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ABSTRACT 

Elastodynamic multipole theory, the theory of least squares, and 

the theory of integral representation of solutions are employed in 

solving certain problems involving an elastic solid containing a 

source and a scatterer. Both the source and scatterer are of finite 

geometrical extent; they occupy non-intersecting regions. The source 

is separable, i.e., its mathematical specification consists of an 

arbitrary vector function of position multiplied by a time function, 

which is further assumed to be a sinusoid. The scatterer emphasized 

is a finite void cavity of arbitrary shape; however, scatterers com­

posed of rigid material may also be treated. The calculation of a 

Green's Function is emphasized; in this case the fields incident 

upon the scatterer are dipole fields. However, the method presented 

is amenable to arbitrary specification of the incident field; plane 

wave scattering is discussed as an example. While scattering from a 

single object is emphasized, the case where two or more scatterers 

exist is discussed briefly. The so-called cavity-source problem is 

also discussed briefly. 

In all cases, a first approximation to the solution in the form 

of a linear combination of multipole fields is derived using least 

squares. An improvement in this approximation is derived using an 

integral representation of the exact solution. The second and final 

approximation is in the form of a multipole series in which the terms 

are the fields of fundamental force systems, i.e., dipoles, quadrupoles, 

etc. 
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INTRODUCTION 

The primary goal of this dissertation is the presentation of a 

method for the calculation of displacement fields arising in a perfectly 

elastic solid mediumwhich, except for the presence of a finite void 

cavity of arbitrary shape, is infinite, isotropic, and homogeneous. 

The fields arise due to the application of body forces acting throughout 

some limited region within the medium. This region does not intersect 

the cavity. The body force consists of an arbitrary vector force per 

unit volume multiplied by a sinusoidal time factor exp(-iwt). The 

primary problem to be solved then, is one of scattering. The problem 

is of a general nature in the sense that one is allowed a high degree 

of flexibility in specifying both the cavity shape and the spatial 

part of the body force. The problem is of a restricted nature in the 

sense that both the cavity and the body force are of finite geometrical 

extent, while the latter is further restricted with regard to its time 

dependence. 

The method developed herein for the solution of the above problem 

also may be used to solve the scattering problem arising when a rigid 

body replaces the cavity. Being less valuable from a pragmatic stand­

point, this latter problem will be discussed only briefly. 

Another problem related to cavities, the so-called cavity-source 

problem, may also be solved by the method developed herein, providing 

the time dependence is sinusoidal. This problem, which arises when 

specified tractions are applied to the boundary of a cavity in order 

to create a displacement field in the medium, will be discussed in 

more detail. 



XX 

The method is based upon the unification of two general theories 

existing in virtually all branches of classical physics. These are 

multipole theory and the theory of integral representations of solutions. 

All final solutions will be approximate. The first step entails the 

calculation of a first approximation to a Green's Function; this is 

done through the use of multipole theory. Then, a second and final 

approximation is calculated through the use of integral representations. 

The Green's Function becomes available in multipole series form. 

Calculation of the Green's Function in scattering problems is 

roughly analogous to completely solving the cavity-source problem. 

The latter is completely solved by the exercise outlined in the pre­

ceding paragraph, though the result is not a Green's Function. 

In scattering problems, one writes down the ultimate solution as 

an integral over the applied body force. As an alternative to evaluat­

ing the integral at each field point, it may be replaced by a multi­

pole series. This multipole series consists of the Green's Function 

and all its derivatives with respect to the spatial coordinates of an 

expansion point within the body force. Owing to certain properties 

of the Green's Function, these derivatives cannot be evaluated directly; 

each must be calculated using the same method employed in finding the 

Green's Function itself. 

When the body force is not specified explicitly, but some given 

incident field is assumed to exist at the scattering object, the method 

may be used to calculate the scattered field without the use of Green's 

Functions. In fact, this provides an additional alternative for calcu­

lating solutions even when the body force is given. The situation is 
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illustrated using plane wave scattering as an example. 

The research topic described above was chosen in the hope that 

it would constitute a non-trivial contribution to a larger program of 

research underway in the Geophysics Department at the University of 

Missouri-Rolla. This work (Stewart (1971), Rechtien and Stewart (1971), 

and Stewart and Rechtien (1971)) is aimed at establishing a seismic 

method for the detection and delineation of subterranean cavities 

in the earth. The method, based on the presumption of cavity resonance, 

excludes the study of seismic sources, at least at the outset. In con­

trast, the present dissertation is source oriented from the beginning. 

Hopefully, the two approaches will ultimately be found to supplement 

each other. A successful method for cavity detection and delineation 

would indeed be a useful commodity in many areas, as amply pointed out 

by Stewart (1971). 

A review of existing literature on various aspects of the problems 

considered in the current dissertation forms part of Chapter I. The 

review is incorporated into a brief discussion of how the current dis­

sertation is organized. 
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I. ORGANIZATION; LITERATURE REVIEW; NOTATION 

A. Multipole Theory 

As mentioned in the Introduction, elastodynamic multipole theory 

is used in this dissertation. Multipole theory exists also in 

Electromagnetics (Morse and Feshbach (1953), p. 1276) and in acoustics 

(Oestreicher (1957)). Also, it has been developed for both the static 

and dynamic cases in elasticity (Archambeau (1968)). However, for 

reasons to be explained shortly, the form of multipole theory used 

in the current dissertation is developed in Chapters II and III. 

In texts and reference books concerning electromagnetics, it is 

common to find two independent developments of the theory. The first, 

based on a 3-dimensional Taylor series expansion of 1/R, where R is the 

distance between two points in space, is carried out mainly for the 

purpose of providing a clear physical understanding of multipoles. 

Solutions in terms of infinite series of multipole fields are easy to 

understand on a term by term basis. The intuitive approach is possible 

throughout. However, as pointed out by Morse and Feshbach (1953), p. 1279, 

the series are redundant (also see Appendix D here). That is, other 

series expansions of the function 1/R exist, and multipole theory based 

upon them can result in multipole series solutions requiring fewer terms 

to express information requiring more terms of the former series. The 

most common example found in the literature is the expansion of 1/R in 

spherical harmonics. In view of the fact that there exist at least seven 

ways in which 1/R may be expanded in infinite series (Van Nostrand and 

Cook (1966), p. 75), it is not quite clear why spherical harmonics 

have received the most attention. 
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The same situation carries over into elastodynamics, where again 

spherical harmonics are the favored functions. Archambeau (1968) gives 

multipole series solutions for various field quantities arising in 

infinite media due to distributed body forces occupying a non-zero 

volume. The series involve spherical harmonics. 

The current dissertation relies on multipole theory arising from 

a Taylor's expansion of 1/R. In the resulting multipole series, each 

term is the field of a fundamental multipole force. It is not difficult 

to gain a physical understanding of individual terms in the series; a 

feat not easily attainable in other types of expansions. 

As stated earlier, the development of the form of the theory used 

later in this dissertation is developed in Chapters II and III. These 

two chapters concern fully homogeneous infinite media. Multipole 

series solutions for various field quantities arising due to body 

forces, i.e., sources, of finite geometrical extent are derived. 

Chapter II concerns the static case, which is also applicable in the 

dynamic case covered in Chapter III. This applicability stems from 

the fact that the dynamic sources throughout the entire dissertation 

are formed by the multiplication of a static body force term by a 

time function. Such sources are termed separable by Archambeau (1968). 

No displacement fields for the static case are actually calculated in 

Chapter II since these may be specialized from dynamic solutions given 

in Chapter III. 

It seems that usage of multipole theory in elastodynamics is 

fairly recent, although the fields for any individual multipole were 

available in the time of Stokes (Love (1944), p. 305). Its application 



3 

in earthquake seismology as illustrated by papers such as Randall (197la 

and 197lb) has been the main source of employment. 

The primary application of multipole theory in the current dis­

sertation is encountered in Chapter IV. There, linear combinations 

of multipole fields are used to describe other fields known to arise 

at scattering surfaces. These linear combinations are not multipole 

series in the sense of Chapters II and III. In Chapter IV, the traction 

vectors arising on scattering surfaces are approximately nullified 

by linear combinations of multipole traction vectors. Coefficients 

corresponding to each multipole traction vector are calculated using a 

least mean squared error criterion. Then, a highly important feature 

of multipole series which carries over to the calculated linear 

combinations gives the approximate scattered displacement fields with 

no additional work. A standard text such as Hildebrand (1956) is 

adequate background for the least squares calculations. 

B. Integral Representations 

Integral representations of solutions arise often in applied 

mathematics. A well known example is Kirchoff's Formula (Love (1944), 

p. 301), which represents solutions of the scalar wave equation. When 

it is the more general vector elastic equation of motion whose solutions 

are to be represented, the more complicated representation introduced 

in Chapter V is required. 

Often integral representations serve as intermediate steps in the 

derivation of integral equations describing a system from differential 

equations and boundary conditions also describing the system. This is 

not their value to the current dissertation; they are used to improve 
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upon the first approximations derived via least squares in Chapter IV. 

The calculation of the second and final approximations to solutions 

occupies Chapter V. That an improvement is indeed attained is argued 

in Appendix E, where a brief derivation of the integral representation 

is also presented following Case and Colewell (1967). 

Integral representations have long been associated with Green's 

Theorem and Green's Functions in Potential Theory (Love (1944), p. 231). 

In discussing this, Love points out that it was Betti, the author of 

Betti's Reciprocal Theorem (Love (1944), p. 173), who first applied 

similar notions to elasticity. In fact, the integral representation 

used here in Chapter V can be obtained from Betti's Theorem. In more 

recent times, other authors have also written on integral representations 

in elasticity in order to enlarge the scope of their application, e.g., 

to include anisotropic media, and to apply them in solving problems. 

These authors include DeHoop (1958), whose interest was in diffraction 

of plane waves by screens; Korringa (1965), who was interested in 

variational principles related to diffraction; Case and Colewell (1967), 

who derived integral equations from the representations of solutions to 

cavity-source problems and solved them; and Gangi (1970), whose primary 

interest was in showing that when certain reciprocity principles are 

assumed, then the integral representations follow as consequences. 

Some authors consider the more simple steady state representations such 

as those of the current dissertation while others, e.g., Gangi (1970), 

consider the time dependence to be arbitrary. 

Banaugh (1964) has used integral representations also to treat 

scattering problems involving surfaces of arbitrary shape. However, 

his representations are of displacement potentials rather than of 
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displacement itself as in the current dissertation and the above works. 

C. Other Topics 

Among additional applications of the current work, Chapter VI 

includes a suggested method for the treatment of multiple cavities, 

a discussion of how the cavity-source problem may be solved, and a 

few remarks on scattering from rigid bodies. 

Chapter VII presents some numerical results computed using the 

theory developed in the current dissertation. A summary of some sources 

of error and some background material required for understanding the dia-

grams presented there are also included. 

D. Notation 

Throughout this dissertation, only rectangular coordinate systems 

are used. Coordinate variables and base vectors are denoted by x. and 
~ 

A e., respectively, for i = 1,2,3. The position vector of a point 
~ 

(x1 ,x2 ,~3) is denoted by r. Almost always, such a point will be 

verbally referred to as "the point;," following customary usage. 

The vector r is x1e1 + x2e2 + x3e 3 , which can be written as 

r = x.e. = x e using the so-called summation convention. This con-
~ ~ m m 

vention is that a repeated index in a term implies a summation over the 

values of that index. Thus A B stands for an expression consisting 
mn mn 

of the sum of nine terms. In this dissertation, no distinction will 

be made between superscripts and subscripts insofar as the summation 

convention is concerned. That is, A .Bj will stand for the sum of 
mnJ mn 

27 terms for example. The summation convention is in effect throughout 

the entire dissertation. 



Often it is necessary to discuss several spatial points at the. 

same time. These are distinguished by such symbols as; = x .e., 
0 0~ ~ 

r = X e ;• = x'e or perhaps r" = 1 li i' i i' """ x.e .. 
~ ~ 

In this connection, 

it must also be pointed out that partial differentiation is done at 

various stages with respect to all the spatial coordinates forming 

the components of the various position vectors just given. For this, 

operator notation will be used, i.e., D.= 'd/'dx., D0 • = 'd/'dx ., 
~ ~ ~ 0~ 
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1 D . = 'd/'dx1 ., etc. Additional indices on the Dimply additional differ-
~ ~ 

entiation, e.g., D .. = 'd 2/'dx.'dx., etc. 
1J ~ J 

Functions of position are denoted by symbols such as A(r) or 

B(r) = B (r)e , depending on whether the function is a scalar or m m 

vector. Components of tensors or other functions requiring more than 

one index will be encountered often. In cases where a function depends 

on the components of r', say, rather than r, then of course symbols 

such as A(r') will be used. 

When a function depends on two sets of coordinates, say the com-

ponents of r and r , then symbols such as A(rlr ) may be used. This 
0 0 

rule is not rigidly followed in cases where the dependence on the second 

set of coordinates does not need to be emphasized. A consistent ex-

ception to the rule occurs with the Dirac delta function, which is 

always denoted by o(r- r ) or other symbols involving other position 
0 

vectors. The Dirac delta function should not be confused with Kronecker's 

delta, oij' which also will be encountered often. The latter quantity 

is the number 1 when its two subscripts happen to be numerically equal 

and zero otherwise. 



There is a mixture of subscript notation and so-called dyadic 

notation used in this dissertation. For example, if A = A e , then mm 
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the divergence of A is both V•A and D A • No apology is made for this mm 

mixture; some ideas are best presented and understood in one notation 

while other ideas favor the other notation. 

Surface integrals appear often in this dissertation. The subscript 

S on a single integral sign will imply integration over all of a sur-

face named S. On volume integrals, the subscript V on a single integral 

sign implies integration over a volume named V. The subscript a.s. 

implies integration over all space. 
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II. STATIC BODY FORCES AND SOURCE POTENTIALS 

This dissertation is a study of the displacement field generated 

in an elastic solid by body forces. The present chapter defines the 

various types of forces to be considered. All body forces will be of 

the type Archambeau (1968) has termed separable, i.e., each body force 

will have a mathematical specification or formula which consists of 

two factors. The first factor, to be called the "space part", depends 

only on spatial coordinates while the second factor is a function of 

time alone. This chapter is concerned only with the space part; the 

time factor will be introduced in Chapter III. 

A. Forces Distributed Through Finite Volumes 

A static, i.e., time independent, body force F(r) is a vector 

function of position having the dimensions of force per unit volume. 

This section will consider only those body forces which are non-zero 

throughout a finite volume V. In this section then, Vis neither in­

finite nor infinitesimal. The body force may be called a volume source 

density. 

Using Helmholtz's Theorem (Appendix A), the vector function F may 

be written in terms of a scalar potential and a vector potential. These 

potentials may be called source potentials to distinguish them from 

other potentials to be considered later. 

(2 .1) 

where ¢(r) and ~(r) are the scalar and vector source potentials, 

respectively. It is shown in Appendix A that 

(2.2) 
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and 

l}J(r) = vxw(r), (2. 3) 

where 

W(-;) = Lf F(r') dv'. 4'1T a.s. R 
(2. 4) 

In Equation (2.4), -;r is the position of the volume element dv'. 

The factor 1/R is the reciprocal of the distance between ;r and r, 

It is demonstrated in Appendix A that if the expressions for ~ 

and 1jJ in terms of Ware inserted into Equation (2.1), then indeed 

F ::: -'V('V•W) + \]x\/XW. (2.5) 

Just as Equation (2.1) gives Fin terms of source potentials, Equation 

(2.5) serves the same purpose. One may refer to W as the "parent" 

source potential. 

In a later section it will be shown that body forces distributed 

through finite volumes may be written as infinite series (multipole 

series) having particularly useful properties. 

B. Forces Distributed Through Vanishing Volumes 

1. Point Distributions.--Consider a body force of the type just 

discussed defined throughout a volume V. In particular, let 

F(r) = Pn, r in v 

= 0, r not in V, (2. 6) 
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where p is a constant and n is a constant unit vector in some direction. 

Now, remove the restrictions that V be finite and P be constant. Let 

P become infinite and V infinitesimal in such a way that 

lim 

P+oo P f V dv' = 1. (2. 7) 

v + 0 

The body force defined by such a limiting procedure is non-zero 

only at a single point in space, namely the point to which V was "shrunk". 

Call this point r • The resultant force is a point force, of magnitude 
0 

unity and in the direction of n, located at r . 
0 

The meaning of such 

point forces is best understood in terms of volume integrals. For ex-

ample, consider an integral of the type 

(2. 8) 

where A(r) is some function of position. Let F(r) be given by Equation 

(2.6), where V contains r . 
0 

Then, 

(2.9) 

If it is further assumed that A(r) is sufficiently well behaved that it 

has a finite average value, say {A(r)}, over every infinitesimal neigh­

borhood of r, then as V + 0, this average will become A(r ). Since 
0 0 

then as P + oo and V + 0, 

(2 .11) 
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If it had been specified, prior to writing Equation (2.8), that 

F(r) was ultimately going to be a point force of unit magnitude at r 
0 

in the direction of n, one would now write 

I = nA(r ) . 
0 

(2.12) 

In order to avoid the limiting process each time it is necessary to 

consider a volume integral of a point force, one may use the Dirac 

delta "function" in writing the mathematical specification of the point 

force. Some comments concerning the delta function are made in Appen-

dix A. The particular point force just discussed would be 

F(r) = no(r - r ) . 
0 

(2.13) 

F(r) in Equation (2.13) is called the "equivalent volume source 

density" corresponding to the force described by the limiting process. 

This terminology has been used by Stakgold (1967); the concept will be 

encountered several times in this dissertation. Using Equation (2.13) 

in Equation (2.8), agreement with Equation (2.12) is shown: 

I = n f o(r' 
a.s. 

(2 .14) 

Notice from Equation (2.8) that I should have the physical dimen-

sions of force multiplied by those of A. Moreover, the fact that 

O(r' - r )dv' has no dimensions means that the dimensions of reciprocal 
0 

volume should be associated with o(r- r ) itself. In order to make 
0 

Equation (2.13) define a force per unit volume, it is necessary only 

to attach a multiplicative factor of unity having the dimensions of 

force. However, the quantity defined by Equation (2.13) will be called 
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a dipole force (or just "dipole") regardless whether or not the units 

of force have been attached. Sometimes it will be convenient to 

neglect doing so; in such cases, the fields arising in a medium, e.g., 

displacement, would be viewed on a "per unit force" basis. 

Of particular interest are the three dipoles formed by letting 

fi =e., i = 1,2,3, in Equation (2.13). These three dipoles will be 
1 

denoted by 

F.(rfr) = e.o(r- r ) . 
1 0 1 0 

(2.15) 

The symbol F. will be used to denote such dipoles throughout this 
1 

dissertation although the position vectors in the arguments may at 

times be different from those just used. For example, the two dipoles 

sketched in Figure 1 below are given by -(l/h)F2(r!r0 ) and 

(l/h)F2(rjr0 - he3), where his a small positive length. These two 

dipoles may be used to illustrate the construction of higher order multi-

poles. Letting h remain finite and fixed, one can carry out the limiting 

process employed in Equations (2.8) through (2.12) for each dipole. 

Adding the results leads to an expression of the form 

(2.16) 
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Figure 2.1 Two Dipoles Which Form a Quadrupole as h + 0 
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The force system shown in Figure (2.1) becomes a quadrupole in the 

limit h + 0. Quadrupoles are point forces; after the limit h + 0 is 

taken both dipoles in Figure (2.1) (i.e., the quadrupole) are associated 

with the point r only. One may learn of the quadrupole's effect in 
0 

volume integrals by taking h + 0 Equation (2.16). The result, by 

definition of partial differentiation, is 

lim 
h + 0 (2.17) 

One may again avoid the limiting processes leading to Equation 

(2.16), and also the additional limit giving Equation (2.17), by making 

further use of the properties of the delta function. Referring to 

Figure (2.1), let the entire force system be denoted by F(r), i.e., 

(2.18) 

Now, since 

(2.19) 

Equation (2.18) can be written 

(2.20) 

Letting h + 0, 

(2.21) 

It is a simple matter to verify that the quadrupole expressed by 

Equation (2.21) produces the correct results when used in volume inte-

grals. When the expression is substituted into Equation (2.8), 

Equation (2.17) results immediately. 
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Notice that the quadrupole just discussed is only one of a set 

on nine quadrupoles, all of which can be symbolized by 

"F .. <rlr) = n.F.<rlr ), i = 1,2,3; j = 1,2,3. 
1J 0 J 1 0 

(2.22) 

Now dipoles are forces per unit volume. Since the quadrupoles are 

constructed by taking a spatial derivative, they possess an additional 

dimension of reciprocal length. 

Octupoles and all higher order multipoles are constructed by 

sl.lCeessi'\e. differentiation. For example, the set of 2 7 octupoles is 

given by 

F .. k<rl"-; ) = nkF .. <rlr ) . 
1J 0 1J 0 

(2. 23) 

Before leaving this section, it will be shown how one may quickly 

calculate the source potentials for all multipoles. The parent 

source potential for an arbitrary force is given by Equation (2.4), viz., 

= 1_ f 
47f a.s. 

dv', (2.24) 

in which R = lr- r'l a [(x1 - x1 ') 2 + (x2 - x2 ') 2 + (x3 - x3 ') 2 ]112 . 

When F(r) in Equation (2.24) is a dipole F.(rlr ), the corresponding 
1 0 

parent potential will be denoted by W.(rlr ). Substitution of Equation 
1 0 

(2.15) into the integral in Equation (2.24) yields 

w.<rlr)=e./47fR,R = lr-rl. 
1 . 0 1 0 0 0 

(2.25) 

Substituting Fi.(rlr) = eiD.o(r- r) into Equation (2.24) and denoting 
J 0 J 0 

the result by w .. (rl'r ) results in 
1J 0 
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w .. (rlr0 ) =- (l/41T)e.D0 .(1/R) = (l/41T)e.D.(l/R ). 
1] 1 J 0 1 J 0 

(2.26) 

Comparison of Equations (2.25) and (2.26) shows that 

w .. (rl~) = n.w.(rjr ). 
1] 0 J 1 0 

( 2. 2 7) 

It is equally easy to show that 

w .. frl:;) = nkwi. <rlr) = nk.w. Cr[~) (2.28) 
1]~ 0 J 0 J 1 0 

is the parent source potential for the octupole F .. k(r[r ). Similarly, 
1] 0 

one can define corresponding W fields for all higher order multipoles; 

their calculation proceeds by successive differentiation. These facts are 

easily understood by writing Equation (2.5) for the dipole case, namely, 

(2.29) 

Repeated differentiation of both members of this equation reveals the 

validity of Equations (2.27), (2.28), and the analogous equations involv-

ing higher order multipoles. 

The calculation of all scalar and vector source potentials ~(r) 

and ~(~) for all multipoles is accomplished by applying Equations (2.2) 

and (2.3) to the appropriate source potentials. In doing so, let 

~. <~lr) correspond to F. (~I~ ) , etc., with similar notation regarding 
1 0 1 0 

the vector potentials. 

There follows 

~i(~~ r ) = V'•W. (rj r ) = (l/41T)D. (1/R ) , 
0 1 0 1 0 

(2.30) 

~1 .<~lr) = V'•Wi.(~lr) = V•[D.W.(rl~ )] 
J 0 J 0 ]1 0 

= D.V•Wi(~[r) = D.~1 (rjr). J 0 J 0 
(2. 31) 



17 

¢.(rj"r) = VxW.(rlr) = (l/47r)Vx(e./R) 1 0 1 0 1 0 

= (l/47r)V(l/R )xe .. 
0 1 

(2. 32) 

Using V(l/R) = e D (1/R) = 47re ¢ (rlr) in Equation (2.32), 
0 s s 0 s s 0 

\jJ. (rl ~ ) = cp ( r I r ) ( e Xe.) • 
1 0 s 0 s 1 

(2. 33) 

Also, 

= D . [ vxw. ( r I r ) ] = D • \jJ • (rlr ) . 
J 1 0 J 1 0 

(2. 34) 

It should be clear that all higher order source potentials are given 

by successive differentiation of the lower order source potentials. 

At this point a brief demonstration that will be of use later, 

as well as serving to verify some of the results so far obtained, will 

be presented. Reconsider Equation (2.1), namely, 

-vcp(I) + vx¢(r) = F(r). (2. 35) 

If the potentials ¢. <~l"r ) and ¢. (rlr ) are substituted into Equation 
1 0 1 0 

(2.35), the result should be F.(rjr ). This may be verified by making 
1 0 

the necessary substitutions from Equations (2.30) and (2.33): 

-V¢.(rlr) + Vx\jJ.(rlr) = -V¢. + Vx[cp (e xe.)] 1 0 1 0 1 s s 1 

= -V¢. + (V¢ )x(e Xe,) = -e ¢. + cp e x(e xe ) 1 s s 1 m 1m sm m s i 

= -e ¢ + g ¢ - e ¢ m im s si i ss· 
(2. 36) 
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Comparing Equations (2.30) and (2.31), it is clear that 

¢. (rjr0 ) = <P • <rl~ ) , 
1S S1 0 

(2.37) 

and, 

¢ (rl~ ) = (l/4rr)V2(1/R ) . ss 0 0 
(2. 38) 

Now, as indicated in Appendix A, 

V2(1/R ) = -4mS(r - ~). 
0 0 

(2.39) 

Thus, Equation (2.38) is 

<P <~I~ > = -a cr: - r: > • ss 0 0 
(2. 40) 

Using Equations (2.37) and (2.40) in Equation (2.36) results in 

-V<P.<rlr) + Vx1fJ.<~Ir) = e,o(r- r) = F.(rlr ), 
1 0 1 0 1 0 1 0 

. (2. 41) 

completing the verification. 

2. Surface Distributions.--Let r' be the location of an area 

element dS' on an arbitrary finite surface S. Suppose that a traction 

(force per unit area), denoted by T(r') is applied on s. Then, the 

product T(r')dS' is a vector force located at r'. This elemental force 

is equivalent in its effect to a dipole force density given by 

(2.42) 

One says that the traction upon dS' gives rise to this "equivalent 

volume source density" when T(r') is applied on S. The equivalent 

volume source density corresponding to all of S is 
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F ( r) = J s T (r' ) o ( r - r ' ) dS ' • (2.43) 

Equation (2.43) is the formula for a layer of dipoles applied on 

S. This may be called a single layer of traction. Similarly, one 

may define double layers on S; these are layers of quadrupoles (or double 

forces) spread over the surface. An example of such an equivalent 

volume source density is 

(2.44) 

Other double layers and layers of higher order multipoles can also 

be defined. 

C. Multipole Series for Forces and Source Potentials 

1. Finite Volume Distributions~-In this section it will be shown 

that a general body force F(r) defined throughout a finite volume V 

may be decomposed into an infinite series of multipole forces. By 

"decomposed" it is meant that the infinite series produces the same 

result as the original body force when the former replaces the latter 

in volume integrals. 

Returning to Equation (2.4), the parent potential for F(r) is 

W(r) = 1 J 
4n a.s. 

F(r') 
dv', R = 

R 

As shown in Appendix A, the function 1/R may be expanded in a 

(2.45) 

3-dimensional Taylor series about a point r within the region V. The 
0 

series is in powers of the increments qi' = x'- x ., because in mak-i 0~ 

ing the expansion~' is the independent variable. That is, the field 

point r is considered fixed, appearing in the series only parametrically. 



After the expansion is made, certain manipulations transform it into 

the following form: 

1/R = 1/R - q. 'D.(l/R) + (l/21)q. 'q. 'D .. (l/R) 
0 1 1. 0 1. J l.J 0 

-(l/3!)q. 'q. 'qk'D .. k(l/R) + ... - .... 
1 J l.J 0 

(2.46) 

Here, R = lr- r I. The summation convention is in effect. 
0 0 

The series (2.46) will converge at points r' located such that 

lr'- r I< lr- r j, (2.47) 
0 0 

as indicated in Appendix A. A verbal statement of the inequality 

(2.47) is that the field point r is outside the smallest sphere 

centered at r which completely contains the source (and hence all 
0 

source points r'). 

The series (2.46) is unique in the sense that no other power 

series taken about r will represent 1/R. It is, of course, not 
0 

unique in the sense that other points r could be selected as 
0 

expansion points. 

Now the series (2.46) is inserted into the integral in Equation 

(2.45), being careful to use only those field points r which satisfy 

inequality (2.47) for all r' in V. The integration is done term by 
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term. Factors such as 1/R, D.(l/R ), D .. (l/R ), etc., are fixed during 
0 1. 0 l.J 0 

integration and may be removed from within their respective integrals. 

Thus, Equation (2.45) becomes 

W(r) = [! F(r')dv'](l/4nR ) 
a.s. o 

-[! q. 'F(r')dv']D.(l/4nR) + ..• - .••. a.s. 1 1 o (2. 48) 



=eW(r). 
s s 

Also make the definitions 

G = f F ( r 1 ) dv 1 

s a.s. s ' 

G • = f q . 1 F ( r 1 ) dv 1 
s1 a.s. 1 s ' 

G .. = f q. 'q. 1 F (r')dv 1 , etc. S1J a. s. 1 J s (2.49) 

In these definitions, the terms F and W are merely the rectangular 
s s 

components of F and W, respectively, and not the dipoles F (rlr) and s 0 
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their parent potentials. Upon using the definitions (2.49) in Equation 

(2.48), it follows that the rectangular components of Ware given by 

W (r) = [(G - G iD. + (l/2!)G .. D .. - .•• + ... ](l/4TIR) 
S S S 1 S1J 1J 0 

(2.50) 

Now define the operators in Equation (2.50) to be L , for s = 1,2,3. 
s 

That is, let 

L = G - G .D. + (l/2!)G .. D .. - (1/3!)G .. kD. 'k + ... (2.51) s s s 1 1 s 1J 1J s 1] 1J 

Now, Equation (2.50) is 

W (r) = L [l/4TIR ]. 
s s 0 

(2.52) 

Equation (2.52) is the multipole series representation for the compon-

ents of W due to a general body force acting in a finite region. W 

itself is given by 

W(r) = 1 re ; 4TIR 1, s s 0 
(2. 53) 

which clearly shows the relevance of the name "multipole series." 

The term in brackets is merely W (rlr ), the parent potential due to s 0 
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the dipole F Crlr) as shown by Equation (2.25). Thus, each individual s 0 

term in the series (2.53) is the parent potential of some multipole. 

Equation (2.53) may be written 

w ( r) = L [W ( r I r ) ] . 
s s 0 

(2. 54) 

To calculate multipole series forms for the scalar source potential 

¢(r), Equation (2.2) is used: 

<P<r> = v·w<r> = L [v·w <rlr > J = L r<P crlr > L s s 0 s s 0 
(2.55) 

where¢ Crlr) is given by Equation (2.30). Similarly, the vector s 0 

source potential ~(r) is given by 

l)J( r) = vxw( r) = L [V'XW Crlr ) ] = L [l)J Crl r ) ], s s 0 s s 0 

where 1jJ Crlr) is given by Equation (2.32). 
s 0 

The body force F(r) itself is given by 

= L [ -v<P cr-1-; > + vxl)J <rl r- > 1 = L [F <rl-; > 1 , s s 0 s 0 ss 0 

(2.56) 

(2 .57) 

where Equation (2.41) was used in the last step. Also by Equation (2.41), 

the components of F are given by 

F (r) = L [o (r - r )] . 
s s 0 

(2.58) 

In writing Equations (2.57) and (2.58) it must remembered that 

both are to be interpreted in a "generalized" sense, i.e., the equalities 

hold because the series on the right sides produce the same results as 

the corresponding left sides when used in volume integrals over the 
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region V. 

Another point to be made concerns the physical dimensions associated 

with quantities expressed in multipole series form. By observing the 

dimensions of the G's defined by Equations (2.49), it may be seen from 

Equation (2.51) that L effectively carries the dimensions of force. 
s 

This is because the dimension of D. is reciprocal length in its effect. 
~ 

Now, looking at the definition ofF Crlr ), Equation (2.15), recall 
s 0 

that the dipoles have the dimension of force only if a multiplicative 

factor of unity carrying that dimension is attached. In interpreting 

Equation (2.57), this factor is unnecessary because L supplied the 
s 

dimension of force. The operators L will sometimes be referred to 
s 

as "force operators 11 • 

A final point concerning multipole series in general relates to 

the coefficients, the G's, defined by Equations (2.49). These coef-

ficients did not stem from the original Taylor coefficients in expan-

sion (2.46). Instead, they evolved from the "powers" of the increments 

qi'. The Taylor coefficients in the power series went on to become 

multipole field quantities, a fact made possible by their parametric 

dependence upon the field point r. 

2. Point Distributions.--It should be obvious that this sub-

section is redundant: A multipole force and all its fields are their 

own multipole expansions. A pause will be made here, however, to 

verify this for quadrupoles--any other verification would proceed along 

the same lines • 

The s component of a quadrupole F (r[r ) is given by 
mn o 

o no(r-r), 
sm n o 

(2.59) 
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as may be seen by comparing Equations (2.22) and (2.15). Using Equation 

(2.59), the multipole coefficients are easily calculated from the 

definitions (2.49): 

G = J 0 D' o (r' - "t:" ) dv' 
s a.s. sm n 0 

= -0 J o ( r' - r ) D 1 ( 1) dv' = 0, for all s. sm a.s. o n (2.60) 

G = 0 J q. 'D' (r' "t:" ) dv 1 
si sm a.s. 1 n 0 

= -o J o(r' -.. r )D 1 (q. ')dv'. sm a.s. o n 1 
(2.61) 

Now, q.' = x ' 
1 i 

x ., so that D' {q. 1 ) = o .. Thus Equation (2.61) 01 n 1 1n 

becomes 

G . = -o o. . (2.62) 
s1 sm 1n 

Continuing, 

G . • = o J q . 1 q . 1 D ' o ( r ' - r ) dv' S1J sm a.s. 1 J n o 

= -0 J o(r'- r )(q. 'o. + q. 'o. )dv' = 0 sm a.s. o 1 Jn J 1n 
(2.63) 

because q.' evaluated at r' = r is zero for all i. All higher order 
1 0 

coefficients, G . 'k' etc., are zero for the same reason. Thus, only 
S1J 

the G. are nonzero. From Equations (2.51) and (2.62), the operators S1 

L are 
s 

(2.64) 

Using Equation (2.64) in Equations (2.55) through (2.58) completes the 

verification. 
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3. Surface Distributions.--Multipole series for surface distribu-

tions are obtained simply by substituting the corresponding equivalent 

volume source density into the definition (2.49). For example, if 

the layer is the single layer given by Equation (2.43), then substitution 

into the first of Equations (2.49) leads to 

G = J {! T (r')o(r"- r')dS'}dv" 
s a.s. S s 

= ! 5 T (r'){J o(r" - r')dv"}dS' 
s a.s. 

= J T (r') dS' s s • (2.65) 

The remaining G's may be expressed as surface integrals in a 

similar manner. The treatment of double or higher order layers follows 

the same lines. 
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III. DISPLACEMENT IN AN INFINITE ELASTIC SOLID 

This chapter introduces time dependence into the body forces, 

i.e., sources, described in the preceding chapter. Such sources will 

be assumed operating in an infinite, isotropic, homogeneous, perfectly 

elastic solid medium. Both integral and multipole series solutions 

for the displacement field will be given. Compatibility between the 

two types will be shown. The dynamic solutions of the present chapter 

include static solutions as special cases. 

A. Equation of Motion and Displacement Potentials 

1 .. General.--The displacement field due to body forces acting in 

media such as that described above is governed by the following equation 

of motion (Love (1944), p. 293): 

(3.1) 

in which 

U = U(r,t) is the displacement field vector; 

K = K(r,t) is a dynamic source term; 

p = mass density of the medium; 

ci = (/.. + 2ll)/p; 

s2 = llf p; where A. and lJ are Lame's constants. 

In most situations, a and S are the velocities of propagation of waves. 

It is shown in Appendix B how Equation (3.1) may be written in 

another well known form in terms of U , the components of U, and T , 
m ron 

the stress tensor components calculated from U. That form is (Love 

(1944), p. 85)' 
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(o2/3t2)U = (1/p)D T + (1/p)K . m n ron m (3.2) 

Recall that this dissertation deals only with separable sources, 

i.e., those which may be factored as follows: 

K(r,t) = F(r) f(t). (3.3) 

In Equation (3.3), F(~) is any vector force per unit volume, i.e., 

volume source density, which vanishes outside a finite region in space. 

The dimensionless function f of time t is arbitrary, with the stipula-

tion that certain integrals and derivatives (to be encountered later) 

have meaning. 

In order to solve Equation (3.1), one may express the displacement 

U in terms of potentials ~(~,t) and ~(r,t) using Helmholtz's Theorem. 

That is, 

U(r,t) = -V~(r,t) + Vx~(r,t). (3. 4) 

As shown in Appendix B, one may also define a vector field V (r,t) such a 

that 

(3.5) 

The parameter a appears in the expression for V (r,t). By replacing a 

a with S in V , one can construct a new field vector denoted say, by 
a 

VS(r,t). It then happens that 

(3.6) 

Equations (3.5) and (3.6) are analogs of Equations (2.2) and (2.3); 

v(l is a parent displacement potential. 



Each of the quantities ~' W, Va' and VS satisfy certain wave 

equations given in Appendix B. As shown there, V (r,t) satisfies a 

( 3. 7) 

where W(r) is given by Equation (2.4). Also, 

(3.8) 

Notice that the only difference in Equations (3.7) and (3.8) is in 

the occurence of a and S. 

2. Point Forces.--Since rectangular coordinates are being used, 

vector Equation (3.7) is satisfied on a component by component basis. 
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Moreover, since only particular solutions are sought here, if a component 

of W were to vanish everywhere then the corresponding components of 

Va and VS would also be taken to be zero everywhere. This situation 

arises when one considers the special case in which W corresponds to 

a dipole F <rlr ) . Denoting the resulting v fields as v (r, tl r ) and s o as o 

V0 (r,tlr ), Equations (3.7) and (3.8) become 
!JS 0 

(3.9) 

and 

(3.10) 

From Equation (2.25), it may be seen that W (rjr) has only the 
s 0 

component (l/4TIR )e for a given value of s. Thus, V and VSs will 
0 s . as 

have only the e component; it must be the same in each case for the s 

three values of s = 1,2,3. Therefore v is of the form e ~ while as s 0 
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VSs is of the form esn0 , where ~0 and n0 are properly chosen functions. 

Clearly, whatever the form of ~ , one may obtain n from it by simply 
0 0 

replacing the parameter a with S. Upon using Equations (3.5) and (3.6) 

the displacement potentials are 

~ (~,t~~) = V•V = V•(e ~ ) = D ~ , 
s o as s o s o 

( 3 .11) 

and 

'I! (r,tlr) = vxvQ = Vx(e n) = D n (e Xe ), 
s o ~s s o m o m s 

(3.12) 

in which ~ and 'I! are the scalar and vector displacement potentials 
s s 

for a dipole along A e . 
s 

Since n may be obtained from ~ using S for 
0 0 

a, the same is true forD n and all other derivatives. By Equation 
m o 

(3.11), ~ is D ~ ; therefore it is appropriate to denoteD n as n • 
m mo mo m 

It is not necessary here to actually construct the fields V 
as 

and VSs' for they are not specifically required. Using them in 

Equations (3.9) through (3.12) showed that only the three scalar paten-

tials ~ , m = 1,2,3 are needed; the three vector potential 'I! may be 
m m 

obtained via Equation (3.12). 

The wave equation determining the three dipole scalar potentials 

~ (r,tlr) is found by taking the divergence of both members of 
s 0 

Equation (3.9). Using Equation (2.30) afterward leads to 

( .... 2/ 2 2 2 - ,- - -
0 at -a v )~ (r,t r) = (1/p)f(t)~ (rlr ). 

s 0 s 0 
(3.13) 

Similarly, by taking the curl of both members of Equation (3.10) and us­

ing Equation (2.32), 

2 2 2 2- - ,-(a ;at - S v )'!! (r,t r ) = 
S. 0 

Cl/p}f(t)~JJ <rlr). 
s 0 

(3.14) 
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By operating through both Equations (3.13) and (3.14) with Dk' and then 

comparing the resulting right hand sides with Equations (2.31) and 

(2.34), it follows that the quadrupole displacement potentials are 

given by 

<P k (-;, t I r ) = Dk<P (-;, t 1-; ) , s 0 s 0 
(3.15) 

and 

(3.16) 

The higher order potentials, which are obtained by continued differentia-

tion, will be denoted by symbols such as <P kn(r,tlr ), w k (r,tlr ), 
s o s n o 

etc. One will always be able to use Equation (3.12), e.g., 

~ k (r,tlr) = nmk (e X e), s n o n m s (3.17) 

in which n k is obtained from <Pmk = D <Pk by replacing a with S. 
m n n m n 

It should be quite clear now that all multipole displacement poten-

tials may be calculated through the solution of a single wave equation, 

Equation (3.13). This is done in Appendix C. 

B. The Fundamental Solution 

The displacement fields due to the dipoles f(t)F.(rjr) will be 
J 0 

seen to be of fundamental importance throughout this dissertation. When 

the three displacement components for the j dipole are placedin column j 

of a 3 x 3 array, the latter is easily seen to be a symn1etric second 

rank tensor. This tensor is sometimes called the "Green's Function for 

infinite space," especially when f(t) is a delta function. It will be 

called the fundamental solution, regardless of the nature of f(t), 
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where it must be realized that in fact there will be a family of funda-

mental solutions; one for each f(t). Note carefully that the funda-

mental solution is an array of nine functions. The fact that this array 

happens to qualify as a tensor is not particularly useful within the 

context of this dissertation; therefore, very little future reference 

will be made to it. It is more important for the reader to focus upon 

the fact that the fundamental solution consists of three sets of dis-

placement components, each set corresponding to one of the three funda-

mental dipoles. 

In order to emphasize the special nature of the fundamental solu-

tion, it will be given a special symbol. The i component of displace-

ment due to a dipole f(t)F.(;;Ir) will be denoted by Qi.(r,tlr). 
J 0 J 0 

Clearly, the explicit functional form of Q .. will depend upon the 
1] 

nature of f(t); the detailed form of Q .. is shown in Appendix C. 
1J 

The displacement vector due to the dipole f(t)Fj(rlr0 ) is given 

by 

e.Q1 •. <;;,tl;;) = -v4?.(r,tl;;) + vx'¥.<r,tlr), 
1] 0 J 0 J 0 

(3.18) 

where Equation (3.4) was used. Now, from Equation (3.12), 

Vx'¥. ( r' t I r. ) = e . ( 11 . . - 0 .. 11 ) • 
J o 1 1J 1J mm 

(3.19) 

Then, from Equation (3.18), 

Q .. <r, t lr ) 
1J 0 

= -4? .. (r,tlr) + 11 .. (r,tlr)- 0 .. 11 (r,tlr ). 
1J · o 1J o 1J mm o 

(3.20) 
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As may be seen by observing the specific form of ~ .. given in Appendix 
lJ 

C, the following properties of Q .. are obvious: 
lJ 

Q .. (r,tlr) = Q .. (r ,tlr) = Qi.(r ,tlr) = 
lJ 0 1] 0 J 0 

Q •. <r, t Jr ) . 
]1 0 

(3 .21) 

The fundamental solution was published by Stokes in 1849 (Love 

(1944), p. 305). Showing that the result in Appendix C here is the 

same as Stokes's involves only a change in notation. 

The displacement due to a quadrupole f(t)F.k(rlr) has the i 
J 0 

component 

(3. 22) 

In expressions such as (3.22) one may occasionally need to use the 

facts that~ .. , ~ .. k, etc., are all completely symmetric with respect 
1J 1J m 

to any permutation of their indices. 

Before leaving this section, the stress tensor components calculated 

from the fundamental solution will be written down. Since the latter 

is a set of three displacement fields, there will be three correspond­

ing stress tensors. The symbol Lj (r,tlr) will be used to denote these mn o 

three tensors for j = 1,2,3. 

For any displacement field having components U., the stress tensor 
1 

is given by Hooke's Law, namely, 

T = AO D.U. + ~D U + ~D U , mn mn11 mn nm 

in which T are the stress tensor components. Therefore, 
mn 

= AO DiQij + ~D Q . + ~D Q j" mn m UJ n m 

(3.23) 

(3.24) 



It may be verified that for a given value of j, Lj is a second rank rnn 
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tensor, as are all stress tensors. Moreover, with j a free index, Lj 
mn 

is easily found to be a third rank tensor. This latter property is 

irrelevant to our work here; it is best to adopt the point of view that 

Lj represents three distinct stress tensors, for j = 1,2,3, correspond­ron 

ing to the three fundamental dipoles. 

Explicit expressions for Ej for a given time dependence are given mn 

in Appendix C. It may be observed there that 

j - ,--L (r , t r). 
mn o 

(3.25) 

The equation of motion, Equation (3.2), satisfied by the fundamental 

solution is 

(1/p)n E~ <r,tlr > + (1/p)f(t)c .. o<r- r >, 
n l.Il o 1J o 

from which it follows, incidently, that 

m = D L . • 
n Jn 

C. Multipole Series for Displacement 

(3.26) 

(3.27) 

The multipole series for displacement potentials, displacement, 

and stress due to the body force K of Equation (3.3) will be derived 

in this section. 

The components F.(r) of F(r) can be written as 
1 

F.(r) = L.[c(r- r )] 
1 1 0 

(3.28) 

by Equation (2.58). With this in mind, operation upon both members of 

Equation (3.26) with L., results in 
J 
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(1/p)n L. £L:~ (r,tlr) 1 
n J 1n o 

+ (1/p)f(t)L.[a<r- r )J. 
l. 0 

(3.29) 

Now if, 

u.<r,t) = L.[Q .. (r,tlr )], 
l. J l.J 0 

(3.30) 

so that the stress tensor components are 

T. (r,t) = L.[L:~ <r,tlr )], 
1n J l.n 0 

(3. 31) 

then Equation (3.29) is just Equation (3.2) in multipole series form, 

where r , the expansion point, is taken as somewhere within or near the 
0 

region in which F(r) is nonzero. 

It does happen that Equations (3.30) and (3.31) are in fact the 

multipole series forms for the displacement and stress components due 

to the body force K; the preceding paragraph may be considered as 

a formal derivation. Equation (3.30) is obtained from a different 

viewpoint from the series forms for the displacement potentials. The 

latter series are 

<P(r, t) = L [<P (r,tlr )], 
s s 0 

(3.32) 

and 

~(r,t) = L [~ (r,tlr )], 
s s 0 

(3. 33) 

which are obtained from Equations (3.13) and (3.14), respectively. 

In doing so, one must take into account the wave equations satisfied 

by <P and ~, which appear in Appendix B. Using Equation (3.4) with help 
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from Equation (3.19) leads back to Equation (3.30). Then Equation 

(3.31) follows from Hooke's Law. Still additional routes available 

for arriving at Equation (3.30) are mentioned in Section D following 

this section. 

Note that the results of this section do not distinguish between 

"actual" and "equivalent" volume source densities F(r). That is, 

the results presented here apply to the equivalent volume source 

densities of Equations (2.43) and (2.44) for example, as well as other 

separable body forces distributed through finite volumes or on finite 

surfaces. In any case, the field point r must be outside the smallest 

sphere completely enclosing the source in order to assure convergence 

of the series solutions. 

D. Integral Solutions 

Through the use of elementary physical arguments, it is possible 

to write down well known integral solutions for every field quantity 

so far discussed in multipole series form. The situation will be 

illustrated using displacement as an example. 

Let a separable source density (actual or equivalent) denoted by 

K(r~t) act in a finite region. Let the volume element dv' occupy the 

point r'. Then, at r', there exists a point force f(t)F(r')dv'. 

This force has three components, each being a dipole multiplied by a 

"weighting factor". The displacement produced by each such dipole 

then will be given by the fundamental solution multiplied by the same 

weighting factor. Thus, the i component of displacement due to 

(3.34) 



The displacement due to the entire force distribution will be the 

volume integral of expression (3.34), i.e., 

u. (r,t) = f F (-;')Q. (r,tl-;')dv'. 
1. a. s. s 1.s (3.35) 

This is an integral solution for the displacement components. 

If a point r is chosen as an expansion point while r is taken 
0 

outside the smallest sphere centered at r completely enclosing the 
0 

source, then a Taylor series for Qis(~,tlr') in powers of~' - x0 k 

will converge at all r' within the source. When this Taylor series 

36 

is substituted into Equation (3.35), the multipole series, Equation (3.30) 

results. 

Finally, one may substitute the multipole series for F (r), 
s 

Equation (3.28), into Equation (3.35). This procedure also results in 

Equation (3.30), the multipole series for displacement. 
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IV. VOID CAVITIES--FIRST APPROXIMATIONS TO GREEN'S FUNCTIONS 

This chapter begins the treatment of the complications which arise 

when void finite cavities of arbitrary shape are introduced into other-

wise infinite, isotropic, homogeneous, perfectly elastic solid media. 

Only separable body forces will be treated. Furthermore, the time 

factor f(t) in these will be exp(-iwt). This specialization permits, 

along with other simplifications, the scattered fields to be interpreted 

as due to certain separable force layers acting on the cavity boundary, 

i.e., the layers will consist of a spatial part multiplied by the time 

factor exp(-iwt). 

A. Green's Functions 

The counterpart of the fundamental solution under these new cir-

cumstances is a Green's Function. This latter term refers to an 

indexed set of three displacement fields, i.e., to an array of nine 

functions, just as did the term fundamental solution. Three dipole 

forces are set in action, one by one, outside the cavity; the resulting 

displacement fields form the components of the Green's Function. 

Obviously the Green's Function must satisfy the same equation of 

motion as the fundamental solution. In addition, the Green's Function 

must satisfy whatever boundary conditions one imposes at the cavity 

boundary. The use of the word "void" is meant here to imply the condi-

tion that traction vanishes on the boundary. This boundary condition, 

along with the equation of motion, determines the Green's Function. 

It should be clear that each Green's Function will depend quite 

heavily on the boundary shape (and extent). Also, the relative spatial 

location of the source point~ will greatly influence it. The fundamental 
0 
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solution of course also depends parametrically upon r ; however, the 
0 

fundamental solution corresponding to some specific source point is 

merely a spatial translate of the fundamental solution correspoinding 

to any other source point. Since cavities of arbitrary shape are now 

involved, Green's Functions cannot have this property. 

As mentioned earlier, the separable body forces will have a complex 

exponential time dependence. Therefore, so will the Green's Functions. 

In most branches of physics, the term Green's Function is reserved for 

the special case in which the time factor is a delta function. Under 

the point of view being used here, there is a family of Green's Functions; 

one for each f(t) one might desire to use. Each Green's Function will 

be of the "steady state" variety, and will correspond to a given angu-

lar frequency, a given boundary (shape, size, and boundary conditions), 

and finally to a given source point r • 
0 

In this chapter, a method for calculating a first approximation 

to the Green's Function will be formulated. The method, based upon 

least squares, expresses this first approximation as a finite linear 

combination of multipole fields whose singular points lie outside the 

medium,i.e., within the cavity. The first approximation therefore will 

resemble, but definitely will not be, a truncated multipole series. 

In Chapter V an improved second approximation will be derived; it will 

be a true multipole series. Another matter to be discussed in Chapter 

V is the value of being able to construct Green's Functions. 

B. The Scattered Part of a Green's Function 

As stated above, sinusoidal time dependence is assumed; that is, 

f(t) = exp(-iwt). (4.1) 
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When no cavity is present in the infinite medium, the displacement 

fields due to the dipoles eio(r - ro)exp(-iwt) are given by the steady 

state fundamental solution, which satisfies the equation 

D 2:~ ( r' t I r ) + 0 .. 0 ( r n 1n o 1J 
r )exp(-iwt). 

0 

(4.2) 

The solutions of Equation (4.2) may be written as Q .. (rjr )exp(-iwt), 
1J 0 

in which Q .. (rjr) is independent of time but depends parametrically 
1J 0 

upon the frequency w. The same statement holds also for the three stress 

tensors 2:~ ; the "space parts" will be denoted byE~ (rjr ). Explicit 
1n 1n 0 

functional forms for Qij and fin are given in Appendix C. Upon the can-

ceLation of exp(-iwt), Equation (4.2) becomes 

When a void cavity is introduced into the medium and r 
0 

(4. 3) 

is outside 

the cavity, the dipoles represented in Equation (4.3) by the term 

6 .. o(r- r) produce displacement fields no longer given by the funda-
1] 0 

mental solution Q .. (rjr ). Instead, the fields are given by a new array, 
1J 0 

"" 
denoted say by Q~.(rlr ), which is the steady state Green's Function 

1J 0 

for the given boundary, boundary conditions, source point, and fre-

quency. Q~.(rlr) is the i component of displacement at r due to a 
1J 0 

dipole of unit magnitude oriented along e. at r . The three stress 
J 0 

-*' tensors calculated from Q~j(rjr0) will be denoted by 2:~(rlr0 ). The 

relevant differential equation is 

(4.4) 



The boundary conditions at the boundary S of the cavity are that the 

traction vectors calculated from each of the three stress tensors 

-*. 
Z J (rj r ) vanish on S. In symbols, this is 

mn o 

f*j("t:'' 1-r )T ("t:'') = 0, r' on S, 
mn o n 

(4.5) 

where T (r') are the components of the unit normal vector on S. The 
n 

expression on the left side of Equation (4.5) is the m component of 
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the traction vector due to the dipole along e.. The boundary condition, 
J 

Equation (4.5), must hold for all m and j, and all points r' on S. 

-Instead of attempting a direct solution for Q~., it may first by 
l.J 

split into an "incident" field and a "scattered" field. The former 

is just the field that would exist if the cavity were not present, i.e., 

the fundamental solution. The scattered field is due to the presence 

of the cavity. The scattered part will be denoted by Q~~("t:'[r ) , so that 
l.J 0 

(4.6) 

By using Hooke's Law in Equation (4.6), there follows 

(4. 7) 

-**. 
where Z J(r[r) are the mn components of the three scattered stress 

mn o 

tensors. Using Equations (4.6) and (4.7) in Equation (4.4) and then 

-** invoking Equation (4.3), it follows that Q .. must satisfy the homogeneous 
l.J 

equation of motion. That is, 

(4 .8) 
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By forming ~*j(r'lr )T (r'), r' on S, from Equation (4.7) and then 
ron o n 

invoking Equation (4.5), the boundary conditions for the scattered field 

are found to be 

-Ej (r' lr )T (r') -r, on s 
ron o n ' • 

(4.9) 

C. First Approximation to the Scattered Part of the Green's Function 

In this section the scattered part of the Green's Function will be 

approximated. This, of course, constitutes the approximation of the 

Green's Function itself because of Equation (4.6). The first subsection 

below presents a motivation for the method to be used, followed by a 

general statement of the method. Details regarding the computation 

of certain numbers appear in other subsections. 

1. General.--In order to provide a motivation for what will 

follow, one must return to the no cavity case, writing down the multi-

pole series form for the displacement field due to some finite steady 

state source. Let the expansion point be r 1 in Equation (3.30). Then 

u.(r) = L [Q. <rlr1)J. (4.10) 
l. S l.S 

More explicitly, using the definition of L from Equation (2.51), 
s 

- . . • + . • • . (4.11) 

Also, the corresponding series for the stress tensor calculated from 

-
U. (r) is 

l. 

(4.12) 



The traction on any surface whose unit normal has components T (r') 
n 

is given by 

-
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G sk Tn (r') Dk_l::n (r' I rl) + . . . . 

(4.13) 

A highly important feature of Equations (4.11) through (4.13) is 

that the numbers G , G k' G , etc., are the same in each equation. s s . skp 

Thus, for example, if the traction given by Equation (4.13) were known 

to arise on some surface due to the existence of a displacement field, 

then that displacement field would at once be known via Equation (4.11). 

Now, assume that by some means it is learned that traction compon­

ents, say T (r'), on a surface S, are given by linear combinations of terms m 

such as 

(4.14) 

These linear combinations have 12 terms; the As and Ask are merely num­

bers. Then, by inspection, a displacement field giving rise to this 

traction has i component 

- -
ui{r) = AsQis<-rlrl) + AskDkQis<rlrl), (4.15) 

as a direct calculation of traction will verify. With this in mind, 

consider the equation of motion. The displacement field given by 

Equation (4.15) clearly satisfies the equation of motion because each 

of the 12 terms does;: the equation of motion is linear. In regions 

not containing the point r 1 , it is the homogeneous equation of motion 

that is satisfied;. none of the 12 terms has. its singular point in 
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such regions. 

Now the discussion can be more specific. Returning to the 

scattering problem involving a void cavity, recall that what are sought 

are displacement fields which satisfy the homogeneous equation of 

motion outside the cavity while giving rise to tractions -fj (~'lr )T (r') 
mn o n 

on S, the cavity boundary. To find these, it is possible to choose 

a point r 1 within the cavity, i.e., not in :the medium, and write down an 

expression analogous to Equation (4.14) for the traction just mentioned. 

Then, it is possible to devise a way of estimating the coefficients, 

i.e., the A's, in such a way that this linear combination of multipole 

tractions will approximate the desired traction over all of S. Then, 

the analog of Equation (4.15) will be the first approximation to the 

scattered part of the Green's Function. The governing differential 

equation will be satisfied exactly; the boundary conditions will be 

satisfied approximately. 

In the numerical examples given later in this dissertation, the 

linear combination of multipole tractions used is 

(4.16) 

in which all Aj for all j and s are taken as zero at the outset when 
skp 

k > p. Thus a total of 27 multipole tractions appear in the linear 

combination for each value of j. There are nine quadrupole terms, i.e., 

j j 
nine Ask' and 18 octupole terms, i.e., 18 Askp· All the dipole terms and 

some of the octupole terms were omitted in order to make the set of terms 
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remaining an independent set. The reasons why some multipole fields 

are linear combinations of others is discussed in Appendix D. More 

important at the moment is the fact that the method to be used to cal-

culate the A's in approximation (4.16) fails if the terms in the series 

form a dependent set. Note that the independent set that remains has 

the same amount of "flexibility" as would the set formed by all dipole, 

quadrupole, and octupole tractions. That is, any traction that could 

be described exactly using one set could also be described exactly 

using the other. 

As one may notice from Equation (4.16), the notational burden 

has become rather heavy. A pause will be made here to revise this 

notation, for the work to come is entirely too messy otherwise. First 

of all, the left side of representation (4.16) will be denoted by 

(4.17) 

Secondly, let 

glm(r') 
- -1 - -= T (r')D'l: (r' l r ) n 1 mn o ' 

g2m (~') = T <r')n'z2 <r'lr) n lmn o' etc., (4.18) 

according to a bookkeeping scheme given in its entirety in Appendix D. 

As explained also in that appendix, the A's are replaced by 

aj j 
= All' 1 

aj 
2 = j 

A21' etc., (4.19) 

This results in representation (4.16) becoming 
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(4.20) 

In this, the implied summation on the index s of course runs from 

s = 1 to the number of traction vectors in the approximating set. 

Finally, the superscript j will temporarily be dropped. The process 

to be described shortly must be carried out three times anyway, once 

for each value of j. The details in each case are the same; the super-

script is not explicitly required. For what follows then, assume j 

fixed at some value and write 

(4. 21) 

in place of representation (4.20). 

At this point, a clear statement of intentions can be made. 

Algebraic equations to be solved for the a will be derived. For 
s 

definiteness, it will be assumed that there are 27 vectors in the 

approximating set, i.e., s = 1, ••• ,27. Therefore a set of 27 alge-

braic equations is required. Three methods for deriving this set of 

equations will be mentioned, each requiring a different amount of 

computational labor. The one requiring the most labor, least squares 

over the entire surface, is thought to be the best of the three; 

however, in special cases it is reducible to each of the others. This 

makes the latter important as computational checkpoints. 

2. Collocation.--The simplest method one can devise for deriving 

the 27 equations, or conditions, determining the a is to choose nine 
s 

points r' , n = 1, ••• ,9, somewhere on s, requiring representation (4.21) 
n 

to hold exactly at these points. Then, 
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T (~' ) = a 
m n s 

g (~' ) m = 1,2,3,· n = 1 9 
sm n ' ' • • • ' ' 

(4.22) 

is a set of 27 equations in the 27 unknowns a • This procedure, which 
s 

is very inaccurate at most points ~' other than the nine r' , will 
n 

provide results in situations where the number of vectors in the approxi-

mating set is a multiple of three. 

3. Least Squares Over a Finite Set of Surface Points.--Instead 

of choosing only nine points~' on S, one may choose N points, where 
n 

N is much larger than nine. Then, denoting T (r' ) and g (r' ) as m n sm n 

T and g respectively, there follows a set of 3N equations: 
mn smn 

T =a g , m= 1,2,3; n = l, ... ,N. mn s smn 
( 4. 2 3) 

The set of Equations (4.23) of course has no solution in general. 

The set is overdetermined; however, one may seek an approximate solu-

tion which is the best available in some sense. Here, the "least 

squares" criterion will be used. A traction error vector having the 

m component E (r' ) = E at each of the N points r' is defined by m n mn n 

T - a g = E 
mn s smn mn 

(4.24) 

Now, the magnitude of this traction error vector can be minimized 

in the least squares sense over the points r' , n = l, •.• ,N. 
n 

Before attempting the detailed calculations, one must first consider 

the facts that T (r') and all g (r') are complex-valued functions. 
m sm - -Therefore, the a will be complex numbers; E (r 1 ) are complex-valued. 
s m 

The "ordinary" squared magnitude of the traction error vector at a 

point r' is of course E (r')E (r'), which is complex. Since the word 
m m 



"minimize" cannot be applied to complex-valued quantities, one must 

work with the real valued quantity E (r')E# (-r'), where the symbol "II" m m 
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implies complex conjugate. This is the square of the so-called Hermitian 

magnitude (Hildebrand (1965), p. 24) of the traction-error vector. 

The first step involves writing down the quantity to be minimized, 

i.e., the sum of the numerical values of the squared Hermitian magni-

tudes calculated at all the N points r' . The average, or mean, value 
n 

of the sum could then be found by dividing by N, but this step is 

unnecessary. A convenient way to write the sum involves using the 

notation of Equation (4.24) while employing the summation convention 

on both the subscripts m and n. That is, the quantity to be minimized 

is 

E E# = sum of all squared Hermitian magnitudes. 
mn mn 

From Equation (4.24), 

E E# )(T# # # ) 
mn mn = (Tmn - as gsmn mn - ap gpmn · 

As stated earlier, the a are complex, so that 
s 

a = b + ic , s s s 

and 

II 
a = b - ic s s s' 

(4.25) 

(4.26) 

( 4. 2 7) 

where b and c are real numbers. Instead of seeking 27 equations 
s s 

determining the a directly, one can at first seek 54 equations deter­
s 

mining the b and c • 
s s 

This is done by writing down 54 conditions neces-

sary for E E# to be a minimum with respect to the b 
mn mn s 

and c • 
s These 



conditions are 

(3/3bk)(E E#) = (3/3ck)(E E#) = 0, k = 1, ... ,27. mn mn mn mn (4.28) 

In carrying out the differentiation implied in Equations (4.28), it 

is convenient to note that 

and 

Now, 

Also, 

(3/3bk)(E E#) = mn mn 

-io sk. 

E (3/3bk)E# + E# (3/obk)E mn mn mn mn 

=O,k=1, .•. ,27. 

(3/3ck)(E E#) = (T -a g )( ig# ) mn mn mn s smn - kmn 

(4.29) 

(4. 30) 

( 4. 31) 

Equations (4.30) and (4.31) are 54 algebraic equations in the 54 

unknowns b and c . Notice, however, that Equations (4.30) simply s s 

state that the real parts of the complex quantities 

II (Tmn- as gsmn)gkmn' k = 1, •.• ,27, must be zero. Moreover, Equations 
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(4.31) state that the imaginary parts of these same quantities must also 



be zero. Taken together, the two sets imply that 

0, k = 1, ••. ,27, (4.32) 

which is a set of 27 equations to be solved for the a directly. 
s 

Written in another form, these equations are 

= T gil k = 
mn kmn' 1, ... ,27. ( 4. 33) 

It should be pointed out that when N = 9, Equations (4.33) are 

equivalent to Equations (4.22) derived in the collocation procedure. 

Equations (4.22) are 

a g = T , m = 1,2,3; n = 1, ••. ,9. s smn mn (4.34) 
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II Multiplication of these by gkmn followed by summation over the indices 

m and n would not change the values of the a determined by them. s 

Equations (4.33) for the special case N = 9 would be reproduced in 

the process, showing the equivalence mentioned. 

4. Least Squares Over the Entire Surface.--In the preceding 

section, the traction-error vector's squared Hermitian magnitude 

E (r')E#(r') was evaluated at N points r' on s. The results were m m n 

summed; the sum was minimized. In this section, the squared Hermitian 

magnitude will be evaluated at all points r' on S; the sum is replaced 

by integration. Thus, the quantity to be minimized is 

which is the analog of expression (4.25). The results of the last 

section permit the work here to proceed by inspection. Also, see 

Stakgold (1967), pp. 124-125. 



The a are determined by 
s 

- f!- --11-a ! 8 g (r')g (r')dS' = f T (r')g (r')dS' s sm km S m · km ' 
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(4.36) 

for k = 1, ••• ,27. Equations (4.36) are analogo·us to Equations (4.33). 

If the integrals in Equations (4.36) were to be performed numerical-

ly by approximations with finite sums, and if the elements of area 

~S associated with each of the N points ~· involved in the finite 
n n 

sums were all equal, then Equations (4.36) would become equivalent 

to Equations (4.33). This may be seen by using the notation of 

Equation (4.23) in writing the finite sums which would replace equa-

tions (4.36): 

a g g/1 ~s = 
s smn kmn n 

II 
T gk t:.s , k = mn mn n 1, ..• ,27. (4.37) 

In Equation (4.37) it is necessary to excuse the unusual notation: The 

summation over the index n is to be done only once, with each term in 

the sum having the same value of n in all of the three positions. If 

t:.S is the same number for all n, it may be divided out of the equations, 
n 

whereupon they become identical to Equations (4.33), as stated. 

If, on the other hand, !:.S is different for each n, then it plays 
n 

the role of a "weighting function" that weights each term in the sum 

according to the amount of area on S represented by the term. The 

numerical examples given later in this dissertation are all based upon 

Equations (4.36). Since the surface integration had to be done numeri-

cally, it was in fact Equations (4.37) that were employed. In doing 

so, it did not happen that !:.S was the same at each integration point; 
n 

making it so is impractical with most surfaces. While the advantages 



51 

of using Equations (4.37) instead of Equations (4.33) are thought to 

be appreciable, one special case (not presented in the numerical examples 

given later) was worked out in which 6S was in fact the same at each 
n 

integration point. This was done as one means of testing the program-

ming. Equations (4.37) reduced to Equations (4.33). Then, N was 

taken as nine, reducing the equations to Equations (4.22). Subsequent 

calculation of E <r' ) at the nine points r' after solving for the a m n n s 

gave the correct results, i.e., E (r' ) = 0, for all m and n. This m n 

provided a measure of confidence in the computer programs. 

Now it is time to recall that Equation (4.21) temporarily dropped 

a superscript j, i.e., the above discussions dealt only with a single 

dipole. There are three fundamental dipoles, hence three traction 

error vectors Ej(r'). By Equations (4.17) and (4.20), 
m 

(4.38) 



V. VOID CAVITIES--FINAL APPROXIMATION OF GREEN'S 
FUNCTIONS AND THEIR USE 
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In this chapter, a method for deriving a second, final, and 

substantially better approximation to the Green's Function for a 

finite void cavity will be developed. The development is somewhat 

more complicated than that leading to the first approximation; in 

practice, however, there is no great increase in the computational work-

load. In computer realizations of the theory, proper storage of inter-

mediate results leading to the first approximation makes them available 

in calculating the second approximation. The second approximation, 

of course, evolves directly from the first approximation derived in 

Chapter IV using least squares. 

A. Some General Results Required Later 

The development in this chapter is based upon what will be called 

Green's Integral Representation. Suppose a body force having compon-

ents F (r)exp(-iwt) acts in an elastic solid having a boundary S. m 

LetT (r'), r' on S, be the components of the unit normal vector on S n 

which points out of the medium. Let U.(r) and T (r) be the resulting 
~ mn 

space parts of the displacement and stress components respectively. 

Then, 

(5.1) 

where Q i(r'lr) is the fundamental solution and ~i (r'lr) are the m mn 

corresponding stress tensors. Equation (5.1) is the well known Green's 
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Integral Representation for the displacement components; it derivation 

and some references to the literature are presented in Appendix E. 

The representation (5.1) clearly incorporates boundary conditions, for 

one may observe U (r') and T (r')T (r') in the surface integrals. m ~ n 

The latter quantities are the traction components exerted on S by 

external means (see the discussion related to Equation (6.11)). 

Corresponding to three fundamental problems in elasticity, one 

may: 1) Specify u (r') only over all of S; 2) specify T (r')T (r') m ~ n 

only over all of S; or 3) specify displacement over part of S and 

traction over the remainder. Arbitrary specification of both over the 

same portion of S is not permissible. 

The work here is concerned with the case where S is made up of 

two parts, the boundary of a finite void cavity and a "surface at 

infinity." The surface integrals in Equation (5.1) vanish automatically 

on the part at infinity. In the remaining integrals, the unit normal 

points into the cavity. 

Since the cavity is void, the relevant boundary conditions are 

that no traction exist on S. This causes the vanishing of the first 

of the two surface integrals in Equation (5.1). 

Because of the fact that a Green's Function is a set of three 

displacement fields, three representations such as Equation (5.1) are 

required for its representation. These representations may be found 

by letting the body force be three dipoles in succession, each being 

parallel to a coordinate axis. These are, of course, the three 

fundamental dipoles of Chapter II; the j dipole has m component 
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0 .o(r- r ), 
mJ 0 

(5.2) 

where r is the point of application located somewhere in the medium and 
0 

-not on S. By using the expression (5.2) for F (r) in Equation (5.1), 
m 

while at the same time requiring traction on S to vanish, it follows 

that the Green's Function Q~.(rlr) is represented by 
1J 0 

(5 .3) 

Comparing this with Equation (4.6), namely, 

Q~.<rlr) = Q*i~<rlr) + Q .. <rlr ), 
1] 0 J 0 1] 0 

(5.4) 

it becomes clear that the surface integral in Equation (5.3) is merely 

the scattered part of the Green's Function. That is, 

Q~~<rlr ) 
1] 0 

(5.5) 

Since Equation (5.4) holds on S as well as elsewhere, it may be used 

in Equation (5.5), leading to 

( 5. 6) 

This is an integral representation for Q~~<rlr ); however, it is not 
1] 0 

of the form of a Green's Representation obtainable directly from 

Equation (5.1). To obtain the latter representation, note that there 

are no sources for Q*i~<rlr) in the medi\llll., i.e., it satisfies the 
J 0 

homogeneous equation of motion there. Thus, there is no volume integral 
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in Green's Representation. Also, as noted explicitly in Equation (4.9), 

the traction on s due to Q*i~(rj"r) must be -Ej (r' I r )T (r')' r' on s. 
J o ~ o n 

Using these facts in Equation (5.1), the Green's Representation is 

(5. 7) 

There is an apparent discrepancy between Equations (5.6) and (5.7). 

However, Part 1 of the following theorem, which is proven in Appendix 

E, shows the two representations to be identical. 

THEOREM: Let i) S be a closed surface dividing all of space into two 

regions; 

ii) ~ be the unit normal vector on S; 

iii) r and r 1 be two points in space; and 

iv) r .. Crlr1 ) = fs o .(r'lr>~j (r'lr1 )T (r')ds'. (5.8) 
~J 'In~ mn n 

Then: Part 1: If neither r nor r 1 is on S, but both are on 

the same side of S, 

i .. ( rll r) - 0. 
J~ 

(5. 9) 

Part 2: If neither r nor r 1 is on S, but if they are 

on opposite sides of S while f points into the region 

containing r 1 , 

(5 .10) 

The above theorem will find additional application shortly. Note 

in passing that if S is a surface enclosing a source point r 1, then 

Equation (5.10) is merely Green's Representation for the fundamental 



solution throughout the region not containing r 1 • 

B. The Second Approximation 
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It is necessary now to briefly return to Chapter IV, recalling that 

by Equation (4.16), the traction on s due to Q~~Crlr) is given approxi-
1J 0 

mately by 

(5 .11) 

where r' is on S, r 1 is inside the cavity, and M~j is the operator 

given by 

(5.12) 

In M'j 
s ' 

all Aj for k > p are zero, while the remaining coefficients skp 

are determined through the least squares procedure summarized by 

Equation (4.36). 

The first approximation to Q~~Crlr) itself is 
1] 0 

(5.13) 

regardless whether r is on or off S. The operator Mj is, of course, 
s 

merely M'j with all primes removed, i.e., s 

(5.14) 

Now, since Q. Crlr1) is a function only of the increments which are 
1S 

components of the vector r - r = (x - x1 )e , it is clear that 1 m m m 

(5.15) 

where n1k means atax1k. For this reason, it is a fact that 
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lj - --M [Q. (rl r 1)], S 1S (5.16) 

in which 

~j = 
s (5 .17) 

With Equation (5.17) in mind, reconsider now the integral represen-

tation, Equation (5.7). Substituting M1j [Q (r' I rl)] for O*~(r' lr) 
s ms 'mJ o 

in the first integral in Equation (5.7) results in 

- f <i (r'lr)ij (r' 1r )-r Cr')ds' (5.18) S mi mn 1 o n ' 

in which the operator was removed from within the integral. Equation 

(5.18) is the second (and final) approximation to the scattered part 

of the Green's Function. Since it is still an approximation, the 

equal sign employed therein is technically incorrect; this will be 

disregarded. 

The form of Equation (5.18) is not particularly convenient for 

purposes of interpretation or computation. In the equation, rand r 1 

are on opposite sides of S; r is the field point in mediumoutside the 

cavity while r1 is inside the cavity. The vector~ points into the 

cavity. Part 2 of the theorem given in the preceding section is 

1" applicable to the operand of M J in Equation (5.18). The vectors rand 
s 

r 1 here correspond to the vectors rand r1 , respectively, of Equation 

(5.10). 

therefore 

The index s here is the index j there. The operand of M1j is 
s 



(5 .19) 

Hence, Equation (5.18) may be written in the form 

(5.20) 

Equation (5.20) may be rewritten in still another form by using 
1. 

Equation (5.16) and by moving M J back under the integral sign in the s 

expression where it now appears. The result is 

-
Q~~ <rlr > = l.J 0 

(5.21) 

Now, the property expressed by Equation (5.15) is also valid for 

E:U<rlr1). It is therefore a fact that 

(5.22) 
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Thus, the expression T (r')M1j[Es (r'lr1)] in Equation (5.21) is merely n s mn 

the right side of the approximation (4.16) of Chapter IV. A brief 

review of Chapter IV, especially Equation (4.38), shows that the ex­

pression in curly brackets in Equation (5.21) above is just Ej(r'), m 

the m component of the j traction-error vector defined in the least 

squares procedure leading to the first approximation. Equation (5.21) 

may be rewritten in the form 

(5.23) 
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Notice that if the first approximation to Q~~ were to be considered as 
1J 

exact, so that Ej would be taken as zero everywhere on S, then m 

Equation (5.23) would reduce at once to an identity. 

Equation (5.23) expresses the second, and final, approximation to 

-Q~~ as the sum of the first approximation and the correction term ex-
1J 

pressed by the integral. At each field point r where a value of the 

scattered field is desired, the integral must be evaluated. This leads 

to much labor in practice even if only a few field points are considered. 

For this reason, the correction term will be replaced by a multipole series. 

First of all, note the physical significance, or interpretation, of 

the correction term. It is the displacement that would arise in an in­

finite, homogeneous medium (i.e., no cavity) if a traction Ej(r') were to 
m 

be applied on S. This fact is discussed in Appendix E, where the physical 

interpretation of other integrals encountered in the current chapter is 

also discussed. An important feature of the correction integral is that 

it gives the displacement due to a separable layer of traction on S, 

making the multipole series form for it easy to calculate. 

The details concerning the calculation of the multipole series form 

appear in Appendix F. The series may be truncated at any point one 

chooses; for the purposes of this dissertation, all terms of higher 

order than the octupole terms are deleted. Furthermore, owing to 

the fact, explained in Appendix D, that some multipole fields are 

linear combinations of others, it is possible to combine some of the 

terms in the remaining finite series. In this way, the correction to 

the first approximation reduces to correcting the coefficients A;k and 



Aj in that first approximation. Also, as discussed in Appendix F, skp 

there is not much additional labor connected with computing these 

corrections. 

Upon correcting the coefficients in the operator Mj as discussed 
s 
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above, the resulting operator will be denoted by Nj. Therefore, since 
s 

the Green's Function is the sum of its direct and scattered parts, 

the final approximation to the Green's Function is 

(5.24) 

The following section concerns the use of Equation (5.24). 

C. Using the Green's Function 

One of the most important points to be borne in mind when using 

Equation (5.24) is that the operator Nj is made up partly of a truncated 
s 

multipole series. This means that, even when the entire series is 

present, Equation (5.24) is not valid everywhere in space, even approx-

imately. The field point r must be more distant from r 1 than are all 

points r' on the cavity boundary S. This condition is required in order 

to assure convergence of the series to the integral it replaced. The 

truncated series implied in Equation (5.24) will be the more accurate 

the farther r is from r 1 • 

In Appendix E, along with the derivation of Equation (5.1), it is 

shown that if a body force having components F (r)exp(-iwt) acts in the s 

medium enclosing a void cavity, then the space part of the displacement 

components are given by 

Ui(r) = J a.s. 
(5.25) 



When the Green's Function Q* (r'lr) is known, Equation (5.25) is an 
si 

integral solution. 

An important property possessed by all Green's Functions can be 

derived from Equation (5.25) by substituting the body force components 
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F (r') =c. o(r- r) into the integral. Since these are the components 
S JS 0 

of the j fundamental dipole, the result of the substitution must be 

Q~.(rjr) by definition. Upon making the substitution, there follows 
1.] 0 

(5.26) 

This is an example of a so-called "reciprocity principle" of the type 

discussed by White (1965), p. 229. Equation (5.26) is analogous to 

a part of Equations (3.21); however, the latter equations show that 

the fundamental solution possesses some properties not mentioned in 

Equation (5.26) for the Green's Function. 

Upon using Equation (5.26) in Equation (5.25), the latter becomes 

f a.s. 
(5.27) 

Equation (5.27) is the analog of the steady state counterpart of Equation 

(3.34). All the optional methods available for using the Green's Func-

tion are based on either Equation (5.25) or Equation (5.27). 

1. Using Equation (5.27) Directly.--Assume that the integrals in 

Equation (5.27) are to be evaluated by approximation with finite sums. 

- -
Let the finite region in which F (r') are nonzero be divided into N 

s 

elements of volume V , n ~ l, ••• ,N. Let r' be the locations of these 
n n 

elements. Then, the displacement is (approximated by) 

(5.28) 



in which the sum over the index n is performed only once; the value of 

n in each term is the same in all three positions. 

A tremendous disadvantage of Equation (5.28) is that the Green's 

Function Q~ Crlr') must be known for each of theN source points r'. 
1.s n n 
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If N is large, then the method presented in this dissertation for calcu-

lating the Green's Function will lead to an enormous quantity of labor. 

Equation (5.28) will not, in general, provide a satisfactory means for 

calculating Ui(r). 

2. Using Equation (5.25) Directly.--The main disadvantage of 

Equation (5.28) is that the Green's Function for a large number of 

source points must be known. In case one desires values of Ui(r) at 

only a few field points, say r , m = l, .•• ,M, then Equations (5.25) are 
m 

appropriate. The displacement at a point r would be, using the analog 
m 

of Equation (5.28), 

(5.29) 

In using Equation (5.29), one would calculate the Green's Function 

corresponding to the source points r ' the actual field points. Once 
m 

done for a point r ' then values of Q*. <r' lr ) are known at each of the 
m s1. n m 

N integration points. Thus, only a total of M Green's Functions are 

required. 

3. Using the Body Force Multipole Series.--By Equation (2.58) the 

body force components are 

F (r) = L [o(r r )], 
s s 0 

(5.30) 

in which r is some "typical" point in the region where the F (r) are 
0 s 

nonzero. L is given by Equation (2.51) as 
s 



(5.31) 

where the G, etc., are defined by Equations (2.49). Upon using s 

Equations (5.30) and (5.4) in Equation (5.27), there follows 

(G + G kD0 k + (l/2!)G k D0 k + ... )Q*i*(rlr) s s s p p s 0 

(5. 32) 
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Just as Equations (5.25) and (5.27) possess inherent computational 

drawbacks, so does Equation (5.32). Since the fundamental solution 

Q. (rlr ) has the property 
1S 0 

(5.33) 

the second series in Equation (5.32) is simply L [Q. (rlr )], which 
s 1S 0 

presents no computational difficulties whatsoever. This part of 

Equation (5.32) is the direct field part; it can be easily evaluated 

at any field point r outside the smallest sphere centered at r complete­a 

ly containing the source. However, in the scattered part of Equation 

(5.32), i.e., the first series, one is forced to take literally the 

implied differentiation of Q~*<rlr ) with respect to the components 
1S 0 

x k of r • There is no reason to expect that Q~*<rlr ) can have the 
0 0 1S 0 

property expressed by Equation (5.33) for the fundamental solution. On 

the other hand, it is quite clear that the method presented in this 

dissertation for the calculation of Q*i*<rlr ) requires r to be a given s 0 0 

constant vector; numerical values of its components are required as 
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"input" information. While the symbol Q~*(rlr ) continues to indicate 
l.S 0 

the dependence on r ~ there is in fact no easy way to differentiate the 
0 

end result with respect to the components of r • 
0 

0 
Since the differentiation implied by D k' etc., can neither be 

performed nor transferred to the field coordinates, Equation (5.32) is, 

at the moment, somewhat worthless from a computational viewpoint. It 

is valid nevertheless; in Section D below its meaning will be explored 

in detail. In its present form, Equation (5.32) may in some cases 

serve as the basis for approximations. For example, if the G are found s 

to be much larger than all other coefficients, then dropping all other 

terms but the first of both series in Equation (5.32) may be justified. 

If r is very far from the cavity while lr - r I is small, it may 
0 0 

prove feasible to retain only the dipole terms in the first series 

while retaining more terms in the second. Such approximations are best 

made on an ad hoc basis; the matter will not be discussed further. 

D. Scattering of Higher Order Multipole Fields 

It may happen that for one reason or another, none of the methods 

suggested in Section C above for the calculation of the displacement 

due to an arbitrary body force are acceptable. There are at least two 

other routes one might take. One of these methods involves taking the 

complete field from the source (instead of only dipole fields) as the 

input to Chapter IV. This is best discussed in the next chapter; the 

technique may be useful in cases in which only one arbitrary source is 

to be studied. If, on the other hand, one intends to study more than 

one source in a series of problems related to the same cavity, then 

the contents of this section should be of more interest. What follows 
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here amounts to an outline of how one would go about analysing the 

scattered field of an arbitrary source on a multipole component by 

multipole component basis. 

Reconsider Equation (5.32), recalling that only the scattered 

field, i.e., the second series, offers any computational difficulty. 

Only this scattered field need be considered here; it is 

-
(Gs + GskDok + (l/2!)GskpDokp + ... )Q!:<rlro), (5.34) 

in which r is an expansion point somewhere in the finite region where 
0 

the body force is nonzero. It is important to realize that if one were 

clever enough to calculate Q~*(rjr ) in a functional form containing 
l.S 0 

r parametrically, then Equation (5.34) would become immediately useful. 
0 

What follows here would become redundant, for it is a study of some of 

the consequences of the numerical procedures used to calculate Q**Crlr ). is o 

The meaning of the symbol D0 Q*i*Crlr ) must first be explained from 
p s 0 

a computational viewpoint. Clearly, from a "theoretical" viewpoint it 

is merely the scattered field due to an incident field D0 Qi (rjr ), 
p s 0 

i.e., -D Q. <rlr >. 
p l.S 0 

Returning to Chapter IV, recall that the first approximation to 

Q~*Crlr ) is given by 
l.S 0 

where Aj = 0 for k > p. 
skp 

(5.35) 

r 1 is a point within the cavity. As indicated 

j 
in Equation (4.19) and explained thoroughly in Appendix D, the Ask and 

A~kp are temporarily replaced with a~, s = 1, ••• ,27, as a matter of 

notational convenience. The aj are then determined from Equation (4.36), 
s 
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namely, 

(5. 36) 

Notice that for each value of j, Equation (5.36) has a simple interpre-

tation in the language of matrices. 

be written in the form 

A formal solution for the aj may 
s 

(5. 3 7) 

in which Hsk is the sk element of a 27 x 27 array of complex numbers. 

The matrix formed from this array is the inverse of the matrix whose 

ks element is 

- If -
fS g ( r 1 ) g ( r 1 ) dS 1 • sm km (5. 38) 

It is important to realize that since the expression (5.38) is inde-

pendent of r , so is H k" Once a cavity and a frequency are given, then 
0 s 

Hsk may be calculated; this part of the work does not depend upon the 

nature of the incident field. (Note: As pointed out in Appendix F, 

some of the work involved in computing the second approximation also 

has this property.) Information concerning the incident field enters 

Equation (5.37) through the factors Tj(r'), the traction on S due to the 
m 

incident field. Using Equation (4.17), the aj are given more explicitly 
s 

by 

(5.39) 

In Equation (5.39) it is clear that the first approximation depends on 

r only through the factor -fj (r1 lr) which helps determine the aj. 
o mn o s 
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Meaning may be assigned to the operation D0 aj in the following way: 
p s 

= H J D' ~j (r' l"r )T (r')g11 cr')ds'. sk S p mn o n km (5. 40) 

in which D0 was first applied to the right side of Equation (5.39) under p 

the integral sign. Then the property 

(5.41) 

was used. It must be borne in mind that the symbolic procedure above 

does not imply that the numbers D0 aj are derivable from the numbers aj 
p s s 

after the latter are calculated. The integrals shown explicitly in 

Equation (5.40) are independent of those in Equation (5.39). They must 

be evaluated separately. 

By means of Equation (5.40), it is possible to assign a definite 

meaning to the result of operating upon expression (5.35) with D0 • 
p 

That is, the first approximation to the Green's Function can be 

differentiated with respect to the source coordinates in this way. It 

is clear that doing so results in a first approximation to the scattered 

field when the field incident upon the cavity is -D Q .. (~!r ). This 
p 1J 0 

may be understood by noting that this incident field gives rise to 

tractions -D' fj (~'I~ )T (~') at r' on s. In order to calculate linear 
p mn o n 

combinations of multipole tractions to nullify these tractions, their 

negatives can be substituted for Tj(r') in Equation (5.37), whereupon 
m 

the right sides of Equations (5.37) and (5.40) become identical. 

Now, the second approximation to Q~~(rlr ) is given by Equation 
1J 0 

(5 .23) as 

(5.42) 



in which Ej(r') is given by Equation (4.38). 
m 

The part Mj(Q. <rlr1)J 
S l.S 
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is the first approximation. From Equation (4.38), it follows that 

(5. 43) 

which clearly are the traction error vectors arising when the tractions 

-til I Ej (r' I r ) T (r')] are approximated by linear combinations of the 
p mn o n 

multipole tractions g (r'). 
sm 

At this stage it is quite clear that when the field -D Q .. (r[r) 
p l.J 0 

scatters from the cavity, an appropriate unambiguous symbol for the 

scattered field calculated using the method of this dissertation is 

D0 Q~~(rjr ). While that is true, this scattered field cannot be 
p l.J 0 

calculated by differentiating Q~~(rjr ) directly owing to the unavoid-
l.J 0 

able unfortunate feature of the computational technique itself. In 

o- --
order to calculateD Q~~(r[r ), Equation (5.40) is employed first to 

p l.J 0 

find the numbers D0 aj. Then the analog of Equation (5.42) gives the 
p s 

final approximation. The correction term can be replaced with its 

multipole series, which would be truncated in practice. The remaining 

terms, assumed here to be the octupole terms and lower, could be 

combined in such a way that they could then be further combined with 

0 j the D a • 
p s 

Ultimately, in direct analogy with the operator Nj of s 

Equation (5.24), an operator Njp could be formed. That is, from 
s 

Equation (5.24), 

- --
Q~*(r[ r ) 

J.j 0 
(5.44) 

and now also, 

(5.45) 



Now Nj of course has the form , s 

(5. 46) 

in which the Bj and Bj result from correcting the Aj and Aj of 
sk skp sk skq 
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the first approximation to Q~~(rjr ). 
1J 0 

It will happen then that Njp will 
s 

have the form 

BjpD + jp 
sk k BskqDkq" (5.47) 

Thus far in the current section, it has been shown that when the 

incident fields at the cavity are -D Q .. (~~~ ), i.e., the negative 
p 1J 0 

quadrupole displacements from a source point r , then the resultant 
0 

scattered fields are given by Equation (5.45). This required retracing 

the work of Chapter IV and most of the current chapter, which together 

treated the case in which the incoming fields were Q .. (~j r ) . Clearly 
1J 0 

the same process can be done for the case in which the incident fields 

are the octupole fields +D Q .. (~jr ), p ~ q. Without much effort it pq 1J 0 

can be seen that the resulting scattered fields may be expressed by 

(5.48) 

.where 

(5.49) 

The process can be continued for higher order incident multipole fields, 

the workload increasing each time. There are 81 coefficients in the 

Nj 243 in the Njp 
s' s ' 

and 486 in the Njpq. 
s 
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At this point, a more definite computational meaning may be 

associated with Equation (5.32), the multipole series form for the 

displacement due to an arbitrary body force. As a matter of simplicity, 

assume the body force of Equation (5.30) is given sufficiently well 

by 

- -F (r) = (G - G D )o(r- r ). 
s s sp p o 

(5.50) 

Equation (5.32) becomes 

u. <r> = G q. (1Tr ) - G n q. <rlr ) 
l S lS 0 sp p lS 0 

(5.51) 

By Equations (5.44) and (5.45) this is 

(5 .52) 

In Equation (5.52), all differentiation is with respect to the field 

coordinates. No computational difficulties arise, though for purposes 

of convenience it may prove useful to notice that 

G Nj + G Njp 
j s jp s 

= (G Bj + G Bjp)D + (G.Bjk + G. Bjkp )Dk = P 
j sk jp sk k J s m JP s m m s 

(5.53) 

is just an operator analogous to L • Regardless of the number of terms s 

retained in L , one will always be able to ex?ress the displacement . s 



in the form 

U. ( r) = 
1 

L [ Q. ( r [ ~ ) ] + P [ Q. ( r I r 1)], 
S lS 0 S lS 

(5.54) 

in which the multipole series about r in the source is the direct 
0 

field while the second multipole series about r 1 in the cavity is 

the final approximation to the scattered field. 

Equation (5.54) has several convenient computational features. 

71 

Once L and P are known, the displacement, stress, or other quantities s . s 

caused by the body force are known at all field points r outside the 

smallest sphere completely enclosing the cavity while also outside the 

smallest sphere completely containing the source. Numerical values 

for any of the field quantities are easily obtained. 

As stated earlier, if one desires to study the effect of many 

different sources, one at a time, all operating at the same frequency 

near the same point r in the vicinity of a given cavity, then 
0 

Equation (5.49) is particularly useful. Only the numbers G , G k' etc., s s 

need be recalculated upon introducing a different source. 



VI. ADDITIONAL APPLICATIONS OF THE THEORY 

In the preceding chapters, attention has been focused primarily 

upon scattering of waves from arbitrary finite sources by void finite 

cavities of arbitrary shape. Only cases in which the mathematical 

·nature of the source was given were considered. In particular, the 

last two sections of Chapter V concerned the final steps involved 

in writing down solutions. The current chapter discusses some other 

problems which may be handled by the analytical apparatus of the 

earlier chapters. 

A. Additional Scattering Problems--Plane Waves 
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It is assumed here that there exists a void finite cavity in a medium 

of the type considered earlier. However, instead of taking the 

source to be known, only the incident displacement field is considered 

as given. The procedure will be discussed using plane wave scattering 

as the example incident field; however, the technique provides an 

additional alternative to Section (V-D). That is, when a source is 

given, one may study its scattered field as a whole using the current 

section rather than studying the scattering of the individual multipole 

components as in Section (V-D). 

No essential modifications of the method are necessary in order to 

treat problems from the new viewpoint. One merely calculates the 

traction on the cavity boundary due to the given incident field, con­

structs a scattered field via Chapter IV to approximately nullify this 

traction, and derives the correction to the scattered field via Chapter V. 

Suppose the incident field is given by 

(6.1) 
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This is the displacement due to a plane compressional wave traveling 

in the direction of e3 • The space part is 

( 6. 2) 

By applying Hooke's Law, the space part of the stress tensor is 

( 6. 3) 

Then, the traction components on a surface whose unit normal vector 

is f are 

-T (r') = T (r')T (r') 
m mn n 

(6. 4) 

where r' is on the surface. 

Now, taking the surface to be the boundary of a void cavity, a 

return to Chapter IV is made in order to derive the first approximation 

to the scattered field. In particular, the beginning point is the 

analog of representation (4.20). Since it is required that the con-

-structed linear combination of multipole tractions represent -T (r'), 
m 

the representation is 

-r Cr')- a g Cr'), 
m s sm 

(6. 5) 

where T (r') is now given by Equation (6.4). There is no superscript 
m 

j here because only one boundary value problem is being solved; Chapter 

IV concerned a set of three boundary value problems. The rest of the 

work routinely follows the remainder of Chapter IV and all of Chapter V 

except the last two sections, which do not apply. 
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Consider now an incident field given by 

(6. 6) 

which is the displacement due to a plane shear wave traveling parallel 

to e3 while polarized parallel to e1 • In this case the space parts of 

the traction components on the cavity boundary are 

(6. 7) 

Again a return to Chapter IV is made; the work is routine. 

It may be noted that the method outlined here for the treatment 

of one plane wave scattering problem is in principle quite analogous 

to calculating one third of a Green's Function. However, the plane 

wave problems are in fact easier computationally because the structure 

of the incident field is simpler in each case. 

Some numerical results regarding the plane wave problems just 

discussed are presented in the next chapter. 

B. Scattering by Multiple Cavities 

When two or more void cavities exist in the medium, it is likely 

that fields scattered from some of them would be non-negligible at 

the boundaries of others. Thus, secondary scattered fields may have 

to be calculated. In turn, these secondary scattered fields may be 

sufficiently strong to create still other scattered fields, and so on. 

In this manner, the cavities may be said to interact with each other. 

To solve source problems in such media, one may desire a Green's 

Function corresponding to the total free boundary. This total boundary 

is the "sum" of all the individual cavity boundaries. A method for 
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estimating such Green's Functions will now be presented. With a 

modification in viewpoint analogous to that described in the preceding 

section, it can also be used to solve problems in which prescribed 

incident fields, such as plane waves, traverse the region with cavities. 

Also, as discussed in the next section, the method may be used to 

treat cavity-source problems in which the field generated by such a 

source scatters back upon it from some other object, the resulting 

secondary scattered field being non-negligible. 

In all problems related to a specified source operating in the 

vicinity of two or more cavities, one will always have the choice of 

treating incident fields on a multipole component by multipole compon-

ent basis or of treating the incident fields as whole entities. 

What follows now is the outline of. a method for calculating the 

approximate Green's Function for the two cavity case. The geometrical 

aspects of the problem are shown in Figure (6.1). 

In the figure, s1 and s2 are the boundaries of the two void finite 

cavities. The points r 1 and r 2 are "expansion points" chosen within 

s1 and s2 respectively; they each correspond to the point r 1 used pre-

viously in connection with one-cavity problems. r is the source point, 
0 

i.e., the point where the three fundamental dipoles are located. r is 

the field point. 

In the absence of cavity 2, one can calculate the following Green's 

Function, corresponding to cavity 1, by means of Chapters IV and V: 

(6. 8) 
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Figure 6.1 The Two-Cavity Scattering Problem 
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Similarly, in the absence of cavity 1, one can calculate 

the Green's Function corresponding to cavity 2 alone. Assuming these 

two Green's Functions are known, the method for calculating Q~.(rjr ), 
~J 0 

the "total" Green's Function, is one of successive approximations. 

First, Q~.(r!r) is approximated in the following way: 
~J 0 

Ci~.<rlr > 
~J 0 

(6.10) 

On the right side of the approximation, the second part is the scattered 

field from s1 when s2 is absent; it comes from Equation (6.8). The 

third part is the scattered field from s2 in the absence of s1 ; it is 

taken from Equation (6.9). Now, the first two parts on the right side 

of approximation (6.10) taken together give rise to negligible traction 

on cavity 1 by construction of the Green's Function (6.8). However, 

the third part gives rise to non-negligible traction at cavity 1. 

Similarly, it is the second part alone that gives rise to non-negligible 

traction at the boundary of cavity 2. Thus, there exists a situation 

in which multipole fields are incident upon each cavity. Suitable 

scattered fields must be constructed to cancel the consequent traction 

in each case. 

Such construction was the subject of Section (V-D). In that section 

it was the multipole fields contained in L [Q. (rjr )] that arrived at 
s ~s o 

the cavity. Here it is the fields contained in 2Nj[Q. (r!r2)] that 
s ~s 

arrive at cavity 1 requiring nullification. In the meantime, the 

fields contained in ~~[Qis(rlr1)] are incident upon cavity 2; their 
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tractions must be nullified by suitably constructed scattered fields. 

When the two new sets of scattered multipole fields are added to the 

right side of approximation (6.10), a second approximation to the 

Green's Function results. However, the new fields just constructed 

which represent scattering from cavity 1 now create a {perhaps) non-

negligible traction at cavity 2, and vice versa. Therefore, the next 

approximation is obtained by the calculation of still two more sets 

of scattered multipole fields. The process is continued until the 

most recently constructed fields representing scattering from cavity 

1 are negligible at cavity 2, and vice versa. 

C. The Cavity-Source Problem 

The cavity-source problem involves the calculation of the displace-

ment field arising in a medium due to the application of known tractions 

upon the boundary of a cavity situated in the medium. In what follows, 

the cavity will be taken as being of finite extent; the surrounding 

medium will be infinite, isotropic, homogeneous, and perfectly elastic. 

The applied traction components are taken as T (r')exp(-iwt), r' 
m 

on S, the cavity boundary. With T (r') the components of the inward 
n 

unit normal vector on S, the boundary conditions on the stress tensor 

-field T (r') are given by 
mn 

- -
T (r')T (r') 

mn n 
(6 .11) 

Equation (6.11) may be understood as follows: The traction components 

T (r')T (r') are, by definition, exerted upon matter on the side of s 
mn n 

out of which ~ is pointing by whatever is on the other side of S. In 

the present case, some kind of machinery is on this latter side of S; 
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-it is the traction with components T (r') that this machinery is apply­
m 

ing. Hence Equation (6.11) follows. 

Introducing the source through the boundary conditions, Equation 

(6.11), means that no volume integral is present in Green's Representation, 

Equation (5.1), for the displacement components U.(r). That repre-
1. 

sentation becomes 

(6.12) 

which is the form used by Case and Colewell (196 7). Notice that if 

T (r') were given as _fj (~'I~ )T (r'), where~ is outside the cavity, 
m mn o n o 

then Equation (6.12) would become identical to Equation (5.7). In 

making the comparison of the two equations, one should note that 

-
U.(r) here would be replaced with Q~~(~j~ ). This comparison clearly 

l. l.J 0 

shows that calculation of tl1e scattered part of a Green's Function in-

volves the solution of three particular cavity-source problems. It 

is no surprise then, that the methods used in Chapters IV and V are 

immediately applicable here. 

The first step in solving the cavity-source problem is the calcu-

lation of the first approximation via Chapter IV. Representation (4.16) 

becomes 

( 6 .13) 

Thus, a linear combination of multipole tractions that best approximates 

T (r') in the least squares sense is being sought. The absence of the 
m . 



superscript j on the A k and A k here is indicative of the fact that s s p 

only one boundary value problem is being solved here as opposed to 

the three problems involved with Green's Functions. 

where 

~ 

The first approximation to U.(r) may be denoted as 
l. 

M [ Q. Crl r 1) ] , 
S l.S 

M 
s 

(6 .14) 

(6.15) 
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These expressions should be compared with Equation (5.13) and expression 

(5.14). Upon using the method of Chapter V in connection with Equation 

(6.12) here, the first approximation may be corrected to yield a second, 

and final, approximation in multipole series form: 

~ 

U. (r) = 
l. 

N [Q. Crl r 1)], S l.S 
(6.16) 

where N arises from M upon applying the corrections. 
s s 

An important asset accrued by being able to solve cavity-source 

problems concerns the development of a test which can be used to check 

certain portions of the computations made in solving other problems. 

That is, one can solve a cavity-source problem that has a known solution. 

Such a case will now be discussed. 
~ 

Consider the three problems arising when T (r') are specified as 
m 

~~(~'1~1)Tn(~'), successively as j = 1,2,3. Here, r 1 is inside the 

cavity so that this is not the scattering problem. f points into the 

cavity. The three displacement fields for j = 1,2,3 will be denoted 

by Uij(~lr1). Green's Representations for these fields are, by 

Equation (6.12) 
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u .. c-;lr1) 
~J 

(6.17) 

Comparison of this with Equation (5.10) shows that 

u .. c-;1 rl) = Q .. <rl rl) ' 
~J ~J 

(6 .18) 

in accordance with the well known (Love (1944), p. 185) and intuitively 

clear fact that Q. ,(-;jr1) can be generated by application of the traction 
~J 

components I~(r' lr1)Tn(r') to the boundary of a cavity containing r 1 . 

Therefore, the known solution with which the computed results will be 

compared is merely the fundamental solution in this case. 

As shown in Appendix D, the fundamental solution can be written 

as a certain linear combination of octupole terms. Thus, the dipole 

tractions, i.e., those calculated from the fundamental solution, are 

linear combinations of octupole tractions. All the independent octupole 

tractions are in the approximating set used in the least squares process 

giving the first approximation. This means that the solutions to the 

present cavity-source problems can be represented exactly by certain 

linear combinations of displacement fields whose corresponding tractions 

are in the approximating set. If the theory is valid and the computa-

tional procedures correct, then the first approximation, calculated by 

least squares,, should be exact in each of the three present examples. 

The coefficients in the linear combinations calculated by least squares 

should be identical to those exact coefficients calculated by using 

Appendix D. Finally, the corrections applied via Chapter V should be 

zero. 



82 

The numerical calculations described above were in fact carried 

out for a given cavity. The least squares process generated the 

correct coefficients within four significant figures of accuracy. The 

corrections were so small that they did not change these four figures 

in any case. 

These results point out that when the given applied traction T (r') 
m 

in a cavity-source problem closely resembles some linear combination 

of multipole tractions contained in the approximating set, then one may 

expect good results from the computations. Another point to be made 

concerns numerical work; the computations just described required about 

seven minutes on an IBM 360-50 computer. The results help generate 

confidence in a rather large amount of programming used in all other 

problems. Also, they indicate that roundoff error is not intolerably 

severe. 

Before closing this section, it should be mentioned that in 

some problems it may happen that the field generated by the cavity-

source strikes some other object, thereby causing non-negligible 

energy to return to the source. One may be required to calculate 

the field resulting when this returning energy is scattered from the 

cavity-source itself. Here, it will be assumed that the returning field 

has been calculated, and postulated that the mechanism within the cavity-

source continues to apply the same traction to the boundary that it 

does in the absence of any returning energy. Under this postulate, 

it is necessary only to construct a scattered field whose traction 

cancels that due to the returning energy. This approach leads back 

to the preceding section, which may be applied directly. 
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D. Scattering from Rigid Bodies 

If any of the finite void cavities so far discussed in this disserta­

tion were to be replaced with rigid bodies, a slight modification of the 

method would again provide solutions. This is true because of the 

similarity in the boundary conditions in the two instances. The 

boundary conditions are vastly different from a physical viewpoint, 

but quite similar mathematically. In the case of void cavities, the 

traction must vanish at the boundary; with rigid bodies, displacement 

must vanish. Green's Functions and other fields must be constructed 

in such a way that this latter condition is fulfilled. 

In Chapter Iy, one would use the least squares process to find a 

linear combination of multipole displacements that would approximately 

cancel the incident displacement field at the boundary. Then, in 

Chapter V, the traction on the boundary due to this first approximation 

would be calculated using Hooke's Law. This traction would be used to 

replace the unknown traction appearing in a Green's Representation of 

the exact scattered field, leading to the second and final approximation. 
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VII. NUMERICAL RESULTS 

A. Sources of Error 

Computer programs have been written (by the author) in order to 

compute numerical solutions for some selected problems. Before present­

ing these results however, it might be well to summarize the approximations 

made during the entire process. 

The first approximation comes in the least squares process of 

Chapter IV. Only in rare instances would one expect to be able to 

represent the negative incident traction by any linear combination 

of multipole tractions. The least squares procedure, while almost 

never producing an exact result, could be improved upon by adding more 

independent multipole traction vectors to the approximating set. The 

computational burden would increase, along with roundoff error. This 

latter type of error is present in all phases of the numerical work. 

In Chapter V, the output from the least squares process is used 

in integral representations, whereupon they become approximate integral 

solutions. This improves upon the original approximations as shown in 

Appendix E; however, even if it were possible to evaluate the integrals 

exactly, the final solutions would still be approximate. 

The new solutions were seen to have the form of the least squares 

approximations to the displacements plus correction integrals. The 

burden of having to evaluate the latter at each field point encouraged 

their replacement with multipole series. Mu1tipole series, however, 

must be truncated in practice; doing so resulted in still other errors. 

The antidote for these errors is the retention of more terms in the 

multipole series. 
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Finally, there are errors arising from the method used to evaluate 

the integrals arising during the calculation of the first approximation 

and also during the calculation of the multipole series replacing the 

correction integrals. In general, such surface integrals cannot be 

evaluated in closed form. For the numerical examples presented here, 

the integrals were approximated by replacing them with finite sums. The 

surface was broken into N surface elements whose areas were computed. 

N was taken as 392 here. The integrands were evaluated near the centroid 

of each element, the result being multiplied by the element's area in 

each case. The results were summed to complete the approximate inte­

gration. 

In summary, there are at least four ways in which accuracy may 

be improved: 

1) By using more multipole tractions in the approximating set; 

2) By using more terms in the multipole series replacing the 

correction integrals, or by using the latter directly; 

3) By using more surface elements in the numerical integration; 

4) By using more significant figures in all the several million 

arithemetic operations involved throughout. 

B. Energy Carried by Seismic Waves 

In presenting numerical results related to 3-dimensional elastic 

wave problems, there are several physical quantities whose values can 

be computed and sketched. Examples include the magnitude of the 

displacement vector, components of displacement, dilatation, components 

of rotation, potentials, etc. One could discuss quantities that propa­

gate with velocity a and quantities propagating with velocity S. Source 
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fields, scattered fields, or their sum could be depicted. 

Of all the available choices, elastic wave energy ·has been chosen 

as the vehicle used to pictorially summarize the overall nature of 

the scattering. The calculations leading to the diagrams will now 

be explained. 

The energy carried by elastic waves is perhaps best described by 

a vector function S(r,t), which gives the time rate and direction of 

energy flow per unit area at any point r in the medium. The vector has 

dimensions of energy per unit time per unit area, i.e., power per unit 

area. It may be called the density of energy flow; it is the direct 

analog of Poynting's Vector of Electrodynamics. The form of S(r,t) is 

given by Morse and Feshbach (1953), p. 151. An intuitive derivation of 

the formula will be given here in the hope that it will help clarify 

the diagrams given later. 

Whatever the form of S, the scalar quantity S•T, where T(r) is a 

unit vector at r, must be the energy per unit time per unit area flowing 

in the direction of T. If T is the unit normal to an element of area 

dS at r, then S•TdS must be the energy per unit time crossing dS in 

the direction of T. Now, energy is transmitted in an elastic medium 

by tractile forces, i.e., traction. When forces are exerted upon matter 

on the side of dS toward which T is drawn, Ez matter on the other side 

of dS, then there is a positive flow of energy crossing dS in the direc-

tion of T. The traction exerted upon matter on the side of dS toward 

which T is drawn, by matter on the other side of dS, is -e T T , by mmnn 

definition of the stress tensor T 
mn 

The force on dS is -e T T dS. mmnn 



The power delivered by this force is V•(-& T T dS), where Vis the 
mmnn 

velocity of the medium at dS. This power is the energy per unit time 
A 

crossing dS in the direction of T. Hence 

-V T T dS = S•TdS = S T dS, 
mmnn nn (7.1) 

where 

s c-r, t) 
n 

-v (r,t)T (r,t) 
m mn ( 7. 2) 

is the definition of S. Since Equation (7.2) does not necessarily 

follow from Equation (7.1), the above derivation is non-rigorous; 
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nevertheless, Equation (7.2) does correctly give Sn(r,t). The discussion 

above explains physically why it does so. 

Now, the velocity components are given by 

v <r,t) = <a!at)u cr,t), 
m m 

( 7 0 3) 

so that 

S = - (3U /3t)T .. 
n m mn 

(7 .4) 

Reconsider now the scalar quantity 

S•T = - (3U /3t)T T , 
m mn n 

(7.5) 

which is the instantaneous energy flow density in the direction ofT. 

If the waves were plane waves traveling in the direction of T, then some 

authors would call the right side of Equation (7.5) the intensity of the 

waves. Others might prefer to call the time-averaged version by the 

name intensity. The time-averaged version of 181 is called intensity 

by some authors when S is Poynting's Vector in Electrodynamics. 
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The quantity to be dealt with here is the time average of 

S•T where f is the outward unit normal vector to a sphere completely 

enclosing the scatterer. Thus, the time-averaged values of the 

energy per unit time per unit area crossing the surface in a direction 

away from the scatterer will be graphed. 

If P is the temporal period of the waves, then the quantity 

E(r) to be plotted is 

E(r) = (1/P) J P s(r,t)•f(r)dt. 
0 

(7. 6) 

The angular dependence of E in planes through the source, scatterer, 

etc., will be sketched. The intersection of these planes with the 

sphere whose unit normal is Tare circles. Several values of E will be 

computed for a given circle. Then all values on the circle will be 

divided by the largest value in the group. When these normalized 

values are plotted on a circle using polar graph paper, a "radiation 

pattern" will emerge. This will show the angular dependence of E in 

the chosen plane. Comparison of two or more diagrams for other planes 

will provide an idea of the total angular dependence in three dimensions. 

By adjusting the radius of the spheres upon which E is calculated, one 

can study the "near", "far", or "intermediate" fields. 

Returning to the computational aspects now, recall that 

u (r,t) = u (r)exp(-iwt) 
m m 

(7.7) 

and 

T (r,t) = T (r)exp(-iwt), 
mn mn 

(7 .8) 
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- -in which U (r) and T (r) are complex valued functions, say 
m mn 

u (r) = a (r) + ib (r) 
m m m 

(7. 9) 

and 

-
T (r) = c (r) + id (r), 

mn mn mn 
(7 .10) 

in which a ,b ,c , and d are real valued. 
m m mn mn 

One must use either the real or the imaginary parts of U and T 
m mn 

in calculations of E. The real parts will be used here, meaning that 

the sources actually have a time factor cos(wt) rather than the exp(-iwt) 

used in the theory. 

Now, 

Re[U (r,t)] =a (r)cos(wt) + b (r)sin(wt), m m m 
(7.11) 

and 

Re[T (r,t)] = c (r)cos(wt) + d (r)sin(wt). 
mn mn mn 

(7 .12) 

Thus, using these real parts in Equation (7.5), 

= w[a sin(wt)- b cos(wt)][c cos(wt) + d sin(wt)]T m m mn mn n 

== w[a d sin2(wt) + (a c - b d )sin(wt)cos(wt) 
mmn mmn mmn 

- b c cos 2(wt) ]T . (7 .13) 
mmn n 

Using Equation (7.6) to take a time average over a period P = 2n/w, 

E = (w/2) (a d - b c ) T • ( 7 .14) 
mmn mmn n 
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Equation (7.14) is the equation used in the computer programs. 

In applying it, one must realize that the calculation of E involves 

nonlinear operations upon the displacement field. Thus, values of E 

due to the existence of two superimposed displacement fields (such as 

an incident field and its scattered field) is not the sum of the values 

of E calculated for each individual field. The total displacement 

must be calculated first, with E following from this total displacement. 

The same precautionary note applies to individual fields given in 

multipole series form. If E is calculated for each multipolar component, 

then the sum of these constituents will not represent the correct value 

of the total E. 

C. Radiation Patterns 

Since the development of an analytic technique is the goal of 

this dissertation, not many specific numerical results will be presented. 

All the figures to follow, except Figure (7.1), concern scattering 

from a void spherical cavity having a radius of 100 feet. The radia­

tion patterns depict the scattered fields only. In all cases, the fre­

quency is 90 cps. Wave speeds a and S were taken as 20,000 and 10,000 

feet/sec, respectively. The mass density p was taken as unity. Any 

other values could have been used for any of these parameters. 

In the diagrams, coordinate axes are labeled to indicate the plane 

in which the figure is drawn. The value of R given in each case denotes 

the radius of the spherical surface, concentric with the cavity except 

in Figure (7.1), upon which E was calculated. Where appropriate, the 

maximum value of E encountered in a given diagram is given as E max. 

This number is useful for comparing two or more diagrams for the same 
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incident field; it is otherwise meaningless. 

The first figure below is the field of a dipole force alone, i.e., 

it pertains to the fundamental solution. In computations leading 

to the remaining figures, the correction derived in Chapter V was 

applied. 



Figure 7.1 Direct E Field for a Dipole Source Along e3 in 
Homogeneous Media 
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= .266 X 10-lO 

Figure 7.2 Scattered E Field in 1-3 Pl~ne at R = 200 Feet Due 
to Incoming Displacement e.Q. 1 From Dipole at 

~ ~ 

(0,0,-125) 
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= .144 X 10-l3 

Figure 7.3 Scattered E Field in 1-3 Plane at R = 10,000 Feet 
Due to Incoming Displacement e.Q. 1 From Dipole at 
(0,0,-125) . 1 1 
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= .266 X 10-lO 

Figure 7.4 Scattered E Field in 2-3 Plane at R = 200 Feet Due 
to Incoming Displacement eiQil From Dipole at 
(0,0,-125) 
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E = .144 x 10-l) 
max 

Figure 7.5 Scattered E Field in 2-3 Pl~ne at R = 10,000 Feet Due 
to Incoming Displacement eiQil From Dipole at 
(0,0,-125) 
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Figure 7.6 
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E = .904 X 10-ll 
max 

Scattered E Field in 1-2 Plane at R = 200 Feet Due to 
Incoming Displacement e.Q. 1 From Dipole at (0,0,-125) 

1. 1. 
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= .211 X 10-10 

Figure 7.7 Scattered E Field in 1-3 Plane at R = 200 Feet Due 
"' -to Incoming Displacement eiQiJ From Dipole at 

(0,0,-125) 
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= .750 X 10-14 

Figure 7.8 Scattered E Field in 1-3 Plane at R = 10,000 Feet 
Due to Incoming Displacement e.Q. 3 From Dipole at 
(0,0,-125) ~ ~ 
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= .135 X 10-15 

Figure 7.9 Scattered E Field in 1-3 Plane at R = 200 Feet Due to 
Incoming Plane Compressional Wave Traveling in the 
e3 Direction 



+~ 

E = .510 X 10-lg 
max 

Figure 7.10 Scattered E Field in 1-3 Plane at R = 10,000 Feet 
Due to Incoming Plane Compressional Wave Traveling 
in the e3 Direction 

101 



E = .444 x 10-l6 
max 

Figure 7.11 Scattered E Field in 1-3 Plane at R = 200 Feet 
Due to Incoming Plane Shear Wave Traveling in 
~he Direction of e3 While Polarized Parallel to 

el 
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= .218 X 10-lg 

Figure 7.12 Scattered E Field in 1-3 Plane at R = 10,000 Feet 
Due to Incoming Plane Shear Wave Traveling in the 
Direction of e3 While Polarized Parallel to e1 
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= .444 X 10-16 

Figure 7.13 Scattered E Field in 2-3 Plane at R = 200 Feet Due to 
Incoming Plane Shear Wave Traveling in the Direction 
of e3 While Polarized Parallel to e1 

104 



105 

= .218 X 10-19 

Figure 7.14 Scattered E Field in 2-3 Plane at R = 10,000 Feet Due 
to Incoming Plane Shear Wave Traveling in the Direction 
of e3 While Polarized Parallel to e1 



+~ 

E = .138 X lO-l6 
max 

Figure 7.15 Scattered E Field in 1-2 Plane at R = 200 Feet Due 
to Incoming Plane Shear Wave Traveling in the 
Direction of e3 While Polarized Parallel to e1 
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VIII. SUMMARY; CONCLUSIONS; SUGGESTIONS FOR FURTHER RESEARCH 

A. Summary 

The preceding chapters have reported upon a technique devised 

for the solution of a certain class of elastic wave scattering problems. 

The scattering object was assumed to be situated in an otherwise infinite 

isotropic, perfectly elastic, solid medium. While a void finite cavity 

of arbitrary shape was the scatterer of primary interest, it was pointed 

out that scattering from arbitrarily shaped finite rigid bodies may 

also be treated by using a slightly modified approach. 

Displacement fields incident upon the scatterer were arbitrarily 

specified except for their sinusoidal time dependence. The incident 

fields emphasized throughout the dissertation were those arising direct­

ly from specified sources distributed through finite or infinitesimal 

volumes. Where nonzero, these sources were separable, i.e., their 

mathematical specification was the product of a spatial factor and a 

time function. A sinusoidal time function was employed in order to 

make the scattering problem tractable. It was pointed out that such 

a source may have an arbitrary vector function, which is zero outside 

a finite region, as its spatial factor. The sources may be distributed 

through finite volumes, act only at points, consist of surface layers 

of traction in homogeneous media, or arise through the application of 

traction on the boundary of a second arbitrarily shaped finite cavity. 

Plane wave scattering was discussed as an example in which the incident 

field was given directly; no source problem had to be solved first. 

The chief mathematical concepts employed were multipole theory, 

least squares theory, and the theory of integral representations of 

' 



solutions. All three have found prior application in elastodynamics. 

The development of elastodynamic multipole theory based upon a 

Taylor's expansion of a certain reciprocal distance factor occupied 

Chapters II and III. This work concentrated solely on the study of 

separable sources in unbounded media. The three displacement fields 

due to dipole forces oriented along three mutually perpendicular axes 

were seen to be of major importance. The rectangular components of 
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these fields were combined into a 3 x 3 array called the fundamental 

solution. It was mentioned that while a fundamental solution correspond­

ing to any time dependence may be easily calculated, the steady state 

fundamental solution was found to be the most useful. It was shown 

that any field (displacement or other field) determined through linear 

equations from a separable body force of finite extent may be calculated 

in the form of a multipole series. In such an infinite series for dis­

placement, the first three terms are properly weighted components of 

the fundamental solution. All other terms are derivatives of these 

same components, each also weighted by a multiplicative coefficient. 

Every term in such a series is the field of a certain point force system, 

e.g., a dipole, quadrupole, octupole, etc. 

A major useful feature of multipole series solutions is the fact 

that the coefficients weighting each elemental term are the same regard­

less of which type of field is under consideration. For example, a 

series for displacement has the same coefficients as those in the series 

for the stress tensor calculated from that displacement. This feature 

was utilized in Chapter IV, where a void finite cavity was introduced 

into the medium. In this new situation, the total displacement field 
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consists of the incident field plus a properly constructed scattered 

field. The scattered field satisfies the homogeneous equation of motion 

while also giving rise to traction at the cavitiy boundary that nullifies 

the traction due to the incident field. Because all multipole fields 

whose singular points lie inside the cavity satisfy the homogeneous 

equation of motion in the medium, the scattered field was assumed expres­

sible as a linear combination of such multipole fields. Coefficients 

within the linear combinations were calculated by minimizing the total 

traction on the boundary using a least mean squared error criterion. 

This resulted in what was called the first approximation to the solution. 

The calculation of Green's Functions, i.e.~ the bounded media counter­

parts of the fundamental solution, was consistently emphasized owing to 

their intrinsic ut.ilitarian value. There were three incident fields in 

this case, namely those embodied in the fundamental solution correspond­

ing to a source point somewhere outside the cavity. However, the formula­

tion was seen to be applicable to more general incident fields, as was 

more clearly pointed out later in Chapter VI. 

It was shown in Chapter V how part of the inevitable error incurred 

during the least squares process of Chapter IV can be eliminated by use 

of Green's Integral Representation of the exact scattered field. The 

result so obtained was called the second and final approximation. An 

explanation of the improvement formed part of Appendix E. 

Some miscellaneous topics such as plane wave scattering, scattering 

from rigid bodies, scattering by multiple cavities, and the so-called 

cavity-source problem were discussed in Chapter VI. Chapter VII contain­

ed a brief summary of error sources along with several diagrams sketched 

from numerical data computed using the theory developed in earlier parts 

of this dissertation. 
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B. Conclusions; Suggestions for Further Research 

One of the principal attributes of the technique described in this 

dissertation is the fact that it unequivocally produces solutions. 

Moreover, once the computer programs required for its implementation 

have been written, the technique assumed a routine nature. Very little 

additional programming is required in each new problem. As pointed out 

in Chapter VII. There are several steps that could be taken in an 

effort to improve upon numerical results such as those presented. 

Further research should include a careful assessment of error sources, 

their effect, and measures to combat them. Increasing the accuracy of 

results will almost certainly lead to increased computational loads. 

Throughout the foregoing work, the sinusoidal sources were assumed 

to be operating at a given fixed frequency. No restrictions whatsoever 

were made concerning the magnitude of this frequency, regardless of the 

cavity size or shape. It would not be surprising if some range of 

frequencies gave better results than others for a given cavity. 

Further research should look into this matter. 

Although not specifically mentioned elsewhere in this dissertation, 

it is quite clear that non-sinusoidal scattering problems could be 

handled through the use of the Fourier Integral in tandem with results 

obtained herein. For example, a given transient time function forming 

the temporal factor of a separable body force could be sampled at discrete 

times and then analyzed into a certain minimum number of frequency com­

ponents. The technique of this dissertation could be applied for each 

frequency utilized. Then, at a given field point, an appropriate 

Fourier synthesis computed numerically would result in a time history 

of motion at that field point. The amount of computational labor 
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involved in such a process may well render it impractical; however, the 

subject does warrant further investigation. 

Another subject not referred to previously concerns the use of 

the results of this dissertation in a half space rather than in the full 

space considered here. This extension will certainly be challenging; 

it may be impossible in any practical sense. In this connection, it 

will be stated without proof that a careful study of Chapter II and 

Appendix C reveals that if any separable source of finite extent operates 

in a homogeneous half space, then an image source located across the 

boundary can be found which nullifies. the normal component of traction 

due to the original source. The tangential components of traction are 

doubled in the process. By changing the sign of the image source, the 

tangential boundary traction components become zero while the normal 

component is doubled. It appears that some additional technique 

utilizing these. facts may find successful application. 
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APPENDIX A 

Basic Mathematical Tools 

1. The Dirac Delta Function 

This quantity, which is not a function in any usual sense, is a 

continuous linear functional (Stakgold (1968), p. 5). Other names 

for continuous linear functionals are generalized functions and 

distributions; the mnemonic nature of the latter terminology is 

well illustrated in this dissertation. For those interested in a 

rigorous development of the properties of the delta function, the 

book by Stakgold is recommended. The theory is not specifically re-

quired in this dissertation; however, the following facts will be used: 

a) 

b) 

f A(r)o(r- r )dv = A(r ), (Stakgold (1968), p. 6.) a.s. o o 

f A(r)D.o(r- r) =- f [D.A(r)]o(r- r )dv a.s. 1. o a.s. 1. o 

f A(r)DiJ'o(r- r )dv = + f [D .. A(r)]o(r- r )dv a.s. o a.s. l.J o 

0 -=+D .. A(r). 
l.J 0 

(A.l) 

(A.2) 

(A. 3) 

f A(r)D. 'ko(r- r )dv = - f [D .. kA(r)]o(r- r 0 )dv a.s. l.J o a.s. l.J 

0 -= -D . 'kA(r ) . l.J 0 

etc., (Stakgold (1968), p. 8). 

(A.4) 

c) The use of the word "dipole" in this dissertation does not 

correspond to the use by Stakgold. The difference stems from the fact 

that his sources are scalar (e.g. Stakgold (1968), p. 6), while those 
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here are vector (e.g. Equation (2.13)). 

d) The treatment of surface layers here, e.g. Equations (2.43) 

and (2.65), follows Stakgold (1968), pp. 6 and 7. 

e) The presentation of the point force defined here by Equations 

(2.6) and (2.7) follows Love (1944), p. 184. Love also shows how to 

construct higher order multipoles without the use of the delta function. 

On p. 186, he uses the phrase "synthesis of singularities" to describe 

the process. The resulting multipoles are called "nuclei of strain". 

Within the context of the present dissertation the term "monopole" 

does not arise. The term, however, seems apprepriate to the force 

system D .. o(r- r), which is a linear combination of quadrupoles. 
l.l. 0 

Love discusses this system on pp. 187 and 306 under the name "center of 

compression". 

f) = V2(1/R) = D .. (l/R) = -4no(r- r) 
0 1.1. 0 0 

= -4Tio(r - r). (Arfken (1970), p. 69) 
0 

2. Helmholtz's Theorem 

(A.5) 

One way of stating this theorem is as follows (see Arfken (1970, 

p. 67): If F(r) is a vector field whose curl and divergence vanish 

at infinity, then 

(A.6) 

in which ~(~) and W(r) are given as follows: 

(l/4TI) f a.s. 
(A. 7) 
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lJ;(r) = (l/47T) J 
a.s. (A.8) 

In these formulas, V' = e D' = e (8/8x') R = j-;- r'l, while 
s s s s ' 

¢ and 1J; are called potentials. 

The parent potential W(r) will now be introduced (see also Arfken 

(1970), p. 71). It is easily verified by direct calculation that the 

following identities are valid: 

V'•F(r') 
= V• [F(r')] + V' • [F(~')], 

R R 
(A. 9) 

and 

V'xF(r') 
== Vx[F(r')] + V'x[F(~')]. 

R R 
(A.lO) 

Using these identities and Gauss' Theorem (in the general form given 

for example by Arfken (1970), pp. 48 and 49) results in 

¢('t:) = (l/47T)V• J F(r') 
dv' + (l/4n) ! 8 

F(-;' ~ • ds' 
a.s. R R 

, 

(A.ll) 

1J; (-;) (l/4TI)Vx J F(-;') 
dv' - (l/4n) fs 

F(r') XdS'. == a.s. R R 

(A.l2) 

In these equations, the surface integrals are over the infinite sphere. 

In this dissertation F(-;) = 0 there so that the surface integrals 

vanish. Then, with the definition 

W(r) = (l/4n) f _F~(r_'~) dv', 
a.s R 

there follows 

(A.l3) 



(A.l4) 

Now also, 

F = -V(V•W) + Vxvxw. (A.l5) 

In rectangular coordinates, this is F = -V2w by an identity. Note 

that this is easily verified as follows: 

-(l/47T) f a.s. 

(A.l6) 

which is F(r) since 

(A.J7) 

3. Taylor Series in Three Dimensions 

Under suitable continuity and differentiability conditions, the 

Extended Law of the Mean, i.e., Taylor's Formula with a Remainder, 

may be applied to a function A(r) in the form (Olmsted (1961), p. 280): 

A<r) + 
0 

+ p ' n 

where r 0 = x0 ses is an expansion point, qk = ~ - xok' and 

= X ok 

(A.l8) 

(A.l9) 

It must be pointed out that in the finite series and in Pn the evalua­

tion of the bracketed portions at '1<. = x0 k and ~ = x0 k + 8qk, respec­

tively, must not include evaluation of the qi. That is, only the 
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derivatives of A(~) are to be evaluated at these points. In the 

expression for P , which is the remainder after n terms, e is an n 

appropriate number in the range 0 < 8 < 1. The series plus remainder, 

Equation (A.l8), is an exact expression involving a finite number of 
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terms. If P as given by Equation (A.l9) approaches zero as the number n 

of terms n in the finite series increases indefinitely at some point 

r, then the resulting infinite series, i.e., the Taylor series, con-

verges and represents A(r). 

The infinite series may be expressed in various notation, one 

being 

(A. 20) 

This may be further modified by using the summation convention in 

expressions such as 

0 0 0 0 
qlD 1 + q2D 2 + q3D 3 = q.D ., 

~ ~ 
(A. 21) 

0 0 0 2 0 
(qlD 1 + q2D 2 + q3D 3) = q.q.D .. ' 

~ J ~J 
(A. 22) 

0 0 0 3 0 
(qlD 1 + q2D 2 + q3D 3) = q' q' qkD ''k' etc. 

~ J ~J 
(A. 23) 

Using identities such as these results in 

(A. 24) 

When the function A depends on r' rather than r, then of course 

it is necessary only to rename the qi, using qi =xi- xoi' This bit 

of renaming is convenient when expanding the function 1/R = 1/lr- r'l 
in which r' is the variable point while r is held fixed. There follows 



1/R ... ] 

(1/R ) , 
0 

(A. 25) 

in which R = lr- r I. Moreover, since D0 .(1/R) = -D.(l/R ), there 
0 0 ~ 0 ~ 0 

also follows 

1/R = [1- q!D. + (l/2)q!q~Di. - (l/3)q~q!qk'D .. k + ... - ... ] 
~ ~ ~ J J ~ J ~J 

(1/R ). 
0 

(A. 26) 

A rigorous discussion of the above series for 1/R would have to 

include proof that the remainder after n terms indeed vanishes as 

n increases indefinitely. A proof will not be attempted here; the 

Taylor series for 1/R is a well known series. It converges at all 

points ~· located such that lr' - r I < lr - r I (Morse and Feshbach 
0 0 
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(1953), p. 1277). In regions of convergence the series may be integrated 

and differentiated term by term. 
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APPENDIX B 

Equation of Motion and Displacement Potentials 

1. The Equation of Motion 

As stated in Equations (3.1) and (3.2), the equation of motion 

governing infinite, isotropic, homogeneous, perfectly elastic solid 

media can be written in the following forms: 

(B .1) 

and 

(B .2) 

Using the following two identities, it will be shown how equation 

(B.2) follows from Equation (B.l): 

(B. 3) 

and 

(B. 4) 

Identities (B.3) and (B.4) hold for any vectors A,B,C and functions ¢. 

Since U = U e and V = e D m m s s, 

vxu = vxu e = vu xe = n u e xe , mm m m sms m 
(B.5) 

and 

vxvxu = V(D u )x(e Xe ) = D u e x(e xe ) s m s m ks m k s m 

D U (eA ~ e a ) = n u e - n u e = ks m sukm - m ks ms m s ss m m 
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= n u e - n u e . 
sm s m ss m m (B. 6) 

Also, 

V(V•U) = V(D U ) = D U e . 
s s sm s m (B. 7) 

Using Equations (B.6) and (B.7), them component of Equation (B.l) 

may be written as 

Since a2 = (A + 2~)/p and S2 = ~/p, this is 

p(a2/at2)u = (A+ ~)D U + ~D U + K . 
m sm s ss m m 

Now the stress tensor T is given by Hooke's Law as 
mn 

T = AO D U + ~D U + ~D U , 
mn mnss mn nm 

so that 

(B. 8) 

(B. 9) 

(B .10) 

D T = AD U + ~D U + ~D U = (A + ~)D U + ~D U • 
n mn ms s mn n nn m ms s ss m 

(B .11) 

Upon using Equation (B.ll) in Equation (B.9), the latter becomes 

Equation (B.2). 

2. Displacement Potentials 

Using Helmholtz's Theorem (Appendix A), the displacement vector 

may be expressed in terms of potentials ~ and ~ in the form 

U = -V~ + Vx~. (B.l2) 



In Equation (B.l) K is separable, i.e., K(r) = F(r)f(t). Using the 

notation of Equation (2.1), 

K = (-V¢ + Vx~)f(t). (B .13) 
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Upon substituting from Equations (B.l2) and (B.l3) into Equation (B.l), 

wave equations may be derived for the displacement potentials. In mak­

ing the substitutions it is necessary to note that for any vector A 

and scalar B, the following two identities hold: 

and 

V•(VxA) - 0, 

Vx(VB) ::: 0. 

Equation (B.l) becomes 

ca 2 /'dt2) ( -V<I> + Vx'l') = c:ivc -v2<I>) - s2vxcvxvx~) + 

(-V¢ + vx~)f/p, 

which may be rewritten as 

= o. 

(B .14) 

(B .15) 

(B.l5) 

(B .17) . 

Equation (B.l7) implies that Equation (B.l) will be satisfied if 

(B .18) 

and 
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(B .19) 

Equations (B.l8) and (B.l9) are wave equations for the displacement 

potentials. Equation (B.l9) may be written in a different form by 

requiring ~ to have zero divergence. This may be done arbitrarily; 

however, if one calculated ~ by an analog of Equation (A.8) then its 

divergence is necessarily zero. In either event, V·~ = 0 in this dis-

sertation. Then, since for any vector A, 

2- - -
V A • V(V•A) - VxVxA, (B.20) 

it follows that Equation (B.l9) is 

(B.21) 

3. The Parent Displacement Potential 

Let W(r) be given by Equation (2.4). Let Va(r) satisfy 

2 2- 2 2- -
(8 /8t )V - a V V = Wf/p. (B.22) 

a a 

Upon taking the divergence of both members of this equation and using 

Equation (2.2), i.e., ¢ = V•W, there follows 

(B.23) 

Since Equation (B.l8) satisfied by ~ is the same as Equation (B.23) 

satisfied by V·Va' it follows that the two functions differ only by 

a solution to the homogeneous wave equation. This will be taken as 

zero so that 

(B. 24) 
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Va is a parent displacement potential, the analog of W, a parent source 

potential. 

Now, let a vector VS satisfy 

(B. 25) 

Comparison of Equations (B.22) and (B.25) shows that Va and VS are the 

same except that the number a upon which V must depend parametrically a 

is different from the number S upon which VS must depend parametrically. 

Therefore, VS is obtainable from Va by replacement of a with S. 

Upon taking the curl of both members of Equation (B.25) and using 

Equation (2.3), i.e., ~ = vxw, there follows 

(B.26) 

Comparison of Equations (B.21) and (B.26) shows that ~ and VxvS differ 

only by a solution to the homogeneous wave equation. Taking this as 

zero, there follows 

(B. 27) 

This shows that one need not solve Equation (B.21) directly in order 

to find W. But first solving Equation (B.22), VS becomes known. Then 

~follows by Equation (B.27). 



APPENDIX C 

Explicit Expressions for the Fundamental 

Solution and Its Stress Tensors 

1. The Fundamental Solution for Arbitrary Time Dependence 

In order to calculate the fundamental solution, it is necessary 

only to solve the wave Equations (3.13), which are of the form 

(C.l) 

This equation, in which A is the solution while B is the inhomogeneous 

term, has a well known retarded integral solution (Love (1944), p. 304 

or Morse and Feshbach (1953), p. 206). A particular solution to 

Equation (C.l) is 

B(-;1 , t-R/a) 
--"'-~---'---'- d v' ' 

R 
(C.2) 

in which R = lr - r' I. 
The solutions to Equations (3.13), i.e., to 

2 2 2 2 - 1- -~-(a lot - a V )~ (r,t r ) = ¢ (r r )f(t)/p, 
s 0 s 0 

(C. 3) 

are, using the definition ¢ (rlr ) s 0 
= (l/4~>n (1/R >, R = lr- r 1. s 0 0 0 

~ (r,tlr) = (l/16~2a2 p) f (1/R)[D' (1/R')Jf(t- R/a)dv', 
s o a.s. s o 

where R' = jr' - r j. Also since 
0 0 

D' (1/R') = -D0 (1/R'), s 0 s 0 

2 2 0 = -(1/16~ a p)D 5 f a.s. 
(1/RR')f(t- R/a)dv'. 

0 

(C. 5) 

(c. 6) 

(C. 7) 
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The volume integral in Equation (C.7) may be evaluated directly 

following Love (1944), pp. 304-305. There all space is divided into 

concentric shells centered at the field point r. Only the factor 1/R' 
0 

is non-constant on each such shell. The surface integral over a typical 

shell of radius R is calculated first. Then integration over R from 

zero to infinity completes the evaluation. The solution becomes 

<P (r,tlr) = (l/4np) [D (1/R) 1 J Rola t'f(t- t')dt'. <c.s) s 0 s 0 0 

Upon replacing a with s' the n (r' t I r ) defined in the text fo !lowing s 0 

Equation (3.12) are found to be 

n (r,tlr) = (1/4np)[D (1/R )] f Ro/S t'f(t- t')dt'. (C.9) s 0 s 0 0 

Now,according to Equation (3.15), 

<.P k ( r' t I r ) = DkiP ( r' t I r ) s 0 s 0 

= (l/4np)[D k(l/R )] fRo/a t'f(t- t')dt' s 0 0 

+ (l/4na2p)[D (1/R )]qkf(t- R /a), s 0 0 
(C.lO) 

in which qk = ~- x0 k. The n8 k(r,tlr0 ) result from this upon the 

replacement of a with 8. In particular, 

n (r,tlr) = -Ct/4n82pR )f(t- R /B). mm o o o 
( c .11) 

From Equation (3.20), the fundamental solution is found to be 

t'f(t- t')dt' 
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(C.l2) 

No explicit computational use of the fundamental solution for arbitrary 

time dependence will be made in this dissertation. The tedious (but 

simple) calculations leading to the stress tensors will be omitted. 

2. The Steady State Fundamental Solution 

Much use of Q k(-;j-; ), the space part of Q k(-;,tj-;) arising when s 0 s 0 

f(t) = exp(-iwt), is encountered in this dissertation. Therefore it 

will be discussed in more detail. 

Upon substituting f(t) = exp(-iwt) into Equation (C.8), it is 

easily found that the space part of ~ (r,tlr ) is s 0 

where 

and 

~ <rlr > = -A q s o a s' 

A = (l/4rrpw2R 3)[(1- iwR /a)exp(iwR /a)- 1], a o o o 

q = X - X • 
S S OS 

If a function B a 
is defined from 

then it happens that 

(C.l3) 

( c .14) 

(C.l5) 

( c .16) 

B = (l/4rrpa2R 3)exp(iwR /a) - 3A /R 2 • (C.l7) a o o a o 

Another similar definition will be useful shortly. Defining Ca from 



129 

C = (iw/a- 6/R )B /R + (iw/a- 1/R )3A /R 3 • a oao o ao (C.l8) 

Corresponding functions AS' BS' and CS are formed by replacing a with 

S in A , B , and C • All six quantities are functions of R alone. All a a a o 

depend parametrically upon the frequency w. 

From Equation (C.l3), 

-
<I> k(~~ r ) = -B q qk - A o k. s o a s a s 

Then, from Equation (3.20), it follows that 

Operation by D in Equation (C.20) yields 
p 

-
D Q k(~~~) = (C - C0 )q q qk + (B - B0 )(q ok + qko ) p s o a ~-> p s a ~-' s p sp 

2 + (B + 4B 0 + R C0 )q o k' a ~-> o ~-> p s 

from which 

-
D Q k<~l r ) = p p 0 

2 
(SB + R C )qk. a o a 

Since Hooke's Law given ~'j (~I~ ) as nm o 

(C.l9) 

(C.20) 

(C.21) 

(C.22) 

- - -Ej c-r1-r > = M n Q • <rlr > + 11n Q • crl"r > + 11n o . <rl'"r >, mn o mn s SJ o m nJ o nlmJ o 

(C .23) 

it follows from Equations (C.21) and (C.22) that 
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+ [A(5B + R 2c) + 2~(B - B(3)]q,o 
Cl. 0 Cl. Cl. J IlUl 

+ ~(2B + 3B(3 + 'R 2c(3)(q o. + q o .). a. o m nJ n mJ (c. 24) 

-
The properties of Q •• Crl~) expressed by Equation (3.21) are 

l.J 0 

apparent from Equation (C.20). Also, the same properties of the 

fundamental solution for arbitrary time dependence are evident from 

Equation (C.l2). 

The symmetry of the stress tensors with respect to the indices 

m and n, as well as the property expressed by Equation (3.25), is 

apparent in the steady state case from Equation (C.24). Both proper-

ties exist also for arbitrary time dependence as direct construction 

of the stress tensors corresponding to Equation (C.l2) would quickly 

show. 



APPENDIX D 

The Approximating Set of Traction Vectors 

1. Linear Dependence of Multipole Fields 

For field points r ~ r , the fundamental solution satisfies the 
0 

equation of motion (4.3) in the form 

-pc}q. <rlr > == 
l.m 0 

~m --
Dl:. (rjr). n 1.n o (D.l) 

Since, by Hooke's Law, 

2:~ <rlr > = ;.o. D 6 crlr > + ]JD.Q <rlr > + ]JD Q. <rlr >, 1.n o 1.n s sm o 1 nm o n 1.m o 

(D.2) 

it follows that Equation (D.l) is 

-
==AD. Q <rlr> + f.!D. Q <rl"r> +f.!D Q. <rlr>. 1s sm o 1n nm o nn 1.m o 

(D. 3) 

Equation (D.3) clearly exhibits the fundamental solution as a linear 

combination of octupole fields. By using the property Qi (rlr ) = m o 

Q .Crlr ), this equation may be expressed in the form 
ml. o 

where 

Q. <rlr > "" Cbomko + co sk > Dk o. <rlr >. 1m o sp ms p p l.S o 

b = - (A+ JJ)/pw2 and 
2 

c = - llf pw • 

Also, from Equation (D.4), 

E~ <rlr > = Cbomko + co sk >nk rsi crlr >, 1n o sp ms p p n o 

(D.4) 

(D. 5) 

(D. 6) 
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from which 

Tn(r)~mnj (rT~ > = Cbo.ko +co. c;k )T Cr)n is c-r:-rr) (D. 7) 
o J sp JS p n kp mn o · 

In this dissertation, the approximating set of traction vectors 

is composed of the nine quadrupole traction vectors 

(D. 8) 

and the 18 octupole traction vectors 

(D. 9) 

where r 1 is in the cavity, r (usually denoted by -r:-•) is on the boundary, 

and m indexes the traction components. Equation (D.7) shows why the 

dipole traction vectors are deleted; each one is a linear combination 

of some of the tractions (D.9). The octupole tractions in which k > p 

are also deleted because they are each identical to a retained traction 

vector for which k < p; Dkp = Dpk here. 

In future work, if one intended to increase the flexibility of the 

approximating set by adding the independent 16-pole traction vectors, 

then all the quadrupole tractions would have to be deleted. Operation 

by D. in Equation (D.6) followed by multiplication by T shows that 
J n 

they are linear combinations of the 16-pole vectors. 

2. The Compressed Notation and Bookkeeping Scheme 

Equations (4.18) and (4.19) indicate a change in notation made 

to facilitate part of the work in Chapter IV. Table (D.l) below gives 

the complete scheme. In reading the table, it should be borne in mind 

that the subscript on the as runs from 1 to 27, so that a23 for example 
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Table D.l The Bookkeeping Scheme 
Serial No. Old coeff. Old szmbol New coeff. New szmbol 

1 All T D fl 
n 1 mn al glm 

2 A12 T D z1 
n 2 mn a2 g2m 

3 Al3 T D z1 
n 3 mn a3 g3m 

4 A21 
~2 

T D1L: a4 g4m n mn 

5 A22 T D z2 
n 2 mn a5 g5m 

6 A23 T D z2 
n 3 mn a6 g6m 

7 A31 T D z3 
n 1 mn a7 g7m 

8 A32 T D L3 
n 2 mn as g8m 

9 A33 T D z3 
n 3 mn a9 g9m 

10 A111 
~1 

TnDll L:mn alO glOm 

11 A112 
~1 

TnD12L:mn all gllm 

12 A113 
~1 

TnD13Imn a12 gl2m 

13 A122 
~1 

TnD22Emn a13 g13m 

14 Al23 
~1 

TnD23Lmn al4 gl4m 

15 A133 
~1 

TnD33Imn a15 gl5m 

16 A211 
-2 

TnDllL:mn al6 gl6m 

17 A212 
~z 

TnD12Lmn al7 gl7m 

18 A213 
~2 

TnD13Lmn al8 gl8m 

19 A222 
"'2 

TnD22Lmn a19 g19m 

20 A223 
~2 

TnD23Lmn a20 g20m 

21 A233 
~2 

TnD33Imn a21 g2lm 

22 A311 
"'3 

TnDllLmn a22 g22m 

23 A312 
-3 

TnD12Lmn a23 g23m 

24 A313 
~3 

TnD13Lmn a24 g24m 

25 A322 T D ~ 3 
n 2 mn a25 g25m. 

26 A323 
"'3 

TnD23Lmi:l. a26 g26m 

27 A333 
-3 

TnD3:fmn a27 g27m 



refers to the case s = 23 and does not imply that two subscripts are 

present. The same precautionary note applies to the first subscript 

on the g . sm 

Finally, the superscript j appearing on the A's and a's in 

Equations (4.19) was purposely omitted in Table (D.l) in order to in-

dicate that the same approximating set is used in this dissertation 

for purposes additional to those requiring the superscript. 

3. The Omission (Redistribution) of Terms in a Multipole Series 

The linear dependence discussed in Section 1 above permits the 

redistribution of some terms in a multipole series arising directly 

from a given body force. Some terms may be omitted while at the same 

time their contribution to the total field is transferred to other 

terms and not lost. 

Suppose a given finite steady state source gives rise to a dis-

placement field 

u.<~> 
~ 

-= 1s[Qis(rjro)], 

in which L has been truncated to 
s 

(D.lO) 

(D.ll) 

Such series as this will be encountered in Appendix F, where it will 

prove useful to omit the dipole terms and some of the octupole terms. 

The remaining 27 displacement fields will have to correspond to the 

27 traction vectors listed in Table (D.l). 

This From the definitions (2,49), it is clear that Gskp = Gspk' 

means that the Gskp for k > p may be omitted providing that the Gskp 
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for k < p are each multiplied by 2. This is permissible of course 

because Dk Q. = D kQ .. p ~s p ~s 

In eliminating the dipole displacements, Equation (D.4) is used: 

~ -
G Q. = (bGko + cG ok )Dk Q. m ~m sp s p p ~s 

-
+ (bG1°s3 + O)Dl3Qis 

-+ (bG2°sl + O)D21Qis 

-
+ (bG2°s2 + cGs)D22Qis 

-
+ (bG3°sl + O)D31Qis 

(D.l2) 

- - -Since the octupole displacements n21Qis' n31Qis' and n32Qis have been 

deleted, Equation (D.12) needs to be rewritten in the form 

- -
GmQim = (bG1°sl + cGs)DllQis 

-
+ (bG1°s2 + bG2°sl)D12Qis 

-
+ (bG1°s3 + bG3°sl)D13Qis 

-
+ (bG2°s2 + cGs)D22Qis 
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(D.l3) 

From Equation (D.l3), it is apparent that the addition of bG1o81 + cG8 

to G811 , bG1o82 + bG2osl to G812 , etc., along with proper redistribu­

tion of the octupole terms as mentioned earlier, permits Equation (D.lO) 

to continue to describe exactly the same displacement while having only 

27 terms on the right side. These 27 multipole fields correspond to 

the 27 tractions in the approximating set of Table (D.l). 
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APPENDIX E 

Green's Integral Representation 

1. The Derivation 

Green's Representation as given in Equation (5.1) may be obtained 

quite simply by proper specialization of Betti's Reciprocal Theorem 

(Love (1944)t p. 173). Howevert a derivation following Case and Colewell 

(1967) will be given here in order to provide a base for the proof of 

a later theorem. It may be noticed that the derivation here is quite 

similar to the application of Green's Theorem in the general form 

given by Stakgold (1968), p. 40. 

When exp(-iwt) is canceled from the equation resulting when 

K (r) of Equation (3.2) is replaced with F (r)exp(-iwt), there follows m m 

2"' --pw U (r) 
m 

"' - -
D T (r) + F (r). n mn m 

(E .1) 

This is the steady state equation of motion due to a body force having 

components F (r)exp(-iwt). When the body force components are 
m 

omio(r- r 0 )exp(-iwt), then Equation (4.3) results: 

= D i;i <rlr > + o . o <r - -r ) . n mn o m~ o 
(E. 2) 

-
If Equation (E.l) were to be multiplied by Q .(rjr) and Equation (E.2) 

m~ o 

by U (r), then the left sides would be identical. Equation (E.l) would 
m 

have, on the right side, an expression 

(E. 3) 

Also, Equation (E.2) would contain an expression 
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Ii (r!"r )D U (-;). 
nm o n m 

(E. 4) 

Upon using Hooke's Law to reduce the rightmost expressions in Equations 

(E.3) and (E.4) to forms in which combinations of derivatives of dis-

placement replace the stress tensors, a direct comparison shows these 

two rightmost expressions to be identical. Therefore, multiplication 

of Equation (E.l) by Q i<rlr ) and Equation (E.2) by u (r) followed by 
m o m 

subtraction of the two results yields. 

0 
- -

n ro . <rl"r )T (!) 
n 1nJ. o mn 

- - ...... i --
U(r)E (rjr)] 
m mn o 

+ :F (r) a . <r!'r > - u. cr"> ocr- - -r > • 
m 1n~ o ~ o 

(E .5) 

Replacing r with r', integrating over all of space within the bounded 

medium, using Gauss' Theorem on the integral containing the above 

divergence of a vector, and rearranging transforms Equation (E.S) into 

the form 

(E .6) 

Equation (5.1) results from this when r is relabeled as r. Here f 
0 

of course is the unit normal which points out of the medium on the 

boundary s. 

Two important points concerning Equation (E.6) can be noticed 

immediately. If the boundary S exists only at infinity, then the 

surface integral vanishes because displacement and traction due to 

finite sources are zero at infinity. What remains is the steady state 



counterpart of Equation (3.35). 

Secondly, if Equation (E.2) had been the equation of motion 

satisfied by the Green's Function for a finite void cavity, i.e., 

z... -- "'*i - - - --pw Q*.(rjr) =DE (rJr) + o .o(r- r 0 ), (E.7) mJ. o n mn o mJ. 

then no essential features of the derivation of Equation (E.6) would 

be changed. However, in place of Equation (5.1) one would have 

+ f F (~')Q .(~' jr)dv'. a.s. m mJ. (E. 8) 

In Equation (E.8), the surface integral is identically zero when S 

is a free surface; T (r')T (r') = 0 as a boundary condition while mn n 
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E*i(r'lr)T (r') = 0 be definition (and subsequent construction) of the mn n 

Green's Function. What remains is Equation (5.25). 

2. Proof of the Theorem of Section (V-A) 

T,o prove Parts 1 and 2 of the Theorem, one may note that if 

Equation (E.l) had been 

(E. 9) 

then Equation (E.S) would have been 

(E .10) 

Now, as assumed in the Theorem, S is a closed surface dividing all 

space into two regions. Whether media is contained in both regions 



is irrelevant. One of the regions has its boundary formed by s and 

the infinite sphere; however, since r 0 and r1 are not at infinity 

the surface integral emerging from Equation (E.lO) is zero over the 

infinite sphere. 

Upon forming the volume integral of Equation (E.lO) over one of 

the regions and ultimately relabeling r as r (the old~ becomes~'), 
0 

there follows 

-
I .. (rl r 1 ) 

1J 

The integral I .. (rlr1) is defined in Equation (5.8), in which~ 
1J 

(E .11) 

points out of the region V over which the integration was performed. 

If r and r 1 are on the same side of S, then regardless which region 

V happens to be, Part 1 of the Theorem follows immediately from 
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Equation (E .11). That is, if both points are in V, the volume integrals 

are 

(E .12) 

by Equations (3.21). If both points are outside V, the volume integrals 

are zero be definition of the delta function. 

The hypothesis of Part 2 of the Theorem states that T points into 

the region containing r 1 , so that r is in V while r 1 is not. Then, 

the non-vanishing volume integral in Equation (E.ll) is Qij<rlr1), 

proving Part 2. 
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3. Physical Interpretation of Green's Representation 

This section is included for the purposes of interpreting Green's 

Representation in terms of surface layers while at the same time offer-

ing evidence to support the claim that the use of the results of 

Chapter V provides a better approximation to the exact scattered fields 

than do those of Chapter IV alone. 

- -Suppose that a traction T (r')exp(-iwt) acts at a point r' on a m 

surface S in a fully infinite homogeneous medium. An element of area 

- -dS' at r' gives rise to three dipole forces of magnitudes T (r')dS', 
m 

form= 1,2,3, each along a coordinate axis. The first of these, i.e., 

T1(r')dS', causes a displacement field having ani component given by 

T 1 (~')dS'Qil(~i~') by definition of the fundamental solution. The 

other two give rise to analogous displacements, the contributions from 

all three adding up toT (~')dS'Q. (rjr'). All other elements dS' on m ~m 

S also contribute to the total field, which is 

(E .13) 

Now, Equation (E.l3) can also be derived in a slightly different 

fashion. The equivalent volume source density generated by dS' at 

~' on Sis T (~')dS'o(r- r'). The entire surface gives rise to a 
m 

total equivalent volume source density 

- -
F (r) 
m 

(E.l4) 

which represents a force per unit volume corresponding to the layer of 

dipoles spread on S. According to Equation (3.35), the displacement 

due to a force per unit volume is 
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(E.l5) 

Upon substituting Equation (E.l4) into Equation (E.l5) and subsequently 

interchanging the order of integration, there follows 

U.(r) = 
1 

= f T (r"){f o(r'- r")Q (r!"r')dv'}dS" S m a.s. im 

(E .16) 

which of course is the same as Equation (E.l3). 

Both the above viewpoints are available also for the treatment 

of double layers, i.e., layers of quadrupoles, acting on S in unbounded 

media. In particular, suppose that a double layer having an equivalent 

volume source density with s component 

! 8 P (r')(Ao D + ~o D + ~o D )o(r- r')dS' 
mn mn s ms n ns m 

(E .17) 

acts on S. Substitution of this into Equation (E.l5) gives the 

i component of displacement in the forms 

f {f P (r") (Ao D' + ~o D' + flO D' )o(r' - r")dS"} 
a. s. S mn mn s ms n ns m 

Q. <rlr')dv' =- J :P (r")(Ao n" + ~o n" +flo n") 1s S mn nm s ms n ns m 

(E .18) 

The second of expressions (E.18) follows from the first by interchanging 

the order of integration while the third follows from the second by 

the use of Hooke's Law in the integrand. In connection with this last 
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step, it is easy to verify by direct calculation that when the operator 

(Ao D" + mn s 

Q. ( r" I r) 
l.S ' 

]Jo D" + ]Jo D" ) is applied to either Q. (rl r"), Q Crl r") ms n ns m J..S si ' 

or Q • (r" I r) the result is always ~i (r"l r), and never sJ.. mn 

E!n(rjr") which is the negative of the correct result. 

- -Now, it may be seen that when T (r') in Equation (E.l6) is 
m 

T (r')T (r') while P (r") in Equation (E.l8) is U (r")T (r") the 
mn n mn m n ' 

two displacements (E.l6) and (E.l8) become the two surface integrals 

in Green's Representation (5.1). Therefore, it may be said that 

Green's Representation gives the total displacement in bounded media 

as the sum of the fields due to a double layer, a single layer, and an 

actual volume source density as if all were acting in unbounded media. 

This interpretation is particularly illuminating in relation to 

the cavity-source problem considered in Section (6-C). Equation (6.12) 

gives the resultant displacement as the unbounded media displacement 

due to the applied traction plus a second integral which arises due 

to the cavity's presence. This latter integral, which is the sole 

difference between the cavity and no-cavity cases, is the no-cavity 

displacement due to a certain double layer on S. 

With the above background, it is possible to reexamine the results 

of Chapters IV and V in more physical terms. Such a reexamination will 

occupy the rest of this Appendix, which will terminate with arguments 

to support the validity and accuracy of those results. 

From either argument leading to Equation (E.l6), it is clear 

that when the three traction-error vectors Ej(r'), j = 1,2,3, act m 

on a surface S in unbounded media, the displacement fields have the 

i components given by 
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(E .19) 

which are the same as the correction terms of Equation (5.23). 

Obviously these traction-error vectors correspond to three displacement 

- -error vectors, say with i components E .. (r). It should be anticipated 
~J 

that the addition of 

(E. 20) 

to Q*~(~~~) as given by Equation (5.23) would yield the exact scattered 
i] 0 

part of the Green's Function. This will now be shown to be true; in 

doing so, the exact result will be denoted by Q*i~<rlr ). 
J 0 

The first approximation to Q~~<rlr ) is given by Equation (5.13) 
1J 0 

j - --as M [Q. (r!r1)]. In order that the displacement-errors E .. will 
s ~s ~J 

correspond to the traction errors Ej Equation (4.38) dictates that 
m' 

(E.21) 

be the defining relation for E ..• In order to write an integral 
1] -representation for the exact Q!j in terms of Eij' the expression (E.21) 

may be used in Equation (5.7), resulting in 

(E.22) 

Comparison of Equation (E.22) with Equation (5.18) shows that indeed 

the second approximation to Qtj given by Equation (5.23) needs only the 



addition of expression (E.20) in order to become exact. 

From perhaps a more concise point of view, it may be noted that 

the Green's Representation for E .. itself, written directly from 
1J 

Equation (5.1), is 

(E. 23) 

When expression (E.20) is omitted from this while the remainder is 

used in Equation (E.21), the latter becomes the second approximation 

given by Equation (5.23). 

The point is this: By using only the first approximation derived 

in Chapter IV, the entire displacement-error E .. for each j is unac-
1J 

counted for. But, by using the second approximation from Chapter V, 

a part of E .. is calculated--namely the displacement that would arise 
. 1J 
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in unbounded media if the traction error vector were to be applied on S. 

Only a part of E .. is unattainable--namely the part given by expression 
1J 

(E.20). This lost part is the part interpretable as being due to a 

double layer acting on S. 

As a final optimistic note, it may be pointed out that expression 

(E.20) can be viewed as a weighted average taken over S of the displace-

ment errors incurred in the least squares process of Chapter IV. It 

may happen that at a field point r the errors in the second approximation 

are very small owing to the fact that in expression (E.20), which gives 

these final errors, the original errors Emj have the opportunity to 

cancel themselves during the integration. 



APPENDIX F 

Multipole Series for the Correction Term 

According to Equation (5.23), the final approximation to 

Q~~Crlr ) is 
l.J 0 

-
q~~(;rr: > = 

l.J 0 
(F .1) 

where ~j(r') are the components of the three traction-error vectors. 
m 

To use Equation (F.l) as it is, the surface integral must be 

-
evaluated at each field point r where values of Q*i~Crlr ) are desired. 

J 0 

It will prove convenient computationally to approximate the integral, 

i.e., the correction term, by a truncated multipole series containing 

all octupole and lower order terms. It will be wise, of course, to 

calculate this multipole series using as an expansion point the same 

point :r1 used in calculating the first approximation. 

The series will be 

(F.2) 

in which 

(F. 3) 
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Notice that in fact expression (F.2) stands for three multipole series, 

one for each j = 1,2,3. 

Now, as discussed in Section 3, Appendix E, the surface integral 

in Equation (F.l) gives the i components of displacement due to the 

three equivalent volume source densities 

(F. 4) 
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The coefficients G~ are defined by Equations (2. 49), i.e., 

f a.s. 

(F.S) 

Also, 

Gj -. 
= f q r pJ (r r ) dv r q' = x' - xlk' sk a.s. k s , k k (F. 6) 

That is, 

Gj 
-. 

= f q'{f EJ(r")o(r' - r")dS"}dv' sk a.s. k s s 

-. 
= f EJ(r"){f q, o <r' - r") dv' }ds" S s a.s. k 

-. 
= fs q"EJ ( r") dS" q" = II 

k s ' k ~ - xlk' (F. 7) 

Finally, 

Gj = skp 
f q"q"Ej(r")dS". s k p s (F. 8) 

In order to apply formulas (F.S), (F.7), and (F.8) in their present 

form, the complete first approximation must be known. This is true 

because the traction-error vectors must be evaluated in order to con-

struct the integrands. However, some saving of computational labor 

can be made by properly using Equation (4.38), namely 

Since Mj is merely AJs'knk + Aj D· where Aj s skp kp skp 

given more explicitly by 

(F. 9) 

= 0 for k > p, the Gj are 
s 
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-
-Aj ! 5 T Cr')n' 2:s (r' lr )ds' skp n kp mn 1 • (F.lO) 

While the A's are not known until the completion of the least 

squares process of Chapter IV, the integrands of each integral in 

Equation (F.lO) must be constructed at each integration point r' during 

the formulation of the least squares process itself. Thus, the inte-

grals in Equation (F.lO) may be calculated with only a small amount of 

labor additional to that already required. Their values must be remem­

bered so that the Gj can be calculated later after the A's do become s 

known. 

Roughly the same remarks apply to the G~k and G~kp; however, the 

presence of qk and qkq; in Equations (F.7) and (F.8) does require some 

extra arithmetic operations. 

Once all the G's are known, Section 3, Appendix D, may be applied 

in order to omit all the dipole terms and the octupole terms for k > p. 

This leaves exactly 27 terms in Lj for each j, giving it the form of Mj. s s 

Then the two series may be added term by term, which amounts to adding 

the corresponding coefficients. 

namely 

in which Bjk = 0 for k > p. s p 

Clearly, 

The result is Nj of Equation (5.46), 
s 

(F.ll) 
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j 
Gsk' for all s,k, and j. (F .12) 

The redistribution of the Gj and Gj according to Section 3, Appendix D, s skp 

followed by the addition of the results to Ajk leads to s p 

for all sand j. The band care given by Equations (D.5). 
-

In this way, the second approximation to Q~~C;I~) becomes 
l.J 0 

(F .13) 

(F .14) 
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