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ABSTRACT 

 Dielectric thin films of either TiO2 or BaTiO3 were sputtered in O2/Ar plasmas on 

Si wafers to thicknesses ranging from approximately 25 to 200 nm with patterned Ni or 

Pt electrodes sputtered in Ar plasmas at thicknesses from about 20 to 250 nm to form 

nano-capacitors.  Statistical design of experiments (DOE) was used to determine the 

effects of the deposition power, plasma composition, and deposition temperature on the 

measured electrical properties of the nano-capacitors.  Additional tests to determine the 

effects of the dielectric and electrode thickness on the measured dielectric responses of 

the devices were also undertaken.  Characterization was performed with a combination of 

direct current (DC) and alternating current (AC) testing methods including AC 

impedance, coercive field and leakage current versus voltage, scanning electron 

microscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray 

photoelectron spectroscopy, focused ion beam microscopy, and atomic force microscopy. 

The dielectric properties were found to depend on complex interactions of the 

process variables that could be modeled using statistical software.  The permittivity was 

found to range from 100 to 10,000 with losses between 0.013 and 0.570.  The resistance 

at 1 V DC varied from approximately 1.5 to 360 GΩ, and either a ferroelectric or 

paraelectric hysteretic response was observed for all specimens tested.  Chemical 

analyses showed the films to be oxygen rich, while XRD and TEM data indicated the 

BaTiO3 was amorphous.  The electrical, chemical, and microstructural properties were 

found to depend on the sputtering conditions of the BaTiO3, dielectric thickness, 

electrode material choice, and the electrode thickness.  Collectively, the results indicated 

that the properties of nanometer thick dielectric and electrode materials have a significant 

impact on the measured electrical properties. 
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Introduction 

 

1. General Background 

Of the three most common passive components in electronic circuitry, resistors, 

capacitors, and inductors, it is the capacitor that generally dominates the majority of 

components and printed circuit board space.  As an example, the Nokia 6161 cell phone 

has a 40 cm
2
 circuit board with 15 integrated circuits (ICs), 149 resistors, 24 inductors, 

and 232 capacitors [1].  The capacitors range in value from 1 to 10 nF.  In addition to 

stand alone devices that are attached separately to complete a circuit board, capacitors are 

also integrated into standard IC fabrication procedures to produce gate circuitry [2-5], 

dynamic random access memory (DRAM) [6-10], microwave electronics [6-9, 11], and 

general integrated passives [12-14].  For DRAM chips at the 1 Gbit level, capacitors are 

needed with lateral dimensions in the 0.13 μm range with thicknesses between 5 and 30 

nm [10].  On this front, Motorola, Inc. appears to be leading the commercial field with 

integrated resistors and capacitors in many of its newer cell phones [1].  Several Japanese 

companies are also continuing this trend, and are beginning to introduce products that 

take advantage of the integrated passives approach.  In commercial research, DuPont is 

developing processes that show potential to produce integrated passives with over 100 

nF/cm
2
 capacitance, which would be high enough to replace many of the discrete 

capacitors that currently have to be soldered onto a circuit board [1, 15]. 

Driving this trend toward integrated passives is the continued development of thin 

ceramic films with thicknesses between 0.5 and 2 μm [9].  As these thicknesses are on the 

same scale as many microstructural characteristics such grain size, ferroelectric domains, 

and even the electrode interfaces [10, 15], it can become difficult to ensure property 

uniformity on a local scale when the device size also continues to decrease.  The favored 

commercial fabrication technique of ceramic capacitors, tape-casting, has advanced over 

the past 10 years to allow the reliable fabrication of 0.8 μm thick dielectrics (0.5 μm 

thickness on research scales), but has not been able to definitively show that it will be 

capable of extending its use to thicknesses to 0.2 μm and below [16].  This limitation has 

opened the way for a variety of other thin film deposition methods to be introduced to the 

field of capacitor research and development. 
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As dielectric films continue to decrease in thickness due to advances in chemical 

vapor deposition, physical vapor deposition, and sol-gel processing it becomes 

increasingly important to control the microstructure to ensure property uniformity.  As 

films become thinner both intrinsic (i.e. directional response of a single ferroelectric 

domain) and extrinsic (i.e. phase boundaries, defect densities, etc.) properties become 

more pronounced [10].  Intrinsic size effects result in a ferroelectric transition shift to 

lower temperatures, a broadening of the temperature dependence of the permittivity (e.g. 

the development of a Curie region as opposed to a Curie peak), and a drop in the peak 

permittivity.  Extrinsic size effects have been observed to account for 60% to 70% of the 

dielectric property values in some of the common perovskite materials, and vary 

depending on the deposition method and chosen materials. 

 The current challenge for thin film capacitors is the fabrication of devices that 

exhibit high capacitance, possess high voltage capabilities, and have both high electrical 

stability and high temperature capability [9, 17] all while retaining a compact size and 

using materials and deposition techniques that are compatible with the materials and 

processes already in use in standard IC fabrication facilities [1].  For portable power 

devices (i.e. secondary power supplies, electric vehicles, or battery replacements), 

capacitors also need to exhibit long life cycles (>100,000 cycles), short charging times in 

ms to ns range, be safe for consumer handling (simple, robust design), and have a high 

power density [18].  For any capacitor technology to be accepted for commercial 

application it must exhibit: 

 1. High permittivity (maximized based on material to result in an associated high  

 capacitance density) [17] 

 2. High breakdown strength (greater than 1x10
6
 V/cm for maximum power  

 density) [17] 

 3. Low dielectric loss tangent (tan δ = d needs to be at least less than 0.05) [16] 

 4. Low leakage current density (<1 μA/cm
2
 at 10V) [17] 

 5. Low failure rates (2.4 failures or less in 10
9
 component hours) [19] 

 6. Minimal temperature variance (± 15% or less between 55°C and 125°C) [19] 
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2. Thin Film Capacitors 

2.1.  Capacitor Designs 

 Three capacitor designs are currently used in the electronic industry: in-plane or 

single layer, electrolytic, and multi-layer capacitors (MLCs).  Each design’s capacitance 

can be calculated using: 

 

 C = εoεr(
A
/d)         <1> 

 

Where εo is the permittivity of free space (8.854 x 10
-12

 
F
/m), εr is the permittivity of the 

dielectric material (also referred to as the dielectric constant, k), A is the interaction area 

of the electrodes (m
2
), and d is the distance between the electrodes (m).  In-plane 

capacitors attempt to maximize the capacitance by using large permittivity dielectrics, 

minimizing layer thicknesses, and increasing the electrode area by rolling the structure 

into a cylindrical configuration.  This simple design allows easy manufacturing, but limits 

the maximum possible capacitance density by not taking advantage of a 3-dimensional 

construction methodology.  Electrolytic devices maximize the capacitance by 

significantly increasing the electrode area with porous electrodes submerged within an 

electrolyte.  The drawbacks to electrolytic capacitors are: 
1)

 the distance between the 

electrodes is set by the conductivity of the electrolyte and tends to be larger than is 

possible with a solid dielectric, and 
2)

 the use of a liquid electrolyte requires hermetic 

sealing of the capacitor which precludes the use as an integrated device [20]. 

 MLCs maximize device capacitance by using high permittivity dielectrics 

(maximizing εr), minimizing the dielectric thickness (d), and increasing the electrode area 

(A) by alternating stacks of anode, dielectric, cathode, dielectric, anode, etc.  Of the three 

designs discussed, MLCs are generally able to produce the highest capacitance density 

due to the use of a 3-dimensional structure that is not inherently limited by dielectric 

thickness [21].  As such, MLCs are the most popular for use in the electronics industry 

[19, 21, 22] with an estimated 10
12

 units made annually as of 2006 [16].  At present, most 

commercial MLCs are prepared by tape casting using dispersions of submicron ceramic 

powders with screen printed metal electrodes that are laminated, co-fired, and terminated 

with metallic paint [16].  Tape casting, however, has been found to be impractical and not 
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cost efficient for the fabrication of devices with layer thicknesses on the nano-meter scale 

[1, 16]. 

 Thin film technology allows the optimization of the MLC design to be taken even 

further with the ability to reliably decrease the dielectric thicknesses into the nanometer 

range, thus surpassing traditional tape casting technology.  As this thickness 

minimization occurs, multiple benefits in addition to an increase in capacitance are likely 

to be seen.  Since the average AC current path is shorter with thinner films, a smaller 

series inductance is likely to be measured making a more efficient capacitor with a higher 

self-resonant frequency [14, 23].  A smaller active area also translates to shorter metal 

lengths, which in turn gives a lower series resistance, and subsequently lower power 

consumption/loss.  On the other hand, as the device areas approach the same size scale as 

microstructural features (i.e. grain size and/or domain size), the devices are likely to be 

more susceptible to fractional variations in the measured capacitance [14]. 

 Thin film technologies also allow the opportunity to create complex electrode 

patterns, such as micro-scale fractal patterns, that are not feasible with screen printing 

technology.  By exploiting not only the vertical field components (e.g. minimizing the 

thickness) but also the lateral, or in-plane, electric field components it is possible to 

increase the capacitance density even further than with a standard MLC approach [14].  

The capacitance of a device with patterned electrodes can be calculated as: 

 

 Ctotal = Cx + Cy + Cz         <2> 

 = εoεr [(Lx,min(Lx,min + Wx,min))
-1

 + (Ly,min(Ly,min + Wy,min))
-1

 + (tox(tox + tmetal))
-1] 

 

where Lx,min and Ly,min are the minimum in-plane, lateral spacing between the electrodes, 

Wx,min and Wy,min are the in-plane widths of the metal electrodes, and tox and tmetal are the 

dielectric and metal thicknesses, respectively.  Comparison of theoretical 3-dimensional 

structures to a standard MLC design has been done by Aparicio [14].  According to this 

work, with a dielectric and electrode thickness of 800 nm, the minimum feature sizes (L 

and W) needed to make complex electrodes more efficient than a standard parallel plate 

design is between 0.8 μm and 1.0 μm depending on the electrode design used.  These 

feature sizes are well within the capability of standard micro-fabrication facilities, and 
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show promise for further increasing the maximum capacitance density achievable with 

thin film technologies. 

 

2.2. Deposition Techniques 

 A wide variety of techniques have been investigated for the deposition of thin 

ceramic films including chemical vapor deposition (CVD), sol-gel, sputtering, pulsed 

laser deposition, among several others.  Each process has a set of associated advantages 

and disadvantages, and any process must be chosen particularly with the disadvantages in 

mind.  Observed size effects associated with varying the dielectric thickness are process 

dependent.  Different deposition processes as well as different processing conditions 

within each process category are likely to result in different properties in the material 

adjacent to the electrodes, which in turn contributes to the scatter seen in the 

experimentally measured size effects on the dielectric properties [10].  This is in addition 

to the differences with the microstructure (e.g. density, grain size, morphology, etc.) of 

the deposited film from different processes.  Based on the literature, it appears that the 

size effects are controlled more by processing rather than any intrinsic limits on material 

stability. 

 Table I gives a brief summary of the more popular thin film deposition techniques 

and some of the advantages and disadvantages of each.  All of the processes have been 

utilized with success in multiple literature sources.  Therefore, the choice in deposition 

technique must be made with a certain set of constraints.  For this research a low 

deposition temperature was highly desirable due to the prevalence of temperature related 

issues resulting in cracking or delamination of films during cooling [24, 25].  A process 

was also desirable that exhibited a large degree of control over film stoichiometry, 

thickness, uniformity, and step coverage. 

 Of the above techniques the majority of research efforts have used CVD and 

sputtering technologies.  CVD techniques, in particular metal-organic CVD (MOCVD), 

tend to provide excellent composition control with good potential for film homogeneity 

and conformal coatings of complicated topographies [26].  These benefits have resulted 

in CVD being regarded as producing the “highest quality” dielectric films [27, 28].  

Unfortunately, CVD methodologies tend to require costly instrumentation and materials 
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and are known for complex process schedules [27, 28].  CVD is also typically performed 

in a batch process, making the technology less favored for mass production of devices. 

 

Table I.  Thin film deposition techniques with associated advantages and disadvantages 

Deposition 

Technique 
Advantages Disadvantages 

Sputtering 

Controllable composition 

Thin, conformal coatings 

Low deposition temperatures 

Many process parameters 

Requires vacuum 

Non-selective coating 

Chemical 

Vapor 

Deposition 

Selective coating 

Low temperatures possible 

Multiple assisted technologies 

Exotic chemicals 

Thick, rough coatings 

Limited coating chemistries 

Sol-Gel 
Conformal coatings 

Ease of processing 

High temperatures 

Multiple temperature cycles 

Atomic 

Layer 

Deposition 

Extremely thin layers 

Stoichiometric films 

Conformal coating 

Slow deposition 

Expensive equipment 

 

 Comparatively, sputtering requires substantially more simplified equipment [27], 

and the process schedule is generally less complex [28].  The technique is also capable of 

producing thin ceramic films with comparable properties to those derived from CVD 

methods [27, 28] and are generally more reproducible [9, 11, 29].  The process variables 

of sputtering allow superior residual stress control by modifying the interaction of the 

energetic particles bombarding the surface of the substrate [11], which is effective for 

avoiding stress-induced mechanical peeling and thus increasing interlayer adhesion 

between the film and substrate as well as between individual layers of a stacked structure 

[11, 30].  Sputtering can also be performed at room temperature, potentially allowing the 

avoidance of high temperatures [3, 5, 31, 32].  Sputtering is commonly used in most IC 
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fabrication facilities resulting in a high potential for mass production, despite being a 

batch process, that is not seen with most of the other deposition techniques [11]. 

 

3. General Trends in the Literature for Sputtered Capacitors 

 All of the influences on electrical behavior can be modified and, ultimately, 

engineered using processing conditions.  The processing parameters that can be readily 

altered during sputtering are the percent O2 in the plasma, deposition temperature, plasma 

pressure, and RF power.  In addition, the post deposition annealing temperature, if such 

an operation were found to be favorable, also directly impacts the electrical performance 

(Table II).  By decreasing the percent O2 in an Ar plasma during sputtering the literature 

shows a decrease in permittivity [12, 33, 34], increase in conductivity [3], increase in loss 

[12, 35], decrease in crystallinity [34], and a decrease in test temperature and test 

frequency sensitivities [33].  By decreasing the deposition temperature the crystallinity of 

the film in decreased [4, 5, 31, 32, 36], the permittivity is decreased [3, 5, 25, 31, 32, 37-

40], the loss is decreased [31, 32, 37], and the breakdown strength is decreased [25].  

Increasing the total pressure during sputtering leads to an increase in leakage current [41], 

can modify the crystallinity depending on the level of pressure (as previously discussed) 

[42], increase residual stress [11], increase stoichiometry of both the oxygen and metallic 

species in the deposited film [42], and decrease sensitivity to the target-to-substrate angle 

[42].  An increase in the RF power used during deposition increases the permittivity [43], 

decreases residual stress [44], and reduces leakage current [41].  An increasing annealing 

temperature tends to result in an increasing permittivity [9, 40, 43], increasing loss [9, 13, 

44], and decreasing conductivity [9].  The effects of the annealing temperature have been 

related to the crystallization temperature by Thayer et al [13], who found that an 

annealing temperature well below that of the crystallization temperature only affected an 

increase in loss.  Annealing between 50°C and 100°C below the crystallization 

temperature improved the interface characteristics, and annealing above the 

crystallization temperature gave no improvement over the lower temperature anneals. 
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Table II. Impact on capacitor electrical properties by process variables during sputtering 

Process 

Variable 
Impact on Electrical Properties 

↓ %O2 
↑ conductivity, loss 

↓ permittivity, crystallinity, temperature and frequency sensitivity 

↓ Tdep 
↑ residual stress 

↓ crystallinity, permittivity, loss, breakdown strength 

↑ Ptotal 

↑ leakage current, residual stress, stoichiometry 

↓ sensitivity to target to substrate angle 

(can modify crystallinity depending on pressure regime) 

↑ RF Power 
↑ permittivity 

↓ residual stress, leakage current 

↑ Tanneal 

↑ permittivity, loss 

↓ conductivity 

(related to crystallization temperature by Thayer et al [13]) 

 

 In addition to processing variables, the electrical performance has also been 

linked to test conditions.  Three of the most important testing factors in the literature have 

been temperature, testing frequency, and the atmosphere under which testing occurred.  

Most BaTiO3 films in the literature have displayed a standard Curie-Weiss behavior with 

Curie-Weiss temperatures between 400K and 470K [10, 12, 34].  Shifts in the Curie-

Weiss temperatures have been linked to a reduced polarizability due to Ti non-

stoichiometry and the presence of biaxial mechanical stresses within the films [12, 34].  

In addition to test temperature, the atmosphere in the immediate vicinity of the device 

under test has also been shown to affect the electrical performance.  The two reported 

atmospheres that significantly degrade the electrical properties are reducing atmospheres 

(i.e. vacuum, pure Ar, etc.) and high humidity atmospheres.  Long exposure to a reducing 

atmosphere at elevated temperatures results in a decreased resistivity and poor reliability 

throughout life testing [45].  Likewise, high levels of humidity degrade the electrical 

performance of thin films.  The A sites in perovskite oxides, such as the Ba site in 

BaTiO3, are susceptible to humidity [46].  At high humidity, liquid water will condense 
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in pinholes and allow electrolytic conduction to take place.  The results of Agarwal et al 

[46] with (Ba,Sr)TiO3 show that increasing the relative humidity both decreases the 

permittivity (by as much as a factor of 10) and resistance (by two orders of magnitude) of 

the films. 

 

4. Chosen Research Directions 

 Based on the above discussions and the available literature, it was decided that 

sputtering would be used to deposit MLCs.  Given the controllability of sputtering, this 

deposition technique is the most likely candidate capable of resulting in the desired 

dielectric chemistry with the microstructural and morphological characteristics necessary 

to make viable MLC devices.  Barium titanate was chosen as the dielectric material due 

to its potential for high permittivity (greater than 5,000 possible) and low loss values (less 

than 0.05), as well as its prevalence in the literature showing it to be a favored material 

for passive devices.  In order to prepare for the use of a complex ternary system, TiO2 

was first studied to gain a basic understanding of the effect of various processing 

parameters due to its prevalence in the literature, and the dielectric properties being 

extremely sensitive to oxygen stoichiometry.  The electrode materials chosen were Pt, 

due its chemical inertness and acceptance in industry as a standard electrode material, and 

Ni, due to its increasing popularity as a base metal electrode and as a cheaper alternative 

to Pt. 

 After gaining some basic proficiency with the deposition of TiO2 (Paper 1), 

efforts were transitioned to the use of BaTiO3 using either Pt or Ni electrodes.  An in 

depth understanding of the effects of the sputter processing parameters on the 

development of the AC and DC dielectric properties was investigated with a statistical 

design of experiments (Papers 2 and 3).  Using the information gained from that analysis, 

studies were conducted on the effects of varying the dielectric thickness (Paper 4) and 

electrode thickness (Paper 5).  Chemical and microstructural characterization of the 

sputtered BaTiO3 films was conducted to understand the effects of these features on the 

measured dielectric properties (Paper 6). 
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5. Equipment and Materials 

5.1. Deposition Equipment 

 Deposition was conducted with a Denton Discovery-18 Sputter Deposition 

System with 3 sputter cathodes (Figure 1).  Two of the three heads are connected to a DC 

power supply capable of operation at 100 to 600 W in 100 W increments.  The third is 

operated through a RF power supply with an attached matching network and is capable of 

powers up to 600 W in 1 W increments.  All cathodes are equipped with magnets behind 

the targets to allow magnetron sputtering to occur, and are at a fixed angle of 60° from 

vertical.  The head assemblies hold 3 inch diameter targets with a thickness of up to 0.25 

inches.  The deposition chamber is equipped with a variable speed rotation assembly to 

ensure uniformity of film deposition.  Rotation was kept at a constant speed of 

approximately 30 revolutions per minuteduring this research.  Gas composition in the 

chamber is controlled with 2 mass flow controllers connected to lab grade purity Ar and 

O2 tanks.  For this research, 99.9% pure metallic targets of Ti, Ni, and Pt were used on 

the DC heads, and a custom made BaTiO3 target with bonded head assembly was 

attached to the RF head. 

 

 

Figure 1 – Photograph of Denton Discovery-18 Sputter 

Deposition System used for this research. 
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 Masking of the electrode and dielectric layers was carried out with physical masks 

(a.k.a. shadow masks) machined out of brass sheet or thin molybdenum sheet.  The brass 

masks (Figure 2) were machined in-house with a CNC mini-mill.  The electrode mask 

(left) is a series of 1.6 mm wide by 3.2 cm long channels arranged in an array of 5 

parallel lines per quarter of the 4 inch diameter mask.  This mask was limited to use in 

the preliminary TiO2 studies.  The dielectric mask contains four large openings (2.7 cm 

by 2.7 cm) to allow a blanket coating of the thin film dielectric over the previous layer(s). 

 

 

Figure 2 – Machined brass shadow masks for electrode (left) and dielectric (right) 

patterning.  The use of the electrode mask results in a capacitor area of 2.56 x 10
-2

 cm
2
. 

 

 A second electrode mask was machined via CNC laser ablation at Missouri State 

University in Springfield, MO.  The channels on this mask are 73.7 μm wide (minimum beam 

width of the laser used for machining) and 2.4 cm long, with 2 mm diameter test pads at both 

ends to facilitate electronic testing (Figure 3).  Similar to the machined brass mask, these 

channels are arrayed in 11 parallel lines in each quarter of the 4 inch square mask.  The purpose 

of this mask was to create a smaller capacitor area (2.56 x 10
-2

 cm
2
 with larger mask, 5.43 x 10

-5
 

cm
2
 with small) to minimize the measurement of macro-defects within the dielectric films.  An 

additional benefit of the smaller device area is the increased number of data points per wafer 

(100 with large mask, 484 with small mask), improving statistical analysis.  This mask was used 

extensively throughout the series of BaTiO3 characterizations. 
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Figure 3 – Laser machined molybdenum mask for the fabrication of 

small capacitor area devices.  This mask results in a capacitor area of 

5.43 x 10
-5

 cm
2
. 

 

5.2. Electrical Test Equipment 

 Electrical testing was performed in two stages, direct current (DC) and alternating 

current (AC).  Basic, initial DC testing was conducted with a Wavetek Meterman 10XL 

multimeter to determine device yield per wafer.  The Wavetek could measure a maximum 

of 20 MΩ, and was found to be a suitable initial test of the sputtered devices.  More in-

depth DC analysis was conducted using an HP 4140 pA Meter (Figure 4) to obtain 

current-voltage (I-V) plots between 0.1 and 100 V in both positive and negative 

polarities.  Hysteresis plots were acquired through the use of a Radiant Technologies 

RT6000HVS (Figure 5) from 1 to 19 V (being largest whole number potential at which 

measurements could be performed in the low voltage mode). 
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Figure 4 – The HP 4140 pA Meter used for the acquisition of I-V plots from the 

sputtered BaTiO3 capacitors with either Ni or Pt electrodes. 

 

 

Figure 5 – The Radiant Technologies RT6000HVS used for 

the acquisition of hysteresis loops for the sputtered BaTiO3 

capacitors. 
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 Alternating current (AC) testing was conducted with two pieces of equipment.  

The first was a Leader LCR-745-01 set to measure at 1 kHz (Figure 6).  The system 

measures at a Vrms or 1 V, and was used with 0 V DC bias.  The second piece of AC test 

equipment was an HP 4194 (Figure 7) at 1 Vrms with 0 V DC bias from 500 Hz to 

200,000 Hz. 

 

 

Figure 6 – The Leader LCR-745-01 test bridge used for initial AC 

investigations at 1 kHz, 1 Vrms, and 0 V DC bias. 

 

 

Figure 7 – The HP 4194 used for more in depth AC characterization at 1 Vrms 

with 0 V DC bias at frequencies between 500 and 200,000 Hz. 

 

 Testing on the HP 4140B, HP 4194, and RT6000HVS was conducted in a 

specially fabricated Faraday cage made of solid Al with two coaxial and two triaxial 
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throughputs for electrical connections (Figure 8).  The image also shows the micro-

positioning needles used to make contact with the anode and cathode of all devices 

during electrical testing.  The combined use of the Faraday cage with micro-positioning 

needles allowed precise measurements of the dielectric properties of the sputtered 

BaTiO3 devices at temperatures between 20°C and 300°C (hot plate also pictured in 

Figure 8) with minimal external electrical interference. 

 

 

Figure 8 – Image of the specially made, solid Al Faraday cage used for a portion 

of the electrical testing. 

 

 

5.3. Chemical and Microstructural Characterization Equipment 

 A variety of chemical and microstructural characterization techniques were used 

throughout the investigation of the sputtered nano-capacitors.  X-ray diffraction (XRD) 

was conducted using a Philips X-Pert system at 2θ values between 5° and 90° with 0.03° 

incremental steps at a rate of 1.5 sec/step using Cu Kα radiation with a wavelength of 

1.54 Å.  A Kratos Analytical Axis 165 with a Mg source was used for all x-ray 

photoelectron spectroscopy (XPS) work.  Scanning electron microscopy (SEM) was 

performed on both a Hitachi S-4700 FESEM and Helios Nanolab 600 FIB-SEM.
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Abstract 

 Thin film capacitors were sputtered on Si wafers with Ni electrodes in order to 

determine the dielectric properties of reactively sputtered TiOx with a base metal 

electrode system.  The use of Ni electrodes gave electrically responsive devices with low 

frequency resistances of 350 to 9100 Ω, permittivities from 250 to 1500, and losses 

between 0.300 and 0.750.  The large loss values have been attributed to the semi-

conductive nature of sub-stoichiometric TiOx.  The decreased resistance is subsequently 

responsible for the elevated permittivities.  Dielectric data was able to analyzed by a full 

factorial design of experiments analysis, and has be related to the activity of oxygen in 

the plasma during deposition.  XPS characterization confirmed the proposed effects of 

oxygen both in and on the film during deposition. 

 

1. Introduction 

 Thin films of TiO2 have found significant use in optical and chemical sensor 

applications [1-3], as well as for low to moderate permittivity dielectric materials [4-6].  

Bulk rutile TiO2 has a permittivity of 170 parallel to the c-axis and 89 perpendicular to 
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the c-axis [2].  The anatase form of TiO2 has been reported to have a permittivity as high 

as 76 for 60 nm thick films [7].  Literature on amorphous TiO2 as well as the rutile, 

anatase, and metastable structures of polycrystalline TiO2 thin films show a range of 

permittivities from as low as 3 to above 800, depending on deposition technique and 

process conditions [8-11].  Lower permittivities have generally been observed with lower 

losses [5, 8, 9].  The high leakage currents and loss values observed in thin film TiO2 

dielectrics compared to other metal oxides has severely limited the use of TiO2 as a 

capacitor [1].  The most influential variable on the electrical response of TiO2 thin films 

is the defect chemistry, which is significantly dependent on the processing technique used 

and the associated parameter levels.  Sputtering is a thin film deposition technique that 

allows the defect chemistry to be modified through a variety of process parameters (e.g. 

deposition power, oxygen content of plasma, deposition temperature, etc.). 

 The most significant defects in the TiO2 system are oxygen vacancies and 

titanium interstitials [12, 13].  The concentration of these defects is affected by the 

oxygen concentration during sputter deposition, and can be indirectly measured by the 

electrical responses of the resulting film.  Films sputtered at low oxygen concentrations 

typically have higher permittivities and corresponding higher losses than films made at 

higher oxygen concentrations [5].  Room temperature depositions require an oxygen 

concentration between 10% and 50% in the plasma to obtain acceptable permittivities and 

loss values.  Similar trends were observed for the conductivity of sputter deposited TiO2 

films [14, 15]. 

 Another factor that has been observed to impact electrical performance of the 

TiO2 thin films has been microstructure.  The crystallinity, nature of phases (anatase, 

rutile, etc.), and porosity (both macro- and micro-porosity) are known to, at least in part, 

control the dielectric properties of these films.  Lower film crystallinity, which has been 

suspected to be due to film stress, results in a lower permittivity film  [7].  Other work 

indicated that films sputtered at temperatures below 500°C were found to be amorphous, 

and also showed increased permittivity values [8, 9].  Furthermore, deposition across a 

range of 200° to 500°C showed a lack of dependence on deposition temperature in 

regards to electrical response [8], suggesting that if the material is amorphous deposition 

temperature does not play as major a role in film development as it does with crystalline 
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films.  Post-deposition annealing, however, has been shown to crystallize the films to 

form coexisting anatase and rutile structures at annealing temperatures of 300°C [8], and 

a single phase of rutile at 800°C [16].  In both cases, the dielectric properties of the films 

were observed to improve over the amorphous, as-deposited materials.  These results 

suggest that the as-deposited films were oxygen deficient, and that a subsequent 

annealing, even at as low a temperature as 300°C, in an oxygen containing atmosphere 

supplies enough thermal energy to begin crystallization of the film as well as enough 

oxygen to minimize oxygen vacancy concentration [16]. 

 The present work was conducted to gain a more in-depth understanding of the 

behavior of the dielectric properties of reactively sputtered TiOx thin films with Ni 

electrodes using statistical design and analysis.  The electrical properties of the films will 

also be correlated with the O:Ti ratios in the resultant films, and ultimately linked with 

the activity of the oxygen in both molecular and ionic form in the deposition chamber 

during sputtering. 

 

2. Procedure 

 All samples were fabricated on 4 inch, <111>, p-type Si wafers with 1 μm thermal 

oxide for electrical insulation.  The wafers were cleaned in a series of acetone, methanol, 

and DI water with subsequent spin drying and a dehydration bake at 200°C.  The bottom 

Ni electrodes were patterned with a physical mask consisting of 5 parallel lines per 

quarter wafer measuring 1.6 mm wide by 3.2 cm long at a thickness of 100 nm using a 

Denton Discovery-18 sputter deposition system (Fig. 1.a).  The dielectric was then 

patterned using another physical mask with 1 square-shaped opening per quarter wafer 

measuring 2.7 cm per side to a thickness of ~175 nm using a Ti target at DC powers 

between 100 and 300 W in a reactive atmosphere of between 50 and 75% O2 in Ar (Fig. 

1.b).  The top electrode was then patterned by rotating the electrode mask 90º in relation 

to the bottom electrodes, resulting in 25 capacitor structures per quarter wafer with active 

device areas of 2.6 x 10
-2

 cm
2
 (Fig. 1.c).  An image of a quarter wafer of a completed 

sample after deposition of all three layers is shown in Fig. 2.  Plasma composition was 

controlled via two mass flow controllers connected to Ar and O2 cylinders.  The thickness 

of each of the three layers was measured using a Tencor Alpha-Step 200 profilometer. 
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Initial DC resistance was measured using a handheld multimeter (Wavetek 

Meterman 10XL) to test for electrical discontinuity; with any location on the wafer 

measuring a resistance < 1 MΩ considered a non-testable device.  The percentage of 

devices with measurable dielectric properties was then calculated based on the ratio of 

devices with resistance < 1 MΩ to the total number of locations per wafer (e.g. 5 

locations with < 1 MΩ resistance gives 95 electrically measurable devices per 100 

locations on the wafer, resulting in a percent of testable devices of 95%).  Low frequency 

measurements were then made with a Leader LCR-745-01 test bridge at 1 kHz in ambient 

air at room temperature to measure capacitance, loss, and resistance.  Based on the 

measured capacitance and thickness values, the effective permittivity of the sputtered 

TiOx films were calculated. 

 To gain an understanding of the effects of the sputtering process variables on the 

dielectric properties of these devices, a 2-level full factorial design of experiments (DOE) 

matrix with 3 variables was created using Design Expert 7.1 statistical software packages.  

The variables and their corresponding levels are given in Table I.  In addition to the 

prescribed 8 tests for the DOE, 2 center point samples were run at 62.5% O2 and 160°C 

deposition temperature at both 100 W and 300 W to test for curvature within the system.  

All samples were fabricated and electrically tested as described above, and statistically 

analyzed using the statistical software. 

 

3. Results and Discussion 

 The results of the DOE were analyzed in several parts.  First, the percentage of 

testable devices was calculated as a measure of fabrication reliability.  Next the dielectric 

response properties (e.g. resistance, permittivity, and loss) were analyzed to determine 

the effect of the sputtering process parameters on the electrical response of the TiOx 

films.  Lastly, all of responses were related to the oxygen-based phenomenon occurring 

in the deposition chamber during sputtering. 

 

3.1. Percentage Testable Devices 

 The DOE did not show any statistically significant pattern in the yield data at a 

standard confidence level, α, of 5%.  Plotting the percentage of testable devices versus 
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deposition temperature, however, shows a general increasing in yield with increasing 

temperature (Fig. 3).  Given the standard deviations associated with each temperature, it 

can be seen that the statistical variance was interpreted as noise by the DOE software.  

Whereas a specific numerical model cannot be determined, the general trend of 

increasing testable devices (both the averages and associated standard deviations) with 

increasing deposition temperature is an important finding in itself.  This behavior 

suggests that the increased energy present in the system due to the elevated temperature is 

aiding in the fabrication of less defective dielectric films, and was the first indication that 

an elevated temperature may result in more devices with good electrical properties. 

 

3.2. Resistance 

 The room temperature resistance values of individual devices as measured by an 

LCR meter ranged from 350 to 9140 Ω depending on processing conditions, and were 

capable of being modeled by the DOE software (wafer averages given Table II).  These 

values are within the bounds of reported resistances in the literature, which range from 

300 Ω to over 100 MΩ [10, 15, 17, 18].  The TiOx system showed a complex 3-way 

interaction with the process variables as all three factors interacted with one another to 

create complex inter-relationships between the factors and the measured resistance (Fig. 

4).  It was observed that an elevated temperature appears to flatten the resistance curve 

versus oxygen content and power at the upper end of the measured resistances (between 

5500 and 7000 Ω).  This is likely due to the added thermal energy allowing the atoms to 

reposition themselves into more regular, short range structures, which translates to better 

electrical performance.  Elevated temperatures may also be creating a more uniform 

oxygen entrapment in the films, resulting in a more uniform resistance profile across a 

wide range of oxygen concentrations and deposition powers.  The resistance was also 

observed to decrease at higher oxygen contents, regardless of deposition temperature.  

This behavior may be due to the increased bombardment of negatively charged oxygen 

ions against the surface of the depositing films [6, 19, 20].  This bombardment creates 

additional film defects, resulting in a film with lower resistance.  This can be seen in XPS 

data obtained from 20ºC depositions across various oxygen contents and power levels 

(Table III).  At 100 W, the O:Ti ratio was observed to decrease from 1.60 at 50% to 1.49 
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and then 1.40 at 60% and 70%, respectively.  The decreasing O:Ti ratio with increasing 

oxygen content in the plasma was also found at the 300 W deposition, with a O:Ti ratio 

of 1.66 at 50% O2 and decreasing to 1.54 and 1.52 for 60% and 70% O2, respectively.  

The same phenomenon may be occurring with respect to power, as the resistance is found 

to decrease with increasing power.  As the power is increased, the negatively charged 

oxygen ions gain more energy as they are propelled toward the substrate surface, again 

resulting in the addition of more film defects.  This trend does not directly match with the 

XPS data as the O:Ti ratio was observed to increase with increasing power.  However, as 

the O
2-

 ions impact the film surface with more energy at 300 W than at 100 W, it is 

reasonable to assume that more of these ions may become trapped in the film after 

disrupting the surface order of the developing film.  Thus more damage is imparted to the 

film, despite the added O content.  The higher energy O
2-

 ions may be re-sputtering the Ti 

atoms from the surface of the developing film, thus effectively increasing the O:Ti ratio 

thus counteracting the increased film damage. 

 

3.3. Permittivity 

 The calculated permittivity ranged between 245 and 1495 (wafer averages in 

Table II), and fits within the wide range of permittivities observed in the literature from 5 

[1] to greater than 2000 [21, 22].  As with the resistance, a complex 3-way interaction 

was observed within the statistical analysis of the data (Fig. 5).  Similar trends are 

observed for the effective permittivity as were seen with the resistance.  Higher 

deposition temperatures resulted in less appreciable changes in the calculated permittivity 

and display a more flat surface.  At 20°C, an increase in the oxygen content in the plasma 

resulted in a decreased permittivity, and is more pronounced at a 300 W deposition 

power.  This behavior again fits the pattern of increased oxygen ion activity in the plasma 

interacting with the substrate surface during deposition, resulting in film damage as 

discussed above.  The power trends are observed to depend on the deposition temperature 

as well.  At 20°C an increase in power results in an increased permittivity; whereas at 

300°C, an increase in power corresponded to a slight decrease in permittivity.  The 20 °C 

permittivity showed pronounced sensitivity to deposition power at 50% oxygen in the 

plasma, where the permittivity was observed to decrease from over 1150 to less than 350 
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with power decreasing from 300 W to 100 W.  This is in contrast to the rising resistance 

occurring simultaneously.  This contradiction is not supported by the oxygen ion activity 

theory proposed for the resistance, and may be related to the increased oxygen atomic 

concentration found in the final film (Table III).  As the permittivity of TiOx is based on 

the polar nature of the O atom in a Ti tetrahedral interstitial site [12, 18, 23], an increase 

in the absolute O concentration in the film should result in an increased permittivity. 

 

3.4. Loss 

 The loss was also found to be involved in a 3-way interaction with the process 

variables.  The measured values ranged from 0.300 to 0.748 (wafer averages in Table II).  

The high loss values of these films are due to the n-type semi-conductive nature of sub-

stoichiometric TiOx ceramics [12, 13].  In most respects, the loss trends mirror those 

observed for resistance; where the resistance is maximum the loss is minimum (Fig. 6).  

This same trend has been observed in other sources [9, 18].  Regardless of the deposition 

temperature, a decrease in oxygen content in the plasma results in a lower loss.  This 

observation is consistent with the proposed activity of the negatively charged oxygen ions 

in the plasma and the increased atomic percent in the film.  The power trends depend on 

deposition temperature with a low sensitivity to power at 20°C, and variable sensitivity at 

temperatures approaching 300°C with an increase in power resulting in an increased loss 

to varying degrees depending on percent O2 in the plasma.  The 300°C response, while 

not observed for the resistance or permittivity, still matches with the oxygen ion theory, 

as an increased power will result in more energetic oxygen ions striking the substrate 

surface.  At 100 W, an increase in oxygen content significantly raises the loss and 

decreases the resistance.  As the loss is a measure of non-90° current flow as a result of a 

continuous flow of current passing through the device, this behavioral match between the 

loss and resistance was expected.  Similarly, at 50% oxygen an increase in power results 

in an increased loss, with a corresponding decrease in resistance, due to the added energy 

imparted to the oxygen ions by the increased power creating a higher defect 

concentration in the film. 
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3.5. Discussion 

 Final observation of all three responses as a whole shows a complete picture of 

how the activity of the oxygen in the plasma is affecting the chemical and electrical 

natures of the TiOx thin films.  As the  percent O2 is increased in the plasma, the 

concentration of O
2-

 ions increases.  This results in more damage to the film resulting in 

an increased loss, decreased resistance, and decreased permittivity.  Likewise, as the 

power is increased the resistance decreases and the loss increases due to the same 

mechanism.  The permittivity, however, is observed to increase, possibly due to the 

increased O:Ti ratio resulting from the added oxygen entrapment and/or the re-sputtering 

of Ti from the film surface as a consequence of the increased energy in the O
2-

 ions.  

Lastly, in both the resistance and permittivity the increasing of deposition temperature 

had the effect of flattening the surface models, and lessening the response sensitivities to 

both percent O2 and deposition power.  In the case of the loss models, an increased 

temperature increased the sensitivity to power, potentially due to the scale of the loss 

value and the method of measurement.  All of these factors combine to present a complex 

yet predictable system. 

 

4. Summary 

 Dielectric testing of TiOx devices with Ni electrodes resulted in the development 

of statistically based models that can be used to analyze the resistance (350 to 9140 Ω), 

permittivity (245 to 1495), and loss (0.300 to 0.748) of devices with similar thicknesses 

of TiOx dielectric (175 nm) and Ni electrodes (100 nm).  Dielectric properties appear to 

vary based on the activity of oxygen ions within the plasma at various oxygen and power 

combinations ranging from 50% to 75% and 100 to 300 W, respectively, over a wide 

range of temperatures between 20°C and 300°C.  XPS data has confirmed the observed 

trends with an O:Ti ratio of 1.60 at 100 W and 1.66 at 300 W at 50% O2 decreasing to 

1.40 and 1.52, respectively, at 70% O2.  These results lead to a more complete, self-

consistent understanding of the development of these devices during sputter deposition.  

In addition, the models appear to be self-consistent with the loss increasing as the 

resistance is decreasing, with similar trends in permittivity as was observed in the 
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resistance.  Additionally, all measured dielectric property values fit within the range of 

those reported by other authors. 
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Figures 

   

   

Fig. 1 – Process sequence followed for the patterned deposition of a single dielectric layer capacitor.  1
st
 

electrode layer (a), dielectric (b), and 2
nd

 electrode layer (c).  Vacuum was broken between layers to allow the 

exchanging of physical masks between depositions. 

 

(a) (b) (c) 
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Fig. 2 – Images of a TiOx specimen with Ni electrodes.  

Upper left image is a close up view of the electrode cross 

over areas. 
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Fig. 3 – Percentage devices with measurable dielectric properties versus 

deposition temperature for the TiOx DOE shows a positive temperature 

correlation. 
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Fig. 4 – Contour plots of the predicted room temperature resistance of reactively sputtered TiOx with Ni 

electrodes at 20°C (a) and 300°C (b). 

(b) 

(a) 
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Fig. 5 – Contour plots of the predicted room temperature permittivity of reactively sputtered TiOx with Ni 

electrodes at 20°C (a) and 300°C (b). 

(b) 

(a) 



 

 

38 

 

 

 

Fig. 6 – Contour plots of the predicted room temperature loss of reactively sputtered TiOx with Ni electrodes 

at 20°C (a) and 300°C (b). 

(b) 

(a) 



 

 

39 

Tables 

Table I.  DOE parameters for the characterization of TiOx sputter deposition 

 Low High 

Power (W) 100 300 

Percent O2 (%)  [balance Ar] 50 75 

Deposition Temperature (°C) 20 300 
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Table II.  Average and standard deviations of measured dielectric properties for the TiOx 

DOE specimens with Ni electrodes 

Run 

# 

Power 

(W) 

O2 

Conc. 

(%) 

Dep. 

Temp.  

(K) 

Resistance 

(Ω) 
Permittivity Loss 

1 100 50 20 7700 ± 520 340 ± 12 0.458 ± 0.04 

2 100 75 20 3300 ± 2300 480 ± 120 0.645 ± 0.05 

3 300 50 20 20000 ± 770 1200 ± 220 0.495 ± 0.09 

4 300 75 20 3200 ± 240 610 ± 72 0.608 ± 0.08 

5 100 50 300 6700 ± 1500 520 ± 28 0.352 ± 0.04 

6 100 75 300 5200 ± 1000 400 ± 59 0.627 ± 0.09 

7 300 50 300 6200 ± 1000 340 ± 36 0.585 ± 0.07 

8 300 75 300 6900 ± 700 280 ± 20 0.663 ± 0.06 
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Table III.  Calculated O:Ti ratios based on XPS data for samples TiOx deposited at 20°C 

20°C 
Power 

100 W 300 W 

%O2 

50 1.60 1.66 

60 1.50 1.54 

70 1.40 1.52 
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Abstract 

 Nano-scale BaTiO3 thin film capacitors with Ni electrodes were RF-magnetron 

sputtered onto Si wafers.  A design of experiments regimen was performed to gain an 

understanding of the process variable interactions during deposition of Ni-BaTiO3 

devices with 100 nm thick BaTiO3 and 20 nm thick Ni without any post-deposition heat 

treatments.  RF powers between 100 and 200 W with plasmas containing between 10% 

and 50% O2 at deposition temperatures between 20°C and 300°C resulted in calculated 

permittivities from approximately 150 to 1100 with losses between 0.016 to 0.371.  

Resistances were > 20 MΩ with device yields averaging > 95%.  Statistical models were 

fit to the permittivity and loss data with R
2
 values of 0.99 and 0.91, respectively.  Model 

predictions based on the design of experiments results tested at 150W and 30% O2 at 

20°C showed a deviation of predicted versus actual values of 7.1% for permittivity and 

19.0% for loss.  Variations in the dielectric response were related to the activity of 

oxygen both in the plasma and in the film during sputter deposition. 
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1. Introduction 

Thin film dielectrics with high permittivity and low loss have many applications 

in the electronics industry.  One of the most commonly used dielectric materials for 

capacitors is BaTiO3 [1].  Applications for these thin films include dynamic random 

access memory (DRAM) [2-5], tunable microwave devices [5-8], as well as in more 

traditional discreet, solderable capacitors [1, 4, 6, 7].  In order to achieve higher 

capacitance in a smaller area for high-end electronic devices, the fabrication of capacitive 

components using tape-casting technology becomes a limiting factor in achieving thin 

dielectric layers [9, 10].  This limitation requires the use of techniques designed 

specifically for the deposition of thin films not based on powder processing. 

One of the major issues involved with any thin film technique used for the 

fabrication of thin film capacitors is the necessity of creating uniform, nanometer scale 

layers capable of performing up to the standards of the electronics industry.  As these 

thicknesses are on the same scale as many microstructural characteristics, such as grain 

size, ferroelectric domains, and even the electrode interfaces [11, 12], it can be difficult to 

ensure property uniformity on a local scale when the device size also continues to 

decrease.  As a result, both intrinsic (i.e. appropriate directional response of a single 

ferroelectric domain) and extrinsic (i.e. phase boundaries, defect densities, etc.) 

properties become more pronounced [11].  Intrinsic size effects are expected to be seen as 

a ferroelectric transition shift to lower temperatures, a broadening of the temperature 

dependence of the permittivity, and a drop in the peak permittivity.  Extrinsic size effects 

have been observed to account for 60% to 70% of the dielectric property values in some 

of the common perovskite materials [11], and are seen to vary depending on the 

deposition method and chosen materials. 

 There are a variety of techniques that have been researched to deposit thin films 

of BaTiO3 dielectric, including sol-gel [2, 13] and various methods of chemical vapor 

deposition (CVD) [14, 15].  Sputtering has been reported as having the capability to 

produce films with quality as good as that achievable with CVD [16, 17] and are more 

reproducible [5, 18] with high mass production potential [6].  During sputtering, the 

electrical behavior can be modified and, ultimately, engineered using processing 

conditions.  The processing parameters that can be readily controlled during BaTiO3 
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sputtering are the percent O2 in the plasma, deposition temperature, plasma pressure, and 

RF power (Table I).  A decrease in the percent O2 in a plasma during BaTiO3 sputtering 

results in a decrease in permittivity [2, 19, 20], increase in conductivity [21], increase in 

loss [2, 22], decrease in crystallinity [20], and a decrease in sensitivities to test 

temperature and test frequency [19].  By decreasing the deposition temperature the 

crystallinity of the film in reduced [23-27], the permittivity is decreased [21, 24, 26-32], 

the loss is lowered [26-28], and the breakdown strength drops [30, 31].  Increasing the 

total pressure during sputtering leads to an increase in leakage current [33], increased 

residual stress [6], more stoichiometric films (i.e. Ba:Ti:O approaches 1:1:3) [34], and 

decreased sensitivity on the target-to-substrate angle [34].  An increase in the RF power 

used during deposition increases the permittivity [35], decreases residual stress [36], and 

reduces leakage current [33].  Each of these factors represents a portion of the overall 

factors determining the properties and performance of the dielectric film.  To date, an in 

depth characterization of the process parameters and the corresponding effects on the 

dielectric properties, which is required to readily develop the most robust fabrication 

philosophy for thin film capacitors, has not been conducted.  The present work aims to 

give a detailed look into the effects of the sputtering parameters on the dielectric 

properties using statistical design and analysis, and attempts to relate the measured 

properties to physical phenomena occurring during the deposition process. 

 

2. Procedure 

 Silicon <111>, p-type wafers, 4 inches in diameter with 1 μm thermal oxide for 

electrical insulation were used as the substrates for all experiments.  The wafers were 

cleaned using a series of acetone, methanol, and DI water with a subsequent spin drying 

and dehydration bake at 200°C.  For the purpose of statistical analysis and future post-

deposition processing, the wafer was patterned with a grid of 11 x 11 capacitors for each 

quadrant of the wafer.  The bottom Ni electrodes were patterned with a physical mask 

consisting of 11 parallel lines per quarter wafer measuring approximately 75 μm wide by 

2.4 cm long to a thickness of ~20 nm (Fig. 1.a) using a Denton Discovery-18 sputter 

deposition system.  The dielectric was patterned using another physical mask with 1 

opening per quarter wafer measuring 2.7 cm square to a thickness of ~125 nm (Fig. 1.b).  
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The electrode mask was then rotated 90° from the bottom electrode layers, and the top Ni 

electrodes were deposited to a thickness of ~20 nm (Fig. 1.c).  This process resulted in 

121 capacitors per quarter wafer with active device areas of 5.43 x 10
-5

 cm
2
.  The plasma 

composition for all depositions was controlled with two mass flow controllers attached to 

Ar and O2 cylinders.  The thickness of each of the three layers was measured using a 

Tencor Alpha-Step 200 profilometer. 

Initial DC resistance was then measured using a handheld multimeter (Wavetek 

Meterman 10XL); with any location on the wafer measuring a resistance < 20 MΩ 

(approximately < 5x10
8
 Ω-m) considered a non-functional device.  The yield was then 

calculated based on the ratio of functional devices to the total number of locations per 

wafer.  Low frequency measurements were then made with a Leader LCR-745-01 test 

bridge at 1 kHz to measure capacitance, loss, and resistance at room temperature.  Based 

on the measured capacitance and thickness values, the effective permittivity of the 

sputtered BaTiO3 films were calculated.  The effective permittivity and loss values were 

analyzed using Design Expert 7.1 statistical software package. 

 

3. Design of Experiments Setup 

 A Box-Behnken design of experiments (DOE) was used to better understand the 

effects of processing parameters on the electrical properties.  The variables investigated 

were deposition temperature, RF power, and percent oxygen in the plasma (Table II).  

The resulting 13 samples were tested for dielectric properties following the procedure 

outlined above in the as-deposited state (i.e. no annealing).  The levels of RF power (100, 

150, and 200 W) and O2 concentrations (10%, 30%, and 50%) are based on trends seen in 

the literature as being the preferred range of values for sputtered BaTiO3 with acceptable 

dielectric properties.  The deposition temperatures were set at 20ºC, 160ºC, and 300ºC 

due to the desire to have a low, medium, and high value, with 300ºC being the upper limit 

of the deposition chamber. 

 

4. Results and Discussion 

 All samples from the DOE were electrically tested for resistance, capacitance, and 

loss at 1 kHz.  A statistical model was fit to the permittivity and loss data with R
2
 values 
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> 0.90.  The room temperature resistance of the testable devices, however, was observed 

to be too high for measurement with the LCR meter used for these experiments.  

Assuming a resistivity of BaTiO3 between 20 and 40 MΩ-cm [37], the resistance of a 100 

nm thick film with an area of 5.43 x 10
-5

 cm
2
 is expected to be on the order of 3.7 to 7.4 

MΩ.  This could be readily measured with the LCR meter, but it is possible that the 

added resistance of the electrodes in conjunction with the signal losses associated with 

unshielded test fixtures may have increased the observed resistance of these devices. 

Device yield was calculated based on multimeter readings of all 484 test locations 

on each wafer.  The number of high resistance devices (e.g. resistance > 20 MΩ on 

multimeter) divided by the total number of possible devices (484) resulted in a 

percentage yield per wafer.  At BaTiO3 thicknesses of 100 to 125 nm yields were seen 

between 99.4% and 100% (0 to 3 failed devices per wafer), with an average of 99.9 ± 

0.2%.  Since all but two of the preparation conditions resulted in 100% yield, no 

statistical modeling was done on the yield data. 

 

4.1. Dielectric Measurements 

The samples had effective permittivities ranging from approximately 180 to 1100 

and loss values of 0.016 to 0.371 for individual devices, depending on deposition 

conditions (averages given in Table III).  The models for the predicted room temperature 

permittivity are shown in Figure 2.  For both deposition temperatures, at 50% O2 there 

was a maximum in permittivity observed at 150 W, with the permittivity decreasing at 

lower and higher power values.  At low deposition temperatures (below 160°C), this 

parabolic trend continued as the concentration of O2 decreased until it was between 10% 

and 20%, at which point the permittivity leveled off, and became nearly constant at 

approximately 840.  At 300°C the initial parabolic relationship at 50% O2 was inverted at 

10% O2, with a minimum around 175 W and the permittivity increasing as power 

increased or decreased from that value.  Again, as was observed at 20°C, a constant 100 

W deposition power showed the permittivity increasing with decreasing O2 content in the 

plasma at 300°C, but with significantly less sensitivity to oxygen content than at 20°C. 

The maximum permittivity for all temperatures was observed to be at 

approximately 50% O2 and 150 W, and interestingly the values were approximately the 
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same: 1033 ± 75 at 20°C and 938 ± 69 at 300°C.  This suggests that despite all of the 

processing parameters during deposition, there exists a constant permittivity at 50% O2 

and 150 W regardless of deposition temperature. 

 Figure 3 displays the models for the predicted room temperature loss.  Both 

temperature models show loss values of less than 10% for all process variable 

combinations, with the majority of values being less than 7%.  These loss values fit well 

with those found in the literature for other sputtered BaTiO3 films, which ranged from 

0.2% to over 100% [2, 19, 25, 29, 35, 38].  It should be noted, however, that the thickness 

of the BaTiO3 films in this study are approximately 5 times thinner than the thinnest film 

studied by that group of authors.  It was also observed that the behavioral trends of the 

models inverted from 20ºC to 300ºC, with the 20ºC max of 0.066 at ~35% O2 and 150 W 

being the minimum of 0.008 at 300ºC.  The minimum loss at 20ºC was seen at 10% O2 

and both 100 W and 200 W with a value of 0.015 whereas the maximum loss at 300°C 

was observed to be 0.086 and 0.100 at 50% O2 and 100 W and 200 W, respectively. 

 

4.2. Dielectric Response in Relation to Processing Conditions 

 In order to better understand the physical phenomenon behind the observed trends 

in the dielectric models, it is necessary to examine the individual forces acting on the film 

during deposition, and how these forces respond to changes in process parameters. Of 

particular interest is the activity of negatively charged oxygen ions in the plasma, and the 

oxidation/reduction potential of the dielectric film.  Both of these factors are readily 

altered by the process parameters investigated by the DOE, and can be related to the 

measured dielectric properties. 

 Oxygen ion activity has been noted in the literature to impart damage to 

developing oxide films [1, 23, 34].  These negatively charged ions are propelled by the 

plasma sheath voltage surrounding the target toward the substrate, and can result in film 

damage such as oxygen vacancies and resputtering of the film (e.g. film removal) [1, 34].  

Given the difference in sputter rates between Ba and Ti atoms, unequal material removal 

is likely to occur due to the lower energy state of the O
2-

 ions versus the Ar
+
 radicals 

responsible for primary removal of atomic species from the surface of the target.  Both 

the oxygen vacancies and material removal will result in a decreased resistance and 
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increased loss due to the increased number of electronic charge carriers in the dielectric.  

Assuming a stoichiometric film was originally deposited, the added O
2-

 vacancies and 

non-stoichiometric material removal would result in a lower permittivity [33, 39, 40].  If 

the deposited BaTiO3 film is non-stoichiometric prior to O
2-

 bombardment dielectric 

constant could increase or decrease depending on other processing conditions. 

 The concentration of O
2-

 ions striking the surface of the substrate is related to the 

process conditions in which the sputtering is conducted.  The simplest factor to control is 

the amount of O2 gas added to the plasma with an increase in O2 content raising the 

concentration of the negatively charged ions [41].  An increase in sputter power should 

result in an increased O
2-

 concentration due to the increased potential moving through the 

plasma [33, 42], as well give the ions more momentum from the increased electronic 

repulsion between the increased voltage on the target and the inherent negative charge on 

the oxygen ions [33].  An increase in temperature will also result in an increase in O
2-

 

activity.  Basic thermodynamic principles suggest that the increased thermal energy will 

decrease the electric potential required to ionize the O2 gas.  The thermal energy will also 

increase the molecular motion of all gaseous species, thereby increasing the O
2-

 motion 

within the chamber.  To minimize the activity of O
2-

 ions it is necessary to minimize the 

percent O2 in the plasma, as well as minimize the deposition power and temperature. 

 At the same time, however, the sputter deposition of oxide films requires an 

oxygen source to offset oxygen loss during processing [21, 23].  The preferred method to 

accomplish this is to add O2 gas to the plasma during deposition, which as stated above 

results in the detrimental addition of O
2-

 ions.  In addition to increasing the partial 

pressure of O2 in the plasma, a decreased deposition power and increased temperature, at 

the same percentage oxygen, will result in more film oxidation due to the increased 

kinetics from the thermal energy, and added reaction time given by the decreased 

deposition rate from the lower power.  An oxygen deficient dielectric will result in an 

increased loss [2, 19], decreased resistance [17, 21], and either a decrease [2, 22] or 

increase [19, 20] in permittivity. 

 In addition to the competition of the oxygen ions and the oxidation of the 

dielectric, the process parameters also relate to other phenomenon that will affect the 

quality of the dielectric film.  As Ba and Ti sputter at different rates due to their 
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difference in density of states, conductivity, and bonding energies within the BaTiO3 

matrix of the target, a condition arises where the composition of the deposited film will 

likely be Ti rich (due to its higher sputter rate compared to Ba).  The extent of excess Ti 

is related to the deposition power, as an increased power will result in more Ba being 

removed from the surface of the target, thereby bringing the deposited film closer to 

stoichiometry [35].  At some point the rates of both Ba and Ti will equalize, and the 

deposition will be as close to stoichiometry as is possible for the other given process 

conditions [35].  In addition to adjusting the deposition power, a modification of the 

oxygen content in the plasma can also affect this equilibrium point.  Assuming the sputter 

pressure is kept constant, as was the case with these experiments, the number of Ar
+
 

radicals striking the surface of the target per unit time is decreased for a given power due 

to the removal Ar gas from the plasma to allow for the addition of the extra O2.  Thus, as 

the O2 content is increased, the power required to reach the equilibrium of Ba and Ti 

sputter rates must increase by some extent to account for the decrease in the Ar
+
 

available. 

 Table IV summarizes the effects of the three process variables that were examined 

in the above DOE analysis.  These factors and the associated effects on the dielectric 

responses of the BaTiO3 film show the complex nature of the 3-way interactions that 

were expressed in the statistical models developed by the DOE.  These cause and effect 

relationships can be used to better understand the behaviors developed at the various 

process combinations displayed in the DOE models. 

 Consider the 25°C models of permittivity and loss first.  At a constant 

concentration of O2 in the plasma, the loss and permittivity are observed to experience a 

maximum at approximately 150 W.  The initial behavior of rising loss and permittivity is 

linked to the increasing concentration of oxygen ions in the plasma.  As the power is 

increased above 150 W, this behavior gives way to a combination of increased oxidation 

and a more equal sputtering of Ba and Ti atoms from the target.  This change in behavior 

may be due to a saturation of oxygen ions in the plasma at 150 W, thereby allowing the 

other factors to be more influential. 

At a constant power the loss is observed to have a maximum at approximately 

30% O2.  The relative influence of the O2 was similar to the observed influence for the 
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constant O2 case.  Namely, between 10% and 30% O2 there is a rise in the concentration 

of O
2-

 ions in plasma due to the added O2, resulting in an increased loss.  At 30% O2, the 

plasma appears to become saturated with the oxygen ions for that power, which allows 

the increased oxidation effects of the added O2 in the plasma to take effect and lower the 

loss.  Under the same constant power condition, the permittivity is found to increase with 

increasing O2 concentration at powers between 130 W and 175 W, but decrease with 

rising O2 concentration at the powers below 130 W and again above 175 W.  It should be 

noted that this increasing permittivity portion of the model occurs in the power ranges 

associated with increased loss.  As such, the increasing permittivity is likely to be due to 

the increased concentration of oxygen ions as the percentage of O2 is increased.  The 

decreasing permittivity, associated with decreasing loss values, is likely due to the 

increased oxidation associated with an increase in O2 content. 

 The above trends have been displayed graphically in Figure 4.  The bottom two 

rows contain schematic representations of the loss and permittivity models, respectively.  

The second column shows the case of constant power, and the third column the constant 

percent O2 case.  The schematics display the model trends with solid lines, and denote 

any transition points (i.e. a transition from domination by O
2-

 concentration to increased 

film oxidation) using dashed lines.  Presented in this form, it can be observed that each 

area where the model indicates an increase in either permittivity or loss is a region 

dominated by the concentration of O
2-

 ions, and that for the decreasing regions the 

dominate influence is attributed to increased oxidation of the film.  It is also easier to 

observe the self-consistent nature of the DOE models: where the loss is decreasing, so too 

is the permittivity [5, 19, 22, 29]. 

 Similar trends are observed in the 300°C models, the schematic representations of 

which are given in Figure 5.  Here, again, a decrease in response is attributed to increased 

oxidation of the dielectric, and an increase to the rising concentration of O
2-

 ions.  Also 

consistent with the 20°C models, the 300°C responses are self-consistent with each other.  

The primary difference in the temperature models is the increased thermal energy in the 

system causing a change in the factor influences of a given region.  For example, at 20°C 

the increase in %O2 from 10% to 30% resulted in an increased concentration of O
2-

 ions, 

and a subsequent increase in permittivity due to the induced film damage.  At 300°C, 
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however, the increased thermal energy has increased the oxidation of the film resulting in 

a subsequent decrease in permittivity. 

 

4.3. Model Verification 

 Based on the initial results of the BaTiO3 work, a specimen was fabricated using 

30% O2 with an RF power of 150 W at a deposition temperature of 20°C, which was not 

one of the parameter sets previously investigated (Table II).  This factor combination was 

predicted by the statistical models for the as-deposited condition to have a permittivity of 

831 ± 8.4 with a loss of 0.127 ± 0.003.  Table V gives the predicted values for the 

BaTiO3 deposition versus the actual measured dielectric properties, namely a permittivity 

of 828 ± 9.9 and loss of 0.081 ± 0.045.  The only average that falls outside of the bounds 

of the predicted value is that of the measured loss which was predicted to be higher than 

was measured.  When the standard deviation of the measured loss is taken into 

consideration, however, it is reasonable to assume that the differences in averages are due 

to noise.  The predicted permittivity, however, matched well with the measured value.  

The close correlation between the predicted and measured values suggests the models are 

able to accurately predict the dielectric properties of sputtered BaTiO3 within the design 

space examined by this DOE.  The accuracy of the models suggests that it is possible to 

engineer the dielectric properties for a chosen application of nano-scale BaTiO3 films that 

has not been previously reported in the available literature. 

 

4.4 Discussion 

 Following the above analysis, it becomes clear how there could exist 

contradictory information within the available literature.  The general behavioral trend of 

increasing permittivity and simultaneously increasing loss [5, 22, 25, 29] has been in 

direct contrast with other work [2, 10] and in some cases within the same source [19].  

More specific trends, such as the effect of increasing O2 during deposition, have been 

reported to result in an increase in permittivity [2, 19] and an increase in loss [19] while 

others have found the opposite trends for both a decreasing permittivity [22] and a 

decreasing loss [2, 22].  Similar trends can be found in thickness dependencies [10, 19, 

25, 29, 43].  At face value, these contradictions may call to question the validity of one 
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testing method over another, or perhaps the need for more standardized testing regimens.  

Based on the premise of competing factors detailed above, however, it is suggested that 

these contradictions may instead be due to the chosen process parameters for the given 

source.  Given the complexity of the sputtered BaTiO3 system across a wide range of 

processing variables, the results presented in Figure 5 are an attempt at explaining and 

unifying the data found in multiple sources [2, 19, 22, 25, 26, 35].  There are some 

sources where the proposed trends do not match the presented data [29, 33], but this is 

attributed to differences in reporting methods and/or a lack of pertinent information given 

regarding the sputtering parameters. 

 

5. Summary 

 The deposition of BaTiO3 sputtered under various RF powers, O2 concentrations, 

and temperatures resulted in an accurate statistical model for the prediction of 

permittivity and loss of approximately 125 nm thick BaTiO3 films with 20 nm thick Ni 

electrodes.  The models fit the measured data with R
2
 values of 0.9912 (permittivity) and 

0.9068 (loss), showing a good correlation of the data to mathematical models.  The model 

behaviors have been related to physical phenomenon known to occur during sputtering, 

and present a basic theory for understanding the development of sputtered BaTiO3 in 

relation to the film’s dielectric properties.  The proposed theory states that there exists a 

competition between the inherent concentration of O
2-

 ions due to the presence on O2 in 

the plasma attacking the surface of the depositing film, and the increased oxidation of the 

film due to the presence of non-ionized O2 molecules within the chamber.  The balance of 

these factors can be controlled by the deposition power, fraction of O2 added to the 

plasma, and the deposition temperature.  A test of the DOE models was carried out at a 

power of 150W in 30% O2 at a deposition temperature of 20°C, and the predicted values 

were observed to be within less than 1% of the calculated permittivity and approximately 

36% of the measured loss (actual value lower than predicted value).  The DOE results 

were then related to the dielectric values available in the literature, and an explanation 

offered to explain the apparent contradictions in observed trends due to the chosen test 

parameter ranges examined. 
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Figures 

   

   

Fig. 1 – Process sequence followed for the patterned deposition of a single dielectric layer capacitor.  1
st
 

electrode layer (a), dielectric (b), and 2
nd

 electrode layer (c).  Top images are plan view looking at surface of 

substrate, and bottom images are cross sections.  Vacuum was broken between layers to allow the exchanging of 

physical masks between depositions. 

 

(a) (c) (b) 
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Fig. 2 – Model graphs of the predicted room temperature permittivity of sputtered BaTiO3 at 20°C (a) and 

300°C (b) in the as-deposited condition. 

 

(a) (b) 
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Fig. 3 – Model graphs of the predicted room temperature loss of sputtered BaTiO3 at 20°C (left) and 300°C 

(right) in the as-deposited condition. 

 

(a) (b) 
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Fig. 4 – Schematic diagrams detailing the physical phenomena responsible for the loss and permittivity behaviors 

observed from the DOE models for 20°C condition.  Solid lines and curves represent observed model behavior.  The 

dashed lines indicate a change in dominating factors. 
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Fig. 5 – Schematic diagrams detailing the physical phenomena responsible for the loss and permittivity behaviors 

observed from the DOE models for 300°C condition. Solid lines and curves represent observed model behavior.  

The dashed lines indicate a change in dominating factors. 
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Tables 

Table I. Impact on electrical properties by process variables during sputtering 

Process 

Variable 
Impact on Electrical Properties 

%O2 
↑ %O2 : ↑ permittivity, crystallinity, sensitivity to temp and frequency 

↓ %O2 : ↑ conductivity, loss 

Tdep 
↑ Tdep : ↑ crystallinity, permittivity, loss, breakdown strength 

↓ Tdep : ↑ amorphorsity, residual stress 

Ptotal 
↑ Ptotal : ↑ leakage current, residual stress, stoichiometry 

↓ Ptotal : ↑ sensitivity to target-substrate angle and placement 

RF Power 
↑ Power : ↑ permittivity 

↓ Power : ↑ residual stress, leakage current 
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Table II.  Variable levels for Box-Behnken design of experiments 

 Low Mid Hi 

RF Power (W) 100 150 200 

%O2 [balance Ar] 10 30 50 

Deposition Temperature (°C) 20 160 300 
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Table III.  Compilation of dielectric property measurements for the Ni-BaTiO3 DOE 

specimens 

Run 

# 

Power 

(W) 

O2 Conc. 

(%) 

Dep. Temp. 

(K) 

Average 

Permittivity 

Average 

Loss 

1 200 50 433 580 ± 27 0.092 ± 0.023 

2 100 30 293 500  ± 18 0.042 ± 0.010 

3 150 10 293 800 ± 40 0.046 ± 0.005 

4 150 50 293 1000 ± 75 0.059 ± 0.005 

5 100 10 433 840 ± 80 0.039 ± 0.019 

6 150 50 573 940 ± 69 0.045 ± 0.003 

7 150 10 573 280 ± 79 0.023 ± 0.007 

8 150 30 433 640 ± 98 0.041 ± 0.018 

9 100 30 573 720 ± 24 0.038 ± 0.003 

10 200 30 293 710 ± 27 0.042 ± 0.006 

11 200 30 573 480 ± 16 0.042 ± 0.011 

12 200 10 433 460 ± 15 0.033 ± 0.002 

13 100 50 433 450  ± 16 0.062 ± 0.006 
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Table IV. Effects of processing variables on the physical development and electrical 

properties of sputtered BaTiO3 films 

 Physical Effects 

Responsible for Given 

Property Change 

Adjustment of Parameters Needed 

to Achieve Physical Response 

%O2 Power Tdep 

↑ εr 
Increased oxidation ↑ ↓ ↑ 

Decreased [O
2-

] ↓ ↓ ↓ 

↓ tan δ 
Increased oxidation ↑ ↓ ↑ 

Decreased [O
2-

] ↓ ↓ ↓ 
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Table V.  Validation of BaTiO3 DOE at 30% O2, 150 W, and 20°C 

 
Predicted 

Permittivity 

Actual 

Permittivity 
Predicted Loss Actual Loss 

Measured 

Value 
831 ± 8.4 828 ± 9.9 0.127 ± 0.003 0.081 ± 0.045 

Percent Error ----- 0.36% ----- 35.7% 
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Abstract 

 Investigation of nano-scale BaTiO3 thin film capacitors with Ni electrodes 

deposited by RF-magnetron sputtering using design of experiments and DC test methods 

was conducted.  The devices were approximately 125 nm thick BaTiO3 sputtered under 

varying RF powers (100-200 W), plasma compositions (10%-50% O2 balance Ar), and 

deposition temperatures (20°C to 300°C) with approximately 25 nm thick Ni electrodes.  

Current voltage (I-V) plots indicated highly insulating films with resistances at 1 V 

between 16 and 270 GΩ.  Hysteresis loops indicated a mix of paraelectric and 

ferroelectric films depending on the deposition conditions, with permittivities ranging 

from 170 to 10,000.  Electrical testing at temperatures between 25°C and 300°C showed 

increasing conductivity as the temperature increased with activation energies ranging 

from 0.3 to 0.9 eV for conduction, along with limited amounts of remnant ferroelectric 

behavior.  Statistical analysis of the data resulted in mathematical surface response 

models with R
2
 values of 0.90 to 0.99, but complex higher order interactions resulted in 

the models incorrectly estimating the predicted values. 
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1. Introduction 

One of the most commonly used dielectric materials for commercial capacitors is 

BaTiO3 [1].  Applications for this material as a thin film include dynamic random access 

memory (DRAM) [2-5], tunable microwave devices [5-8], and discreet capacitors [1, 4, 

6, 7].  In order to achieve higher capacitance density for high-end electronics, the 

fabrication of these devices with sub-micron thicknesses using tape-casting technology 

becomes impractical due to the necessity of powder precursors [8, 9].  This inherent 

limitation of the traditional capacitor fabrication technologies requires the use of 

techniques designed specifically for the deposition of thin films not based on powder 

processing. 

 Sputtering has been reported as having the capability to produce thin films of 

equal quality to that achievable with CVD [11, 12] that are more reproducible [5, 13] 

with high mass production potential [6].  The processing parameters that can be readily 

controlled during BaTiO3 sputtering are the percent O2 in the plasma, deposition 

temperature, plasma pressure, and RF power; each of which has been shown to impact 

the dielectric properties of the resulting film [2, 10-14].  The effects imposed by these 

parameter changes has been addressed previously [15].  Each of these factors represents a 

portion of the overall factors determining the properties and performance of the dielectric 

film.  To date, an in depth characterization of the process parameters and the 

corresponding effects on the dielectric properties, which is required to readily develop the 

most robust fabrication philosophy for thin film capacitors, has not been reported.  The 

present series of work aims to give a detailed look into the effects of the sputtering 

parameters on the dielectric properties using statistical design and analysis, and attempts 

to relate the measured properties to physical phenomena occurring during the deposition 

process.  The AC responses were previously reported [15] and determined to be related to 

the competing effects of film oxidation and oxygen ion activity in the plasma during 

deposition.  This work continues the analysis of these devices under an applied DC field, 

and determines the validity of the oxygen activity effects on the measured DC properties. 
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2. Procedure 

 Silicon <111>, p-type wafers, 4 inches in diameter with 1 μm thermal oxide for 

electrical insulation were used as the substrates for all experiments.  The wafers were 

cleaned using a series of acetone, methanol, and DI water with a subsequent spin drying 

and dehydration bake at 200°C.  To ensure the validity of the statistical analysis and 

allow for future post-deposition processing, the wafer was patterned with a grid of 11 x 

11 capacitors for each quadrant of the wafer.  The bottom Ni electrodes were patterned 

with a physical mask consisting of 11 parallel lines per quarter of a wafer measuring 

approximately 75 μm wide by 2.4 cm long to a thickness of ~25 nm using a Denton 

Discovery-18 sputter deposition system (Fig. 1.a).  The dielectric was patterned using 

another physical mask with one opening per quarter wafer measuring 2.7 cm square to a 

thickness of ~125 nm (Fig. 1.b).  The electrode mask was then rotated 90° from the 

bottom electrode layers, and the top Ni electrodes were deposited to a thickness of ~25 

nm (Fig. 1.c).  This process resulted in 121 capacitors per quarter of a wafer with active 

device areas of 5.43 x 10
-5

 cm
2
 each.  Plasma composition for all depositions was 

controlled with two mass flow controllers attached to Ar and O2 cylinders and was 

monitored with a capacitance monometer in the sputter chamber.  The thickness of each 

of the three layers was estimated using a Tencor Alpha-Step 200 profilometer on 

patterned glass slides placed near the wafer during each of the depositions, and confirmed 

by cross-sectional focused ion beam. 

Following the AC testing previously reported [15], DC testing was initiated with 

current-voltage (I-V) plots from 0.1 to 100 V using an HP 4140B pA meter.  The 

resistances of the devices were calculated assuming an ohmic relationship between the 

voltage and current at a constant voltage (e.g. V=IR).  Following I-V measurement, 

hysteresis loops were taken for each of the specimens at incrementing voltages from 1 V 

to the system’s low voltage maximum of 19 V using a Radiant Technologies 

RT6000HVS system set to low voltage.  Determination of the permittivity was calculated 

based on the initial slope of the hysteresis loops, and remnant polarizations were recorded 

directly from the loop.  The permittivity, remnant polarization, and resistances from 3 

randomly chosen locations per wafer were analyzed using Design Expert 7.1 statistical 

software package. 
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3. Design of Experiments Setup 

 As previously described [15], a Box-Behnken design of experiments (DOE) was 

used to better understand the effects of processing parameters on the electrical properties.  

The variables of the DOE were set as deposition temperature (20°C, 160°C, and 300°C), 

RF power (100, 150, and 300 W), and percent oxygen in the plasma (10%, 30%, and 50% 

O2 balance Ar).  Table I gives the process schedules for the deposition of the different 

BaTiO3 films.  These levels were selected based on trends in the literature and equipment 

limitations, and allowed a broad range of the design space to be examined.  The resulting 

13 samples were tested for dielectric properties following the procedure outlined above in 

the as-deposited state (i.e. no annealing). 

 

4. Results and Discussion 

 The AC properties and their dependencies on process conditions has been 

addressed previously [15].  In conjunction with AC behavior, the DC responses provide 

an overall understanding of how a given material will behave in a chosen application.  As 

such, current-voltage (I-V) and hysteresis plots were measured and subsequently 

analyzed statistically to gain a more complete understanding of sputtered BaTiO3 thin 

films with a thickness of approximately 100 nm. 

 

4.1. I-V Behavior 

 Current-voltage plots can give significant amounts of information regarding a 

material’s conduction mechanisms, breakdown strength, and the overall symmetry of the 

capacitive device.  I-V plots were taken for all 13 specimens as defined by the original 

DOE.  Figure 2 shows a typical I-V plot observed for these specimens.  The relative 

symmetry between the positive and negative voltage regions indicates an overall 

symmetry in the device.  This information primarily relates to the fact that the interfaces 

between the electrodes and BaTiO3 are nearly identical on both sides of the dielectric.  

This symmetry was observed for 7 of the 13 specimens.  The 6 specimens that showed 

asymmetrical response between measured positive and negative potentials prior to 

breakdown were generally symmetrical to ±10-25 V (Fig. 3), suggesting the asymmetry 



 

 

73 

may been due to the interaction of the defects within the film at high fields (10V is 

approximately 1 MV/cm).  Table II lists the voltage at which the specimens became 

asymmetrical along with a compilation of the data obtained from the I-V analysis. 

 The resistance of the specimens was calculated at 1 V assuming an ohmic 

relationship between the applied voltage and measured leakage current (Table II).  The 

insulation resistances ranged from approximately 16 to 270 GΩ, indicating that even at 

125 nm these films were excellent insulators.  Statistical analysis of the resistance data 

resulted in a predictive model for the resistance at 1 V with an R
2
 value of 0.90 (Figure 

4).  The analysis showed that resistance of these devices was greatly affected by 

interactions between the sputter power with both the percent O2 in the plasma and the 

deposition temperature.  The low temperature model shows an inverse parabolic 

relationship with power where the resistance is maximized at approximately 150 W, with 

the value observed to decrease as the power is raised or lowered to another value.  The 

relationship with the percent oxygen in the plasma is more complicated.  At 100 and 200 

W there is an inverse parabolic relationship with a maximum at approximately 20% O2, 

that transitions to a parabolic trend at 150 W with a minimum at 10% O2.  Increasing the 

temperature to 300°C resulted in more stable responses across the power and %O2 ranges 

examined.  A general parabolic trend with power was observed, the minimum of which 

was found to shift from approximately 130 W at 10 %O2 to around 200 W at 50 %O2.  

An inverse parabolic trend at 200 W with a maximum at 10 %O2 was found to transition 

to a parabolic behavior at 100 W with a minimum observed at 30 %O2. 

 The I-V plots were also used to determine the conduction mechanisms occurring 

in an insulating material over a range of applied voltages.  All of the specimens 

consistently showed 2 regions of conductivity, the first of which was ohmic at voltages 

between ±1 V with the second non-ohmic mechanism occurring at voltages of above 1 V 

and below -1 V.  The second mechanism was generally seen to be in effect until either the 

material experienced breakdown, or the maximum test voltage of 100 V for the pA meter 

was reached.  Analysis of the low voltage region (±1 V) of the data sets showed a near 

linear behavior between the voltage and leakage current.  This was determined by 

assuming that: 
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 I = C*V
n
         <1> 

 

where I is the measured leakage current (A), V the applied voltage (V), C a standard 

coefficient, and n the power exponent.  A power exponent, n, of ~1 indicates a linear (i.e. 

ohmic) behavior, and a value of 2 or more indicating a space-charge-trap limited 

conduction mechanism [16].  Using equation 1, the ln(I) was plotted against the ln(V) and 

a linear regression of the data was obtained (Figure 5).  This procedure resulted in 

exponents of approximately 1 for all but 3 of the 13 specimens, indicating that the 

majority of the specimens were following a traditional ohmic behavior at low voltages 

between ±1 V (Table II).  Of the three specimens with exponents not approaching unity, 

two showed an exponent of 0.3 and 0.4 (R6 and R4, respectively), and may be an 

indication of potentially misleading data taken for these two specimens.  The third non-

unity exponent was observed for R3 which had a value of 1.71, potentially indicating the 

presence of a space-charge-trap limited condition for this specimen. 

 At voltages above 1 V and below -1 V, the conduction mechanism was found to 

transition to a non-ohmic behavior.  Two of the more common conduction mechanisms 

found in the literature relating to BaTiO3 thin films are the Poole Frenkel (PF) and 

Enhanced Schottky (ES) mechanisms [10, 16, 17].  Both of these mechanisms involve 

lowering the barrier between the electrode and dielectric due to the application of a 

potential, but differ in the manner in which the barrier is lowered.  The ES mechanism 

relies on lowering the barrier height enough to allow an electron to jump over the barrier 

and enter the dielectric material (Figure 6.a)[16].  A PF conduction mechanism 

effectively decreases this barrier with field-enhanced thermal excitation of traps near the 

interface of the two materials, allowing the electrons to pass into the dielectric (Figure 

6.b)[16].  Both of these mechanisms can be determined based on the slope, β, of the 

log(
I
/V) versus V

1/2
 plot, where the slope for a PF based system is 

 

 βPF = (
q3

/πε)
1/2

         <2> 

with q being the electronic charge and ε representing the permittivity of the BaTiO3.  For 

an ES system the slope becomes 
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 βES = (
q3

/4πε)
1/2

        <3> 

 

Using the permittivities for these specimens acquired previously [15], theoretical βPF and 

βES values were calculated (Table II).  Figure 7 shows one of the typical log(
I
/V) vs V

1/2
 

plots with the linear regressions for both the positive and negative potentials.  As the 

positive and negative β values were comparable for the majority of the specimens, only 

the positive β is given in Table II. 

 A close examination of the data revealed that only 2 of the specimens had 

measured β values within the range of those predicted by equations 2 and 3.  Sample R7 

displayed a β of 0.372, which is comparable to the theoretical βES of 0.326, suggesting 

that the barrier lowering in this specimen is due to an Enhanced Schottky mechanism.  

Sample R9, however, resulted with a β of 0.103 which was near the theoretical βPF value 

of 0.102 for this specimen, indicating the presence of a Poole Frenkel mechanism acting 

within this specimen.  The remainder of the measured β values were mixed with 7 

specimens displaying slopes greater those predicted by equations 2 and 3, and 4 with 

slopes below the predicted ES and PF values.  As equations 2 and 3 rely on accurate 

permittivity values to correctly calculate the βES and βPF values, these deviations may be 

due to inaccurate permittivity values gained from the previous studies.  Since the 

permittivities were calculated based on overall device capacitance, any interfacial effects 

inherently affecting the measured capacitance (i.e. the presence of interfacial compounds 

or electrical dead layers) would give inaccurate permittivity calculations of the BaTiO3 

which are required for these calculations.  It is also possible that these specimens are not 

following a PF or ES based phenomenon.  Attempts to model the data with the DOE 

software were unsuccessful, likely due to the limited number of data points available to 

deal with systemic noise. 

 

4.2. Hysteresis Plots 

 Following I-V analysis, hysteresis plots were taken for all of the specimens at 

room temperature to determine the dielectric nature of the sputtered BaTiO3 (i.e. 

paraelectric or ferroelectric), and to gain a measurement of the devices’ permittivities.  

Three general dielectric behaviors were observed for the specimens (Figures 8-10).  The 
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first was consistent with a paraelectric-type response, with limited remnant polarization 

and general needle-like overall shape (Figure 8).  This trend was observed for specimens 

R3 and R7, both of which were processed at 150 W and 10 %O2.  The second behavior 

observed was the initial signs of ferroelectricity (Figure 9).  Specimens exhibiting this 

trend (R1, R5, R6, R11,and R13) gave hysteretic loops with significant amounts of 

remnant polarization, but never developed the traditional “tails” at the maximum and 

minimum polarizations (observed at the maximum and minimum applied potentials).  As 

the specimens showing this type of behavior had correspondingly high field tolerances as 

measured by the I-V plots, this lack of tail typically observed for ferroelectric hysteresis 

loops is likely due to a lack of complete saturation of these films at the maximum applied 

voltage of ±19 V.  All of the specimens showing this behavior were deposited at elevated 

temperatures and generally higher %O2 values.  The third type of hysteretic behavior 

observed was that of a lossy ferroelectric material (i.e. the plots resembled a capacitor 

and resistor in series), showing significant remnant polarization but no polarization 

plateau; instead, an immediate loss of stored charge once the voltage was reversed after 

reaching the maximum test voltage was observed.  Whereas the more traditional 

ferroelectric behavior as seen in Figure 9 displays a constant remnant polarization across 

the test voltages, the lossy ferroelectric behavior as in figure 10 has a remnant 

polarization that is dependant upon the maximum voltage attained during that test cycle.  

Specimens showing this behavior (R4, R8, R10, and R12) were typically those sputtered 

at lower temperatures, lower %O2, and higher powers.  Two specimens (R2 and R9) 

showed mixed behaviors depending on the test location chosen on the wafer.  Both of 

these samples were deposited at 100 W and 30 %O2. 

 In addition to overall electronic behavior, hysteresis loops also permit a 

measurement of the permittivity based on the slope of the initial portion of the loop (i.e. 

while the voltage is increasing from 0 to Vmax).  The permittivities calculated from the 

hysteresis loops (Table III) were analyzed with the statistical DOE software, as were the 

remnant polarizations.  Both resulted predictive models with an R
2
 of 0.98 for the 

permittivity and 0.91 for the remnant polarization models (Figures 11-12).  Each model 

displayed strong interactions between the power and both the percent oxygen in the 
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plasma and the deposition temperature, further indicating the complex nature of these 

sputtered films. 

 The low temperature model for the permittivity (Figure 11.a) showed a parabolic 

trend with respect to power with a minimum at 150 W and 10 %O2, which transitioned to 

an inverse parabolic relationship at 50 %O2 with a max at 150 W.  The permittivity was 

also observed to be parabolic across the examined %O2 range for all powers (maximum 

approximately at 30 %O2).  These trends continue to 300°C with the exception that 

increased oxygen content in the plasma was found to generally increase the permittivity 

of the deposited films (Figure 11.b). 

 The remnant polarization models for films deposited at 20°C (Figure 12.a) were 

observed to portray an inverse parabolic relationship with both the power and %O2, with 

a maximum in the permittivity at 150 W and 50 %O2.  The power–%O2 relationship was 

more complicated as the temperature was increased to 300°C (figure 12.b), where the 

inverse parabolic nature of the response to oxygen was still prevalent but the maximum 

decreased to approximately 25 %O2.  The power was observed to transition from a 

parabolic relationship at 10 %O2 (minimum at 150 W) to a more linear relationship at 50 

%O2. 

 

4.3. Elevated Temperature Tests 

 In addition to room temperature electrical testing, limited elevated temperature 

studies were also performed on specimens R1, R4, and R7.  Leakage current testing was 

conducted at 85°C, 150°C, and 300°C at a maximum voltage for each specimen, which 

was observed to vary depending on the individual specimen breakdown strength at 

temperature.  Hysteresis loops were also taken for the examined specimens at 150°C to 

determine the permittivity and remnant polarization at that temperature, as well as to 

observe any change in electronic behavior. 

 The leakage currents were observed to increase with increasing temperature, 

indicative of a decreasing resistance, which is typical for insulating materials as defects 

allowing conduction to occur are more active at elevated temperatures (Table IV).  

Following a standard Arrhenius relationship between conductivity (calculated as the 

inverse of the resistivity based on the I-V measurements) and temperature, the activation 
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energies were calculated for each of the specimens (Figure 13).  Energies of 0.321, 0.165, 

and 0.887 eV for specimens R1, R4, and R7, respectively, fit well with the wide range of 

reported energies in the literature for different types of BaTiO3 [2, 18-20]. 

 Hysteresis data was also acquired for these specimens at approximately 150°C.  

The standard Curie temperature of BaTiO3 is 125°C [21] beyond which all ferroelectric 

behavior has ceased.  As such, it was expected that the hysteresis loops of these 

specimens at 150°C would result in paraelectric responses.  Figures 14-16 show the 

hysteresis loops of the specimens at 150°C.  As opposed to the expected paraelectric 

behavior, all specimens showed some amount of ferroelectricity.  It is interesting to note 

that the elevated temperature loops follow the original room temperature measurements 

(Figures 8-10), but the loops appear to widen and display a larger remnant polarization 

(Table IV).  The high temperature hysteresis also displays increased lossy behavior, 

which is in accordance with the increased leakage current.  It has been suggested that thin 

films with nanocrystalline or amorphous structures may show a Curie region, as opposed 

to a Curie point [20], which may account for the observed ferroelectric-like behavior of 

these devices at elevated temperatures. 

 

4.4. Model Verification and Optimization 

 Following the analysis of the DC electrical responses for the DOE specimens two 

additional wafers were fabricated.  The first was a randomly selected combination of 

process variables that had not been studied by the DOE, and was used to verify the 

accuracy of the models.  The second was based on a set process conditions determined by 

the DOE software given a set of optimization requirements. 

 The model verification condition chosen was processed at 150 W, 30% O2, and 

20°C deposition temperature.  Despite the high model R
2
 values, the measured values of 

the room temperature resistance, remnant polarization, and hysteresis based permittivity 

were significantly different from those predicted by the software (Table V).  The room 

temperature resistance was measured at 166 GΩ, which was approximately 60% above 

the predicted 104 GΩ.  A similar discrepancy was observed with the permittivity; 527 

measured versus the 197 predicted.  Lastly, the predicted remnant polarization of 42 

µC/cm
2
 was significantly over estimating the actual value of 5.4 µC/cm

2
 (84% below the 
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expected value).  These deviations potentially indicate higher order interactions between 

the variables (e.g. a third order interaction or higher) that was unable to be tested with the 

Box-Behnken DOE series.  Despite these differences, the higher than expected 

permittivity and resistance indicated a potentially conservative predictive set of models, 

and were still capable of giving overall trends. 

 The data from the model verification run was entered into the DOE software to 

increase the effectiveness of the predicted models.  Based on the updated models, an 

optimization scheme was developed to maximum the permittivity, room temperature 

resistance, and remnant polarization.  The optimized process schedule was determined to 

be 195W with 16.7% O2 at 20°C.  As with the model verification specimen, the data 

measured from the optimized condition was found to be significantly below the predicted 

values.  The permittivity was found to be approximately 79% below the predicted value 

(596 as opposed to 2791), with the resistance and remnant polarization to be 31% and 

94% below the values given by the models.  Again, these deviations in the measured 

values from those predicted by the models are likely due to higher level interactions 

within the system that was unable to be measured with a limited sample DOE regimen 

like the Box-Behnken used.  Further testing under additional deposition conditions would 

likely result in more accurate predictive models, and gives increased understanding of the 

effects generated by the various process parameters.  The easiest method in which to 

accomplish this task would likely be to develop a 3
3
 full factorial DOE which would 

require 127 specimens to be created and analyzed. 

 

4.5. Discussion 

 The previous paper in this series [15] related the observed AC dielectric 

properties to the competing factors of oxygen ion activity and film oxidation during the 

deposition of the BaTiO3 films.  To briefly restate, the process of sputtering in a plasma 

containing O2 results in the formation of negatively charge oxygen ions, O
2-

, that are 

propelled by the plasma sheath away from the sputter target and towards the substrate, 

potentially causing damage to the film in the form of material removal or added film 

defects [1, 22, 23].  The literature reports that increasing the concentration of O2 in the 

plasma increases concentration of O
2-

 ions [17], as does increasing the sputter power [10, 
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24].  Although not directly stated in the literature, an increase in temperature is also likely 

to increase the concentration of O
2-

 ions in the plasma due to a lowering of the energy 

required for ionization.   

 While it is desirable to minimize the effects of the O
2-

 ions by decreasing their 

concentration in the plasma, it is also necessary to ensure complete oxidation of the 

BaTiO3 film to ensure adequate electrical properties [10, 25].  The two most accepted 

methods to achieve the increased oxidation of the films is to increase the amount of O2 

present during deposition and to increase the temperature, both of which increase the 

probability of the film to oxidize via atomic contact in the plasma and through diffusion 

on the substrate.  Decreasing the oxidation of BaTiO3 films has been shown to decrease 

the film’s resistance [25, 26], and to either increase [14, 20] or decrease [2, 11] the 

measured permittivity.  It was proposed in part one of this series that the competition 

between these two factors drives observed electrical property changes between the 

different sputtering conditions [15].  If correct, this competition should also be able to 

account for the DC electrical properties reported in this paper. 

 The permittivities obtained from the hysteresis loops were found to be 

approximately one order of magnitude larger than those found via AC testing, but 

otherwise displayed the same general trends in the predictive models (Figure 2).  This 

suggests that the same phenomena that were responsible for the AC permittivity changes 

were also responsible for those changes observed in the DC permittivity.  To avoid 

repetition, the interested reader is directed to the previous paper for details regarding the 

interaction of the negatively charged oxygen ions and the film oxidation potential as it 

relates to the measured permittivity. 

 The resistance at 1 V was also found to follow the proposed competing forces 

concept (Figure 4).  At 20°C the oxidation state of the film is primarily related to the 

amount of oxidation the Ba and Ti atoms can achieve during flight from the target to the 

substrate as no significant diffusion is possible without increased thermal input.  With 

this assumption, a look at the low temperature model for the resistance showed that an 

increased %O2 resulted in increased resistance as long as the sputter power was kept 

below 150 W.  At powers above 150 W, an increase in %O2 was found to decrease the 

resistance, suggesting the increased concentration of O
2-

 ions was increasing with the 
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increased power, and thus causing more film damage than film oxidation.  By increasing 

the deposition temperature, and thus increasing the energy available in the system, more 

interaction was created between the two factors, resulting in a more complex response 

surface.  At powers below 150 W, an increase in %O2 from 10% to 30% resulted in a 

decreased resistance as a result of the increased damage from the higher concentration of 

O
2-

 ions.  As the %O2 was further increased between the range of 30% to 50% the 

resistance was found to increase due to the increased film oxidation as a result of the 

increased substrate temperature.  Again, as the power was increased to greater than 150 

W an increase in %O2 resulted in a general decrease in resistance due to increased film 

bombardment by the elevated O
2-

 ion activity generated by the higher power plasma. 

 The remnant polarization has not been readily addressed in the literature as a 

generally reported material property.  As such, it is more difficult to determine the effects 

of the O
2-

 ions and film oxidation effects on this particular property.  Given the fit of the 

other dielectric responses to the proposed competing forces concept, it can be assumed 

that the remnant polarization should likewise follow similar trends.  As the degree of 

polarization is related to the movement of the Ti atom in the octahedral interstitial site of 

the oxygen atoms [1, 27, 28], it can be assumed that the closer the film is to its 

stoichiometric oxidation state the higher the remnant polarization is likely to be.  Given 

this assumption, the low temperature model for the remnant polarization (figure 12) 

shows that an increase in %O2 at all power levels results in an increased remnant 

polarization.  Likewise, at powers below 150 W, an increase in power was found to 

increase the stored charge.  Both responses are due to the increased oxygen entrapped in 

the films.  When the power was increased above 150 W, the activity of the O
2-

 ions began 

to take effect, and the resultant material removal from the substrate decreased the 

oxidation state of the film and decreased the remnant polarization.  At elevated 

temperatures the film was found to retain a higher polarization as the %O2 was increased 

from 10% to 30%, but decrease as the concentration of O2 was further increased to 50%.  

Again, this behavior fits the concept of the competing oxidation (which occurred at lower 

O2 concentrations) and O
2-

 ion damage (occurring at higher O2 levels). 
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5. Summary 

 The DC based dielectric properties of thin film BaTiO3 with Ni electrodes have 

been determined and subsequently modeled for a DOE series of experiments over a wide 

range of oxygen concentrations (10% to 50%), sputter powers (100 W to 200 W), and 

deposition temperature (20°C to 300°C).  The insulation resistance of the BaTiO3 films 

were found to be between 16 and 270 GΩ at an applied voltage of 1 V.  The I-V 

characteristics showed a system that was primarily symmetric across a range of 

deposition conditions, and the 10 MV/cm electric fields that were achievable with these 

devices.  Hysteresis measurements showed a mix responses including ferroelectric (5 of 

13 specimens), paraelectric (2 of 13), and lossy ferroelectric (4 of 13), with 2 specimens 

showing a mix of these three responses within the same sample depending on the location 

measured.  Permittivities calculated from the hysteresis loops determined values of 170 to 

10,000 depending on the deposition conditions of the BaTiO3.  Limited elevated 

temperature studies showed increasing conduction with increasing temperature, and 

corresponding activation energies of 0.3 eV to 0.9 eV for three specimens studied.  

Hysteresis loops obtained at 150°C also showed that persistent ferroelectric behavior 

beyond the accepted Curie point of bulk BaTiO3, suggesting that the nanocrystalline or 

amorphous nature of these sputtered films has resulted in a Curie region as opposed to a 

Curie point. 

 The responses for the permittivity, remnant polarization, and resistance of these 

devices were statistically analyzed, which allowed for the development of models for the 

prediction of dielectric properties based on a set of process conditions.  Despite the high 

R
2
 values of these models ranging from 0.90 to 0.99, the models did not accurately 

predict the dielectric behaviors of two additional specimens.  This was related to the 

likely presence of higher order interactions between the process variables that was able to 

be tested with the limited samples required for the Box-Behnken DOE regimen. 

 As with the AC properties, the modeled DC properties were found to follow a 

similar trend that were consistent with the activity of negatively charged oxygen ions in 

the plasma during deposition competing with the oxidation mechanisms of the depositing 

film.  Based on the work presented in both above and in the previous paper in this series, 

it is proposed that the apparent, conflicting trends reported for the dielectric properties of 
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sputtered BaTiO3 are likely due to the investigation of different portions of the same 

system.   
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Figures 

   

   

Fig. 1 – Process sequence followed for the patterned deposition of a single dielectric layer capacitor.  1
st
 

electrode layer (a), dielectric (b), and 2
nd

 electrode layer (c).  Top images are plan view looking at surface of 

substrate, and bottom images are cross sections.  Vacuum was broken between layers to allow the exchanging of 

physical masks between depositions. 

(a) (c) (b) 
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Figure 2 – I-V plot for R6 showing the two conduction mechanisms observed for most specimens: ohmic 

response at voltages < ±1V and either ES or PF at voltages > ±1V. 
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Figure 3 – Close up of the ±10 V region of the I-V plot showing a variety of the symmetrical behaviors 

occurring within the specimens at these lower voltages. 
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Figure 4 – Predictive surface models developed for the room temperature resistance at 1 V of sputtered 

BaTiO3 deposited at 20°C (a) and 300°C (b).  The model R
2
 value was 0.90. 

(a) (b) 

20°C 300°C 
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Figure 5 – Typical ln(I) vs ln(V) with linear regression for the determination of the power exponent in the ±1 

V region. 
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Figure 6 – Schematic diagrams for the Enhanced Schottky (a) and Poole Frenkel (b) conduction mechanisms 

at the interface of a conductor and insulator. 
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Figure 7 – Typical plot used to determine the β value for the high field conduction mechanism of the 

specimens. 

 



 

 

94 

 

R7

-1.5E+02

-1.0E+02

-5.0E+01

0.0E+00

5.0E+01

1.0E+02

1.5E+02

-25 -20 -15 -10 -5 0 5 10 15 20 25

Voltage (V)

P
o

la
ri

z
a

ti
o

n
 (

u
C

/c
m

2
)

1 V

5 V

10 V

15 V

19 V

 

Figure 8 – Typical paraelectric response observed for the specimens R3 and R7. 
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Figure 9 – Typical ferroelectric response observed in specimens R1, R5, R6, R11, and R13. 

 

19 V 

15 V 

10 V 

5 V 

1 V 



 

 

96 

 

R4

-6.0E+02

-4.0E+02

-2.0E+02

0.0E+00

2.0E+02

4.0E+02

6.0E+02

-20 -15 -10 -5 0 5 10 15 20

Voltage (V)

P
o

la
ri

z
a

ti
o

n
 (

u
C

/c
m

2
)

1 V

5 V

10 V

15 V

 

Figure 10 – Typical lossy ferroelectric response observed with specimens R4, R8, R10, and R12. 
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Figure 11 – Predictive surface models developed for the permittivity based on hysteresis data for sputtered 

BaTiO3 deposited at 20°C (a) and 300°C (b).  The model R
2
 value was 0.98. 
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Figure 12 – Predictive surface models developed for the remnant polarization observed on hysteresis plots 

for sputtered BaTiO3 deposited at 20°C (a) and 300°C (b).  The model R
2
 value was 0.91. 
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Figure 13 – Arrhenius plot of the temperature based leakage currents for R1 along with linear regression.  

The slope of the line was converted to eV for the reported activation energies in Table IV. 
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Figure 14 – Hysteresis loop for R7 taken at 150°C showing an increased remnant polarization over that 

observed at room temperature (refer to Figure 8). 
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Figure 15 – Hysteresis loop for R1 taken at 150°C showing an increased remnant polarization over that 

observed at room temperature (refer to Figure 9). 
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Figure 16 – Hysteresis loop for R4 taken at 150°C showing an increased remnant polarization over that 

observed at room temperature (refer to Figure 10). 
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Tables 

Table I. Process schedules for the 13 DOE specimens 

 
Power 

(W) 

O2 Conc. 

(%) 

Dep. Temp. 

(K) 

R1 200 50 433 

R2 100 30 293 

R3 150 10 293 

R4 150 50 293 

R5 100 10 433 

R6 150 50 573 

R7 150 10 573 

R8 150 30 433 

R9 100 30 573 

R10 200 30 293 

R11 200 30 573 

R12 200 10 433 

R13 100 50 433 
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Table II. Compilation of the data obtained from the I-V plots of the DOE specimens 

 

Voltage of 

Asymmetry 

(V) 

Resistance 

at 1 V (GΩ) 

Breakdown 

Strength 

(MV/cm) 

n-Exponent 

from Ohmic 

Region (< 1V) 

Estimated β 
Measured 

β (> 1 V) βPF βES 

R1 > ±100 16 8.9 0.86 0.114 0.227 0.914 

R2 ±25 60 8.0 0.96 0.122 0.243 0.013 

R3 ±10 140 1.9 1.7 0.096 0.192 1.153 

R4 > ±10* 270 0.94 0.40 0.085 0.170 1.541 

R5 > ±25* 85 1.9 1.0 0.094 0.189 0.058 

R6 > ±100 47 0.99 0.30 0.089 0.178 0.272 

R7 ±25 92 8.2 0.64 0.163 0.326 0.372 

R8 > ±10* 110 0.87 0.84 0.108 0.216 2.043 

R9 ±5 76 2.0 0.96 0.102 0.203 0.103 

R10 > ±25* 190 0.8 0.74 0.102 0.204 0.907 

R11 ±10 160 1.7 0.89 0.124 0.248 0.095 

R12 ±10 160 3.6 0.88 0.127 0.255 0.083 

R13 > ±25* 160 2.5 0.96 0.128 0.256 0.535 

*Specimens broke at next test voltage point, and further symmetry is unknown 
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Table III. Average permittivities and remnant polarizations based on the hysteresis loops 

acquired for the DOE specimens 

 Permittivity 

Remnant 

Polarization 

(µC/cm
2
) 

R1 170 ± 10 6.6 ± 0.7 

R2 570 ± 440 7.2 ± 3.8 

R3 970 ± 140 8.1 ± 4.2 

R4 3,500 ± 1,400 100 ± 23 

R5 640 ± 110 9.3 ± 2.6 

R6 10,000 ± 870 19 ± 2.6 

R7 690 ± 20 2.1 ± 0.6 

R8 1,200 ± 83 64 ± 22 

R9 2,000 ± 860 77 ± 21 

R10 1,400 ± 180 31 ± 3.8 

R11 660 ± 76 38 ± 13 

R12 810 ± 47 8.4 ± 5.8 

R13 490 ± 89 6.8 ± 4.2 
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Table IV. Results from the elevated temperature testing performed on R1, R4, and R7 

 

Voltage 

Tested 

(V) 

Test 

Temperature 

Leakage 

Current 

(A) 

Activation 

Energy 

(eV) 

Permittivity 

at 150°C 

Remnant 

Polarization 

at 150°C 

(µC/cm
2
) 

R1 ±100 

85°C 9.9x10
-9

 

0.321 3500 ± 440 160 ± 31 150°C 1.2x10
-7

 

300°C 3.8 x10
-6

 

R4 ±1 

85°C 8.6 x10
-8

 

0.165 4300 ± 1000 25 ± 0.7 150°C 8.9 x10
-8

 

300°C 3.6 x10
-8

 

R7 ±15 

85°C 2.9 x10
-9

 

0.887 1300 ± 130 20 ± 2.0 150°C 1.4 x10
-8

 

300°C 2.2 x10
-5
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 Table V. Predicted and measured room temperature values for the DC responses of a 

BaTiO3 film sputtered at 150 W, 30% O2, and 20°C 

 

Resistance at 

1 V 

(GΩ) 

Permittivity 

Remnant 

Polarization 

(
µC

/cm2) 

Expected 

Value 
100 200 42 

Measured 

Value 
170 530 5.4 

Percent 

Difference 
60% 170% -87% 
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Table VI. Predicted and measured room temperature values for the DC responses of the 

optimized BaTiO3 film sputtered at 195 W, 16.7% O2, and 20°C 

 

Resistance at 

1 V 

(GΩ) 

Permittivity 

Remnant 

Polarization 

(
µC

/cm2) 

Expected 

Value 
210 2800 31 

Measured 

Value 
150 600 1.8 

Percent 

Difference 
-31% -79% -94% 
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Abstract 

 Nano-scale BaTiO3 capacitors were deposited on Si wafers at dielectric 

thicknesses of approximately 25, 50, 100, and 200 nm using RF-magnetron sputtering 

with either 25 nm thick Ni or Pt electrodes.  Multiple DC and AC tests were conducted 

on these devices to determine the effects of BaTiO3 thickness on the measured dielectric 

behaviors.  All films were observed to have non-linear responses for resistance, 

permittivity, and loss with respect to dielectric thickness.  The permittivity was found to 

follow a standard dead layer model behavior with measured values ranging from 

approximately 350 to 1700 for Ni electrodes and approximately 100 to 2500 for Pt 

electrodes, with losses from 0.020 to 0.250 and 0.025 to 0.140 for Ni and Pt electrodes, 

respectively.  Resistances were observed to vary from 15 to 300 GΩ with Ni and 8x10
10

 

to 4.7x10
12

 Ω-m with Pt, with the differences attributable to formation mechanisms of the 

interfacial layers between the BaTiO3 and the metal electrodes. 
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1. Introduction 

Dielectric thin films with high permittivity and resistance and low loss have many 

applications in the electronics industry.  One of the most common industrial dielectric 

materials for capacitors is BaTiO3 [1].  Typical applications for BaTiO3 thin films include 

dynamic random access memory (DRAM) [2-5], tunable microwave devices [5-8], as 

well as more traditional discreet, solderable capacitors [1, 4, 6, 7].  In order to achieve 

higher capacitance densities for high-end electronic devices, the fabrication of capacitive 

components using traditional tape-casting technology becomes a limiting factor in 

achieving sub-micron dielectric layers [9, 10].  This limitation has made thin film 

techniques, such as sputtering, a potentially viable alternative for the fabrication of nano-

scale ceramic capacitors. 

As new techniques are developed to achieve the fabrication of these high energy-

density devices, a better understanding of the electrical responses at the thicknesses being 

investigated is necessary.  Limited work has been performed on the thickness dependence 

of sub-micron thick BaTiO3 films deposited via magnetron sputtering.  The majority of 

sources available in the literature on BaTiO3 thin films deal with thicknesses greater than 

100 nm [10-14], with only a few testing devices with dielectric thicknesses below 100 nm 

[15-17].  Of these available sources, the reported trends varied significantly with some 

sources suggesting a decrease in permittivity [12, 14-17], while others found an increase 

[13] with decreasing thickness.  It is interesting to note that the first subset of the data 

indicating a decreasing permittivity with decreasing thickness were typically 

investigating thinner films (20 – 750 nm) whereas the report on increasing permittivity 

dealt primarily with thicker sputtered films (600 – 6,000 nm).  Deviation is also found in 

the limited loss data available from these studies, with the data indicating either an 

increased loss with decreasing thickness [13, 14], or the presence of either a maximum or 

minimum at around 300 nm [10, 11].  Given these discrepancies in the available 

literature, a study on the thickness effects as a function of processing conditions and 

electrode material choice was performed. 
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2. Procedure 

 P-type Si wafers of <111> orientation with 1 μm thermal oxide were used as the 

substrates for all experiments.  The 4 inch wafers were cleaned using a series of acetone, 

methanol, and DI water with a subsequent spin drying and dehydration bake at 200°C.  

For the purpose of statistical analysis, the wafer was patterned with a grid of 11 x 11 

capacitors for each wafer quadrant resulting in 484 devices per wafer.  The bottom 

electrodes were patterned with a physical mask consisting of 11 parallel lines measuring 

approximately 75 μm wide by 2.4 cm long to a thickness of ~20 nm per quarter wafer 

using a Denton Discovery-18 sputter deposition system with 3 inch targets (Fig. 1.a).  

The BaTiO3 dielectric was patterned using another physical mask with 1 opening per 

quarter wafer measuring 2.7 cm square to the desired thickness of 25, 50, 100, or 200 nm 

(Fig. 1.b).  The electrode mask was then rotated 90° from the bottom electrode layer, and 

the top electrodes were deposited to a thickness of ~20 nm (Fig. 1.c).  This process 

resulted in 121 capacitors per quarter wafer with active device areas of 5.43 x 10
-5

 cm
2
 

each.  Plasma composition for all depositions was controlled with two mass flow 

controllers attached to Ar and O2 cylinders.  The thickness of each of the three layers was 

measured using a Tencor Alpha-Step 200 profilometer. 

 For these investigations 3 different BaTiO3 deposition conditions were analyzed 

at approximately 25, 50, 100, and 200 nm thickness between symmetrical electrodes of 

either Ni or Pt electrodes at approximately 20 nm thickness each (e.g. 20 nm bottom and 

20 nm top).  The three conditions were based on previous work investigating the effects 

of  percent O2, RF-power, and deposition temperature used during sputtering, and are 

detailed in Table I.  The first series of electrical testing performed on these devices was in 

the form of current voltage (I-V) curves.  The results from these tests gave a measure of 

the films’ insulation properties.  The second series of testing allowed the direct 

measurement of capacitance and loss values using a precision LCP meter. 

Electrical AC measurements were then made with an HP 4149 at 1 kHz to 

measure capacitance and loss under a 1 Vrms potential with 0 V bias.  Based on the 

measured capacitance and thickness values, the effective permittivity of the sputtered 

BaTiO3 films were calculated.  Additionally, DC measurements were made via I-V plots 

using an HP 4140B pA Meter from 0.1 to 100 V, with 30 second soak at voltage. 
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3. Results and Discussion 

3.1. DC Properties 

 Current-voltage (I-V) measurements were taken to determine the effects of 

thickness variation on the leakage current response to a given applied electric field.  

These plots also allowed the observation of any conduction mechanism transitions 

occurring within the measured range of fields.  Each specimen was measured in 3 

different, randomly selected locations from 0.1 to 100 V with both positive and negative 

polarity, and the averages calculated at each voltage (Figures 2–3).  In order to allow the 

plotting of the leakage currents on a log scale, all leakage currents are plotted as positive 

values.  Plotting on a log scale makes it possible to determine symmetry between positive 

and negative potentials.  For comparison purposes between the different dielectric 

thicknesses for each condition, the x-axis was plotted as applied field (
V
/m).  It is 

interesting to note that both of the electrode materials exhibited high stability without 

breakdown at fields in excess of 1.0x10
8
 
V
/m (Table II).  These values were within 

relative agreement with other sputtered BaTiO3 films reported within the literature [5, 13, 

16, 18], and may be related to the “disorderliness” of the nanocrystalline or amorphous 

nature of the films impeding the ability of the electrons to rapidly traverse the film 

thickness. 

 The I-V plots also show the presence of two or more conduction mechanisms 

occurring depending on the applied field, specimen thickness, and BaTiO3 deposition 

conditions.  The first transition was found to uniformly occur in the Ni electrodes at ~ 

2x10
7
 
V
/m and in the Pt electrodes at ~ 5x10

6
 
V
/m, changing from a log-based trend at 

lower fields to more complex trends at higher fields.  The difference in field strengths 

required to initiate this transition may be related to the differences in work functions of 

the two metals, thus modifying the activation energies required to overcome this 

interfacial barrier (Figure 4).  A second transition to a third conduction mechanism was 

observed in several of the samples, occurring around 1–2x10
8
 
V
/m for the two thicker (100 

and 200 nm) BaTiO3 films.  The exceptions were the 50 nm thick R7-Ni and 25 nm thick 

R4-Pt which also showed a third conduction mechanism taking effect at approximately 

1x10
8
 
V
/m. 
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 The I-V plots also showed symmetric electrical responses for all specimens at 

fields between 5x10
6
 
V
/m and 2x10

7
 
V
/m for Pt and Ni electrodes, respectively, with both 

positive and negative polarity (prior to the 1
st
 conduction transition).  This indicates that 

the electrodes were chemically and electronically symmetric; namely that if there are 

interfacial reaction compounds or electronic effects occurring between the electrode and 

dielectric materials, they are present at the interfaces of the BaTiO3 with both the top and 

bottom electrodes.  These interfacial effects could be in the form of compounds from a 

reaction between the metal and dielectric [2, 19, 20] and/or the presence of a low 

permittivity layer, also known as a dead layer or space charge layer [12, 17, 21].  Any 

type of interfacial property, whether a physical material or an electrical barrier, will have 

a distinct set conduction mechanisms and an individual breakdown strength, which will 

affect the overall shape of the I-V plots.  The presence of these interfacial effects are 

better observed through the investigation of the AC response behaviors over a change in 

dielectric thickness than can be done with I-V based property trends.  Despite the nature 

of the interfaces, the presence of symmetry in the I-V plots indicates that whatever is 

occurring at one interface is occurring in equal measure at the opposite interface. 

 A measure of quality for any insulating film is the resistance at a given voltage.  

Assuming an ohmic relationship between the voltage and current at any set voltage (i.e. 

V=IR), the resistances of the films were calculated at 1 V and plotted versus BaTiO3 

thickness (Figure 5).  Two trends are noticed on this plot.  First, the Ni electrode 

specimens typically exhibit a higher resistance than the Pt electrode specimens.  This 

again may be due to the presence of some interfacial effects between the electrodes and 

dielectric materials.  As Ni is more reactive than Pt, it more likely that the Ni electrodes 

are interacting with the BaTiO3 to form an interfacial film with a resistance higher than 

that of the metallic Ni, resulting in a system with 3 resistors in series (e.g. a “thick” 

interfacial layer, BaTiO3, and a “thick” interfacial layer) effectively increasing the 

measured resistance of the devices.  The second trend observed on the resistance-

thickness plot was the maximum and minimums apparent with Ni electrodes that were 

otherwise absent with Pt electrodes.  This phenomenon is not currently understood, but 

may be a result of the formation mechanisms of the interfacial layers during the different 
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deposition conditions for the BaTiO3.  The samples with Pt electrodes show the more 

expected decrease in resistance with decreasing thickness. 

 Neither the Ni nor the Pt electrodes showed a linear relationship as would be 

expected from a constant resistivity material following the general resistance equation: 

 

 R = ρ(L
/A)         <1> 

 

where ρ is the resistivity of the material, L is the length of the resisting element 

(thickness in this case), and A is the cross-sectional area.  The lack of linearity in both the 

Ni and Pt specimens further indicates the presence of a secondary, interfacial layer 

forming during deposition of these devices. 

 

3.2. AC Properties 

 In addition to gaining a reliable measure of capacitance and loss values for these 

devices, the measurement of AC properties provided the opportunity to better understand 

the electrical interaction of the electrode and dielectric materials.  Capacitance and loss 

data were taken at 1 kHz for 3 randomly selected locations per sample (Table III).  The 

capacitance and thickness measurements were used to calculate the effective permittivity 

of the devices.  The effective permittivity and measured loss values for each specimen 

was then plotted against BaTiO3 thickness (Figures 6–7).  The first general observation is 

the peak in permittivity at roughly 100 nm of BaTiO3 thickness seen on all but the R7-Pt 

samples.  It should also be noted that the greatest amount of variation in the data (in the 

form of the standard deviations) was observed at this thickness as well.  This was also the 

same thickness at which the Ni samples showed the relative maximum or minimum in 

resistance.  This may be the thickness where the interaction of the interfacial layers with 

the BaTiO3 reaches its maximum effect.  The second general observation from the plots 

in Figures 6 and 7 is the minimal change in loss until the thickness was reduced to 50 nm 

or below, at which point it typically increased to above generally acceptable loss values 

(i.e. > 0.100).  This decrease in loss may be due to the lack of dielectric material available 

to moderate the in-phase current passing through the BaTiO3. 
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 The non-linear thickness response for the permittivity of thin films has been 

observed in multiple sources [12, 14, 17, 22].  The general capacitance equation is: 

 

 C = εoεr(
A
/d)         <2> 

 

where εo is the permittivity of free space, εr is the effective permittivity of the dielectric, 

A the interaction area, and d the thickness of the dielectric; which can be rewritten as: 

 

 εr = 
Cd

/εoA         <3> 

 

This states that there is a linear relationship between the effective permittivity and the 

thickness of the dielectric.  This trend has been found to be reliable for bulk ceramic 

films (i.e. on the order of microns or tens of microns and greater), but studies with thin 

films have shown that an interfacial phenomenon begins to dominate at sub-micron 

dielectric thicknesses and has been termed the dead-layer model.  This interfacial 

phenomenon can be modeled with the assumption that the interface will act as a separate 

capacitive device, thus making the effective capacitance, Ceff, a function of the two or 

more capacitor layers in series.  Assuming that the two interfacial layers (e.g. anode-

dielectric and cathode-dielectric) are identical in nature, this trend can be modeled as: 

 

 
1
/Ceff

  =  
2
/CIL

 + 
1
/CBT       <4> 

 

where CIL is the capacitance of the interfacial layer, and CBT is the capacitance due to the 

BaTiO3.  Combining equations 2 and 4: 

 

 
d

m/εm
 =  2(

dIL/ε
IL
) + 

d
BT/ε

BT
      <5> 
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where d and ε are the measured thicknesses and effective permittivities, respectively, of 

the measured device (m), interfacial layer (IL), and BaTiO3 (BT).  Given the symmetry 

observed in the I-V plots, the dead-layer model assumptions should accurately describe 

the data.  Using this model as a guideline and the assumptions that the interfacial layer is 

between 1 and 5 nm [17, 22] and that dm approximately equal to dBT, the AC data was 

replotted as 
dm

/εm versus dm (Figures 8–9).  Linear trends imposed on the data plotted in 

this fashion result in average R
2
 values of 0.94 for Ni electrodes and 0.92 for Pt 

electrodes, indicating that the assumed model would seem to accurately represent the 

observed trends for these specimens. 

 Using equation 5 and the calculated linear regressions in Figures 8 and 9, the 

permittivities of the BaTiO3 and interfacial layers were calculated assuming a 1 nm thick 

interfacial layer (Table IV).  This data shows that the permittivity of the BaTiO3 was 

found to be 2-5 times higher for the samples with Pt electrodes than was calculated for 

those with Ni electrodes.  This difference may be linked to the differences in diffusivities 

of the electrode materials into the BaTiO3 during deposition [5, 20, 23], creating either a 

thinner layer of effective BaTiO3 than was initially measured by profilometry, or by 

introducing doping effects into the BaTiO3 thereby making the compositions of the 

dielectric chemically different. 

 The interfacial layer permittivity, εIL, was found to be within reasonable 

agreement between the Pt and Ni electrodes for the R1 and R7 BaTiO3 compositions, but 

was observed to be approximately 5 times larger for Pt electrodes than Ni electrodes for 

the R4 composition.  This difference may be a remnant of the numerical analysis of the 

data, and not represent any difference in chemical, physical, or electrical differences in 

the devices.  The R
2
 value with R4-Pt plot was less than 0.90 indicating that the model 

was not fitting the data as well for these data points as it was for the other devices.  Based 

on this discrepancy in the R4-Pt data set and the behavior observed in the R1 and R7 

devices, it would appear that the non-matching interfacial layer permittivities between the 

two R4 data sets is not reflective of a material or composition difference, but more likely 

a regression inadequacy related to scatter in the data. 
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3.3. Discussion 

 The results of the dead layer model suggest that the effective interfacial layer is a 

constant thickness.  This would indicate that the differences in the observed permittivities 

between the different compositions of BaTiO3 and the different electrodes are related to 

the bulk of the BaTiO3 itself.  It may be possible that, given the thin nature of these films, 

that the differences may be a result of the diffusion of the electrode materials into the 

dielectric film [5, 20, 23].  Diffusion of the electrodes into the dielectric would result in 

an effective doping of the BaTiO3, resulting in the BaTiO3 compositions being doped by 

different elements (Ni or Pt), thus giving different electrical responses.  It is also possible, 

given the differences in the I-V characteristics between the Pt and Ni electrodes, that the 

observed difference may be caused by a different current injection mechanism occurring 

at the interface between the electrode and dielectric.  Despite the source of the differences 

between the electrical responses, all of the data indicates the pronounced presence of 

interfacial layers that are directly impacting the measured responses of these films. 

 

4. Summary 

 The thickness effects of three deposition conditions of RF-sputtered BaTiO3 were 

investigated with respect to the Ni and Pt electrode materials.  The deposition conditions 

were chosen based on the differences in loss and permittivity characteristics previously 

determined at a constant thickness of approximately 100 nm.  The thickness of the 

BaTiO3 was varied over four levels at approximately 200, 100, 50, and 25 nm, while the 

electrode thickness was kept constant at approximately 20 nm.  Current-voltage tests 

displayed the presence of between 2 and 3 conduction mechanisms with transitions 

occurring at relatively set field strengths of 2x10
7
 
V
/m for Ni and 5x10

6
 
V
/m for Pt 

electrodes (all specimens), with a potential second transition at fields of approximately 1–

2x10
8
 
V
/m (typically seen on the 100 and 200 nm thick BaTiO3 devices).  The DC 

characterization also showed these films to be highly insulating (averaging > 10 GΩ) 

across all thicknesses for both electrode materials.  The resistance was observed to be 

non-linear with thickness, suggesting the presence of interfacial layers between the 

electrodes and BaTiO3 layers. 
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 AC testing was conducted at 1 kHz for direct measurement of the capacitance and 

loss tangent values.  Using the measured capacitance and thickness values, a range of 

effective permittivities were calculated to be 350-1700 for Ni electrodes and between 100 

and 2500 for Pt electrodes.  The capacitance and loss were both observed to be non-linear 

with dielectric thickness.  The loss was typically seen to increase with decreasing 

thickness, likely do to the decrease of material available to impede the motion of 

electrons through the BaTiO3 layer.  The non-linearity of the capacitance further 

supported the presence of interfacial layers between the dielectric and electrode layers.  

Based on the results, a standard dead-layer model consisting of two capacitors acting in 

series was assumed to be responsible for the observed trends.  Linear regressions of the 

plotted data showed the assumption of multiple capacitors acting in series to fit with R2 

values of 0.92 for Pt and 0.94 for Ni, and values for the permittivity of the BaTiO3 were 

found to range between approximately 325 and 750 with Ni electrodes and approximately 

900 and 2000 with Pt electrodes.  The interlayer permittivities were calculated to be 

approximately 44±8 for both of the electrode materials assuming an interfacial layer 

thickness of 1 nm. 

 Based on the results of these investigations, it has been found that the effects of 

thickness on the electrical properties of a sputtered dielectric such as BaTiO3 is affected 

not only by the sputtering conditions of the BaTiO3 itself, but also on the choice of 

electrode material. 
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Figures 

   

   

Fig. 1 – Process sequence followed for the patterned deposition of a single dielectric layer capacitor.  1
st
 

electrode layer (a), dielectric (b), and 2
nd

 electrode layer (c).  Top images are plan view looking at surface of 

substrate, and bottom images are cross sections.  Vacuum was broken between layers to allow the exchanging of 

physical masks between depositions. 

 

(a) (c) (b) 
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Figure 2 – I-V response for specimens with Ni electrodes.  The voltage was plotted as applied field (V/m) to 

allow a more accurate comparison between the various thicknesses.  All leakage currents were artificially 

made positive to allow plotting on a log-scale, and make symmetry more easily identified. 
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Figure 3 – I-V response for specimens with Pt electrodes.  The voltage was plotted as applied field (V/m) to 

allow a more accurate comparison between the various thicknesses.  All leakage currents were artificially 

made positive to allow plotting on a log-scale, and make symmetry more easily identified. 
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Figure 4 – Schematic drawing of the interfacial energies that may be affecting the measured 

dielectric properties.  EC, EF, and EV represent the conduction, Fermi, and valence band levels, 

respectively.  φE and φB represent the electrode work function and barrier height, respectively.  

The work function of Pt is 5.6 eV and of Ni is 5.2 eV. 
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Figure 5 – Resistance at 1 V versus BaTiO3 thickness for the 3 dielectric compositions with Ni electrodes 

(solid) and Pt electrodes (dashed). 
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Run 7 - Ni
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Figure 6 – Effective permittivity and measured loss values for samples Ni electrodes.  Dotted 

lines correspond to loss and solid lines to permittivity.  Error bars represent standard 

deviations of the measured averages used for plotting. 
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Figure 7 – Effective permittivity and measured loss values for samples Pt electrodes.  

Dotted lines correspond to loss and solid lines to permittivity.  Error bars represent 

standard deviations of the measured averages used for plotting. 
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Figure 8 – AC permittivity data plotted assuming the presence of an interfacial 

layer acting as a capacitor in parallel with the BaTiO3 for specimens with Ni 

electrodes. 
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Figure 9 – AC permittivity data plotted assuming the presence of an interfacial layer 

acting as a capacitor in parallel with the BaTiO3 for specimens with Pt electrodes. 
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Tables 

Table I. Sputtering schedules for the three BaTiO3 compositions studied 

Film 

Label 

Oxygen 

Content in 

Plasma  (%) 

RF-Power 

(W) 

Deposition 

Temp.  (K) 

R1 50% 200 433 

R4 50% 150 293 

R7 10% 150 573 
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Table II.  Maximum applied fields (
V
/m) achieved for each specimen examined 

Approximate 

Thickness 

(nm) 

Ni Electrodes Pt Electrodes 

R1 R4 R7 R1 R4 R7 

200 1.4 x10
8
 5.4 x10

8
 4.7 x10

8
 4.8 x10

8
 5.9 x10

8
 4.3 x10

8
 

100 8.9 x10
8
 9.4 x10

7
 8.2 x10

8
 5.0 x10

7
 1.1 x10

9
 2.1 x10

8
 

50 1.1x10
8
 2.1 x10

8
 4.3 x10

8
 1.1 x10

8
 2.1 x10

7
 1.0 x10

8
 

25 1.8 x10
8
 3.6 x10

7
 2.6 x10

8
 4.4 x10

9
 1.8 x10

8
 3.7x10

9
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Table III.  Calculated permittivities based on the measured capacitance and measured loss 

values at 1 kHz and 1 Vrms 

Approximate 

Thickness (nm) 
R1 - Ni R4 - Ni R7 - Ni R1 – Pt R4 - Pt R7 – Pt 

200 

εr 
870 

(±170) 

890 

(±12) 

380 

(±24) 

2000 

(±270) 

1300 

(±310) 

810 

(±81) 

tan δ 
0.052 

(±0.005) 

0.069 

(±0.022) 

0.043 

(±0.006) 

0.031 

(±0.004) 

0.051 

(±0.005) 

0.024 

(±0.004) 

100 

εr 
1100 

(±32) 

1600 

(±290) 

690 

(±7) 

2500 

(±1400) 

2200 

(±770) 

630 

(±210) 

tan δ 
0.092 

(±0.023) 

0.059 

(±0.005) 

0.023 

(±0.007) 

0.035 

(±0.003) 

0.064 

(±0.008) 

0.031 

(±0.006) 

50 

εr 
690 

(±170) 

910 

(±150) 

290 

(±46) 

1100 

(±18) 

1100 

(±350) 

670 

(±190) 

tan δ 
0.019 

(±0.001) 

0.118 

(±0.008) 

0.044 

(±0.015) 

0.140 

(±0.053) 

0.056 

(±0.009) 

0.057 

(±0.008) 

25 

εr 
460 

(±46) 

370 

(±27) 

530 

(±110) 

400 

(±140) 

96 

(±6) 

600 

(±200) 

tan δ 
0.242 

(±0.036) 

0.092 

(±0.005) 

0.126 

(±0.021) 

0.084 

(±0.003) 

0.139 

(±0.032) 

0.064 

(±0.003) 
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Table IV.  Calculated permittivities of BaTiO3 and interfacial layers assuming two 

capacitors in parallel model 

 R1 - Ni R4 - Ni R7 - Ni R1 – Pt R4 - Pt R7 – Pt 

εBT 760 510 320 2000 890 1700 

εIL 45 15 50 49 80 32 
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Abstract 

 Nano-scale BaTiO3 capacitors with Ni electrodes were sputtered on Si wafers to 

determine the effects of electrode thickness on the measured dielectric properties.  The 

BaTiO3 was deposited to a thickness of approximately 150 nm, while the Ni electrodes 

were deposited at approximately 25, 100, and 230 nm as determined by focused ion beam 

cross-sectional analysis.  All devices were found to have a linear I-V response at ±1 V 

that transitioned to a nonlinear mechanism that remained active until the maximum test 

voltage of ±100 V.  The I-V data also showed the resistances at 1 V decreasing by about 

150 GΩ for the 25 nm thick electrodes.  Hysteresis plots showed paraelectric behavior for 

all electrode thicknesses, with measured permittivity ranging from approximately 600 to 

1400, with the 100 nm thick electrodes giving the highest permittivity.  AC impedance 

data showed a decrease in permittivity from approximately 1100 to 550 with a decrease 

in electrode thickness from 230 nm to 100 nm, with losses remaining below 0.10 at 1, 10, 

and 100 kHz.  At 25 nm electrode thickness, the permittivity was found to decrease from 

about 1050 to 250 and the loss to increase from approximately 0.06 to 0.57 as the test 

frequency was increased from 1 to 100 kHz.  Temperature testing gave activation 
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energies for conduction of 0.055, 0.653, and 1.106 eV for the 230, 100, and 25 nm thick 

films, respectively.  The results suggest that the electrodes play a critical role in thin film 

capacitor performance. 

 

1. Introduction 

In the commercial capacitor industry, BaTiO3 is one of the most common 

dielectric materials [1].  Thin film applications for BaTiO3 include dynamic random 

access memory (DRAM) [2-5], tunable microwave devices [5-8], and discreet capacitors 

[1, 4, 6, 7].  In order to achieve higher capacitance density for high-end electronics, the 

fabrication of these devices with sub-micron thicknesses using tape casting technology 

becomes impractical due to the necessity of powder precursors [8, 9].  This inherent 

limitation of the traditional capacitor fabrication technologies requires the use of 

techniques designed specifically for the deposition of thin films that are not based on 

powder processing. 

 Sputtering has been reported as having the capability of producing thin films with 

equal quality to that achievable with CVD [10, 11] that are more reproducible [5, 12] 

with high mass production potential [6].  Sputtering permits the customization of BaTiO3 

chemistry and morphology by allowing control of the percent O2 in the plasma, 

deposition temperature, plasma pressure, and RF power resulting in a wide range of 

achievable dielectric responses [2, 10-14].  As the dielectric thickness continues to 

decrease, the electrode layers can also be decreased in thickness in order to reach the goal 

of maximal energy density per unit volume.  There are numerous studies on the effects of 

insulator thickness variation on the measured dielectric properties [9, 12-22].  In contrast, 

a review of the literature reveals that electrode material and thickness are infrequently 

studied with the majority of the literature reporting the electrode material but not the 

thickness [11-13, 17, 23-30].   Of the electrode thicknesses reported for thin film 

capacitors, the thickness was kept constant among the tested devices and were in the 

range of 150 to 350 nm [5, 31-33], with only two papers mentioning thicknesses below 

100 nm (i.e. 30 and 50 nm) [16, 34].  Given that thin film effects capable of reducing the 

conductivity of metal films begin to become prominent in the sub-micron thickness range 

[35], and that the majority of the reported electrode thickness values in the literature are 
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well below 500 nm, this study was done to investigate if the electrode thickness plays a 

significant role in the measured dielectric properties of thin film capacitors. 

 

2. Procedure 

 All devices were fabricated on <111> Si wafers, with 1 μm of thermal oxide for 

electrical insulation.  They were prepared by cleaning in subsequent baths of acetone, 

methanol, and DI water, followed by spin drying and a dehydration bake.  A physical 

mask with approx. 74 μm wide by 2.4 cm long channels arranged with 11 parallel lines 

per of quarter wafer was centered on the wafer.  Sputtering of the bottom Ni electrode 

was conducted using a Denton Discovery-18 sputter system to the desired thickness from 

a 99.9% pure metallic target (Figure 1.a).  The wafer was then removed from the sputter 

system, and the mask replaced with another physical mask consisting of four square 

openings measuring approx. 2.7 cm per side was placed on the wafer.  After 

reintroduction to the system, and the attainment of a minimum of 5x10
-6

 torr pressure, the 

BaTiO3 was deposited at 195 W in a plasma with approximately 16.7% O2 (balance Ar) 

at room temperature to a thickness of approx. 150 nm (Figure 1.b).  The wafer was then 

removed again, and the original mask was replaced on the wafer having been rotated 90° 

from the bottom electrodes.  Deposition of the top Ni electrode was repeated in the same 

manner as the first deposition (Figure 1.c).  The final wafer consists of 121 test locations 

per quarter of wafer measuring approximately 5.4x10
-5

 cm
2
 each.  Plasma compositions 

were controlled with two mass flow controllers connected to Ar and O2 cylinders. 

 The thickness of each layer was initially measured by profilometry using a Tencor 

Alpha-Step 200.  The electrode thicknesses were also measured using images acquired 

from a Helios Nanolab 600 focused ion beam – scanning electron microscope (FIB-

SEM), giving two measures of physical thickness.  Effective electrode thickness was then 

calculated based on resistance measurements using a portable multi-meter (Wavetek 

Meterman 10XL) and the bulk resistivity values of Ni.  Current-voltage (I-V) plots were 

made using an HP 4140B pA Meter from ± 0.1 to 100 V, allowing a 30 second soak at 

each voltage to account for system equilibration.  Hysteresis plots were made using a 

Radiant Technologies RT6000HVS system at incrementing voltages of 1 to 19 V (the 

largest whole number voltage achievable for low voltage measurements).  The AC 
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impedance measurements for capacitance and loss were made at 1, 10, and 100 kHz at 1 

Vrms with 0 V DC bias using an HP 4149 Impedance/Gain Phase Analyzer.  Based on 

thickness and capacitance values, the effective permittivity was calculated.  All electrical 

testing was performed on three randomly selected locations of the total 484 total 

locations per wafer. 

 

3. Results 

 In order to gain an understanding the effects of electrode thickness on the 

dielectric responses of these sputtered devices, a variety of testing methods was 

employed.  The first series of testing was performed to characterize the electrodes in 

terms of physical thickness (profilometry and FIB-SEM) and effective electrical 

thickness (electrode resistance).  Next, the devices were tested using both DC and AC 

currents to acquire a complete picture of the dielectric responses of these devices.  DC 

characterization consisted of I-V and hysteresis plots, and AC characterization was 

limited to impedance measurements at 1, 10, 100 kHz.  Finally, elevated temperature 

testing was conducted to calculate the activation energy of conduction, Ea. 

 

3.1.  Electrode Characterization 

 The electrode thickness was determined using three techniques; profilometry of 

glass slides co-deposited along side the wafer, analysis of FIB-SEM cross-section 

images, and based on calculations from the electrode resistance.   

 Profilometry measurements were performed on cleaned glass slides that were 

situated next to the wafer during each of the depositions.  Thickness was determined 

based on the measured step height when the stylus transitioned from bare glass to top 

surface of the film.  These measurements were made for both the electrodes and dielectric 

layers, taking 10 readings per layer to acquire a representative average and standard 

deviation.  The average of the top and bottom electrodes for these wafers were 36 ± 3.9 

nm, 351 ± 14 nm, and 682 ± 12 nm for what is hereon labeled as the thin, medium and 

thick electrode specimens. 

 The specimens’ layer thicknesses were also calculated based on images acquired 

from FIB-SEM images (Figure 2).  Based on these images, the thickness of the electrodes 
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were found to be 25 ± 4.7 nm, 89 ± 5.3 nm, and 230 ± 8.1 nm for the thin, medium, and 

thick specimens, respectively.  These values were between 30 – 75% lower than those 

measured by the profilometer, and was likely due to the geometry of the physical mask 

used during the deposition of the electrodes.  With a channel width of only 75 μm and a 

mask thickness of 125 μm, giving a depth to width ratio of approximately 1.7, the ability 

of the Ni atoms to reach the surface of the wafer during deposition time was shadowed by 

the presence of the sidewalls.  As the glass slides were not shadowed by a narrow channel 

mask their profilometer measurements were thicker.  As the FIB-SEM images allow a 

direct measurement of the film thickness, the measurements from the FIB-SEM was 

considered a more accurate measurement of the film’s physical thickness. 

Electrical resistance measurements (1 V DC) were also used to calculate the 

electrode thickness based on the basic resistivity equation: 

 

 R = ρ(
L
/A)         <1> 

 

Where R is the measured resistance (Ω), L the length of the electrode (approximately 

2.4cm), and A is the cross-sectional area of the electrodes (74.5 μm x thickness), and ρ is 

the resistivity of Ni.  The bulk resistivity of Ni was assumed to be 6.4x10
-6

 Ω-cm [36].  

As the thin film electrodes were likely affected by surface effects, twice the bulk 

resistivity was used to calculate the effective thickness of the films as a worst case 

scenario [35].  Thicknesses calculated in this manner showed significantly thinner films 

than measured by either of the above methods (Table I).  Use of doubled bulk resistivity 

was found to match well with a high resolution TEM image (Figure 3), which shows a 

highly crystalline Ni layer of approximately the same thickness as that calculated by this 

method with an interaction area on either side of this region accounting for the remaining 

physical thickness (i.e. resistance-based thickness measurements found the thickness of a 

specimen with thin electrodes to be 5 nm, and the TEM image showed a highly 

crystalline band of Ni with a thickness of approximately 4 nm). 

 Based on the above calculations, there exists some discrepancy in how the 

thicknesses of thin film electrodes are determined.  The same films appear as 25, 90, and 

230 nm based on FIB cross-sections, but when thicknesses are calculated based on the 
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measured resistance of the electrodes the values come close to the thickness observed on 

one high resolution TEM image.  This suggests that the resistance based thickness 

calculations might be more accurate, but, given that only one TEM image has been 

acquired compared to the multiple FIB images, the FIB based thickness values have been 

used throughout the remainder of this report. 

 

3.2. Current-Voltage Data 

 Current-voltage (I-V) plots were acquired from 0.1 to 100 V with both positive 

and negative potentials (Figure 4).  All three tested specimens at each electrode thickness 

were capable of holding ±100 V with approximately 1-2x10
-8

 A of leakage current (5-10 

GΩ at a field of approximately 7 MV/cm).  The same conduction mechanisms were also 

observed between the three electrode thicknesses.  The first of which was found to occur 

uniformly between ±1 V, and was observed to be linear and nearly identical for all three 

specimens (Figure 5).  Past ±1 V the conduction was observed to change to a non-linear 

mechanism, with the leakage current increasing faster than the applied voltage (Figure 5).  

It was found that the medium thickness (90 nm resistance-based thickness) gave the 

minimal leakage current, followed by the thin electrodes (25 nm) and then the thick (198 

nm).  This trend was found to continue until approximately ±50 V, where deviation was 

found to occur between the specimens and whether the applied voltage was positive or 

negative in polarity.  This later trend is likely related to the high fields imparted on the 

films at this voltage level (50 V ~ 3.5 MV/cm), and may not accurately depict the 

material behavior since only 3 locations were tested on each wafer at each electrode 

thickness. 

 The resistance of the films at ±1 V was also calculated.  Assuming an ohmic 

relationship between the current and voltage at any set potential, the resistance of these 

devices at +1 V was calculated (Table II) and plotted against electrode thickness (Figure 

6).  It was interesting to note that the average resistance was found to decrease when the 

electrode thickness was below 90 nm.  The associated standard deviation may suggest 

that the decrease was not as significant as the averages indicate, but there was a general 

decrease in the data.  This trend suggests that some electronic phenomenon was occurring 
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with the thinnest electrodes that was increasing the flow of current through the BaTiO3 

film. 

 

3.3. Hysteresis Data 

 The hysteresis data from all three specimens indicate that the sputtered BaTiO3 

was behaving as a standard paraelectric material (Figure 7).  The lack of ferroelectricity 

in similar sputtered films has been reported by other authors [16, 19], and was determined 

to be due to the lack of significant perovskite crystallinity in the films.  It has also been 

shown in previous research on similar films that the presence of ferroelectricity is 

strongly related to the processing conditions of the BaTiO3 as well as the selection of 

electrode material [37].  In addition to the paraelectric nature of the films, hysteresis 

loops also allow a calculation of the permittivity (Table II).  Based on these calculations, 

the permittivity was found to be maximized at approximately 1400 with the use of the 

medium thickness electrodes at approximately 90 nm (Figure 8).  The measured 

permittivities also indicated that the thick electrodes (230 nm) were higher at a value of 

about 900 than the thin electrodes (25 nm) with a value of about 600.  The large standard 

deviation associated with these measurements, however, indicate that the permittivities 

may be closer than the averages indicate.  As the BaTiO3 film should have been the same 

in all three cases, these variations in the hysteresis based permittivity appear to be 

associated with some electronic phenomenon occurring at the electrodes. 

 

3.4. AC Impedance Data 

 The capacitance and loss tangent values for the three specimens were taken at 1, 

10, and 100 kHz (Table III).  The capacitance data was used along with the measured 

BaTiO3 thicknesses to calculate the AC permittivity (Figure 9).  It has been reported in 

the literature that modifying the thickness of the BaTiO3 results in a non-linear trend in 

the calculated permittivities due to the presence of interfacial phenomenon at the 

electrode-dielectric interface [19, 22, 38].  These interfacial phenomenon have been 

related only to the dielectric thickness.  As such, it was assumed that a change in 

electrode thickness should not have a significant impact on the permittivity of devices 

with the same dielectric layer thickness and composition.  As seen in Figure 9, this may 
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not be correct.  The permittivity was found to decrease from an average of 1100 to 541 

across the three test frequencies when the electrode thickness was reduced from 

approximately 230 nm to 90 nm.  In addition, the standard deviation for the calculated 

permittivity was found to significantly decrease at the 90 nm thick electrodes.  As the 

thickness of the electrodes was further decreased to approximately 25 nm the permittivity 

was found to strongly depend on the test frequency, with the permittivity decreasing as 

the frequency was increased (1050 at 1 kHz, 800 at 10 kHz, and 270 at 100 kHz). 

 The loss was also assumed to be a function of the BaTiO3 processing conditions, 

and not directly related to the geometry of the electrodes.  Figure 10 shows that this 

assumption holds true at electrode thicknesses of about 90 and 230 nm, but was not valid 

when the thickness of the electrodes was decreased to 25 nm.  The loss was found to be 

consistently below 0.100 for all three test frequencies when the electrodes were 90 or 230 

nm.  At 25 nm, however, the loss becomes highly frequency dependent, with the 100 kHz 

readings indicating the highest loss (0.570), followed by the 10 kHz (0.445) and the 1 

kHz (0.061) readings.  This sudden change in dependency of test frequency, which 

mirrors the observed behavior for the AC permittivity, again supports the assertion of 

some electrical phenomenon occurring in the 25 nm electrodes that were not as apparent 

in the 90 and 230 nm electrodes. 

 

3.5. Elevated Temperature Testing 

 The final series of electrical testing was conducted using a series of elevated 

temperatures at 85°C and 150°C and measuring the leakage current at ±100 V (Table IV).  

The first observation from this data was the increase in leakage current with increasing 

temperature (Figure 11), which is typical for the increased motion of charge carrying 

defects in insulating ceramics.  Data plotted following a standard Arrhenius relationship 

between the conductivity and temperature allowed the calculation of the activation 

energy of conduction, Ea, for the different specimens (Figure 12).  Based on this analysis, 

the Ea was found to be the same for all three specimens between 25°C and 85°C at a 

constant 0.055 eV, which may be indicative of the electron hopping conduction 

mechanism in BaTiO3 [19].  As the temperature was increased to 150°C the three 

specimens gave different responses.  The thick electrodes (230 nm) continued the trend 
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observed at the lower temperatures (Ea = 0.055 eV).  The 90 nm and 25 nm specimens 

however, increased their effective activation energies at temperatures from 85–150°C to 

0.653 and 1.106 eV, respectively.  These values were initially assumed to be a factor 

related to the dielectric and its inherent defect structure in conjunction with a defined set 

of electrical barriers due to the electrodes used, but otherwise independent of the 

electrode geometry [1, 19, 39].  The results of this study, however, indicate that the 

electrode geometry may play a more significant role in the conduction process than 

simply acting as an electron source at the interface of the dielectric and electrode. 

 

3.6. Discussion 

 As the thickness of the electrodes continues to decrease along with the decreasing 

dielectric thickness it becomes more difficult to properly characterize the device.  Based 

on these investigations, the question has become a matter of whether to report the 

physical thickness of the electrodes or the effective thickness due to the resistance, which 

was found to be significantly thinner than the physical thickness due to electrical thin 

film effects.  The results of electrical testing also suggest that the effects of the electrodes 

on the measured dielectric properties were much more significant than previously 

assumed.  Given the trends observed with these specimens, an in depth investigation into 

the effects of electrode materials on the dielectric properties as the electrode thickness is 

decreased into the nanometer range is warranted.  It is also necessary to begin acquiring 

an understanding of the phenomena responsible for these electrode-based effects on the 

resultant dielectric properties. 

 

4. Summary 

 The effects of electrode thickness on the dielectric properties of 150 nm thick 

sputtered BaTiO3 with Ni electrodes was evaluated.  Physical measurements determined 

the electrodes to be 25, 100, and 230 nm thick, but estimated thicknesses based on 

electrical resistance showed the same specimens to be 5, 56, and 198 nm thick.  The 

significant differences between the physical and effective electrical thickness values were 

found to be due to thin film effects reducing the allowed thickness of material where 

conduction could occur with relative ease.  As more data was available for the physical 
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thickness measurements, the FIB-based measurements were chosen to relate the thickness 

effects on the dielectric properties. 

 The I-V plots showed that all specimens were able to achieve field strengths in 

excess of 7 MV/cm without breakdown.  These plots also allowed the calculation of the 

resistance of the devices at an applied potential of 1 V, which showed a decrease in 

resistance once the electrode thickness was below approximately 90 nm. Hysteresis plots 

showed that the films were paraelectric in nature, and that the DC permittivity showed a 

maximum with the 90 nm thick electrode specimen.  AC testing showed that the 

specimens were unaffected by test frequency until the electrode thickness was decreased 

below approximately 90 nm.  At 25 nm an increase in test frequency saw an increase in 

loss and decrease in permittivity.  This phenomenon was not observed with the 90 and 

230 nm thick electrode specimens.  Elevated temperature testing showed two regimes of 

activation energies; one between 25°C and 85°C and the other between 85°C and 150°C.  

The first, low temperature, regime showed all specimens having an Ea value of 0.055 eV.  

Above 85°C, the Ea values began to deviate based on electrode thickness.  The 230 nm 

thick electrode showed no change in Ea, but the 90 and 25 nm thick electrodes showed an 

increase to 0.653 and 1.106 eV, respectively.  All of the responses indicate a phenomenon 

occurring at the electrodes that impacts the dielectric properties as the electrode thickness 

was reduced below 50 nm effective thickness. 
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Figures 

   

Fig. 1 – Process sequence followed for the patterned deposition of a single dielectric layer capacitor.  1
st
 

electrode layer (a), dielectric (b), and 2
nd

 electrode layer (c).  Layer thicknesses are proportioned approximately 

for 25 nm thick Ni with 150 nm thick BaTiO3.  Vacuum was broken between layers to allow the exchanging of 

physical masks between depositions. 

(a) (c) (b) 
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Figure 2 – Representative FIB-SEM image of the medium electrode sample showing an average electrode 

thickness of approximately 89.1 ± 5.31.  Similar images were acquired for the other two electrode thicknesses. 
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Figure 3 – High resolution TEM micrograph of an approximately 15 nm thick (FIB-based 

calculation) electrode specimen showing a strong polycrystalline Ni layer (black) at a thickness of 

approximately 4 nm.  Resistance based calculations resulted in a thickness of 5 nm for this 

specimen. 
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Figure 4 – I-V plot for the three electrode thicknesses.  The resistance-based thickness values of 

the electrodes were approximately 5, 56, and 198 nm for the thin, medium, and thick specimens. 
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Figure 5 – A close-up of the ±10 V range of the I-V plot showing the linear portion of the data 

at ±1 V transitioning to the non-linear conduction mechanism by ±10 V. 
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Figure 6 – The calculated BaTiO3 resistance at +1 V versus the resistance-based electrode 

thickness showing a decrease in overall resistance for electrodes thinner than approx. 50 nm. 
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Figure 7 – Representative hysteresis loop of the thin (~5 nm) electrodes specimen showing the 

typical paraelectric response found for all three specimens. 
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Figure 8 – The calculated permittivity versus electrode thickness shows a maximum at medium 

thickness (~56 nm) electrodes.  The thick electrodes (~198 nm) are higher in value than those 

for the thin electrodes (~5 nm). 
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Figure 9 – The permittivity values as a function of electrode thickness at the three test 

frequencies showing non-linear trends. 
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Figure 10 – Dielectric loss of the sputtered BaTiO3 as a function of electrode thickness for the 

three test frequencies observed. 
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Figure 11 – The measured leakage current at +100 V at temperatures of 25°C, 85°C, and 150°C 

showing a general increase in leakage with increasing temperature. 
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Figure 12 – Arrhenius plot of the conductivity for the three specimens examined.  The slopes of 

the lines were used to calculate the activation energy of conduction presented in Table IV. 
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Tables 

Table I. Measured electrode thicknesses by the three measurement techniques 

 Thick Medium Thin 

Profilometry 

Thickness (nm) 
680 ± 12 350 ± 14 36 ± 3.9 

FIB-SEM 

Thickness (nm) 
230 ± 8.1 89 ± 5.3 25 ± 4.7 

Resistance 

Thickness (nm) 
200 ± 21 56 ± 6.3 5.0 ± 1.1 

 



 

 

162 

Table II. Compilation of the DC properties for the three specimens 

 Thin Medium Thick 

Resistance (GΩ) 180 ± 160 360 ± 72 330 ± 100 

Permittivity 600 ± 340 1440 ± 73 910 ± 270 

 



 

 

163 

Table III. Compilation of the AC properties for the three specimens 

 Frequency Thin Medium Thick 

Permittivity 

1 kHz 1050 ± 170 550 ± 14 1220 ± 370 

10 kHz 800 ± 130 540 ± 13 1060 ± 490 

100 kHz 270 ± 2.0 530 ± 18 1020 ± 490 

Loss 

1 kHz 0.061± 0.003 0.013 ± 0.002 0.071 ± 0.093 

10 kHz 0.445± 0.028 0.013 ± 0.006 0.085 ± 0.105 

100 kHz 0.570± 0.117 0.083 ± 0.061 0.052 ± 0.014 
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Table IV. Leakage currents and activation energies for the specimens at elevated 

temperatures 

 

Test 

Temperature 

(°C) 

Leakage Current 

(Amps at +100 V) 

Activation Energy 

(eV at 85°C – 

150°C) 

Thin (~5 nm) 

25 1.2x10
-8

 ± 7.3x10
-9

 

1.106 85 8.7x10
-9

 ± 1.3x10
-9

 

150 1.5x10
-8

 ± 4.8x10
-9

 

Medium (~56 nm) 

25 1.9x10
-8

 ± 5.9x10
-9

 

0.653 85 2.6x10
-8

 ± 5.8x10
-10

 

150 2.4x10
-8

 ± 3.5x10
-9

 

Thick (~198 nm) 

25 6.0x10
-6

 ± 9.2x10
-7

 

0.055 85 6.8x10
-7

 ± 8.3x10
-8

 

150 2.7x10
-8

 ± 4.9x10
-9
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Abstract 

 Chemical and microstructural evaluation techniques have been used to 

characterize 100-150 nm thick BaTiO3 nano-capacitors with either Ni or Pt electrodes 

approximately 20 nm in thickness.  Atomic force microscopy was used to measure the 

surface roughness of the electrode and dielectric materials.  Electrodes were found to 

have a roughness, Ra, of about 0.67 nm over, and the BaTiO3 had an average Ra value of 

1.4 nm.  The BaTiO3 film chemistry examined with x-ray photoelectron spectroscopy 

found the films to have excess oxygen with Ba:Ti ratios ranging from 0.78 to 1.1 

depending on sputtering conditions.  X-ray diffraction showed a broad peak between 

approximately 20° and 35° 2θ, indicating the films were either amorphous or contained 

grain sizes less than 5 nm.  Focused ion beam images confirmed the presence of smooth, 

conformal films, with no visible signs of macro-defects such as pin-holes, cracks, or 

pores.  High resolution TEM and electron diffraction patterns confirmed the presence of 

an amorphous film with short range order.  EELS data also confirmed that the BaTiO3 

films contain Ba, Ti, and O with no observable contamination from the electrodes.  The 

amorphous nature of the films with excess oxygen were used to explain the presence of 
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high insulation resistance, low loss, high permittivity, and ferroelectric behavior observed 

during electrical testing of these films based on the presence of TiO6 octahedra randomly 

dispersed throughout the sputtered dielectric. 

 

1. Introduction 

 One of the most commonly used dielectrics for commercial capacitors is BaTiO3 

[1].  Typical applications for BaTiO3-based capacitors include dynamic random access 

memory [2-5], tunable microwave devices [5-8], and discreet capacitors [1, 4, 6, 7].  One 

of the primary methods for achieving increased capacitance density for these type of 

devices is to reduce layer thickness.  The traditional tape-casting method used for the 

fabrication of commercial scale capacitors has become a limiting factor in the 

achievement of sub-micron thick dielectric layers [9, 10].  This limitation of tape-casting 

has made the use of thin film techniques, such as sputtering, a potentially viable 

alternative for the fabrication of high-end, nano-scale ceramic capacitors. 

 As these devices continue to decrease in size, a better understanding of the 

electrical responses at the nanometer scale is necessary.  Significant amounts of work 

have been published on the thickness effects of thin film dielectrics [10-21], effects of 

processing conditions on the dielectric responses [2, 8, 12, 14, 16, 18, 21-27], and 

different electrode options [18, 28, 29].  These properties have also been linked to the 

microstructural and chemical characteristics in many of these studies [2, 5, 30-33].  Based 

on previous research efforts conducted on sputtered BaTiO3 with thicknesses in the range 

of 100 to 150 nm with either Ni or Pt electrodes [34-36], a better understanding of the 

effects of the microstructure and chemistry on the observed dielectric properties is 

warranted. 

 

2. Procedure 

 Devices were fabricated on <111> Si wafers, with 1 μm of thermal oxide for 

electrical insulation.  After cleaning in subsequent baths of acetone, methanol, and DI 

water, followed by spin drying and a dehydration bake, a physical mask with approx. 74 

μm wide by 2.4 cm long channels arranged with 11 parallel lines per of quarter wafer was 

centered on the wafer.  The bottom Ni electrodes were sputtered using a Denton 
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Discovery-18 to approximately 20 nm from a 99.9% pure metallic target (Figure 1.a).  

The wafer was then removed from the sputter system, and the mask replaced with another 

physical mask consisting of four square openings measuring approx. 2.7 cm per side was 

placed on the wafer.  After the attainment of a minimum of 5x10
-6

 torr pressure was 

regained in the sputter chamber, BaTiO3 was deposited at various powers (100 – 200 W), 

oxygen concentrations in the plasma (10 – 50% O2, bal. Ar), and deposition temperatures 

(20°C – 300°C) (Figure 1.b).  The original mask was then replaced on the wafer, rotated 

90° from the bottom electrodes, and deposition of the top Ni electrode was repeated in the 

same manner as the first deposition (Figure 1.c).  The final wafer consists of 121 test 

locations per quarter of wafer measuring approximately 5.4x10
-5

 cm
2
 each.  Plasma 

compositions were controlled with two mass flow controllers connected to Ar and O2 

cylinders. 

 The thickness of each layer was measured by a combination of profilometry and 

focused ion beam (FIB) cross section imaging techniques.  Atomic force microscopy 

(AFM) was conducted on 15 x 15 µm sections of the films at selected locations, and the 

average surface roughness, Ra, was reported.  X-ray photoelectron spectroscopy (XPS) 

was performed on 6 different BaTiO3 films that had been deposited under differing 

conditions, and compared to a stoichiometric bulk BaTiO3 ceramic analyzed on the same 

system under the same conditions.  X-ray diffraction (XRD) was conducted in glancing 

angle mode at 2θ values between 5° and 90° using a Cu Kα source.  Focused ion beam 

(FIB) images were acquired after controlled ion milling was performed to expose the 

cross-section of the nano-capacitors.  High resolution transmission electron microscopy 

(TEM) with electron diffraction and EELS capability was used to examine the cross-

section of one of the deposited devices. 

 

3. Results and Discussion 

 A variety of surface and sub-surface characterization techniques have been used 

to gain an understanding of the chemical and microstructural nature of sputtered BaTiO3 

films both with and without electrodes. 
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3.1. Atomic Force Microscopy (AFM) 

 AFM scans were performed over 15 x 15 μm windows in three regions to 

examine the surface roughness of the electrodes, BaTiO3, and bare Si wafer.  All work 

was performed on a fabricated specimen consisting of three layers of approximately 100 

nm thick BaTiO3 each with alternating layers of Ni electrodes (about 20 nm thick each) 

for a device with a total thickness of roughly 380 nm.  The first two regions to be studied 

was at the edge of the patterned BaTiO3, in an area where two of the electrodes protruded 

onto the bare Si substrate (Figure 2).  These regions allowed the measurement of 4 of the 

5 areas of interest in this system (Figure 3); bare SiO2, electrode over SiO2, and BaTiO3 

over SiO2 and over the Ni electrode (Table I).  The bare SiO2 was found to have an 

average Ra of 0.19 nm after testing two of these regions.  The addition of two layers of Ni 

electrodes (total thickness of approximately 40 nm) resulted in an average roughness of 

0.66 nm, and three layers of BaTiO3 (for a total thickness of about 300 nm) gave an 

average roughness of 1.2 nm over the same two test regions.  The last area in these test 

regions to be examined was a layer of BaTiO3 over two layers of previous BaTiO3 and 

two layers of patterned Ni electrode, which showed an average Ra value of 1.4 nm. 

 The final area examined was a randomly selected location along a top electrode 

between active areas (i.e. away from electrode cross-over areas) which allowed another 

measurement of the BaTiO3 roughness over the bare substrate, and also allowed the 

measurement of the fifth area of interest which was the roughness of the Ni electrode 

over three layers of BaTiO3 and 2 layers of Ni (Figure 4).  In this region, which was not 

repeated elsewhere on the wafer, the top electrode (total thickness of underlying BaTiO3 

and Ni layers was about 380 nm) was found to have an Ra value of 0.67 nm, and the 

BaTiO3 (with a total thickness of approximately 300 nm for the underlying three layers of 

BaTiO3) again measured a roughness of 1.4 nm. 

 An overview of the data shows that the electrodes, whether over bare substrate or 

deposited BaTiO3, has a roughness of approximately 0.67 nm (Table I).  Likewise, 

regardless of whether the BaTiO3 was deposited over the SiO2 or the patterned Ni 

electrodes, a consistent roughness of 1.4 nm was observed.  In both cases, the sputtered 

films were rougher than the bare SiO2 surface of the substrate (Ra = 0.19 nm).  The AFM 
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characterization also did not display the presence of any macro-defects in the films, such 

as cracks or pinholes. 

 

3. 2. X-ray Photoelectron Spectroscopy (XPS) 

 Six sputtered BaTiO3 compositions were selected to be examined by XPS (Table 

II).  The results of these six specimens were normalized to a reference standard of 

stoichiometric BaTiO3 ceramic that had been analyzed in the same system, by the same 

operator, and under identical conditions as the six unknown compositions (Table III).  

Data from all samples was gathered after a light sputter cleaning to remove surface 

contaminants.  It was interesting to note that all but one of the six specimens was found to 

have between 8 and 33% excess oxygen compared to the stoichiometric amount.  The one 

specimen that did not follow this trend was approximately 5% oxygen deficient.  Excess 

oxygen in BaTiO3 has been reported  previously in the literature [37, 38].  The Ba:Ti ratio 

was found to vary depending on the deposition conditions.  Two specimens (R4, R7) 

were found to be significantly Ti rich, two were Ba rich (R1, R8), and two were within 

approximately 3% of stoichiometric (R9, R10).  A similar swing in Ba:Ti ratio has been 

observed based on other processing conditions (target-substrate angle, sputter pressure, 

crystallinity) in the literature [38, 39].  Both of these conditions (oxygen excess and 

varying Ba:Ti ratio) have been associated with the activity of negatively charged oxygen 

ions hitting the surface of the developing film during deposition in the sputter chamber 

[38]. 

 Table III compares the XPS data to the measured dielectric properties of the 

sputtered BaTiO3 films with approximately 20 nm thick Ni electrodes.  The resistance at 

an applied potential of 1 V was found to range from approximately 16 to 270 GΩ.  The 

permittivity (calculated from the AC capacitance at 1 kHz and 1 Vrms with 0 V bias) was 

found to be between approximately 280 and 1030 with losses between 0.02 and 0.09.  

Plots of these properties versus the XPS data in the form of Ba:Ti, (Ba+Ti):O, Ba:O, and 

Ti:O ratios showed no obvious correlations between the film chemistries and the 

electrical properties (Figure 5).  Previous research efforts, however, have linked these 

properties to high order interactions between the deposition conditions [34].  As such, 

this lack of observable patterns in the data with respect to the XPS chemical data was 
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likely due to the reduced number of examined specimens (i.e. only 6 of the 13 specimens 

were analyzed from the original design of experiments) in addition to the complex nature 

of the interactions between the processing conditions responsible for the changes in 

measured dielectric properties. 

 

3.3. X-ray Diffraction (XRD) 

 X-ray diffraction was conducted on three specimens, R1, R4, and R7 (processing 

conditions listed in Table II).  All three specimens showed a broad peak between 2θ 

values of approximately 20° to 35°, indicating the films are either amorphous or have a 

grain size less than 5 nm (Figure 6).  The presence of a moderate peak at approximately 

30° 2θ may be due to the presence of the <111> Si wafer used as the substrate which has 

a strong <111> peak at 29°.  It is interesting to note that the rhombohedral, orthorhombic, 

cubic, and tetragonal forms of BaTiO3 exhibit <100> and <111> peaks at 22° and 39°, 

respectively.  The broad peak beginning at approximately 20° 2θ may indicate the 

presence of some <100> BaTiO3 characteristic in the films.  This, however, is not capable 

of being determined with XRD testing methods, and requires the use of more advanced 

techniques such as electron diffraction discussed in section 3.4 below. 

 The literature reports that as-deposited films of traditional perovskite materials 

such as BaTiO3 and (Ba,Sr)TiO3 require minimum deposition temperatures of between 

350° and 500°C to obtain crystalline films [14, 23, 25, 39].  It has also been stated that 

the sputter pressure and target-substrate angle can directly impact the crystallinity of the 

film [38], and that annealing of amorphous sputtered films at 550°C are required to 

initiate crystallization [39].  As such, the lack of crystallinity in these films was not 

surprising in itself, but combined with the presence of ferroelectric behavior as 

previously reported for these films [34] presents an unexpected combination of features.  

The presence of ferroelectricity for BaTiO3 was generally considered to be a phenomenon 

resulting from the perovskite structure [1, 40, 41], and has only been reported in 

crystalline thin films [13, 30, 42].  The presence of ferroelectricity in these amorphous 

films, therefore, was an anomaly not previously encountered. 
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3.4. Electron Microscopy 

 The first series of electron microscopy images were obtained with the use of a 

focused ion beam (FIB).  Cross-section images were obtained by ion milling a section of 

material from the surface of the sputtered films, and an image acquired of the exposed 

cross-section (Figure 7).  These images, acquired for six specimens with three different 

compositions of BaTiO3 and two different sets of symmetrical electrodes (Ni or Pt), 

confirmed the low surface roughness of the films as measured by the AFM.  The images 

also confirm the lack of large scale defects such as pinholes and cracks, but also show no 

presence of pores within the film or any delamination between the films and substrates or 

between the sputtered layers.  This indicated that high quality depositions were achieved. 

 The FIB was also used to create a specimen for examination in a high resolution 

transmission electron microscope (TEM).  The specimen examined was a multi-layer 

capacitor (MLC) with three layers of BaTiO3 and Ni electrodes.  After an overall image 

of the cross-section was obtained (Figure 8.a), electron energy loss spectroscopy (EELS) 

spectrum were acquired from the center of one of the BaTiO3 layers and one of the Ni 

layers (Figure 8.b and 8.c).  The EELS analysis showed that the BaTiO3 films consisted 

of the film constituents (e.g. Ba, Ti, and O) with no significant amounts of impurities 

including Ni from the electrodes in the observed range of energies.  The analysis also 

showed that the Ni electrodes contained no observable amount of impurities. 

 Following the EELS analysis, a high resolution image of the interface between the 

BaTiO3 and one of the Ni electrodes was acquired (Figure 9).  This image showed lattice 

fringes within the Ni, indicating that the electrodes were polycrystalline.  The image also 

showed an interfacial layer between the two materials (grey area between Ni and BaTiO3) 

which confirmed an assumption made in previous research efforts regarding the presence 

of the an interfacial layer altering the dielectric properties at BaTiO3 thicknesses in the 

nanometer range [35].  The high resolution image also confirmed the XRD results that 

the BaTiO3 layer was amorphous.  An electron diffraction pattern taken from the BaTiO3 

layer (Figure 9.b) showed a diffuse pattern indicative of a mostly amorphous material.  

Having a broad, continuous ring around the center transmission spot indicates the 

presence of short range order molecules or crystallites consisting of a small number of 

atoms randomly oriented through out the material.  As stated previously, the presence of 
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ferroelectric behavior in these amorphous films was a phenomenon that had not been 

found within the available literature. 

 

3.5. Discussion 

 Previous research efforts on these BaTiO3 films with either Ni or Pt electrodes has 

shown the ability to achieve permittivities from 500 to over 1000 with losses from 0.01 to 

0.10 and resistances consistently greater than 10 GΩ [34-36].  These same studies 

showed that BaTiO3 films were capable of exhibiting ferroelectric behavior.  All of the 

measured dielectric properties were found to be related to interactions between the 

process parameters during sputter deposition by a statistical design of experiments.  The 

microstructural and chemical data reported above was done to provide insight on how 

these dielectric responses were being developed. 

 It has been noted in several sources that the grain boundaries in polycrystalline 

BaTiO3 typically have lower leakage currents (and thus higher resistances), higher 

breakdown strengths, and higher capacitance than the grains [2, 12, 15, 43].  As grain 

boundaries can be considered disordered grains with limited chemical differences, the 

large measured resistances in the giga-ohm range and low loss values below 0.10 was not 

altogether surprising given that the deposited films were not observed to have any 

significant amount of cracks or pinholes through which the electrodes could bypass the 

BaTiO3 and make electrical contact.  The presence of permittivity values greater than 500 

was also not unexpected from the amorphous films given the increased capacitance 

typical of BaTiO3 grain boundaries [2].  The dielectric response that does not fit the 

previous patterns in the literature was the presence of ferroelectric behavior in a 

predominately amorphous film. 

 Literature has only reported the presence of ferroelectricity for polycrystalline 

films [1, 40-42].  Even thin films with nano-crystalline grain sizes portraying cubic or 

pseudo-cubic diffraction characteristics have been shown to develop well-defined 

ferroelectric hysteresis patterns [42].  No sources, however, have been found that relate 

the finding of the ferroelectric behavior in amorphous BaTiO3.  Films have generally 

required high deposition temperatures and/or high temperature annealing in order to 

develop a polycrystalline grain structure [13, 14, 23, 25, 39].  The use of elevated 
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temperatures, however, can lead to the formation of cracks and increased residual stresses 

within the films due to thermal mismatch [1, 6, 13].  Thus the presence of ferroelectricity 

in thin films not requiring the use of temperatures greater than 300°C is unique.  The 

ferroelectric behavior of these amorphous films, however, requires a renewed look at the 

phenomenon giving rise to the unexpected hysteretic response. 

 The presence of remnant polarization in these films indicated that there was some 

amount of switchable dipoles within the BaTiO3 material.  As neither XRD nor TEM 

showed the presence of appreciable crystallinity, these dipoles were not likely due to the 

formation of a perovskite crystal structure.  Thus, some other structural mechanism 

would have to be responsible for the dipole formation.  The chemical data from XPS 

suggests a condition where there was an excess of oxygen atoms within the films.  As the 

electron diffraction pattern showed a broad, diffuse ring typical of short range order, it is 

possible that the oxygen atoms formed octahedrons with Ti interstitials (e.g. TiO6 

octahedra).  The Ba atoms would then be randomly dispersed throughout the structure 

between the randomly oriented octahedrons.  In this arrangement the Ti would form a 

dipole in the interstitial site, which would account for the presence of the ferroelectricity 

in these films.  The fact that there were no grains or any long range order would create a 

situation where there was no definable domain structure.  It has been suggested that the 

disappearance of domain walls in a dielectric could lead to a significant increase in the 

polarizability of a material over the maximum achievable value in the bulk ceramic [42].  

If this theory regarding the disappearance of domain walls is accurate, the fact that there 

are no domain walls in these films would account for the increased coercive fields and 

remnant polarizations observed during hysteresis measurements. 

 

4. Summary 

 The chemical and structural characteristics of sputtered BaTiO3 films with 

thicknesses between 100 and 150 nm with approximately 20 nm thick electrodes of either 

Ni or Pt was examined.  Atomic force microscopy found that the Ni films had an Ra value 

of 0.67 nm and the BaTiO3 films were roughly twice as rough with an Ra value of 1.4 nm.  

Chemical analysis performed by XPS showed the majority of the films were oxygen rich, 
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and contained varying Ba:Ti ratios depending on deposition conditions.  No direct 

correlation between the chemical data and measured dielectric properties was observed. 

 The films were found to be amorphous by XRD, electron diffraction, and high 

resolution TEM.  The electron diffraction pattern did, however, suggest the presence of 

short range order within the material.  The ferroelectric behavior of these amorphous 

films was contradictory to observed trends in the literature, and was related to the short 

range order, which was likely due to the presence of TiO6 octahedra randomly dispersed 

throughout the film.  These octahedra were thought to be responsible for the formation of 

Ti dipoles within the material, which, combined with the overall amorphous nature 

resulting in a film with no domain walls, allowed the development of large coercive 

fields and remnant polarizations that are otherwise unachievable with bulk BaTiO3. 
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Figures 

   

   

Fig. 1 – Process sequence followed for the patterned deposition of a single dielectric layer capacitor.  1
st
 

electrode layer (a), dielectric (b), and 2
nd

 electrode layer (c).  Top images are plan view looking at surface of 

substrate, and bottom images are cross sections.  Vacuum was broken between layers to allow the exchanging of 

physical masks between depositions. 

 

(a) (c) (b) 
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Figure 2 – Optical image of Region 1 examined by the AFM for surface roughness of the BaTiO3 

over Ni (a), BaTiO3 over bare substrate (b), Ni electrode over substrate (c), and the bare substrate 

(d).  Dotted lines added to aid in image interpretation.  Region 2 examined by the AFM was another 

location similar to this. 

 

(a) (b) 

(c) (d) 
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Figure 3 – Schematic cross-section of the five areas of interest for the AFM investigation; bare SiO2 (a), two 

electrode layers over SiO2 (b), three BaTiO3 layers over SiO2 (c), three layers of BaTiO3 with two layers of 

electrodes (d), and an electrode layer over three layers of BaTiO3 and one previous layer of electrode (e).  Each 

BaTiO3 layer was approximately 150 nm and each electrode layer was about 20 nm. 

(b) (a) 

(e) 
(d) (c) 
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Figure 4 – Optical image of Region 3 examined by the AFM for surface roughness of the BaTiO3 

over the bare substrate (a) and Ni over BaTiO3 (b).  Dotted lines added to aid in image interpretation. 

 

(a) 

(b) 
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Figure 5 – Measured loss values of the six BaTiO3 films examined by XPS versus the calculated 

Ba:Ti ratio.  Plots were also made for the (Ba+Ti):O, Ba:O, and Ti:O ratios with a similar lack of 

observable trends between the chemical data and measured properties. 
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Figure 6 – Typical XRD plot observed for the R1, R4, and R7 specimens suggesting the films are 

amorphous.  The peak for Si <111> is at 29°, and BaTiO3 <100> and <111> was at 22° and 39°, 

respectively. 
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Figure 7 – Typical FIB image of a cross-section of a BaTiO3 nano-capacitor.  This image was taken 

from a device with Pt electrodes and a layer of BaTiO3 deposited at 100 W, 30% O2, and 573K. 

 

Pt from FIB 

SiO2 

BaTiO3 Ni 
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Figure 8 – Results of the EELS analysis from the three layer BaTiO3 MLC with Ni electrodes. 
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Figure 9 – A FIB cross-section image (a) showing a lower magnification view of the high resolution TEM 

cross-section image (b).  An electron diffraction pattern (c) confirms the BaTiO3 is mostly amorphous with 

only short range order. 
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Tables 

Table I. Roughness measurements, Ra, for the three AFM examined regions 

 
Region 1 

(Figure 2) 
Region 2 

Region 3 

(Figure 4) 

Average 

Values 

Bare SiO2 0.19 nm 0.18 nm --- 0.19 nm 

Ni over BaTiO3 --- --- 0.67 nm 0.67 nm 

Ni over SiO2 0.63 nm 0.69 nm --- 0.66 nm 

BaTiO3 over Ni 1.3 nm 1.4 nm --- 1.4 nm 

BaTiO3 over SiO2 1.2 nm 1.2 nm 1.43 nm 1.3 nm 
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Table II. – Processing conditions of the six specimens examined by XPS 

 
Deposition 

Power (W) 

%O2 in 

Plasma 

Deposition 

Temperature 

(K) 

R1 200 30 293 

R4 200 50 433 

R7 150 50 293 

R8 100 30 573 

R9 150 10 573 

R10 150 30 433 
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Table III – Chemical data from the XPS investigation with the measured dielectric 

properties 

 Ba:Ti (Ba+Ti):O Permittivity Loss Resistance (GΩ) 

R1 1.1 0.58 575 0.092 16 

R4 0.78 0.70 1033 0.059 270 

R7 0.91 0.61 280 0.023 92 

R8 1.1 0.45 635 0.041 110 

R9 1.0 0.44 718 0.038 76 

R10 1.0 0.49 713 0.042 190 

Standard 1.0 0.66 --- --- --- 
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General Conclusion 

 

 The initial study of sputtered BaTiO3 with Ni electrodes using a Box-Behnken 

design of experiments showed the wide variety of electrical responses achievable with 

these devices.  The permittivity was found to vary from 100 to 10,000 depending on 

process conditions and testing method (i.e. either AC or DC).  Losses were found to be 

between 0.013 and 0.570 with resistances between 15 and 360 GΩ, again depending on 

the deposition conditions.  The films were also determined to have either a paraelectric or 

ferroelectric nature depending on the sputtering parameters used.  The results from the 

design of experiments allowed the prediction and fabrication of an optimized BaTiO3 

capacitor with a thickness of approximately 100 nm and Ni electrodes of approximately 

20 nm in thickness.  The predicted dielectric properties are compared to the measured 

values in Table I.  The percentage differences between the predicted and actual values 

were found to vary from approximately 20% to 95% despite the high R
2
 values associated 

with the statistical DOE models.  This suggests the presence of higher order interactions 

between the process parameters that can only be modeled using a larger set of specimens.  

The ideal case would be the investigation of a 3
3
 full factorial which would allow the 

modeling of all interactions between the parameters, but would require 127 specimens to 

be fabricated and tested.   

 

Table I.  Comparison of the predicted and measured dielectric properties for the 

optimized deposition of 100 nm BaTiO3 with Ni electrodes 

 

Permittivity 

(at 1kHz 

AC) 

Loss 

Resistance 

at +1 V 

(DC) 

Hysteresis-

based 

Permittivity 

Remnant 

Polarization 

Predicted 760 0.011 210 GΩ 600 31 μC/cm
2
 

Measured 600 0.035 150 GΩ 2800 1.8 μC/cm
2
 

Percent 

Difference 
21% 69% 31% 79% 94% 
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 The results of the Box-Behnken DOE that was performed in Papers 2 and 3, 

although not as accurate as was hoped, are important for two reasons.  First, although the 

predictive models are not as accurate as the R
2
 values suggest, the fact that the data could 

be modeled to a certain degree suggests that the system can be more accurately modeled 

with additional test points.  The models were also at least minimally predictive in the 

sense that they accurately predicted general trends in the data.  Second, the specimens 

showed a repeatable and reliable series of dielectric data from location to location on a 

single wafer, and from wafer to wafer of the same deposition conditions.  This gives 

promise for any potential commercial application of these films in that they deliver 

reliable properties. 

 The dielectric thickness studies resulted in two key findings.  First, the sputtered 

BaTiO3 nano-capacitors are highly susceptible to an interfacial layer that forms between 

the electrode and dielectric.  This interfacial layer was found to behavior as a capacitor in 

series with the BaTiO3, and had similar permittivities across the different deposition 

conditions and electrodes.  The second, and perhaps more important, insight gained from 

this series of experiments was the conclusion that the electrode material, whether Ni or 

Pt, has a significant impact on the measured dielectric properties.  Pt electrodes were 

found to impart a larger permittivity (from 890 to 1950), but also resulted in lower loss 

(0.024 to 0.114) and decreased device yield across the wafer (average of about 95%).  

The use of Ni electrodes resulted in permittivities between 320 and 760 with losses from 

0.019 to 0.130 and yields of close to 99%.  Minimum loss values were found to occur at 

BaTiO3 thicknesses of between 50 and 100 nm. 

 Electrode thickness was also found to impact the measured dielectric properties.  

The maximum hysteresis-based permittivity (1440) and resistance (360 GΩ) was found 

when the electrodes were approximately 90 nm thick (as measured by FIB cross-section).  

Loss and permittivity as measured with an AC current was found to depend strongly on 

the frequency at electrode thicknesses below 90 nm, but otherwise consistent with thicker 

electrodes.  In the frequency independent region, the 90 nm thick electrode was found to 

have the lowest average loss of 0.036 and lowest average permittivity of 540.  The 

activation energy for conduction was also found to vary between 0.055 and 1.11 eV 

depending on the electrode thickness. 
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 The microstructural and chemical investigations of a variety of the BaTiO3 

devices revealed the films to be amorphous and stoichiometrically rich in oxygen.  The 

presence of ferroelectricity in amorphous films was not observed in the literature, which 

repeatedly stated that a minimum of a nano-crystalline structure was required to obtain 

such behavior.  The presence of a broad, diffuse ring on the electron diffraction pattern 

suggested a short range order was apparent in the material.  This finding combined with 

the determination by XPS of excess oxygen suggests the presence of TiO6 octahedra that 

are randomly dispersed throughout the BaTiO3 films.  These octahedra, with the Ti in the 

interstitial, would result in the presence of a ferroelectric response on the hysteresis plots.  

The fact that these octahedra have no long range order results in a material that is not 

likely to have any domain walls, which results in the abnormally large remnant 

polarizations and coercive fields observed with these fields. 



 

 

194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

 

ANOVA TABLES AND STATISTICAL MODELS 
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1. Introduction 

 The following pages include the analysis of variance (ANOVA) tables from the 

DOE investigation of papers 2 and 3.  These tables were calculated by Design-Expert 

7.1.3 after the inclusion of the model verification and optimization specimens, and 

represent the most complete form of the data from the work performed.  Following each 

of the ANOVA tables is the final mathematical equation that was calculated by the DOE 

software to model the given response as a function of the actual variable values (i.e. tan δ 

= f(power, %O2, temperature)). 

 Assuming a confidence level of 5% (α = 0.05), a term is said to be significant if 

the associated p-value is less than 0.05.  The first term on the ANOVA that was testing in 

this manner is the model p-value.  If the model p-value is less that 0.05 the data was 

found to exhibit a significant pattern with respect to the process variables and/or variable 

interactions.  If the model was found to be significant, the interaction and process 

variable terms were examined using the same criteria (i.e. a significant interaction 

between terms was found if the p-value was less than 0.05). 

 Some testing was conducting where enough data was collected to allow for a lack 

of fit test to be conducted on the model.  This test measures the fit of the predictive model 

to the measured data points and give a reasonable assessment of the correlation between 

the two.  A lack of fit with a p-value less than 0.05 indicated a significant lack of fit 

between the model and the data, and was an indication that despite the presence of a 

strong dependence on the process parameters (i.e. the model p-value was below 0.05), the 

calculated model does not accurately represent the available data. 
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2. Resistance 

Table I. ANOVA table for the +1 V Resistance 

 Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 4.14E+11 12 3.45E+10 20.52 < 0.0001 

  A-Power 4.49E+10 1 4.49E+10 26.70 < 0.0001 

  B-%O2 2.05E+09 1 2.05E+09 1.22 0.2797 

  C-Temp 1.09E+11 1 1.09E+11 64.86 < 0.0001 

  AB 1.10E+11 1 1.10E+11 65.56 < 0.0001 

  AC 1.27E+10 1 1.27E+10 7.54 0.0106 

  BC 4.29E+10 1 4.29E+10 25.53 < 0.0001 

  A
2
 6.25E+09 1 6.25E+09 3.72 0.0645 

  B
2
 4.90E+07 1 4.90E+07 0.03 0.8657 

  C
2
 2.70E+09 1 2.70E+09 1.61 0.2159 

  A
2
B 1.79E+10 1 1.79E+10 10.66 0.0030 

  A
2
C 3.55E+10 1 3.55E+10 21.13 < 0.0001 

  AB
2
 6.62E+10 1 6.62E+10 39.37 < 0.0001 

Pure Error 4.54E+10 27 1.68E+09     

Cor Total 4.59E+11 39       

      

The Model F-value of 20.52 implies the model is significant.  There is only 

a 0.01% chance that a "Model F-Value" this large could occur due to noise. 

      

Values of "Prob > F" less than 0.0500 indicate model terms are significant.   

In this case A, C, AB, AC, BC, A
2
B, A

2
C, AB

2
 are significant model terms.   

 

Values greater than 0.1000 indicate the model terms are not significant.   

 

 R =  -1.4 x 10
6
 + (24000 * P) – (47000 * %O2) + (4700 * T) + (540 * P * %O2)  

 – (71 * P * T) – (21 * %O2 * T) – (75 * P
2
) + (780 * %O2

2
) + (1.01 * T

2
)  

 – (1.08 * P
2
  * %O2) + (0.22 * P

2
  * T) – (5.167 * P * %O2

2
) 

 

Where R is the resistance at +1V in Ω, P is RF-sputter power (W), %O2 is the percent 

oxygen in a 5 mtorr plasma (balance Ar), and T is the deposition temperature in Kelvin. 
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3. DC Permittivity (Hysteresis-based) 

Table II. ANOVA table for the hysteresis-based, DC permittivity 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 2.64E+08 11 2.40E+07 173.06 < 0.0001 

A-Power 1.06E+04 1 1.06E+04 0.08 0.7845 

B-%O2 1.12E+08 1 1.12E+08 808.04 < 0.0001 

C-Temp 2.20E+07 1 2.20E+07 158.96 < 0.0001 

AB 1.78E+05 1 1.78E+05 1.28 0.2677 

AC 2.08E+06 1 2.08E+06 14.99 0.0007 

BC 2.65E+07 1 2.65E+07 191.34 < 0.0001 

A
2
 1.99E+07 1 1.99E+07 143.14 < 0.0001 

B
2
 7.70E+06 1 7.70E+06 55.55 < 0.0001 

C
2
 2.25E+07 1 2.25E+07 162.25 < 0.0001 

A
2
B 6.68E+07 1 6.68E+07 481.44 < 0.0001 

A
2
C 7.19E+06 1 7.19E+06 51.83 < 0.0001 

Residual 3.61E+06 26 1.39E+05   

Lack of Fit 6.81E+03 1 6.81E+03 0.05 0.8296 

Pure Error 3.60E+06 25 1.44E+05     

Cor Total 2.68E+08 37       

      

The Model F-value of 173.06 implies the model is significant.  There is only 

a 0.01% chance that a "Model F-Value" this large could occur due to noise. 

      

Values of "Prob > F" less than 0.0500 indicate model terms are significant.   

In this case B, C, AC, BC, A
2
, B

2
, C

2
, A

2
B, A

2
C are significant model terms.   

Values greater than 0.1000 indicate the model terms are not 

significant.    

      

The "Lack of Fit F-value" of 0.05 implies the Lack of Fit is not significant relative 

to the pure error.  There is a 82.96 % chance that a “Lack of Fit F-value” this large 

could occur due to noise.  Non-significant lack of fit is good – we want the model 

to fit. 

  

 εDC = 77000 – (803 * P) - (1800 * %O2) – (150 * T) + (21 * P * %O2) + (0.91 * P 

 * T) + (0.56 * %O2 * T) + (2.77 * P
2
) + (2.67 * %O2

2
) + (0.09 * T

2
) – (0.07 * P

2
 * 

 %O2) – (3.22 x 10
-3

 * P
2
 * T) 

 

Where εDC is the hysteresis-based, DC permittivity, P is RF-sputter power (W), %O2 is 

the percent oxygen in a 5 mtorr plasma (balance Ar), and T is the deposition temperature 

in Kelvin. 



 

 

198 

 

4. Remnant Polarization 

Table III. ANOVA table for the remnant polarization 

Source 
Sum of 

Squares df 
Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 3.97E+04 11 3.61E+03 23.7 < 0.0001 

  A-Power 3.82E+01 1 3.82E+01 0.3 0.6211 

  B-%O2 8.85E+03 1 8.85E+03 58.0 < 0.0001 

  C-Temp 5.68E+03 1 5.68E+03 37.3 < 0.0001 

  AB 3.54E-01 1 3.54E-01 0.0 0.9620 

  AC 9.71E+02 1 9.71E+02 6.4 0.0178 

  BC 4.21E+03 1 4.21E+03 27.6 < 0.0001 

  A
2
 3.30E+03 1 3.30E+03 21.6 < 0.0001 

  B
2
 8.12E+03 1 8.12E+03 53.2 < 0.0001 

  C
2
 4.23E+01 1 4.23E+01 0.3 0.6028 

  A
2
B 4.78E+03 1 4.78E+03 31.4 < 0.0001 

  A
2
C 1.35E+04 1 1.35E+04 88.5 < 0.0001 

Residual 4.12E+03 27 1.53E+02     

Lack of Fit 5.66E+01 1 5.66E+01 0.4 0.5525 

Pure Error 4.06E+03 26 1.56E+02     

Cor Total 4.38E+04 38       

      

The Model F-value of 23.66 implies the model is significant.  There is only 

a 0.01% chance that a "Model F-Value" this large could occur due to noise. 

      

Values of "Prob > F" less than 0.0500 indicate model terms are significant.   

In this case B, C, AC, BC, A2, B
2
, A

2
B, A

2
C are significant model terms.   

Values greater than 0.1000 indicate the model terms are not significant.   

      

The "Lack of Fit F-value" of 0.36 implies the Lack of Fit is not significant 

relative to the pure error.  There is a 55.25% chance that a "Lack of Fit F-

value" this large could occur due to noise.  Non-significant lack of fit is good -

- we want the model to fit. 

 

 Prem = -1300 + (16 * P) – (3.32 * %O2) + (3.18 * T) + (0.17 * P * %O2) – (0.04 * 

 P * T) – (6.69 x 10
-3

 * %O2 * T) – (0.05 * P
2
) – (0.09 * %O2

2
) + (1.27 x 10

-4 
* T

2
)  

– (5.65 x 10
-4

 * P
2
 * %O2) + (1.36 x 10

-4
 * P

2
 * T) 
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Where Prem is the remnant polarization (μC/cm
2
), P is RF-sputter power (W), %O2 is the 

percent oxygen in a 5 mtorr plasma (balance Ar), and T is the deposition temperature in 

Kelvin. 

 

5. AC Permittivity at 1 kHz and 1 Vrms 

Table IV. ANOVA table for the AC permittivity 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 2.89E+07 13 2.22E+06 625.8 < 0.0001 

  A-Power 7.33E+03 1 7.33E+03 2.1 0.1514 

  B-%O2 9.59E+06 1 9.59E+06 2700.5 < 0.0001 

  C-Temp 4.97E+05 1 4.97E+05 139.8 < 0.0001 

  AB 3.06E+06 1 3.06E+06 860.5 < 0.0001 

  AC 2.45E+06 1 2.45E+06 688.6 < 0.0001 

  BC 2.20E+06 1 2.20E+06 620.3 < 0.0001 

  A
2
 1.27E+06 1 1.27E+06 358.9 < 0.0001 

  B
2
 3.07E+05 1 3.07E+05 86.5 < 0.0001 

  C
2
 6.43E+05 1 6.43E+05 181.2 < 0.0001 

  A
2
B 8.13E+06 1 8.13E+06 2288.5 < 0.0001 

  A
2
C 3.99E+05 1 3.99E+05 112.3 < 0.0001 

  AB
2
 3.25E+05 1 3.25E+05 91.6 < 0.0001 

  B
2
C 3.47E+04 1 3.47E+04 9.8 0.0019 

Pure Error 2.38E+06 670 3.55E+03     

Cor Total 3.13E+07 683       

      

The Model F-value of 625.77 implies the model is significant.  There is only 

a 0.01% chance that a "Model F-Value" this large could occur due to noise. 

      

Values of "Prob > F" less than 0.0500 indicate model terms are significant.   

In this case B, C, AB, AC, BC, A
2
, B

2
, C

2
, A

2
B, A

2
C, AB

2
, B

2
C are significant 

model terms.   

   

Values greater than 0.1000 indicate the model terms are not significant.   

 

 εAC = 1900 + (4.46 * P) – (204 * %O2) + (3.98 * T) + (2.03 * P * %O2) – (0.12 * 

 P * T) + (0.07 * %O2 * T) – (0.01 * P
2
) + (0.83 * %O2

2
) + (3.87x 10

-3 
* T

2
)  

 – (5.78 x 10
-3

 * P
2
 * %O2) + (3.33 x 10

-4
 * P

2
 * T) – (2.88 x 10

-3
 * P * %O2

2
)  

 – (6.14 x 10
-4

 * %O2
2
 * T) 
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Where εAC is the permittivity under an AC field at 1 kHz and 1 Vrms, P is RF-sputter 

power (W), %O2 is the percent oxygen in a 5 mtorr plasma, and T is the deposition 

temperature in Kelvin. 

 

6. Dielectric Loss 

Table V. ANOVA table for the loss tangent (tan δ) at 1 kHz and 1 Vrms 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 4.65E-01 13 3.58E-02 80.64 < 0.0001 

  A-

Power 1.62E-04 1 1.62E-04 0.36 0.5463 

  B-%O2 1.52E-02 1 1.52E-02 34.23 < 0.0001 

  C-Temp 2.94E-01 1 2.94E-01 662.27 < 0.0001 

  AB 1.61E-02 1 1.61E-02 36.19 < 0.0001 

  AC 1.65E-04 1 1.65E-04 0.37 0.5418 

  BC 1.20E-03 1 1.20E-03 2.71 0.1004 

  A
2
 5.35E-03 1 5.35E-03 12.07 0.0005 

  B
2
 8.71E-03 1 8.71E-03 19.65 < 0.0001 

  C
2
 4.76E-03 1 4.76E-03 10.72 0.0011 

  A
2
B 1.34E-02 1 1.34E-02 30.27 < 0.0001 

  A
2
C 2.43E-01 1 2.43E-01 548.67 < 0.0001 

  AB
2
 2.17E-03 1 2.17E-03 4.88 0.0275 

  B
2
C 2.02E-01 1 2.02E-01 454.90 < 0.0001 

Pure 

Error 2.97E-01 670 4.44E-04     

Cor 

Total 7.62E-01 683       

      

The Model F-value of 80.64 implies the model is significant.  There is 

only a 0.01% chance that a "Model F-Value" this large could occur 

due to noise. 

 

Values of "Prob > F" less than 0.0500 indicate model terms are 

significant.   

In this case B, C, AB, A
2
, B

2
, C

2
, A

2
B, A

2
C, AB

2
, B

2
C are significant 

model terms. 

    

Values greater than 0.1000 indicate the model terms are not 

significant.   
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 tan δ = -2.91 + (0.035 * P) + (0.043 * %O2) + (6.77 x 10
-3

 * T) – (7.56 x 10
-5

 * P 

 * %O2) – (7.79 x 10
-5

 * P * T) – (8.81 x 10
-5

 * %O2 * T) – (1.17 x 10
-4

 * P
2
)  

 – (6.55 x 10
-4

 * %O2
2
) – (3.33 x 10

-7 
* T

2
) + (2.35 x 10

-7 
* P

2
 * %O2)  

 + (2.60 x 10
-7 

* P
2
 * T) + (2.35 x 10

-7
 * P * %O2

2
) + (1.48 x 10

-6
 * %O2

2
 * T) 

 

Where tan δ is the dielectric loss under an AC field at 1 kHz and 1 Vrms, P is RF-sputter 

power (W), %O2 is the percent oxygen in a 5 mtorr plasma, and T is the deposition 

temperature in Kelvin. 
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APPENDIX B 

 

DETAILED SPUTTERING PROCEDURE 
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1. Introduction 

 The following sections detail the precise methods and procedures used to sputter 

the nano-scale capacitors that were researched throughout the dissertation.  Due to the 

necessity of brevity in the publications, a large amount of information regarding the 

deposition techniques had to be omitted from the text.  The missing information is 

compiled here in the hopes of allowing future research efforts to be initiated with as little 

transition time as possible. 

 

2. Wafer Cleaning 

 A properly cleaned wafer was observed to give optimal results.  Given the 

laboratory environment used for the reported studies, a perfectly clean substrate was 

nearly impossible to obtain, but the following procedure was found to give adequate 

results with minimal effort and no harsh or environmentally hazardous materials. 

 Wafers were cleaned immediately prior to deposition, and a virgin wafer was 

always used.  The wafer was initially submerged in laboratory grade acetone, and 

agitated beneath the surface of the liquid for three minutes.  It was then allowed to air dry 

for a minimum of 30 seconds before submersion in laboratory grade methanol, and 

agitated for another three minutes.  Following another air dry for at least 30 seconds, the 

wafer was submerged in fresh DI water, and agitated for another three minutes.  The 

wafer surface was then sprayed with fresh DI water, and then spin dried at 6000 rpm for 

90 seconds.  To ensure complete dehydration of the wafer surface (necessary for adequate 

adhesion of subsequent layers) the wafer was placed on a standard hot plate pre-heated to 

approximately 200°C, and allowed to soak for 5 minutes.  The wafer resulting from this 

procedure was found to have a minimum of surface particles, and gave the highest 

observable device yields post-deposition. 

 The agitation of the wafer within the liquid cleaners was performed with wafer 

tweezers at the edge of the wafer in an up-and-down motion.  The intent was to ensure 

fresh liquid arriving at the surface of the wafer to maximize the cleaning efficiency.  

Clear liquids with no sediment in the container, and clean equipment (hot plate and spin 

coater) were also found to be necessary for optimum results, particularly with the thinner 

(< 50 nm) dielectric layers.  Placing the cleaned substrate into the sputter deposition 
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chamber as soon after the dehydration bake as possible was found to minimize surface 

contamination and particle accumulation. 

 

3. Additional Specimen Preparations 

 In addition to the cleaned wafer, a glass slide (cleaned with acetone on a Kimwipe 

towel), and two sets of four pre-cleaned pieces of Si/SiO2 wafer cut into approximately 1 

cm squares were also placed on the sample platen.  The glass slide was set in place with 

one piece of tape running through the middle of the slide to allow for profilometer 

measurements on either side of the area patterned by the tape.  The glass slide was 

replaced between each of the depositions.  The wafer pieces were added to allow for 

specimens to be submitted for chemical and microstructural analysis without the loss of 

working devices.  The first set of four Si/SiO2 pieces were on the sample platen through 

all series of depositions in order to develop a specimen with the multi-layer structures.  

The second set was placed on the platen only for the dielectric deposition in order to 

more precisely measure the chemical characteristics of the BaTiO3 without the presence 

of the electrode material. 

 Lastly, the shadow mask for the given deposition was always cleaned with 

acetone on a Kimwipe prior to alignment on the wafer.  Additionally, the electrode mask 

channels were visually inspected to ensure they were clear of debris.  All of the masks 

used for the research reported in this dissertation had a central hole in the mask to allow 

taping of the mask directly to the wafer, and minimize the effects of bowing resulting 

from taping the edges of the mask.  In total, the mask was taped in five places on the 

wafer: the center and each of the four edges. 

 

4. Sputtering Preparations 

 The loaded sample platen was placed in the sputter system load lock, and allowed 

to pump down to below 100 mtorr prior to insertion into the deposition chamber.  After 

the platen was fully loaded the sputter system was allowed time to return to a base 

vacuum of at least 5 x 10
-6

 torr prior to any depositions.  Once base vacuum was reached, 

the sputter target was cleaned prior to actual deposition.  For the electrode metals, this 

included a five to ten minute sputtering in the target shutter in a pure Ar plasma at the DC 
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power and working pressure designated for that deposition.  For the dielectric 

depositions, this cleaning was performed under the desired sputtering conditions for that 

deposition (i.e. chosen %O2, deposition temperature, and sputter power) for 30 minutes to 

ensure system equilibrium and the removal of any surface contaminants.  If the 

deposition temperature was above room temperature, the system was allowed to soak at 

temperature for a minimum of 30 minutes to ensure thermal saturation. 

 It was necessary in a few instances, particularly at low RF-powers, to keep the 

specimen in the load lock during the target cleaning.  This was accomplished by keeping 

the sample platen on the loading fork in the load lock, opening the gate valve between the 

load lock and the chamber, and allowing the load lock and chamber to pump down to the 

requisite base vacuum.  The target cleaning was then performed with the shutter open.  

Afterwards, the platen was introduced to the chamber, and deposition allowed to continue 

as normal.  This was not performed for all specimens due to the significantly increased 

time required to achieve base vacuum with gate valve open. 

 It should also be noted the ceramic BaTiO3 target was slowly ramped up to the 

desired RF-power to prevent thermal shock of the target.  This was accomplished by 

setting the initial power to 25 W, and after striking the plasma, allowing the target to soak 

for 60 seconds prior to initiating the ramp.  After the soak, the power was increased by 25 

W every 30 seconds until the desired sputter power was achieved.  The same protocol 

was used after deposition to turn the power off (i.e. decreasing the power by 25 W every 

30 seconds until 25 W was achieved). 

 

5. Post Deposition Handling 

 After deposition of the final layer, the wafer was labeled with A-V along the 

bottom electrodes, and 1-22 along the top electrodes (or the first deposited electrode layer 

and second deposited electrode layer in the case of multi-layer capacitors).  The wafer 

was then tested with the hand held multi-meter for initial device resistance and wafer 

yield calculations.  Prior to further electrical testing the wafer was sectioned into quarters 

with a diamond scribe, and one of the quarters randomly selected for the in-depth 

electrical characterization. 
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APPENDIX C 

 

RESULTS OF LOW TEMPEARUTRE ANNEALING IN AIR OR VACUUM 
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1. Introduction 

 In addition to testing in the as-deposited condition, the majority of specimens 

were also annealed at 300°C for one hour in either open air or under vacuum (1-5x10
-6

 

torr).  The open air condition was chosen as a basic oxidation atmosphere, and the 

vacuum as a de facto reduction atmosphere.  The temperature of 300°C was selected due 

to the desire to minimize electrode diffusion into the dielectric and to avoid significant Ni 

oxidation.  As annealing of BaTiO3 devices based on powder processing techniques 

generally require temperatures of 500°C and higher [1-4], it was not known if 300°C was 

going to be sufficient to induce any significant change in the films. 

 

2. Results 

 It was found that even at this low of an annealing temperature, the dielectric 

properties were found to be significantly altered (Tables B.1 and B.2).  Analysis on the 

annealed DOE specimens revealed that the changes in AC permittivity and loss tangent at 

1 kHz and 1 Vrms could be modeled based on the initial processing conditions.  Like the 

as-deposited DOE results (Papers 2-3), this latter analysis on the annealed specimens 

revealed a complex interaction between the variables. 

 

Table I. Annealing effects on loss and permittivity at 1 kHz and 1 Vrms for the DOE specimens 

  

  

As-Deposited Air Anneal Vacuum Anneal  

Permittivity Loss Permittivity Loss Permittivity Loss 

1 580 ± 27 0.092 ± 0.022 19 ± 0.3 0.014 ± 0.005 570 ± 22 0.1038 ± 0.014 

2 500 ± 18 0.042 ± 0.010 47 ± 1.2 0.040 ± 0.003 74 ± 0.3 0.0257 ± 0.003 

3 800 ± 41 0.046 ± 0.005 47 ± 2.1 0.035 ± 0.006 840 ± 47 0.0680 ± 0.008 

4 1030 ± 75 0.059 ± 0.005 19 ± 1.4 0.024 ± 0.010 550 ± 26 0.0481 ± 0.005 

5 840 ± 80 0.039 ± 0.019 27 ± 2.6 0.018 ± 0.002 89 ± 7.3 0.0253 ± 0.005 

6 940 ± 70 0.045 ± 0.003 21 ± 0.9 0.018 ± 0.001 25 ± 0.5 0.0149 ± 0.001 

7 280 ± 80 0.023 ± 0.007 340 ± 6.7 0.081 ± 0.001 200 ± 4.9 0.0189 ± 0.005 

8 630 ± 98 0.041 ± 0.018 150 ± 6.7 0.063 ± 0.010 460 ± 16 0.0539 ± 0.005 

9 720 ± 24 0.038 ± 0.003 140 ± 7.2 0.031 ± 0.001 530 ± 18 0.0420 ± 0.006 

10 710 ± 27 0.048 ± 0.006 160 ± 10 0.067 ± 0.013 550 ± 17 0.0796 ± 0.007 

11 480 ± 17 0.042 ± 0.011 180 ± 5.8 0.052 ± 0.009 500 ± 15 0.0420 ± 0.005 

12 460 ± 15 0.033 ± 0.002 160 ± 4.4 0.063 ± 0.002 94 ± 5.2 0.0321 ± 0.014 

13 450 ± 16 0.062 ± 0.006 130 ± 2.7 0.076 ± 0.003 63 ± 0.6 0.0184 ± 0.003 
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 Similar effects were also observed for the specimens from the BaTiO3 thickness 

studies (Paper 4), electrode thickness studies (Paper 5), and the DOE model verification 

specimens (single layer and three layer MLC) as shown in Table B.2. 

 

Table II. Annealing effects at 1 kHz and 1 Vrms for the non-DOE specimens 

  

  

As-Deposited Air Anneal Vacuum Anneal  

Permittivity Loss Permittivity Loss Permittivity Loss 

R1-Thick 740 ± 26 0.052 ± 0.005 240 ± 30 0.064 ± 0.014 800 ± 33 0.035 ± 0.007 

R4-Thick 590 ± 41 0.069 ± 0.022 140 ± 34 0.057 ± 0.012 790 ± 36 0.043 ± 0.010 

R7-Thick 350 ± 12 0.043 ± 0.006 210 ± 31 0.060 ± 0.013 560 ± 210 0.036 ± 0.014 

R1-Thin 460 ± 80 0.098 ± 0.019 60 ± 3.2 0.053 ± 0.006 530 ± 19 0.107 ± 0.009 

R4-Thin 1000 ± 77 0.118 ± 0.008 220 ± 47 0.219 ± 0.037 320 ± 15 0.097 ± 0.012 

R7-Thin 550 ± 120 0.044 ± 0.015 98 ± 7.5 0.118 ± 0.022 640 ± 260 0.055 ± 0.024 

R1-ST 860 ± 80 0.242 ± 0.036 160 ± 40 0.163 ± 0.043 250 ± 23 0.097 ± 0.007 

R4-ST 270 ± 23 0.092 ± 0.005 24 ± 3.7 0.069 ± 0.023 350 ± 12 0.142 ± 0.024 

R7-ST 290 ± 84 0.044 ± 0.015 110 ± 31 0.099 ± 0.034 310 ± 140 0.058 ± 0.037 

Pt-1-Thick 1730 ± 150 0.031 ± 0.004 790 ± 38 0.028 ± 0.002 750 ± 35 0.020 ± 0.001 

Pt-4-Thick 810 ± 37 0.051 ± 0.005 1930 ± 990 0.055 ± 0.025 770 ± 46 0.042 ± 0.022 

Pt-7-Thick 1400 ± 95 0.024 ± 0.004 620 ± 350 0.033 ± 0.022 270 ± 22 0.030 ± 0.002 

Pt-1-Sm 1120 ± 130 0.035 ± 0.003 500 ± 130 0.039 ± 0.010 1290 ± 300 0.059 ± 0.016 

Pt-4-Sm 1040 ± 130 0.064 ± 0.008 370 ± 25 0.045 ± 0.007 540 ± 120 0.047 ± 0.006 

Pt-7-Sm 1040 ± 130 0.031 ± 0.006 620 ± 130 0.227 ± 0.083 1030 ± 260 0.049 ± 0.015 

Pt-1-Thin 1370 ± 340 0.140 ± 0.053 750 ± 290 0.080 ± 0.018 330 ± 38 0.037 ± 0.005 

Pt-4-Thin 470 ± 83 0.056 ± 0.009 1060 ± 280 0.079 ± 0.033 730 ± 100 0.070 ± 0.024 

Pt-7-Thin 760 ± 61 0.057 ± 0.008 360 ± 110 0.044 ± 0.017 580 ± 39 0.047 ± 0.005 

Pt-1-ST 740 ± 56 0.084 ± 0.003 590 ± 1.1 0.082 ± 0.008 610 ± 41 0.081 ± 0.005 

Pt-4-ST 990 ± 230 0.139 ± 0.032 1070 ± 7.8 0.158 ± 0.018 1400 ± 410 0.235 ± 0.077 

Pt-7-ST 700 ± 67 0.064 ± 0.003 420 ± 130 0.071 ± 0.027 530 ± 36 0.063 ± 0.003 

Verification 820 ± 81 0.096 ± 0.075 170 ± 17 0.041 ± 0.017 700 ± 250 0.045 ± 0.015 

MLC-3L 430 ± 40 0.099 ± 0.026 51 ± 1.9 0.014 ± 0.013 570 ± 63 0.093 ± 0.039 
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3. Summary 

 No conclusions are offered as to the nature of the observed changes in the 

dielectric properties due to the 300°C annealing due to the lack of supporting data for any 

such statements.  The literature shows that internal stresses can have an impact the 

measured properties of thin films [5], and the relief of this stress by a low temperature 

anneal may account for a portion of the observed changes.  This explanation does not, 

however, relate the differences from the different atmospheres used.  As 300°C is well 

below the 500° to 600°C temperatures reportedly required to initiate crystallization [1], it 

is not likely that the observed changes are related to any significant crystallographic 

changes [2-4].  It is possible that the different atmospheres are affecting the film 

chemistries due to the differences in O2 concentrations at the surface of the films, which 

could either oxidize (air anneal) or reduce (vacuum anneal) the BaTiO3 from the as-

deposited conditions.  It is also possible that the electrodes are diffusing into the BaTiO3 

and causing doping effects.  In order to determine the accuracy of any of these 

possibilities would require more extensive chemical and microstructural testing of these 

devices, as well as additional annealing temperatures and times. 
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APPENDIX D 

 

CONNECTION OF CUSTOM FARADAY CAGE TO TEST EQUIPMENT 



 

 

212 

1. Introduction 

 As the Faraday cage used for a portion of the electrical testing through papers 4 – 

6 was custom made, there is no available manual for the connection to various electrical 

test equipment.  As such, this appendix will detail the connection of the Faraday cage to 

the three pieces of equipment that were commonly used throughout the series of testing. 

 The Faraday cage has four electrical throughputs; two co-axial and two tri-axial 

connectors (Figure D.1).  On the outside of the box these throughputs are standard 

bayonet connectors, and attach as normal to the appropriate co-axial or tri-axial cable.  

Inside the cage the co-axial throughputs are wired to individual, female banana terminals 

that allow for the insertion of either cables with male banana terminations or the 

clamping of smaller diameter pins.  The tri-axial throughputs are connected to two of the 

same type of female banana terminals each to allow access to the two conducting (non-

shielding) wires within the tri-axial cable.  The rear side of these female banana terminals 

are exposed, and allow alligator clips to be attached to the co-axial and tri-axial 

connections. 

 

 
Figure 1. – Co-axial and tri-axial throughputs on the custom made Faraday cage. 

 

 

2. Connection to HP 4140B 

 The HP 4140B required the use of one co-axial and one tri-axial connection 

(Figure D.2).  A co-axial cable was connected to the Va output of the HP 4140B and a 

chosen co-axial throughput on the Faraday cage.  A tri-axial cable was then connected to 

the HP 4140B and one of the tri-axial throughputs of the cage.  Inside the Faraday cage, 

the outer conductor of the tri-axial throughput (black banana terminal of tri-axial) was 
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connected directly to the co-axial throughput.  One of the micro-probes was then 

connected to the inner conductor of the tri-axial throughput (red banana terminal of tri-

axial) via the pin clamp feature of the banana terminal.  The second micro-probe was then 

shorted directly to ground.  For the purposes of consistency, the grounded probe was 

always connected to the bottom electrode (or the first deposited electrode layer of a 

MLC) for all testing. 

 

 
Figure 2. – Connection of Faraday cage to the HP 4140B. 

 

 

3. Connection to RT6000HVS 

 Connection to the RT6000HVS for hysteresis measurement was more simplistic 

(Figure D.3).  For low voltage measurements (< 19.9 V) the terminals of the 

RT6000HVS system were bayonet co-axial connectors, allowing for the use of two co-

axial cables to connect the test system to the Faraday cage.  The micro-probes were then 

connected to the co-axial throughputs with the pin clamps on the banana terminals.  For 

high voltage testing (> 300 V) the co-axial cables were detached from the Faraday cage, 
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and the high voltage cables (supplied only with alligator clip terminations) were attached 

directly to the posts on the rear side of the banana terminals inside the Faraday cage.  In 

this latter setup, care must be taken when closing the lid of the Faraday cage to ensure the 

high voltage cables are not crimped or pinched. 

 

 
Figure 3. – Connection of Faraday cage to the RT6000HVS. 

 

 

4. Connection to HP 4194 

 Connection to the HP 4194 for AC impedance analysis was achieved with two 

single core cables with alligator clips on both ends.  One end of each cable was attached 

to the post on the rear side of the co-axial banana terminations inside the Faraday cage, 

and the ends were connected to the HP 4194 as shown in Figure D.4.  Having the 

alligator clips span both of the terminals on the HP 4194 allows for the proper application 

of a DC bias if such a measurement in required to be made.  As with the RT6000HVS, 

care must taken during closing of the Faraday cage to ensure the cables are not crimped 

or pinched. 
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Figure 4. – Connection of Faraday cage to the HP 4194. 
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1. Introduction 

 The work presented in papers 1 – 6 have left more questions than were answered.  

This appendix attempts to summarize some the potential future work that could be 

conducted to further the understanding of the deposition and optimization of BaTiO3 thin 

films with thicknesses in the nano-meter range.  The areas of research have been broken 

into the following two categories: sputtering optimization and interfacial effects. 

 

2. Sputtering Optimization 

 As stated in papers 2 and 3, the Box-Benhken DOE was not effective in the 

precisely modeling the sputter deposition of BaTiO3.  A general series of trends were 

observed and related to the effects of competing forces within the deposition chamber, 

but accurate numeric models of the dielectric properties as a function of the process 

parameters has not been accomplished.  In order to achieve this level of modeling a full 

factorial DOE is required.  The proposed matrix would be a 3
3
 full factorial requiring 127 

specimens to be examined.  The results of this DOE would have enough degrees of 

freedom to potentially fully characterize the deposition of BaTiO3 as a function of the 

process parameters. 

 In addition to a more in depth DOE, other processing variables could also be 

examined.  A set working pressure of 5 mtorr was used for all of the BaTiO3 work 

presented in the above papers.  The target to substrate distance was also kept at a constant 

distance of approximately 5 inches.  Altering either of these two conditions would affect 

the energy and number of negatively charged oxygen ions that impacted the substrate 

during deposition.  Along the same logic, a different regime for any of the three studied 

process variables could also be examined (i.e. 50% - 100% O2 as opposed to the 10% - 

50%). 

 Appendix C has shown the effects on the dielectric properties of these devices 

annealed at 300°C either in air or under vacuum for 1 hour.  Further annealing studies 

would also help to identify the optimum conditions necessary for the development of 

viable thin film BaTiO3.  Such studies might include a continued investigation at 300°C 

with additional times at temperature (i.e. a range from 30 minutes to 24 hours) in the 

same atmospheres.  Additional atmospheres would also be of interested, such as an O2/N2 
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atmosphere with a series of pO2 values.  Lastly, a study on the effects of increasing 

annealing temperature (i.e. ranging from 300°C to 700°C) would also be of interest to 

determine the temperature required to achieve optimum performance. 

 

3. Interfacial Effects 

 A continued investigation of the interface between BaTiO3 and both the Ni and Pt 

electrodes with high resolution TEM would be of great benefit to understand the 

differences between the two systems resulting in the observed property changes.  

Investigating these interfaces under a variety of conditions (i.e. as-deposited/untested, as-

deposited/electrically tested, annealed/untested, and annealed/electrically tested) would 

potentially give insight into the variations of the thickness and composition of the 

interfacial layer.  This work would also likely allow for more accurate dead-layer model 

approximations to be made, which would in turn allow more accurate prediction of 

dielectric behavior at BaTiO3 thicknesses in the double and single digit nano-meter range. 

 As the effect of the interfacial layers are determined in large part by the chosen 

electrode material, additional materials other than Ni and Pt should be investigated.  Au, 

Pd, Al, and Cu have all had a significant presence in the literature, and all are likely to 

impact the dielectric properties to various degrees.  An understanding of the electrode 

material impact on device performance would allow for more informed choices to be 

made when attempting to achieve a desired set of dielectric properties.  This work could 

also be combined with TEM work mentioned above to fully characterize the effects of the 

electrodes. 

 Another area of investigation that has seen limited exposure in the literature has 

been the effect of electrode geometry on the device properties.  This research area would 

include the study of the size of the interaction area (i.e. 5x10
-5

 cm
2
 versus 10x10

-5
 cm

2
) as 

well as electrode shape (i.e. square versus round).  Additionally, the use of electrodes 

patterned using photolithography to create complex patterns such as fractals or micron 

sized parallel bars would give another approach to device optimization. 
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4. Summary 

 The above description of potential research areas is not an all inclusive list, but 

just an initial starting point for future efforts.  The interested individual could find many 

additional avenues of research based on the work presented in this dissertation.  Below is 

a shortened listing of the mentioned areas of future work that could be investigated to 

carry on this work. 

 

 1. Full factorial DOE 

 2. Additional variables in addition to power, percent O2, and deposition 

 temperature 

 3. Different variable levels 

 4. Annealing studies 

 5. High resolution TEM of dielectric-electrode interfaces 

 6. Additional electrode materials 

 7. Various electrode geometries 
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