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ABSTRACT 

The mean square error between recorded and reproduced 

signals is used as an error measure to determine the effects 

of time-base perturbations on an analog singal. The mean 

square error caused by time-base perturbations is shown to 

be proportional to the product of the square of the signal 

bandwidth and the time-base error variance for the case of 

low pass signal. When the signal is band pass, there is 

shown to be an additional error term which is proportional 

to the square of the signal center frequency and the time

base error variance. 

Calculations are also carried out to determine the 

relative effects of pre-recorder and post-recorder external 

additive noise. It is found that this external noise adds 

a term to the mean square error which is approximately 

equal to the noise power. 

An analysis is made to determine the error reduction 

which is possible by the use of the optimum linear filter. 

It is shown that a significant improvement is possible for 

the case where the signal bandwidth is less than the time

base error bandwidth. Practical approximations to the 

optimum linear filter are also considered and, in some case s, 

they are found to give a reductiori in the mean square error 



which is approximately the same as that given by the 

optimum filter. 
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CHAPTER I 

INTRODUCTION 

In modern communication systems, analog tape recorders 

are widely employed for signal storage and data processing. 

Much of the time high data accuracy is required, and it is 

necessary to employ recorders capable of recording and 

reproducing a signal without introducing errors which 

significantly degrade system performance. 

In order to determine if this accuracy has been 

achieved for a particular system, it is necessary to have 

a method of analysis of the effect of recording and re

producing a signal and of comparing the error introduced 

by the recorder to other errors. Also, it is desirable to 

be able to analyze the effects of filters on the signal 

and the effects of various techniques of compensation 

which might be employed to correct the errors introduced 

by the recorder. 

Although several techniques have been devised to 

minimize or compensate for the error introduced by the 

recorder, no one, to the author's knowledge, has provided 

an analysis of this error or of its compensation. Neither 

has there been an analysis of the relative error caused 

by the recorder as compared to the other errors, or a 

method of computing the effects of compensating filters. 



2 

This research is an attempt to provide such an analysis. 

A method of computing the effects of the error introduced 

by the recorder and also of computing the effects of com

pensating filters connected to the output of the recorder 

is provided. The theory of mean square optimization is 

applied to the problem of compensation to ascertain what 

improvement is possible by the use of optimum (in the mean 

square sense) linear filters. The relative effects of the 

error caused by time-base perturbations as compared to 

the other errors are analyzed, and consideration is also 

given to the question of what type of signal suffers more 

'distortion from the time-base error. Some calculations 

are also made on the sensitivity of the error to changes 

in the signal power spectrum, and on the improvement which 

is possible by the use of practical approximations to the 

optimum filter. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Tape recorders have been in extensive use in communi

cations and data processing systems for a number of years 

and a considerable amount of effort has been devoted to 

the problems of analysis, reduction, and compensation of 

error introduced by these recorders. Much of the effort 

of error analysis has been devoted to the analysis of 

rather specific systems and to the compilation and study 

of the data from these systems. However, it has been shown 

by various authors (1, 5, 7, 9) that a general effect of 

recording and replaying a signal is the introduction of a 

random time displacement in the playback signal. This time 

displacement results from velocity variations (flutter) in 

the record and in the playback process (1, 2, 3). Its 

causes are imperfections in the tape transport mechanism 

and disturbances (vibrations) in the tape itself (3, 7, 14). 

Several people have made studies of the nature of 

flutter and of time-base error (the integral of flutter) 

(1, 2, 3, 10, 14, 16, 17). It has been found that, although 

there is a very considerable variation in the flutter and 

the time-base error spectra from recorder to recorder, the 

flutter spectrum can often be reasonably approximated by 

a rectangular model and the time-base error can often be 
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reasonably approximated by a trapezoidal model. Further, 

measurements on the distribution of the random flutter and 

the time-base error have shown them to be essentially 

Gaussian in nature (1, 2, 14). 

Analyses of the effects of recorder flutter and of 

time-base error have been carried out for certain rather 

specific systems. Nichols and Schmitt (8) conducted an 

investigation on the cause and effects of time-base errors 

in coherent demodulation of suppressed carriers in AM 

multiplex systems. Simpson and Tranter (4, 5) have pro

vided an analysis of the effect of recorder time-base error 

on an AM baseband telemetry system which also employed 

suppressed carrier demodulation of the recorded baseband. 

They also have provided an analysis of the effect of flutter 

on sinusoidal modulation. Results of a somewhat more general 

nature are provided by Ratz (3), who gives an analysis of 

the effects of tape transport flutter on spectrum and cor

relation analysis and by Chao (2) , who attempts to present 

a unified picture of flutter and time-base errors in a 

multi-channel longitudinal instrumentation recorder. 

Compensation of flutter and time-base error has also 

been considered by various people. Manufacturers of re

corders have attempted to build compensation into the 

recorder itself, whereas others have considered external 

compensation. Peshel (15) has considered the application 

of wow and flutter compensation techniques to FM systems; 
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a digital system for compensating time-base error in analog 

tape recorders has been developed by Houts, Burlage, and 

Simpson (7). Some authors (1, 2, 6, 13, 14) have considered 

compensation by the use of a pilot signal which has been 

recorded in synchronism with the data. Chao (6) employed 

a variable delay line and a phase detector in conjunction 

with the pilot signal and a reference frequency to achieve 

a reduction in time-base error by a factor of 20 or more. 

However, none of these has been in the nature of a 

general analysis of the effects of time-base error. Neither 

have, to the author's knowledge, the extensively developed 

techniques of mean square optimization been applied to 

compensation of this error. 



CHAPTER III 

MODELS 

A. The Recorder Model 

It has been found by various authors (1, 5, 7, 9) that 

the principle effect of recording and replaying a signal is 

to introduce a random time-base error in the output with 

respect to the input. In mathematical terms, this means 

that if the combined effect of record and playback flutter 

is represented by g(t), the signal at the playback heads 

of the recorder is of the form 

yp{t) = K[l + g(t)] J
t ' 

x'[t + g(T) 

0 

dT] (3.1) 

where x(t) is the input signal to the recorde~, K is a 

constant, and the prime denotes the derivative with respect 

to the argument. The total time-base error d~e to both 

record and playback is the integral of the total flutter 

(1,5). Thus, denoting the time-base error (TBB) by h(t), 

one can write 
t 

h (t) = L g(T) dT (3.2) 

or 

h' (t) = g (t) • (3.3) 

6 



Then equation (3.1) becomes 

y (t) = K [1 + h' (t) 1 x' [t + h (t)]. p 

This is exactly the derivative with respect to t of 

7 

( 3. 4) 

x(t + h) so that when the signal at the playback heads is 

integrated with respect to time, it gives the recorder out-

put y(t) which is 

y(t) = K x[t + h(t)]. (3.5) 

Thus, the output of the recorder can be expressed as the 

input signal shifted in time by an amount h(t). Since the 

flutter g(t) does not appear in y(t), it may be concluded 

that only the integral of the flutter, namely the time-

base error (TBE) , need be considered when the effects of 

the recorder are investigated. 

B. Signal and Time-Base Error Models 

The statistical models for the signal, x(t), and for 

the TBE, h(t), must also be chosen for the analysis to 

proceed. It is necessary to choose these models in a way 

which is realistic enough for the analysis to give useful 

results while, at the same time, keeping the mathematical 

comple~ity of the analysis within reason. 

For this analysis, the signal x(t) is taken as a 
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sample function of a random process with zero mean whose 

power spectrum is ideal band pass or ideal low pass. The 

TBE, h(t) is taken as a sample function of a Gaussian random 

process with zero mean whose power spectrum is also ideal 

band pass (or ideal low pass). Further, the signal and 

the TBE are taken to be statistically independent, time 

stationary, and ergodic. It has been found that these 

models correspond closely to the experimental evidence 

collected on recording systems and on TBE (1, 2, 3, 14). 

The use of ideal low pass power spectra for the signal 

and TBE is probably the least realistic part of the model

ing, however, there are good reasons for using these 

models. 

First, the mathematical complexity of the analysis 

is extremely difficult except for signal and TBE models 

with very simple forms for their power spectral densities. 

Also, as shown later, more general spectral densities can 

be considered by writing the total spectrum (of either 

signal or TBE) as a sum of band pass spectra. Additionally, 

the significant components of signals and TBE are usually 

concentrated in a particular band. Many signals also have 

relatively flat spectral densities over the band pass 

region and can be reasonably approximated as being ideal 

band pass. Those signals which do not fit this model may 

be represented as a sum of band pass spectra. The TBE spec

trum is subject to considerable variability from one recorder 

to another~ but measurements indicate (1, 2, 3, 14) that the 
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TBE spectrum is usually of the band pass form with a rather 

sharp cutoff. 

Thus, the ideal band pass (or ideal low pass) model 

should give reasonable results if the cutoff frequency of 

the model is taken as the equivalent signal or TBE band

width. In cases where a more accurate model is needed, 

the spectra can be written as a sum of band pass spectra. 

c. The Error Measure 

To complete the modeling, it is necessary to choose 

an error measure so that the difference between the input 

and the output can be characterized in terms of the para

meters of the signal and TBE models. The primary criteria 

to be used in the choice of the error measure are the use

fulness of the measure and simplicity of the mathematical 

calculations involved in dealing with the error measure. 

The mean square error would seem to be a natural choice 

here. 

First, it leads to a problem which is mathematically 

tractable while most other error measures lead to very 

complex mathematics. Also, since it is a squared function, 

it may be interpreted in terms of power. Finally, the 

concepts of mean square error have been extensively developed 

in the literature and the solution of the problem of minimum 

mean square error leads to the concept of an optimum linear 

filter. For these reasons, the mean square error between 

input and output is used as the error measure for this 
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analysis. 

For the case where the output of the recorder is not 

filtered, the error e(t) can be written as 

e (t) = X (t) - Y (t) 1 (3.6) 

2 and the mean square error e as 

e 2 = E { [x (t) - y (t) 12 } , ( 3. 7) 

where E { •} indicates expected value. In cases where an 

optimum filter is connected to the output of the recorder, 

its output will be denoted by z(t). The error ef(t) between 

the input to the recorder and the output of the filter will 

be written as 

ef(t} = x(t} - z(t), ( 3. 8) 

and the mean square error as 

e~ = E {[X (t) - Z (t) 12 } , (3.9) 

where the subscript f indicates use of the optimum linear 

filter. 
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CHAPTER IV 

TBE EFFECTS FOR LOW PASS SPECTRA 

A. Spectra 

In this chapter both the signal and the TBE will be 

assumed to have ideal low pass power spectral densities as 

shown in Figure 1, where Sxx(w) denotes the signal power 

spectral density and Shh(w) denotes the TBE power spectral 

density. In equation form, the signal power spectral 

density can be expressed as 

where a; is the signal variance, wx is the signal band

width, and where P (w) is a function defined by w 
X 

1 for I wl <A 

0 for I w I >A. 

In a similar manner, the TBE power spectral density can 

be expressed as 

(4.1) 

( 4. 2) 

( 4. 3} 



-w 
X 

S (w) 
XX 

2 1T 

/
0 h wh 

h h 

Figure 1. Spectra for low pass signal and 
time-base error. 

12 

w 
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where cr~ is the TBE variance, wh is the TBE bandwidth, and 

P (w) is as defined in (4.2). 
wh 

B. Mean Square Error For Unfiltered Output 

The mean square error for the case where no filter is 

employed is given by equation (3.7) as 

which can be rewritten as 

( 4. 4) 

Since the signal x(t) is assumed to be a ~ample function of 

a stationary random process with zero mean 

2 
= crx. (4.5) 

From equation (3.5), the output y(t) is of the form 

K x(t+h) so that if K is taken to be unity, then equation 

(4. 4) becomes 

e 2 = 2cr!- 2E {x(t)y(t)} , 

where the term E {x(t)y(t)} is the cross correlation, 

denoted by Rxy(T), 

(4.6) 



Setting 't= 0, 

E {x(t)y(t)} = R (0). 
xy 

Now 

Rxy(~) = E {x(t+~)y(t)} = E {x(t+~)x(t+h)} 

and using conditional expectations, 

E {x(t+T)x(t+h)} = Eh { E { (t+~)x(t+h) lh}} 

so that 

As previously mentioned, h(t) has been assumed to be a 

sample function of a ~ero mean normal random process. 

Therefore, 

R (T)= 
xy 

00 

-oo 

h2 

- 2cr 2 
e h 

R (T-h) dh, 
XX "'r--:r-

V 21Tcr~ 

2 
where crh is assumed to be known. For the present 

14 

( 4. 7) 

( 4. 8) 

(4.9) 

(4.10) 

{ 4. 11) 

{4.12) 
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development, the power spectral density of x{t) is assumed 

to be ideal low pass as given by (4.1), so that the auto

correlation function R (T) is given by 
XX 

R (T) 
XX 

(4.13) 

and equation (4.12) can be written as 

00 

sin [w (T-h)] x e 
W ( T -b) '"' r-----?--2- dh • 

X V 21TO'.:"' 
h 

(4.14) 

-oo 

Taking the Fourier transform to obtain the cross spectral 

density Sxy(w) gives 

S (w) xy = r r~ 
-oo -oo 

(4.15) 

Rearranging and recognizing the integration with respect 

to T as a Fourier transform gives 

h2 

f
oo - 20'2 

S (w) = 0'2 _! P (w) e-jwh e h 
xy x wx wx ...... ~ 

v 21TO'h 

dh, (4.16) 

-oo 

which can be integrated to give 



Then 

and 

S (w) 
xy 

R (T) 
xy 

E {xy} 

16 

2 1T 
= cr - P (w) e 

X W W (4.17) 
X X 

= ~~ r S (w) 
xy 

ejwT dw (4.18) 

-co 

= Rxy (0) = kr Sxy(w) dw. (4.19) 

-oo 

But Sxy(w) is an even function which is zero for lwl>wx 
so that (4.19) can be written as 

= (2)~~ Jw~xy(w) dw 
0 

(4.20) 

where 

N (u) 1 = 
21T 

dt. (4. 21) 

Substituting into equation (4.6) gives 
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2 2 { e = 2crx 1 

This is the general expression for the mean square error 

which is shown to be a function of the product of wxcrh. 

It should be noted that in the evaluation of the mean 

square error, it was necessary to use the expression for 

the power spectrum for the signal; this required a know-

ledge of its form and of the parameters w and cr but the 
X X 

only knowledge of the TBE which was needed (in addition 

to its Gaussian density function) was the value of crh. 

Thus, for a given signal ~pectrum, the mean square error is 

dependent only on the TBE power and not on its spectral 

density. 

A plot of mean square error as a function of wxcrh is 

shown in Figure 2. Since ~ is a monotonically increasing 

function of wxcrh, it is obvious that wide bandwidth re

corders require low TBE. For modern instrumentation 

recorders where normally crh<l0- 6 and thus normally wxcrh<<l, 

the error can be calculated from (4.20) using 

2 
t/2 (4.22) 

which is valid for small values oft. Then for wxcrh<<l, 

( 4. 21) becomes 

(4. 23) 
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.01 

. 1 1.0 

I 
I 

I 

I 

I 
I 

I 
/-.--~-Asymptote 

I 

10 

Figure 2. Mean square error due to 
time-base error. 
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100 



making the error proportional to the product of the mean 

square signal (signal power) , the mean square TBE (TBE 

power), and the data bandwidth squared. The use of this 

approximation corresponds to operation on the lower 

straight line portion of the plot shown in Figure 2. 

19 

This is the error due to TBE, where no consideration 

has been given to other noise in the system, and no 

attempt has been made to compensate the output to reduce 

the error. 

c. Mean Square Error With An Optimum Linear Filter 

1. The Filter 

In order to determine the reduction in mean square 

error which is possible by use of a filter, consider the 

case where a filter is connected to the output of the 

recorder so that the input to the filter is y(t). Using 

z(t) to denote the output of the filter, the mean square 

error between the input to the recorder and the output of 

the filter is given by 

(4.24) 

In order to minimize this error, a filter must be 

found such that whenever an input y(t) is applied to the 

filter, the output z(t) of the filter makes (4.24) a 
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minimum. It is known from the orthogonality principle 

(20) that the error ef(t) is minimized when the error is 

orthogonal to the data. That is, the error is minimized 

when 

E {[x(t)- z(t)] (4.25) 

or 

E[x(t) y{a)] - E[z(t) y(a)] = 0. (4.26) 

Now 

E { x(t) y (a) } = Rxy (t-a), (4.27) 

and the response of the filter to y(t) can be written 

z(t) = Jm R<a> y(t-6) dB (4.28) 

-co 

where g{t) is the impulse response of the filter. Thus, 

equation (4.26) becomes 
co 

Rxy(t-a) = E {y(a) J R<a> y(t-a> aa} (4.29) 

-co 

or 



21 

R (t-a) = J00

R (t-a-S) g(f3) df3. 
xy yy (4.30) 

-oo 

Using T as the argument, this can be written as 

R ( T) = R ( T) *g ( T) 1 xy yy 
(4.31) 

where * denotes convolution. Upon taking the Fourier trans-

form, this becomes 

H (jw) 
S (w) 

= xy 
syy (w) ' 

(4.32) 

where H(jw) is the Fourier transform of R(t) and is the 

transfer function of the optimum linear filter which is 

being sought. In general, this filter is physically un-

realizable since no realizability constraints have been 

imposed. From (4.32) it can 

has already been calculated, 

be seen that, since sxy(w) 

the calculation of S (w) will 
yy 

complete the determination of H(jw). This can be done by 

determining the autocorrelation, Ryy (T ),. of y (t) and 

taking its Fourier transform. 

The autocorrelation of the recorder output is 

(4.33) 

which can be written as 
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( 4. 34) 

or as 

(4.35) 

By making the definition 

U(T) = h(t+T) - h(t) , (4.36) 

the autocorrelation can be written as 

(4. 37) 

Since h(t) is stationary with zero mean 

E[u(T)] = E {h(t+T) - h(t)} = 0 (4. 38) 

and the variance of u(T) is 

cr~ = E { u 2 (T)} = 2[cr~- E { h(t+T) h(t)} ] , (4.39) 

or 

cr~ = 2[cr~- ~h(T)]. (4.40) 



Since u(t) is a linear transformation of normal random 

variables, it is normally distributed with zero mean and 

variance a2 as given by (4.40). 
u 

Using this, along with equations (4.13) and (4.37), 

Ryy(T) can be written as 

2 
00 u 

sin [w (u+T) 1 
- 2a2 

u 
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a2 R (T) X e du. (4.41) = wx(u+T) yy ·x 
~ u -oo 

The details of carrying out this integration and of taking 

the Fourier transform of R (T) to obtain S (w) are very yy yy 
tedious and reader is referred· to Appendix A. In the 

appendix, it is shown that (4.41) can be written as 
w a 

R {T) = yy 

0 

XU 2 
-f3/2 T e cos(f3au) df3. (4.42) 

Again, assuming that wxah<<l, this can be calculated to 

be 

a2 
sin W T (w a ) 2 a 2 

Ryy(t) 
X [1 - XU + {__!!) ] = 2 X wxT T 

a2 
rJ 2 

..;. (;..2!) cos w 't. {4.43) 
X T X 
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In order to be able to complete the computation of s (w), 
. yy 

it is necessary to make use of equation (4.3) which gives 

the power spectral density of h(t). The autocorrelation, 

~h (T), of the TBE is 

so that cr 2 is 
u 

lbh(T) , 

2 sin whT 
= 2crh [1 - w T ] 

h 

Inserting this in (4.43) above and taking the Fourier 

(4.44) 

(4.45) 

transform (see Appendix A for details) gives SYY(w) and 

completes the determination of the optimum filter H(jw) 

2. The Error 

To find the mean square error with the above determined 

optimum filter connected to the recorder, it is necessary 

to find a means of evaluating equation (4.24). This can 

be accomplished by expressing the error ~ in terms of 

power spectral densities. 

Equation (4.24) can be written as 
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e~ = E {[x(t)-z(t)] x(t)} - E { [x(t) - z(t)] z(t)}, 

(4.46) 

but 

E { [x(t)-z(t)] z(t)} = E[x(t)-z(t)] J00

y(t-o)R(o)do, 

-oo 

or 

E {[x(t)-z(t)]z(t)} = f00

E { [x(t)-z(t)]y(t-o)} 

-oo 

(4.47} 

R ( cr) dcr • 

(4.48} 

From equation (4.25) this is zero so that (4.46} becomes 

e~ = E { [x (t) -z (t)] x (t)} , 

or 

2 e - R (0}-E f- XX 

But this can be written as 

-oo 

Defining g(T) as 

(4.49) 

(4.50) 

(4.51) 



g(T) = R (1) -
XX rRXY(a-T)g(o.) 

-co 

which can be written 

g {T) = R ( T)- R (- T) *R ( T) , 
XX XY 

da, 

and taking the Fourier transform of g{T) to get 

G{w) = S (w)-S (-w)H{jw) 
XX XY 

enables the error e~ to be written as 

or 

2 e = g(O) f 
dw, 

Joo [s (w)-S (-w)H(jw)} 
XX xy 

-oo 

Using (4.32), this becomes 

e; = ~rr n sxx (w) syy(w) dw 

-co 

dw. 
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(4.52) 

{4. 53) 

(4.54) 

(4.55) 

{4.56) 

(4.57) 

which, by the use of (4.1) and (4.17), can be written as 



2 
(J 

X 

0 
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dw. (4.58) 

In order to complete the evaluation of this error, it 

is necessary to use this equation along with the equations 

for S (w) as given in Appendix A. The results of this are 
yy 

(see Appendix A for details) 

02 2 2 
2 w crhw X X X 
ef = -

wh 3 

for 2w <wh' X . 

2 5 2 2 2 
ef = 24 (J x 0hwx 

for the case where 2wh<wx. 

2!2 
A plot of 10 log10 (efje ) 

(4.59) 

(4.60) 

{4. 61) 

w 
X 

versus is shown in Figure 
wh 

3. This figure shows the improvement in the mean square error 

which is possible by the use of the optimum linear filter. 
wh 

The figure is shown dashed in the region where ~<wx<wh and 

where wh<wx<2wh since no calculation was made for SYY(w) or 
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for the error ~ in either of these regions. The calcula

tions for these regions are quite tedious and there would 

seem to be little information to be gained by them since 

it seems unreasonable to suppose that there would be a 

large deviation from the extrapolated (dashed) curves 

shown in Figure 3. 

While it is true that the improvement calculated is 

the theoretical maximum and no physical realizability con-

ditions have been imposed, the improvement indicated by the 

calculations could be approached either by processing the 

data y(t) {as per the equations for the unrealizable 

optimum filter) rather than using an actual physical filter, 

or by allowing a time delay in the output z(t). Of course, 

in the region where wx>wh' there would be little point in 

filtering because the improvement, even with the unrealizable 

optimum filter, is very small. On the other hand, in the 

region where wx is small compared to wh, the filtered error 

is less than the unfiltered error by the factor wx/wh so 

that significant improvement could be expected here. In 

all cases, the equation for the error contains the product 

of TBE power and the data bandwidth squared so that the 

product wxcrh should always be kept as small as possible. 

Since oh is usually fixed, this means that the data bandwidth 

w should be kept to a minimum. 
X 



CHAPTER V 

TBE EFFECTS FOR BAND PASS SPECTRA 

A. Band Pass Signal--Low Pass TBE 

1. Spectra 

Since the ideal low pass signal case considered in 

30 

the previous chapter is not very general, it is of interest 

to generalize the computations by considering a signal 

which is band pass rather than low pass. _Although there 

are obviously several different possible specifications 

on the relative sizes of signal bandwidth, TBE bandwidth, 

and center frequency of the signal pass band, previous 

results indicate that the greatest improvement (by filter

ing) is to be obtained where signal bandwidth is small 

compared to the TBE bandwidth. Therefore, in this compu

tation, the signal bandwidth will be taken as small com

pared to the TBE bandwidth. More specifically, the power 

spectral densities will be taken as shown in Figure 4 and 

it will be assumed that wh>2(w0 +wx) where w0 is the center 

frequency of the signal band. While this does not corres-

pond to the spectra likely to be encountered, it does show 

the effect of TBE on the various frequency components of 

the signal. 

The equations for the power .spectral densities are then 



-w -w -w -w +w 
0 X 0 0 X 

-w 
h 

S (w) 
XX 

w -w 
0 X 

TI 

2w 
X 

w w +w 
0 0 X 

Figure 4. Spectra for band pass signal and 
low pass time-base error. 
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(5.1) 

for the TBE spectrum, and 

S (w) = cr 2 !_ 1/2 [P (w-w) + P (w+w )] 
XX X WX WX 0 WX . 0 

(5.2) 

for the signal spectrum (the center frequency w0 is taken 

to be greater than w ). 
X 

2. Mean Square Error For Unfiltered Output 

As in the previous chapter, the error for the un-

filtered recorder is given by 

where 

= Eh[R (T-h)]. 
XX 

However, in this case R (T) is found from (5.2) as 
XX 

R (T) 
XX 

sin w T 
= cr2 x 

X W T 
X 

so that (5.4) becomes 

COS w0 T 

(5. 3) 

(5.4) 

(5. 5) 
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h2 

sin[w (T-h)] 
0 2 X 

X W (T-h) 
X 

-~ 
h 

cos [w (T-h)] e dh 
0 ~ 

21TOh 

(5.6) 

Taking the Fourier transform and integrating in the same 

manner as in the previous chapter gives 

Sxy(w) 

Now 

e l/2[P (w-w )+P (w+w )]. 
w 0 w 0 

X X 

E(xy) = Rxy(O) = ·~~ J~sxy(w) dw, 

-oo 

dw. 

(5. 7) 

(5. 8) 

(5.9) 

While this can b~ expressed in terms of the error function, 

it is convenient to make the approximation that oh(w0+w~<l 

which would again be valid for most instrumentation recorders. 

Under this assumption 

w +w 
0 X 

02 02 

~y(O) 
X (1 - .1!. w2) dw, = 2w 2 ,x 

(5.10) 

w -w 
0 X 
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or 

(5.11) 

Then using this expression along with (5.2) gives 

2 
e = 

2 2 2 
cr crhw x ·x 

3 

w 
[1+3(wo)2]. 

X 
(5 .12) 

As in the case of low pass signal, this error is independent 

of the specific spectral density of shh(w) but dependent 
2 2 on crh, and on wx. Additionally, in this case, the center 

fre~uency w0 contributes significantly to the error. By 

comparing this with (4.23) ~hich is the error for the un-

filtered case with low pass signal) , it is evident that the 

error for this case is considerably larger than for the 

low pass signal case. In fact, if w0 is written as 

w0 = Mwx where M>>l, the expression for the error becomes 

2 e 2 2 2 = cr crhw X 0 
(5.13) 

That is, the error is 3M2times the error for the low pass 

signal case if all the parameter values are the same. 

This clearly indicates that it is important to keep the 

signals to be recorded at as low a frequency as possible 

in order to keep the error small. 



3. Mean Square Error With an Optimum Linear Filter 

Since this case (bandpass signal) is one where the 

signal bandwidth is much smaller than the TBE bandwidth, 

one might expect a significant improvement using the 

optimum filter; it will now be shown that this is indeed 

the case. 

Using the same symbols as before, the error with the 

filter attached is once again 
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~ = E[x(t) - z(t)] 2• {5.14) 

Tracing through the same steps as before for the derivation 

of the optimum filter and the mean square error e~ again 

gives 

H (jw) = 
S~{w) 
S {w) yy 

and 

e2 1 J~xx(w) lsx:i{w) 12 
] doo, = 21T Syy(w) f 

-oo 

so that once again it is necessary to compute SYY(w), 

where 

-jwT e dT 

(5 .15) 

{5.16) 

(5.17) 



and where, in this case, 

C1 1T { 
2 . 

E ~ 
h wx 

• COS (100 (T+U) i • 
sin [wx (T+u) ] 

w (T+u) 
X 
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(5.18) 

The details of the computation of S (w) are shown in yy 

Appendix B. The results of using Syy(w) as computed in 

the appendix with equation (5.16) above is 

or 

2 e -f - (5.19) 

(5.20) 

If once again w0 is written as w0 = Mwx' where M>>l, the 

error becomes 

(5.21) 

where the restrictions on the values for w0 , wx' and wh 
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are 

wh>2(w +w ) and w >w • 0 X o- X 

Comparison of either (5.12) and (5.20) or (5.13) and (5.21) 

shows that the error for the filtered case is reduced by 
2w 

the factor of x (the maximum value for this factor is 12 ). 
wh 

These results are consistent with the low pass signal case 

(where the signal bandwidth was less than the TBE bandwidth) 

because in both cases the filtered error is less than the 

unfiltered error by the factor of signal bandwidth divided 

by the TBE bandwidth. Thus, for the wide band TBE case, 

the effect of adding the optimum linear filter is to 

significantly reduce the mean square error. It should be 

noted, however, that whether the filtered or unfiltered 

case is considered, the situation of a bandpass signal leads 

to significantly more error than the low pass case (for 

comparable bandwidths). The high frequency components 

then, are the ones which suffer the most degradation due 

to TBE in the process of recording and reproducing a 

signal. Narrow band signals with large center frequencies 

are particularly vulnerable. In fact, for this case, the 

error is approximately dependent only on the center 

frequency [see (5.21)]. This indicates, for example, 

that in a situation where several band pass signals are 

frequency division multiplexed, the high frequency bands 



38 

suffer much more degradation due to TBE than do the low 

frequency bands. 

B. Low Pass Signal--Band Pass TBE 

1. Spectra 

To this point, TBE spectra have all been taken to be 

ideal low pass. In practice, however, the TBE spectra 

usually more nearly resemble band pass spectra because the 

low frequency components of TBE can be removed by servos. 

For this reason, it is desirable to have an analysis of the 

error (both filtered and unfiltered) for the case of a 

band pass TBE spectrum. This is true not only because it 

is important to be able to calculate the effects of narrow 

band TBE on signals, but also because it can be shown that 

more general TBE spectra can be represented as a sum of 

band pass spectra. 

In this analysis, the signal and the TBE spectra are 

taken as ideal low pass and ideal band pass respectively 

as shown in Figure 5. The complexity of the analysis re

quires that restrictions be placed on the relative signal 

and TBE bandwidths and on the TBE center frequency. The 

restrictions used for this analysis are 

w >(w +wh) and w ~wh 
X C C 

where w is the center frequency of the TBE as shown in 
c 



S (w) 
XX 

--~--------------------~--------------------~~w -w 
X 

-w -w c h 

/a~ 
.-------. 

w -w c h 

Figure 5. Spectra for low pass signal and band 
pass time-base error. 
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Figure 5 .• 

The equations for the spectra for this case are 

2 sin whT 
= (J h 

for the TBE spectrum, and 

S {w) = cr 2 
XX X 

for the signal spectrum. 

sin w T 
X 

W T 
X 

2. Mean Square Error For Unfiltered Output 

It has already been shown that, for both the case of 

low pass signal and for the case of band pass signal, the 

mean square error is dependent only on cr~ and not on the 

spectral density of the TBE. Therefore, the mean square 

error is given by (4.23) for low pass signal and by (5.12) 

for the band pass,signal regardless of the spectral 

distribution of shh(w). 

3. Mean Square Error With An Optimum Linear Filter 

Using the same procedure as in the previous cases, it 

is found that equations (5.15) for the optimum filter and 



(5.16) for the mean square error are still valid. Also, 

the cross spectral density Sxy(w) is the same as for the 

first case considered, namely, 
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Once again, due to the tedious nature of the calculations, 

the details of computing s (w) and e~f are shown in the yy 

appendix (Appendix C). A result of these calculations is 

a 
- ,.2 (~) 2 v COS WXT 

X T 
(5.22) 

where, in this case, 

{5.23) 

By computing syy(w) from {5.22) and (5.23) and using the 
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result in (5.16), one obtains the mean square error for 

this case 

~= 
f { 1-

1 
2 

2 2 2 2 2 
w w +wh+3w wh+3w } 

[__£( c x)-( c)] • 
w •.• 2 2 X ..,. W 

X X 

(5.24) 

Although the complexity of this equation makes conclusions 

regarding the "best" values of w0 and wh difficult, careful 

examination reveals that the smallest error occurs when 

wx = w0 +wh which is the minimum value for wx. For this case, 

the error becomes 

(5. 25) 

For the small values of wh this becomes 

(5.26) 

or approximately 

• (5. 27) 



This shows that for the case where the TBE spectrum is at 

the upper end of the signal spectrum, the error for the 

filtered case does depend on the TBE bandwidth. It also 

shows that use of the optimum filter can reduce the error 

by a factor of approximately 1/2 for the case where the 

TBE bandwidth is small (compared to signal bandwidth) 

and concentrated at the upper end of the signal spectrum 

[compare (5.26) and (5.27) to equation (4.23)]. Study of 

equation (5.24} reveals, however, that this improvement 
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is not significant unless the TBE spectrum is concentrated 

at the upper end of the signal spectrum. In fact, 

equation (5.24) can be shown to reduce to (4.61) as the 

TBE spectrum approaches the low pass spectrum considered 

previously. 

c. Composite Spectra 

Since the types of signal and TBE spectra encountered 

in practice are n'ot always ideal low pass or ideal band 

pass or even a reasonable approximation thereto, questions 

arise as to the effect of the approximations used and as 

to the possibility of making computations using more 

general spectral models. Partial answers can be found for 

these questions by considering cases where the signal 

and/or TBE spectra are composed of sums of band pass 

spectra. 

In order to gain some insight about the change in 

the mean square error with deviations in the form of the 
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power spectrum of the signal from the ideal models pre-

viously considered, suppose that a signal has a power spec

trum as shown in Figure 6o In this case the signal spectrum 

can be considered to be composed of a sum of two band pass 

spectra and written in the form 

S XX ( W) = .A P W ( W) + A P ( w) o 

1 w2 

The autocorrelation function then becomes 

As in previous cases 

which becomes 

R (T) = xy 

00 

-oo 

h2 
- 2<:12 

R (T-h) e h 
XX .... r--::;-

'\1 271'0' ~ 

Taking the Fourier transform gives 

dho 

(5o28) 

0 (5o29) 

(50 30) 

(5o3l) 
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xx(w) 

J1(2A 

A 

------4-------+---------~----------~------~--~~w -w 2 

Figure 6. Composite signal spectrum. 

w 1 
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S (w) = [A P (w) + A P (w)] e 
xy wl w2 • (5.32) 

In order to find the error (unfiltered) for this case, it 

is only necessary to use equations (5.3) and (5.8) along 

with the above. This gives 

which for w2 = kw 1 is 

2 
e = 

If k>>l, this becomes approximately 

2 
e = ' 

which is just the error computed in Chapter IV for an 

ideal low pass spectrum of bandwidth w2 . Then if the 

spectrum of Figure 6 is approximated by an ideal low 

pass spectrum whose bandwidth is almost w2 , the error 

computed will be approximately that given by (5.34). 

(5.33) 

(5.34) 

(5.35) 

Since it has already been shown that the error (unfiltered) 



is independent of the shape of the TBE spectrum, it would 

seem that the use of wh and wx as equivalent bandwidths 
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of the signal and the TBE will lead to reasonable approxi

mations of the mean square error. 

In cases where the signal and/or the TBE spectra are 

complex or where higher accuracy is desired, it may be 

necessary to use a more general representation of the power 

spectra. For these cases, it is still possible to use the 

techniques employed thus far. This is accomplished in 

general terms by writing both the signal spectrum and the 

TBE spectrum as a summation of band pass spectra. It can 

be shown that this is a procedure which leads to sums of 

terms of the same form as those already dealt with. This 

procedure, however, becomes exceedingly cumbersome and 

tedious if many terms are involved, and the complexity of 

the resulting equations is such that they are difficult 

to interpret. It is probable that the best procedure for 

cases where many terms are necessary to adequately represent 

the signal and/or the TBE spectrum, is to use a digital 

computer to calculate the quantities desired. 



CHAPTER VI 

ADDITIVE EXTERNAL NOISE 

A. Sources of Error 

To this point the consideration of the effects of 

time-base perturbations has been strictly in terms of 

the mean square error caused by time-base error. No 

consideration has been given to additive noise which is 

present in the signal before recording takes place or to 

the noise which is introduced into the signal after play

back. 
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Since it is obviously of no use to attempt to minimize 

the error caused by time-base perturbations if this error 

is small compared to other errors, a measure of the relative 

size of this error is needed. Specifically, criteria are 

needed to determine when the mean square error due to TBE 

is significant compared to noise present in the signal 

before recording and compared to noise introduced after 

playback. 

B. Pre-Recorder Noise 

In order to establish the first of these criteria, 

consideration will now be given to the case where noise 

is present in the signal before recording; that is, where 

the input to the recorder is composed of signal,x(t), plus 

noise,. n (t) • The noise, n (t) , will be assumed to be a sample 
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function of a normal random proces.s which is independent 

of x(t) and of h(t). The power spectral density of h(t) 

will be assumed to be ideal low pass and the power spectra 

for x(t) and n(t} will be taken as ideal low pass of band-

width wx. Since the noise passes through the same channel 

as the signal prior to recording, the noise bandwidth is 

assumed to be the same as the signal bandwidth. 

For an input to the recorder x{t) + n(t), the output 

of the recorder will be of the form 

y(t) = x[t+h(t)] + n[t+h(t)], (6 .1) 

and the mean square error is 

~ = E {[x(t)-y(t)J 2 }= E(x2 ) + E(y2 ) -2E(xy). 

(6. 2) 

Denoting the noise variance by cr~, 

and 

2 
= cr ' ·n 

• .E {X (t+h) +1\ (t+h) } 2 = ( 6. 3} 

The spectrum of x(t) is again taken as ideal low pass so 
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that 

S (w) 02 7f ( 6. 4) = w-Pw(w), 
XX X 

X X 

0 2 2 
hw 

S (w) a2 7f 2 = -P. (w) e ( 6. 5) xy X w w 
X X 

and 

(2} rx <1~ 
2 2 

crhw 
2 

2 [a 2 -
1 7f 2 

dwJ. (6.6) e = 27f -e .. X w 
X 

0 

( 6. 7) 

This means that the error due to the additive noise which 

is present in the signal before recording simply adds to 

the error due to the TBE when no filter is used. Unless 

a2 is significant compared to the second term in equation 
n 

(6.7), the error due to noise already present in the signal 

could be neglected in comparison to error caused by TBE. 

If one considers the addition of the optimum linear 

filter to the output of this system, it is necessary to 

minimize the quantity 
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2 2 ef = E[x(t)-z(t)] ( 6. 8} 

where z(t) is the output of a filter whose input is 

y(t} = x[t+h(t)] + n[t+h(t)] • (6.9) 

The details of the computation of the me an square error 
2 
ef are carried out in Appendix D, but the results are 

repeated here for convenience. 

The optimum filter is again given by 

H (jw) 

where the cross spectral density Sxy(w) is given by (6.5). 

Since n(t) is independent of x(t), the autocorrelation of 

y(t) can be computed as 

(6 .10) 

The noise bandwidth is assumed to be the same as the signal 

bandwidth so the autocorrelation function for the noise can 

be written 



R (T) nn 
2 sin wxT 

= C1 n 

Taking the Fourier transform gives 

,.2 2 
2 2 vhWX 

= (cr +cr ) :!!.__ [1+ 
x n wx 3 

and the mean square error becomes 

2 e -f -

1'\'2 3 
vhW 
6w ], 

X 

Assuming that cr2<<cr2 , the error can be written as 
n x 

2 2 
e = cr (1 

f n 

and, under the assumption that crhwx<<l, this becomes 

approximately 
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( 6. 11) 

(6.12) 

(6.13) 

(6.14) 

(6. 15) 
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Therefore, the error due to n(t) is essentially unchanged 

by either recording or by the optimum linear filter. It 

simply adds to the error due to the TBE, whether the output 

is filtered or not. Furthermore, the error due to n(t) is 

not significant if 

However, if cr is large enough so that cr2 is on the same 
n n 

order as a~a~w~, it is of little value to filter the output 

because (.6 .13) becomes 

which is nearly the same as the unfiltered error given by 

(6.7). If 

but 

the error becomes 



2 
(J • 

n 

In this case, the error due to n(t) is dominant and it is 
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essentially unnecessary to consider the error due to time-

base perturbations. 

c. Post-Recorder Noise 

In many cases, the noise added to the signal after 

playback is larger than the noise which is present in the 

signal before recording. In fact, since the signal on the 

tape is very low level, noise is always introduced in the 

process of amplifying and integrating the signal at the 

playback heads. As in the case just considered, it is 

important to be able to determine when the error due to 

this noise is significant compared to the error due to 

the TBE. 

In order to establish a criterion for determining when 

the error added by this noise is significant, consideration 

will now be given to a system where a noise n(t) is added 

to the signal after playback. This noise is assumed to 

be a sample function of a normal random process which is 

independent of the signal and the TBE. The power spectral 

density of n(t) will be ideal low pass with bandwidth wn 

and the power spectra for x(t) and h(t) will be taken as 

ideal low pass of bandwidth wx and wh, respectively. 
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Denoting the composite of the recorder output and the 

additive noise by y 1 (t) 1 the composite can be written as 

y 1 (t) = y(t) + n(t) 

or as 

y 1 (t) = x[t + h(t)] + n(t). 

The mean square error to be computed is 

which can be written as 

or 

e 2 ~ E(x2 ) - 2E {x(t) [x(t+h) + n(t)]} 

+ E {[x(t+h) + n(t)] 2} , 

where again, as in (4.11) 1 

(6.16) 

{6.17) 

{6.18) 

( 6. 19) 

( 6. 20) 

(6.21) 



Using the same procedure as in (4.12) through ( 4. 23), 

(6.20) becomes 

( 6. 22) 
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So that once again, for the case where n(t) is independent 

of x(t) and h(t), the mean square error contributed by the 

noise added after playback is simply the noise power; the 

total mean square error is the noise power plus the 

previously computed value of the mean square error due 

to the TBE. 

In order to find the improvement possible by the use 

of the optimum linear filter, it is necessary to find the 

filter which will minimize the quantity 

2 
e = f 

E[x(t) - z(t)] 2 (6.23) 

where z(t) is the output of a filter whose input is 

y1 (t) = x[t+h(t)] + n(t). ( 6. 24) 

The details are shown in Appendix E and the results are 

repeated here for convenience. 

The cross correlation Rxy(T) is 

(6.25) 



and the autocorrelation R (~} is yy 

Eh[R (~+u) + R (~)]. xx nn 

Carrying out this computation for wx = wh gives 

for w <w , and n x 

for w >w • For wh>2wx n- x 

when w <w and n x 

2 00x CJ2 
ef = wn n 

(1 -
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(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6. 30) 

when w >w • But for w = wh' these are approximately n X X . 

( 6. 31) 



for w <w , and n x 

for w <w , and n x 

for w >w • n x 

~ wx ~2 5 2 2 2 
ef = vn + 24 (J (J w wn x h x (6.32} 

(6.33) 

(6. 34) 

Then to a first approximation, the additional error 
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caused by the noise which is added after playback is simply 

the noise power in n(t). To determine the most significant 

error, comparisons should be made between the relative values 

of the first and second terms of equations (6.31) through 

(6.34). [The first term of each of the equations represents 

the error due to the noise and the second term is the error 

due to TBE.l In order to insure that no appreciable error 

is added by noise which is introduced after playback, the 

noise power cr 2 must be much less than cr 2crh2w2• Under this 
n X X 

condition, filtering the output signal gives the error shown 

by equations (4.59), (4.60), and (4.61). If, on the other 
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h 2 2 2 2 
and, an is on the same order as axahwx, equations (6.31), 

(6.32), (6.33), and (6.34) should be used. Finally, if 

a2>>a2a 2w2 then 
n X h X 

and 

2 wn 2 
ef ::::::s an for w <w , 

wx n x 

for w >w • n x 

D. Pre-record Plus Post-record Noise 

(6.35) 

(6.36) 

An analysis for a system where both pre-recorder noise 

n 1 (t) and post-recorder noise n 2 (t) are present was also 

carried out. The details are somewhat involved, but, to 

a first approximation, the total mean square error is the 

sum of the noise powers and the error due to the time-base 

error. This is assuming that the noises n1 {t) and n 2 (t) 

are independent of each other and of the signal and TBE. 

In order to determine the most significant contribution to 

the total mean square error for this case then, the compari-

h ld b 2 2 d l"r21"T2 2 son s ou e among a 1 a I an v vhW . n1 n2 x x 
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CHAPTER VII 

PRACTICAL FILTERING 

A. General Considerations 

It has been demonstrated that some improvement in the 

mean square error is possible by the use of the optimum 

linear filter, especially in the case where the signal 

bandwidth is small compared to the noise bandwidth. How

ever, no consideration has been given to this point as to 

the improvement which is possible with physically realizable 

filters. Although it is possible to realize the optimum 

filter within arbitrary accuracy by allowing a time delay, 

it would be advantageous to be able to compute the improve

ment in the mean square error by the use of simple filters 

that are easily realizable. If, for example, a simple 

filter gives almost as much improvement as the optimum 

filter, then there is little use in trying to synthesize a 

complex filter. It is also desirable to be able to predict 

the effects on the mean square error which are produced by 

the channel through which the combined signal and noise 

output of the recorder pass. Since it has already been 

shown that it is not possible to achieve much improvement, 

even using the optimum filter, for the case where wh<wx' 

the cases to be considered here will be confined to the region 

wx<wh where significant improvement was possible by the use 

of the optimum filter. 
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In order to be able to compute the error at the out-

put of a filter which is not the optimum linear filter, it 

is necessary to use a more general equation than the one 

used for computing the error when the optimum filter was 

employed. This general equation will now be found. 

Considering the output of the general filter to be 

z 1 (t) 1 the mean square error between the signal and the 

output of the filter is 

2 { efl = E [x(t) (7.1) 

where e~1 is used to denote the mean square error when a 

filter other than the optimum linear filter is used. This 

can be written as 

~l = E[x2 (t)]- 2E [x(t)y(t)] + E[z~(t)] (7.2) 

or, making the definition 

e 1 (t) = x(t) - ,_(t) 1 ( 7. 3) 

one can write the autocorrelation function Ree(T) of e 1 as 

Ree (T) = E[[x(t+T)x(t) ]-x(t+T) z1 (t)-z1 (t+T)x(t)+z1 (t+T) z 1 (t)J. 

(7.4) 



The mean square error can then be written as 

or as 

1 Joo 
2'11' S (w) dw, 

ee 

-oo . 

(7.5) 

(7.6) 

where See(w) is the Fourier transform of Ree(T). From 

equation (7.4), See(W) can be found as 

( 7. 7) 

Now 

( 7. 8) 

and 

(7.9) 

where H1 (jw) is the transfer function of the filter which 

is connected to the recorder. Then equation (7.6} can be 

written as 
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e;l = ;rr Joo {sxx(w) + 

-oo 

syy (w) I Hl (w) 12 -sxy (w) [Hl (w) +Hl toll]} dw 

(7.10) 

which is the general equation for the mean square error 

when a general (not necessarily optimum) filter is used. 

B. Low Pass R-C Filter 

If one returns to the case where both signal and TBE 

spectra are ideal low pass, it is found that the transfer 

characteristic for the optimum filter is low pass in form. 

Consideration will now be given to a practical low pass 

filter in order to determine the usefulness of such a 

filter. For simplicity, the filter will be considered to 

be composed of a resistor and a capacitor and to have a 
a 1 

transfer characteristic of the form a.+jw where a.= RC" 

Now for the case where wx = wh, the previously calculated 

equations (see Appendix A) for S (w) and S (w) can be 
YY xy 

2 
used to compute the error efl as 

2 
cr2 w 2 cr~cr~a. 2 2 X Tan -l(~) + efl= a - -a 3 X wx a 

+ a2a~aw 
-1 2wx 1 2 

Tan (a) [- - ~] (7.11) 
X X 3 2 

2wx 

cr2cr2a.2 a.2+4w2 2 
X h ln [ X] [1 - a 

4 a.2 ~1-
3wx 
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The complexity of this equation obscures the exact results 

but the following cases are of interest. For ~>>wx = wh 

the error reduces to 

2 1.(12(12"'2 
efl= 3 x h~x (7.12) 

which is, of course, the error for no filter. In this case 

the bandpass of the filter is much greater than the signal 

and noise bandwidths and, therefore, has essentially no 

effect. For a = wx the e~ror becomes 

(7 .13) 

and for a+O the error is 

(7.14) 

In fact, the general form of the error is 

(7.15) 

where K1 and K2 are dependent on the value of ~. As ~ is 

increased from zero to infinity, K1 decreases from one to 

zero, while K2 increases from zero to one-third. 
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This then indicates that for wx = wh' the R-C filter is 

of no value in reducing the error. Indeed, the best it can 

do is leave the error unchanged from the case of no filter. 

Turning consideration to the case where wx<<wh and 

performing the same calculations leads to 

a --w 
X 

w 
Tan- 1 (~) + 1 

a 3 

(7.16) 

Again, the complexity of the equation makes it difficult 

to assess the behavior of the filter, but it is instructive 

to consider the case where wx = a<<wh. For this situation, 

one might expect a reduction in the error since the signal 

is within the pass region of the filter, but much of the noise 

is in the stop band. The error for this case is 

or 

< 
1T 1 

(1 - -) + -4 3 
1T 

2' 

(7.17) 

(7.18) 

which is quite large if cr~ is large. If one considers the 

case where wx<<a<<wh which places the signal well within 



the pass band but still keeps much of the TBE spectrum in 

the stop band, it turns out that 

1T 

2 (7.19) 
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This may be less than the unfiltered error but it is not a 

significant improvement at best because the first term still 

t . 2 con a1.ns cr • 
X 

For example, for the case where a = lOwx and 

wh = lOa, (7.19) becomes 

Evidently, then, the simple R-C filter is of little 

benefit in reducing the mean square error due to TBE. One 

might consider more complex filters whose characteristics 

more closely approximate the optimum filter, however, there 

are unlimited possibilities as far as specific filters are 

concerned and it is probably more instructive to consider 

a general type of transfer characteristic which is useful 

in the filtering process. 

C. Bandpass Filters 

As a first step, suppose that the error is calculated 

for the case of low pass signal and TBE spectra with an 

ideal low pass filter. That is, suppose 



1 lwl<w 
X 

0 lwl>w 
X • 

Carrying out the calculations using (7.10) gives 

= 

for w = wh, and 
X 

cr2cr2w2 w 
2 X h X X = 
efl 3 wh 
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(7.20) 

(7.21) 

(7.22) 

for wx<<wh. Since these values are exactly the same as 

those calculated for the optimum filter, one might at first 

suspect an error. However, it should be remembered that in 

all of the calculations, only the most significant terms 

have been retained. For an exact relationship, an infinite 

number of higher order terms of the form c3cr~cr~w;, 
2 4 4 c4crxcrhwx' etc. (where C's are constants of decreasing size} 

would have to be included. Then, to the approximations of 

the calculations, the ideal low pass characteristic just 

considered is as good as the optimum filter. Actually, the 

difference between the error using the optimum filter and 

the error using the ideal 

order of some fraction of 

low pass filter should be 

2 3 3 
crxcrhwx (where wxcrh<<l). 

on the 
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Since the characteristic of the ideal low pass filter 

just considered cannot be realized exactly any more than 

the optimum filter can, one might ask just how sensitive 

the error is to deviations in the filter characteristics. 

(Of course some information about this sensitivity is 

provided by the fact that the optimum filter and the ideal 

low pass filter just considered have nearly the same error). 

In order to better determine this sensitivity, con-

sideration will now be given to an ideal filter with a trans-

fer characteristic as shown in Figure 7. For this case, 

H(jw) is given by 

1 

H (jw) = 

w -w 1 
wl-wx 

0 

-w <w<-w 1 X 

lwl<wx 

wx<w<w1 

• (7.23) 

The use of the equations (for low pass signal and TBE 

spectra) for s (w), Sxy(w), and S (w) from Appendix A XX yy 
along with equation (7.10) gives 



-w 
1 -w 

X 

H (jw) 

:1. 

Figure 7. Sub-optimum ideal filter. 
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w 



+ 

for w =w • 
X h 

+ 

rr2 2 2 
v crhw X X 

rr2 2 2 
v crhw X X 
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2 w (w1 -w ) 
X X ] 

3 

2 2 2 w (w1-w ) 
X X ] 

6 

(7.25) 

Performing the same calculations for wx<<wh (which is 

the region where the most improvement is possible by the 

use of the optimum filter) gives 

= (7.26) 

+ 

(7.27} 
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Thus, the form of the error in either case (i.e., either 

wx = wh or wx<<wh) is of the form of the error for the 

optimum filter plus an additional term which is dependent 

on w1 • It should be noted that the increase in error with 

increase in w1 is not too rapid. In fact, even for 

w1 = 2wx' the error for wx = wh is 

2 5 
efl = 24 

and the error for wx<<wh is 

+ 

(7.28) 

I (7.29) 

where the second term in each of these equations is the 

additional error caused by the non-zero filter characteris-

tic between wx and w1 • Therefore, any filter with a 

transfer characteristic which approximates that shown in 

Figure 7 might be expected to give mean square error approxi

mating that given by the above equations. Although it is 

not possible to realize physical filters which exactly 

duplicate the characteristics in Figure 7, it is not difficult 

to synthesize filters which approximate this characteristic 

closely. 

Actually, there would be no point in connecting a 

filter to the output of the recorder if the channel through 

which the signal passes after playback has a sharp cutoff 
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approximately at w • In this case, the channel itself would X 

act as a filter and, in fact, would be nearly as good as 

the optimum filter. However, if the channel were broad 

band, the mean square error could be reduced considerably 

(for wx<wh) by connecting a sharp cutoff filter to the 

output of the recorder. 
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CHAPTER VIII 

CONCLUSIONS 

A. TBE Effects 

The mean square error between recorded and reproduced 

signals is found to be a convenient measure of the error 

introduced into a signal by time-base perturbations. For 

low pass signals, this mean square error is proportional 

to the product of the square of the signal bandwidth and 

the TBE variance (w;cr~). For band pass signals, the error 

has an additional term which increases as the product of 

the square of the center frequency of the signal and the 

TBE variance. When the signal is narrow band with a large 

center frequency, the error is approximately proportional 

to the product of the square of the signal center frequency 
2 2 and the TBE variance (w0 crh). The strong dependence of the 

mean square error on the maximum frequency components 

present in the signal spectrum shows an urgent need for the 

reduction of crh to a minimum value, especially for wideband 

recording applications. Since low frequency components of 

TBE make a rather large contribution to crh if they are not 

removed, it is essential that servos be used to reduce the 

low frequency components of TBE to as small a value as 

possible. For a given value of crh, it is found that the 



form of the spectral density of the TBE does not affect 

the mean square error (assuming that no filter is used). 

The form of the spectral density of the signal has some 

effect on the error, however, this effect is found to be 

rather small as long as there is a well-defined band 

where the signal power is concentrated. 

B. Optimum Fi 1 tering 
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Use of the optimum linear filter can give significant 

improvement for the case where the signal bandwidth is 

small compared to the TBE bandwidth. The optimum filter 

normally gives little improvement when the signal bandwidth 

is comparable to or larger than the TBE bandwidth. It is 

true that theoretically the error can be reduced by a 

factor of 2 by using the optimum filter with narrow band 

{compared to the signal) TBE if the TBE spectrum lies at 

the upper end (in frequency) of the signal spectrum. 

Unfortunately, this improvement decreases rapidly with in

creases in the TBE bandwidth and/or with downward (in 

frequency) movement of the center frequency of the TBE 

spectrum. Therefore, in practice, linear filtering could 

be expected to give little improvement in the mean square 

error for any situation where the signal bandwidth is 

greater than the TBE bandwidth (unless the TBE band lies 

completely above the frequency band of the signal). The 

use of servos for removal of the low frequency components 



of TBE help make this the usual situation encountered in 

practice. 

c. General Analysis 
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In cases where the signal and the TBE spectra cannot be 

reasonably represented by ideal band pass spectral models, 

it is possible to compute the error by representing the 

signal and the TBE spectra as sums of band pass spectra. 

This leads to sums of terms of the same form as the ideal 

band pass models, making the analysis very long and com

plicated. Also, the form of the resulting equations could 

be expected to be so complicated as to obscure the results. 

It is, therefore, probable that, when the spectra are complex 

enough to require many terms to represent them accurately, it 

would be better to use a computer to carry out the details 

of the calculations. 

D. External Noise 

The calculations of Chapter VI show that the effect of 

noise present in the signal before recording and/or noise 

added to the signal after playback is to add the noise powers 

to the mean square error caused by the time base perturba

tions. For small external noise, this is approximately 

true whether the optimum filter is used or not since the 

optimum filter (which is designed for the reduction of 



both the error due to TBE and the error due to external 

noise) has little effect on the external noise for the 

h 2 2 d . 
case w ere a <<a an w ah<<l. To determine the most 

n X X 

significant contribution to the mean square error then, 

it is only necessary to compare the noise powers (both 

pre-recorder and post-recorder) to the mean square error 

caused by the time-base perturbations. 

E. Practical Filtering. 

76 

Simple physical filters are not generally effective in 

reducing the mean square error because they do not usually 

have sharp cutoff frequencies. However, more complex filters 

which are synthesized to approximate the sharp cutoff of 

the optimum filter can give a reduction in the mean square 

error which approaches that of the optimum filter. This 

is possible because the mean square error is not very 

sensitive to changes in the filter characteristics as long 

as the filter has a rather sharp cutoff frequency. The 

actual synthesis of a filter is not necessarily required 

since the signal channel itself can serve as a good approxi

mation to the optimum filter if it has a transfer function 

with a sharp cutoff. 
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APPENDIX A 

2 CALCULATION OF Syy(w) AND ef FOR LOW PASS SIGNAL AND 

TIME-BASE ERROR 

A. Calculation of Syy(w) 

The autocorrelation function R (T) is given by yy 
equation· (4. 41) as 

u2 --
2 2 

0'2 
sin[wx(u+T)] e 

cru 
R (T) = yy r X w {u+T) · 

X J21T0'2 

where 

Letting z 

-oo 

= !!.... gives 
cru 

Ryy(T) = r a; sin[wx<cruz+T)] 
w (cr z+T) 

X U 

-oo 

From Fourier transform theory 

u 

2 z 
-2 
e 

du 

dz. 
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(Al) 

(A2) 

(~3} 



2 

~nr 
z s2 -2 

e -y 
ejSzdl3 = e 

I21T 
-oo 

so that 

R (T} yy 
cr~ Jm- ~ 2 j00

sin[w {a z+T)] 
= _ e x u 

2~ w (cr z+T) 
X U 

-oo oo 

Defining cr z+T = y, 
u 

00 

cr2 
132 --2 

Ryy(T) 
X e 

= 
2~ a u 

-oo 

00 

·sT -J-
au sin w y 

X e wxy 

-oo 

·sL J cr 
e u dydl3. 

Recognizing the integration with respect to y as a 

Fourier transform gives 

(- ~ ) dl3 
u 

-oo 

where Pw (•) is defined by (4.2). 
X 
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(A4) 

(AS) 

(A6} 

(A7) 



Then 

w (] 
XU 

(32 
(]2 ·aT 

2 -J-
X 

(] 

\y(T) = u 
2wxcru 

e e d(3 

-w cr 
X U 

or 

w (] 
XU 

(]2 (32 

Ryy (T) = X (2) 2 ((3!-.) 
2wxcru 

e cos d(3 • 
au 

0 

This can be integrated by parts to give 

'[ 
n=O 

w (]. 
XU 

0 

•COS 

0 

+ 

00 

\' [d2n+l 
L d(32n+l 

n=O 

By t·aking the definition of Hermite polynomials to be 
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(AS) 

(A9) 

(AlO) 



Ryy(T) can be written as 

2 2 w (J 
XU 
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I 

R (T) 
yy 

cr2 
X =--w (J 

X U 

2 n~ n cru 2n+l 
(-1) H2 (w a ) (-) sin w T 

n XU T X 

+ e 

2 2 w (J 
X U 

2 

For the case w cr<<l, xu 

where 

Also, 

H2 (w a) :::: (-l)n (2n+l)!! 
n x u 

{2n+l)!! = 1•3•5 ••• (2n+l). 



and 

e ~ 1-

Using these approximations 

00 

R (T) = 
yy 

2 2)(L w cr cr 2n+l 
~ u (2n+l)!!(Tu) 

n=O 

Since 

sin w T 
X 

where crh is on the order of 10-6 or 10- 7 , the terms 

containing cr 2n can be neglected for n?2. Using this 
u 

approximation 

82 

(Al2) 
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R (T) yy 

The Fourier transform of a product g(T) h(T) can be written 

f[g(T)h(T)] 1 = 21T[G(W)*H(w)] 

where F indicates the Fourier transform, 

G (w) = F [g {-r)] , 

H ( w) = F [h ( T ) ] I 

and * denotes convolution. 

The convolution process can be used repeatedly to 

find syy(w). Starting with 

F [ cr~ l 
sin whT 2 1T 

F [ 2 (J 2 (1 } ] = .2crh [2Tro (w)- - P (w) 1 , = h - . wh "C wh wh 

(12 
u the Fourier transform of ~ can be written 

(Al4) 



Using 

where 

gives 

J
oo 

-oo 

F[ 1 ] = -jTisgn.w 
T 

{ 
1 w>O 

sgn w = 
-1 w<O 
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(A15) 

(A16) 

, 

[-jTisgn(w-S) ]2oh2 [2Tio (S) - .:!!._ P (S)] dS. (A17) 
wh wh 

Integrating 

0 w<-w h 

'2 2 (~ + 1) -wh <w<O 

02 
J 1TOh wh 

u F<:r>= 
. 2 2 w 
J 1T0h (-- 1) O<w<wh 

wh 

0 wh<w (AlB) 



(j .2 
In a similar manner, the Fourier transform of (~) can 

'( 

be computed to be 

0 

2 2 1T (jh 
(w+wh) 

wh 
(j 2 

F [ (T u) 1 = 2 
1T (jh 2 

(w-wh) 
wh 

0 

Using 

sin w T 
F[ X ] = w '( 

X 

with equation (Al4) gives 

2 sin w T F [o u ___ x_] 
w '( 

X 

w<-w 
h 

-wh<w<O 

O<w<wh 

(Al9) 

(A20) 
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Carrying out this convolution 

0 w<-2w 
X 

2 
7T<1h 

(w+2wx) -2w <w<-w 
-~ X X 

wx 

2 
7TO'h 

<w<O - -w -w 
2 X 

sin 
wx 

F[a 2 
W T 

X ] = u W T 2 X 7TO'h 
w O<w<w 

~ X 
wx 

2 
7TO'h 

(w-2wx) w <w<2w 
~ X X 
w 

X 

0 2w <w 
X 

(A21) 



sin w T 
__ _.:.;:X;_] = 

W T 
X 

0 

0 

w<-(w +w ) 
X h 

-(w +wh)<w<-w +w 
X h X 

-w +w <w<-w 
h X X 

- w <w<w 
X X 

w <w<wh-w 
X X 

(A22) 
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F[cr2 
sin W T 

X ] = u W T 
X 

In the same way 

(J 2 
F [ (T u) 

0 

2 
1TO"h 

whwx 

1T0"2 
h --

~wx 

0 

1T(J2 
+ . h -whwx 

1T(J2 
+ h -whwx 

0 

sin w T 
X 

( W T ) ] 
X 

Thi.s can be computed as 
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w<-w -w h X 

(w+wx+wh} -w -w <w<-w h X X 

{w+wx -wh} -w <w<-w +w 
X X h 

-w +wh<w<w -wh 
X ·X 

(w-wx+wh) w -wh<w<w 
X X 

(w-w -w ) 
X h w <w<w +wh 

X X 

(A23) 

1 cr 2 sin wxT 
= 2Tr [F(Tu} * F( w T }]. 

X 



0 
w<-2w 

X 

'IT0'2 

+ --4 (w+2w ) 3 -2w <w<w 

6w.e:; X 
X X 

X 

2 2 
'ITO'h 3 'ITO'hwx 

+- w + 
-w <w<O 

a 2 sin w T ~ 6w2 3 
x 

F[(-l!) X] = X 

T WXT 2 2 

for wx = wh, 

'ITO' 'ITO' w 

- __h w3 + h x 
O<w<w 

6w2 3 
x 

X 

2 
'ITCTh 3 

- ~ (w-2w ) 
w <w<2w 

6w.e:; X 
X X 

X 

0 2w <w 
X 

(A24) 
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0 

2 3 
rrah (w+wx+wh) 

+ 3 2wxwh 

2 3 
rrah 2 2 w 

+ [w w +2whw w+whw + ~1 
whwx x x x 

a 2 sin w T] i 
2 3 

nah 2 wx 
F [ (~) X = + [(wx-wh)w +whwx(wh-wx)+~J 1' w 1' whwx X 

2 3 
rrah 2 2 wx 

+ [w w -2whw w+whw + ~] 
whwx x x x 

2 3 
rrah (w-w -w ) 

X h 
2wxwh 3 

0 

for wh>2wx' and 

w<-w -w 
h X 

-w -w <w<-w +w 
h X h X 

-w +w <w<-w 
h X X 

-w <w<w 
X X 

-w <w<w -w 
X h X 

wh-wx<w<wh+wx 

wh+wx<w (A25) 

1.0 
0 



0 

2 
lTO'h 3 
6wxwh {w+wh +wx) 

7T0'2 
1/3 ~ cr~w~ + 1/6 h 

w w wh 
X X 

cr sin w T ~ lT 2 2 F [ (~) 2 ( 
X 

W T ) ] = 1/3 w crhwh 
T 

X X 

7T0'2 
1/3 !_ cr 2w2 - 1/6 h 

w h h w wh 
X X 

2 
lTO'h 3 (w-w -w ) 
6wxwh h X 

0 

for wx>2wh. In the same way 

(w-wh +wx) 3 

(w+wh -wx) 3 

w<-wh-wx 

-w -w <w<-w 
h X X 

-w <w<-w·+w 
X X h 

-wx+wh<w<wx-wh 

w -wh<w<w 
X X 

w <w<wh+w 
X X 

wh+wx<w 

(A26) 

\0 
1-' 



0 

2 
1TC1h 

2wx 

a 2 
F[ (_J!) 2 cos w 't]= 1TC1h 

't X 
2wx 

2 
1TC1h 

2wx 

0 

2 
(w+2w ) 

X 

2 w 

2 
(w- 2w ) 

X 

w<-2w 
X 

-2w <w<-w 
X X 

-w <w<w 
X X 

w <w<2w 
X X 

2w <w 
X 
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(A27) 



0 w<-w -w 
h X 

2 
7T(Jh 2 
~ (w+wh+w ) -w -w <w<-w +w 

wh x h X h X 

2 
7f(Jh 2 2 
-2-- [(w+wh+w) +(w+wh-w} J -w +w <w<-w 

Wh X X h X X 

I 
0 u 2 

) 2 F[(--} cos w T] = 
T X 7f(Jh . 2 2 

2wh [(w+wh-wx) +(w-wh+wx) ] -w <w<w 
X X 

2 
7f(Jh 2 2 

w <w<wh-w ---· [(w-w +w) +(w-w -w ) ] 
2wh h X X h X X 

2 
7f(Jh 2 
-- (w-w -w ) wh-wx<w<wh+wx 
2wh x h 

0 wh+wx<w (A28) 

For wh>2wx, and 1.0 
w 



COS W T] = 
X 

0 

2 
7TOh 2 
-2- (w+wh+wx} 

wh 

0 

0 

w<-w -w 
X h 

-w -w <w<-w 
h X X 

-w <w<-w +w 
X X h 

+w -wh<w<w 
X X 

w <w<w +wh 
X X 

94 

(A29) 



Combining these terms to get the Fourier transform of (Al3) gives 

0 

(w+2w ) 3 2 w+2w 2 2 (w+2wx) 
[- X + x· 

1rcr xcrh - 1 
6w2 2w 2 

X 
X 

2 { 2 
3 2 w } ax .1r/wx + 1rcrh [~- ~ + w + 2] 

6 2 2w 2 3 
WX X 

cr!{ 3 2 w } 
syy(w) ~ 

2 W W W X = 1T/W - 1TC1 [--- + --- + - - --) x h 6 2 2w 2 3 
W X 

X 

2 2 (w-2w ) 3 (w-2wx) 2 w-2w 
[- X - X] 1rcr xcrh -

6w2 2w 
X 2 

X 

0 

for wx = wh, 

w<•2w 
X 

-2w <w<-w 
X 

-w <w<O 
X 

O<w<w 
X 

w <w<2w 
X 

w>2w 
X 

X 

X 

(A30) 

1.0 
U1 



syy<w> = 

0 

~ 0 2 2 (w+w +w )3 
xcrh [-x h 

6""h X 

(w+wh+w ) 2 w (w+w +wh) 
....,..;;.;;_.;;.;;x_+~ x ] 
2wh wh 2 

w2 ~cr2crh2 [4/3 ~ + ,,, + w2 (w+wh+w )2 
X W ~h -- + 2w - X h wh 2w h 

2 
(w+wh -wx) ] 

h 

w<-(wx+wh) 

-(wx+wh)<w<-wh+wx 

-w +w <w<-w h X X 

{ 
w2 w -w 

cr2 ~/w + ~crh2 [4/3 ~ + x h w2+wh 
x x wh wxwh 

2 (w+wh -wx) 

2wh 

2 
{w-wh+wx) } 

- ] 
h 

-w <w<w 
X X 

2 
2 2 00 x 

~crxcrh [4/3 ~ + wh+ 

2 2 (w-w -w ) 3 
~cr crh [- x h x 6w h--x 

0 

2 w 
wh 

2 2 (w-w -w ) (w-w +w ) 
- 200 _ h X _ h X ] 

2 (w-w -w ) h X 
2wh 

2wh 2wh 

wx --wh 

w <w<wh-w 
X X 

wh-wx<w<wh+wx 

w>wh+wx 

(A31) 

for wh>2wx' and 

\D 
0\ 



0 w<-(wh+wx) 

2 2 (w+wh +wx) 3 (w+wh+w ) 2 (w+wh +w ) w 
X + X X - (wh +w ) <w<-w lTO xcrh [ 6w w - 2wh X h 2wh X X 

(w-wh +wx) 3 (w-wh +w ) 2 (w-wh +w )w 1 
2 

02 'IT 2 wh 
- + lTO [ 6w w - X + X X+_ -] -w <w<-w +w X wx h 2wh 2wh 3 wx X X h xh 

2 7T 1 7T 2 2 s (w)= 1 a [-- + - - crhwh yy X WX 3 w X -wx+wh<w<wx-~ 

2 2 (w+wh-wx)3 2 7T 2 (w+wh -wx) {w+wh-w )w 1 wh 
a - + 'ITO [- - - X X + ] 

X WX h 6wxwh 2wh 2wh 3 wx 
w -wh<w<w X X 

Ticr;cr~ [-

0 

for wx>2wh. 

3 (w-w -w ) h X 

6wxwh 

2 (w-wh -wx) 

2wh 

(w-w -w ) w h X X 

2wh 
w <w<w +wh X X 

w>wh+wx 

(A32) 

\0 ..., 
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B. Calculation of 2 
ef 

From (4.58) 

w 
X 

(} 41T -cr2w2 
2 0'2 

h 
X e e = --y- dw. f X S (w) 

w yy 
X 

0 

For wxcrh<<, this can be approximated as 

w 
X 

2 0'2 
(} 41T l-cr2w2 

X h dw. ef = - -2-X S (w) 
w yy 

X 

(A33) 

0 

Equations (A30), (A31), and {A32) can be used to 

perform the division indicated by the integrand of (A33). 

Carrying out this division and retaining the most 

significant terms gives 

(} !1T 
w 2 2 2 2 2 2 3 X 

e2 02 1 O'hW crhwx O'hW ohw 
= - -r 2 1T [1- ~+ -2- w - -2- + 6w ]dw 

f X 3 
w (} X 

X X w 
X 

0 
(A34) 



+ 

w 
X 

4 
(J 7T 

X 
-2-
w 

X 

1 

w -w 
X h 

for w >2w • 
X X 

0 

w -w 
X h 

I 

0 

2 2 
crhwh 2 2 

[ 1 - - 3- - cr h w ] dw 
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(A35) 

(A36) 



to 

100 

Performing these integrations and simplifying leads 

2 5 2 2 2 
ef = 24 ° 0 hw · X X 

2 e = f . 

2~2 2 
CJ "'h(/J X X 

3 

(A37) 

(A38) 

(A39) 



APPENDIX B 

CALCULATION OF S (w) AND ~f FOR BAND PASS SIGNAL AND yy 
LOW PASS TIME-BASE ERROR 

A. Calculation of Syy(w) 

From (5.18) 

Ryy (T) = r 
-oo . 

where 

O'~'lf sin[wx(u+T)] 
cos[w (u+T)] 

wx(u+T) 0 w 
X 

sin whT 
= 20'~ [1- w '[' ]. 

h 

u2 

- 2Q~ 
e du p 

u 

Proceeding in the same manner as in Appendix A gives 

R (T) = yy 

00 2 
-L 

2 .=.e __ e 

-oo 

00 

-oo 

101 

(Bl) 

(B2) 

(B3) 
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or 

00 

2 ·a'[ 
cr2 

-J-
-S/2 cru 

R ('t") X e e 'IT l/2[P (w-w )+P (w+w )] = 2'1T - dS. yy cr w w 0 w 0 
u X X X 

-co (B4) 

This can be written as 

-w +w 
0 X 

w +w 
0 X 

a2 { 
2 ·a'[ 2 ·a'[ 

dS} 
-J- -J-

-a12 cr -S/2 
cr 

~y('t") = 4wxcr 
u de + 

u 
e e e e 

XU 
w -w 

-w -w 0 X (BS) 
0 X 

or as 

w +w 
0 X 

cr2 2 

Ryy ('t") = X -a12 cos (acr '[) de (B6) 
2w cr e 

XU u 

w -w 
0 X 

which is 
w -w 

w +w 
0 X 

0 X 

a2 { 
2 

e-a;2 cos(acr:)da} R ('I) 2wxcr 
-a12 cos(acr't")dS -= e 

yy 
XU u 

0 0 {B7) 



By the same procedure as in (AlO) through (Al3),this can 

be written as 

R (T) = l/2cr2 
sin [ ( w +w ) T] cr 2 

0 x [l-l/2(w +w }2 cr 2+(~) ] yy X W T 0 X U T 

+ 

w +w 
0 X 

w 

X 

0" 2 
( ~) cos [ (w +w ) T] 

T 0 X 

sin[(w -w )T] 2 cr 2 
0 x [1-1/2 (w -w ) cr 2 + (~) ] 

W T 0 X U T 
X 

w -w 
0 X 
w 

X 

cos [ (w -w ) T] 
0 X (B8) 

The Fourier transform of this function can be computed in 

the same manner as S (w) was computed in Appendix A, 
yy 

however, it is more complex for this case. Also in the 

computation of e~, Syy (w) is required only for the range 

w -w <w<w +w • For these reasons, the equation for SYY(w) 
0 X 0 X 

will be given only for w -w <w<w +w • This equation 
0 X 0 X 

is 
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S (w) yy 

(w -w ) 3 0"2 0"2 
[ (2wx -wh) .,2 

0 X h + h 
wh wh 

(ID +w ) 3 (w -w ) 3 
+ 0 X + 0 X 

3 3 

2 + wh(whw -w -2w w ) 
0 0 0 X 

w +w 
0 X 

2 
2 (w+w -w -w ) h 0 X 

for w -w Sw~w +w • 
0 X 0 X 

B. 
2 

Calculation of ef 

+ 2wh(w -w )w 
0 X 

w +w 
0 X 

2 
(w-wh+w +w ) 2 

0 X 

104 

(B9) 

For this case, equation (5.16) can be simplified to 



4 r +w 02 2 0 X- W 

2 cr~ 
cr 1T e h X 

ef = 2:1 S (w) 
X 

yy 
w -w 

0 X 

Again using 

2 2 -cr w 
e h 

dw. 

simplifying {B9), dividing, and dropping higher order 

terms gives 

w +w 
0 X 

2 2 
<12 <12 

(2w 2w + X [1 - h e - cr - 2W f - X wh 0 X 
X 

w -w 
0 X 

This can be calculated to be 

2w 
X -. w 

h 

~ w3) J 
3 X 

dw. 
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(BlO) 

(Bll) 

(Bl2) 



APPENDIX C 

CALCULATION OF Syy(w) AND e; FOR LOW PASS SIGNAL AND BAND 

PASS TIME-BASE ERROR 

A. Calculation of S {w) 
yy 

For this case the calculation of R (T) is identical 
yy 

to that in Appendix A. Then 

R {T) 
yy 

sin w T 
X 

W T 
X 

COS W T 
X 

where, in this case, 

[1 -

. 2 
(w cr ) 

X U 
2 

(J 2 
+ {~)] 

T 

{Cl) 

{C2) 

and where w is the center frequency of the TBE spectrum. 
c 
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Once again, s (w) can be found by frequency domain convolu
yy 

tion. In this case 
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= 2cr~ { 27To (w) - 1/2 7T [P (w-w ) + p (w+w ) J} 
wh wh c wh c (C3) 

and 

0 w<wc+wh 

2 
7Tcrh 

2wh (w+wc+wh) 2 w +wh<w<-w +w 
c c h 

2 (w+w ) 27Tcrh -wc+wh <w<O c 
cr 

F(~) 2 = 
T 

2 
(w-wc) -27Tcr O<w<wc-wh h 

rrcr 2 
2 h 

2wh 
(w-w -w ) w -wh<w<w +w 

c h c c h 

0 wc+wh<w • (C4) 

For simplicity, S (w) is listed only for lwl-'w , since this 
yy X 

2 
is all that is necessary for the calculation of ef. 

The Fourier transform of the terms of (Cl) are 
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-..c: Lt'l 
u 3 ..c: -+ 3 ..c: 0 I 3 3 p + + 3 0 ... ..c: ~ I 3 3 3 ~ I I I 3 ~ X 0 v v 3 3 3 3 3 v v + v v 3 3 X ..c: ..c: v v 3 3 3 ..c: ..c: I I + 3 3 v 0 0 I + 3 3 3 0 0 v + + 3 3 ~ ~ ~ I I 3 3 3 X X I I I 3 3 

- -..c: ..c:: 
3 3 
I + 0 0 
3 3 
I +~ ~ 
3 3 
+ I 
3 3 -

"' ,r;l3,r; ..c: 
3~ ~ ..c:l b ~ N.C: 

b ~ I= 3 b 3 
I= 3 ~ I= ~ 

N ..C::I b X 
+ 0 + ·I= 3 

II 



cr 2 sin w T 
F [ (~) X ] = 

T WXT 

and 

2 
~0h 2 1 2 2 2 

2wx [we+ 3 wh-w -2(wx-we)w+2wxwcwx] 

2 
~ah 2 1 w2) -

(we+ 3 h w 
X 

2 
~ah 

-12whwx (w +wh-w +w) 3 

2 
~ah 2 1 2 
w- (we+ 3 wh) 

X 

2 

e X 

2 
ncrh 2 1 
- (w + -3 w e 

X 

2 ~0h 3 

wh)- 12 (w +wh-w -~ 
whwx e x 

2 
~0h 2 1 2 2 2 

~ [w + -3 wh-w +2(w -w )w+2w w -w ] 
WX e X e X e X 

-w <w<-w +w -w 
X X e h 

-w +w -wh<w<-w +w +wh 
X e X e 

-w +w +w <w<w -w -w 
X e h X e h 

w -w -w <w<w -w +w 
X e h X e h 

w -w +wh <w<w , 
X e X 

(C6} 

,_, 
0 
\0 



2 -rrcrh(w-w +w ) C X 

2 
rrcrh 

(w+w -w -w } 2 
4wh x c h 
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-w <w<-w +w -w X X C h 

-w +w -wh<w<-w +w +w X C X C h 

cr 
F[(~) 2 cos w T] = 0 T X 

-w +w +w <w<w -w -w X C h X C h 

2 
rrcrh 2 

(w-w +w +wh} 4wh x c 

2 rrcrh (w+w -w ) C X 

w -w -w <w<w -w +w X C h X C h 

w -w +wh<w<w • 
X C X 

(C7) 

Combining (CS}, (C6} , (C7) , and (C1) to get Syy (w) gives 

02 { !!___ + 
rro2 } 
wx h (w~+1/3w~) O<w<w -w -w 

X WX X C h 

w2 2 

02 { !!___ -
X 

rrcrh 
[w-(w -w.-w )] -

X WX 4 wxwh X C h 

2 2 
1TO'h (W~+1/3W~) 

rrcrh 3 
S (w) == + - 12 (w +wh-w -w) 

yy wx whwx c x 

w.-w -w <w<w -w +w. X C h X C h 

(C8) 



and 

Tr 

w 
X 

2 - rrcrh(w+w -w ) 
C X 
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(C9) 

for w -w +wh<w<w • 
X C X 

B. Calculation of ~ 

2 e = f 

+ 

For this case equation (5.16) for~ can be written 
w -w +wh 

w -w -w x c 
X C h 

4 a. rr 
2 -_..e._ 0 
X 

w 
X 

2 
w 

X 

s (w) 
yy 

w -w +wh 
X C 

0 

2 2 2 2 
_crhw _crhw 

e dw + e dw 
S (w) S (w) 
yy yy 

w -w -w 
X C h 

dw (ClO) 
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where the proper s (w) is used for each interval. using yy 

the same procedure as in Appendix A gives 

wx-wc-wh 

[1 - cr~w2 

0 

X C jw -w +wh 

{ l-a~w2 
w -w -w 

X C h 

jw { X 2 2 
1-crhw 

w -w +wh 
X C 

2 
2 [~ + + crh 

2 

Performing these integrations and simplifying 

= 

(Cll) 
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APPENDIX D 

CALCULATION OF S (w) AND ~f FOR LOW PASS SIGNAL AND LOW yy 
PASS TIME-BASE ERROR WITH ADDITIVE PRE-RECORD NOISE 

A. Calculation of Syy(w) 

From (6 .10) 

(Dl) 

For low pass signal and low pass noise of the same band-

width 

00 
u2 

sin[W (T+u)] 
2<12 

u 
2 1T X e du R (1:) = crx w (T+u) yy w 

~ X X 

-co 
2 u 

r sin[wx(T+w)] e 
-2cr! 

u 
0'2 1T du (D2) 

+ - w (T+u) ~ n wx X 

-co 

where 



and where o2 is the noise variance. 
n 

Using the same procedure as in Appendix A, this 

becomes 

sin w 1' 
X 

0 2 u - (-) cos w 1' 
1' X 

[1 -
(w cr ) 2 o 2 
__ xo:--u_ + ( ~) ] 

2 1' 

By the same procedure as in Appendix A, SYY(w) is 

to be 

found 
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(03) 



(o2+o2) { 1T 2 
- - 1TO" x n w h 

X 

J 
S (w) = yy I 

2 2 { ~ 2 (cr +cr ) - - 1rcrh x n w 
X 

for wx = wh' and 

.,3 .,2 ., "'x } 
[- +---- -] 
6 2 2w 2 3 

WX X 

3 2 ., } W W W X 
[-- +- +-- -] 

6 2 2w 2 3 
. WX X 

-w <w<O 
X 

O<w<w 
X (D4) 

...... 

...... 
U1 



N xl3.c. 
3 M 

+ 

X 
3 
I 
.c: 

3 

+ 

-r-~l3x 
+ 

.-tl3.c. -
N X 

3 ....... 

N,.C: 
b 
t= 

+ 

~:=l3x 

~ -N a 
b 

N+X 
b -

II 

-3 ->t 
>t 

U) 

N -X 
3 
I .c: 
;a 3 

3 N 
+ 
3 -
N 

3 

.c: 
X 3 

I 3 
X :f 3 

+ 

-

X t.n 
3 Q 
v 
3 
v 

X 
3 
I 

,......, 

X 
3 
+ .c: 

.C:3 
3 N 
+ 
3 -

+ 
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X 
3 

N 
1\ .c. 
3 

I-I 
0 

11-1 



B. Calculation of e~ 

By the same procedure as used in Chapter IV, the 

optimum filter for this case is found to be 

H {jw} 
S (w) 

= xy 
syy (w) • 

The mean square error using the optimum filter is again 

2 cr 
X 

0 

dw. S (w} yy 

By the use of (D4) , (DS) , and the same steps as in 

Appendix A 

1 
2 2 7T 

(cr +cr ) w 
X n X 

[1 -
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(D6) 



2 2 cr!1T 
e = cr - -y-f X 

wx 

Integrating 

for wx = w and h' 

for wh>2wx. 

w 
X 

1 
[1 -

(cr2+cr2)!_ 
x n w 

X 
0 

For cr 2<<cr2 , these become 
n x 
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cr2w3 
h X] dw 

3wh 
(D7) 

(D8) 

(D9) 

(D10) 



2 2 
2 crhwx w 

= cr (1 - ~) + 
n 3 wh 

2 2 2 cr cr w 
X h X 

3 
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(011) 
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APPENDIX E 

CALCULATION OF S (w) AND ~f FOR LOW PASS SIGNAL AND TIMEyy 

BASE ERROR WITH ADDITIVE POST-RECORD NOISE 

A. Calculation of Syy(w) 

Using (6.26) and carrying out the same details as in 

Appendix A gives 

R (T) = ox2 
yy 

0 

sin w T 
X 

COS W T (-u)2 
T X 

+ 02 
n 

Taking the Fourier transform 

sin wnT 
W T 

n (El) 

(E2) 



for O<w<w and w = wh, while X X 

S (w) yy 
11" --

B. Calculation of 

The equation 

w 

+ cr2 :!!.... P (w) 
n w w n n 

2 
ef 

for e2 
f is 

X 

cr 411" 
2 2 -cr w 

2 0"2 
h 

X e dw ef = - -r S (w) X w YY 
X 

0 

For wh= wx' this can be written 

+ w -w h X 

121 

(E3) 

(E4) 



e2 0"2 
0"4'JT 

= X 

f X -r w 
X 

2 0"2 2 
hw 

+ 
crhw 

2 6w 

when w >w , and n- x 

2 rl2 e - v f - X 

+ 

w 
n 

1 

4 
C5 'IT 

X 

w; 

when w <w • n x 

X 

3 

w 
X 

cr 

0 

w 
n 

0 

1 
2 
X 

dw 

1 

7f -w 
X 

7T 
w 

X 

w 0"2 2 2 2 

[1- x n crhw crhw 

0"2 
~+ -w 

w 3 2 
n X 

[1 -

dw 

For wh>2wx' (E4) can be written as 

w 
X 

4 2 2 3 

2 0'2 
cr 'IT 1 

w crn crhwx 
X [1 X dw 

ef = - -r - --- ~] 
X 2 7T w 2 

w ax - n cr h 
X wx X 

0 
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(ES} 

(E6) 

(E7) 



for w ~w , and 
n x 

2 
ef = 

+ 

for w <w • n x 

02 -
X 

w 
X 

wn 

4 0 'IT 
X 

-2-
wx 

1 
2 

ax 

rwn 

1 [1 -
02 'IT -

X wx 

0 

02W2 
[1 - ~} dw 

'IT 3wh -w 
X 

Carrying out these integrations for w 
X 

= 

for w >w , and n- x 

= 

for w <w • n x 

+ 5/24 
2 2 2 

o ohw X X 
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(E8) 

(E9) 

(E10) 



for w <w • n- x 
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(Ell) 

(El2) 
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