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ABSTRACT 

  This doctoral research is focused on analytical and numerical modeling of 

diphasic composites for use in high energy density capacitors for pulsed power 

applications. An analytical model is presented based on an equivalent 

capacitance/impedance circuit used to express the effective permittivity of a composite 

dielectric with complex-shaped inclusions as functions of frequency and inclusion 

volume fraction. Zero-three (0-3) types of composites are investigated using this model. 

The results of this model are compared with different known effective medium theories 

(Maxwell Garnett, logarithmic, Bruggeman, series, and parallel mixing rules). Model 

predictions are also compared with published experimental data and are found to be in 

good agreement.  

  Electrostatic field distribution characteristics and energy storage magnitudes for 

diphasic dielectrics containing high-permittivity inclusions in a low permittivity host 

phase (0-3 composite) have been evaluated analytically and numerically. Field 

distribution and energy storage were studied as a function of dielectric contrast (ratio of 

inclusion to host permittivity) and inclusion volume fraction. Information obtained from 

these studies was used to consider optimized diphasic dielectric traits that would lead to 

increases in energy density and breakdown behavior. Results of these simulations were 

also compared to the Maxwell Garnett (MG) mixing rule and the upper limit of 

applicability of the MG formulation in terms of inclusion volume fraction was 

established. It was determined that this limit was a function of the dielectric contrast.  
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1. I�TRODUCTIO� 

 

 

 

 1.1. IDE�TIFICATIO� A�D SIG�IFICA�CE OF OPPORTU�ITY 

 Recent advances in dielectric materials have been driven by critical requirements 

in Department of Defense (DoD) pulsed power and power distribution systems. Electric 

guns and high power microwave systems require capacitors with 10-500 MJ energy 

storage capabilities [1, 2] and a rapid discharge rate (nanoseconds to milliseconds). The 

need for inexpensive, fast response capacitors with high volumetric efficiency (15-30 

J/cm
3
) has become acute. Dielectric energy density is most appropriately described using 

Eq. 1 

dEEU r

E

oD εε∫=
max

0

 

 

(1) 

 

In Eq. 1, DU  is the energy density (J/cm
3
), rε  is the relative permittivity (dielectric 

constant), oε is the permittivity of free space and E is the electric field (V/m). From this 

fundamental equation, it can be seen that to achieve the requisite performance 

characteristics, dielectric materials with high breakdown strength and permittivity must 

be developed. 

Inorganic ceramic materials (I) usually have very high permittivity 

( )000,202000 ≤≤ rε but are significantly limited by their low breakdown strength 

( 100<BE kV/cm). The other end of the spectrum with regard to these properties is 

occupied by polymeric materials (O). Polymers usually have very high breakdown 



 

 

2 

strength ( )/1031 8 cmVEB ⋅−≈ [3-5] and provide ease of fabrication. However, polymers 

have considerably lower permittivities ( )62 ≤≤ rε .  

Figure 1.1 shows the current state of the art for pulsed power capacitor materials 

[6], which have energy storage densities of approximately 1-3 J/cm
3
. For comparison, 

state of the art power electronic capacitors have energy storage densities one order of 

magnitude lower than pulsed power capacitors. The DoD goal for dielectric materials is 

to be able to store approximately 30 J/cm
3
 at an applied field of around 4 MV/cm. The 

DoD goal for a packaged capacitor is 10 J/cm
3
 considering the loss in energy density that 

occurs when the dielectric is incorporated in a packaged component.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.1 Comparison of dielectric materials performance with targeted     

                 goals for future applications [6].  
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 Composite dielectrics (C) offer the unique opportunity to synergistically combine 

the high permittivity of inorganic filler materials with the high breakdown strength of an 

organic polymer host material. Naturally, this route of composite dielectrics has attracted 

considerable attention [6-17] and the effective permittivities of composite dielectrics have 

been thoroughly investigated. Along with ceramic-polymer composites, another 

composite system that has attracted attention are glass-ceramic dielectrics. This system is 

best described as a continuously connected minor phase (low volume fraction, typically 

less than 10%) separating the major phase into discrete localized volumes. In this 

composite dielectric the low permittivity phase is the glass phase with high breakdown 

strength which is continuously connected and ceramic grains (BaTiO3, PbTiO3) are the 

high permittivity phase [18-20].  

The dielectric properties of composites are controlled by several parameters, 

including the electrical properties of the filler and host materials, the wetting properties of 

the host on the filler, since this may impact interfacial polarization response, and other 

filler properties. The inclusion/filler properties of potential importance are inclusion size, 

shape, distribution, orientation and volume fraction.  Along with these properties, 

dielectric susceptibility is also significant. Dielectric susceptibility is the index of how 

susceptible the material is to being polarized by an applied electric field. In addition to 

these parameters there is a microstructural dependence of dielectric response to applied 

electric field. Microstructure and dielectric susceptibility govern the electric field 

splitting that takes place in the composite. For a composite system containing a mixture 

of insulating phases, the electric lines of flux will tend to distribute themselves according 

to the relative susceptibilities of the constituent phases and their microstructures. This 



 

 

4 

should either lead to property enhancement or dilution in multiphase mixtures. Modeling 

composite electrical response can provide an avenue to fundamentally understand the 

impact of tailoring the properties of the individual phases on the possible enhancement of 

energy density. Modeling of composites also affords the opportunity to develop guiding 

principles for the design of future dielectrics. It is the goal of this research effort that 

many interesting qualitative characteristics identified by modeling will be generic for 

broader classes of composite dielectric systems. Considering the opportunity afforded by 

composites, advancement in theoretical understanding of the local electrical response of 

composites is critical.  

 

1.2. DIELECTRIC COMPOSITE �OME�CLATURE 

 The properties of mixtures of phases depend on the distribution of the components 

[21]. The concept of “connectivity” is useful in classifying different types of mixtures. 

The foundation of this nomenclature has emerged from the work done in the area of 

piezoelectric transducers [22] and the nomenclature is based on the fact that any phase in 

a mixture may be self-connected in zero, one, two or three dimensions. Thus, randomly 

dispersed and separated particles have a connectivity of 0, whereas the medium 

surrounding them has a connectivity of 3. A disc containing a rod-shaped phase 

extending between its major surfaces has connectivity of 1 with respect to the rods and of 

3 with respect to the intervening phase. A mixture consists of two phases which are in the 

form of layers organized one on top of each other would have connectivity of 2-2.  Figure 

1.2 shows the classification of dielectric composites based on the connectivity of the 

phases.  
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The real world dielectric composites that represent this classification are listed as 

below: 

• Isolated organic or oxide particles dispersed in a polymer matrix: 0-3   

• Laminated sheets of organics bonded to an inorganic: 2-2 

• Particles aligned in chains within a silicone or epoxy matrix: 1-3 

• Glass-ceramic systems: (e.g. Corning ware): 3-3  

 

Composite connectivity strongly influences energy storage and breakdown 

strength. When an electric field is applied across a heterophasic dielectric, the lines of 

flux will tend to concentrate in the phase with greatest dielectric susceptibility (dielectric 

Figure 1.2 Dielectric composites classification based on the connectivity of 

individual phases. 
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constant). The average dielectric constant for such diphasic composites depends critically 

upon the relative values of susceptibility, the volume concentration of the higher 

susceptibility phase, and the manner of mixing of the two phases, specifically the extent 

to which the lower susceptibility component interrupts effective flux passage [23]. The 

key factor is the electrostatic field distribution in the composite, which includes electric 

field enhancement in the phase with lower permittivity and electrical field penetration in 

the phase with high permittivity.  

 

 

1.3. THEORETICAL FOU�DATIO� 

1.3.1 The Philosophy of Homogenization of Mixtures. Understanding the 

properties of a multi-phase material via the homogenization of electrical properties has 

been an area of intense mathematical research since the 1850’s [24-32]. The process of 

homogenization has been persistently viewed as an averaging procedure. 

For example, when the density of matter is calculated, a division of mass by 

volume gives density. In case of a mixture, calculation of density still just requires that 

the total mass be divided by total volume. Irrespective of structural scale, the geometrical 

distribution of the components that compose the sample does not matter.  This makes 

homogenization of the density of a mixture appear simply like an averaging procedure.  

 Electrical properties, however, cannot be homogenized using the same approach 

as density. Stated precisely, homogenization of heterogeneous materials can be defined as 

a process leading to prediction of macroscopic response with fewer parameters than 

needed for a full description of the original object [4]. For example, heterogeneous 

dielectric bodies can be accurately described with a single effective permittivity ( effε ). 
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 The homogenization process can only be applied under specific circumstances 

that depend on a consideration of the length scales that characterize the heterogeneity. 

The microstructure of snow is a classic example. If snow is viewed from a very long 

distance (more than few meters away) as is seen in Figure 1.3, it appears uniform and 

homogenous. However, on closer examination (optical microscopic examination), as can 

be seen from Figure 1.3 (b), the same uniform and homogenous structure appears to be 

clearly heterogeneous, with ice grains and air pores present as distinct sub regions. Two 

parameters contribute to this homogenization; one is the distance of the observer from the 

snow and the other is the wavelength of light that carries the observation signal.  In 

Figure 1.3 (a), a distinct heterogeneous microstructure still exists, but in a homogenized 

way. A relevant parameter in homogenization problems is the ratio between the size of 

the inhomogenities and the wavelength of the electromagnetic field that is used. If this 

ratio is much smaller than unity, the medium appears homogenous to the wave. However, 

when the particle size is of the order of the wavelength, the particles start to scatter 

radiation and then concepts of average parameters, such as εeff, lose their usability [2].    

The utility, and limitations, of mixing theories to predict effective properties became 

apparent with the advent of microwave communication.  Because microwave signals are 

able to travel long distances and their wavelength (200 −mµ  few mm) is much greater 

than snow heterogeneities (less than 100 )mµ , by proper application of mixing theories, it 

became possible to predict the amount of ice and water in snow cover. 

Mixing theories have a similar role to play in the field of composite dielectrics as 

they could give critical insight into the selection of constituent phases and volume 
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fractions suitable for increased effective permittivities, which is one of the key factors in 

the design of composites with increased energy density.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

(a) 

Figure 1.3 Snow image from a distant view and an optical micrograph of 

vertical cut seasonal snow layer [24]. 
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1.3.2. Development of Analytical Mixing Theories. The first quantitative 

studies regarding the dielectric properties of mixtures or conglomerates of different 

materials began to emerge around the mid-1800s. Poisson’s theory of magnetism helped 

Octavio F. Mossotti formulate equations for the effect of a dielectric inclusion on its 

environment [25].  Clausius studied the relative effective dielectric constant rε  of a 

collection of molecules and showed that the ratio  
2

1

+

−

r

r

ε
ε  is proportional to number of 

molecules in the unit volume [26]. In later literature, an equation containing this ratio was 

referred to as the Clausius Mossotti relation. In 1864, J. C. Maxwell unified electricity 

and magnetism and discovered the electromagnetic nature of light, which opened 

possibilities to connect the optical and dielectric properties of matter. Lorentz developed 

an extensive theory of the refractive index of matter assuming that the density of matter is 

determined by the density of rigid molecules.  This resulted in the famous work which 

later came to be known as the Lorenz-Lorentz formula [27-29]. Lord Rayleigh calculated 

the effective material permittivity of a mixture based on spherical or cylindrical 

inclusions in a rectangular lattice and his results gave a connection to the properties of 

inclusions and a macroscopic medium [30]. Maxwell Garnett was the first to derive the 

now famous relation between the effective dielectric constant of a medium with metal 

spheres possessing specific optical properties and occupying random positions in a host 

medium [31]. This formalism, which also describes volume fraction effects, has been 

modified several times and also extended to insulating inclusions in an insulating host 

medium.  

 There have been other scientists who have worked on homogenization theories, 

the most prominent being Bruggeman, Ketteler, Havelock, and Lichtenecker. 
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Bruggeman’s work led to a new mixing approach with mixing rules that were 

qualitatively different than earlier homogenization principles [32]. In the area of material 

science, Bruggeman’s theory also carries the name of effective medium theory (EMT). 

 The foundation of effective medium theory is to focus on one particular inclusion 

and to replace the surrounding random medium by an effective homogeneous medium. 

The effective medium is determined self-consistently by taking into account the fact that 

any other inclusion could have been chosen [24, 32-35]. EMT is a technique meant to 

bridge the gap between a detailed description of the fine grained features of the 

heterostructure, and a macroscopic description, which treats the composite as a 

completely homogenous entity [36].  Weiner proposed form factors for inclusions with 

cylindrical and lamellar shape [37]. Rushman and Striven used these form factors to 

explain the impact of porosity on the dielectric constant of barium titanate [38]. Further 

experimental evidence for the Weiner mixing rule and its ability to take into account 

porosity was confirmed by Kingery in 1960 [39].  

 The empirically derived logarithmic mixing rule is widely applied for fitting 

experimental data [40]. The logarithmic mixing rule was proposed by Lichtenecker and 

calculates effective permittivity by taking averages of logarithms of permittivities and 

volume fraction of constituent phases. Payne et al. in 1973 proposed the brick wall model 

as an approximation for predicting the effective dielectric properties of composite 

microstructures [23]. Payne has also presented a detailed account of the history of mixing 

theories, their origin and inadequacies. The central idea of a brick wall model is that 

microstructure can be approximated by a brick wall model if the boundary phase is 

continuously connected.  Figure 1.4. presents this method of approximation of the 
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microstructure. The brick wall model assumes cubes of major phases which are separated 

by an intergranular boundary phase and identified two extreme cases based on dielectric 

susceptibility ratios.  

 

 

 

These two extreme cases assume that if both phases are insulators, the lines of 

flux will preferentially concentrate in the phase with highest dielectric susceptibility ( )χ . 

Under this assumption: 

• When 1χ >> 2χ  the lines of flux prefer the major phase and the low susceptibility 

boundaries normal to the flux path are important. This reduces the brick wall 

model to a series mixing rule, as given in expression below:  

Figure 1.4 Two extreme cases of brick wall model. (i) series mixing and 

(ii) parallel mixing [23] 
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(2) 

• For the other extreme of 2χ >> 1χ  the lines of flux concentrate in the minor phase and 

brick wall model simplifies to parallel mixing rule. 

2211 ενενε ⋅+⋅=eff  
 

(3) 

 

Payne also used an equivalent circuit approach to predict the effective properties 

as a function of frequency for these extreme cases. The equivalent circuits approach was 

first suggested by J. C. Maxwell for a simplified system (dielectric layers) and was 

extended by Payne to the brick wall case with primary focus on a dispersive diphasic 

series capacitor.  

1.3.3 �umerical Modeling of Composites. Analytical modeling of composites 

started in the mid 1850’s and has significantly added to our understanding of diphasic 

systems. In contrast, numerical modeling has only recently started to gain ground within 

the past two decades, assisted by advances in simulation techniques [36]. 

Typically, in the numerical approaches the dielectric composite is sliced into 

small cells and the electrostatic fields are solved in a finite number of points.  The most 

prominent among these have been Monte Carlo simulations (MC) [41], finite element 

method (FEM) [42, 43], finite difference method [44] and boundary integration method 

[45, 46]. Wakino et al. reported modeling effective permittivity by using combined FEM 

with MC simulations [41]. Ang et al. presented results for modeling the dielectric 

constant and loss of composites that consist of phase A with different shapes (circles and 

triangles) distributed in a square matrix phase B. They investigated the shape attributes in 
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2-dimensions and also calculated the electric field distribution as a function of distance 

through the 2 dimensional composite.  They also investigated the quantitative impact of 

inclusion shape on the local electric field distribution in diphasic composites.  

  It is noteworthy to consider the contribution of Sareni et al., who through the use 

of numerical analysis techniques calculated the effective dielectric constant of periodic 

composites [45], then random composites [47].  These authors also analyzed the complex 

effective permittivity of a lossy composite material [48]. Myroshnychenko et al. [36] 

have exhaustively developed an algorithm for estimation of the complex permittivity of 

two-dimensional, diphasic statistically isotropic heterostructures, and compared their 

results with different effective medium approaches. They investigated electric field 

distribution in 2D composites with two cases of percolating and non-percolating systems 

using FEM simulations and compared the results to EMT theories. Since their studies 

were in two dimensions, the permittivity predictions were investigated as a function of 

surface fractions. In these studies, the geometric shape of the inclusion was restricted to 

spheres and discs and inclusions were randomly distributed in the host matrix. They 

found the complex effective permittivity deviated markedly from that of the predictions 

of simple mixture rules and EMT. They found that the electrostatic field distribution was 

governed by the inclusion proximity and relative orientation of the closest neighbor. They 

also stressed the need for performing 3D simulations and their studies were for very low 

dielectric contrast cases (less than 2) and fixed surface fraction. An investigation of the 

electrostatic field distribution as a function of dielectric contrast and inclusion volume 

fraction is still needed.   
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1.3.4. Difficulties and limitations in Mixing Theories.  The simplest Maxwell 

Garnett formulation is for a mixture of a host material with relative permittivity hε  and 

spherical inclusions with relative permittivity εs as given by:  

)2()(1

)2()(3

hshss

hshshs
hefMG

f

f

εεεε
εεεεε

εε
+−−

+−
+≅ , 

 

(4) 

 

where 
ΣV

V
f S

s =  is the volume fraction of spherical inclusions in the total mixture. Here is 

SV  represented volume of inclusion phase and ∑V  represents the total volume of the 

composite. Maxwell Garnett theory, which has been the most widely used mixing theory, 

has inherent limitations in terms of predicting the effects of inclusion size. Maxwell 

Garnett theory is satisfactory only when exact interparticle interactions are not 

significant, i.e., for low concentrations of inclusions in a dielectric host [49]. MG theory 

is applicable for inclusions of any arbitrary ellipsoidal shape, including spheres, 

spheroids, cylinders, and disks, through the introduction of depolarization factors [50]. 

However, any arbitrary shape of an inclusion cannot be accurately taken into account, 

other than by approximating the shape by the closest ellipsoidal shape. This limits the 

applicability of the MG theory [51] and suggests an opportunity for development of 

mixing theory that is free from inclusion size dependence and shape limitations.  

  It has been reported that the Maxwell Garnett (MG) formulation for diphasic 

dielectrics can be applied up to 10% volume fraction of inclusions, that is, for 

comparatively dilute mixtures [52]. Most mixing rules assume that the lines of electric 

flux are not distorted by the particles, and hence, there are inherent limitations in 
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accurately predicting the energy storage capabilities of composites [53]. However, for 

heterogeneous composites, the electric lines of flux will tend to distribute according to 

the permittivity ratio of the host and the inclusion phases, as discussed earlier. Local 

inhomogeneities in electric field distribution, i.e., field enhancement in the low 

permittivity phase and field penetration in the high permittivity phase, are not taken into 

account by classical mixing theories, leading to errors in prediction of dielectric response.  

   Effective Medium Theories are based on an assumption that the local electric and 

magnetic fields are the same in the volume occupied by each component of the composite 

material. Stated otherwise, the energy density is homogenous by construction, which is 

not the case in real world systems. Also, EMT do not allow for correlations between the 

inclusions, i.e., it assumes that each inclusion is surrounded by the same effective 

medium. Thus, such an approach is applicable only when inclusion volume fractions are 

dilute and the approach breaks down when dielectric phase contrast values are high [36].  

 The commonly utilized empirical approach to predict effective permittivity of 

composites is the logarithmic mixing rule.  This mixing rule is popular with 

experimentalists and several authors have justified its existence on the grounds that it 

appears to fit experimental data.  First and foremost, the logarithmic mixing rule is purely 

based on volume fractions and individual phase permittivities. It does not account for 

inclusion shape, orientation, or size and can be termed an averaging procedure, instead of 

a mixing rule based on a physical foundation. It has also been pointed out in the literature 

that fitting of experimental data by the logarithmic rule could simply be fortuitous [23]. 

Table 1.1, summarizes the analytical mixing theories that have been developed, their 

advantages and disadvantages from the period 1850 through 2002. 
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TABLE 1.1 Analytical Mixing Theories 

Sr.

No 

Contributors Year  Mixing Rule in 

Nutshell 

Uniqueness/ 

Advantages 

Limitations 

1. O.F. Mossotti 

R. 

Clausius[25,2

6] 

1850/ 

1879 
  ∝

+

−

2

1

r

r

ε
ε

 No of 

molecules in unit  

volume  

(a) First 

quantitative 

expression 

(b) Applicable  

to gases 

(a)  Not 

applicable 

for all 

solids 

(b)  Only 

applicable 

to high 

symmetry 

ionic 

structures 

that are 

non polar 

2. Lorenz-

Lorentz 

[27-29] 

1880 (a) First to introduce 
local electric 

field calculation 

(b) Introduced idea 

of 

“depolarization” 

Co-related 
refractive index 

with dielectric 

constant 

(a) Broad 
based  

     approach 

(b) Specific 

issues  

      not 
addressed 

3. Rayleigh 

[30] 

1892 Studied spherical 

and cylindrical 

inclusions in ordered 

rectangular lattice 

Extended the 

approach to 

conductivity of 

heat 

 Study was 

restricted to 

two shape of 

inclusions 

4. J. C. Maxwell 

Garnett 

[31] 

1904 (a) First well defined 

approach 

identifying all 

specifics in 

diphasic system 

(b) Dipole moment 

based approach  

(a) Solid  

electrostatic 

foundation 

(b) Concept of 

averaging of 

electric field 

introduced 

(a)Applicable 

to dilute 

inclusion 

volume 

fractions 

(b) Electric 

field 

perturbatio

n at high 

inclusion 

volume 
fraction 

not 
accounted 

for 

5. Lichtenecker 

[40] 

1909 (a) Simple approach, 

(b) Purely based on 

permittivity and 

volume fraction 

of constituent 

phases 

 

Ease of 

application 

 

 

(a) Doubtful    

      physical 

origin 

(b) Its an  

     averaging  

     procedure 
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TABLE 1.1 Analytical Mixing Theories Cont. 

Sr.

No 

Contributors Year  Mixing Rule in 

Nutshell 

Uniqueness/ 

Advantages 

Limitations 

6. D.A.G. 

Bruggeman 

[24, 32-35] 

1930 

 

Technique meant to 

bridge gap between 

detailed description 

of fine grained 

features with 

macroscopic 

description 

 

(a) Applicable for 

dense 

composites 

(b) Electrostatic  

     interaction  

     accounted in  

     specific Vf  

     range 

 

(a) Inhomogenities  

      in local electric  

      field not  

     accounted 

(b) Inclusion shape  

     not accounted 

 

7. O. Weiner 

[37] 

1957 Introduced form 

factors for ellipsoid 

shape and lamellar 

shape 

 

Suitable for 0-3 

composites 

 

Other possible 

shapes of inclusions 

not considered 

 

8. D. A. Payne  

[23] 

1973 (a)  First attempt to 

broadly consider 

all possible 

microstructures 

and types of 

dielectric 

mixtures (0-3, 2-

2, 3-3) 

(b) Brick wall model 
introduced based 

on dielectric 

susceptibility and 

additional proof 

for series and 

parallel mixing 

theories 
presented 

 

Equivalent circuit 

approach to 

understand 

frequency 

dependence of 

effective 

permittivity 

 

(a) Assumption that 

all inclusions are 

of similar shape 

(b)  Multiple 

inclusions cannot 

be modeled 

 

9. K. Wakino 

[41] 

 

1993/

2002 

Modification of 
logarithmic mixing 

rule 
 

Random 
distribution of 

inclusions 
considered 

 

(a) No shape 
characteristics 

considered 
(b) Physical origin is 

not strong 
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 In this research, the limitations of mixing rules are addressed through 

development of a mixing rule paradigm that accounts for particle shape and other effects 

over a broader range of volume fractions.  

 

1.4 RESEARCH OBJECTIVE 

This research is focused on diphasic dielectric composites for high energy density 

storage applications in pulsed power and power distribution systems.  Composite 

materials are particularly attractive because they can synergistically combine high 

permittivity with high breakdown strength of the individual phases. Energy density, 

which captures permittivity and dielectric breakdown strength as vital material 

parameters, dominates this research challenge. Avenues for increasing the effective 

permittivity and breakdown strength may be found by gaining fundamental understanding 

of the response of diphasic dielectrics to an applied electric field. Improved 

understanding of these characteristics will ultimately lead to dielectrics with increased 

energy storage densities.   Current research is centered on improving the understanding of 

dielectric composite response through analytical modeling, numerical simulations and 

experimental work. Three research themes have been explored in this research. 

The first research area deals with analytical modeling of the effective permittivity 

of diphasic dielectrics. An analytical model to express the effective permittivity of a 

composite dielectric with complex-shape inclusions has been formulated. There is a need 

for a mixing theory applicable to all composites, whether 0-3, 2-2 or other uniform 

composite. Herein, an equivalent capacitance model for calculating effective permittivity 

was developed. The foundational approach developed in this model is that of the 

discretization of the inhomogeneous dielectric body. The composite dielectric is 
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discretized into partial parallel-plate capacitor elements, and the total equivalent 

capacitance of the structure is calculated. The effective permittivity of the composite 

dielectric is then obtained from this equivalent capacitance. The specific case of a 

diphasic dielectric body containing a high-permittivity spherical inclusion enclosed in a 

parallelepiped (in particular, a cube) having a lower permittivity has been evaluated. The 

results of modeling based on the developed approach are compared with results obtained 

using Maxwell Garnett theory, Bruggeman mixing rule, logarithmic mixing rule for 

effective permittivity and experimental results identified in the literature. The 

significance of this model lies in the fact that, unlike the traditional mixing theories, the 

new model facilitates study of the effect of inclusion size, shape, and proximity, as well 

as volume fraction.  

The objective of the second focus of this work was to further expand the 

analytical model developed in the first research area to account for the complex 

permittivities of the two phases. By developing a mixing theory that can account for the 

complex permittivity behavior of the constituent phases, the dielectric response of the 

composite may be explored as a function of alternating electric field (i.e., the frequency 

dependence of the composite may be studied).  

  The third research theme involved analytical as well as numerical modeling of 

electrostatic field distribution and energy storage in diphasic dielectrics. This research 

aimed to comprehensively analyze the impact of field distribution on energy storage and 

breakdown strength of composites.  These investigations utilized an analytical 

formulation based on the Maxwell Garnett (MG) mixing rule and numerical simulations 

based on boundary element method (BEM) software. The electric field distribution was 
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studied as a function of dielectric contrast and volume fraction of phases. Key insights 

with respect to selection of constituent phases have been identified. The upper limit of 

applicability of the MG formulation in terms of the inclusion volume fraction was also 

established and was found to be function of dielectric contrast.  
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ABSTRACT: An analytical model based on an equivalent capacitance circuit for 

expressing a static effective permittivity of a composite dielectric with complex-shaped 

inclusions is presented. The dielectric response of 0-3 composites is investigated using 

this model. The geometry of the capacitor containing a composite dielectric is discretized 

into partial parallel-plate capacitor elements, and the effective permittivity of the 

composite is obtained from the equivalent capacitance of the structure. First, an 

individual cell (a high-permittivity spherical inclusion enclosed in a lower permittivity 

parallelepiped) of a diphasic dielectric is considered. The capacitance of this cell is 

modeled as a function of inclusion radius/volume fraction. The proposed approach is 

extended over a periodic three-dimensional structure comprised of multiple individual 

cells. The results of modeling are compared with results obtained using different effective 

medium theories, including Maxwell Garnett, logarithmic, Bruggeman, series, and 

parallel mixing rules. It is found that the model predictions are in good agreement with 

the experimental data. The equivalent capacitance model may be applied to composites 

containing inclusions of any geometry and size. Though the method presented is at static 

electric field, it can be easily generalized for prediction of frequency-dependent effective 

permittivity. 
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Keywords: Dielectric composites, electric field distribution, energy storage, equivalent 

capacitance 

 

I. INTRODUCTION 
 

The effective properties of dielectric mixtures have been investigated for more 

than 100 years, with the earliest known reference for prediction of effective dielectric 

constant of a mixture being attributed to Poisson.
1 

Rayleigh calculated the effective 

permittivity of a mixture based on spherical or cylindrical inclusions in a rectangular 

lattice and his results provided a connection between the properties of the mixture and the 

properties of the inclusions and macroscopic medium.
2
 One of the classical and most 

widely used formulations to calculate effective permittivity of dilute mixtures is the 

Maxwell Garnett (MG) theory,
3-6

 which was first formulated for spherical inclusions.  

The Maxwell Garnett theory was also extended for ellipsoidal inclusions 

(spheroids, cylinders and disks).
3
 The theory is also applicable for inclusions of any 

arbitrary ellipsoidal shape (spheroids, cylinders, and disks) through introduction of 

depolarization factors. The table of depolarization factors can be found for example in 

paper.
7
 However, an arbitrary inclusion shape cannot be accurately accounted for, other 

than by approximation by the closest ellipsoidal shape.
8
 

  There have been numerous other models developed to predict the effective 

permittivity of composites.  To account for non-ellipsoidal shapes, Weiner proposed form 

factors for inclusions with cylindrical and lamellar shape.
9
 Rushman et al., used these 

form factors to explain the impact of porosity upon the dielectric constant of barium 

titanate.
10

 Experimental evidence for the Weiner mixing rule and its applicability to 

porous dielectrics was confirmed by Kingery in 1960.
11
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Bruggeman’s effective medium theory (EMT) is better suited for denser 

composites than the MG rule.
12

 The effective medium is determined self-consistently by 

taking into account the fact that any other inclusion could have been chosen. However, 

EMT does not allow for correlation between the inclusions, i.e., it assumes that each 

inclusion is surrounded by the same effective medium.
13

 Bruggeman extended diphasic 

mixing to the study of dense composites, taking into account electrostatic interactions. 

 The empirically derived logarithmic mixing rule is also used for description of 

effective properties of composites.
14 

In many cases it appears to fit experimental data; 

however in some cases it may be fortuitous, as has been pointed out by Payne.
15

  

   This paper is focused on the development of a simple analytical model to predict 

the effective permittivity of a dielectric composite that is valid for any volume fraction of 

inclusions, and can be applied to inclusions of any shape. The model presented herein is 

based on the discretization of a dielectric body of any shape into simple parallel plate 

partial capacitor elements. By using this approach, actual inclusion shapes can be 

accounted for. The effective permittivity is then calculated based on the capacitance of 

the appropriate equivalent circuit.  

  The specific example of this approach presented in this paper is a geometrically 

isotropic (spherical) inclusion of higher permittivity in a host dielectric of lower 

permittivity. The host dielectric is a parallelepiped, in particular, a cube. This structure is 

called “an individual cell” (or just “a cell”). The capacitance of a cell is modeled as a 

function of the radius or volume fraction of the inclusion. The approach is subsequently 

extended over a periodic three-dimensional structure with multiple individual cells. This 

is analogous to the extensively studied epoxy/BaTiO3 systems, for which substantial 
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experimental data is available.
16-22

 Recently, 0-3 high-permittivity polymer-based 

composites have been increasingly investigated for both comparatively low-energy 

embedded capacitor technology,
 16-21

 and for high-energy density applications for pulsed 

power capacitors. 
22 

  Results of the equivalent capacitance approach that is developed here are 

compared with computations based on the MG mixing theory, Bruggeman’s mixing rule, 

logarithmic mixing rule and recently reported experimental results. The mathematical 

formulation for the equivalent capacitance model is presented below in Section II, results 

for the model are presented in Section III with comparison to the MG model, and 

conclusions regarding the utility of the model are presented in Section IV.  

II. MATHEMATICAL FORMULATION  

 
A. ONE INDIVIDUAL CAPACITOR CELL 

 

A general diphasic slab with a three-dimensional periodic structure of inclusions 

is subdivided into individual cells (cubes), each of which contains one inclusion of a 

higher permittivity surrounded by a host material of a lower permittivity. Fig. 1 shows the 

basic building block of the composite and its three-dimensional translation. The structure 

that is modeled is thus an ordered composite.  Modeling of random composites is readily 

facilitated.   

First, consider an individual cell with an inclusion of an isotropic shape, i.e., a 

sphere placed at the center of the cube. The inclusion size is varied from 0.1 mµ  to 0.54 

mµ  within a host phase cube of dimension 1.1 mµ . In the present model, it is assumed 

that both the inclusion and host are linear isotropic and homogeneous dielectric materials. 
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FIG. 1. Basic building block of composite sphere enclosed in a cube and its 3-D 

translation in x, y, z directions. 

 

 A homogeneous static electric field is applied along the vertical dimension of the 

cell. Then, any cell is an individual capacitor with inhomogeneous contents, and it can be 

discretized into parallel and series parallel-plate partial capacitors with capacitances 

given by: 

p

ppo

p
d

A
C

εε
= , 

 

(1) 

 

where oε = 1210854.8 −⋅  F/m is the vacuum permittivity, pε is the relative permittivity of 

a dielectric in a partial capacitor, pA  is an area of the partial capacitor plates, and pd is 

the thickness of the partial capacitor.  The resultant capacitance of a whole cell can be 

calculated using an appropriate equivalent circuit model. 

Fig. 2 shows how the discretization process is implemented for a basic cubic 

building block with a spherical inclusion. This figure also shows a planar projection of 
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the three-dimensional (3D) view. The individual cell is divided into partial capacitors 

(numbered 1-7), and the corner capacitors around the sphere labeled as Cd. An equivalent 

circuit for this structure is shown in Fig. 3.   Below, explicit formulae for calculating 

these partial capacitances are given. C1 and C2 are the capacitances on the left and the 

right sides of the inclusion. If the structure is symmetrical, C1 and C2 are identical, and 

linearly decrease as the radius of the inclusion increases. These capacitances may be 

calculated according to: 

c

cch

d

bra
CC

)2/(0
21

−
==

εε
, 

 

(2) 

where hε  is the relative permittivity of the host material, ca  cb  and cd are the length, 

width, and height of the individual cell (for the particular case of a cube, ccc dba == ), 

and r  is the radius of the inclusion. The partial capacitances C3 and C4 are associated 

with the elements located on the top and the bottom of the inclusion, and their values are 

calculated as: 

rd

rb
CC

c

ch

2

)2(2 0

43 −
==

εε
. 

 

(3) 

 

  The partial capacitors C6 and C7 are not seen in this planar view – they are located 

in front and behind the sphere, but can be seen in a three-dimensional Fig.2. Their values 

are calculated as:  

2

)2(0
76

rb
CC ch −

==
εε

. 

 

(4) 

  Fig. 2 also shows the discretization approach utilized for the corner shape and 

inclusion sphere. The capacitance of the corner capacitor elements is calculated using 

elemental slices parallel to the cell’s electrode planes. 
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FIG. 2. 3- D view of discretized diphasic dielectric body and 2-D planar view of 

discretized diphasic dielectric body showing discretization pathway for corner 

shape and inclusion sphere. 

(b) 
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   FIG. 3. Diphasic dielectric represented by an equivalent circuit. 

 

 These partial capacitors are connected in series, and the integration over the space of 

the corners is then used to evaluate the total capacitance of these volumes (see the 

derivation in Appendix A).The total capacitance for all four corner elements- two bottom and 

two top )4...1( =i  is: 


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
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4

1
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1
4

1

1

2

ππ

πεε r
C ho

d , 
 

(5) 

 

    To calculate the capacitance of the high-permittivity sphere, it is convenient to cut it 

into thin parallel slices, and consider the series connection of these elements, 

corresponding to the slices. As shown in Appendix B, the integration procedure yields the 
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capacitance of the quarters of the dielectric sphere
i

C5 , )4...1( =i which is the same as for 

the total sphere: 

∫

⋅
==

2/

0

0
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2

π
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i
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(6) 

 

To assure convergence of the integral in the denominator, zero in the integration was 

substituted by 710− . Since the capacitor elements 765 ,, CCC  and dC  are all in parallel 

(see Fig. 2), and they are in series with 3C  and 4C , the equivalent capacitance for the 

central region of the cube is: 

 

d

eq

CCCCCC

C

+++
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=

76543

1 111

1
, 

 

(7) 

 

This capacitance 1eqC , as shown in Fig. 2, in its turn, is parallel with the left and 

right capacitors C1 and C2, and therefore, the total equivalent capacitance is:  

121 eqcell CCCC ++= , (8) 

 

     Then, assuming a homogeneous dielectric fills the space between the cell 

capacitor plates, the effective permittivity can be calculated from the expression for total 

capacitance cellC  of the cell as:  

      
cco

ccell

eff
ba

dC

ε
ε =' , 

(9) 
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      The effective permittivity ( '

effε  ) captures the shape of the inclusion, and there are 

no restrictions on the inclusion size. In general, the shape of an inclusion can be arbitrary, 

though different integration schemes are required. For example, ellipsoidal, tetrahedral 

and other straight-line geometries would be relatively straightforward, while arbitrary 

curvilinear shapes would require special discretization schemes.  

 

B.  N3 INDIVIDUAL CAPACITOR CELLS 

       

 The equivalent capacitance model may be extended for the case of multiple 

inclusions to test for consistency of single as well as multiple inclusion structures. 

Considered here is a case when there are N inclusions in the form of spheres along any of 

three dimensions of the total capacitor. This means that there are 32  elemental capacitor 

cells in the structure under consideration. The capacitor cells in vertical branches are 

connected in series, while all the branches are connected in parallel, as shown in Fig. 4. 

This means that the capacitance in any branch is  

      
2

C
C cell

branch = . 
(10) 

Because there are 22  vertical branches, the total capacitance is: 

      cell
cell 2C2
2

C
C =⋅= 2

Σ . 
(11) 

 

An individual cell capacitance cellC  is calculated as in Section II. A and ΣC  is total 

capacitance of the composite.  If the dimensions of the total capacitor are ,,ba and d , then 

the dimensions of an individual cell are, respectively: 
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 FIG. 4. Discretization pathway for N
3
 capacitor cells. 
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(12) 

 

Then, the effective permittivity of an inhomogeneous dielectric inside the total capacitor 

can be calculated as:  

      
o

eff
ba

dC

ε
ε Σ=' . 

 

(13) 

 

 The effective permittivity of an inhomogeneous dielectric obtained using the 

method presented above may be compared with the well-known homogenization 

technique based on the Maxwell Garnett (MG) mixing rule. The simplest formulation is 

for a mixture of a host material with relative permittivity hε  and spherical inclusions with 

relative permittivity εs, as given by:
3, 4, 9

  

 
a 

b 

d 

C 

C 

C C C 

C C C 
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)2()(1

)2()(3

hshss

hshshs
hefMG

f

f

εεεε
εεεεε

εε
+−−

+−
+≅ , 

(14) 

 

where 
ΣV

V
f S

s =  is the volume fraction of spherical inclusions in the total mixture and sV  

is the volume of inclusion and ΣV  is the total volume of the composite.  

It is also informative to compare the equivalent capacitance model to the formula for the 

logarithmic mixing rule, given by: 

 

iihhcLogarithmieff VV εεε loglog +⋅≅ , (15) 

 

and to the formula for the Bruggeman mixing rule, given by: 

3

'
1

eff

h

i

hi

effi V

ε
εεε

εε −
=

−

−
, 

 

(16) 

 

Here, hV  and hε  are the volume fraction and permittivity of the host phase, respectively, 

and iV  and iε  are the volume fraction and permittivity of the inclusion phase, 

respectively. 

 

III. RESULTS AND DISCUSSION 

 The first calculation is for the capacitance of a cube containing one spherical 

inclusion placed in the center of the cube. The inclusion is a high-permittivity dielectric, 

in particular, barium titanate (BT), with relative permittivity assumed to be =iε  1900. 



 

 

33 

The cube surrounding the BT sphere is a low-permittivity phase, for example, 

with relative permittivity =hε 4 (polyamides, epoxy etc). The cube has the following 

dimensions: === ccc dba 1.1 µ m. This size is chosen to imitate a real structure of a 

polymer ceramic dielectric. The radius of the sphere is varied, and, hence, the volume 

fraction of the inclusion is also varied. For this capacitor structure, the maximum 

inclusion volume fraction is approximately 52.3 %. The electric field applied is in the 

vertical direction, as dictated by the equivalent capacitance model outlined above. The 

capacitance of this structure is calculated according to the formulae presented in Section 

II.A. The analytical software MAPLE 10 was used to carry out the computations 

presented below. 

C1-C2: The capacitance of elements C1 and C2 are equal, since both capacitors 

have the same low permittivity hε , the same area, and the same thickness. The 

capacitance data for both capacitors C1 and C2 as a function of the radius of the inclusion 

is plotted in Fig. 5 (a). Capacitances C1 and C2 show a linear decrease as the inclusion 

radius increases. This is an expected result, since with increasing inclusion radius; there 

is a linear decrease in the area of the capacitor plates, while its thickness remains 

constant.  

 C3-C4: The capacitances of capacitors C3 and C4 are also equal; as these partial 

capacitors located on top and bottom of the spherical inclusion, have the same area and 

thickness. The capacitance data for both capacitors C3 and C4 as a function of radius of 

the inclusion is plotted in Fig. 5 (b). It is seen that when the inclusion radius is small 

(r )2.0 mµ≤ , there is a minimal increase in capacitance (0.01-0.1 ·10
-14

 F). This is because 
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the area of the capacitor “plates” remains small (area < 0.4 )2mµ , while the 

thickness of the dielectric remains relatively high (d )6.0 mµ≥ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

FIG. 5. Magnitude of capacitances of capacitor elements C1, C2, C3 and C4 as a function 

of inclusion radius (r). 
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After the radius becomes approximately 1/3 of the cell dimension, the area of 

capacitor increases, the thickness concurrently decreases, and there is a rapid increase in 

capacitance as 3r∝ . It is observed that beyond the inclusion radius of 0.53 mµ , there is a 

rapid increase in the capacitances of C3 and C4.  When inclusions start touching the top 

and bottom of the host phase cube the corresponding capacitances go to infinity. In 

computations, it is assumed that the thickness of the dielectric layers for C3 and C4 is at 

least 1% of the inclusion radius. Therefore, this model is applicable till the inclusion radii 

are about 0.5445 mµ . 

Cd: The capacitance of the corner elements depend on the shape of the inclusion. 

There is a linear increase in this capacitance with inclusion radius, as shown in Fig. 6 

(a).This capacitance Cd becomes significant, when the radius of the inclusion increases.  

 C5: The capacitor C5 is constituted of the high-permittivity phase. The capacitance 

data for capacitor C5 as a function of inclusion radius is plotted in Fig. 6 (b). There is a 

linear increase in C5 as the radius of the inclusion increases, which is an expected result.  

 C6-C7: The capacitances C6 and C7 located in front and back of the inclusion show 

a linear decrease in the capacitance with increasing inclusion radius, similar to the 

behavior of C1 and C2. 

 Fig. 7 (a) shows that capacitance C6 (and C7 as well) decreases as a function of 

inclusion radius. This is because the area of the corresponding capacitor “plates” 

decreases linearly with increase in inclusion radius.  

 CΣ: The total equivalent capacitance for the diphasic composite as a function of 

inclusion radius is plotted in Fig. 7 (b), and it shows a trend similar to that for the partial 
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capacitances C3 and C4, since at larger inclusion radii ( r )4.0 mµ≥  these two 

capacitances dominate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6. Magnitude of capacitances of capacitor elements Cd and C5 as a function of   

     inclusion radius (r). 
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FIG. 7. Magnitude of capacitances of capacitor elements C6, C7 and ΣC  as a function of 

inclusion radius (r). 
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The effective permittivity of the composite, calculated through the total capacitance, 

is illustrated in Fig. 8. According to the equivalent capacitance model, the predicted 

effective permittivity for the inclusion volume fraction range of 0 to 35% increases from 

4 to 15. The predicted permittivity for inclusion volume fraction variation from 35 to 

52% increases from 15 to 80. When the radius of the spherical inclusions is 

approximately 1/3 of the cell dimension, the rate of the effective permittivity increase 

becomes greater. The calculated maximum permittivity is around 80 for a volume 

fraction of approximately 52% and a dielectric contrast (ratio of permittivity of inclusion 

phase to permittivity of host) of 300.  

 Fig. 8 also shows the effective permittivity as a function of inclusion radius for 

the same composite calculated using the Maxwell Garnett mixing rule, logarithmic rule, 

and Bruggeman formulation. The trend shown by the equivalent circuit capacitance 

model is similar to that for the other mixing rules. However the slope of the dependence 

equivalent capacitor model becomes steeper as the inclusion radius approaches its 

limiting point (r> 0.54 )mµ . The equivalent capacitance model results lie between the 

logarithmic rule, which overestimates the effective permittivity, and the Bruggeman 

model predictions.   

 The equivalent capacitance model was also tested for multiple inclusions as 

opposed the single inclusion case reported above. A composite system with the same host 

cube dimensions but with 1000 high permittivity inclusions is considered. The total 

capacitor dimensions are the same as in the previous example with one spherical BT 

inclusion in host ( 1.1=== dba  mµ ). In the equivalent capacitance model, the total 

structure contains 1000 individual cells. 
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FIG. 8. Effective permittivity of composite predicted by equivalent capacitance model as  

            a function of inclusion volume fraction for N=1 inclusions and its comparison to  

        predictions of Maxwell Garnett mixing theory, Bruggeman mixing rule and  

       Logarithmic mixing rule. 

 

The maximum radius of each inclusion is 10 times smaller than in the previous 

single cell example. In this particular case, the inclusion size is reduced and is varied 

from 10 nm to a maximum 54 nm, as opposed to the earlier case when the single 

inclusion size was varied from 0.1 mµ  to 0.54 mµ . This structure is an ordered nanoscale 

composite.  It has been verified that the predictions of the equivalent capacitance model 

for the multiple inclusion case remain identical to the single inclusion case. The model 
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suggests consistent results for analogous volume fraction no matter how many 

inclusions of the same shape are present.  The results are independent of inclusion size, 

but they capture inclusion shape.  

In a parallelepiped with a homogeneous static electric field applied along one of 

its dimensions, there is a continuous linear variation of the electrostatic potential along 

this direction.
23

 That is why cutting the structure into parallel-plane slices and applying 

rules for calculating equivalent series and parallel capacitances allows for taking into 

account local electric field present within this slices. The model satisfies all boundary 

conditions for electric field and potential between the partial capacitor elements. The 

accuracy of these computations depends on how fine the discretization is, and the 

discretization is defined by the shape of inclusions.  

The equivalent capacitance model is validated by comparison with experimental 

data for two different diphasic dielectric systems, both of which contain BT in a 

polymeric host (i.e., similar dielectric contrast and volume fractions to those studied). It 

should be pointed out that the permittivity of BT powder is highly sensitive to the grain 

size
24-28

 and it has been reported that coarse grain BT (20-50 mµ ) shows 

20001500 −=rε at room temperature, whereas the permittivity for fine-grained BT 

(~1 mµ ) is 3500-4000. As the grain size decreases below 1 mµ , the permittivity is most 

likely to be around 950-1200. 

The first system experimentally investigated by Chiang et al.
29

 contains 

cyanoresin as a host phase ( =hε  21) and barium titanate (BT) with grain size less than 

2 mµ  as the inclusion phase. Because the exact data on inclusion permittivity has not 

been reported,
29

 in the present model, the BT permittivity is assumed to be 
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approximately =iε 3800, in accordance with the permittivity of BT of grain size less than 

2 mµ . In this case, the dielectric contrast is 180. The volume fraction of the inclusion 

phase in the equivalent circuit model is varied between 0 and 52 vol%. Fig. 9(a) shows 

the experimental effective permittivity as a function of the inclusion volume fraction for 

this system, as well as the dependencies calculated based on different models.  

The second experimental system
30

 to which the equivalent capacitance model is 

compared contains polypropylene as a host phase ( =hε 2.2) and BT as an inclusion 

phase ( =iε 3800). In this case, the dielectric contrast is ~ 1700. Using these parameters, 

the effective permittivity as a function of the inclusion volume fraction is shown in Fig. 9 

(b).  

The computations based on the equivalent capacitance model agree with the 

experimental data, with the first set of experimental data for inclusion volume fraction 

less than 40 % having a discrepancy of not more than 15% (Chiang data; Fig. 9(a)). As is 

seen Fig. 9 (b), for the 40 % inclusion volume fraction the maximum discrepancy does 

not exceed 25%. 

The equivalent capacitance model agrees satisfactorily with experimental data. 

The equivalent capacitance model also agrees well with the Bruggeman predictions, 

especially for the first case of the lower dielectric contrast.  The equivalent capacitance 

model provides a better fit to the experimental results than the MG and logarithmic 

mixing rules. The discrepancy between experimental data and the model prediction can 

arise from numerous factors. Some of the reasons are the following. The equivalent 

capacitance model has been developed for an ordered system, while the real-world 

composites have inclusions randomly dispersed in the host phase. 
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FIG. 9. Effective permittivity of the diphasic composite as predicted by equivalent 

capacitance model and its comparison to experimental data with host phase 

permittivity of 21and 2.2. 
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Although the reported experimental systems are for 0-3 composites, the actual 

inclusion shape in these composite might not be exactly spherical.  

An equivalent capacitance model has also been applied to model diphasic 

structures in which the inclusion volume fraction is higher than in the previously 

considered cases ( %90>fV ). The results of modeling using the equivalent capacitance 

model have been compared to the results of two known mixing rules: series and parallel 

mixing.
1
 These two models were used by Payne

1
 to study the effective permittivity of 

real-world composites, such as liquid phase sintered BT. The composites in these models 

are represented as layered structures, either series or parallel, depending on the ratio of 

permittivities of phases.  If the inclusion phase has a significantly higher permittivity than 

the host (dielectric contrast 10≥ ), a series mixing rule may be used to predict the 

effective permittivity of the composite, due to local electric field behavior.  If the 

inclusion phase has a lower permittivity than the host, a parallel mixing rule may be used 

to predict the effective permittivity of the structure.  

Fig. 10 (a) shows a comparison of the predicted effective permittivity of a 

dielectric composite as a function of inclusion volume fraction for the series mixing rule 

and equivalent capacitance model. The system modeled in this case is a diphasic mixture 

of titania ceramics ( 1001 =ε ) containing intergranular boundary phase of aluminosilicate 

( 82 =ε ). The second system considered is a diphasic mixture of TiO2 ( 1001 =ε ) and 

Mg2TiO4 ( 2ε = 22). This system is modeled using the parallel mixing rule, which is also 

compared to the equivalent capacitance model in Fig. 10 (b).  The predictions of the 

equivalent capacitance model match the series and parallel mixing rules for the 

appropriate composite structures. 
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FIG. 10. Comparison of effective permittivity predictions of series and parallel mixing 

rule with equivalent capacitance model. 

 

These mixing rules represent limiting cases of the more general equivalent 

capacitance model. This implies that the equivalent capacitance model may be used to 

describe effective permittivity of a wide range of diphasic dielectric microstructures.  
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spherical inclusion(s) in a cube of a lower permittivity phase (e.g., a 0-3 composite), as 

well as for a periodic system of such individual cells. The predictions of the equivalent 

capacitance model agree well with experimental data obtained from the literature. The 

results of computations show that the classical Maxwell Garnett and equivalent 

capacitance models diverge at inclusion volume fractions greater than approximately 

10%, since the MG model is valid for only dilute mixtures. The present model based on 

discretization of the dielectric volume has no inherent restrictions on inclusion volume 

fraction, size, or shape, and is applicable to any structure subjected to an applied 

homogeneous static electric field.  

Effective permittivity predictions by the equivalent capacitance model match the 

limiting case series and parallel mixing rules. This implies that the equivalent capacitance 

model is applicable to a wide range of composite microstructures. Extension of the 

equivalent capacitance model to predict frequency-dispersive relative permittivity of 

composites has also been developed by including loss in the model, assigning partial 

resistances along with the partial capacitances (RC-circuits). This extension of the model 

is described in a separate paper. The equivalent capacitance model, may also be extended 

to the case of randomly dispersed inclusions. 
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APPE�DIX A 

 

Calculation of the Corner Capacitance 

 

Consider the corner capacitor elements, as shown in Fig. 11. Their dimensions are 

characterized by parameters b and d. “ rb 2= ” is equal to the diameter of the sphere, as 

the cube dimension in which inclusion sphere is enclosed. “ d ” is the thickness of the 

plates.  The angle θ  is measured from the horizontal direction, and θd is an increment.  

The area of the corner capacitors can be calculated using 3D visualization, as illustrated 

in Fig. 11 and Fig. 12. The area of the discretized corner plate can be calculated from 

Figure 12. Thus, an expression for the area of the discretized corner capacitor plate may 

be written: 

2

cos
2

22
2 θπ r

rS
⋅

−=  
 

(A1) 

 

 From the triangle ∆  EDO, the length ED is 

 

)sin()( θdrEDl ⋅= , (A2) 

 

 As the angle θd  is very small,  

 

θrdEDl ≈)( , (A3) 

 

From the triangle ∆ ECD, the incremental thickness dh of any discretized plate can be 

found as: 

 

θθ drECldh ⋅== cos)( , (A4) 
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FIG. 11.Three dimensional views of the corner capacitor element and vertically cut  

section of inclusion sphere and corners detailing the discretization process for  

calculating corner capacitance value. 
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FIG. 12. Sectional front and top view of the inclusion sphere and corner elements to   

   explain mathematics of discretization process. 

 

The incremental capacitance of every corner plate is calculated as follows:  

θθ

θπ
εε

dr

r
r

dC
ho

i
cos

)
2

cos
2(

22
2 ⋅

−⋅⋅
= . 

(A5) 

 

All the discretized corner capacitors are arranged in series and therefore the equivalent 

capacitance of the corner elements is given by the following expression 

∫
∑

==+−−−++=

=

2

0

1

21
1

1

1

11111
π

i

n

i i

nd

dC
C

CCCC
, 

(A6) 

 

Therefore, the corner capacitance is calculated by the expression shown in (A6) 
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∫
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By substituting Xrho =⋅ θεπε sin  and 
r

r
A

ho

ho

επε

πεε )4(2 −
=  which results in the 

expression A8 as below 
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APPE�DIX B 

Calculation of the  Capacitance of Dielectric Sphere 

A dielectric sphere inside a parallel-plate capacitor with voltage applied to its top 

and bottom plates is discretized by horizontal slices of the sphere, as shown in Fig. 13.  

Let us consider just a quarter of the sphere shown in Fig. 13. 

The distance AC, which is the radius of the slice, is labeled as iq , and the 

incremental distance is: 

iii qqq −= +1∆ . (B1) 

 

Angle ∠ AOF =θ , and the increment of the angle θdAOB =∠ . From AOB∆ , it 

is seen that: 

)(

)(
sin

AOl

ABl
d =θ . 

(B2) 

 

Since θdAOB =∠  is very small,                 

                                           

θθ drdrABl ⋅≈⋅= )sin()( . (B3) 

 

AOF∠ and CAO∠  are equal, as they are internal alternate angles, and  

090=∠+∠ OAECAO ⇒ )90( 0 θ−=∠OAE  (B4) 

Then, since  

090=∠+∠ EABCAO . (B5) 

 

By substituting OAE∠  (B4) into (B5), one can get 

 

      θ=∠EAB . (B6) 

 

From AEB∆ , one can find the thickness of the individual discretized plate d , 
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ABl

AEl
=θ . 

(B7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 13. Vertically cut section of inclusion sphere detailing the discretization process  

   for calculating capacitance value of inclusion dielectric sphere. 

Therefore, the thickness of the discretized capacitor is given by:                    

    θθ drd ⋅= cos . (B8) 

                                      

Lengths OH and AC are:  
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    iqOHlACl == )()( . (B9) 

From the triangle OEH∆ , it may be determined that   

θcos)( ⋅== rOHlqi . (B10) 

Only half area of the discretized plate is taken into account as the sphere is divided into 4 

quarters.  The area of the discretized capacitor plates is given by:  

2)cos( θπ ⋅⋅= rArea . (B11) 

                                      

The capacitance of the discretized plates can be calculated as:  

   
θθ
θπεε

cos2

)cos( 2

⋅⋅⋅

⋅⋅⋅⋅
=

dR

r
C io

i .     
 

(B12) 

The inverse value is:  

       
θπεε

θ
cos

21

⋅⋅⋅⋅
=

r

d

C ioi

. 
 

(B13) 

The total capacitance of the quarter of the sphere is calculated as a series capacitance, so: 

       ∫⋅⋅⋅
=

2/

04/1 cos

21 π

θ
θ

εεπ
d

rC io

. 
 

(B14) 

 

Finally,                                        

              

       

∫

⋅⋅⋅
=

2/

0

4/1

cos
2

π

θ
θ

εεπ
d

r
C io . 

 

(B15) 

 

This capacitance 4/1C  is the capacitance of the quarter of the sphere, but it is also a total 

capacitance of the whole dielectric sphere, since two left hand capacitances are in series, 

two right-hand capacitances are also in series, and they are connected together in parallel. 

       4/15 CC = . (B16) 
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2. PREDICTIO� OF EFFECTIVE PERMITTIVITY OF DIPHASIC 

DIELECTRIC AS A FU�CTIO� OF FREQUE�CY  
 

Sandeep K. Patil, Marina Y. Koledintseva, Senior Member, IEEE,  Wayne  
Huebner, Robert W. Schwartz, and Konstantin N. Rozanov 

 

ABSTRACT  

An analytical model based on an equivalent impedance circuit for expressing an 

effective permittivity of a composite dielectric as a function of frequency with 

complex-shaped inclusions is presented. The geometry of the capacitor containing 

this composite dielectric is discretized into partial impedance elements, the total 

equivalent impedance is calculated, and the effective permittivity of the composite 

dielectric is obtained from this equivalent impedance. An example application using 

this method is given for an individual cell of a diphasic dielectric consisting of a 

high-permittivity spherical inclusion enclosed in a low-permittivity parallelepiped. 

The capacitance and resistance for individual discretized elements in the composite 

cell are modeled as a function of an inclusion radius. The proposed approach is then 

extended to a periodic three-dimensional structure comprised of multiple individual 

cells. The equivalent impedance model is valid for both static and alternating 

applied electric fields, over the entire range of volume fraction of inclusions.  The 

equivalent impedance model has a few advantages over existing effective medium 

theories, including no limitations on the shape of inclusions or their separation 

distance. .   

 Index Terms- Dielectric composites, electric field distribution, energy storage, 

 equivalent capacitance 
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1    INTRODUCTION 

  Theoretical efforts to predict the dielectric behavior of multiphase composites 

have been investigated for more than 100 years [1-5], and have resulted in a number of 

effective medium theories. The fundamental approach is to focus on one particular 

inclusion and then replace all of the rest by an effective homogenous medium. Any 

effective medium theory then is invariant to which particular inclusion is taken as a focus 

[6-9], since each inclusion must be surrounded by the same effective medium. One of the 

most widely-used formulations for calculating the effective permittivity of mixtures is the 

Maxwell Garnett (MG) theory [9-12]. MG theory is satisfactory when exact interparticle 

interactions are not significant, i.e., for small concentrations (inclusion volume fraction< 

0.1) of inclusions in a dielectric host [13]. The MG theory is applicable for inclusions of 

any arbitrary ellipsoidal shape, including spheres, spheroids, cylinders, and disks, through 

introducing depolarization factors [14]. Complex inclusion shapes can only be 

approximated by assuming a closest shape [15], which limits the overall applicability. 

The empirically derived logarithmic mixing rule is also widely applied for fitting 

experimental data [3]. However, the experimental fit of logarithmic mixing rule in some 

cases might be fortuitous, as was pointed out by Payne [16]. 

  Properties of composite media have been intensively studied in the last two 

decades using various numerical techniques. The most prominent among these have been 

Monte Carlo simulations (MC) [17], the finite element method (FEM) [18, 19], the finite 

difference method [20] and the boundary integration method [21, 22]. It is noteworthy to 

consider the contribution of Sareni et al. who through use of numerical analysis 

techniques calculated the effective dielectric constant of periodic composites [21], 
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random composites [23], and then also analyzed the complex effective permittivity of a 

lossy composite material [24]. Myroshnychenko et  al. [6] have developed an algorithm 

for predicting the complex permittivity of two-dimensional diphasic statistically isotropic 

heterostructures, and compared their results with different effective medium approaches. 

  Through numerical approaches it is possible in principle to study a system of any 

complexity, however numerical analysis requires enormous computational resources that 

are costly and might not be always available. 

  The objective of this work was to obtain a simple closed-form analytical model 

that would allow for predicting the effective complex permittivities of diphasic 

composites. This model should be free from limitations on inclusion size and shape, as 

well as distances between inclusions. The model presented herein is based on 

discretization of a dielectric body into partial impedances, specifically, R-C elements, 

equivalent to “lossy capacitors.”  This can be applied to any inclusion shape. The 

effective permittivity is then calculated from the resultant impedance of the appropriate 

equivalent circuit. It should be mentioned that the analogous electric circuit approach was 

used by Pan et  al. [25] to predict the properties of a multilayer dielectric, with each 

single-phase layer having various grain sizes.The approach presented herein has been 

applied to a high-permittivity inclusion in a low-permittivity host dielectric. As an 

example, the host dielectric is a parallelepiped (in particular, a cube). An inclusion in this 

example is a sphere, which is the simplest geometry to be compared with the MG theory 

and logarithmic mixing rule. This structure is referred to as “an individual cell” (or just “a 

cell”).  The impedance of the cell is modeled as a function of an inclusion radius, or a 

volume fraction of an inclusion. The model is then extended to a composite three-
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dimensional (3D) structure comprised of periodically placed individual cells. Such a 

structure is found experimentally in such systems as epoxy/BaTiO3 [26-30]. 

2      MODEL DESCRIPTION 

2.1 ONE INDIVIDUAL IMPEDANCE CELL 

  A general diphasic slab with a three-dimensional periodic structure of inclusions 

A general diphasic slab with a three-dimensional periodic structure of inclusions is 

subdivided into individual cells (cubes), each containing one high-permittivity inclusion 

surrounded by a lower permittivity host material. Figure 1 shows the basic building block 

of the composite and its three-dimensional translation. 

 

 

 

 

 

 

 

 

 

Figure 1. Basic building block of composite sphere enclosed in a cube and its 3-D 

translation in x, y, z directions  

 

First consider an individual cell with an inclusion of an isotropic shape, i.e., a 

sphere, placed at the center of a cube. The inclusion and the host are assumed to be linear 

isotropic and homogeneous dielectric materials, with an alternating electric field applied 
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Low Permittivity Host Phase 

High Permittivity Inclusion 
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along the vertical dimension of the cell. In this case, any cell is simply an individual 

capacitor with an inhomogeneous dielectric inside, and can be discretized into parallel 

and series parallel-plate partial impedances, each containing a homogeneous dielectric. 

Figure 2(a) shows, how this structure is discretized into partial elements. Each element 

has its own impedance, in which a partial capacitor is parallel to the corresponding partial 

resistor, responsible for loss. The equivalent circuit corresponding to an individual cell is 

shown in Figure 2 (b). The total equivalent reactance, Xeq, and impedance, Zeq, of the 

individual cell are  

eq

eq
Cj

X
ω

1
=   

 

(1) 

)( eqeq

eqeq

eq
XR

XR
Z

+

⋅
= . 

 

(2) 

 

In (1) and (2), eqR  and eqC  are the equivalent resistance and capacitance of the structure. 

The equivalent capacitance parallel-plate capacitor filled by effective dielectric medium 

is,  

)( "'

"

eqeq

eq

eq
ZZ

Z
C

+
=

ω
, 

 

(3) 

  

Where ω  is frequency of alternating electric field and '

eqZ  and "

eqZ are real and imaginary 

parts of impedance, respectively.  

  Figure 3  shows the planar projection of the 3D view presented in Figure 2(a). 1Z  

and 2Z  are the impedances that are present on left and right hand side of the inclusion. 
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Figure 2.  3-D view of the discretized diphasic dielectric body and its corresponding 

equivalent circuit. 

(b) 

(a) 
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Figure 3.  2-D view of the discretized diphasic dielectric body and discretization 

pathway of corner shape and inclusion sphere. 

 

sphere. Assuming the structure is symmetrical, the capacitances C1 and C2 are equal, and 

given by  

c

cch

d
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CC

)2/(0
21

−
==

εε
, 

 

(4) 
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where hε  is the relative permittivity of the host material. These capacitances linearly 

decrease as the radius of the inclusion increases. The corresponding reactance for any α -

th element is
α

α ωCj
X

1
= . If the loss tangent is taken into account, then the resistances 

of each element are  

cch

c

bra

d
RR

)2(

2
21 −

==
σ

, 
 

(5) 

 

where hσ  is the conductivity of the host; ca , cb , and cd are the dimensions of the 

individual cell (in a particular case of a cube, ccc dba == ), and r  is the radius of the 

inclusion. 

   The partial capacitances C3 and C4 and partial resistances R3 and R4 are the 

elements located on the top and the bottom of the inclusion, respectively, and are 

calculated as 

rd

rb
CC

c

ch

2

4 0

43 −
==

εε
  

 

(6) 

ch

c

br

rd
RR

σ⋅⋅

−
==

4

)2(
43 . 

 

(7) 

 

 The partial capacitances C6 and C7 and partial resistances 6R  and 7R , located in 

front of and behind the sphere (see Figure 2(a)), are calculated as  

2

)2(0
76

rb
CC ch −

==
εε
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RR
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==
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  Figure 3 shows the discretization pathway for the corner shape and inclusion 

sphere. The same discretization is adopted for calculating both partial capacitances and 

resistances. The resistance and capacitance of the corner elements are calculated using 

smaller discretization into elemental slices parallel to the electrode planes of the cell. 

They are connected in series, and the integration over the corner space is accomplished. 

The calculation of capacitance of corner capacitor elements and the inclusion sphere have 

been presented by Patil et al. [31]. The detailed calculation of the resistance of the corner 

element is presented in the attached Appendix A. The total resistance and capacitance for 

all four corner elements- two bottom and two top )4...1( =i  are 

rCC hcc i
εε076.2==   (10) 

r
RR

h

cc i σ
326.1

==  
 

(11) 

 

     To calculate the capacitance of the high-permittivity sphere, it is convenient to cut 

it into thin parallel slices, and consider series connection of the elements. The integration 

procedure yields the capacitance of the quarters of the dielectric sphere
i

C5 , 

)4...1( =i which is the same as of the total sphere 

∫

⋅
==

2/

0

0
55

)cos(
2

π

θ
θ

πεε
d

r
CC i

i
. 

 

(12) 

 

To assure convergence of the integral in the denominator, zero in the integration was 

substituted by 710− .  The resistance of the inclusion sphere is calculated by first 

calculating the conductance of the sphere as shown below.  
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The real and imaginary parts of the inclusion phase permittivity are calculated using the 

Debye expression 

      ( )
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ii

jωτ
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 . 
 

(14) 

 

The impedance of any partial element with an index α  is calculated as an impedance of 

parallel resistive element αR  and the reactive element αX , connected in parallel 

     
αα

αα
α

RX

RX
Z

+

⋅
= .  

(15) 

The impedance of the central part of the equivalent circuit is 

     

5
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43 111

1

ZZ

ZZZZ

ZZZ

c
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+

++
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(16) 

Finally, the equivalent impedance of the cell can be found as 

     

central

eq

ZZZ

Z
111

1

21

++
= .  

(17) 

 

Since this equivalent impedance is comprised of equivalent capacitance and equivalent 

resistance elements connected in parallel, the values eqR and eqC can be obtained from the 

real and imaginary parts of eqeqeq ZjZZ ′′−′= . The equivalent capacitance of the 

individual cell is  
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      Ceq =
′ ′ Z eq

ω ⋅ ( ′ Z eq

2 + ′ ′ Z eq

2
)

. 
(18) 

      Then, assuming that the homogeneous dielectric with permittivity '

effε fills the 

space between the cell capacitor plates, the real part of the effective permittivity is 

      
cco

ceq
eff

ba

dC

ε
ε =′ . 

(19) 

 

      By utilizing the equivalent impedance approach, '

effε and effε ′′  can be found as 

shown below. The effective permittivity ( effε ′  ) captures the shape of the inclusion, and 

there are no restrictions on the inclusion size. Thus from the equivalent capacitance, the 

effective static permittivity can be found. 

The equivalent resistance of the individual cell is  

      
eq

eqeq
eq

Z

ZZ
R

′

′′+′
=

22

. 
(20) 

 

The equivalent conductance of the individual cell is simply the inverse of the equivalent 

resistance, 

      
eq

eq
R

G
1

= . 
(21) 

 

The imaginary part of the effective permittivity can be calculated from the equivalent 

conductance.  

      
eq

eqeff

eff
Cf

G

⋅⋅⋅

⋅
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π

ε
ε

2
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(22) 
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2.2 N3 INDIVIDUAL IMPEDANCE CELLS 

 Let us consider a case with 2 inclusions in the form of spheres along each of the 

three dimensions of the total capacitor, resulting in 32  individual cells. If the dimensions 

of the total capacitor are ,,ba and d , then the dimensions of an individual cell are  

      ,/ ,/ 2bb2aa cc == and ,/ 2ddc =  (23) 

respectively.  

The equivalent circuit of the total impedances contains individual cells in vertical 

branches connected in series, while all the branches are connected in parallel, as is shown 

in Figure 4. This means that the total equivalent impedance of all the branches is  

      
2

Z

2

Z
Z cellbranch

eq ==
2

. 
(24) 

Then the effective permittivity of an inhomogeneous dielectric inside the total capacitor 

can be calculated using (17) and (24) for effε ′ and effε ′′ , respectively. 

The effective permittivity of an inhomogeneous dielectric obtained using the 

method presented above is compared later on with the well-known homogenization 

technique based on the Maxwell Garnett (MG) mixing rule [9-12, 14] and logarithmic 

mixing rule [15].  For a mixture of a host material with relative permittivity hε  and 

spherical inclusions with relative permittivity iε  , the Maxwell Garnett mixing rule is 

)2()(1

)2()(3

hihii

hihihi
hMG eff

f

f

εεεε
εεεεε

εε
+−−

+−
+≅ , 

 

(25) 

 

where 
Σ

=
V

V
f i

i  is the volume fraction of spherical inclusions in the total mixture. Here iV  

represents volume of inclusion and ΣV  represents volume of composite.  
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Figure 4.  Discretization pathway for 2
3
 impedances. 

 

The formulation for logarithmic mixing rule is given by 

iihhcLogarithmieff VV εεε loglog +⋅≅ ,      (26) 

Herein, hV  and hε  is the volume fraction and permittivity of the host phase respectively. 

Also, iV  and iε  is volume fraction and permittivity of the inclusion phase respectively.  

 

3     RESULTS AND DISCUSSION 

Computations of the complex effective permittivity of a composite based on the 

equivalent RC circuit model are presented herein. The 3D model is set up to mimic the 

real world system of a high permittivity phase inclusion in a polymeric host (ceramic - 

polymer composite) with 0-3 connectivity. Two cases have been investigated: the first 
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with just one inclusion in the host matrix, and the second with 1000 inclusions inside the 

cube. 

   The experimental data for computations is taken from the paper of M.P. McNeal 

et al. [32] which presented the microwave behavior of BaTiO3, which can be 

approximated using the Debye frequency dependence [33], 

      ( )
i

isi
ii

jωτ
εε

εωε
+

−
+= ∞

∞
1

 . 
 

(27) 

 

In McNeal et al. [32], the static permittivity for a coarse-grain BaTiO3 ceramic is reported 

to be siε =1900, the “optical limit” permittivity is i∞ε =280, and the Debye constant is iτ  

= 2.06 ns, which corresponds to a relaxation frequency 
π

ω
2

ri
rif = = 771 MHz. The 

polymeric host is a low-loss material, with frequency independent relative 

permittivity hε = 4, and an equivalent ohmic conductivity of hσ = 3.79 710−⋅  S/m, which 

corresponds to a δtan  on the order of 47 10...10 −−  in the microwave range of interest. The 

polymeric cube surrounding one ceramic sphere (or multiple spheres) has the following 

dimensions: === ccc dba 1.1 µ m. The radius of the sphere is a varying parameter, 

and, hence, the volume fraction of the inclusion or inclusions is also varying.   

Figure 5 (a) depicts the equivalent capacitance of the dielectric composite as a 

function of frequency and inclusion volume fraction. The inclusion volume fractions 

chosen were 2.5 %, 8.4%, 20.1%, 39.3% and 46.8% respectively. The equivalent 

capacitance as a function of inclusion volume fraction is dominated by the capacitor 

elements 5C , 3C , and 4C . As the volume fraction of the inclusion phase increases from 
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2.5% to 46%, the contribution of capacitor elements 5C , 3C , and 4C increase due to the 

concurrent increase in area of the capacitor elements and decrease in the thickness of the 

host.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Magnitude of the equivalent capacitance and equivalent conductance of 

composite as a function of frequency and inclusion volume fraction. 

 

 

It is a well known fact that at lower frequencies all the polarization mechanisms, space 

charge, dipolar, electronic and ionic polarization, are active. As the frequency increases 
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and goes beyond the relaxation frequency, only ionic and electronic polarization 

mechanisms are active. The decrease of dipolar and space charge polarization results in 

the decrease in charge that is formed on capacitor plates, and this leads to the reduction in 

the equivalent capacitance. Figure 5 (a) demonstrates this effect.   

  In Figure 5 (b), the equivalent conductance of the dielectric composite is plotted 

as a function of frequency. To understand the results generated by the analytical model, it 

is imperative to understand the physical response of a dielectric to an applied field as a 

function of frequency. As capacitors "conduct" current in proportion to the rate of voltage 

change, they will pass more current for faster-changing voltages (as they charge and 

discharge to the same voltage peaks in shorter time interval), and less current for slower-

changing voltages. Therefore there would be an increase in the effective conductivity of 

the dielectric for frequencies above the relaxation frequency for all inclusion volume 

fractions. It is also seen from Figure 5 (b) that with the increase in the volume fraction of 

the high-permittivity inclusion phase, the equivalent resistance decreases, and the 

equivalent conductance of the composite dielectric increases.  

  Figure 6 depicts the response of effective permittivity ( '

effε ) of the dielectric 

composite as a function of frequency.  Figure 6 shows very clearly relaxation in dielectric 

properties. The real part of permittivity predicted by the equivalent impedance model at 

310 Hz is ≈′
effε  47, and it decreases to ~11 at 10

12
 Hz, so that the difference 

∞′−′=  eff seffeff  εεε∆ (dielectric relaxation strength) is about 35. The '

effε  remains 

essentially flat up to ~ 710 Hz, and above this frequency it decreases and follows the 

Debye frequency dependence. This prediction is for the highest inclusion volume fraction 

of 46.8 %. With the reduction of inclusion volume fraction to 39.3%, the effective 
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permittivity '

effε  of the composite reduced to 27 at 10
3
 Hz and saturated to around 10

12
 Hz 

and yielding ≈effε∆ 17. effε∆  continues to decrease with the inclusion volume fraction 

decrease, and this is an expected result as dispersive phase’s volume fraction decreases in 

the non-dispersive host phase.  All these predictions of permittivity were for a single 

inclusion in the host phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Prediction of effective permittivity of diphasic composite by equivalent  

impedance model for various inclusion volume fractions as a function of 

frequency. 
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The dielectric relaxation in BaTiO3 takes place at 771 MHz [32]. The frequency 

dependence of ferroelectricity including apparent disappearance of ferroelectric response 

in the microwave regions has been explained by von Hippel [34]. For a ferroelectric 

material like BaTiO3, there are permanent electric dipoles which are firmly anchored into 

position and not available for free rotation. They are unable to follow the applied field at 

frequencies above the relaxation frequency, and this causes the decrease in the 

permittivity, as the contribution of dipolar polarization is no longer there.  

 Another interesting observation can be made on examination of Figure 6. The 

characteristic peak of the imaginary part of the composite ( "
effε ) shifts to lower frequency 

with increase in inclusion volume fraction. This shift in the frequency of the "
effε  peak to 

the lower frequencies for the bigger inclusions ( r > 0.3 mµ ) might be explained as 

follows. The dipole moments of the bigger and “heavier” inclusions start opposing the 

high-frequency variations at the lower frequencies than the inclusions of smaller sizes. At 

the same time, the peak value for eff"ε  increases as the size of the inclusion increases, 

and this is related to the enhanced total loss within the bigger inclusion. Also, there is a 

factor of conductivity contrast between the inclusion and the host phase. The effective 

conductivity of a BT inclusion with the Debye dependence under consideration,  iσ , is 

on the order of a few S/m in the frequency range of interest, as opposed to the 

conductivity of the host, hσ , which  is frequency-independent and on the order of 

710− S/m. Therefore, there is not much influence of the loss in the host phase upon the 

maximum loss frequency of the composite. However, if 310/ −>ih σσ , there is a 

substantial shift of the maximum loss peak to the lower frequencies. 
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  Figure 7 shows frequency dependencies of real and imaginary parts of 

permittivity for the same system with one inclusion in the host phase, modeled using 

Maxwell Garnett formulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Prediction of the effective permittivity of a diphasic composite by Maxwell 

Garnett model for various inclusion volume fractions as a function of 

frequency. 
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 It is seen that for the inclusion volume fraction of 46.8%, ≈′
effε  14 at 10

3 
Hz, and it 

decreases to ≈′
effε  13 at f =10

12
 Hz, yielding a dielectric constant difference ≈effε∆ 1.  

This shows that the MG model is unable to accurately predict the frequency dependence 

of dielectric properties in mixtures with higher inclusion volume fractions.  The MG 

model predictions also considerably underestimate the effective permittivity of the 

composite.  

  The results of simulations, shown in Figure 6 and 7, can be compared with the 

simulations based on the well-known logarithmic mixing rule (Figure 8). As is seen from 

Figure 8, the real part of permittivity predicted by the equivalent impedance model at 

310 Hz is ≈′
effε  71, and decreases to ~29 at 10

12
 Hz, so that the difference 

∞′−′=  eff seffeff  εεε∆  is about 42. The logarithmic mixing rule gives the static real 

permittivity value of approximately 1.5 times greater than that predicted by the 

equivalent impedance model for the inclusion volume fraction of 46.8%. The “optical” 

limit permittivity predicted by the logarithmic rule is about 2.5 times higher than in the 

equivalent impedance model for the same inclusion volume fraction. The discrepancy 

between the logarithmic mixing rule and the equivalent impedance model decreases as 

the inclusion volume fraction reduces.  

  The results of computations based on both models almost coincide, when the 

inclusion volume fraction is less than 20%. At the same time, the Maxwell Garnett model 

agrees well with our model for the volume fraction of inclusions less than 10%. The 

logarithmic rule and Maxwell Garnett formulation and does not take into account shapes 

of inclusions, and multiple inclusions in three dimensions.  
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 Figure 8. Prediction of effective permittivity of diphasic composite by Logarithmic    

        mixing model for various inclusion volume fractions as a  function of  

                   frequency. 
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varied from 10 nm to maximum 54.9 nm as opposed to the earlier case when single 

inclusion size was varied from 0.1 mµ  to a maximum of 0.549 mµ . It has been verified 

that the predictions that the equivalent capacitance model for multiple inclusions remains 

the same as that for single inclusion predictions.  

4      CONCLUSIONS 

  The equivalent impedance circuit model for estimating the effective permittivity 

of a composite mixture as function of frequency was presented in this paper. This model 

is based on discretizing a dielectric body into partial impedance elements. The 

discretization process uniquely takes into account any inclusion size and shape. An RC 

Circuit analogy was used to account for loss in this model by assigning partial resistances 

along with the partial capacitances.  

 The model system addressed in this paper was for a periodic system consisting of 

high-permittivity spherical inclusion(s) enclosed in a cube with a lower permittivity 

phase.  The complex permittivity prediction of the equivalent impedance model showed 

characteristic Debye relaxation behavior. The equivalent impedance model was compared 

to Maxwell Garnett mixing theory and Logarithmic mixing rule. The equivalent 

impedance model is simple solution to a complex problem and is able to take into 

account any inclusion shape and can predict dielectric permittivity and dielectric loss as a 

function of frequency.  
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APPENDIX 

 

Calculation of the Corner Resistance 

 

Consider the corner resistor elements, as shown in Figure 9. The area of the discretized 

corner plate for calculating corner resistances can be calculated from the Figure 10 as  

2

cos
2

22
2 θπ r

rS
⋅

−=  
(B1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Vertically cut section of the inclusion sphere and corners detailing the 

discretization process for calculating the corner capacitance value. 
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From the triangle ∆  EDO, the length ED is 

 

)sin()( θdrEDl ⋅= , (B2) 

 

As the angle θd  is very small,  

 

θrdEDl ≈)( , (B3) 

 

From the triangle ∆ ECD, the thickness d of any discretized plate can be found as 

 

θθ drECld ⋅== cos)( , (B4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Sectional front and top view of the inclusion sphere and corner elements to 

illustrate the mathematics of the discretization process. 

 

The resistance is derived as follows.  
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Substituting θsin=x into equation (B6), one can get  

∫
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After integrating, the final expression for the corner resistance is obtained, 
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3. MODELING OF FIELD DISTRIBUTION AND ENERGY 

STORAGE IN DIPHASIC DIELECTRICS 

S. K. Patil, M. Y. Koledintseva, R. W. Schwartz, and W. Huebner 

Missouri University of Science and Technology, Rolla, MO, 65409, USA 

 

ABSTRACT: Modeling of electrostatic field distribution and energy storage in diphasic 

dielectrics containing high-permittivity BaTiO3 in a polymeric or glass host has been 

carried out analytically and numerically. The analytical formulation employs the 

Maxwell Garnett (MG) mixing rule, while numerical simulation uses software based on 

the boundary element method (BEM). The field distribution was studied as a function of 

dielectric contrast and volume fraction of phases.  For a high-permittivity sphere enclosed 

in a low-permittivity polymer or glass cube, it was found that a dielectric contrast of 75 

and volume fraction of ~ 47% led to increased energy storage density. For composites 

with lower volume fractions (2.51%) of high-permittivity inclusions, a field enhancement 

factor of 2.6 was observed, whereas for higher volume-fraction composites (47%), field 

enhancements as high as 10 were observed. The higher field enhancement factors are 

expected to lead to dielectric breakdown at lower applied fields, limiting energy storage 

density. The upper limit of applicability of the MG formulation in terms of inclusion 

volume fraction was also established, and was found to be a function of the dielectric 

contrast. The host material permittivity results in a substantial variation in the 

applicability limit of the MG mixing rule, while the permittivity of inclusion phase does 

not affect the limit. 

 Keywords: Dielectric composites, electric field distribution, energy storage 
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1. I�TRODUCTIO� 

The properties of dielectric mixtures have been investigated for more than 100 

years.
1-5

 One of the more recent objectives of research in this area has been to develop 

dielectric bodies with enhanced energy storage capabilities, for example, crystallization 

of a phase with higher permittivity, like BaTiO3, in a glass matrix.
6
 The general goal of 

such approaches is to take advantages of both the high energy storage capacity of the 

BaTiO3 inclusions and the high breakdown strength of the glass phase. This approach 

may eliminate porosity that causes field concentration (enhancement), adversely 

impacting breakdown.
7
  

Other ways of solving this problem are based on dispersing materials with high 

permittivities, such as BaTiO3, into polymeric hosts to assure high energy density and 

breakdown strength, low dielectric loss, fast charge and discharge rates, low cost, and 

graceful failure leading to higher reliability.
8-9

 Recent studies of such composites have 

resulted in effective permittivities between 20 and 115,
10-11

 depending on the volume 

fraction of the filler phase and various characteristics of the synthesis process.  

  The dielectric response of filled composites, such as those described 

above, has been modeled using a variety of effective medium theories.
12-16

 Dielectric 

behavior is typically described based on formulations that include the dielectric 

properties of  constituent phases and their volume fractions. The geometry of the 

inclusions is also important, and typically, ellipsoidal inclusions are considered.
17-18

 The 

effective permittivity of the composite is usually determined using a quasistatic 

approximation; i.e., the size of the inclusions is much smaller than the wavelength in the 

medium.  Another common assumption in this analysis is that the phases behave in a 

linear manner.   



 

 

85 

Employing these assumptions, the estimated effective permittivity and defining the 

applied field allow for estimation of the energy storage characteristics of the composite.  

  It is known that  the Maxwell Garnett (MG) formulation for diphasic dielectrics 

can be applied for comparatively dilute mixtures.
19

 Most mixing rules assume that the 

lines of electric flux are not distorted by the particles, and hence, there are inherent 

limitations in accurately predicting the energy storage capabilities of composites.
20

 For 

heterogeneous composites, the electric flux lines tend to distribute according to the 

permittivity ratios of the host and inclusion phases.
21

 Local inhomogeneities in electric 

field distribution, i.e., field enhancement in the low permittivity phase and field 

penetration in the high permittivity  phase, are not taken into account by classical mixing 

theories.  

  Numerical simulation results have illustrated that the electric field distribution in 

composites may be of three different types. The first type is field enhancement in the 

low-permittivity phase at the boundary separating the two phases in the direction of the 

applied field. The second distribution type is field penetration into the high-permittivity 

phase.  Typically, this is a low-intensity field. The third type of field distribution is field 

of intermediate intensity in the low permittivity phase. The first two types of field 

distribution are important from standpoint of breakdown strength of composite and the 

third type of distribution is significant from standpoint of energy density of composites. 

An insightful study to understand field distribution in such composites has been carried 

out, but it is limited to only two-dimensional cases.
22
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The present study is aimed at a comprehensive analysis of the impact of the field 

distribution on the energy storage and breakdown strength of diphasic composites. To 

complete this analysis, and to suggest composite designs that are attractive for high 

energy densities, it is necessary to quantify the electric field distribution and gain a 

thorough understanding of the parameters that determine this distribution. To solve this 

problem, the dielectric properties of the constituent phases and their volume fractions 

should be known. This specifically involves identifying the dielectric contrast between 

the phases that would lead to increased energy storage. The dielectric contrast is defined 

herein as the ratio of the permittivity of the inclusion phase to the permittivity of the host 

phase: 

host

inclc
ε
ε

= . 

(1) 

  The three-dimensional (3D) numerical simulation software Coulomb is used in the 

present study to comprehensively analyze the impact of field distribution on the energy 

storage and breakdown strength of diphasic composites. This software is based on the 

solution of Laplace’s electrostatic equation, and enables study of local field 

inhomogeneities. The results of simulations are interpreted from the perspectives of field 

enhancement in the host phase and field penetration into the high permittivity inclusion 

phase.  

  Another goal of this work is to determine the limits of applicability of the 

Maxwell Garnett formulation in terms of the inclusion volume fraction. Maxwell Garnett 

theory has been accepted as a satisfactory approximation, when inter-particle interactions 

are not significant; i.e., when the composites are dilute mixtures (inclusion volume 
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fraction <0.1).
23

 Though the scientific community has been cognizant of this limitation, 

the minimum limit on the inclusion volume fraction (or inter-inclusion separation 

distance) has not been established yet.   

 Herein, the results for diphasic dielectric bodies with different permittivities and 

volume fractions are reported. A three-dimensional model of a composite is developed 

from a sphere enclosed in a cube (SEC) geometry, with the cube representing a low-

permittivity (e.g., glass or polymer) phase, and the spherical inclusion representing a 

high-permittivity (e.g., barium titanate) phase. It should be noted that the assumption of a 

sphere enclosed in a cube matrix is a special “non-random” case. Myroshnychenko et 

al.
24 

have rightfully acknowledged the fact that, in spite of significant computational 

advances and the ability to model random composites, as well as non-random structures, 

it has been difficult to find experimental systems that bear close resemblance to the 

idealized models.
 
In the reported work

24
, an algorithm for the 2D case with random 

inclusions has been developed, and two cases of surface fractions, percolating and non-

percolating systems, have been considered and compared with other EMT theories. 

However, local electric field distribution as a function of inclusion volume fraction and 

dielectric contrast has not been explored. In the present study, local electric field 

enhancements have been quantified as a function of the properties of the inclusion and 

the host phase for ordered systems. The MG formulation was also applied to calculate the 

effective permittivity of the systems investigated, and the results of the two approaches 

are compared. 
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2. SIMULATIO�S 

2.1.  METHOD A�D SOFTWARE FOR �UMERICAL SIMULATIO�S 

  Simulations were carried out using the commercially available software Coulomb 

from Integrated Engineering Software (Winnipeg, Manitoba, Canada). Coulomb is a 3D 

code that uses a boundary element method to solve Laplace’s equation for electrostatic 

potential inside the geometry of interest.
26, 27

 The Laplace  equation, 

0
2 =∇ V , 

 (2) 

 is a specific case of the Poisson’s equation:              

ε
volq

V −=∇2
, 

 (3) 

where q vol   is the free charge volume density, V is the electric potential, and rεεε 0=  is 

the permittivity of the medium, where εo is the permittivity of free space and εr is the 

relative permittivity of the dielectric.  

  Compared to finite element methods (FEM) and finite difference methods (FDM), 

the boundary element method (BEM) reduces the number of calculations that must be 

performed for problems formulated in terms of electrostatic potentials.  

  Simulations using Coulomb were carried out to understand local field distribution 

as a function of inclusion volume fraction and its impact on the energy stored in the 

composite. 

  Coulomb allows for the construction of 3D structures containing periodically 

repeated cells with identical properties to represent a uniform diphasic dielectric. It 

should be noted that the dielectric behavior of a composite can also be obtained through 
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studying a single cell. Fig. 1 shows a cell with a “sphere enclosed in a cube” (SEC) 

geometry and its 3D translation in x, y, and z directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1.  Basic building block of composite sphere enclosed in cube and 3-D 

translation in x, y, z directions. 

   

  In the present simulations, the applied electric field was =applE  50 kV/cm; the 

host phase was assigned a permittivity host rε  ranging from 4 to 36, and the inclusion 
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‘high-permittivity’ phase was assigned a permittivity incl rε  of 600 or 1200. The 

simulated dielectric body was a 999 ××  matrix of cubes (1.1 µm edge length/cube) and 

included 729 inclusion spheres. The linear periodic simulation function of the Coulomb 

code was used to create the dielectric body. The inclusion volume fraction was varied 

from approximately 1 to 50 % by varying the radius of the spherical inclusions from 0.2 

µm to 0.53 µm.  This results in a concomitant variation in interparticle separation, which 

may be equally important in defining local field behavior.  In the present study, however, 

analysis of the results obtained is discussed from the context of particle size and volume 

fraction. Energy density predictions of Coulomb were compared with MG results for 

inclusion volume fractions up to 30%.  

         The Coulomb software was also used to simulate the impact of the permittivity of 

the host phase on the field enhancement within that phase. Studies in this area are of 

interest since field enhancement can affect breakdown strength.
28

 The effects of dielectric 

contrast were studied by adopting two strategies: (1) varying the permittivity of the host 

phase, and (2) varying the permittivities of both host and inclusion phases. Simulations 

were also carried out to map field penetration into the high-permittivity phase, since this 

can result in higher energy storage densities for the composite. 

2.2. MAXWELL GAR�ETT MIXI�G RULE  

 The Maxwell Garnett (MG) formulation has historically been the simplest and 

most popular mixing rule for homogenizing particulate composite media. 

Homogenization of a mixture is used in the quasistatic approximation, when sources and 

fields are slowly varying. This demands that the characteristic size of the scattering 

particles or correlation distance is small compared to wavelength in the effective 
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medium.
29

 In addition, a mixture should be sparse, and inter-particle distances 

sufficiently long,( Particle separation distances corresponding to 10% inclusion volume 

fractions in 0-3 composites) so that multiple scattering is negligible.
17, 29

 

        The MG rule for a mixture of a host material with relative permittivity rhostε   and 

spherical inclusions with relative permittivity rinclε  as given by 
1, 17

:  

 

                          . 
)2()(1

)2()(3

host incl host incl 

host incl host incl host 
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εε
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+−⋅
+≅  

 

 (4) 

 

Herein, inclusion volume fraction is designated as “ inclusionf ”. For linear dielectrics, the 

electric energy stored within an elemental volume (energy density) is a function of the 

effective permittivity εeff and the square of the applied electric field E :   

         

 

 

Below, the energy density calculated in this manner is compared with the energy density 

determined from the Coulomb simulations.  

 

3. RESULTS A�D DISCUSSIO�  

3.1. FIELD BEHAVIOR I� COMPOSITES  

 

  The effect of particle size on field distribution within the composite dielectric was 

studied. Cross-sections of the electric field distribution for different size inclusion spheres 

within a single cell are shown in Fig. 2 (a, b). The inclusion particle in Fig. 2 (a) has a 

diameter of 0.4 µ m, and the particle in Fig. 2 (b) has a diameter of 0.8 µ m. The single 

2
0

2

1
appleff Ew εε= . 

 

 (5) 
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cells shown are translated in three directions to form the 999 ×× dielectric body. The 

permittivity of the inclusion phase is 1200, the host phase permittivity is 4, the applied 

electric field is 50 kV/cm. The field magnitude may be estimated using the color scale on 

the left hand side of each figure with the red color indicating maximum electric field 

value and dark blue indicating the lowest magnitude of electric field.  

  The field distribution inside a composite has three main regions. The first region 

is the enhanced field in the low-permittivity phase at the boundary separating two phases 

in the direction of the applied field.  This is visible at the top and the bottom of the 

inclusion spheres in Fig. 2 (a, b). The second region is the low-intensity field in the high 

permittivity phase, namely, inside the inclusion spheres. The third region is the field of 

intermediate intensity in the low-permittivity phase. The enhancement of the field in the 

first region is an important parameter that affects the breakdown strength of the 

composite. Higher field penetration into the high-permittivity inclusion will lead to 

higher energy densities for a composite.  

  One important result is that the field magnitude within the high permittivity 

particles is greatly reduced compared to the magnitude of the applied field. The field 

magnitude within the particle is below 5 kV/cm. Because larger inclusions occupy a 

significant volume fraction of the cube, lower energy densities are expected.  This 

suggests that, despite the high permittivity of the inclusion phase, the energy storage 

density of this phase is greatly reduced due to minimal field penetration into the phase. 

This result agrees with the prior reports of limited energy storage densities for composite 

materials prepared from polymers and high permittivity inclusions.
25

 This suggests that, 

despite the high permittivity of the inclusion phase, the energy storage density of this 
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phase is greatly reduced due to minimal field penetration into the phase. This result 

agrees with the prior reports of limited energy storage densities for composite materials 

prepared from polymers and high permittivity inclusions.
25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2.  Electric field distribution in the composite with low volume fraction of the 

inclusion (2.5 %) and high volume fraction of the inclusion (20.1 %). 

(a) 

(b) 
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 Other characteristics of field distribution for both composites, as seen in Fig. 2 (a) 

and (b), are similar, though the magnitude and extent of the field enhancement in the host 

phase depends on the particle size of the high-permittivity inclusion. Composites 

containing smaller size (<0.4 µm) inclusions exhibit a lower field enhancement compared 

to the particles of larger diameter. Smaller inclusion size and the proximity of the high-

permittivity inclusions to each other can have a significant impact on the field 

enhancement factor. The field enhancement factor is defined as the ratio of the maximum 

field present in the composite to the magnitude of the applied field.  

appl
e

E

E
F max= . 

 

 (6) 

 

  The field enhancement for the 0.4µm particle composite is approximately 

=eF 3.1, while the field enhancement factor for the 0.8µm particle composite is 

approximately =eF 3.8.  Other notable differences are that for the 0.4µm particle 

composite, a field slightly greater than the applied field exists at most locations within the 

matrix phase, as indicated by the light blue color representing a field of E ~ 60 kV/cm.  

Other locations in the matrix exhibit a field of magnitude that is approximately equal to 

the applied field (next field gradation of blue, E ~ 49.8 kV/cm). A similar result is 

observed for the composite prepared from the 0.8µm particle, though the specifics of the 

field distribution are noticeably different. For this composite, significant field 

enhancement extends to the cell border (in the field direction), albeit in a more localized 

fashion than for the 0.4µm particle composite.  
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 The particular case considered above demonstrates that field penetration, 

enhancement, and distribution characteristics all depend on the volume fractions of 

phase. The examples given below will show that these field characteristics depend on 

dielectric contrast as well. 

 

3.2. EFFECTS OF I�CLUSIO� VOLUME FRACTIO� A�D DIELECTRIC 

CO�TRAST O� LOCAL FIELD DISTRIBUTIO� 
 

 This section contains quantitative results that show the effect of dielectric contrast 

on both field penetration into the high-permittivity inclusion and field enhancement in the 

low permittivity host. To the best of our knowledge, such quantitative estimates have not 

yet been reported.  

  It is critical to develop insights into field enhancement and penetration as a 

function of inclusion volume fraction inclf  and dielectric contrast c . This is important for 

the development of guiding principles to engineer dielectrics for high-energy density 

capacitors. Fig. 3 illustrates how the properties of the two phases and the volume fraction 

of the inclusion can impact the field enhancement within the composite. According to 

Fig. 3, for the smallest inclusions (0.2µm radius, inclf = 2.51%), the field enhancement 

factor is about =eF 2.6. In contrast, for larger inclusions (0.53µm radius, inclf = 46.8%), 

field enhancement factors eF > 10 are observed. Thus, in a system with inclusion 

permittivity =inclε 1200 and host permittivity hostε = 4, the local field in the vicinity of an 

inclusion can vary from ~ 140 kV/cm to ~ 600 kV/cm, when the applied field is 50 

kV/cm, depending on the volume fraction of the high permittivity inclusion phase.  
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FIG. 3. Coulomb simulations of the maximum field in the host material as a   

   function of the inclusion volume fraction (%) with applied field of 50 kV/cm.  

 

  The impact of the dielectric contrast on the field enhancement is also evident in 

Fig. 3. Based on the permittivities of the two phases, the dielectric contrast was varied 

from approximately 16 ( hostε = 36 and inclε = 600) to 300 ( hostε = 4 and inclε  = 1200).  If 
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the permittivity of the host phase increases (4 vs. 36), the field enhancement 

factor reduces by approximately 25%. Because there is likely a strong link between the 

dielectric breakdown strength and local field enhancement, this result suggests that the 

ability to develop host phases with higher permittivities (assuring lower dielectric 

contrast compared to the inclusion phase) can be beneficial to improve the breakdown 

characteristics of composites.  

Fig. 4 shows the field penetration that takes places along the z-axis of the 

inclusion, when an electric field of 50 kV/cm is applied in the z-direction. It is interesting 

to independently consider the volume fraction and dielectric contrast effects from Fig. 4. 

For a dielectric contrast of 300, increasing the inclusion volume fraction from 2.5 to 46.8 

%, results in a 17 fold increase in the maximum field penetration into the high-

permittivity phase. However, for a dielectric contrast of 16, the same increase in volume 

fraction only results in an increase in field of ~3.25.  

Considering dielectric contrast effects, at a constant volume fraction of 2.51% 

varying dielectric contrast from 300 to 16 results in an increased field penetration of 

nearly a factor of 13.  At a constant volume fraction of 46.84%, the same change in 

dielectric contrast results in an increase of field penetration of 2.5 times. These results 

reveal important information about volume fraction and dielectric contrast effects. 

Significant field penetration into a high-permittivity inclusion occurs only when the 

dielectric contrast is reduced below approximately 75. Fig. 4 also suggests that field 

penetration into the inclusion may be increased when the volume fraction of the high 

permittivity phase increases. This effect, however, is comparatively less important than 
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dielectric contrast, and only becomes significant when inclusion particles are in close 

proximity.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4.  Coulomb simulations of the maximum field present in a high-permittivity 

spherical inclusion enclosed in the host matrix as a function of dielectric 

contrast for different inclusion volume fractions. 
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Comparing the results in Fig. 4 for the three volume fractions, field penetration 

for the 39.33 and 2.51 vol% cases show a smaller variation than those for the 39.33 and 

46.84 vol% cases.  At 46.84%, the spherical inclusions are only separated by x µm.   

The conclusion is that lower dielectric contrast and higher inclusion volume 

fraction of high-permittivity phase will lead to greater field penetration into the high 

permittivity inclusion phase.   

 

3.3.  BE�CHMARKI�G E�ERGY STORAGE CALCULATIO�S  

 

       To validate energy density calculations carried out by Coulomb, computer 

simulation results are compared to experimental data for glass-ceramic systems studied at 

the Pennsylvania State University.
6
 Consider a single-phase dielectric (e.g., glass 41=ε ) 

cube with a side of 1.1 µ m, as shown in Fig. 5 (a). The electric field applied in the 

vertical direction of the cube is assumed to be 81 kV/mm. This is the same value of 

electric field as in the experiments carried out at the Pennsylvania State University
6
. The 

energy storage within glass phase was calculated using Coulomb. The cube in this 

example is subdivided into 1000 tetrahedral elements to increase the accuracy of 

simulations. Coulomb predicts energy stored within the cube of 1.55 1210−⋅  J, which 

corresponds to the energy density of 1.16 J/cm
3
. These results match those obtained at 

Penn State University
6
: the experimentally predicted energy storage for glass with 

permittivity of 40 was also 1.16 J/cm
3
, as is shown in Fig. 5(b).  
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FIG. 5. 3D cube, generated in Coulomb, representing pure glass phase and 

experimentally obtained energy storage in the pure glass phase system for 

similar parameters. 
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3.4. COMPARISO� OF COULOMB A�D MAXWELL GAR�ETT MODELS         

One of the primary limitations of mixing theories is the inability to predict energy 

density beyond a particular limit of inclusion volume fraction, as discussed in Section 

II.2. To our knowledge, a precise limit at which mixing theories incorrectly account for 

field enhancement and penetration has not been established. This is the topic of the 

present investigation. 

       Maxwell Garnett theory was applied to the same model systems investigated 

using Coulomb for different volume fractions of inclusions. The host matrix is assumed 

to possess various permittivities identical to those studied by Coulomb. The inclusions 

are spheres with permittivity of 1200. The effective permittivity, obtained using  equation 

(4), as a function of the volume fraction at different values of the host permittivity, is 

plotted in Fig. 6. As expected the effective permittivity increases with increasing host 

permittivity. Analogous energy storage densities can be calculated using equation (5), if 

the effective permittivity is known. The energy densities for analogous composites are 

calculated using both Coulomb and the MG mixing rule. These calculations are done only 

for the volume fractions of inclusions less than 30%, because the deviation between the 

Coulomb and MG predictions starts at very low inclusion volume fractions ( inclf < 1%). It 

is convenient to introduce a criterion regarding the agreement between the MG and 

Coulomb result.  The formula used for this comparison is:,   

%100⋅
−

=
av

CoulombMG

E

EE
p , 

 

 (7) 

where 
2

CoulombMG
av

EE
E

+
=  is the average energy stored in the composite, calculated  

through both the MG model and Coulomb software. 
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FIG. 6.  MG prediction of effective permittivity for a sphere enclosed in cube as a 

function of volume fraction for different values of host permittivity. 

 

It was assumed that >p 10% suggested a significant discrepancy from the MG 

mixing rule. Fig. 7 shows a plot of p  (in %) between the MG mixing rule and Coulomb 

as a function of the volume fraction inclf  for the SEC structure. The applied field is 50 

kV/cm. When the dielectric contrast is 300, a significant discrepancy between MG and 

Coulomb (more than 10 %) occurs at the volume fraction of inclusions inclf ~ 4%. This is 
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the volume fraction limit denoted as limf . The value limf shifts to about 5.5%, when the 

dielectric contrast c  reduces to 16. The value limf  shifts to a value of approximately 7%, 

when the dielectric contrast c is further decreased to 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 7.  Discrepancy between MG and Coulomb predictions as a function of   

    inclusion   volume fraction. The dielectric contrast is varied by varying   

               both host and inclusion permittivity. 
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Thus, Fig. 7 demonstrates that the volume fraction limit limf  increases as the 

dielectric contrast decreases. This result thus indicates that the lower the dielectric 

contrast, the higher volume fraction up to which the MG formulation can be applied.  

       Two sets of simulations were carried out to determine the effect of the individual 

permittivities of the inclusion and host phases on the inclusion volume fraction limit limf  

for use of MG theory. First, the permittivity of the host was varied while the inclusion 

permittivity remained constant. Second, the inclusion permittivity was varied while the 

host permittivity was kept constant. Fig. 8 shows the discrepancy between the MG model 

and Coulomb for the case of varied host permittivity. It may be seen that there is a 

substantial difference in the inclusion volume fraction limit when only the permittivity of 

the host is varied. The volume fraction limit for applicability of the MG formalism varies 

from approximately 5 to 8% for the range of dielectric contrasts (obtained by changing 

host permittivity) studied. 

In contrast to this result, Fig. 9 shows that when the dielectric contrast is varied by 

varying inclusion permittivity, there is minimal effect upon the inclusion volume fraction 

limit limf . limf  is found to be in this case to be around 5.8 % and it does not change 

inspite of change in the dielectric contrast. Even though from these computations it seems 

that the variation of dielectric contrast by variation of inclusion phase permittivity has 

less visible impact, the impact of permittivity of inclusion itself cannot be ruled out.  

 Thus, the volume fraction limit definitely depends on the dielectric contrast; 

however, it is the host permittivity that plays the crucial part in governing this limit. It is 

important to note that although the inclusion volume fraction limit has been estimated for 

the first time, there are ways to extend the applicability of MG theory. For example, there 



 

 

105 

is an incremental MG model proposed by A. Lahtakia,
19

 in which the inclusion phase is 

always dilute, and it is added incrementally to the new homogenized host at every 

iteration cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 8. Discrepancy between the MG and Coulomb predictions as a function of the  

             inclusion volume fractions.  

 

 The resultant effective permittivity converged to the result predicted by the 

Bruggeman formula.
29

 Another approach is described in Sihvola’s paper,
28

 where the ν -

parameter is introduced to take into account the interaction of polarizations of 
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neighboring inclusions, when calculating the dipole moment of a single scatterer. The 

parameter 0=ν  corresponds to the MG formulation; 2=ν  corresponds to the 

Bruggeman’s formula, and 3=v  gives the CP (“Coherent Potential”) formula.
30, 31, 32

 The 

discrepancy between the MG ( 0=ν ) and the other mixing rules ( 3,2,1  ν = ) starts to be 

noticeable, when the inclusion volume fraction is around 10 % [30, Fig. 3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 9. Discrepancy between the MG and Coulomb predictions as a function of   

             volume fraction of inclusions.  
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The dielectric contrast in these computations appears to be very low. Our 

comparison of the MG formulation with Coulomb numerical modeling yields the limit 

from 4 to 8 %, depending on the dielectric contrast ( 30016 −=c ), which reasonably 

agrees with the results in papers.
30, 31 

 

4. CO�CLUSIO�S 

 

 Electrostatic field distribution and energy storage in diphasic dielectrics 

containing high-permittivity BaTiO3 inclusions in a low-permittivity host have been 

studied numerically using the software Coulomb. The results of numerical simulations 

have been compared with those obtained from the Maxwell Garnett mixing rule.  Based 

on Coulomb modeling, it has been possible to quantify the electric field enhancement and 

field penetration in the host and inclusion phases, respectively. It is observed that the 

electric field distribution in 0-3 composites is governed by dielectric contrast and 

inclusion volume fraction. This study demonstrated that both electric field enhancement 

in a low-permittivity host phase and electric field penetration in the high-permittivity 

inclusion demonstrate the following trends: 

• They increase with increasing high-permittivity inclusion volume fraction, and 

• Electric field enhancement increases with the increase in dielectric contrast. 

• Electric field penetration decreases with the increase in dielectric contrast 

         Higher field enhancement factors lead to a higher probability of electric 

breakdown. Thus, it was found that increasing inclusion volume fraction from 2.5% to 

46.8%, when the dielectric contrast was 75 (BaTiO3 sphere in a low-permittivity cube), 

leads to an 80% increase in field penetration in the inclusion phase, and to a 25% 
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decrease of the field enhancement factor in the host phase. These results suggest 

opportunities for microstructural and compositional engineering to achieve high energy 

density dielectrics. Stated otherwise, increasing effective permittivity occurs at the cost of 

decreased breakdown strength, and field penetration into the inclusion must be balanced 

by minimizing field enhancement in the host.  

 The upper limit of applicability of the MG formulation in terms of the inclusion 

volume fraction was also investigated, and it appears to depend on the dielectric contrast 

of the diphasic composite. The discrepancy between the MG and numerical results 

decreases with decrease of the dielectric contrast. Variation in the host material 

permittivity causes a substantial effect on the upper limit of applicability of the MG 

mixing rule 
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SECTIO� 

2. APPE�DIX 

 This appendix is included with this dissertation to document other studies that 

have been completed that are not discussed in the research papers presented. This section 

will identify strengths of the analytical and numerical models developed, and will report 

the ability of the equivalent capacitance model to account for inclusion orientation. It will 

also highlight that results from the mode are independent on the discretization approach 

which confirms the requisite physical foundation. Lastly, this section includes an 

extension of the numerical mode for random composites, and a combinational approach 

of numerical modeling with a percolation model to establish the correlation between the 

local electric field distribution and breakdown phenomenon. 

 

2.1. A�ALYTICAL MODELI�G 

  2.1.1 Energy Storage. In this research, the impact of dielectric contrast and 

inclusion volume fraction on the electric field enhancement in the host phase and electric 

field penetration in the high permittivitiy inclusion phase were examined. Field 

enhancement in the low permittivity phase concentrates  the electric flux lines, and is 

likely to be the place of origin for breakdown. Thus field enhancement significantly 

reduces the breakdown strength of a composite. It is imperative to connect the 

information generated in numerical simulations together with predicted effective 

permittivity values in order to predict the energy storage characteristics of the diphasic 

dielectrics.  
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  For linear dielectrics, the electric energy stored within an elemental volume (w; 

energy density) is a function of the permittivity of free space, the effective permittivity 

εeff of the composite dielectric and the square of the applied electric field E appl:   

 The reported breakdown strength (BDS) of (single phase) glass is very high (~ 

800-1200 kV/cm) and for single phase polymeric materials is even higher (Polyimide 

BDS: 1450 kV/cm, Polyethylene BDS: 1250 kV/cm, Epoxy BDS: 3100 kV/cm). The 

addition of a second phase of higher permittivity results in field concentration in the low 

permittivity phase at the interface, resulting in lower breakdown strengths. Considering 

this physical reality, the important question is at what inclusion volume fraction does the 

advantage of adding a high permittivity phase persist before field enhancement factors 

start to dominate energy density?  A corrolary question is how is this “optimum” volume 

fraction influenced by dielectric contrast?  

The approach used for prediction of energy storage density is outlined below. The 

predictions of equivalent capacitance model were used to calculate effective permittivity. 

These results were combined with those of numerical modeling, which was used to 

determine field enhancement factors. These factors were studied as a function of 

inclusion volume fraction and dielectric contrast between the host and inclusion phases. It 

was assumed that the maximum electric field that could be safely applied to the dielectric 

was reduced in an inverse linear relationship to the field enhancement factor. In 

microscopic composites, i.e., composites based on the incorporation of micron-sized 

inclusions, it is known that the breakdown strength of the composite is reduced. In 

2
0

2

1
appleff Ew εε= . 

 

 (1) 



 

 

113 

nanoscale composites, scattering and electron trapping processes are believed to 

contribute to higher breakdown strengths [54]. The current simulations are based on 

microcomposites and the breakdown strength of these composites is believed to be less 

than that of the pure host phase, with a corresponding decrease in energy density. The 

physics of electron trapping and scattering are not incorporated in the present model.   

In Fig. 2.1 the predictions of the equivalent capacitance model are shown as a 

function of inclusion volume fraction and dielectric contrast.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. Equivalent capacitance model predictions for effective permittivity as a function   

              of inclusion volume fraction and dielectric contrast of the composite. 

 

0 10 20 30 40 50

0

20

40

60

80

100

120

140

Equivalent Capacitance Model Predictions

Host Phase ε varying 
Inclusion Phase ε constant

 Host Phase ε
h
= 4 Inclusion Phase ε

i
= 4000 

 Host Phase ε
h
= 8 Inclusion Phase ε

i
= 4000

 Host Phase ε
h
= 16 Inclusion Phase ε

i
= 4000

 Host Phase ε
h
= 20 Inclusion Phase ε

i
= 4000

 

 

E
ff
e
c
ti
v
e
 P
e
rm
it
ti
v
it
y
 ε
' e
ff

% Inclusion Volume Fraction



 

 

114 

The dielectric contrast of the composite was varied from 200 to 1000, first by 

varying the host phase permittivity and then by varying the inclusion phase permittivity. 

Permittivities were chosen to approximate the permittivities of polymers and barium 

titanate. An ordered 0-3 composite structure was used for the simulations. Dielectric 

contrast is varied by variation of host phase permittivity. The maximum permittivity 

observed is approximately 140 at the highest inclusion volume fraction considered in this 

case, 46.54%, and with a dielectric contrast of 200. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2. Equivalent capacitance model predictions for effective permittivity as a function 

of inclusion volume fraction and dielectric contrast of the composite. 
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In Fig. 2.2 the predictions of the equivalent capacitance model are shown as a 

function of inclusion volume fraction and dielectric contrast. Compared to the previous 

case, dielectric contrast is varied by variation of inclusion phase permittivity. The 

maximum permittivity observed is around 65 at the highest inclusion volume fraction 

considered in this case of 46.54 % and with dielectric contrast of 1000. The results of the 

energy storage calculations for both cases are plotted in Fig. 2.3 and Fig. 2.4. For energy 

storage calculations the applied field was chosen to be 800 kV/cm for all the cases. The 

maximum electric field that could be safely applied to the dielectric was assumed to be 

reduced in an inverse linear relationship to the field enhancement factor. To give an 

example, in case of a composite with inclusion volume fraction of 2.12, host phase 

permittivity of 4 and inclusion phase permittivity of 4000, the maximum field present 

was 2452 kV/cm for an applied electric field of 800 kV/cm. This results in a field 

enhancement factor of 3.06. Thus the maximum electric field that could be safely applied 

to this dielectric composite was 261 kV/cm. The energy stored in the composite was then 

computed using equation 1 where effective permittivity was calculated using equivalent 

capacitance model and electric field value was calculated as explained above.  It is 

observed from energy storage predictions that inclusion additions  significantly drop the 

stored energy density ( ≈  85-90%) as compared to the pure host phase. 

  As noted above, this is an expected result for micro-composite. Trapping, 

scattering and any beneficial interfacial effects are not accounted for in the model. The 

interesting aspect of the figures is that as the inclusion volume fraction is increased, the 

highest energy storage occurs for the case where the dielectric contrast is 200 (lowest 

contrast studied) and at 20 vol% inclusion phase. It is evident that increasing the 
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permittivity of the host phase leads to an increase in the energy stored in the composite. 

This increase in host phase permittivity also leads to reduction in dielectric contrast. 

Reduction of dielectric contrast also leads to lowering of field enhancement factors. This 

increases the maximum electric field that can safely be applied to the composite , thereby 

leading to an increase in energy stored.  The breakdown strength decrease due to 

increased inclusion proximity beyond 20 % inclusion volume fraction limit leads to 

decrease in energy storage.  
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Fig. 2.3. Energy storage predictions for composite as a function of inclusion volume 

fraction and dielectric contrast. 
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The impact of dielectric contrast by variation of inclusion phase permittivity was also 

examined. It was found that decreasing the dielectric contrast leads to a decreased energy 

storage. Even if lowering the dielectric contrast leads to lower field enhancement factors 

and thus a high breakdown strength, the effective permittivity of the composite assumes 

significance in this case. It is the effective permittivity that is reduced with the decrease 

in contrast and which has an effect on energy storage. The inclusion volume fraction limit 

of 20 % seen in earlier case is also seen in this case as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. Energy storage predictions for composite as a function of inclusion volume  

  fraction and dielectric contrast. 
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  From both cases it can be stated that at lower inclusion volume fractions (Vf < 

20%), the effective permittivity of dielectric composite is more dominant, and at higher 

volume fractions (Vf> 20%) reduction in the inclusion proximity and the resultant 

increase in field enhancement is the more dominant parameter in determining energy 

storage. These results suggest how the properties of the phases (permittivities) and 

composite (inclusion volume fraction) may be tailored for optimization of energy storage 

density. Here, only the results for the composites are compared. The critical observations 

are: 

� Increasing the host phase permittivity leads to a decrease in dielectric contrast, 

enhanced breakdown strength and higher energy stored. 

� Inclusion volume fractions up to 20 vol% lead to an increase in energy stored.  

� To investigate opportunities associated with dielectric nanocomposites, strategies to 

account for electron trapping and scattering processes must be developed. These 

nanocomposites have already been shown to demonstrate higher energy densities, and 

current simulation approaches cannot presently account for these observations. The 

capabilities of the simulation packages to incorporate interface and related effects 

should be explored to enable investigation of nano, as well as microcomposites. 

  2.1.2 Direction of Discretization. The equivalent capacitance model relies on its 

ability to discretize a diphasic composite body to predict the effective properties of 

composite. In order to validate the equivalent capacitance model, demonstration that the 

model predictions are independent of direction of the discretization is required. Two 

discretization pathways were identified to test the equivalent capacitance model. The first 

strategy is a horizontal discretization pathway and the second is vertical discretization 
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approach. Two dimensional views of these discretization schemes are presented in Fig. 

2.5. As anticipated based on physical principles, it was found that the predictions of 

effective permittivity for both cases of horizontal as well vertical discretizations were 

similar. However, the integration schemes employed for calculation of the corner 

capacitances lead to minor discrepancies at low inclusion volume fractions. 

 

 

 

 

 

 

 

 

 

 Fig. 2.5 Horizontal and vertical schemes of discretizations. 

   

  The effective permittivity predictions for a system of host phase permittivity of 4 

and an inclusion phase permittivity of 1900 as a function of inclusion volume fraction are 

shown in Fig. 2.6. The primary condition that needs to be satisfied for predictions of the 

equivalent capacitance model to be independent of the discretization approach is that the 

permittivity of each phase is isotropic, as illustrated in the following equation:  

)()()(),,( zyxzyx zyx εεεε ⋅⋅= .         (2) 
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Fig. 2.6. Equivalent capacitance model predictions for effective permittivity as a function 

of inclusion volume fraction for both horizonta and vertical discretization 

approaches.  
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the applied electric field, as illustrated in Fig. 2.7. This figure, which presents predictions 

of the equivalent circuit model, illustrates that the model can capture particle orientation 

effects. This capability of the model illustrates one of the benefits of the equivalent 

capacitance approach that has been developed compared to simple mixing rule methods. 

These later methods are typically limited to predictions of volume fraction effects and are 

incapable of predicting particle orientation effects.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Equivalent capacitance model predictions for effective permittivity as a function     

    of inclusion orientation.  
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2.2 ELECTROSTATIC FIELD DISTRIBUTIO� I� RA�DOM COMPOSITES   

      A�D ITS CORELATIO� TO BREAKDOW� 

Recently, 0-3 high-permittivity polymer-based composites have been increasingly 

investigated, not only for comparatively low-energy embedded capacitor technology [55], 

but also for high-energy density applications for pulsed power capacitors [56]. The 

breakdown strength of the composite for high-energy applications is of special 

significance because of the important role of applied field in defining energy storage 

density. However, the relationship of local electric field distribution to dielectric 

breakdown in diphasic dielectrics is poorly understood.  

Some of the possible mechanisms for breakdown in dielectric composites are 

intrinsic, thermal, and avalanche breakdown [57]. The nature of these mechanisms is 

complicated due to numerous events that trigger the breakdown process. One 

complicating factor in clarifying the breakdown mechanism is the fact that various 

extrinsic factors can influence the breakdown process. Also, the fact that breakdown 

depends not only on the intrinsic properties of the individual phases, but also on the 

composite as a whole complicates the understanding of dielectric breakdown. Possible 

important characteristics of a composite with regard to breakdown include:  

• composite morphology (dispersion that dictates proximity of inclusion particles to 

one another, as well as inclusion shape, size, and mutual orientation); 

• dielectric contrast between the phases (defined as the ratio of the inclusion phase 

permittivity to the permittivity of the host phase); and 

• interfacial effects.  

The impact of  inclusion volume fraction on dielectric breakdown strength in metal-

loaded polymer composites has been studied theoretically [58] and experimentally [55]. 
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The objective of the present study was to establish a more quantitative correlation 

between inhomogenous local electric fields in 0-3 polymer system containing insulating 

high-permittivity inclusions and  breakdown strength. Key goals include investigation of 

the impact of dielectric contrast, inclusion volume fraction and interfacial behavior on 

local electric field distribution, which is believed to influence the breakdown behavior of 

the composite.  

2.2.1 Simulation Software. Simulations were carried out using the commercially 

available software Coulomb from Integrated Engineering Software (Winnipeg, Manitoba, 

Canada). Coulomb is a 3D code that uses a boundary element method (BEM) to solve a 

set of partial differential equations to describe the electrical potential behavior of the 

material. Coulomb allows for the construction of large 3D structures that contain 

periodically repeated cells with identical properties.  An example of such a structure is 

shown in Fig. 2.8.  

 

 

 

 

 

 

 

 

 

Fig. 2.8. Basic building block of composite sphere enclosed in cube and 3-D translation 

in   x, y, z directions. 
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  The geometry contains a cell with a sphere enclosed in a cube (SEC), and its 3D 

translation in x, y, and z directions and its translation into 3 directions. Similarly a 

random composite can be built in Coulomb.  

2.2.2 Model Assumptions. The primary assumption is that macrosocpic 

breakdown originates through an intrinsic breakdown event, i.e., electrode, sample 

geometry, and sample size effects are not considered. Also, field characteristics, e.g., 

pulse rise time, pulse duration and temperature effects are neglected. By making these 

assumptions, it is possible to focus on the nature of dielectric. It is assumed that  

breakdown is electronic in origin.  Another reasonable assumption is that any breakdown 

process eventually occurs in the host, i.e., in the polymer phase. This means that 

breakdown either happens directly in the host phase, or it must pass through the host, 

even if it is triggered in the inclusion phase. The schematic in Fig. 2.9 elucidates one 

possible conduction path that would allow for electron transport between the electrodes  

would have to take to reach electrodes has to go through the host phase.  

 

 

 

 

 

 

 

 

Fig. 2.9. One possible breakdown path in a diphasic dielectric composite. 
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  It is also assumed that parallel plate electrodes are applied on the dielectric. The 

breakdown model employed herein is the intrinsic percolation breakdown model for 

insulating polymers proposed by Wu et al. [55]. This model suggests that, “an extended 

state for charge carriers can be formed due to a reduction of the trap barriers at 

sufficiently high electrical fields and that breakdown can be induced by the current 

multiplication in the extended state.” The model further states that when the field exceeds 

a threshold value, a percolation path (or extended state) in an insulating polymer is 

formed in such a way that trap barriers are reduced to zero, leading to the development of 

a conductive path, or breakdown.  Our ability to use the Coloumb software to predict 

local electric fields is ideally suited to the percolation model for the consideration of the 

development of a conductive path in the dielectric.   

  Potential barriers to charge transport between trap states, as reported by Wu et al. 

[55], may be interpreted in terms of: 
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(3) 

where φ and oφ are the potential barriers with and without the presence of electric field, 

respectively, ε is host polymer relative permittivity, and oε is the free space permittivity.  

Using the local electric field distribution as calculated by Coulomb the electric fields 

leading to a decrease in the barrier to zero can be calculated using (3). When the potential 

falls to zero or below, this indicates that the composite is likely to undergo local 

conduction.  When a sufficient number of local conduction events become “linked 

together” macroscopic breakdown occurs.  Below, results from Coloumb on local electric 
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field behavior are presented.  These results are then interpreted in the context of Wu’s 

percolation model for breakdown.   

  2.2.3 The Role of �umber of Inclusions on Electric Field Distribution. The 

first case studied was an electric field simulation carried out for a single inclusion with 

the radius of 0.204 mµ , which is centered within an exterior cube having a side of 1.1 mµ . 

Thus, the inclusion volume fraction is 2.69% (the corresponding 2D plane surface 

fraction is 7.64%). The host phase permittivity is 4.9 (standard molded epoxy), and the 

inclusion phase permittivity is 1200 (BaTiO3). The second case evaluated used the same 

parameters, except for the number of inclusions. For this simulations, 25 inclusions were 

randomly dispersed within the cube. This was made possible by choosing 25 random 

points in a plane within 3D space. The radius of each inclusion is 70 nm. The resultant 

inclusion volume fraction is the same as the first case: 2.69%. In both cases, the applied 

electric field between the top and bottom of the cube is 2500 kV/cm. By examining these 

cases, the role of inclusion proximity and size on composite breakdown can be 

understood.  

  The electrostatic field distribution maps for both cases are shown in Fig. 2.10. The 

maximum electric field can be determined from the color scale on the left of the image 

with the red color indicating the highest magnitude electric field and dark blue indicating 

the lowest magnitude electric field. The maximum electric field present for the single 

inclusion case is 7643 kV/cm for an applied field of 2500 kV/cm. This indicates that the 

field enhancement factor is approximately 3.05. In the second case with multiple 

inclusions 17520 kV/cm for the same applied field of 2500 kV/cm indicating a field 

enhancement factor of approximately 7.00.  
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Fig. 2.10. Electrostatic field distribution map for single inclusion and 25 inclusions with  

    applied electric field of 2500 kV/cm in both cases 
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The presence of multiple inclusions that are in close proximity to each other results in an 

increase in the local field enhancement factor.  

  2.2.4 Role of Inclusion Proximity/Inclusion Volume Fraction. The role of 

inclusion proximity/inclusion volume fraction in diphasic composites is a topic that 

requires careful construction of random systems. It is challenging to vary inclusion 

proximity in random systems. The approach that was chosen was to locate the the centers 

of inclusions using a mesh styled framework. The inclusion radii were varied from 30 to 

60 nm. When the radii of the inclusions reached 60 nm, some inclusions were nearly 

touching. This is considered to be a limiting case for the investigations carried out. The 

total number of inclusions in the single cube were 25.  Again the host phase permittivity 

was modeled with a permittivity of 4.9 and the inclusion phase was assumed to have 

permittivity of 1200. The simulation was carried out with an applied electric field of 2500 

kV/cm in the z-direction.  

  The electrostatic field distribution maps for all cases are shown in Fig. 2.11. From 

the electrostatic field distribution maps it is seen that when interparticle separation (s) is 

high (on an average > 0.3 mµ ), as is the case of when radii of particle is 30 nm, the 

electric field enhancement is localized at the top and bottom of the inclusion sphere 

within the host phase. The electric field enhancement regions shows a marginal increase 

when the inclusion radius is increased from 30 nm to 40 nm. The maximum field present 

in the host phase for the 30 nm case is 7791 kV/cm for an applied field of 2500 kV/cm 

(Field Enhancement Factor: 3.11). The maximum field present in the host phase with 40 

nm radii inclusions is 7958 kV/cm (Field Enhancement Factor: 3.18). 
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Fig. 2.11. Electrostatic field distribution maps of random composites each with 25   

   inclusions of radii 30 nm, 40 nm, 50 nm, 60 nm, respectively.  

 

With the radii of the inclusions increasing to 50 nm a clear cut field enhancement path 

starts to form. This field enhancement path might be viewed as a percolative path where 

the field enhancement is sufficiently high that it would lead to current multiplication, and 

subsequently, breakdown. The maximum field present in the host phase is 9009 kV/cm 

(Field Enhancement Factor: 3.6).  This field enhancement path becomes more 

pronounced with inclusion radii increasing to 60 nm. In this case, the inclusion proximity 

is considerably decreased (on an average less than 0.05 )mµ  compared to the earlier 

cases and it can be seen that the inclusions with closest proximity to each other result in 
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the formation of areas of maximum field enhancement.  For the case with 60 nm 

inclusions the maximum field present in host polymer phase is 12750 (Field 

Enhancement Factor:5.1).  

  2.2.5 Relationship between Local Field Enhancement Factors on the 

Percolation Model of Breakdown.  Wu’s model discusses the role that an applied field 

can have on the potential barriers to conduction associated with the hopping conduction 

mechanism typically present in polymers.  To begin to understand the correlation 

between the presence of inclusions, local field enhancements and Eq. 3, we examine both 

the ordered and random structures noted above, and relate the field distribution in these 

structures to calculated reduction in barrier height obtained from this equation.  As the 

difference between φ and φo (δφ) approaches zero (due to local field), local conduction 

results.   

  Local fields in ordered composites and their role on δφ are considered for a 

variety of typical potential barriers reported for polymers (1.2 eV > φo > 0.6 eV).  A 

summary of these studies is presented in Fig. 2.12.  This plot was obtained for an applied 

electric field of 800 kV/cm to a single inclusion in sphere geometry of varying inclusion 

radius, which results in a variation in inclusion volume fraction.  As shown in Fig. 2.10, 

local fields of greater magnitude develop above and below the inclusion particle.  

Further, these local fields increase with increasing particle radius (volume fraction).  All 

inclusion volume fractions result in a decrease in the potential barrier to conduction, with 

the greatest decrease being observed for the highest volume fraction.  Assuming the 

polymer host phase is characterized by a potential barrier height of 0.6 eV, a volume 

fraction of 20% inclusion phase is sufficient to reduce the barrier height for charge 
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transport to 0.  Under such conditions, local conduction will occur.  Generally speaking, 

for polymers with higher potential barriers, higher local fields are required for 

conduction, as shown in the Fig. 2.12.   

0 10 20 30 40 50

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Host Phase ε
h
=4 

Inclusion Phase ε
i
= 4000

Dielectric Contrast= 1000

 φ
ο
 =0.6 eV

 φ
ο
 =0.8 eV

 φ
ο
 =1 eV

 φ
ο
 =1.2 eV

 φ
ο
 =1.4 eV

 

 

Φ
 (
e
V
)

% Inclusion Volume Fraction 

 

Fig. 2.12. Delta function as a function of inclusion volume fraction for diphasic 

composite with sphere enclosed in cube ordered geometry.    

 

  However, random composites are more commonly fabricated.  To further explore 

macroscopic conduction across the dimensions of a sample (i.e., breakdown),  local fields 

in random samples (e.g., Fig. 2.11) must be considered in detail. A representative 

perspective of a random and an ordered samples is illustrated in Fig. 2.13 and Fig. 2.14.  
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Fig. 2.13. Electrostatic field distribution maps of composite with ordered and random 

inclusions.  

 

In this figure, both the ordered and random composite contain 4.02 vol% 

inclusion phase.  The relative permittivity of the host phase is 4 and that of the inclusion 
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phase is 1200.  The applied electric was 50 kV/cm.  The field distribution data shown is 

for a vertical path through the center of the cube.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14. Magnitude of electric field from top to bottom electrode for a vertical path 

through the center of the cube for both ordered and random composites.  
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exist within ordered composites and that a much more non-uniform potential distribution 
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point across the sample allows enables the estimation of local potential barriers, invoking 

significant assumptions about the knowledge of φo.   

  Finally, the picture of breakdown in these materials based on the use of local 

electric fields and percolation models may be brought together.  Breakdown occurs due to 

the linking together of local conduction regions throughout the dielectric.  These regions 

are formed when the local potential barrier to conduction (φ) is reduced to zero due to the 

local electric field.  The local fields are dictated by factors such as applied field, inclusion 

proximity and volume fraction, and dielectric contrast.  Further, as inclusion volume 

fraction increases, additional regions of local conductivity are anticipated, due to the 

increase in field enhancement factors, and thus, local electrical fields.   

  However, the above parameters are only some of those that need to be considered 

for the full development of this model of breakdown.  First, only one path through the 

dielectric has been considered, when in reality an infinite number of paths must be 

considered.  Second,  describing the potential barrier to local electron hopping by a single 

valued parameter may be inaccurate.  In polymers, local heterogeneities will always exist 

that will contribute to a distribution of the potential barriers [59, 60].  Therefore, the 

specific field that will result in a reduction of φ to zero locally will be a function of the 

local polymer morphology.  Third, the introduction of inclusions into a polymer will also 

contribute to the heterogeneous nature of the host material. This will also be expected to 

impact polymeric features such as free volume (nanopores), chain configurations, 

ionization behavior to form trap states, and of course, local potential barriers.  

Despite the difficulty in identifying some of the specific characteristics of these 

materials that will certainly dictate their behavior, the basic framework of picturing 
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macroscopic breakdown from a percolation threshold perspective remains an attractive 

one.  A key step in the development of this method is the acquistion of local field data, 

which has now been accomplished.  Also accomplished is the general approach for the 

use of this data.  What remains to be developed is the utilization of this information in a 

more statistical thermodynamic perspective, i.e., local heterogeniety effects on potential 

barrier distributions, probabilities of specific condution paths, etc. must be much more 

fully considered.  However, significant steps have been taken in this work to provide the 

foundation for the full development of this picture of breakdown.   

 

2.3. DEVITRIFICATIO� STUDIES OF HIGH REFRACTIVE I�DEX MO-SCI   

       COMPOSITIO�S 

   Published data from the literature was used for verification of the analytical 

modeling results. For further verification of these results and those of the numerical 

simulations, attempts were made to synthesize composite materials, namely, glass-

ceramic dielectrics. This material system was selected due to renewed interest in these 

materials. For example, recent studies have shown that these materials can demonstrate 

energy densities in the range of 4 J/cc.  

   The relationship between refractive index n  and rε   for non-magnetic dielectric 

materials (at optical frequencies) is given by the following expression.  

2nr =ε    (4) 

  

 This expression results from Maxwell’s electromagnetic theory and it is valid only when 

the same polarization processes are active during measurement of both rε and n . The 

premise of this experimental work was that if devitrification of a high refractive index 
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glass was carefully carried out it would result in enhanced effective permittivity as there 

is a square relationship between refractive index and dielectric constant. By controlling 

devitrification, a residual glassy phase of high permittivity would be left behind, 

increasing the overall energy density of the composite, while at the same time reducing  

the dielectric contrast with the resulting crystalline phase. This would reduce the field 

enhancement factor, thereby enabling the application of higher electric fields. The 

objective of this work was to synthesize a high energy density nanoscale glass ceramic 

composite. Two glass compositions obtained from Mo Sci Corporation were studied (G 

0175, G0176). The chemical composition of these MO-Sci glasses by weight are listed 

below. These glass systems were selected to devitrify the high dielectric constant phase, 

BaTiO3. 

MO-Sci Composition for High Index Glasses. 

Chemical Composition by weight: 

Silica (SiO2)….................1~20% 

Boron Oxide (B2O3).........1~20% 

Zirconium oxide ZrO2)….0~10% 

Barium oxide (BaO)…...30~70% 

Titanium oxide (TiO2)…30~70% 

 Fig. 2.15 shows the thermogravimetric analysis (TGA) of both G-0175 and G-

0176 and indicates there is no weight loss for either composition up to temperatures of at 

least 1000°C. This indicates that both compositions are highly stable. Differential thermal 

analysis (DTA) of the G-0175 and G-0176 compositions was also carried out and the 

plots are shown in Fig. 2.16. For the G-0175 composition, two peaks were observed, 

most likely indicating the onset of crystallization of two different phases at approximately 

782 and 835
o
C. DTA studies also showed the melting points of the two phases to be 

approximately 922
o
 and 938

o
C.  Based on the crystallization and melting temperatures, 

the processing window for devitrification of this compositions is narrow. DTA analysis 
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of the G-0176 composition revealed only one peak indicating onset of crystallization 

around 767
o
C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15. TGA studies of MO-Sci compositions G-0175 and G-0176.  

 No melting was observed until 1000
o
C, the maximum temperature to which the 

analysis was performed. Based on the DTA analysis, it was expected that the G-0176 

composition would sinter well compared to G-0175, as it was thought that processing of a 

composition with a single devitrified phase would be easier.  Also, it was expected that 

the temperature window for devitrification would be greater as no melting was observed 

for temperatures up to 1000
o
C. A simple heat treatment procedure was applied which 

involved filling the two powder compositions in alumino-silicate molds followed by a 
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ramp rate of 10
o
C/min to 850°C. The hold time employed was 4 hours. After heat 

treatment, the furnace was cooled at a rate of 25
o
C/min.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.16. DTA studies of Mo Sci compositions G-0175 and G-0176.  
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The alumino-silicate molds were prepared by machining to get requisite shape and fired 

to obtain molds. 

 The molded dielectric thickness was minimized to reduce requirements for post-

processing to form samples for dielectric measurements. The alumino-silicate molds and 

sintered glass ceramics prepared from G0175 composition are shown in Fig. 2. 17.  

 

 

 

 

 

 

 

Fig. 2.17. Alumino-silicate molds and sintered glass ceramic dielectric compositions of   

   G-0175. 

 

Heat treatment resulted in the sintering of composition G-0175, however no 

densification was seen for composition G-0176. X-ray diffraction (XRD) analysis 

revealed the presence of two crystalline phases as seen in Fig. 2.18. For G-0175, the 

major crystalline phase is Barium titanium silicate” (Ba2TiSi2O8) and small amounts 

of“Barium titanate (BaTi2O5).” The results of quantitative XRD analysis of devitrified G-

0175 composition indicated the weight fractions of barium titanate silicate (Ba2TiSi2O8) 

was 45.4 wt % and barium titanate (BaTi2O5) was approximately 54.6 wt%. Dielectric 

characterization of the sintered dielectric discs (G-0175) was carried out using an 

impedance analyzer (HP 4094A). The effective relative permittivity was found (at low 

frequency; 10
3
 Hz) to be 140. 
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Fig. 2.18. XRD pattern of heat treated glass ceramic dielectric devitrified from G-0175.  

 

  The comparatively low permittivity of the glass ceramic compared to BaTiO3 can 

be attributed to the presence of the high weight fractions of two low permittivity phases: 

Ba2TiSi2O8 and BaTi2O5. 

  For breakdown measurements, samples were thinned using a surface grinder and 

polished. Samples were dimpled using a standard dimpler( Model D 500i) employed for 

TEM sample preparation and platinum was sputtered as electrodes. Fig. 2.18. shows 

representative dimpled samples used for breakdown testing.  A high voltage source was 

used for measuring the breakdown strength of the samples, which was found to be 

approximately 510 kV/cm. Considering this value and the measured relative permittivity 

of 140, an energy density of 1.61 J/cc may be calculated. 
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  Fig. 2.19. Dimpled glass ceramic dielectric composition prepared from G-0175. 

 

  Thus, even though a high permittivity BaTiO3 phase was not formed, even these 

prelimary results suggest opportunities for glass-ceramic materials.  

  To initiate a more thorough comparison of the simulation results of diphasic 

dielectrics with experimental results of this type, further characterization of the phase 

assemblage of the glass-ceramics is required. Phase volume fractions and distribution 

need to be determined. It would also be desirable to develop a glass-ceramic system that 

demonstrates only a single crystalline phase, since such as system can serve as a more 

effective “model” system for simulation analysis. Finally, other measurements that need 

to be completed would include characterization of the relative permittivity of the residual 

glass phase so that dielectric contrast can be accurately estimated.    
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3. CO�CLUSIO�S 

 

 The area of diphasic composite research is a problem with many facets. The key 

properties and issues of interest in this area are listed in flow chart shown in Fig. 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Key issues in diphasic composites that may impact energy density.  

  

This Ph.D. research has primarily focused on studying the intrinsic attributes of 

the diphasic composites system and evaluating their impact on energy density through 
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analytical and numerical modeling.  In particular, an analytical method to predict 

effective permittivity and numerical approaches to evaluate local fields were developed. 

 The complexity of many-bodied interactions and the heterogeneous environment 

experienced by the charges and waves in a composite material under the action of applied 

electric field have made analytical studies of diphasic dielectrics notoriously difficult, in 

spite of the considerable number of studies aimed at understanding these materials. The 

aim of this research was to provide a simple solution to this complex problem. This 

research has resulted in the development of a new mixing rule. The mixing rule approach 

developed predicts effective permittivity of diphasic composites for both static, as well as 

dynamic cases, i.e., as a function of alternating electric field. A key feature of this model 

is its independence from the inclusion size limitations associated with traditional mixing 

theories, and the ability to uniformly apply this mixing theory to any composite dielectric 

architecture (0-3, 2-2, 1-3, 3-3). The equivalent capacitance/impedance model developed 

has also been extended to complex geometries (High aspect ratio inclusions) and high 

volume fractions of high phase permittivity systems.  

To further understand composite dielectrics, numerical simulations were also 

carried out. These simulations have provided new insight into the electrostatic field 

distribution in diphasic dielectric systems and have enabled a perspective into the 

limitations of traditional mixing rules. To the best of my knowledge, for the first time, a 

comprehensive study of electrostatic field distribution in the three dimensional space of a 

diphasic dielectric has been carried out. This research has resulted in new understanding 

of dielectric contrast and volume fraction effects and has suggested opportunities for 

microstructural engineering of composites not previously considered.  
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  The highlights of this research on analytical modeling include: 

� Ability to account for any particle shape 

� Able to handle many bodied interactions and heterogeneous environments 

�  Ability to model effective permittivity for both DC as well as AC conditions 

� No need to approximate inclusion particle shape  

� No volume fraction limitation 

� Model can account for inclusion orientation 

 The highlights on the numerical modeling are: 

� Quantified local field distribution in diphasic systems 

� Evaluated effects of dielectric contrast and inclusion volume fraction on electric 

field enhancement in the host and electric field penetration into the inclusion 

� Compared analytical modeling results to mixing theory predictions to identify 

inclusion volume fraction limitations of Maxwell Garnett theory 

� Proposed new combinational approach of numerical modeling with percolation 

model for polymer phase to establish correlation between local electric field 

distribution in random systems with dielectric breakdown 

� Developed insightful guidelines for microstructural opportunities  
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4. FUTURE WORK 

 

 

  This research has also laid the foundation for significant research investigations 

that could compliment the present work. Further studies that are recommended for future 

investigation in the area of analytical modeling are noted below. 

(a) The equivalent capacitance/impedance model presented is for ordered 

diphasic composite systems. The similarities and differences between the 

macroscopic behavior of ordered and random composites is an ongoing 

area of research. A transmission electron microscope (TEM) 

photomicrograph of iron oxide particles in Vycor glass and its adaptation 

into random and ordered systems for modeling purposes is shown in 

Figure 4.1 

 

Ordered

Random

Iron oxide in 

Vycor glass
Ordered

Random

Iron oxide in 

Vycor glass

 

 

 

 

Figure 4.1 TEM micrograph of iron oxide in vycor glass and cartoon 

representing adaptation of the composite in random and ordered 

systems for computation purposes. 
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It is imperative that future studies include simulations of random inclusion 

geometries because these are more representative of real world systems. 

These studies could be achieved by consideration of a three dimensional 

array of cubes representing the host phase. By using probability theory, it 

is possible to allocate a particular probability of cells filled with inclusions 

as opposed to cells that are empty (i.e., host phase only). Thus, a random 

composite could be analytically created and then modeled. The equivalent 

capacitance/impedance model could then be applied to evaluate the 

effective properties of the composite and compare predicted properties 

with those of ordered systems and real world systems.  

(b) The study of dielectric composites has been, unfortunately, divided 

between theorists and experimentalists. There is a need for a unified 

approach to examine dielectric composite electrical properties. Many 

investigators continue to apply effective medium theories and other 

analytical models without being cognizant of the fact that the relevance of 

these models, fitted to one data set, may not be applicable to other material 

or microstructural systems. This issue is complicated by the fact that the 

permittivity of the inclusion particle is a function of particle size, and this 

is often not measured, or is unknown. This results in the use of 

permittivity values that best fits the results. Theorists, on the other hand, 

continue to compare their mixing rule approaches with other models and 

bounds and not with experimental results. A joint approach needs to be 

adopted that would look at the following issues: 
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• Measurement of inclusion particle size distribution to 

account for the associated distribution in permittivity 

values expected for non-linear (ferroelectric) dielectrics 

• Measurement of slurry properties, and thereby, deduction is 

of inclusion phase permittivity 

• Impact of dispersant on composite polarization response, 

particularly at the interface between the particle and host 

phase 

• Incorporation of this data into mixing models for both 

ordered and random systems to predict effective properties. 

(c) It is known that the static permittivity, “ '

effε ” is a function of the intrinsic 

nature of the diphasic composite. Therefore, it is easier to model the behavior 

of '

effε . However, “ "

effε ” may be highly dependent on extrinsic parameters, like 

temperature. The equivalent capacitance/impedance model has not yet been 

developed to take into account temperature effects. Loss behavior can be 

modeled by taking the temperature dependence of dielectric loss.  

(d) The equivalent capacitance/ impedance model approach needs to be extended 

to complex shapes and this would require development of integration methods 

which would account for shape characteristics.  
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