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ABSTRACT 

Various estimators of the location and scale parameters in the 

Cauchy distribution are investigated, and the superiority of the maximum 

likelihood estimators is established. Tables based on maximum likeli­

hood estimators are presented for use in making statistical inferences 

for the Cauchy distribution. Those areas considered include confidence 

intervals, tests of hypothesis, power of the tests, and tolerance 

intervals. Both one- and two-sample problems are considered. Tables 

for testing the hypothesis of whether a sample came from a normal 

distribution or a Cauchy distribution are presented. The problems 

encountered in finding maximum likelihood estimators for the Cauchy 

parameters are discussed, and a computer program for obtaining the 

estimates is included. 
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I INTRODUCTION 

The Cauchy distribution f(x;m,b) 1 

x-m 2 
nb[l + (~) ] 

, -oo < X < oo, 

-oo < m < 00 

' 
b > 0 has long appeared in texts on mathematical statistics 

[1, 2, 3]. Frequently it appears as an example of a distribution whose 

moments do not exist. The Cauchy distribution is .symmetric about its 

1 

location parameter, m, and is similar in appearance to the familiar normal 

distribution. The Cauchy distribution, however, has a larger area in 

the tails of the distribution. The cumulative distribution for the 

standard Cauchy, m = 0, b = 1, appears in Table Al. The difference in 

the tails of the distribution can be observed by comparison with the 

cumulative of the standard normal distribution. 

There are a number of situations in which the Cauchy distribution 

arises as the appropriate probability model. Feller [4] discusses 

situations in the study of Brownian motion where the Cauchy distribution 

arises. Hald [5] points out that the tangent of an angle having a uniform 

distribution has a Cauchy distribution. Hald then gives an example of 

a physical situation where this could occur. It is not difficult to 

envision other physical situations of this sort. Consider, for example, 

a scattering of particles occurring at some height, h, above a flat 

surface. Let the origin of the coordinate system lie on the surface 

directly below the point of scattering. If we assume that the particles 

move in straight lines and are equally likely to scatter in any downward 

direction, then the marginal distributions of the x and y coordinates of 

impact are Cauchy distributions with m = 0, b = h. 

The Cauchy distribution also arises as the ratio of two independent 

normally distributed random variables with zero means [6]. Thus, consi-

der two random signals being received by a communications system where 
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the recorded observation is the ratio of the two inputs. In the absence 

of signals, the noise will have a Cauchy distribution under the assumption 

that the individual errors have independent normal distributions with 

zero means. Therefore, the Cauchy distribution would arise in testing 

for the presence or absence of signals. 

The Cauchy distribution should also be considered by the applied 

statistician as a possible error model. The normal distribution is 

used almost exclusively as an error model due to its ease of application 

and because of certain theoretical arguments derived from the Central 

Limit Theorem. It is questionable, however, whether the normal distri-

bution is adequate for all experimental situations. In particular, if, 

in a given set of observations, one or more observations differ consider­

ably from the remainder, then the assumption of normality is suspect. 

Dixon and Massey [7] consider this question of normality and suggest the 

Windsor test to determine whether or not an outlying observation should 

be discarded from the sample. While this procedure has the advantage 

of retaining the normal distribution for those observations not discarded, 

it would seem difficult in given samples, particularly for small sample 

sizes, to determine which set of observations to discard and which to 

retain. In other words, in certain samples it may be difficult to decide 

what constitutes the outliers and what constitutes the representative sample. 

Dixon and Massey point out that the sample average, the minimum 

variance unbiased estimator of the mean of a normal population, may be 

greatly influenced by these outliers. An alternate procedure to discarding 

the outliers is to use as an error model a probability distribution giving 

greater probability to extreme observations. With such a model, it would 

be hoped that the estimates of the parameters would be more properly 

influenced by the extremes. The Cauchy distribution seems to fit the 



2 

the recorded observation is the ratio of the two inputs. In the absence 

of signals, the noise will have a Cauchy distribution under the assumption 

that the individual errors have independent normal distributions with 

zero means. Therefore, the Cauchy distribution would arise in testing 

for the presence or absence of signals. 

The Cauchy distribution should also be considered by the applied 

statistician as a possible error model. The normal distribution is 

used almost exclusively as an error model due to its ease of application 

and because of certain theoretical arguments derived from the Central 

Limit Theorem. It is questionable, however, whether the normal distri­

bution is adequate for all experimental situations. In particular, if, 

in a given set of observations, one or more observations differ consider­

ably from the remainder, then the assumption of normality is suspect. 

Dixon and Massey [7] consider this question of normality and suggest the 

Windsor test to determine whether or not an outlying observation should 

be discarded from the sample. While this procedure has the advantage 

of retaining the normal distribution for those observations not discarded, 

it would seem difficult in given samples, particularly for small sample 

sizes, to determine which set of observations to discard and which to 

retain. In other words, in certain samples it may be difficult to decide 

what constitutes the outliers and what constitutes the representative sample. 

Dixon and Massey point out that the sample average, the minimum 

variance unbiased estimator of the mean of a normal population, may be 

greatly influenced by these outliers. An alternate procedure to discarding 

the outliers is to use as an error model a probability distribution giving 

greater probability to extreme observations. With such a model, it would 

be hoped that the estimates of the parameters would be more properly 

influenced by the extremes. The Cauchy distribution seems to fit the 



3 

desired category. Later, a comparison of estimators using the normal and 

Cauchy distributions will be given. Therefore, in addition to arising 

in certain physical situations, the Cauchy distribution might be consi­

dered as a possible error model for experimental observations. In fact, 

the Cauchy distribution has been considered as a noise model in certain 

signal detection problems arising in communication theory [8]. 

When working with the Cauchy distribution, the statistician has 

encountered difficulties in obtaining satisfactory estimates of the 

unknown parameters, m and b. The problem of the moments not existing 

has already been mentioned. In addition, it is known that the sample 

average is not a consistent estimator of m, there are no functions of 

the sample sufficient form orb (other than the entire sample itself), 

and the maximum likelihood estimators cannot be obtained in closed form [9]. 

The objective of this paper is to present methods of statistical 

analysis when the assumed probability model is the Cauchy distribution. 

Various point estimators of the parameters are investigated and compared. 

Means of setting confidence intervals on the parameters are developed 

along with tests of hypothesis on the parameters. Tolerance intervals 

for the Cauchy distribution are determined. One- and two-sample problems 

are considered. Methods of discriminating between Cauchy and normal 

samples are also investigated. It is hoped that with the development of 

these procedures, the Cauchy distribution will now be considered as a 

possible model by the applied statistician. 



4 

II REVIEW OF THE LITERATURE 

Due to the difficulties mentioned in Chapter I, most of the work 

dealing with the Cauchy distribution has been limited to point estimators 

of the location parameter. In 1947, Bhattacharyya [10] determined the 

Cramer-Rao lower bound for unbiased estimators of m and b. The Cramer-

Rao bound is 2b 2 /n for estimators of both parameters. 

One of the earliest used estimators of m was the sample median. 

The median is known to be a consistent estimator of m with large sample 

variance equal to n 2 b 2 /4n [9]. Therefore, the large sample efficiency 

of the median is 8/n 2 = .81. Rider [11] investigated the variance of 

the median of a Cauchy sample for small to moderate sample sizes. For 

sample sizes n = 1 to n = 4 the variance of the median is not defined. 

The variance of the median is tabulated for n = 5(2)31 with efficiencies 

ranging from .3275 for n = 5 to .74 for n = 31. 

In 1964, Rothenberg, Fisher and Tilanus [12] proposed an estimator 

which offered an improvement in efficiency over the sample median. They 

considered an arithmetic average of a central subset of the sample order 

statistics. They determined that, roughly, the mean of the central 24 

per cent of a Cauchy sample gives minimum asymptotic variance. The 

asymptotic variance of the Rothenberg et al estimator is 2.28b 2 /n with 

efficiency of .88. 

Bloch [13] presents a linear combination of 5 order statistics from 

a Cauchy sample as an estimator of m. He considers the order statistics 

x(r) (r = .13n, .4n, .5n, .6n, .87n) with weights -.052, .3485, .407, 

.3485, -.052. The asymptotic variance of this estimator is 2.102b 2 /n 

with efficiency of .952. 

It is well known [9] that under certain regularity conditions the 

variance of maximum likelihood estimators asymptotically attain the 
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Cramer-Rao lower bound. Barnett [14] investigates the maximum likelihood 

estimator of the location parameter in the Cauchy distribution for sample 

sizes 5 to 20. He obtains, by Monte Carlo simulation of ~ with b known, 

the small sample efficiencies of m. The efficiencies range from 42.11% 

for n = 5 to 90.44% for n = 20. It is interesting to note that the 

efficiency of the median compared to the MLE remains at approximately 80% 

for all sample sizes, which is nearly the asymptotic efficiency. Barnett 

also points out the difficulties in maximum likelihood estimation due to 

the presence of multiple roots of the likelihood equation. 

Barnett [15] determines the coefficients required to obtain the 

BLUE of the Cauchy location parameter (based on order statistics) for 

sample sizes n = 5(1)16, 18, 20. It is known that the BLUE is asymp-

totically efficient [16], and Barnett determines the small sample 

efficiency. The efficiency of the BLUE ranges from 32.75% for n = 5 

to 79.56% for n = 20. The efficiency of the BLUE compared to the MLE 

ranges from 77.8% to 88.0% for the same sample sizes. Barnett also 

determines the small sample efficiency of the Rothenberg et al estimator. 

For the same sample sizes, the Rothenberg estimator achieves, at most, 

a 4% increase over the median. 

Antle and Bain [17] have discovered a property of maximum likeli-

hood estimators of location and scale parameters that makes them quite 

useful for obtaining confidence intervals on the parameters. They observe 

that m- m £. and m: mare distributed independently of the parameters, 
b b b 

(m and b being location and scale parameters respectively, while m and 

bare their MLE's). This property makes the maximum likelihood esti-

mators of location and scale parameters quite suitable for Monte Carlo 

simulation studies if the distributions of the estimators cannot be 

obtained analytically. Thoman [18] observed directly that a similar 
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property exists for the parameters in the Weibull distribution. 

Kale [19,20] investigates the solution of the likelihood equation(s) 

where iterative processes are required to obtain the maximum likelihood 

estimate. 

Kendall and Stuart [9] consider a test of hypothesis on the loca­

tion parameter of the Cauchy distribution against a simple alternative 

hypothesis. To simplify the computation, they consider a sample size 

of 1. Outside of this one elementary example, there has been little 

work reported on the Cauchy distribution outside of the above-mentioned 

point estimators of m. The material presented in this paper on point 

estimation of the Cauchy scale parameter, confidence intervals on both 

parameters, tests of hypothesis, tolerance intervals, two-sample 

problems, and discrimination appears to be new. 
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III INFERENCES BASED ON A SINGLE SAMPLE 

A. Location and Scale Parameters Unknown 

1. Point Estimation of the Scale Parameter 

As was pointed out in the review of the literature, there has 

apparently been no work reported concerning point estimation of the 

scale parameter in the Cauchy distribution. Some point estimators of b 

will be presented here. Let x 1 , ... , xn be a sample of size n from 

a Cauchy distribution with parameters m and b. Let x(l)'' , x(n) be 

the ordered sample. Barnett [15] points out that the expected values 

of x(l) and x(n) do not exist. Furthermore, the variances of x(l)' x( 2 ), 

x(n-l)' and x(n) do not exist. The following two estimators of b will be 

restricted to linear functions of x())' ... , x(n-2)' 

It seems reasonable that a function of the restricted range 

x(n-
2

) - x()) might be useful as a simple point estimator of b. Consider 

as a possible estimator a constant times the restricted range, i.e., 

b* k(x(n-
2

) - x( 3)). The constant, k, such that E(b*) = b, can be 

determined as follows: 

We seek k such that 

b = E(b*) = kE[x(n- 2 ) - x( 3 )1 

X 
kbE[ (n- 2 ) 

b 

- m x(3) 
----]. 

b 

- m 

Due to the symmetry of the Cauchy distribution, 

X 
-E [ (3) 

b 

- m 
] 

- m 
] 

Therefore, k = 

X 

Let z = 

1 

[
x (n-2) - m 

2E --'----- ] 
b 

(n-2) - m 
Now z represents the third largest ordered 

b 



random variable from a Cauchy sample with m = 0, b 1. Hence, the 

density of z is given by 

g(z) n! [ 
1 1 -1 n-3 1 1 -1 z]2 

1 -+- tan z] [ tan TI(l+z2 ) 2(n-3)! 2 7T 2 7T 

and E(z) is given by 

E(z) = J:oo zg(z)dz. 

-1 
By letting y = tan (z), this integral becomes 

E(z) 

7T 

= ~2 n (n-1) (n-2) 
J 1T 2 -2 

tan y 
1 n-3 ~ y 2 sec2y dy 

[- + Y] [ ] - -2 TI 2 - 1T TI[l+tan2y] 

8 

• 

This integral was evaluated using Simpson's Method of numerical integra-

tion [21]. Table 1 presents the values of k for sample sizes n = 6(1)55. 

Table 1 

Constants k such that E[k(x(n-Z) - x(3))] = b. 

n k n k n k n k n k 

6 1. 382 16 .212 26 .124 36 .089 46 .069 
7 .790 17 .198 27 .120 37 .086 47 .067 
8 .578 18 .186 28 .115 38 .084 48 .0661 
9 .464 19 .175 29 .111 39 .082 49 .0647 

10 .392 20 .165 30 .107 40 .080 50 .0634 
11 .341 21 .156 31 .103 41 .078 51 .0621 
12 .303 22 .149 32 .100 42 .076 52 .0609 
13 .273 23 .142 33 .097 43 .074 53 .0598 
14 .249 24 .135 34 .094 44 .072 54 .0586 
15 .229 25 .130 35 .091 45 .071 55 .0576 

The next point estimator of b to be presented is the BLUE of b based 

on the ordered observations x(J)• • x(n-2)• The BLUE of a scale 

parameter for a symmetric density is given by 

I -1 
b* 

Z V X 
(1) -1 

z'V z 

where z is a vector of the expected values of the standardized ordered 



9 

random variables and Vis the corresponding covariance matrix [16]. 

Barnett [15] has calculated z and V for n = 6(1)16, 18, 20. Using these 

data, the BLUE coefficients for the Cauchy scale parameter were calcu-

lated and appear in Table 2. 

Table 2 

BLUE Coefficients ci for the Ordered Variable xi 

n 

6 
7 

8 

9 

10 

11 

12 

i 

4 
4 
5 
5 
6 
5 
6 
7 
6 
7 
8 
6 
7 
8 
9 
7 
8 
9 

10 

1. 3819 
0.0 

.7898 

.5780 

.4135 
o.o 

.5611 

.2338 

.3007 

.4291 

.1417 
0.0 

.5717 

.1367 

.1361 

.1801 

.3460 

.2258 

.0613 

n 

13 

14 

15 

16 

i 

7 
8 
9 

10 
11 

8 
9 

10 
11 
12 

8 
9 

10 
11 
12 
13 

9 
10 
11 

o.o 
.2529 
.2933 
.1615 
.0427 
.1204 
.2654 
.2397 
.1231 
.0308 

o.o 
.1815 
.2484 
.1940 
.0933 
.0228 
.0828 
.2055 
.2213 

n 

16 

18 

20 

i 

12 
13 
14 
10 
11 
12 
13 
14 
15 
16 
11 
12 
13 
14 
15 
16 
17 
18 

.1560 

.0719 

.0172 

.0633 

.1597 

.1940 

.1645 

.1028 

.0444 

.0104 

.0489 

.1273 

.1672 

.1593 

.1190 

.0693 

.0289 

.0067 

Due to symmetry in the coefficients, only half of the coefficients 

appear in Table 2. Those not appearing are the negative of those pre-

sented. As an example, the BLUE of b for n = 9 would be 

b* = -.2338x( 3 ) -.56llx(4 )+ .56llx( 6 ) + .2338x(7). 

The third point estimator of b considered is the maximum likelihood 

estimator (MLE). The MLE's ~. b of m, b respectively are those functions 

of the observations such that 

L(x;~,b) =max L(x;m,b) (where L(x;m,b) is the likelihood function) 

for all m,b such that -oo < m < oo, b > 0. 
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A discussion of the numerical solution of the likelihood equations 

is given in Chapter VII. A comparison of these three point estimators 

of b is given in part E of this chapter. 

2. Confidence Intervals 

m-m b 
As has already been pointed out, the distributions of --b-, b' and 

m-m 
-r do not depend upon the parameters. The maximum likelihood estima-

tors of the Cauchy parameters cannot be obtained in closed form; hence, 

the distributions of the above pivotal functions were obtained by a 

Monte Carlo simulation. A discussion of the difficulties in obtaining 

the MLE's will be presented in Chapter VII. It is assumed here that 

the MLE's are obtainable. The following theorem proved useful in obtaining 
~ ~ 

the distributions of m-m and m-m. 
b s 

THEOREM 1 

b
lf (x-bm) ~ Let X ~ with the density of X symmetric about m. Let m 

and b be the maximum likelihood estimators of m and b. 
~ 

Then m is an 
~ 

m-m m-m 
unbiased estimator of m, and b and -s- are distributed symmetrically 

about zero. 

Proof: 

Let xl, . . . ' xn be a random sample from 
1 f(x~m). 
b 

be the MLE's based on this set of observations. Now 

~ * 
n xi - IYlx n X - m 

~ f ( 
1 f ( i ) IT - ) ~ i~l b* b* i=l bx bx 

for all m* and b* in the parameter space Q = {m,b\-oo < m < oo, b > 0}. 

x -m 
Let z. _i_, i = 1, . . . n. Substituting for xi yields 

1 b 

n bz.+m-~ n 1 
bz .+ m-m* 

II 
1 f( 1 ~ X) ~ II f( 1 * ). 

i=l bx bx i=l b* b 
(2) 

Let y 1 , y 2 , ••• Yn be the reflections of xl, •.. xn about m; i.e., 
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~ 

, n. Let my and by be the MLE's of m and b 

based on the sample Yl• . . . , Yn· Now 

~ 

- m* n 1 Yi - my n 1 y 
n f( ) .:::. n 

b* 
f ( i ) 

i=l by by i=l b* 

for all m* and b* in st. Substituting for yi in terms of z. yields 
]._ 

n -bz.+ m-m n -bzi + m-m * 
1 1 

n f( ]._ y) 2 n 
b* 

f ( 
b* 

) . 
i=l by by i=l 

But since f is symmetric in its argument, 

n bz. + my bz. + * 
1 

- m n 1 - m m 
f( ]._ ) 

i~l f( ]._ ) . n 
by 

;::, 
b* i=l by b 

(3) 

(2) (3)' 
~ ~ 

By comparing with we observe that by letting by = bx and 

my= 2m-~X' we maximize the likelihood function for the sample of Yi• 

Hence, the symmetry of the density of X carries over to the density of ID. 
~ 

m-m m-m 
Therefore, b , b are distributed symmetrically about 0, and E(m) = m. 

Q.E.D. 
~ 

m-m 
Due to this theorem, the simulated distributi·on of b was forced to 

be symmetric about zero by averaging the number of estimates lying in 
~ 

m - m 
cells equidistant from zero. The simulated distribution of b/1:0 appears 

b . 
in Table A2. The simulated distribution of b appears ln Table A3. 

Confidence intervals on m with b unknown may be obtained as follows: 

From Table A2, for sample size n, one can obtain the percentage point k 

such that 
~ 

P[-k 
m - m s 
b/10 

so that 

P[m -
kb 
Vn .s;: m 

kb 
Therefore, [rn - In' rn 

.$ k] 1 - a 

~ k6 
5 m + vn 1 - a • 

forms a 1-a confidence interval for m. 
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Confidence intervals on b with m unknown may be obtained as follows: 

From Table A3 one can obtain the ~· 1~ percentage points ka, k a such 
2 1--z 

that 

so that 

b.:S__E.] 
k 

a 
2 

1 - a 

1 - a. 

Therefore, [-b-, 
k a 
1--

2 

forms a 1 - a confidence interval for b. An example 

is given in part F of this chapter. 

It is also possible to obtain confidence intervals for m and b 

based on the BLUE's. It would be extremely difficult to analytically 

obtain the distributions of the BLUE's; however, the following theorem 

makes the Monte Carlo simulation of the distributions feasible. 

THEOREM 2 

Let x 1 , .•. , xn be an independent set of values of a 

1 n n x-m * and b* t:
1
Lx. random variable X "' - fCT)· Let m = [ a.x. = be esti-

b i=l 1 1 i= 1 1 

n n m*-m b* m*-m 
1 and i~l"-i = 0, then - and b* mators of m and b. If [ a. = b b , 

i=l 1 

are distributed independently of the parameters. 

Proof: 

Let y 1 , ..• , Yn be an independent set of values of a random 

variable Y"' f(y); i.e., m = 0, b = 1 so that xi byi + m. Let 

* 
n n 

mo = .t: 1aiYi and b* = .l: "-iYi• i 
1= 1 1=1 

1, ... , n. 

* 
n n 

Now m = [ aiXi = [ ai(byi + m) 
i=l i=l 

n 

= bi~laiYi + m 



* * so that m -m -b- mo 

Also, b* 
n 

. E ).ixi 
~=1 

= b b* 
1 

b* * 
so that 0 b 1 

13 

* * But the distributions of m
0 

and b 1 do not depend on any unknown parameters. 

m*-m b* Therefore, the distributions of -- and-- do not depend on any unknown 
b b 

m*-m parameters; and, hence, the distribution of ~does not depend on any 

unknown parameters. 

Q.E.D. 

It is immediately obvious that the median and k[x(n-Z)-x( 3)] are 

suitable random variables for setting confidence intervals on m and b. 

Kendall and Stuart [9] point out that for the BLUE of m and b in a den-
n n 

sity symmetric about m, E a.=l, and ;~lAi=O. Thus, the BLUE's also 
i=l ~ _.._ 

come under Theorem 2. 
m*-m b* 

The simulated distributions of b*/ln and~ using 

order statistics were obtained for selected sample sizes. These tables 

appear in section E of this chapter. The superiority of the MLE's in 

setting confidence intervals is demonstrated in that section. 

3. Tests of Hypotheses 

Procedures will be developed to test hypotheses on m and b. The 

tests will be in terms of the MLE's, and the power of the tests will 

be determined. 

Consider the following test of hypothesis: 
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Under the null hypothesis, the critical value c for a significance level 

a is given in Table A2 such that 

rn-rn0 
P[ b/ln $ c ] = 1 - a. 

rn-rn0 
The null hypothesis is then rejected if 

£;/U rn-rn0 
is given by P[ -~--­

b/IU 
> c 

> c. The power of the test 

The following theorem is useful in determining the power of the test: 

THEOREM 3 

1 x-rn 
Let X~ b f(~), and let rn* and b* be estimators of m and b. 

If the critical region of the test H0 : rn 

m-m0 
(c,=) where P[ ~ ,- ~ c ] = 1 - a under H

0
, then the power of the test is 

b/vn * * 
m -ml c b 

obtained from the distribution of -- -- where m1 is the true 
b IUb 

value of m. 

Proof: 

Power 
* P[ m - rna > c I m = ml ] 

b*/IU 

* cb* 
p [ > I m = m

1
] m - rna Ill 

P[ 
* m c 

rn 
* b 

b 
rna - ml I 

> b m 

Q.E.D. 

Now if we use the MLE's as our estimators, then we see that the distri-
~ 

m-m1 bution of 
b 

~ 

c b depends only on c and n. The distribution of 
tfub 

m-ml c b 
--b---In b was obtained by Monte Carlo methods for critical values, c, 

corresponding to Type 1 errors of .1, .05, .025, .01. The power curves 



appear in Figure la, lb, lc, and ld. Due to symmetry, these power 

curves may also be used for H1 m < m • 
0 

The approximate power for the two-sided alternative may also be 

determined from Figure 1 for Type 1 errors of .2, .1, .OS, .02. An 

example will be given in section F. 

Consider the test of hypothesis H
0 

tical region is of the form (c,oo) where c is determined from Table A3 

such that 
~ 

P[ b 5 c ] = 1 - ~ 
bo 

under the null hypothesis. 

15 

The power of the test for b b 1 can also be obtained using Table A3 

as follows: 

Power 
b 

p[-- > c I b = b1 J 
bo 

P[b > cb 
0 

> c 

The power curves for Type I errors of .1, .05, .025, .01 are given 

in Figures 2a, 2b, 2c, and 2d. The use of these curves is illustrated 

in the example in section F. 

4. Asymptotic Convergence 

From [9] 
~ 

it is seen that m and b have asymptotic normal distribu­

/fl(rn-m) "' 
tions and are asymptotically efficient. Therefore, b ~ N(0,2), 

f, "' 2 and 0 ~ N(l,n) • Since b is asymptotically unbiased and lim Var(b) = 0, 
n-+= 

~ 

we have that b converges stochastically to b. Hence, from [22], 

ln(~-m) (~) · .. has the same limiting distribut1on as 
b b 

/il(m-m) 
b 

Therefore, 

rn (m-m) .,; b ~ N(0,2). In Table A2, the last line (n = oo) represents the 
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asymptotic limits as derived from the normal distribution. A comparison 
~ b 

of the simulated distribution of ~ and the distribution of - using the 
b b 

normal approximation appears in Table A3 for n = 100. 

B. Scale Parameter Known 

1. Confidence Intervals 

The material presented here is similar to section A, differing in 

the table required for critical values. 
m-m 

From [17] we again have ~ 

distributed independent of m and b. Again, it will be assumed that the 

MLE of m can be found. The discussion of maximum likelihood estimation 
A 

m-m 
with b known is found in Chapter VII. The distribution of ~was deter-

A 

m-m 
mined by a Monte Carlo simulation, and critical values of b/l:n appear in 

m-m 
Table A4. The distribution of b/~ is symmetric about zero. 

(l 

From Table A4, for sample size n, one can obtain the 1-2 cumulative 

percentage point k such that 

m- m 
P[-k ~ b/IU ~ k] = 1 - (l 

so that 

m - kb m + kb 
P[ rn ~ m .::;: rn = 1 - a • 

2. Tests of Hypotheses 

Consider the test of hypothesis (b known) 

H
0 

m = m
0

, H1 : m > m
0

• 

Under the null hypothesis, the critical value, c, such that 

m- m 
P[ 0 ~ c] = 

b/l:n 
1 - a may be obtained from Table A4. The power of the 

A 

m - m0 
test is given by P[ > c] where the true value of the location 

b/fi.i 
parameter is m

1
• The expression for the power may be easily manipulated 

to yield 

Power 



25 

Hence, the power may also be obtained from Table A4. The power curves 

appear in Figures 3a, 3b, 3c, and 3d. 

3. Asymptotic Convergence 
... 
m- m 

As has already been pointed out, b/ln ~ N(0,2). The last line in 

Table A4 represents the asymptotic values derived from the normal 

distribution. 

C. Location Parameter Known 

1. Confidence Intervals 
... 

Again ~ is distributed independently of b. Critical values of ~ 

were obtained by a Monte Carlo simulation and appear in Table AS. To 

obtain a two-sided 1 - a confidence interval for b, we may obtain from 

Table AS, the critical values ka' kl-~ such that 

2 2 
A 

P[ka < b < kl_al 1 - a = 
2 

b 
""! 

so that 
A 

b ] p[_b_ .:s. b .:s. = 1 - a 
k 
1-a ka 

2 2 

2. Tests of Hypotheses 

The procedure is identical to that in III-A-3. The critical values, 

however, come from Table AS. The power curves appear in Figures 4a, 4b, 

4c, and 4d. 

3. Asymptotic Convergence 

As has already been indicated, b ~ N(l,2/n). The last line of 
b 

Table AS gives the critical values derived from the normal distribution. 

D. Tolerance Intervals 

1. Both Parameters Unknown 

Let X be a random variable with cumulative distribution function F(x). 
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Let ; 8 be the point such that F(;
8

) = 1 - B, and let x
1

, , x be a 
n 

random sample from X. A function, L(x1 , ... , xn) is a lower one-sided 

B,y tolerance limit if P[L(x1 , ... , Xn) s ;
8

] = y. 

If the distribution of the random variable X depends on unknown 

location and scale parameters, then; may be expressed in the form 
B 

m - k(B)b. The following theorem indicates that one-sided tolerance 

limits may always be obtained for distributions dependent on unknown 

locations and scale parameters. 

THEOREM 4 

There exists a function z(B,y,n) such that 

P[i - z(B,y,n)b S m- k(B)b] = y 

for all m and b. 
A 

m-m b 
Proof: Consider the random variable-s-+ k(B)s· There exists a 

G(B,y,n) such that 

P[ m:m + k(B)~ S G(B,y,n)] = Y· 
b b 

A simple algebraic simplification yields 

P[i - G(B,y,n)b s m - k(B)b] = y 

Therefore, choose z(B,y,n) = G(B,y,n). 

Q.E.D. 

The importance of this theorem lies in the fact that the distribu-

m-m b of --- + k(B)7 depends only on k(B) and n. Hence, if its 
b b 

tion 

distribution cannot be determined analytically, it can be conveniently 

determined through a Monte Carlo simulation. Once the distribution of 

m-m b 
~ + k(B)S has been determined, one can, for a given B,y and n, 

determine z(B,y,n) and, hence, determine the tolerance limit m - z(B,y,n)b. 

For the two parameter Cauchy distribution, the constant k(B) is 

determined such that 



and hence 

~ + ~tan-1 [-k(8)] = 1- 8 
2 lT 

k(8) =- tan[lT(.5- 8)] = tan[lT(8 - .5)]. 

The simulated distribution of~+ tan[n(8- .5)]~ was 
b b 

determined for 8 .8, .9, .95, .99. Table A6 presents the required 

z(8,y,n) to form lower one-sided 8,y tolerance intervals for the 

Cauchy distribution for y = .90, .95, .99. 

Due to the symmetry of the Cauchy distribution, upper one-

sided tolerance intervals are of the form (-~, rn + z(8,y,n)b). 

Two-sided 8,y tolerance intervals may be chosen in the form 

P[F(m + w(8,y,n)b) - F(rn - w(8,y,n)b) ~ 8] = y (4) 

where F is the cumulative distribution function. Hence, if one could 
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find w(8,y,n), then two-sided 8,y tolerance intervals could be obtained. 

The following theorem allows one to find w(8,y,n) for the Cauchy 

distribution. 

THEOREM 5 

The function w(8,y,n) that satisfies (4) is defined by 

P[~{-l-Ji+tan2 lT8(l+(rn-m) 2 )}/tann8 ~ w(8,y,n)] = y. 
b b 

Proof: from (4) we have 

P[tan-l[(m + w(8,y,n)b- m)/b] - tan-l[(m- w(8,y,n)b- m)/b] ~ lT8] = y, 
(5) 

Now if A, B and C are such that -~< B ~ A ~ ~ < ClT < lT• then A-B~Cn 
2 2 

if, and only if, tanA- tanB ~ (tanC )(l+tanAtanB). Applying this to (5) 

with A= tan-l[(rn + w(8,y,n)B- m)/b], B = tan-1[(rn- w(8,y,n)b- m)/b], 

and C = 8 subject to .5 < 8 <1 we have 
A 

P[2w(8,y,n)b ~ (tanlT8)[1 + (~) 2- (w(8,y,n)i) 2 ]] = y. 
b b b 

Noting that w(8,y,n) ~ 0 we obtain 

P[w(8,Y,n) ~ ~f-1-/1 + tan2 n8(1 + (~) 2 )}/tann8] = y, 

Q.E.D. 
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Now the distribution of 

~ {-1 -/1 + tan2nB(l + (mbm)2)}/tamr8 (6) 

depends upon n and 8 but not upon m and b. The distribution of (6) was 

obtained by simulation for B = .8, .9, .95, .99. The values of w(B,y,n) 

such that (~ - w(B,y,n)b, ~ + w(B,y,n)b) forms a two-sided B,y tolerance 

interval for the Cauchy distribution may be found in Table A7 for y = .90, 

.95, .99. 

Dumonceaux [23] has since observed that the cumulative function 

that satisfies (4) is distributed independent of m and b for all densi-

ties dependent upon scale and location parameters. 

2. One Parameter Known 

The question of tolerance intervals is more easily answered when 

one of the two parameters is known. Consider first the case where the 

scale parameter b is known. For a lower one-sided B,y tolerance interval 

we seek a function L(x
1

, • , xn) such that P[L(x1 , .. ~)Sm-k(B)b] = y. 

Consider the probability statement 
A 

m-m 
P[~ ~ z(B,y,n) - k(B)] = y 

or 

P[m - z(B,y,n)b ~ m - k(B)b] = y. 

Hence L(x1 , ... ,xn) = m - z(B,y,n)b. 
A 

m-m f Now the distribution of In is given in Table A4. Hence, or a 
b/ n 

given value of 8, y, and n, z(B,y,n) can be determined. The values of 

z(B,y,n) appear in Table A8. 

Again, due to symmetry, m + z(B,y,n)b forms an upper one-sided B,y 

tolerance limit. 

For two-sided B,Y tolerance limits with b known, we seek w(B,y,n) 

such that 



or 

or 

A 

P[2w(8,Y,n) < tan~e [1 + (m ~ m)2 - w2 (8,y,n)] = y 

P[~ (~ 
b 

m) > 
/[w2(S,y,n) + 2w(8,y,n) _ l]n ] = 

tan~s 

y + 1 
2 

~eJ = Y· 

Hence, from Table A4 we can determine for given S,y and n, the 

value of 

;f[w2(S,y,n) + 2w(B,Y,n) _ l]n. 
tan~B 

The solution for w(8,y,n) can now be obtained. The values of w(8,y,n) 

may be obtained from Table A9. 

One-sided 8,y tolerance limits with m known may be obtained in a 

similar manner. For a lower limit we seek a L(x1 , ... , xn) such that 

. , xn) ~ m - k(8)b] = y. 

The constant z(8,Y,n) may be determined from Table AS such that 

P[ ~ ~ k(8) ] = y. 
z(B,Y,n) 

This expression may be manipulated to yield 

P[m - z(8,y,n)6 ~ m - k(S)b] = y. 

Hence, let 

L(x
1

, ••• , xn) = m - z(S,y,n)b. 

Table AlO tabulates the factors z(8,y,n). 

For two-sided tolerance limits with m known, we seek factors 

w(S,y,n) such that 
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-1 b -1 s P[tan (w(B,Y,n)0 ) -tan (-w(B,y,n)0 ) > nB] = y. 

Simplifying, we have 

P[2w(B,y,n)~ ~ 
or 

2 b 2 
(tan nB)(l- w (B,y,n)(b) ] = y 

P[w
2

(B,y,n) tan n8(~) 2 + 2w(B,y,n)~ -tan nB < 0] = y 

which yields 
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(7) 

for • 5 < B < 1. 

Critical values for (7) can be obtained from Table AS. Hence, the 

value of w(B,Y,n) can be found. Values of w(B,y,n) are given in Table All. 

The following result relating one- and two-sided tolerance limits 

with m known is of interest. 

THEOREM 6 

1 x - m Let X~ b f( b ), -ro < x < ro where m is known and f is symme-

tric about m. If b* is a function of a random sample and k a positive 

real number such that (m- kb*, m + kb*) forms a two-sided B,y tolerance 

interval, then (- 00 , m + kb*) forms an upper one-sided 

* B + interval and (m - kb , ro) forms a lower one-sided 2 

Proof: 

Let m = 0 so that X~~ f(~), -ro < X< ro, 

By hypothesis, 

* 
P[ f~~b* ~ f(~) dx ~ B] = y. 

Let k 1 be such that 

P[ fklb*! f(~) dx ~ B ~ 1] = y. 
-ro b b 

and let 

J ~ f (~) dx = 

B + 1 ,Y tolerance 
2 

1 
,y tolerance interval. 
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Now we have 
k}b* s + 1 

P[F(b) > ] = y - 2 

and 

* FCkb) P[F(kb) - ~ sl = Y• b b 

But due to symmetry, 

* 
- F(~b). FCkb) = 1 

b 

Hence, 

P[2F(kb) - 1 ~ S] = y 
b 

or 
* ~ + 1] P[F(~) ~ 2 = y. 

Hence, k 1 = k. 

The lower one-sided result follows from the symmetry of the density 

function. 

Q.E.D. 

* ,.. If we let b = b and choose the constant k as previously indicated, 

then the hypotheses of Theorem 6 are satisfied. Therefore, for example, 

the constant from Table All for S = .90 will be the same as the constant 

from Table AlO for S = .95. 

3. Asymptotic Results 

For the one-sided tolerance limits (m,b unknown) we require a 

G = G(S,Y,n) such that 
,.. 

b 
P[ 

m S m + k(S) ~ G] = y 
6 

or 
,.. ,.. 

P[ m - m G b < -k(S)] = y. 
b b -

Now 

,.. "' 2 m - m 4 N(O, -) 
n b 

b "' ~) - + N(l, 
b n 

and m,S are asymptotically independent [9]. 
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Therefore, 
A 

m-m 6"-' 2 2 
N [ G -n(l + G ) ] b -G b -+ - ' 

so that for large n we have 

-k(B) ~ -G + z 12(1 + c2)/n 
y 

where z is the y percentage point for the standard normal. 
y 

Solving for G yields 
-k ( 13) - ~,.-2-(_8_) -_-(_2_z_ v2 ___ 2_z_2 __ _ 

~ 1)(~- k2 (8)) 

G == 

The last line in Table A6 gives the asymptotic approximation for 

n = 100. The close agreement gives confidence in the approximation for 

n > 100. 

Since the values for two-sided tolerance limits for proportion 8 

are nearly equal to the one-sided tolerance limits for proportion 8 + 1 
2 

equation (8) yields an approximation to the large sample two-sided 

tolerance limits, also. 

The tolerance limits with one parameter known are derived directly 
A 

m - m 
from the distributions of b 

6 
or 1)· Since these two random variables 

are distributed asymptotically normal, large sample tolerance limits can 

be obtained quite easily. 

For one-sided tolerance limits with b known, we have 

z(B,y,n) ;.Az + k(B). 
n Y 

For two-sided tolerance limits with b known, 

w = ------------------------------
tan 1r8 

For one-sided tolerance limits with m known we have 

k(8) 
z(8,y,n) = ------~-------

/Iz 1 - n y 
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For two-sided tolerance limits with m known, 

w(8,Y,n) 

E. Comparison of Estimators 

1. Comparison of Point Estimators 

Barnett [15] compares the variances of estimators of the location 

parameter. He considers the median, BLUE, Rothenberg et al estimator {12], 

and the MLE (b known). In Table 3 the comparisons from this study are 

presented. 

Table 3 

Variances of Unbiased Estimators of m (Divided by b 2 ) 

n BLUE MLE (b known) MLE (b unknown)* MVB Efficiency (Using*) 

s 1.211 1.116 1.128 .4 .3SS 

10 .326 .2804 .2873 .2 .69S 

lS .182 .16SO .16S9 .1333 .80S 

20 .126 .11S6 .117S .1 .8Sl 

2S .088S .0904 .08 .88S 

30 .0727 .073S .0667 .907 

40 .OS3S .OS42 .OS .924 

so .0424 .04 .94S 

7S .0273 .0267 .973 

100 .0201 .02 .99S 

It can be seen that the maximum likelihood estimators have smaller 

variances than the BLUE for all sample sizes. It is also known that the 

MLE are asymptotically efficient. Therefore, using the minimum variance 

unbiased criteria, the MLE is a better estimator than the BLUE. Hence, 

the MLE is superior to all estimators discussed in the review of the 
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literature since they are all linear functions of the ordered sample. 

To investigate the accuracy of the simulated variances, the variance 

of the median for sample sizes 5. 9 and 15 was obtained by simulation 

and compared to the true variances [11]. The variance of the median for 

n = 5, 9, 15 is 1.2213, .4087, and .2048, respectively. For the simu-

lated variance of the median, 20.000 samples were obtained for n = 5 and 

10,000 samples for n = 9 and n = 15. The variances obtained by simula-

tion were 1.266, .4163, and .2073. It is reasonable to assume that the 

variances of the maximum likelihood estimators are at least as accurate 

as that obtained for the median, since a larger simulation was conducted 

for the MLE. See Table 14 for the number of estimates used in this 

study. There is very little disagreement between the variances obtained 

by Barnett and the variances obtained in this study. Since a larger 

simulation was performed for this study, it seems reasonable to assume 

that the results presented here are at least as accurate as Barnett's. 

The maximum likelihood estimator of b is not unbiased. However, 

A 

from the simulation it was observed that the expected value of b differed 

from b by less than .0067 for all sample sizes considered. This bias 

could be removed; however, it hardly seems worth the effort, since it is 

so small. For all practical purposes, b is an unbiased estimator of b. 

Table 4 tabulates the variance of various estimators of b. 



Table 4 

Variances of Estimators of b (Divided by b2) 

MLE MLE efficiency 
n k[x(n-2) - x(3)] BLUE (m known) (m unknown)* MVB (using*) 

5 ---- -- 1.143 1.017 .4 .394 

10 .603 .468 .3015 .2954 .2 .679 

15 .502 .207 .1715 .1664 .1333 .802 

20 .482 .135 .1204 .1187 .1 . 844 

25 .0932 .0922 .08 .858 

30 .0753 .0755 .0667 .883 

40 .0552 .0541 .05 .924 

50 . 0434 .0426 . 04 .940 

75 .0277 .0284 .0267 .942 

100 .0211 .0207 .02 .967 

Again it is seen that the MLE is superior to the BLUE. 

2. Comparison of Confidence Intervals 

To compare confidence intervals using the MLE and the BLUE, the 

m*- m m*- m b* 
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distributions of I r- , */ r-. - were obtained by simulation. The simu­
b rn b rn b 

lated distributions were obtained for n = 10, 15, and 20 (10,000 samples 

for each n). These distributions appear in Tables 5, 6, and 7. 

Table 5 

m* - m 
Critical Values for b/ln 

Cumulative 

n .8 .9 .95 .975 .99 

10 1. 300 2.095 2.862 3.620 4.790 
15 1.270 2.001 2.680 3.378 4.270 
20 1.250 1. 935 2.572 3.160 3.920 



n .8 

10 1.520 

15 1. 397 

20 1.330 

n .01 .025 

10 .214 .278 

15 .332 .394 

20 .407 .465 

Table 6 

m* - m Critical Values for ~---= 
b*/ln 

Cumulative 

. 9 .95 .975 

2.465 3.435 4.380 

2.222 2.962 3.740 

2.065 2.755 3.422 

Table 7 

Critical Values for b*/b 

Cumulative 

.05 .1 . 9 .95 

.331 .412 1. 720 2.090 

.454 .530 1.548 1.814 

.530 .598 1.460 1. 674 
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.99 

5.800 

4.640 

4.260 

.975 .99 

2.490 3.240 

2.088 3.513 

1.885 2.180 

By comparing Tables 5, 6, and 7 with Tables A2, A3, A4, and AS, one 

can observe that the expected width of the confidence interval is shorter 

for the MLE. For example, for n = 10, a = .05, the expected width of 

the two-sided confidence interval for m(b unknown) based on the MLE is 

2.500·b. The corresponding expected width based on the BLUE is 2.776·b. 

Similarly, the expected width of a two-sided .95 confidence interval 

for b(m unknown, n = 10) is 2.705"b using the MLE and 3.218·b using the 

BLUE. 

F. Example 

The following example is presented to illustrate the use of the 

tables discussed. Consider the following ordered sample of size 5 from 

a Cauchy distribution (assume m and b unknown): -2.07, -1.64, -1.03, 
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A 

.154, 4.02. The maximum likelihood estimators are m = -1.288, b = .793. 

(A computer program is given in Appendix B which will obtain ~ and b.) 

Therefore, from Tables A2 and A3 we find that 

(-1.288 ± (6.780)(.793//5) = (-1.116,3.692) 

forms a .95 confidence interval for m, and 

(.793/3.279, .793/.132) =(.242,6.100) 

forms a .95 confidence interval for b. 

Consider the test of ~ypothesis H
0 

: m = 1, Hl : m < 1. The hypothesis 

m - 1 
is rejected for values of 

b/15 
< -4.771 at the .05 level. For our sample 

A 

m - 1 = -1.288 - 1 
-6.49. The hypothesis would be rejected at we have 

b/15 .793/15 rno - ml 
the . OS level . The power of the test (a = .05) for = 2 is • 61. 

b 
" Similarly, H

0 
: b = 1, H

1 
: b I 1 would have critical values of b = .132 

A A 

and b = 3.279. Therefore, since b = .793, we would not reject H0 at the 

.OS level. The power of the test would be .235 for b 1 /b 0 = 2. For 

S = .90, y = .95, we have, from Table A6, -1.288- (17.314)(.793)=-15.018 

as a lower one-sided tolerance limit. 
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IV INFERENCES BASED ON TWO INDEPENDENT SAMPLES 

A. Scale Parameters Known 

1. Confidence Intervals on the Difference in Location Parameters 

Consider two independent Cauchy samples; x1 , ... , ~l with para-

• , Yn
2 

with parameters m
2 

and b 2 . Assume 

that b 1 and b 2 are known. Confidence intervals on m1 - m2 may be obtained 

ml - ml 
as follows: The distribution of the random variable depends 

~1 
only on nl, and the distribution of the random variable m2 - m2 depends 

only on n2. Hence, the distribution of 
b2 

the random variable 

A 

ml - m b2 m - m 
1 ( 2 2 

bl bl 
b ) 

2 

depends only on n 1 ,n2 and the ratio b 2/b
1

• The distribution of 

was obtained by simulation for selected values of n 1 , n 2 , b 2 /b1 , and the 

critical values appear in Table Al2. From Table Al2 one can obtain c 

such that (interpolation may be required) 

A 

b2 
A 

ml - ml m2 - m2 
P[-c < 

bl 
( 

b2 
) < c] = 1 - ex; 

bl 

and, hence, 

P[m
1 

- i 2 - cb 1 < m1 - m2 < i 1 - m2 + cb1 ] = 1 - ex, 

which establishes the desired confidence interval. 

2. Tests of Hypotheses 

A test of hypothesis on the equality of the location parameters 

will be presented now. As an illustration, consider H
0 

: m
1 

= m
2

, 

H
1 

: m
1 

> m
2

• Under the null hypothesis, one can find a constant c 

from Table Al2 such that 



Thus, H0 is rejected if the observed m
1

- m
2 

> cb
1

• The power may be 

obtained as follows: 

P[m
1 

~ 

- ml - m2 + mz .<! -ml + m2 + cb1 ] 
~ c ) -(m - m ) m - m - m 

p [ 1 1 - m2 2 1 2 + c] = 2: bl bl bl 

Therefore, the power of the test may also be obtained from Table Al2. 

B. Location Parameter Known 

1. Confidence Intervals on the Ratio of the Scale Parameters 
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As in IV-A, consider two independent Cauchy samples. In this section, 

assume m1 and m2 are known. Although the calculation of £1 and b2 

depends on m1 and m2 , the distribution of b1/b1 depends on n 1 only; 

and the distribution of £2;b
2 

depends only on n 2 • Hence, the distribu­

tion of (b
2

/b
2
)(b1/£1 ) depends only on n

1 
and n 2 • The distribution of 

(b 2 /b
2
)(b1 /b1 ) was obtained by a Monte Carlo simulation and appears in 

Table Al3. Confidence intervals on b 1/b
2 

may be obtained as follows: 

From Table Al3 we may find the constants c 1 ,c2 such that 

b2 bl 
P(c < • -~- < c ] = 1 - a; 

1 b2 bl 2 

and, hence, 

which forms the desired confidence interval. 

2. Tests of Hypotheses 

A test of hypothesis on the equality of the scale parameters (loca-

tion parameters known) will now be presented. As an example, consider 



H 
0 

b 1 = b 2 , H1 : b 1 > b 2 • Under the null hypothesis, one can find 

from Table Al3 the constant c such that 

b 
p[-J_ > c] = <l. 

bl 

Hence, H will be rejected 
0 

£2 
when b. > c. The power of the test may be 

1 
obtained as follows: 

Power 

> c 

Hence, the power also may be obtained from Table Al3. 

C. Scale Parameters Unknown but Assumed Equal 

1. Confidence Intervals on the Difference in Location Parameters 

Here we assume that b
1 

= b 2 = b where b is unknown. Confidence 
~ 

intervals on ml - m2 may 
bl m2 - m2 b2 

be obtained as follows: 
ml - ml 

We know that b 

b , b and ~ have distributions dependent on nl and n2. Hence, 

~ 

ml ml m2 - m2 

b b 

bl b2 
-+-b b 

or 

ml - ml - (;2 - m2) 

bl + t2 

depends only on n1 and n 2 • The distribution of the above statistic was 

obtained by simulation and appears in Table Al4. From Table Al4 we may 

find c such that 
c;l - ml) - (m2 - m2) 

P[-c ~ ~~--~----~---------
£1 = b2 

~ c] = 1 - <l; 
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and, hence, 

P[(ml- ~2) - c(bl + b2) ~ ml- m2 ~ (~1 

which forms the desired confidence interval. 

2. Tests of Hypotheses 

Consider the test H 
0 

is rejected if 

= a 

where c comes from Table Al4. 

m1 > m2 . The null hypothesis 
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Under the alternative hypothesis, the power can be obtained as follows: 

Power 

A A 
m - m2 

= p [A 1 
bl + s2 

P[m1 
A 

= - m2 

= P[m1 - ml 

m - m1 = p ['--"=-1-~ 
b 

> c ml > m2] 

> c(b1 + b 2)] 

- m2 + m2 > -ml + m2 + c(b1 + b2)] 

Therefore, the power of the test may be determined from the critical 

m ml - (m2 - m2) bl + t2 
values of 1 - c( ) which depends upon c, n 1 , and 

b b b 

n 2 • The distribution of this random variable was not obtained. 

D. Scale and Location Parameters Unknown 

1. Confidence Intervals on the Difference in Location Parameters 

This problem, analagous to the Behrens-Fisher problem in normal 

theory, may be handled in a similar manner. Let x1 , •.. , Xn be a 

random sample from a Cauchy distribution with parameters m1 and b 1 • Let 

Y
1

, ••• , Yn (same sample size) be a random sample from a Cauchy distri­

bution with parameters m2 and b2. Let Di =Xi- Yi, i = 1, •.• , n. 

It is known [1] that Di has a Cauchy distribution with parameters m1-m2 



and b 1 + b 2 • Hence, the methods of Chapter III-A-2 may be applied to 

the paired variable Di to obtain a confidence interval for m1 - m2 • 

2. Tests of Hypotheses on the Location Parameters. 
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Tests of hypotheses may be carried out using the results of III-A-3. 

3. Confidence Intervals on the Ratio of the Scale Parameters 

£ b 
It has been pointed out in IV-B-1 that -1 · _! has a distribution 

b2 £1 
dependent only on the sample sizes n1 and n 2 . The equations for obtaining 

b 2 and b1 are, of course, different when m1 and m2 are unknown. The dis­

tribution of b2 • ~l with m1 , m2 unknown has been obtained by simulation 
b2 bl 

and appears in Table Al5. The method of setting confidence intervals on 

bl 
b

2 
is identical to that of IV-B-1 using, however, critical values from 

Table Al5. 

4. Tests of Hypotheses on the Scale Parameters 

Tests of hypotheses on the scale parameters are performed in a manner 

similar to that in IV-B-2. The critical values come from Table Al5. 

E. Example 

Consider two samples of size ten where b 1 = b 2 = 2. Suppose 

m
1 

= 3.5 and m
2 

= 3.0. From Table Al2 we find the constant c = 1.550 

such that (3.5 - 3.0 ± 1.55(2)) = (-2.6,3.6) forms a .95 confidence 

interval for m
1 

- m
2

• If b
1 

and b 2 were not known but rather h1 = 2, 

A 

b
2 

= 2, then from Table Al4 we find the constant c = .792 such that 

(3.5- 3.0 + .792(2 + 2)) = (-2.668, 3.668) forms a .95 confidence 

interval on ml - m2. 
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V TRUNCATED AND CENSORED SAMPLES 

A. Unbiased Estimators of the Location and Scale Parameters 
.... 

m-m b 
Antle and Bain [17] point out that the distributions of b , b• and 

m-m depend 1 th 1 · d th i t f i f t on y on e samp e s1ze n an e po n o censor ng or ype 
b 

II censored samples and truncated distributions when the parent distri-

bution is dependent on a location parameter and a scale parameter. In 

general, the likelihood equations must be solved by iterative methods [9] 

and the distributions of the pivotal functions determined by simulation. 

It has been observed in III-A-2 that if the distribution of the 

random variable is symmetric about its location parameter, m, then 

E(m) = m. In general, truncated and censored distributions do not have 

the required symmetry property so that m is not an unbiased estimator 

of m. The following theorem is useful in finding an unbiased estimator of m. 

THEOREM 7 

If m* and b* are functions of a random sample 

* b* 
f(x; m,b) such that E(m b- m) = K(n), and E(~) = L(n), 

of size n from 

then m* -
K(n)b* 

L(n) 

is an unbiased estimator of m(m and b are not necessarily location and 

scale parameters). 

Proof: From the hypothesis, we have 

E(m*) = bK(n) + m E(b*) = L(n)b. 

Now consider w* *- K(n) b* 
m L(n) 

E(w*) E(m*) - K(n) E(b*) 
L(n) = m. 

Q.E.D. 

m - m b 
we have Since the distributions of b , b depend on n alone, 

E(m - m b 
L(n); and, hence, 

.... K(n) 6 is unbiased esti-b ) = K(n), E(b) = m - L(n) an 

b 
= L(n), follows that 6 is unbiased mator of m. Since E(-) it an 

b L(n) 

estimator of b. 



B. Confidence Intervals for the Location and Scale Parameters 
~ 

If the distributions of m - m 
b 

6 m - m b' and b are known, it follows 
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that confidence intervals for m and b could be obtained. Now the distri-

butions of these pivotal functions depend upon the truncation or level 

of type II censoring involved. Consequently, a general Monte Carlo simu-

lation would be quite lengthy. For this reason, a general program for 

m - m 6 m - m m - m 
generating the distributions of b , b' and b along with E( b ) 

b 
and E(b) is provided for the Cauchy distribution (type II censoring) in 

Appendix II. The level of censoring is an input parameter to the program. 

A users guide is provided within the program. Hence, it is possible, 

by using this program, to find unbiased point estimators of m and b and 

set confidence intervals for m and b for type II censored samples from 

Cauchy distributions. 
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VI DISCRIMINATION BETWEEN CAUCHY AND NORMAL SAMPLES 

A. The Chi Square and Related Tests 

It would be useful for an applied statistician to have a method 

available for choosing between the normal distribution and the Cauchy 

distribution. In this chapter, ways of performing the test of hypothesis 

H 
0 

Sample from Normal Distribution, H1 : Sample from Cauchy Distribu-

tion will be investigated. The first test considered is the Chi Square 

Goodness of Fit Test. 

Let 

k 
E 

i=l 

The k cells were determined in the following manner: The sample mean, x, 

and the sample variance, s 2 , were calculated; and five intervals 

(-oo, x-k2s), (x-k2s, x-k1s), (x-k1s, x + k 1s), (x + k 1s, x + k 2s), 

(x + k 2s, oo) were determined by choosing k 1 and k 2 such that if the 

random variable X had a normal distribution with ~ = x, a2 = s 2 , then 

each interval would contain 20% of the area under the normal curve. 

Therefore, Ei = 1/5 (total number of observations), i = 1, ... , 5, 

th 
and Oi = the number of observations in the i cell, i = 1, ... , 5. 

Now, under H , x2 
has an approximate Chi Square distribution with 

o n 

three degrees of freedom. Since this is only an approximation, and 

since one cannot determine the power of the test in this manner. the 

distribution of x2 was determined by a Monte Carlo simulation. 
n 

The distribution of x2 is independent of the scale and location 
n 

parameters of the distribution of the random sample, as seen from the 

following argument: Let x
1

, • be a set of observations. Let 

, Yn be the corresponding sample formed by letting yi 
c -

c > 0, i ... 1, .. • ' n • It is well known that y = 
x - a 

c 
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Hence. if xi satisfies the inequality x + d
1

sx < xi < x + d
2

sx• then 

Y + d 1sy < Yi < y + d2sy. Therefore. if xi is in the kth cell based on 

the sample of x's, then y. is in the kth cell based on the sample of y's. 
1 

To determine the power of the test, the distribution of x2 , when 
n 

the observations are from a Cauchy distribution, is required. A cornpa-

rison of this test with others is presented in Part C of this chapter. 

Let 

Another test, related to the Chi Square Test, will now be discussed. 

5 
E 

i=l 

where Ei and Oi are defined as in 
2 

the definition of X except that: 
n 

(1) the intervals are formed using~ and b, the maximum likelihood 

estimators of m and b in the Cauchy distribution, and (2) k 1 and k 2 

are determined such that Ei = 1/5 (total number of observations) if the 

sample really carne from a Cauchy distribution with parameters m=m, b=b. 

From the following result, a lemma to the theorem in VI-B, it is 

2 
observed that X has a distribution independent of the scale and location 

c 

parameters of the distribution of the random sample. 

Lemma: Let x
1

, ... , xn be a set of n observations. Let 

Yp . . . , Yn be the corresponding set formed by letting yi = 
,. ,. 

xi - a 
c 

c > 0, i = 1, •.• , n. Let rnx,bx be the maximum likelihood estimators 

of the Cauchy parameters based on the sample of x's. 

MLE's based on the y sample. Then my fix - a and b 
c y 

Proof: 

n 1 n = max 
II rn,b II 

i=l ,. xi - rnx 2 i=l 
nbx[l + ( ~ ) ] nb[l + 

b 

1 

X 

Let xi = cyi + a, and divide both sides by c. Then 

,. 
b be the 

y 



n 
II 

i=l 

Therefore, by letting 

1 n 
= max II 

m, b i=l 

" mx - a 
~ = c and by = 

for the y sample is maximized. 

Q.E.D. 
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1 

the likelihood function 

Therefore, x2 
is distributed independently of the scale and location 

c 

parameters of the distribution of the random sample. Consequently, it 

2 2 
is feasible to obtain the distribution of R = X /X by a Monte Carlo 

n c 

Simulation. The distribution of R was obtained for normal samples and 

Cauchy samples. Comparisons are made in part C of this chapter. 

B. The Likelihood Ratio Test 

As a third way of performing the desired test of hypothesis, 

consider a test based on the likelihood ratio 

The following theorem is useful in considering a test based on A. 

THEOREM 8 

The distribution of A does not depend upon the location and 

scale parameters of the distribution of the x's. 

Proof: Let x
1

, ... , xn be a set of observations. Let y 1 , .. , Yn 

be a new set formed by letting yi 

x - a sx 
Now y = sy = , and from c c 

xi - a 
0, i = c > 

c 

the previous lemma, 

= 1, 

" m 
y 

. . • , n. 
" mx - a 

c 
b sx. 

y c 

Let Ax be determined from the x sample and Ay from the y sample. In the 
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expression for Ax' divide numerator and denominator by c, and replace xi 

with cyi + a which yields Ax = Xy. 

Q.E.D. 

Dumonceaux [23] has generalized this result to arbitrary scale and 

location parameter densities. 

The distribution of A was determined for samples from a normal 

distribution to determine the critical values of the test and from samples 

from a Cauchy distribution to determine the power of the test. The 

tables are presented in the next section. 

C. Comparison of Methods 

The following tables were prepared using a Monte Carlo simulation 

of the statistics X~, R, and A for testing the hypothesis H
0 

: Sample 

from Normal Distribution, H
1 Sample from Cauchy Distribution. Lc is 

the critical value for the test (the test is rejected for X < Lc, 

2 
X > L , orR> Lc)' a is the probability of a Type I error, and 8 is n c 

the power of the test. 

are approximate. 

a = .01 

n Lc 8 

15 4.8 .53 

25 9.6 .79 

35 14.4 .90 

so -- --

Due to the discrete nature of X
2 

and R, the a's 
n 

Table 8 

2 
Discrimination Based on X 

n 

a = .OS a = .1 

Lc 8 Lc 

2.8 .61 1.6 

6.8 .86 5.2 

9.6 .945 8.0 

14.0 .98 12.4 

a = .2 

8 Lc 8 

.72 1.2 .82 

.90 3.6 .95 

.96 6.4 .98 

.987 10.0 .995 
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Table 9 

Discrimination Based on R 

a - .01 a = .OS a = .1 a = .2 

n Lc s L s Lc B Lc s 

15 

25 

35 

50 

c 

9.0 .54 

5.75 .73 3.67 .83 2.0 .91 

6.0 .77 3.0 .91 2.0 .95 1.2 .98 

2.3 .962 1.21 .991 .95 .995 . 7 .999 

Table 10 

Discrimination Based on A 

a = .01 a = .OS a = .1 a = .2 
n 

Lc s Lc s Lc s L s c 

5 .086 .19 .363 .32 .628 .40 1.203 .53 

10 .107 .51 .534 .65 1.118 .73 2.340 .81 

15 .198 .74 1.010 .83 2.176 .88 5.045 .92 

25 .67 .93 3.45 .96 8.98 .98 --- --

35 2.20 .986 15.6 .993 37.8 .995 121.5 .999 

50 13.0 .997 125.0 .998 --- -- --- --

As is clearly indicated by Tables 8, 9, and 10, the likelihood ratio 

test is superior to the tests based on x2 
and R. n 

D. Example 

The following data were obtained by Michelson in 1926 in determining 

the velocity of light by reflecting a light beam by mirrors between 

Mount Wilson and Mount San Antonio [24]. The data have been coded so 

that only the last two figures appear. The data are as follows: 



58 

47, 38, 29, 92, 41, 44, 47, 62, 59, 44, 47, 41 

Using these 12 observations, the following results are obtained: 

x 49.25, s = 16.03, m = 44.46, 6 = 4.39. The value of the likelihood 

ratio is A = .072. From Table 10 we see that even at the a = .01 level, 

it is concluded that the sample comes from a Cauchy distribution. The 

power of the test may also be determined by interpolation from Table 10 

for each of the four values of a. 

The estimate of the velocity of light based on the Cauchy distri­

bution is c = 44.46 with a .90 confidence interval of (40.62, 48.30). 
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VII NUMERICAL SOLUTION TO THE LIKELIHOOD EQUATIONS 

A. Scale Parameter Known 

The methods for solving the likelihood equations are significantly 

different depending upon whether b is known, m is known, or both m and b 

are unknown. In this section, the case where b is known will be considered. 

For convenience, assume b = 1. The likelihood function L(x;m) is 

given by 

L(x;m) = 
n 
n 1 

i=l n[l + (xi - m)2] 

and log L(x;m) by 

log L(x;m) = -n 
n 

log n- E log[l + (xi- m)2]. 
i=l 

Hence, the likelihood equation a log L(x;m) = 0 is given by 
am 

a log L(x;m) 

am 
n 2(xi - m) 

= i~l 2 = o. 
1 + (xi - m) 

This equation is obviously nonlinear in the unknown m; and, hence, an 

(1) 

iterative technique must be used to find m, a root of the above equations. 

Barnett [14] points out that approximately 30% of the time there 

exist multiple roots to (1). Therefore, one must use caution in solving 

for a root. Barnett observes that for n ~ 13, the root maximizing L(x;m) 

was always the root nearest the median. 

The Newton-Raphson Method was used with the sample median as a 

starting value in an attempt to find ~. For n = 5 and n = 10, frequent 

samples arose such that this iterative method either diverged or converged 

to a root other than the solution yielding the absolute maximum of L(x;m). 

However, for n = 15, the Newton-Raphson Method converged 1000 consecutive 

times to m,the MLE. This result is consistent with Barnett's observation 

concerning the MLE being the root nearest the median. Therefore, for 
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n ~ 15, the Newton-Raphson Method, with the median as a starting value, 

appears to be a very safe method for finding the ma~imum likelihood esti-

mator. It should be noted, ho~e~er, that it is still possible for the 

Newton-Raphson method to diverge. The following table presents the 

number of times the Newton-Raphson Method diverged during the Monte Carlo 

simulation. 

table 11 

Number of Divergences in ~ewton-Raphson Iteration (b known) 

Sample Size Number of Estimates Number of Divergences 

15 10,000 4 

20 10,000 4 

25 10,000 0 

30 10,000 0 

40 10,000 0 

50 10,000 0 

Therefore, for n > 25, there see~s to be ~ery little chance of the 

method diverging. 

However, for 15 ~ n < 25 an alte~nate method is required to handle 

the rare case when the Newton-Raphson iteration diverges. Also, for n < 15, 

an alternate procedure is required to simply find the root which actually 

maximizes L(x;m). 

The alternate procedure used was the method of false position, as 

suggested by Barnett. The m a~is was scanned at an increment of .25, and 

h i f a log L(x;m) was noted. 
t e s gn 0 am Each time a change in sign occurred, 

the method of false position ~as used to locate the root. When this 

scanning procedure terminated, the ~oot of (1) that maximized L(x;m) was 
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selected. Barnett notes that all roots to (1) lie between min xi and 

max xi. Hence, we need scan only over this interval. It is always pas-

sible to miss a root in the scanning procedure. Barnett indicates that 

a scanning interval of .25 appears sufficiently small (when b = 1) to 

locate all roots. 

(~ - m) . 
The distribution of b/l:n was obta1ned by a Monte Carlo simulation. 

For n ~ 15, the Newton-Raphson method was used with the method of false 

position as a backup in case of divergence. For n = 5 and n = 10, the 

method of false position was used exclusively. The Newton-Raphson Method 

is, of course, much more efficient in terms of computer time; and, hence, 

should be used whenever possible. 

B. Location Parameter Known 

The problem of determining £, the MLE of b from the Cauchy model 

with m known, is a considerably simpler problem, as witnessed from the 

following theorem. (For convenience, let m = 0.) 

THEOREM 9 

Let L(x;b) be the likelihood function for the Cauchy distribu-

tion with m known. There exists a unique b > 0 such that 

and 

or 

a log L(x;b) I ~ 0. 
ab b = b 

Proof: L(x;b) is given by 

L(x;b) = R 1 
i=l Xi) 

7Tb[l + 
b2 

2 

log L(x;b) = 
n xi 
r- log[Tib(l + b 2 )], 

i=l 

2 

log L(x;b) 
n x 

-n log 7T - n log b- [ log (1 + _!). 
i=l b2 



Hence, 

a log L(x;b) 

db 

x2 
n 2 n i 

+ L 
b b i=l b2 + 2 

xi 

Therefore, we seek the solution of 

g (b) 

2 
n xi 

-n + 2 L 
i=l b2 + X~ 

1 

Now g(O) = n, g(oo) = -n, and 

2 
n xi 

o. 

g I (b) -2b 2: ---------=2 < 0 for all b > 0. 
i=l (b2 + 2) 

xi 

Since g(b) is continuous, it follows that there is a unique b such that 

g(b) = 0; and, hence 

a log L(x;b) I 
A Qo 

Clb b=b 

Q.E.D. 
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Therefore, the problem of finding b when m is known is easier than finding 

~ with b known. The equation 

2 
n xi 

-n + 2 [ 2 
i=l b2 + X 

i 

is nonlinear in b. The Newton-Raphson Method was used to find b. Any 

starting value that causes convergence is suitable since there is a 

single positive root. 

C. Both Parameters Unknown 

In the case where both parameters are unknown, we seek values for 

m and b that maximize 

L(x;m,b) = 
n 1 
II x. m 

i=l nb[l + ( 1 )2] 
b 
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For relative maxima we seek roots of 

d log L(x;m,b)= n (xi - m) 
[ 0 

Clm i=l b2 + (xi 2 - m) 
(2) 

n (xi 
2 

d log L(x;m,b) - m) 
-n + 2[ 0. 

Clb i=l b2 + (xi - m)2 
(3) 

It is possible for multiple pairs of roots to exist for (2) and (3). 

For instance, for n = 2, a sample of x1 and -l/x
1 

yield (m = 0, b = 1) 

and (~ = 1 ~ 
(xl- x

1
), b = 1) for solutions. It would appear that an 

iterative solution to (2) and (3) could converge to a solution that did 

not yield the absolute maximum of L(x;m,b). If this were the situation, 

one would probably have to resort to a two-dimensional search procedure 

that would be so exorbitant in computer usage that maximum likelihood 

estimation would not be feasible for a Monte Carlo simulation. Fortu-

nately, it appears that in actual numerical situations there is a unique 

solution to (2) and (3) for n > 5. 

A study was made to compare the roots of (2) and (3) obtained from 

a Newton-Raphson iteration with the actual maximum likelihood estimators 

as obtained from a search procedure. For 107 samples of size 5, the 

Newton-Raphson Method converged to the MLE each time. In another study, 

500 samples of size 5 were obtained. Twenty-five pair of starting values 

symmetrically located about the true parameter values were used to initiate 

the Newton-Raphson iteration. In 314 of the samples, more than one pair 

of starting values caused convergence of the iteration. In each instance 

the solution obtained was unique. 

While it appears as if, in actual numerical samples, a unique solu-

tion exists to (2) and (3), the results of the previous paragraph indicate 

the strong dependence of the iterative method upon the starting values. 
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In the Monte Carlo simulation conducted, the starting values were obtained 

in the following manner: For the initial estimate of m, the median was 

selected. From the theorem of the preceding section, it follows that, 

f · 1 f h · · · · f dlogL 0 . or a g1ven va ue o m, t ere ex1sts a un1que pos1t1ve root o db . 

Therefore, along the line m = median, b was incremented until dlogL/ db 

changed signs. The first value of b after the change in sign was selected 

as the initial value of b. For reasons to be explained later, the incre-

ment size was the range of the sample divided by 1000. Choosing the 

initial estimates of m and b in this manner yielded the following results: 

Table 12 

Number of Divergences in Newton-Raphson Iteration (b unknown) 

Sample Size Number of Samples No. of Times Divergence Occurred 

5 40,000 102 
'n' 

10 30,000 68 

15 20,000 47 

20 20,000 70 

25 20,000 70 

30 20,000 90 

40 20,000 131 

so 16,000 146 

75 12,000 158 

100 9,000 160 

In those cases where the method diverged, the MLE were obtained by a 

search technique. 

The following theorem is of value in connection with the question of 

multiple roots: 



THEOREM 10 

are initial estimates of the 

m (O)_m b (O) 
b --b-- are distributed 

If X "'l f(x-m) and m(O), b (0) 
b b 

roots of 
alogL 3log L 

am = 0, db = 0 such that 

independently of m and b; then, provided f is twice differentiable with 

respect tom and b, each successive approximation ~(i), b(i) given by 

m (i)_m 
the Newton-Raphson iterative method possesses the property that - b , 

b (i) 

b 

rn ( i)_m 
and b(i) are distributed independently of m and b. 
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Proof: Let y 1 , y 2 , ... , Yn be a sample of size n from a standard-

A(O) (0) . 
ized distribution (m = 0, b = 1), and let mo , bl be the lnitial 

estimate of the two parameters. Let x 1 , x 2 , ... , xn be the corres-

ponding sample of size n from a distribution with location parameter m 

L A(O) bA(O) 
and scale parameter b obtained by letting xi = byi + m. et m , 

be initial estimates of m,b such that 

~(O)_m A(O) b(O) = 61(0)• 
b mo , b (4) 

The first estimates of m and b given by the Newton-Raphson Iterative 

Method are 

A(l) 
m ~(O) + 6m 

(5) 

b
A (0) + 6b. 

where 6m, 6b are given by 

dlogL + a 2 logL (6m) + 
a 2 1ogL 

(6b) 0 
am am2 amab 

3logL + 
a 2 logL (6m) + a 2 1ogL 

(6b) 0. 
ab a bam a 2b 

A (0) A (0) 
For convenience where the partial derivatives are evaluated at m , b . 

b 1= -alogL/3m, b 2= -alogL/ab. 

A (O) b • 

Again these functions are evaluated at 
A (0) 
m , 

;. .. 
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[~~] 1 [.22 -•21] ll] 
alla22 - a12a21 -al2 all b2 

(6) 

Let bx 
1 denote b 1 for the x sample and bi denote b1 for the y sample. Now 

n 
x.-ffi(O) 

X 1 af( \;<o) ) 
bl -E 1 i=l x. - ffi(O) (- £(0)) 

f( \;co) ) 
Clrn 

A (0) ci -rno ) df ~ (0) 

by n 1 bl 1 
= -E A(O) (- ;ror) 

1 i=l am 
Y· - rno bl f ( 1 

A (O) ) 

bl 

(7) 

(8) 

Substituting x. = by + m, we have 
l. 1 

X y 
bl = bbl 

Similarly, 

bx bby X 2 y 
= a21 = b a21 2 2 

ax 2 y X 2 y 
= b all a22 b a22 11 

(9) 

X 
a12 == 

2 y 
b al2 

Now 

~ (1) A (0) 
+ lim rn rn 

(10) 
b (1) = 

A (O) 
rn + lib 

Substituting (9) and (6) into (10) yields 

A (1) A (1) +rn m brny 
X 

~(1) ~(1) 
bx = bmy 

where the subscript x and y refer to the sample from which the estimate 

was generated. 
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Therefore, the distributional property has been maintained. Hence, 

by induction, 

~(k) 
m 

X 

Q.E.D. 

Now, by selecting the starting values as described earlier, we have 

the desired properties of this theorem. Therefore, even if, in some 

rare sample, one obtained a solution to (2) and (3) that was not the MLE, 

the solution m* and b* obtained would have the property that 

m* - m m* - m b* _______ , ' 
b b* b 

are distributed independent of m and b. Hence, if one finds the roots 

to (2) and (3) in the same manner that was used to generate Tables A2 

and A3, then these tables are still valid for setting confidence inter-

vals, testing hypothesis, etc. A computer program is provided in 

Appendix B for use in finding the roots to (2) and (3). 

It should be noted that the previous theorem does not hold for 

the Method of Steepest Descent. 



VIII THE MONTE CARLO SIMULATION 

A. Generation of Cauchy Random Variables 

It is well known [22] that if X is a continuous random variable 

with cumulative distribution function F(x), then the random variable 

Z = F(X) has a uniform distribution over the interval (0,1). If X has 

a Cauchy distribution with m = 0, b = 1, then the cumulative distribu-

tion function is given by F(x) 1 1 1 +- tan- x. 
2 1T 

has a uniform distribution. 

1 1 -1 
Hence Z = - + tan X 

' 2 1T 

The UMR Computer Center provides a subroutine on their IBM 360 

Model 50 computer for generating random samples from a uniform distri-

bution over the interval (0,1). If zi, i = 1, ... ,n, represents a 

sample of n observations from the uniform distribution, then it follows 

that xi= tan[-rr(zi- 1/2], i = 1, .,n represents a random sample 

from a standard Cauchy distribution. Consequently, yi = m + bxi repre-

sents a sample from a Cauchy distribution with parameters m and b. All 

random samples used in this study were generated in this manner. 

B. Comparison of an Exact Distribution with a Simulated Distribution 

Random samples from a standard Cauchy distribution were generated 

in the manner described in part A. The maximum likelihood estimators 

were then calculated as discussed in Chapter VII. This process was 

repeated a large number of times, and the cumulative distributions of 

various required functions of the estimators were tabulated. 
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The simulated distributions might differ from the true (but unknown) 

distributions because of two kinds of errors. They are: (1) the random 

samples generated on the computer were not representative of a uniform 

distribution, and (2) not enough estimates of the parameters were 

obtained to give a precise simulated distribution. 
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It is possible to gain some insight into the magnitude of these 

errors by obtaining the simulated distribution of a random variable 

whose true distribution is known. For a sample of size 2k + 1, the 

median of a Cauchy distribution, which is the k + 1 ordered observation, 

has a probability density function given by 

= (2k + 1)! 
(k) ! (k) ! 

[1 + 1 -1 ]k[l 2 TT tan Yk+l 2 
1 -1 k 1 - n tan yk+l] ------,.,2-. 

TT(l + y ) 
k+l 

The cumulative distribution can be obtained by numerical integration. 

The cumulative distribution of the median for samples of size 5 

and 9 were obtained by simulation and by numerical integration. These 

results appear in Table 13. 

From the excellent agreement displayed in Table 13, there can be 

little doubt concerning the randomness of the random number generator. 

Since the variance of the MLE of m is less than the variance of the 

median, there is no reason to suspect that the simulated distributions 

of m are not at least as precise as the simulated distributions of the 

median. While it is difficult to make exact statements about the other 

random variables, it is felt that the errors present are of about the 

same order of magnitude. 

Table 14 presents the number of estimates used for all random 

variables whose distributions were obtained by Monte Carlo simulation. 

C. Smoothing of Critical Values 

The sample sizes that were used in the Monte Carlo simulation appear in 

Table 14. 
m-m b ro-m b 

For the distributions of b/ /r1 , b (m unknown), b/ /i1 , and b 

(m known) continuous curves were fit by least squares to the critical 

values for the purpose of smoothing the critical values and then inter-

polating for sample sizes not run in the simulation. 
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Table 13 

P[X < x] for the Sample Median of a Standard Cauchy Distribution 

2k + 1 = 5 2k + 1 = 5 2k + 1 = 5 

10,000 Estimates 20,000 Estimates 10,000 Estimates 

X Simulated Exact Simulated Exact Simulated Exact 

.1 .5617 .5593 .5609 . 5593 .5792 .5777 

.2 .6214 .6166 .6168 .6166 .6519 .6514 

.3 .6707 .6700 .6702 .6700 • 7179 .7181 

.4 .7207 .7184 . 7186 .7184 . 7782 . 7759 
• 5 .7647 .7611 .7593 . 7611 .8234 .8242 
. 6 .8000 .7980 .7972 .7980 .8638 .8632 
. 7 .8311 .8294 .8282 .8294 .8930 .8942 
.8 .8583 .8559 .8541 .8559 .9158 .9183 
.9 .8798 .8780 .8762 .8780 .9340 .9386 

1.0 .8982 .8965 .8949 .8965 .9497 .9511 
1.1 .9131 .9118 .9113 .9118 .9630 .9619 
1.2 .9256 .9246 . 9244 .9246 • 9714 .9702 
1.3 .9364 .9352 .9338 .9352 . 9771 .9766 
1.4 .9454 .9440 .9423 .9440 .9819 .9815 
1.5 .9526 .9515 .9506 .9515 .9859 .9852 
1.6 .9593 .9577 .9570 • 9577 .9892 .9881 
1.7 .9847 .9630 .9620 .9630 .9907 .9904 
1.8 .9687 .9675 .9671 .9675 .9930 .9922 

1.9 .9720 . 9713 .9712 .9713 .9941 .9936 
2.0 .9752 .9745 .9742 .9745 .9955 .9948 
2.1 .9788 .9774 .9769 .9774 
2.2 .9813 .9798 .9791 .9798 
2.3 .9832 .9819 .9815 . 9819 
2.4 .9848 .9837 .9838 .9837 
2.5 .9862 .9853 .9855 .9853 
2.6 .9876 .9867 .9870 .9867 
2.7 .9887 .9879 .9881 .9879 
2.8 .9879 .9890 .9891 .9890 
2.9 .9906 .9899 .9900 .9899 
3.0 .9913 .9908 .9909 .9908 



RANDOM VARIABLE 
~ 

m - rn 
£/Iii 

b 
b(m unknown) 

A 

m- m 
b/ln 

A 

b b (rn known) 

A 

rn - rn + k(B) .£ 
A A 

b b 

b(-1-/l+tan2 nB(1+(~~rn) 2 )) 
A 

btannB 

A A 

m - rn _.£_.£ 
b vnb 

A (Likelihood Ratio Test) 

A 

b2. ~ 

bz bl 

m1. m2 unknown 

Table 14 

Number of Estimates Obtained in Monte Carlo Simulation 

Sample Size 

5 10 15 20 25 30 40 

40,000 30,000 20,000 20,000 20,000 20,000 20,000 

40,000 30,000 20,000 20,000 20,000 20,000 20,000 

20,000 10,000 10,000 10,000 10,000 10,000 10,000 

20,000 10,000 10,000 10,000 10,000 10,000 10,000 

40,000 20,000 20,000 20,000 20,000 20,000 20,000 

40,000 30,000 20,000 20,000 20,000 20,000 20,000 

20,000 10,000 10,000 10,000 10,000 10,000 10,000 

n = 35 
10,000 8,000 6,000 --- 5,000 2,000 ---

n = 45 
15,000 10,000 8,000 8,000 --- 6,000 4,000 

50 75 

16,000 12,000 

16,000 12,000 

10,000 ---

8,000 6,000 

16,000 12,000 

16,000 12,000 

8,000 6,000 

1,500 ---. 
--- ---

100 

9,000 

9,000 

---

4,500 

9.000 

9,000 

4,500 

---

---

--.J 
~ 



RANDOM VARIABLE 

(~1-rnl) - <~2-m2) 
bl + b2 

(~1-rnl) b2 ~2-m2 -- ( ) 
bl b1 b2 

5 

10 

15 

20 

25 

30 

40 

Table 14 (continued) 

Sample Size 

5 10 15 20 25 30 40 

n - 45 
15,000 10,000 8,000 8,000 ---- 6,000 4,000 

20,000 15,000 10,000 10,000 ---- 9,000 6,800 

b b 
Random Variable _l · _l rn1,rn2 known 

b2 bl 

5 10 15 20 25 30 

20,000 20,000 20,000 

20,000 10,000 10,000 10,000 

10,000 10,000 10,000 10,000 10,000 

10,000 10,000 10,000 10,000 10,000 

10,000 10,000 10,000 10,000 

10,000 10,000 9.000 

8,400 7,800 

---··--~·~ 

50 

----

----

40 

8,400 

7,800 

6,800 

75 

----

----

100 

----

----

" N 



Let Yy be the y cumulative percentage point of the statistic being 

considered. m - m 
For the critical values of b/~ 

smoothing model was used 

el 
y=s+---

Y o e2 + n 
+ €: 

m - m 
and b/ /il the following 

where eo is the asymptotic value of the y percentage point derived from 

the normal distribution. The parameters e
1 

and e
2 

were estimated using 

the least squares criteria. The model is nonlinear in e
1 

and e
2

, and 

the Gauss-Newton Method was used to estimate e 1 and e 2 . This model was 

then used to obtain the critical values of Tables A2 and A4. 
A A 

b b 
For the statistics b (m unknown), b (m known), two different 

smoothing models were used. For y < .5, the following model was used: 

-~ -1 
For .5 < y < 1, the model Yy = eo + eln + eln + S)n + E was used. 

Both models are linear in the unknown parameters, and the parameters 

were estimated using standard linear least squares procedures. 

These smoothing models were selected among several tried because 

they appeared to adequately fit the unsmoothed data. For purposes of 
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comparison of the smoothed and unsmoothed critical values, the unsmoothed 

data from the simulation are now presented. The tables have the same 

format as Tables A2, A3, A4, and AS. 



~ .75 

5 1. 370 

10 1.120 

15 1.060 

20 1.030 

25 1.020 

30 1.010 

40 .987 

50 .976 

75 .969 

100 .95 

Table 15 
A 

U m- m nsmoothed Critical Values of --
£//;" 

.80 .85 .90 .95 

1. 78 2.34 3.15 4. 77 

1.42 1. 79 2.27 3.11 

1.330 1. 66 2.10 2.79 

1. 29 1. 61 2.00 2.63 

1. 28 1. 58 1. 99 2.60 

1. 26 1. 56 1.93 2.51 

1.25 1. 54 1. 91 2.48 

1. 22 1. 51 1.88 2.45 

1.20 1. 46 1.85 2.40 

1.20 1. 48 1.82 2.38 

Table 16 

.975 

6.78 

3.95 

3.46 

3.27 

3.13 

3.05 

2.97 

2.96 

2.89 

2.85 

6 
Unsmoothed Critical Values of (m unknown) 

b 

~ .01 .025 .05 .1 .9 .95 .975 

5 . 084 .130 .181 .259 1. 928 2.560 3. 277 

10 .256 .320 .387 .467 1. 662 2.005 2.353 

15 .357 .418 .479 .563 1. 522 1. 746 1. 970 

20 .424 .488 .546 .619 1. 444 1. 628 1.811 

25 .473 .533 .583 .651 1. 397 1. 536 1.708 

30 .507 .568 .621 .685 1. 357 1. 498 1.635 

40 .573 .622 .670 .727 1. 305 1. 412 1.525 

50 .610 .656 .702 .755 1. 269 1. 366 1. 463 

75 .669 .710 .751 .797 1. 217 1. 289 1. 358 

100 .712 .746 .779 .822 1.187 1. 251 1.305 
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.99 

11.0 

5.19 

4.40 

4.04 

3.85 

3.76 

3.63 

3.59 

3.47 

3.34 

.99 

4.525 

2.838 

2.279 

2.067 

1. 911 

1. 796 

1. 656 

1. 566 

1.438 

1. 372 



~1-a 
n ~~ 

·5 

10 

15 

20 

25 

30 

40 

50 

~ .01 

5 .203 

10 .333 

15 .408 

20 .463 

25 .508 

30 .542 

40 .590 

50 .625 

75 .674 

100 .713 

Table 17 
A 

Unsmoothed Critical Values of m - m 
b/ln. 

.8 .85 . 90 .95 .975 

1. 24 1. 60 2.09 3.03 4.18 

1.22 1.53 1. 94 2.67 3.36 

1. 21 1.50 1. 91 2.52 3.18 

1. 20 1. 50 1.86 2.45 3.03 

1.20 1.50 1.86 2.41 2.95 

1. 20 1.48 1.85 2.40 2.92 

1.21 1.49 1.85 2.38 2.88 

1.18 1. 47 1.84 2.37 2.87 

Table 18 

b 
Unsmoothed Critical Values of - (m known) 

b 

.025 .05 .10 .90 .95 

.268 .337 .440 2.273 2.932 

.406 .471 .560 1. 794 2.129 

.473 .541 .621 1.598 1.834 

.532 .597 .669 1.402 1. 689 

.567 .623 .694 1. 436 1.607 

.599 .656 .718 1. 387 1.536 

.646 .694 .752 1. 333 1. 435 

.674 .721 .776 1.288 1. 389 

.724 .756 .805 1. 219 1.299 

.761 .790 .829 1.191 1. 267 
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.99 

6.07 

4.33 

3.97 

3.78 

3.66 

3.55 

3.50 

3.50 

.975 .99 

3. 777 5.035 

2.455 2.945 

2.062 2.410 

1. 867 2.117 

1. 760 1. 958 

1. 673 1. 826 

1. 543 1. 685 

1. 484 1. 604 

1. 370 1. 460 

1. 328 1.383 



IX SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS 

Various estimators of the location and scale parameters in the 

Cauchy distribution have been investigated, and the superiority of the 

maximum likelihood estimators has been established. It has been shown 
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that, with the aid of a digital computer program, it is not difficult to 

obtain the maximum likelihood estimators. A digital computer program has 

been provided for use in finding these estimators. Tables based on 

maximum likelihood estimators have been prepared by Monte Carlo simula­

tion to aid in performing basic statistical analysis for the Cauchy 

distribution. 

The applied statistician may now consider using the Cauchy distri­

bution as a probability model. The Cauchy distribution should be an 

appealing model for experimental situations where outlying observations 

are frequently encountered. Test procedures and tables are provided 

for discriminating between the normal distribution and the Cauchy dis­

tribution for given samples. An example is provided based on real 

data where the test indicates that the Cauchy distribution should be 

used in preference to the normal distribution. The difference in the 

estimates of the location parameter is observed. 

The work in this paper has dealt specifically with the Cauchy 

distribution; however, most of the theorems presented apply to any 

probability distribution involving location and scale parameters. 

Hence, the methods apply to distributions such as the log-normal and 

censored normal, and also to distributions such as the Weibull where 

a transformation on the random variable will produce a distribution 

involving a location and scale parameter. 

The distributions required in the two-sample problem with both 

parameters unknown have not been extensively determined. A computer 



program is provided to generate tt1ese distributions should the occasion 

arise. The same holds for type II censored samples. 

The question of robustness has not been investigated thoroughly 

enough to be presented here. Part of the problem in comparing the 

Cauchy distribution versus the normal distribution lies in the fact 
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that if the distribution is Cauchy, then the normal estimators are 

meaningless. Perhaps a study applying both the Cauchy methods and 

normal methods to some intermediate distribution such as the t distribu­

tion would prove meaningful. It would also be of interest to see how 

the Cauchy estimators compared to the normal estimators in those cases 

where the sample was normal but the likelihood ratio test selected the 

Cauchy distribution. 
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Table Al 

Cumulative Values of the Standard Cauchy Distribution 

F(x) = fx dy 
2 

= P(X < 
-oo n(l+y ) -

x]* 

X .00 .20 .40 .60 .80 

0 .50000 .56283 .62112 . 6 7202 . 714 78 
1 .75000 . 77886 .80257 .82219 .83858 
2 .85242 .86420 .87433 .88312 .89081 
3 .89758 .90359 .90895 .91375 .91809 
4 .92202 .92560 .92886 .93186 .93462 
5 .93717 .93952 .94171 .94375 .94565 
6 .94743 .94910 .95066 .95212 .95352 
7 .95483 .95607 .95724 .95836 .95941 
8 .96042 .96137 .96228 .96315 .96398 
9 .96478 .96554 .96626 .96696 .96763 

10 .96827 . 96889 .96949 .97006 .97061 
11 .97114 . 97165 . 97215 .97263 .97309 
12 .97353 .97397 . 97438 .97479 .97518 
13 .97556 .97593 .97629 .97664 .97697 
14 .97730 .97762 . 9 7793 .97823 .97852 
15 .97881 .97909 . 97936 .97962 .97988 
16 .98013 .98038 .98061 .98085 .98108 
17 .98130 .98151 .98173 .98193 .98214 
18 .98233 .98253 .98272 .98290 .98308 
19 .98326 .98344 .98361 .98377 .98394 
20 .98410 .98425 .98441 .98456 .98471 
21 .98485 .98500 .98514 .98527 .98541 
22 .98554 .98567 .98580 .98592 .98605 

23 .98616 .98629 .98640 .98652 .98663 
24 .98674 .98685 .98696 .98707 .98717 

25 .98727 .98737 .98747 .98757 .98767 

26 .98776 .98786 .98795 .98804 .98813 

27 .98822 . 98830 .98839 .98847 .98855 

28 .98864 .98872 .98880 .98887 .98895 

29 .98903 .98910 .98918 .98925 .98932 

30 .98939 .98946 .98953 .98960 .98967 

31 .98973 .98980 .98987 .98993 .98999 

32 .99006 .99012 .99018 .99024 .99030 

33 .99036 .99041 .99047 .99053 .99058 

34 .99064 .99069 .99075 .99080 .99085 

35 .99091 .99096 .99101 .99106 .99111 

36 .99116 .99121 .99126 . 99130 .99135 

37 .99140 . 99144 .99149 .99154 .99158 

38 .99162 .99167 . 99171 .99175 .99180 

39 .99184 .99188 .99192 .99196 .99200 

40 .99204 .99208 .99212 .99216 .99220 

41 .99224 .99227 .99231 .99235 .99239 

42 .99242 .99246 .99249 .99253 .99256 

43 .99260 .99263 .99267 .99270 .99273 

44 .99277 .99280 . 99283 . 99286 .99290 

45 .99293 .99296 .99299 .99302 . 99305 

* t distribution with 1 degree of freedom. 
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Table A2 

Cumulative Percentage Points of (~ - m) 
b/fii 

Table of c 1 such that P[(~- m) < c ] = 1- a. 
-a,n b/ln - 1-a,n 

. 75 .80 .85 .90 .95 .975 .99 

5 1. 370 1.780 2.341 3.150 4. 771 6.780 11.000 
6 1. 275 1. 639 2.112 2.782 4.030 5.474 8.075 
7 1. 215 1. 552 1. 979 2.572 3.634 4.810 6.759 
8 1.174 1. 494 1. 891 2.437 3.388 4.408 6.011 
9 1.144 1. 451 1. 829 2.343 3.220 4.138 5.529 

10 1.121 1. 419 1.783 2.273 3.098 3.944 5.191 
12 1. 089 1. 374 1. 719 2.177 2.933 3.685 4.751 
15 1.059 1.332 1.661 2.090 2.786 3.458 4.374 
17 1. 045 1.314 1.635 2.051 2.722 3.360 4.215 
20 1.030 1.293 1.607 2.010 2.654 3.256 4.048 
22 1. 023 1. 283 1. 593 1.990 2.620 3.205 3.967 
25 1.014 1. 271 1.577 1. 966 2.581 3.146 3.873 
27 1. 009 1. 265 1. 569 1. 953 2.561 3.115 3.824 
30 1.003 1. 257 1. 558 1.938 2.535 3.077 3.764 
32 .999 1. 252 1. 552 1.929 2.521 3.056 3. 730 
35 .996 1. 247 1. 545 1.918 2.503 3.029 3.689 
37 .993 1. 243 1. 540 1. 912 2.493 3.014 3.665 
40 .990 1. 239 1. 535 1.904 2.480 2.994 3.634 
45 .986 1. 233 1. 527 1.893 2.462 2.967 3. 593 
50 .983 1. 229 1. 521 1.884 2.448 2.946 3.560 
55 .980 1. 225 1. 516 1.877 2.437 2.929 3.534 
60 .978 1. 222 1. 512 1.871 2.428 2.916 3.513 
65 .976 1.220 1. 509 1. 866 2.420 2.904 3.495 
70 .974 1. 218 1. 506 1. 862 2.413 2.894 3.479 
75 . 973 1. 216 1. 504 1.859 2.407 2.885 3.466 
80 .972 1.214 1. 501 1.856 2.402 2.898 3.455 
85 . 971 1. 213 1.500 1.853 2.398 2.871 3.445 
90 .970 1.211 1. 498 1. 850 2.394 2.865 3.436 
95 .969 1. 210 1. 496 1. 848 2.391 2.860 3.428 

100 .968 1. 209 1. 495 1.846 2.388 2.856 3.421 
<X> .954 1.190 1.470 1. 810 2.330 2. 770 3.290 



~ .01 

5 .080 
6 .131 
7 .172 
8 .206 
9 .236 

10 .262 
12 .306 
15 .359 
17 .387 
20 .424 
22 .444 
25 .472 
27 .488 
30 .510 
32 .523 
35 .541 
37 .552 
40 .567 
45 .589 
50 .608 
55 .624 
60 . 639 
65 .652 
70 .663 
75 .674 
80 .683 
85 .691 
90 .698 
95 .705 

100 .711 
Asym. .671 

100 

Table A3 
A 

Cumulative Percentage Points of b (m unknown) 
b 

A 

Values of c
1 

such that P[~ < c 1 ] = 1 - ~ -a,n b - -a,n ~. 

.025 .05 .10 .90 .95 .975 

.132 .189 .255 1.928 2.563 3.279 

.184 .242 .324 1.849 2.383 2.971 

.227 .284 .375 1.786 2.249 2.747 

.262 .320 .415 1. 734 2.144 2.576 

. 293 .351 .447 1.691 2.058 2.441 

.320 .378 .474 1.654 1. 988 2.332 

.365 .423 .516 1. 594 1.877 2.166 

.418 .475 .563 1. 526 1.760 1. 994 

.447 .504 .587 1.491 1. 701 1.912 

.483 .540 .617 1. 449 1. 632 1. 816 

.504 .560 .633 1. 426 1. 595 1. 766 

.531 .586 .654 1. 396 1. 548 1. 705 

.547 .602 .666 1. 379 1. 522 1.670 

.568 .622 .682 1. 357 1.489 1. 627 

.581 .634 .691 1. 344 1.470 1. 602 

.598 .650 .704 1. 327 1. 445 1. 569 

.608 .660 .712 1. 317 1. 430 1.550 

.622 .673 .722 1. 303 1.410 1. 525 

.643 .692 .737 1.284 1.382 1.489 

.660 .708 .750 1. 267 1. 360 1.459 

.674 .721 .762 1. 254 1. 341 1.434 

.687 .732 .772 1.242 1.325 1. 412 

.698 .741 . 781 1. 232 1. 311 1. 393 

.707 .749 .789 1. 223 1. 299 1.377 

.715 .755 .797 1. 215 1. 289 1. 362 

.722 .761 .803 1.209 1.280 1. 348 

.728 .765 .809 1. 203 1.272 1. 336 

.733 .768 .815 1.197 1. 265 1.325 

.738 .771 .821 1.193 1. 259 1.314 

.741 .773 .825 1.189 1.254 1. 305 

.723 .768 .818 1.182 1. 232 1.277 
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.99 

4.524 
3.953 
3.551 
3.253 
3.023 
2.842 
2. 572 
2.307 
2.184 
2.048 
1.978 
1. 894 
1.848 
1. 792 
1. 759 
1. 718 
1.693 
1.661 
1.616 
1.579 
1. 547 
1. 519 
1.494 
1. 471 
1.450 
1. 431 
1.412 
1. 395 
1. 379 
1. 362 

1. 329 
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Table A4 

Cumulative Percentage Points of 
(m - m) 

b/v'n 

Table of c such that p [ (m - m) 
< c1-a ] 1 - a. 

1-a,n b/ln - ,n 

• 8 .85 .90 .95 .975 . 99 

5 1. 241 1.600 2.090 3.036 4.182 6.069 
6 1. 233 1. 573 2.039 2.884 3. 871 5.386 
7 1. 228 1. 555 2.004 2.786 3.672 4.973 
8 1. 223 1.543 1. 979 2.717 3.534 4.696 
9 1. 220 1. 533 1. 959 2.666 3.433 4. 497 

10 1. 217 1. 526 1. 943 2.627 3.355 4.347 
12 1. 213 1.516 1. 920 2.572 3.244 4.137 
15 1.209 1.506 1. 898 2.518 3.139 3.943 
17 1.206 1.501 1. 887 2.494 3.091 3.856 
20 1.204 1.496 1. 875 2.468 3.039 3.762 
22 1.203 1. 494 1. 869 2.454 3.013 3.715 
25 1.201 1. 491 1. 862 2.439 2.982 3.660 
27 1.201 1. 489 1.858 2.430 2.966 3.630 
30 1.200 1.487 1. 853 2.420 2.945 3.594 

32 1.199 1.486 1.850 2.414 2.934 3.574 

35 1.198 1.485 1. 847 2.406 2.919 3.548 

37 1.198 1.484 1. 845 2.402 2.911 3.533 

40 1.197 1. 483 1. 842 2.397 2.900 3.514 

45 1.196 1.481 1. 839 2.389 2.885 3.488 

so 1.196 1.480 1. 836 2.383 2. 873 3.467 

55 1.195 1. 479 1. 833 2.378 2.863 3.451 

60 1.195 1. 478 1. 831 2.374 2.855 3.437 

65 1.194 1. 478 1. 830 2.370 2.849 3.425 

70 1.194 1.477 1. 828 2. 367 2.843 3.415 

75 1.194 1.477 1. 827 2.365 2.838 3.407 

80 1.194 1.476 1.826 2. 363 2.834 3.399 

85 1.193 1. 476 1. 825 2.361 2.830 3.393 

90 1.193 1. 476 1. 824 2.359 2.826 3.387 

95 1.193 1. 475 1. 823 2.357 2.823 3.382 

100 1.193 1. 475 1. 823 2.356 2.820 3. 377 

00 1.190 1.470 1.810 2.330 2. 770 3.290 



~ .01 

5 .196 
6 .236 
7 .268 
8 .295 
9 .319 

10 . 339 
12 .374 
15 .416 
17 .439 
20 .468 
22 .484 
25 .507 
27 .520 
30 .538 
32 .548 
35 .563 
37 .572 
40 .585 
45 .603 
50 .619 
55 .634 
60 .647 
65 .658 
70 .668 
75 .679 
80 .686 
85 .694 
90 .702 
95 .708 

100 .714 
Asym. 

100 
. 671 

Table AS 
~ 

b 
Cumulative Percentage Points of b (rn known) 

Values of c such that P[bb < c ] = 1 - a 
1-a,n - 1-a,n 

.025 .05 .10 .90 .95 .975 

.266 .337 .441 2.273 2.930 3. 773 

.305 .375 .474 2.119 2.670 3.333 

.336 .405 .501 2.005 2.480 3.023 

.363 .431 .524 1.917 2.335 2.793 

.386 .453 .543 1.846 2.221 2.616 

.406 . 472 .560 1. 788 2.129 2.475 

.440 .505 .589 1.698 1.987 2.267 

.480 .544 .623 1. 604 1. 842 2.062 

.502 .565 .641 1. 557 1. 771 1.967 

.530 .591 .664 1. 502 1.690 1.861 

.546 .606 . 677 1.4 73 1. 648 1.806 

.567 .626 .695 1. 436 1.595 1. 741 

.580 .637 .705 1.416 1. 566 1. 706 

.597 .653 .718 1.390 1. 529 1. 661 

.607 .662 .726 1. 374 1.508 1. 636 

.621 .675 .737 1. 355 1.481 1. 603 

.630 .683 .743 1. 343 1. 465 1.584 

.642 .693 .752 1. 327 1. 443 1. 558 

.659 .708 .765 1.304 1.413 1.522 

.674 .721 .776 1. 286 1. 388 1. 492 

.688 .732 .785 1. 270 1. 367 1. 466 

.699 .742 .793 1. 256 1. 349 1. 444 

.708 .750 .799 1.244 1. 333 1. 423 

.719 .757 .805 1. 234 1. 319 1. 405 

.728 .764 .810 1. 224 1.307 1. 387 

.735 .769 .814 1. 216 1. 296 1.371 

.742 .774 .818 1. 208 1.286 1.356 

.749 .778 .821 1. 201 1.277 1. 342 

.754 .782 .824 1.195 1. 269 1.328 

.759 .785 .826 1.189 1. 262 1. 315 

.723 .768 .818 1.182 1. 232 1.277 
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.99 

5.026 
4.324 
3.835 
3.478 
3.206 
2.992 
2.681 
2.383 
2.247 
2.099 
2. 025 
1. 937 
1.890 
1.831 
1. 799 
1.756 
1. 732 
1.699 
1. 654 
1. 615 
1.582 
1.552 
1. 525 
1. 499 
1. 476 
1.453 
1. 431 
1. 410 
1.389 
1. 368 

1.329 



Table A6 

One-sided Tolerance Limits (both parameters unknown) 

Factors z(S,y,n) such that m- z(B,y,n)b is a lower one-sided 8,y tolerance limit or m + z(8,y,n)b is an 

upper one-sided B,y tolerance limit. 

8 = .8 8 = .9 8 = .95 8 = .99 

n y y y y 
.9 .95 .99 . 9 .95 .99 .9 .95 .99 . 9 .95 .99 

5 5.595 8.169 17.553 12.073 17.314 36.870 24.706 35.42 74.34 124.60 176.10 ---

10 3.191 3.964 5.810 6.744 8.244 12.283 13.686 16.72 24.79 68.50 83.50 123.0 

15 2.632 3.106 4.078 5.583 6.492 8. 571 11.320 13.13 17.35 56.73 65.75 87.9 

20 2. 377 2.737 3.466 5.066 5.756 7.261 10.276 11.64 14.73 51.57 58.38 74.6 

25 2.226 2.525 3.142 4.763 5.335 6.577 9.667 10.80 13.36 48.57 54.19 66.5 

30 2.125 2.383 2.931 4.560 5.055 6.137 9.260 10.24 12.47 46.55 51.42 61.9 

40 1. 995 2.202 2.654 4.298 4.694 5.574 8.737 9.53 11.33 43.95 47.88 55.9 

50 1. 914 2.088 2.472 4.134 4.465 5.210 8.410 9.09 10.59 42.32 45.64 52.1 

75 1.800 1. 926 2.192 3.900 4.135 4.661 7.945 8.45 9.46 39.98 42.44 47.9 

100 1. 739 1.838 2.028 3. 775 3.954 4.343 7.694 8.10 8.81 38.71 40.68 44.9 

Asym. 1. 741 1.870 2.160 3.789 4.048 4.640 7.728 8.25 9.44 38.87 41.47 47.4 
100 

CX) 
0\ 



n 

5 

10 

15 

20 

25 

30 

40 

50 

75 

100 

Table A7 

Two-sided Tolerance Limits (both parameters unknown) 

Factors w(S,y,n) such that (m - w(S,y,n)b, ~ + w(S,y,n)b) forms a two-sided S,y tolerance interval 

B = .8 B = .9 B = .95 B = .99 

y y y y 
. 9 .95 .99 . 9 .95 .99 .9 .95 .99 .9 .95 

12.296 17.686 38.320 24.756 35.51 76.86 49.41 71.21 153.90 245.7 357.3 

6. 730 8.172 12.365 13.654 16.57 25.17 27.34 33.35 50.50 136.2 166.5 

5.535 6.418 8.563 11. 299 13.07 17.51 22.67 26.32 35.18 113.2 131.5 

5.023 5.698 7.243 10.263 11.63 14.83 20.62 23.42 29.80 103.1 117.1 

4. 725 5.289 6.556 9.659 10.81 13.42 19.41 21.76 26.98 97.2 108.8 

4.525 5.016 6.112 9.254 10.26 12.52 18.60 20.65 25.16 93.2 103.3 

4.267 4.663 5.538 8.732 9.54 11.35 17.56 19.21 22.81 88.0 96.1 

4.104 4.438 5.163 8.405 9.08 10.58 16.90 18.29 21.27 84.7 91.5 

3.872 4.110 4.588 7.938 8.42 9.42 15.96 16.95 18.93 79.9 84.8 

3.746 3.928 4.251 7.685 8.05 8.74 15.46 16.21 17.57 77.3 81.1 

.99 

---

---

178.0 

150.0 

134.8 

125.8 

111.0 

104.4 

95.4 

89.4 

co 
-....J 



Table A8 

One-Sided Tolerance Limits (b known) 

Factors z(S,y,n) such that m- z(B,y,n)b is a lower one-sided S,y tolerance limit 

or m + z(8,y,n)b is an upper one-sided 8,y tolerance limit 

8 = .8 8 = .9 s = .95 8 = .99 

n y y y y 
. 9 .95 .99 . 9 .95 .99 . 9 .95 .99 • 9 .95 

5 2. 311 2.734 4.091 4.012 4.435 5. 792 7.248 7. 672 9.028 32.756 33.179 

10 1. 991 2.207 2.751 3.692 3.908 4.452 6.928 7.145 7.688 32.435 32.652 

15 1.866 2.027 2.394 3.568 3.728 4.096 6.804 6.969 7.332 32.311 32.471 

20 1.796 1. 928 2.218 3.497 3.630 3.919 6.733 6.866 7.155 32.240 32.373 

25 1. 749 1.864 2.108 3.450 3.566 3.810 6.686 6.802 7.046 32.193 32.309 

30 1. 715 1.818 2.033 3.416 3.520 3.734 6.652 6.756 6.970 32.159 32.263 

40 1.668 1. 755 1. 932 3.367 3.457 3.633 6.605 6.693 6.869 32.112 32.200 

50 1. 636 1. 713 1.867 3.337 3.415 3.568 6.573 6.651 6.804 32.081 32.158 

75 1. 587 1. 649 1. 770 3.289 3.351 3.471 6.525 6.587 6.707 32.032 32.094 

100 1. 559 1. 612 1. 714 3.260 3.313 3.415 6.496 6.549 6.652 32.003 32.057 

Asym. 
100 

1.558 1. 609 1. 705 3.259 3.310 3.407 6.495 6.546 6.643 32.002 32.053 
- ~.-.~--·---~-- --·~·· -

.99 

34.535 

33.196 

32.839 

32.662 

32.553 

32.477 

32.377 

32.311 

32.214 

32.159 

32.149 
(X) 
(X) 



Table A9 

Two-sided Tolerance Limits (b known) 

Factors w(S,y,n) such that (m- w(S,y,n)b, m + w(S,y,n)b) forms a two-sided S,y tolerance interval. 

s = .8 s = .9 s = .95 s = .99 

n y y y y 
. 9 .95 .98 . 9 . 95 .98 • 9 • 95 .98 . 9 .95 .98 

5 3.553 3.905 4.580 6.587 6.815 7.301 12.849 12.975 13.259 63.678 63.704 63.765 

10 3.270 3.381 3.564 6.419 6.483 6.594 12.760 12.794 12.853 63.660 63.669 63.679 

15 3.198 3.261 3.359 6.378 6.414 6.470 12.740 12.758 12.787 63.656 63.659 63.665 

20 3.165 3.208 3.274 6.360 6.384 6.421 12.730 12.743 12.762 63.654 63.656 63.660 

25 3.146 3.179 3.228 6.350 6.368 6.396 12.725 12.734 12.748 63.653 63.655 63.658 

30 3.134 3.161 3.200 6.344 6.358 6.380 12.722 12.729 12.740 63.652 63.654 63.656 

40 3.119 3.138 3.166 6.336 6.346 6.361 12.718 12.823 12.731 63.651 63.652 63.654 

50 3.111 3.126 3.147 6.331 6.339 6.351 12.715 12.719 12.725 63.651 63.652 63.65_, 

75 3.099 3.109 3.123 6.325 6.330 6.338 12.712 12.715 12.719 63.650 63.651 63.652 

100 3.094 3.101 3.111 6.322 6.326 6.331 12.711 12.713 12.715 63.650 63.650 63.651 

Asym. 3.094 3.100 3.109 6.322 6.327 6.330 12.711 12.712 12.715 63.658 63.659 63.65S 
100 

----- co 
\0 



n 

.90 

5 3.128 

10 2.458 

15 2.216 

20 2.057 

25 1.983 

30 1. 917 

40 1.830 

50 1. 774 

75 1. 710 

100 1. 660 

Asym. 1.681 100 

Table A10 

One-sided Tolerance Limits (m known) 

Factors z(8,y,n) such that m - z(8,y,n)b is a lower one-sided 8,y tolerance limit 

or m + z(8,y,n)b is an upper one-sided 8,y tolerance limit 

8 = .8 8 = .9 8 = .95 B = • 99 

y y y y 
.95 .99 .90 .95 .99 .90 .95 .99 .90 .95 

4.084 6.780 6.995 9.133 15.161 14.349 18.735 31.102 72.32 94.42 

2.922 4.133 5.496 6.534 9.242 11.275 13.405 18.960 56.82 67.56 

2.544 3. 373 4.956 5.689 7.543 10.167 11.6 70 15.475 51.24 58.82 

2.305 2.973 4.600 5.155 6.647 9.438 10.576 13.637 47.56 53.30 

2.209 2.709 4.435 4.940 6.058 9.098 10.135 12.429 45.85 51.08 

2.098 2.539 4.286 4.692 5.678 8.794 9.625 11.649 44.32 48.51 

1. 983 2.333 4.093 4.435 5.216 8.396 9.098 10.701 42.31 45.85 

1. 909 2.202 3.966 4.269 4.924 8.136 8.757 10.102 41.01 44.13 

1. 821 2.042 3.823 4.071 4.566 7.843 8.352 9.368 39.53 42.09 

1. 742 1.930 3. 713 3.896 4.317 7.616 7.992 8.855 38.38 40.28 

1. 794 2.052 3.760 4.011 4.587 7. 713 8.229 9.411 38.87 41.47 
~ ~ ~ -

.99 

156.75 

95.56 

77.89 

68.73 

62.64 

58.71 

53.93 

50.91 

47.21 

44.63 

47.43 
--

I 

1.0 
0 



i 
I 

Table All 

Two-sided Tolerance Limits (m known) 

Factors w(B,y,n) such that (m- w(S,y,n)b, m + w(B,y,n)b) forms a two-sided B,y tolerance interval, 

B = .8 B = .9 B = .95 B = .99 
n y y y y 

.90 .95 .99 .90 .95 .99 .90 .95 .99 .90 .95 .99 

5 6.995 9.133 15.161 14.349 18.735 31.102 28.88 37.70 62.59 144.7 188.9 313.6 

10 5.496 6.534 9.242 11.275 13.405 18.960 22.69 26.98 38.16 113.7 135.2 191.2 

15 4.956 5.689 7.543 10.167 11.671 15.475 20.46 23.49 31.14 102.5 117.7 156.0 

20 4.600 5.155 6.647 9.438 10.576 13.637 18.99 21.28 27.44 95.2 106.6 137.5 

25 4.435 4.940 6.058 9.098 10.134 12.429 18.31 20.40 25.01 91.7 102.2 125.3 
I 

30 4.286 4.692 5.678 8.794 9.625 11.649 17.70 19.37 23.44 88.7 97.0 111.4 I 

40 4.093 4.435 5.216 8.396 9.098 10.701 16.90 18.31 21.54 84.7 91.7 107.9 

so 3.966 4.269 4.924 8.136 8.757 10.102 16.37 17.62 20.33 82.0 88.3 101.9 

75 3.823 4.071 4.566 7.843 8.352 9.368 15.78 16.81 18.85 79.1 84.2 94.4 

100 3. 713 3.896 4.317 7.616 7. 992 8.855 15.33 16.08 17.82 76.8 80.6 89.3 

Asym. 3.760 4.011 4.587 7. 713 8.228 
100 

9.411 15.52 16.56 18.94 77.8 82.9 94.9 
-~ --~------- -------~~ ~ ~-

1.0 
1-' 



Table Al2 

Of ml - ml Cumulative Percentage Points 
bl 

Values of c such that l-a,n1 ,n2 

] = 1 - a 

~ 
5 

10 

15 

20 

25 

30 

40 

~ 
5 

10 

15 

20 

25 

30 

40 

The distribution is symmetric about zero. 

b of= 1/4 

. 8 .9 .56 .975 

.609 1.003 1.446 1. 967 

.410 .649 .873 1.133 

.323 .505 .673 .845 

.281 .434 .566 .689 

.249 .386 .501 .607 

.227 .346 .447 .548 

.196 .295 .389 .470 

.8 .9 .95 .975 

.632 1. 037 1. 493 2.020 

.422 .672 .895 1.165 

.335 .521 .689 .863 

.289 .445 .578 .704 

.255 .396 .511 . 618 

.231 .353 .460 .557 

.201 .304 .398 .480 

.99 

2.850 

1.503 

1.055 

.854 

.734 

.670 

.564 

.99 

2.920 

1.542 

1.070 

.867 

.747 

.685 

. 577 

92 
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~ . 8 . 9 .95 .975 .99 

5 .688 1.131 1.630 2.200 3.120 

10 .450 .717 .968 1.229 1.643 

15 .356 .556 .732 .918 1.146 

20 .309 .474 .620 .747 .914 

25 .274 .423 .539 .656 .791 

30 .249 .376 .490 .589 .720 

40 .215 .325 .424 .510 .605 

~ . 8 . 9 .95 .975 .99 

5 .748 1. 230 1. 762 2.400 3.330 

10 .489 .776 1.039 1. 324 1. 757 

15 .385 .598 .792 .988 1.214 

20 .334 .512 .670 .807 .975 

25 .296 .455 .579 .702 .851 

30 .268 .405 .524 .635 .768 

40 .233 .354 .458 .546 .648 

~ . 8 . 9 .95 .975 .99 

5 .889 1.460 2.074 2.865 3.990 

10 . 577 .924 1. 218 1.550 2.110 

15 .456 .704 .936 1.142 1.443 

20 . 392 .603 .788 .956 1.145 

25 .353 . 531 .684 .830 .993 

30 .318 .482 .621 .742 .902 

40 .274 .420 .537 .635 .770 



TABLE Al3 

Cumulative Percentage Points of 62 · ~1 (m1,m2 Known) 
b2 bl 

1 f [ h2 bl < -Va ues o cl-a,n such that P -.-:;:-- cl-a,nl - 1-a 
b2 bl 

n
1 

observations for estimating b1 , n2 observations for estimating b
2 

1-a nl-+- n2-+ 5 10 15 20 25 30 40 

.99 9.270 6.579 6.137 

.975 5 6.230 4.785 4.564 

.95 4.555 3.759 3.459 

.90 3.231 2.762 2.578 

.99 6.801 4.610 4.054 3.559 

.975 10 4.870 3.580 3.141 2.985 

.95 3. 773 2.880 2.622 2.500 

.90 2.760 2.263 2.098 2.026 

.99 5.905 4.007 3.360 3.093 2.967 

.975 15 4.383 3.161 2.793 2.618 2.487 

.95 3.423 2.640 2.375 2.252 2.159 

.90 2.543 2.117 1. 963 1.881 1.825 

. 99 3.785 3.057 2.810 2. 770 2.570 

.975 20 3.033 2. 593 2.399 2.333 2.253 

.95 2.527 2.236 2.099 2.027 1.972 

.90 2.015 1.866 1. 760 1.736 1. 704 

.99 2.985 2.695 2.595 2.423 2.309 

.975 25 2.453 2.316 2.198 2.130 2.041 

.95 2.123 2.018 1. 937 1. 875 1. 829 

.90 1. 795 1. 720 1.681 1. 619 1. 597 

.99 2.617 2.465 2.364 2.179 

.975 30 
2.262 2.133 2.097 1. 931 

.95 1. 969 1. 896 1. 823 1. 751 

.90 1. 704 1. 646 1. 597 1. 546 

.99 2.260 2.209 2.047 

.975 40 
2.015 1.977 1. 834 

.95 1.811 1. 766 1. 666 

.90 1. 591 1. 549 1. 507 

94 
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Table Al4 

Cumulative Percentage Points of (ml - ml) - (m2 - m ) 2 • 
~ ~ 

bl + b2 

<ffil - ml) - Cffi2 - m2) 
Table of c such that P[ A ~ s cl-a,n] 1 - a 

1-a,n 
bl + b2 

The sample sizes are equal, i.e., n1 

The density is symmetric. 

~. . 8 .85 .90 .95 .975 .99 

5 0.544 0.691 0.891 1. 245 1. 613 2.100 

10 0.311 0.391 0.493 0.650 0.792 0.978 

15 0.244 0.303 0.376 0.498 0.595 0.730 

20 0.202 0.250 0.315 0.404 0.497 0.611 

30 0.164 0.201 0.246 0.321 0.383 0.467 

45 I 0.132 0.161 0.201 0.261 0.310 0.374 



~ 
5 

10 

15 

20 

30 

45 

Table AlS 

S2 . bl 
Cumulative Percentage Points of-- (m

1
, m2 unknown). 

b2 £1 

b2 
Table of c 1_Cl such that P[--

,n b 
2 

The sample sizes are equal, i.e., n1 n2 n. 

.01 .025 .OS .1 .90 .95 .975 

.062 .101 .152 .237 4.283 6.690 ---

.189 .251 .316 .410 2.448 3.195 4.010 

.271 .349 .408 .489 2.034 2.511 3.017 

.336 .400 .456 .543 1.810 2.133 2.503 

.418 .473 .539 .617 1.606 1.843 2.089 

.489 .549 .603 .679 1. 499 1.656 1.847 

96 

.99 

---

5.170 

3.720 

2.960 

2.450 

2.205 
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APPENDIX B 

COMPUTER PROGRAMS 



COMPUTER PROGRAM Bl 

ESTIMATION OF CAUCHY PARAMETERS 

The maximum likelihood estimates of the Cauchy parameters are obtained 

for a given sample. 

INPUT DATA 

NS 

NOBS 

X 

EP 

Number of Samples 

Number of Observations 

Observations 

Accuracy of Estimate(s) 

ITEST = 1 

= 2 

= 3 

If b is known 

If m is known 

If both parameters are unknown 

B Scale Parameter if Known 

FM Location Parameter if Known 

EXAMPLE 

Suppose there are three different samples. In the first sample 

98 

the location parameter is known to be zero. There are five observations: 

-2.3, 1.8, 2.0, -1.1, .7. In the second sample the scale parameter is 

known to be two. The six observations are as follows: 12.1, 13.6, 5.4, 

10.0, 8.9, 6.7. In the third sample, neither parameter is known. The 

eight observations are as follows: 1.1, 1.3, 2.1, -3.0, -7.1, 4.0, 0.1, 

8.2. Three place accuracy is required for all estimates. The data for 

this example follows. 

The card deck for this computer program may be obtained from the 

Department of Mathematics, University of Missouri at Rolla. 
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COMPUTER PROGRAM B2 

SIMULATED DISTRIBUTIONS FOR TWO-SAMPLE PROBLEMS 

C&1 - m1> - C&2 - m2) 62 
The distributions of and 

bl + 62 b2 

bl 
are obtained 

bl 

by a Monte Carlo Simulation. There are n 1 observations of the random 

variable having parameters m1 and b1, and n2 observations of the random 

variable having parameters m2 and b2· 

INPUT DATA 

Nl - NUMBER OF OBSERVATIONS IN FIRST SAMPLE (n1 ) 

N2 - NUMBER OF OBSERVATIONS IN SECOND SAMPLE (n2 ) 

NI - NUMBER OF ESTIMATES IN MONTE CARLO SIMULATION 

EP - ACCURACY OF ESTIMATES 

EXAMPLE 

Suppose there are five observations in the first sample, 12 obser-

vations in the second sample, 15,000 estimates are to be obtained in the 

simulation, and three place accuracy is desired. The data would appear 

as follows: 

CARD 1 

Column 6 
i 
5 

CARD 2 

Column 10 
i 

.0005 

The card deck 

Column 12 
i 

12 

Column 18 
~ 

15000 

for this computer program may be obtained from the 

Department of Mathematics, University of Missouri at Rolla. 
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COMPUTER PROGRAM B3 

SIMULATED DISTRIBUTIONS FOR TYPE II CENSORED SAMPLES 

The simulated distributions of rn ~ m, ~, rn ~ m, and E(m),E(b) are 

obtained for Cauchy samples where the r 1 smallest and r 2 largest obser-

vations are not available. 

INPUT DATA 

N Number of Observations (Observed and Unobserved) 

NRl The Number of Missing Observations on the Left 

NR2 The Number of Missing Observations on the Right 

NI Number of Estimates to be Obtained in Simulation 

EP Accuracy of Estimates 

EXAMPLE 

Suppose the above distributions are desired for samples of size 20 

where the two smallest and five largest observations are missing. 10,000 

estimates are to be obtained with three place accuracy. The data would 

be as follows: 

CARD 1 

Column 6 
+ 

20 

CARD 2 

Column 10 
+ 

.0005 

The card deck 

Column 12 
+ 
2 

Column 18 
+ 
5 

Column 24 
+ 

10000 

for this computer program may be obtained from the 

Department of Mathematics, University of Missouri at Rolla. 
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