, the distributed/on-

node learning agent is reconfigurable not only to network availability in the general 

sense, but also spatially within the network. 

The use of the learning agent makes routing under disruption more robust than in 

the case in which only Link State is used. Link State breaks down at a network 

availability of 0.5 as opposed to Gossip at 0.2. The advantage of using the learning agent 

is that it learns to select a more robust scheme (Gossip) under severe link disruption and a 

more efficient scheme (Link State) under mild link disruption. 

Figure 3.6 depicts the learning agent’s relative improvement over Link State and 

Gossip. It shows that using a learning agent improves the packet delivery rate by up to 

35% over Link State at a network availability of 0.65. 
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Figure 3.6. Relative performance improvement by on-node local learning. 
 
 
 
 
3.6. CONCLUSIONS 

The contribution of this chapter is that the authors are the first, to the best of their 

knowledge, to model this problem with MDP and to suggest a relatively light-weight 

solution to provide robustness to existing wired networks against a challenging and 

important defect in the existing popular routing scheme. The inherent defect in Link State 

is the packet delivery rate; throughput deteriorates as the level of disruption increases, 

and, more seriously, the scheme collapses under severe disruptions. One solution is to 

employ an additional routing scheme that can tolerate a level of disruption that Link State 

cannot. A flooding-based routing scheme satisfies this purpose, but the shortcoming of 

this approach is lower performance under no/mild disruption. The proposed solution is to 
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mount both schemes and a learning agent on a network node in order to configure the 

node to choose a better scheme by learning from its surroundings. The selection is 

reconfigurable depending on different levels of disruption and node locations in the 

network.  

The proposed custom network simulator, ADPNetsim, modeled after a popular 

network simulator, NS-2, simulates a 5-by-5 mesh topology with wired links. The 

minimum number of hops between the traffic source and sink is set to 4 in order to 

prevent cases that can disguise increases in the packet delivery rate. An extreme example 

is a 1-hop traffic source-sink pair that a packet can traverse whenever a single link is 

available. The link disruption model is uniformly distributed over time given a duty 

cycle. Network availability is inversely proportional to the level of disruption. The MDP 

formulation is as follows. States represent the moving average of link availability and 

ability to reach the destination. Available actions are Gossip, Link State, or none. The 

reward is 1 if a packet is delivered and 0 otherwise. Learning is performed in a 

distributed manner on each node in the network.  

The simulation results show that the local learning agent on each node improves 

the packet delivery rate by selecting a better scheme. Under no disruption (network 

availability of 1.0), all learning agents learn to select Link State. Under severe disruption 

(network availability between 0.2 and 0.55), Gossip is selected. Packet delivery rates 

under mild disruption (network availability between 0.75 and 1) warrant attention. The 

delivery rate is higher than in either standalone scheme. The delivery rate graph was 

expected to overlap the Link State graph under no/mild disruption and the Gossip graph 

under severe disruption. A closer look at the internal behaviors reveals that the learning 
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agents learn to mix Gossip with Link State. The agents select Link State when the 

neighboring links are up most of the time and switches to Gossip when they experience 

more disruptions in terms of the moving average. At a specific time point, nodes in 

favorable conditions tend to choose Link State, while those in more disrupted regions 

tend to select Gossip, which helps to increase the packet delivery rate compared to the 

case with a standalone Link Sate. This is a desirable feature that makes the proposed 

“distributed” local learning approach reconfigurable. In effect, it is reconfigurable not 

only to network availability in the general sense, but also spatially within the network. 

Additionally, the proposed approach resists disruptions better than Link State. 

Gossip, naturally, is more robust than Link State under severe disruption. Gossip breaks 

down at a network availability of 0.2 in the current experiments, as opposed to 0.5 for 

Link State. Learning agents learn to switch to a more robust scheme, i.e., Gossip. 

The proposed approach to amalgamate a light-weight and robust Gossip to the 

popular Link State achieved success by employing an ADP learning agent. The packet 

delivery rate and robustness can be enhanced under various levels of link disruptions at 

an acceptable cost of computational and architectural complexity to mask the Link State's 

inherent defect.  
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3. CONCLUSIONS 

This dissertation presented a study of spatial-temporal reasoning applications in 

computational intelligence. Three problems concerning computer Go and one problem 

concerning the computer network were solved. More specifically, the group size counting 

problem, a sub-problem in computer Go, was solved with both recursive and non-

recursive solutions. The non-recursive solutions were solved under the same constraints 

with CSRN. This is called collective cooperative learning. The second problem was to 

learn a game tree of a 2x2 Go board. The CSRN structure was modified and trained with 

cellular PSO. The game tree for black’s optimal move was learned with zero system error. 

The third problem concerned Go robotics. A unified system structure for a novel human-

machine interface was proposed and successfully implemented with a prototype robot 

arm, Cheonsoo-I. The last problem concerned a routing problem in a computer network. 

A hypothetical case was considered in which the links in a computer network were 

disrupted. This problem was formulated with MDP, and the proposed reinforcement 

learning scheme improved the overall packet delivery rate. 

  



106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A.  

GO GAME RULES 
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Hypothesis (Optimal moves in Go are unknown): Optimal moves in Go are 

unknown or have not been solved yet. Even though some computer Go researchers claim 

that they have solved Go for 6x6 and 9x9 boards, even human experts do not know the 

optimal moves for the regular Go board size. Therefore, the optimal solution for Go at 

any board size has not been solved yet. 

Definition 1 (Play point as a vertex): A space on which a Go stone can be placed 

is called a play point. In graph theory, a play point in Go is a vertex v in a finite set V. 

Definition 2 (Go board as an unordered graph): A Go board is a grid made of 

vertical and horizontal lines. An intersection of a vertical line and a horizontal line forms 

a play point. Therefore, a Go board consists of a set of play points. In graph theory, a line 

connecting two play points or two vertices (u,v), where u,v in V and u≠v, forms an edge. 

Therefore, a Go board is an undirected graph G with the edge set E consisting of 

unordered pairs of vertices V. 

Corollary 1 (2x2 board): Let two vertical and horizontal lines on a 2x2 board 

form four intersections or play spaces. Then, a 2x2 board is a graph G2 with four vertices 

and four edges, i.e., |V|=4 and |E|=4. 

Definition 3 (Occupied play point vs. vacant play point): Only one stone can 

occupy a play point at a time. We call a play point with a stone an occupied play point, 

while a point without a stone is a vacant play point. From graph theory’s perspective, we 

name the former an occupied vertex and the latter a vacant vertex. 

Definition 4 (Adjacency of a stone): An adjacency of a stone is a play point, 

regardless of its occupancy, located either vertically or horizontally from the occupied 

play point of the stone. A play point in the diagonal location is not adjacent. 
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Definition 5 (Liberty of a stone): A liberty is a vacant play point adjacent to a 

stone. 

Proposition 1 (Liberty removal): When the opponent’s stone is placed on the 

vacant play point in Definition 5, a liberty of a stone is removed  

Proposition 2 (Addition of a liberty): When the player’s stone is placed at an 

adjacency (Definition 4) of an existing stone, a liberty or liberties are added to the 

existing stone on the board. 

Definition 6 (Group of stones): Stones of the same color adjacent to each other 

form a group. In graph theory, a group on a Go board is a sub-graph G' of a graph G. 

Corollary 2: A group is a superset of a stone. By convention, a group may consist 

of one or multiple stones.  

Corollary 3 (Liberties of a 2x2 board): Assuming a 2x2 board (Corollary 1), a 

group (Definition 6) can have one or two liberties. Then, the maximum edge size is two, 

i.e., max{E(G2)}=2. 

Proof. Figure 2.1.d. shows the graph representation of the representative board 

statuses in Figure 2.1.c. These representatives include all possible board statuses that can 

be rotated and flipped. Additionally, stone colors can be switched from black to white 

and vice versa. Therefore, Figure 2.1.d.1 (the leftmost board status with a single black 

stone) represents eight different board statuses. Figure 2.1.e illustrates the possible 

liberties. No stone can have more than two liberties. Each stone is a vertex in the graph. 

Thus, the maximum edge size in G2 is two. 

Definition 7 (A vacant play point as a territory): The significance of a play point 

lies in its potential to become a territory at the end of a game. A vacant play point secured 
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by a player is counted as a territory at the end of the game. According to territory rules, 

e.g. Japanese and Korean rules, the game’s score is determined by territories.  

Definition 8 (A play point as an area): According to area rules, e.g., Chinese 

rules, an area includes a territory (Definition 7) and a stone used to secure the territory. In 

other words, a play point secured by a player is counted as an area at the end of the game. 

Using area rules, the game’s score is determined by the total size of the areas. 

Corollary 4: An area is a superset of a territory. 

Definition 9 (Eye): An eye is a play point or play points that the opponent can 

neither play on nor force to be filled. 

Definition 10 (Death of a group): A group is dead when it is not alive [25]. A 

group is alive if it has at least one liberty or two (true) eyes. 

Corollary 5: The only representative board status that is always alive on the 2x2 

board occurs when two stones of the same color are located diagonally and no other stone 

exists on the board. 

Proof. Refer to Definition 9 and Figure 2.1.d.4. The figure is self-explanatory. 

Definition 11 (Neutral point): A neutral point is a play point that is neither 

player’s territory nor has prospects of becoming a territory. At the end of a game, the 

vacant play points in Figure 2.1.d.2 become neutral points when a game ends in this 

board status. 

Definition 12 (Pass): A pass is a move by a player that does not place a stone on a 

play point. It causes the opponent to gain the right to play the next move. 

Definition 13 (Two consecutive passes): A game is over when both players pass 

consecutively or when both players agree to finish the game. 
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Lemma 1: A player cannot make an eye on a 2x2 board when both players play 

optimally because of the rule to play alternately. Two eyes can be made if and only if the 

opponent does not play optimally. 

Lemma 2: When both players make optimal moves and each player takes each 

corner, there is no reason to continue the game with two neutral points. 

Proof. When both players make optimal moves, the game infinitely returns to 

Figure 2.1.d.2. There is no reason to continue the game. Therefore, it is legitimate to end 

the game when two neutral points exist on the board. 

Corollary 6: Both players form no territory when playing optimally, and the game 

is over. 

Corollary 7 (Pass on a 2x2 board): Passing on the first move of a game does not 

affect the game’s result if and only if both players play optimally. However, passing on 

the second move of the game may result in losing the game if the opponent gains two 

eyes by playing diagonally from the first move. 

Definition 14 (Suicide move): A stone commits suicide when it is placed on a play 

point with no liberty but this move does not remove the last liberty of the opponent’s 

group, resulting in the group’s capture. A suicide move is illegal. 

Definition 15 (Compensation): Compensation is the points given to white to 

cancel out black’s advantage of taking the first move when an even game ends. 

Theorem 1: The compensation for white on a 2x2 Go board is zero. 

Proof. Compensation is the points given to white to cancel out black’s advantage 

of taking the first move when an even game ends (Definition 15). A player cannot make 

an eye on a 2x2 board when both players play optimally because of the rule to play 
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alternately (Lemma 1). When both players make optimal moves and each player takes 

each corner, there is no reason to continue the game with two neutral points (Lemma 2). 

Neither player forms a territory when playing optimally, and the game is over (Corollary 

6). Therefore, white does not need compensation. 
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