Library and
Learning Resources

Binary molecular diffusivities in liquids: prediction and comparison with experimental data

Ronald Dean Mitchell

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations
Part of the Chemical Engineering Commons
Department: Chemical and Biochemical Engineering

Recommended Citation

Mitchell, Ronald Dean, "Binary molecular diffusivities in liquids: prediction and comparison with experimental data" (1970). Doctoral Dissertations. 2052.
https://scholarsmine.mst.edu/doctoral_dissertations/2052

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

BINARY MOLECULAR DIFFUSIVITIES IN LIQUIDS:

 PREDICTION AND COMPARISON WITH EXPERIMENTAL DATA
A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING

T2375
1970

Advisor

PLEASE NOTE:

Some pages have small and indistinct type.
Filmed as received.
University Microfilms

Abstract

The Eyring rate theory equation has been modified successfully to enable predictions of binary molecular diffusivities for a wide variety of liquid-liquid systems. The activation free energy for binary diffusion has been evaluated in terms of the activation free energies for self diffusion of the solvent and solute. This was accomplished through the use of regular solution theory by relating the bond breaking energy of the jump step to the bond breaking energy in evaporation. Diffusivities estimated by this equation and the equations developed by Olander, by Gainer and Metzner, and by Wilke and Chang were compared with experimental data. All of the equations tested predicted adequately the diffusivities for most low viscosity as well as for some moderately high viscosity systems. The high viscosity system diffusivities are more accurately predicted by three modified absolute rate theory equations. An important result of this study was the observation that the jump step portion of the total activation energies generally constituted from 0 to 35 percent of the total energy for all of the modified absolute rate theory equations.

ACKNOWLEDGEMENTS

Ronald Dean Mitchell thanks Dr. Robert M. Wellek, who recognized the necessity of this project and originated it, for his assistance and encouragement throughout this investigation.

The author also thanks Dr. Doyle R. Edwards and Dr. Gary L. Bertrand for their helpful and encouraging discussions during the course of this work and Dr. Ellis R. Graham at the University of Missouri - Columbia for the use of his liquid scintillation spectrometer. He also thanks Mr. James W. Moore, Jr. and Mr. Gilbert Engel, Jr. for their painstaking work in the laboratory.

He is grateful for the financial assistance provided by the Department of Chemistry, University of Missouri - Rolla, and by the National Aeronautics and Space Administration.

TABLE OF CONTENTS
PAGE
ABSTRACT. i
ACKNOWLEDGEMENTS ii
LIST OF ILLUSTRATIONS. v
LIST OF TABLES vii
I. INTRODUCTION 1
II. LITERATURE REVIEW 3
III. THEORETICAL DEVELOPMENT 10
A. EVALUATION OF THE FREE ENERGY OF ACTIVATION FOR BINARY DIFFUSION 10
B. SUMMARY OF ASSUMPTIONS 15
IV. EXPERIMENTAL 20
A. EQUIPMENT AND PROCEDURE 20
B. ANALYSIS OF DATA 22
V. RESULTS AND DISCUSSION. 26
A. EVALUATION OF THE PARAMETER $\boldsymbol{\xi}$ 26
B. EVALUATION OF THE PARAMETER f. 30
C. PREDICTIONS FOR NONASSOCIATING SYSTEMS (LOW VISCOSITY). 40
D. PREDICTIONS FOR ASSOCIATING SYSTEMS (LOW VISCOSITY) 42
E. PREDICTIONS FOR HIGH VISCOSITY SYSTEMS 52
VI. CONCLUSIONS 65
VII. APPENDICES. 68
A. PHYSICAL PROPERTIES AND PARAMETERS USED FOR CALCULATIONS 69
A. SELECTION OF DATA. 69
B. DATA. 73
B. EXPERIMENTAL PROCEDURES AND RESULTS 87
A. DESCRIPTION OF APPARATUS. 88
B. EXPERIMENTAL PROCEDURE 95
C. MEASUREMENTS OF SOLVENT VISCOSITIES. 96
D. DESCRIPTION OF MATERIALS. 96
E. ANALYSIS OF DATA. 98
F. EXPERIMENTAL RESULTS. 111
G. PROGRAMS 134
VIII. NOMENCLATURE 157
IX. BIBLIOGRAPHY. 163
X. VITA. 167

LIST OF ILLUSTRATIONS

1. The binary activation free energy, $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}$, versus the term $\Delta \mathrm{E}_{\mathrm{A}}^{\text {vap }}-\Delta \mathrm{E}_{\mathrm{B}}^{\text {vap }}-\overline{\mathrm{H}}_{\mathrm{AB}}^{\text {mix }}$ for systems with water as the solvent. . . 18
2. The binary activation free energy, $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}$, versus the term $\Delta E_{A}^{\text {vap }}-\Delta E_{B}^{v a p}-\overline{\Delta H}_{A B}^{m i x}$ for systems with benzene as the solvent . 19
3. The average absolute percent deviation versus the fraction f for 28 low viscosity nonasso ciating systems 43
4. The average absolute percent deviation versus the fraction f for 19 low viscosity associating systems.48
5. The average absolute percent deviation versus the fraction f for 7
low vis cosity associating aqueous systems. 49
6. The average absolute percent deviation versus the fraction f for

12 low viscosity associating nonaqueous systems 50
7. The average absolute percent deviation versus the fraction f for

19 high viscosity systems. 54
8. The average absolute percent deviation versus the fraction for 13 moderately high viscosity systems. 57
9. The average absolute percent deviation versus the fraction for 6 extremely high viscosity systems 59
10. The average absolute percent deviation versus the fraction f for the 5 high viscosity systems measured in this work 63

B-1. Schematic diagram of porous plate and associated equipment. . . . 89

FIGURE

PAGE
B-2. Porous plate fitted with stirring blades used to measure diffusivities 90
B-3. Porous plate beside stirring blade used to measure diffusivities. 91
B-4. Porous plate, stirring blades and solvent bath used to measurediffusivities91
B-5. End view of constant temperature bath showing cams and variable
speed motor 92
B-6. Front view of constant temperature bath 92B-7. Boundaries of porous plate and concentration profiles at times
indicated 101B-8. Diffusivities of ethylene glycol in the solvents ethylene glycol,propylene glycol and diethylene glycol versus temperature 131
B-9. Diffusivities of cyclohexanol in the solvents ethylene glycol, propyleneglycol and diethylene glycol versus temperature 132

LIST OF TABLES

I. ξ and the viscous activation free energy for various pure compounds 28
II. Activation energy at constant pressure and volume, and the parameter for self diffusion. 38
III. Experimental and predicted diffusivities for low viscosity systems 41
IV. Experimental and predicted diffusivities for low viscosity associating systems 45
V. Experimental and predicted diffusivities for low viscosity associating aqueous systems 46
VI. Experimental and predicted diffusivities for low viscosity associating nonaqueous systems 47
VII. Experimental and predicted diffusivities for high vis cosity systems 53
VIII. Experimental and predicted diffusivities for moderately high viscosity systems 56
IX. Experimental and predicted diffusivities for extremely high viscosity systems 58
X. Experimental and predicted diffusivities for moderately high viscosity systems measured in this work 62
A-I. Molecular weight and the parameters used for diffusivity
predictions 75
A-II. Density data used for diffusivity predictions 77
A-III. Viscosity data used for diffusivity predictions 79
A-IV. Molar volume and $\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}$ used for diffusivity predictions 81
A-V. Density, viscosity, self diffusion coefficient and α data used for calculating the parameter ξ 83
A-VI. Binary diffusion and heat of mixing at infinite dilution data 85
B-I. Amounts of ethanol, PPO, and dimethyl-POPOP in one liter of toluene for scintillation counting 99
B-II. Results for the standardization runs 120
B-III. Standardization results summarized 121
B-IV. Results for the diffusivity runs for the diffusion of cyclohexanol into propylene glycol 124
$B-V$. Results for the diffusivity runs for the diffusion of cyclohexanol into diethylene glycol 125
B-VI. Results for the diffusivity runs for the diffusion of cyclohexanol into ethylene glycol 126
B-VII. Results for the diffusivity runs for the diffusion of ethylene glycol into ethylene glycol 127
B-VIII. Results for the diffusivity runs for the diffusion of ethylene glycol into diethylene glycol 128B-IX. Results for the diffusivity runs for the diffusion ofethylene glycol into propylene glycol129

B-X. Experimentally measured diffusion coefficients, activation energy and free energy of actixation at the temperatures indicated . 130

I. INTRODUCTION

In almost all studies of mass transfer in liquids, accurate liquid molecular diffusion coefficients are needed for the liquid systems under consideration. At the present time, relationships are available with which one may estimate binary liquid diffusivities with reasonable accuracy for a variety of simple, low viscosity systems. However, there are several significant problems which tend to preclude the application of these relations for the prediction of diffusivities for certain classes of binary liquid systems. For example, estimations of the molecular diffusion coefficients for some high viscosity systems using existing approaches (except for one recently proposed mechanism) have resulted in order of magnitude errors. Large deviations between experimental and predicted diffusivities also have been observed for some systems exhibiting hydrogen bonding.

The objective of this work is to present a mechanism which will allow one to estimate binary molecular diffusivities for the simple, low viscosity systems and for liquid solutions with high viscosity components and/or components exhibiting hydrogen bonding. The proposed mechanism utilizes the Eyring rate theory as a basic starting point. The novel feature of this method is an application of regular solution theory in the calculation of the free energy of activation for binary diffusion.

The diffusivity prediction model developed in this work and other methods presented in the literature will be compared with experimental data. Since literature diffusion data for systems in the moderately high viscosity range
are very limited, additional data were obtained experimentally during the course of the investigation. A radioactive tracer technique was used to obtain data in the very low solute concentration region, in contrast to the relatively high solute concentrations used in a previous study of high viscosity systems.

II. LITERATURE REVIEW

The many diverse methods of estimating binary molecular diffusivities will not be reviewed here since they are adequately described elsewhere (Reid and Sherwood, 1966). However, the diffusion mechanisms proposed by Olander (1963) and Gainer and Metzner (1965) will be described because some of the concepts which they introduced have been employed in the mechanism to be proposed later in this work.

The absolute rate theory equation for the prediction of the molecular diffusion coefficient is often expressed in the following form (Ree et al., 1958):

$$
\begin{equation*}
\mathrm{D}_{\mathrm{AB}}=\frac{\mathrm{kT}}{\xi \eta_{\mathrm{B}}} \frac{\lambda_{1}}{\lambda_{2} \lambda_{3}} \exp \left[\frac{\Delta \mathrm{~F}_{\mathrm{B}}-\Delta \mathrm{F}_{\mathrm{D}}}{\mathrm{RT}}\right] \tag{1}
\end{equation*}
$$

Until 1963, the free energy of activation for viscous transfer $\Delta F_{\eta_{B}}$ and binary molecular diffusion $\Delta F_{D_{A B}}$ were usually considered to be equal, in part because there was no reliable way to evaluate the free energy of activation for binary molecular diffusion. In 1963, Olander proposed a method of estimating this free energy term.

In the development of his diffusion mechanism, Olander (1963) suggested that at low solute concentrations the mechanism of viscous transfer is determined almost entirely by the solvent molecule interactions. This viscous mechanism can be thought of as occurring via two processes. The first process is the formation of a hole or a vacant lattice site followed by the second process which is the movement of a neighboring molecule to fill the hole. This mechanism tells nothing of the relative importance of the two processes, but
it does allow one to consider the total free energy of activation for viscous transfer in a pure substance as

$$
\begin{equation*}
\Delta \mathrm{F}_{\eta_{\mathrm{B}}}=\Delta \mathrm{F}_{\eta_{\mathrm{B}}}^{\mathrm{h}}+\Delta \mathrm{F}_{\eta_{\mathrm{B}}}^{\mathrm{j}} \tag{2}
\end{equation*}
$$

where the superscripts h and j refer to the hole formation and jump step contributions of the total process, respectively.

In the binary diffusion process for very dilute solutions where solute A can be considered to be almost completely surrounded by solvent molecules, B, the hole formation process can be considered as occurring in pure B. However, the movement (i.e. , jump) of the solute molecule into the hole must ultimately take into account the interaction of the solvent and solute molecules. Thus,

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}^{\mathrm{h}}=\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}^{\mathrm{h}} \tag{3a}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}=\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}^{\mathrm{h}}+\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}^{\mathrm{j}} \tag{3b}
\end{equation*}
$$

Since the jump term is considered as passage up a potential energy barrier, ϵ_{o}^{\prime}, the following equation can be written by making use of the zero point energy difference:

$$
\begin{equation*}
\exp \left(-\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}^{\mathrm{j}} / \mathrm{RT}\right)=\frac{\mathrm{Q}_{\neq A B}}{\mathrm{Q}_{\mathrm{AB}}} \exp \left(-\epsilon_{\mathrm{o}_{\mathrm{AB}}^{\prime}}^{\prime} / \mathrm{kT}\right) \tag{4}
\end{equation*}
$$

There are no universally exact combination rules for the zero point energy difference between dissimilar species. However, Olander (1963) utilized a relation proposed by McLaughlin (1959) indicating that for both laminar viscous and self diffusion processes this zero point energy difference
can be represented by a fraction (empirically determined) of the Lennard-Jones expression for the potential energy between the central molecule and its nearest neighbors. McLaughlin also indicated that the zero point energy difference depends primarily upon the force constant ϵ. Olander then assumed that, if a linear relation between ϵ and $\epsilon_{\mathrm{o}}^{\prime}$ is valid, the combination rules for the molecular constant ϵ could be applied to the zero point energy difference to give

$$
\begin{equation*}
\epsilon_{\mathrm{o}_{\mathrm{AB}}}^{\prime}=\sqrt{\epsilon_{\mathrm{o}_{\mathrm{AA}}}^{\prime} \epsilon_{\mathrm{o}_{\mathrm{BB}}}^{\prime}} \tag{5}
\end{equation*}
$$

If it is then assumed that the product of the ratio of the partition functions for the activated and equilibrium states for binary diffusion times the inverse ratio of the partition functions for viscous transfer is approximately unity, then the following relation is obtained:

$$
\begin{equation*}
\Delta \mathrm{F}_{\eta_{\mathrm{B}}}^{\mathrm{j}}-\Delta \mathrm{F}_{\mathrm{D}}^{\mathrm{j}}=\Delta \mathrm{F}_{\eta_{\mathrm{B}}}^{\mathrm{j}}-\sqrt{\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AA}}}^{\mathrm{j}} \Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{BB}}}^{\mathrm{j}}} \tag{6}
\end{equation*}
$$

If one also assumes that the jump part of the free energy of activation constitutes a constant fraction, f^{\prime}, of the total free energy of activation, then the diffusion coefficient can be estimated by the following equation (Olander, 1963):

$$
\begin{equation*}
\mathrm{D}_{\mathrm{AB}}=\frac{\mathrm{kT}}{\xi \eta_{\mathrm{B}}}\left(\overline{\overline{\mathrm{~V}}}_{\mathrm{B}}\right)^{1 / 3} \exp \left[\frac{\mathrm{f}^{\prime}\left(\Delta \mathrm{F}_{\left.\mathrm{D}_{\mathrm{BB}}-\sqrt{\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AA}}} \Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{BB}}}}\right)}^{\mathrm{RT}}\right]}{}\right] \tag{7}
\end{equation*}
$$

It was assumed by Olander in the above development that the free energy of activation for viscous transfer and self diffusion are equal.

Olander (1963) empirically obtained a value of approximately one-half for the parameter f^{\prime} and a value of about 5.6 for ξ from binary diffusion data.

Gainer and Metzner (1965) developed a somewhat similar method for
estimating the activation energy for binary diffusion. They also started with the Eyring absolute rate theory equation in a form similar to Equation 1 but had the activation energy in the exponential term instead of the free energy of activation as used by Olander. However, they further extended their analysis and divided the contribution of the activation for the jump step into two parts by first assuming that the energy term was a measure of the solvent-solute bond energies. These two terms are assumed to account for ordinary dispersion forces and for hydrogen bonding forces. Thus,

$$
\begin{equation*}
E_{D_{A A}}^{j}=C_{1} E_{D_{A A-H}}^{j}+C_{2} E_{D_{A A-D}}^{j} \tag{8}
\end{equation*}
$$

Consideration of the effects of these two forces as a function of the distance over which they act leads to the following expressions for the correction parameters C_{1} and C_{2} for the individual jump terms:

$$
\begin{equation*}
C_{1}=R_{A} / R_{A B} \tag{9a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{C}_{2}=\left(\mathrm{R}_{\mathrm{A}} / \mathrm{R}_{\mathrm{AB}}\right)^{1 / 12} \tag{9b}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{A}=\left(\bar{V}_{A} / N\right)^{1 / 3} \tag{9c}\\
& R_{B}=\left(\bar{V}_{B} / N\right)^{1 / 3} \tag{9d}\\
& R_{A B}=\left(R_{A}+R_{B}\right) / 2 \tag{9e}
\end{align*}
$$

The ratio of the activation energy due to hydrogen bonding to the total activation energy is assumed by Gainer and Metzner (1965) to be related to
the heat of vaporization by the following ratio:

$$
\begin{equation*}
\frac{\mathrm{E}_{\mathrm{DA}-\mathrm{H}}}{\mathrm{E}_{\mathrm{D}_{\mathrm{AA}}}}=\frac{\Delta \mathrm{H}_{\mathrm{A}-\mathrm{H}}^{\mathrm{vap}}}{\Delta \mathrm{H}_{\mathrm{A}}^{\mathrm{vap}}} \tag{10}
\end{equation*}
$$

where the $\Delta \mathrm{H}_{\mathrm{A}-\mathrm{H}}^{\text {vap }}$ is the heat of vaporization due to hydrogen bonding and may be estimated as the heat of vaporization of the liquid of interest minus the heat of vaporization of the hydrocarbon homologue of that liquid at the same reduced temperature. Gainer and Metzner assumed that the activation energy for self diffusion was equal to that for the viscous process. Using this latter assumption, the parameter ξ was evaluated from self diffusion data, and an average of 6.0 was obtained.

Gainer and Metzner (1965) further assumed that the jump and hole formation portions of the total activation energy were of equal magnitude (i.e., $f^{\prime}=$ $1 / 2$). Their final equation for the estimation of D_{AB} is given as follows:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{AB}}=\frac{\mathrm{kT}}{\xi_{\mathrm{A}}^{\eta_{\mathrm{B}}}}\left(\frac{\mathrm{~V}}{\mathrm{~B}}^{\overline{\mathrm{V}}^{1 / 3}}\right)^{1 / 3} \exp \left[\frac{{ }^{\mathrm{E}_{\mathrm{B}}}-\mathrm{E}_{\mathrm{D}_{\mathrm{AB}}}}{\mathrm{RT}}\right] \tag{11a}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{E}_{\eta_{\mathrm{B}}}-\mathrm{E}_{\mathrm{D}_{\mathrm{AB}}}=\frac{\mathrm{E}_{\eta_{\mathrm{B}}}}{2}-\frac{\boldsymbol{\xi}_{\mathrm{A}}}{\boldsymbol{\xi}_{\mathrm{B}}}\left[\sqrt{\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{AB}}} \frac{\mathrm{E}_{\eta_{\mathrm{A}-\mathrm{H}}}}{2} \frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{AB}}} \frac{{ }^{\mathrm{E}} \eta_{\mathrm{B}-\mathrm{H}}}{2}}\right. \\
& \left.+\sqrt{\left(\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{AB}}}\right)}{ }^{12 \mathrm{E}^{\eta_{\mathrm{A}-\mathrm{D}}}} \frac{\mathrm{R}_{\mathrm{B}}}{2}\left(\frac{12}{\mathrm{R}_{\mathrm{AB}}}\right) \frac{\mathrm{E}_{\eta_{\mathrm{B}-\mathrm{D}}}}{2}\right] \tag{11b}
\end{align*}
$$

Gainer and Metzner (1965) recommended that $\mathrm{E}_{\eta_{\mathrm{B}}}$ be calculated by the following equation:

$$
\begin{equation*}
\mathrm{E}_{\eta_{\mathrm{B}}}=\mathrm{RT} \ln \left[\frac{\eta_{\mathrm{B}} \overline{\mathrm{~V}}_{\mathrm{B}}^{2 / 3} \Delta \mathrm{E}_{\mathrm{B}}^{\mathrm{vap}}}{1.09\left(10^{-3}\right) \mathrm{M}^{1 / 2} \mathrm{~T}^{3 / 2}}\right] \tag{12}
\end{equation*}
$$

The above equation was developed assuming that the internal contributions to the total partition functions were the same for the equilibrium and activated states. This assumption was also made during the development of Equation 11. The procedure was used to estimate binary molecular diffusivities with reported average absolute deviations of about 20 percent or more for the intermolecular hydrogen bonded systems and highly viscous solvent systems studied in their work. The claim of superiority of the Gainer and Metzner equations over prior methods was based primarily on the comparison of predictions of their model with the high viscosity data obtained in their laboratories. These data appear to be based upon experiments in which somewhat high solute concentrations were used.

The primary assumption made in the developments of Olander (1963) and Gainer and Metzner (1965) is that the basic Eyring absolute rate theory adequately describes the mechanisms of viscous transfer and molecular diffusion. In addition to this assumption, the intermolecular distance terms (i.e., the $\lambda^{\prime} s$) were assumed to be equal and proportional to the cube root of the molar volume. The application of Eyring's theory by both Olander (1963) and Gainer and Metzner (1965) should primarily be applied to very dilute solute concentrations in binary systems. The energies of activation were assumed to be equal for viscous transfer and self diffusion. Both of these developments introduced the viscosity coefficient η into the equation for the diffusivity
prediction. Consequently, it was assumed that the product of the ratio of the partition functions for the activated and equilibrium states for binary diffusion times the inverse ratio of the partition functions for vis cous transfer was approximately unity. They also assumed that the combination rules for the force constants can be applied directly to the zero point energy difference to obtain the binary activation energy (or free energy) as a geometric average of the individual component activation energies.

The last two assumptions summarized above were eliminated in this investigation (1) by not introducing the viscosity coefficient into the Eyring prediction equation and (2) by considering that the contribution of the jump step to the total activation free ene rgy of the diffusion process is proportional to the energy of vaporization. Once these assumptions were accepted, the relationship between $\Delta \mathrm{F}_{\mathrm{D}}$ and the free energies of the individual species A and B were readily obtained through the use of regular solution theory.

III. THEORETICAL DEVELOPMENT

Eyring's absolute rate theory equation for the prediction of the molecular diffusion coefficient can also be represented in terms of the free energy of activation by the following relationship (Ree et al., 1964):

$$
\begin{equation*}
\mathrm{D}_{\mathrm{AB}}=\frac{\mathrm{kT}}{\xi \mathrm{~h}}\left(\frac{\sqrt{2} \overline{\mathrm{~V}}_{\mathrm{B}}}{\mathrm{~N}}\right)^{2 / 3} \quad \exp \left[\frac{\Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{AB}}}}{\mathrm{RT}}\right] \tag{13}
\end{equation*}
$$

In this work, it is assumed that $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda=\left(\sqrt{2} \overline{\mathrm{~V}}_{\mathrm{B}} / \mathrm{N}\right)^{1 / 3}$.
The parameter $\boldsymbol{\xi}$ can be evaluated from a variation of Equation 13 and from a knowledge of viscosity and self diffusion data at any particular temperature if one assumes that the free energy of activation for self diffusion and viscous transfer are equal. Thus,

$$
\begin{equation*}
\xi_{\mathrm{X}}=\frac{\mathrm{kT}}{\mathrm{D}_{\mathrm{XX}} \mathrm{~h}}\left(\frac{\sqrt{2} \overline{\mathrm{~V}}_{\mathrm{X}}}{\mathrm{~N}}\right)^{2 / 3} \exp \left[-\frac{\Delta \mathrm{F}_{\mathrm{XX}}}{\mathrm{RT}}\right] \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{XX}}}=\Delta \mathrm{F} \eta_{\mathrm{X}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \mathrm{F}_{\eta_{\mathrm{X}}}=R T \ln \left[\frac{\eta_{\mathrm{X}} \overline{\mathrm{~V}}_{\mathrm{X}} \sqrt{2}}{\mathrm{hN}}\right] \tag{16}
\end{equation*}
$$

The parameter ξ was re-evaluated by the author for a number of pure substances. Values of ξ, suggested for use in this model, are presented in another part of this work.
A. Evaluation of the Free Energy of Activation for Binary Diffusion.

As stated above, the free energy of activation for self diffusion and
viscous transfer were assumed to be equal. However, for binary diffusion, this equality is invalid because of the difference in mechanism, as emphasized by Olander (1963). In order to estimate the free energy of activation for binary diffusion, $\Delta F^{D_{A B}}$ was related to the free energies of activation for pure solvent and pure solute: $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{XX}}}$ and $\Delta \mathrm{F}_{\eta_{\mathrm{X}}}$. As in the work of Olander, the total free energy of activation was assumed to equal the sum of two portions: that due to the hole formation step and the jump step. Thus,

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}=\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}^{\mathrm{h}}+\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}^{\mathrm{j}} \tag{17}
\end{equation*}
$$

If in this instance, it is further assumed that the hole formation contribution to the free energy of activation is the same in a dilute binary solution as it would be in a pure solvent, then

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}=\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}^{\mathrm{h}}+\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}^{\mathrm{j}} \tag{18}
\end{equation*}
$$

The problem of evaluating ΔF_{D} now becomes one of estimating $\Delta F_{D_{A B}}^{j} \quad$ in terms of $\Delta F_{D_{A A}}^{j}$ and $\Delta F_{D_{B B}}^{j}$ and also of estimating the portions of the total free energy, $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}$, that can be attributed to the hole formation and solute jump process.

The process of molecular motion for both diffusion and viscous flow requires additional space (a hole) in the liquid, as visualized in the absolute rate theory approach. Thus, a molecule that jumps from its surrounding cage into a hole can be considered as behaving in a manner very similar to a molecule that jumps from the bulk of a liquid near the vapor interface into the vapor layer above the liquid. (Although in the case of the jump step in
diffusion or viscous transfer, the hole that must be available may not necessarily be the full size of the molecule that is jumping). This consideration suggests that the free energy of activation for diffusion due to the jump step may be taken as a fraction of the energy of vaporization so that

$$
\begin{equation*}
\Delta F_{D_{B B}}^{j}=k \Delta E_{B}^{v a p} \tag{19}
\end{equation*}
$$

Experimental evidence supporting the above relationship is only indirect. The jump step portion of the activation free energy of diffusion represents some fraction f^{\prime} of the total a ctivation free energy. Thus,

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}^{\mathrm{j}}=\mathrm{f}^{\prime} \Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}} \tag{20}
\end{equation*}
$$

By combining Equations 15,17 , and 19 , the following relationship is obtained:

$$
\begin{equation*}
\Delta \mathrm{F}_{\eta_{\mathrm{B}}}=\left(\frac{\mathrm{k}}{\mathrm{f}}\right) \Delta \mathrm{E}_{\mathrm{B}}^{\mathrm{vap}}=\mathrm{k}^{\prime} \Delta \mathrm{E}_{\mathrm{B}}^{\mathrm{vap}} \tag{21}
\end{equation*}
$$

Experimental data by Glasstone et al. (1941) seem to suggest a relationship similar to Equation 21. The following relationship was found by Glasstone et al. to approximate the data of nearly 100 liquid substances:

$$
\begin{equation*}
\Delta \mathrm{F}_{\eta_{\mathrm{B}}}=\frac{1}{2.45} \Delta \mathrm{E}_{\mathrm{B}}^{\mathrm{vap}} \tag{22}
\end{equation*}
$$

The above relation applies for liquids as diverse as water and other associated liquids, for glycerol, and for nonpolar substances such as hydrocarbons. It does not apply, however, to liquid metals. The approximate nature of Equation 22 was discussed briefly by Bondi (1946). The similarity of the experimentally obtained relation (Equation 22) to Equation 21 suggests the
possible validity of Equation 19.
It has been assumed that the above analysis for self diffusion and viscous transfer can be applied to a very dilute solution of A in B. The solution must approach infinite dilution in A so that any molecule of A can be considered to be surrounded only by B molecules. It follows, therefore, that the jump step portion of the activation free energy of diffusion can be approximated as a fraction Z of the energy of vaporization of solute A from almost pure B :

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{DB}}^{\mathrm{j}}=\mathrm{Z}{\overline{\Delta E_{A B}}}_{\mathrm{vap}} \tag{23}
\end{equation*}
$$

The above expression is used in the following application of regular solution theory.

Regular solution theory has several basic limitations. The theory assumes a nearly random distribution of solute molecules in the solvent medium. This assumption restricts the theory to systems exhibiting a zero excess entropy of mixing. In addition, regular solution theory accounts for only ordinary intermolecular dispersion forces. Hydrogen bonding or electrostatic interactions were not accounted for in the original treatment. In spite of its shortcomings, regular solution theory allows for a straightforward means of estimating $\Delta F_{D_{A B}}$.

From regular solution theory, it can be shown that for infinitely dilute binary solutions $\overline{\Delta E}_{\mathrm{AB}}^{\mathrm{Vap}}$ can be given by (Hildebrand and Scott, 1964)

$$
\begin{equation*}
\overline{\Delta E}_{\mathrm{AB}}^{\mathrm{vap}}=\Delta \mathrm{E}_{\mathrm{A}}^{\mathrm{vap}}-\overline{\mathrm{V}}_{\mathrm{A}}\left[\frac{\Delta \mathrm{E}_{\mathrm{A}}^{\mathrm{vap}} 1 / 2}{\left(\overline{\overline{\mathrm{~V}}}_{\mathrm{A}}\right)}{ }^{\left(\frac{\Delta \mathrm{E}_{\mathrm{B}}^{\mathrm{Vap}}}{\overline{\mathrm{~V}}_{\mathrm{B}}}\right)} 1 / 2\right] \tag{24}
\end{equation*}
$$

Upon assuming that the activation free energies of diffusion for the jump process are a fraction of the respective energies of vaporization for pure and binary systems (Equations 19 and 23), the following equation for $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}^{\mathrm{j}}$ can be obtained:

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}^{\mathrm{j}}=\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AA}}}^{\mathrm{j}}-\overline{\mathrm{V}}_{\mathrm{A}}\left[\left(\frac{\Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{AA}}}^{\mathrm{j}}}{\overline{\mathrm{~V}}_{\mathrm{A}}}\right)^{1 / 2}-\left(\frac{\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}^{\mathrm{j}}}{\overline{\mathrm{~V}}_{\mathrm{B}}}\right)^{1 / 2}\right]^{2} \tag{25}
\end{equation*}
$$

In order to obtain Equation 25, it has been assumed that the proportionality constants k and Z for Equations 19 and 23 are the same. The validity of this assumption will be examined later.

Equation 23 may be substituted into Equation 3b to give

$$
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}=\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}^{\mathrm{h}}+\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AA}}}^{\mathrm{j}}-\overline{\mathrm{V}}_{\mathrm{A}}\left[\begin{array}{ll}
\Delta \mathrm{F}_{\mathrm{D}}^{\mathrm{j}} & 1 / 2 \tag{26}\\
\left(\frac{\Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{BB}}}^{\mathrm{j}}}{\overline{\mathrm{~V}}_{\mathrm{A}}}\right) & -\left(\frac{\overline{\mathrm{V}}_{\mathrm{B}}}{}\right)^{1 / 2}
\end{array}\right]^{2}
$$

If one now assumes that the portion of the free energy of activation due to the hole formation process constitutes a constant fraction, f, of the total free energy of activation, i.e.,

$$
\begin{equation*}
\mathrm{f}=\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{XX}}}^{\mathrm{h}} / \Delta \mathrm{F}_{\mathrm{D}_{\mathrm{XX}}} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{f}=1-\mathrm{f}^{\prime} \tag{28}
\end{equation*}
$$

then the binary molecular diffusion coefficient for dilute solutions may be expressed as
where

$$
\begin{align*}
& \Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}=\mathrm{f}^{\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}-(1-\mathrm{f})}\left\{\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}} \frac{\overline{\mathrm{~V}}_{\mathrm{A}}}{\overline{\mathrm{~V}}_{\mathrm{B}}}-\right. \\
& 2 \overline{\mathrm{~V}}_{\mathrm{A}}\left[\left(\frac{\Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{AA}}}}{\overline{\mathrm{~V}}_{\mathrm{A}}}\left(\frac{\Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{BB}}}}{\overline{\mathrm{~V}}_{\mathrm{B}}}\right)\right]^{1 / 2}\right\} \tag{29}
\end{align*}
$$

and where $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AA}}}$ and $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}$ are determined using Equations 15 and 16 along with a knowledge of the viscosity and molar volume of each component at the temperature in question. The recommended values for f and ξ will be given later. Thus, Equations 13 and 29 may be used for the estimation of the molecular diffusivity D_{AB}.
B. Summary of Assumptions.

The assumptions that have been introduced in the development of Equation 29 are summarized as follows:

1. Eyring's rate theory of unimolecular reactions is a valid representation of the processes of viscous and diffusional transport in a cell model of the liquid state.
2. Regular solution theory is valid for infinitely dilute solutions.
3. The activation free energy for diffusion can be divided into two parts--a hole formation and a jump term (Equation 17).
4. The activation free energy for self diffusion is equal to the activation free energy for viscous flow (Equation 15).
5. The activation free energy for the hole-forming process for the self diffusion process is a fraction, f, of the total free
energy for the self diffusion process (Equation 27).
6. The value of the fraction f for self diffusion of the pairs AA and $B B$ is the same as that for binary diffusion of the $A B$ system.
7. The activation free energies of the hole-forming process for both binary and solvent self diffusion are equal (Equation 3a).
8. The activation free energy for the diffusional jump steps can be considered as fractions of the total energy vaporization (Equations 19 and 23), and k is equal to Z.

It will be assumed later that f is a constant for all binary systems within a major category of systems but that the value of f may be different for each of the three major categories of systems.

The validity of the third, sixth, and seventh assumptions has been tested by using thermodynamic data. The development that led to Equation 29 can be followed in a similar manner using these assumptions to yield

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}=\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}+\mathrm{k}\left[\Delta \mathrm{E}_{\mathrm{A}}^{\mathrm{vap}}-\Delta \mathrm{E}_{\mathrm{B}}^{\mathrm{vap}}-\overline{\Delta H}_{\mathrm{AB}}^{\text {mix }}\right] \tag{30}
\end{equation*}
$$

If the assumptions are valid, one would expect a plot of $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}$ versus $\Delta \mathrm{E}_{\mathrm{A}}^{\text {vap }}-\Delta \mathrm{E}_{\mathrm{B}}^{\mathrm{vap}}-\overline{\Delta H}_{\mathrm{AB}}^{\text {mix }}$ to be linear. The author was able to obtain thermodynamic solution data and diffusion activation free energy data for the solutes carbon tetrachloride, chloroform, ethanol, and methanol in the solvent benzene and for the solutes methanol, ethanol, n-propanol, and $n-$ butanol in the solvent water. The data used for these calculations are given in Appendix A. In addition, the values of $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}$, were calculated using Equations 15 and 16, and included for the term $\left(\Delta E_{A}^{v a p}-\Delta E_{B}^{v a p}-\widetilde{\Delta H}{ }_{A B}^{\text {mix }}\right)$ equal
to zero. These data are presented in Figures 1 and 2. One can tentatively conclude on the basis of this one comparison that the combined effect of the three assumptions may be valid. Studies with more systems and tests of the non-combined effect of assumptions would be necessary for final conclusions as to the validity of these assumptions.

Figure 1. The binary activation free energy, $\Delta \mathrm{F}_{\mathrm{D}}$, versus the term $\Delta E_{A}^{\text {vap }}-\Delta E_{B}^{v a p}-\overline{\Delta H}_{A B}^{m i x}$ for systems with water as the solvent.

Figure 2. The binary activation free energy, $\Delta F_{D_{A B}}$, versus the $\operatorname{term} \Delta \mathrm{E}_{\mathrm{A}}^{\mathrm{vap}}-\Delta \mathrm{E}_{\mathrm{B}}^{\mathrm{vap}}-\overline{\Delta H}_{\mathrm{AB}}^{\mathrm{mix}}$ for systems with benzene as the solvent.

IV. EXPERIMENTAL

In order to compare predicted binary molecular diffusivities with experimentally determined diffusivities for systems in the mode rately high viscosity range, five binary systems were studied experimentally (Table VII). The solution viscosities for these systems ranged from 6.8 to 43.4 centipoise.

The conventional steady-state methods for determining diffusivities were not considered practical because of the very slow rates of mass transfer. In addition, previously used unsteady-state techniques require either relatively high initial solute concentrations (e.g., interferometric techniques) or a radiometric method with a strong beta or gamma source as the solute. Thus, an unsteady-state porous frit technique was devised, as described below, for use with solutes tagged with carbon-14. A detailed description of the technique and apparatus used to determine binary molecular diffusivities is given in Appendix B.
A. Equipment and Procedure.

The essential component of the apparatus is a porous ceramic plate about $2-7 / 8$ inches square by $1 / 4$ inch thick. The edges of the plate were sealed with an epoxy resin.

The clean, dry, porous plate was first soaked in a binary solution with a known concentration of solute. The solute consisted of a known mixture of radioactively tagged (C-14) solute and non-tagged pure solute. The initial concentration of the solute, ethylene glycol, in the solvents, propylene glycol and diethylene glycol, that were inside the porous plate was $4.50(10)^{-2}$ moles
per liter. The initial concentration of the solute cyclohexanol in the solvents ethylene glycol, propylene glycol, and diethylene glycol was $2.41(10)^{-2} \mathrm{moles}$ per liter. Following the pre-soak period, the porous plate was rigidly fastened inside a solvent bath which consisted of a $6 \times 3-1 / 2 \times 1-1 / 4$ inch box. A stirring assembly was then lowered around the two faces of the plate. This assembly consisted of four horizontal blades which swept up and down very close to both surfaces of the plate. The blades could be reciprocated over a wide range of frequencies by means of a variable speed transmission. The stirring assembly was activated immediately before the solvent bath, holding the porous frit, was filled with 300 cc of pure solvent. The solvent bath was almost totally immersed in a constant temperature oil bath whose temperature was controlled at the desired temperature to within $\pm 0.01^{\circ} \mathrm{C}$. The diffusivities were measured at temperatures of $25.0,30.0,40.0$ and $50.0^{\circ} \mathrm{C}$. The viscosity of these systems varies by less than 2.5 centipoise/ ${ }^{\circ} \mathrm{C}$ at these temperatures.

The solute inside the porous plate was transported by molecular diffusion through the pores, to the surface of the plate, and then into the well-agitated solvent in the solvent bath box. The agitator frequency was adjusted to minimize the resistance to mass transfer in the solvent bath immediately adjacent to the porous plate and to assure a uniform solute concentration in the solvent bath (at any given time) during the unsteady state buildup of the bath solute concentration.

During the course of a run, one milliliter samples were removed from the solvent bath to determine the bath solute concentration as a function of
time. About 12 samples were removed during each run and later anal yzed.
The radioactivity of the solute in the samples was counted in a liquid scintillation counter. The total solute concentration was then determined from the solute activity. The effect of radioactive decay was considered to correct the measurements to the time each run was begun.

Certain calibration parameters for the porous frits were determined during standardization runs using a binary system for which the molecular diffusion coefficient was already known. The diffusion of radioactive sodium chloride in distilled water was used for this purpose $\left[\mathrm{D}_{\mathrm{AB}}=(1.61 \pm .01) 10^{-5}\right.$ cm^{2} per sec. at $25^{\circ} \mathrm{C}$ (Harned and Owen, 1958)]. The initial concentration of this solute was $1.10(10)^{-3}$ moles/liter. The activity of the Na-24 was determined using a standard Gieger-Mueller detector and a counter.
B. Analysis of the data.

The molecular diffusion coefficients were determined from the data for the bath solute concentration versus time. The molecular diffusion process inside the porous plate is described by the following relations during the "penetration-theory" portion of the diffusion process:

$$
\begin{align*}
& \frac{\partial C}{\partial t}=D_{A B} \frac{\partial^{2} C}{\partial x^{2}} \tag{31a}\\
& C(x, 0)=C_{o} \tag{31b}\\
& C(\infty, t)=C_{o} \tag{31c}\\
& C(0, t)=C_{f}(t) \tag{31d}
\end{align*}
$$

The solute balance, which describes the solute concentration in the solvent bath, is

$$
\begin{align*}
& V_{f} \frac{d C_{f}}{d t}=-2 D_{A B} A_{T} \frac{\partial C(0, t)}{\partial x} \tag{32a}\\
& C_{f}(0)=C_{f}^{o} \tag{32b}
\end{align*}
$$

Equations 31 and 32 were solved simultaneously by using Laplace transforms to give the following expression for the solute concentration in the solvent bath, C_{f}, as a function of time (see Appendix B for details):

$$
\begin{equation*}
\frac{C_{f}-C_{o}}{C_{f}^{O}-C_{o}}=\exp \left(K^{2} t\right) \cdot\left[1-\operatorname{erf}\left(\mathrm{Kt}^{1 / 2}\right)\right] \tag{33a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{K}=2 \mathrm{~A}_{\mathrm{T}}{\sqrt{D_{\mathrm{AB}}} / V_{\mathrm{f}}} \tag{33b}
\end{equation*}
$$

and where the solvent bath volume, $\mathrm{V}_{\mathbf{f}}$, is assumed to be a constant during the entire run, even though V_{f} changes during the run. The average solvent bath volume is approximated by

$$
\begin{equation*}
\mathrm{V}_{\mathrm{f}}=300-\mathrm{N} / 2 \tag{34}
\end{equation*}
$$

where N is the total number of one milliliter samples withdrawn from the sample bath.

The development of Equation 33 necessitated restricting sample times, t, to values less than $0.30 \mathrm{~L}_{\text {eff }}^{2} / \mathrm{D}_{\mathrm{AB}}$, where $\mathrm{L}_{\text {eff }}$ is the effective length of the pores. Approximate values of $L_{\text {eff }}$ were determined in a separate investigation ($\mathrm{Wu}, 1968$) and varied from 0.38 to 0.58 cm for one-half of the plate thickness.

The molecular diffusion coefficients were determined from a knowledge of C_{f} versus t; however, the porous plate area parameter, A_{T}, first has to be determined using a system with a known diffusivity. Regardless of whether one is concerned with a diffusivity determination run or a calibration run, the term K was considered as a curve-fitting parameter. In order to consider any possible initial solute concentration in the bath, C_{f}^{0} also has to be regarded as a curve-fitting parameter.

An iterative, nonlinear, least-squares technique was used to determine the values of K and C_{f}^{0}. This technique minimized the weighted sum of the square of the deviation, S ;

$$
\begin{equation*}
S=\sum_{i=1}^{N} W_{i}\left(C_{f_{i}}-C_{f_{i}}^{\prime}\right)^{2} \tag{35}
\end{equation*}
$$

where the weighting factor is

$$
\begin{equation*}
W_{i}=\sigma^{-2}\left(C_{f_{i}}\right) \tag{36}
\end{equation*}
$$

The experimental measurement of the dependent variable is the counts per minute of the radioactive solute tracer in the solvent bath. This measurement is proportional to the total concentration of the solute in the bath, C_{f}. Thus, the standard deviation can be considered as

$$
\begin{equation*}
\sigma\left(\mathrm{C}_{\mathrm{f}}\right)=A \mathrm{C}_{\mathrm{f}}^{1 / 2} \tag{37}
\end{equation*}
$$

assuming that all error is related to the normal randomness of the radioactive decay process. (The proportionality constant, A, disappears in the resulting least-squares"normal" equations.)

The porous plates were calibrated at the beginning of the study and recalibrated following their use in the determination of D_{AB}. The calibration of each plate consisted of about three determinations of $A_{T}{ }^{-- \text {at least one at }}$ the beginning and at least one at the end of the study; the average value of A_{T} was used in the parameter K to determine the molecular diffusivity. There were no consistent trends in the values of A_{T}. This indicated that foreign particles did not accumulate in the pores of the plates during the experiments. The cleaning procedures for the porous plates have been described in Appendix B.

The values of the binary molecular diffusivities that were determined experimentally are given in Table IV, along with values of D_{AB} that were estimated by using various models.

V. RESULTS AND DISCUSSION

The molecular diffusivity prediction model developed in this work as well as other methods presented in the literature (Wilke and Chang, 1955; Olander, 1963; Gainer and Metzner, 1965) are compared with the experimentally determined diffusivities given in the literature and obtained in this work. The comparisons that have been divided into three classes of experimental data will be preceded by a discussion of the estimation of the terms $\boldsymbol{\xi}$ and .

A. Evaluation of the Parameter ξ.

The term ξ was introduced into the original rate theory as a lattice parameter to describe the geometric arrangement of the diffusing molecule with respect to its neighbors. Ree et al. (1958) determined the value of $\boldsymbol{\xi}$ to be six, based on the assumption that $\boldsymbol{\xi}$ equals the number of nearest neighbors in a plane normal to the direction of motion of the diffusing molecule for an assumed hexagonal close-pack structure.

Li and Chang (1955) experimentally determined $\boldsymbol{\xi}$ by assuming that the activation free energies for vis cous transfer and self diffusion were equal. Thus, use of Equation 1 leads to

$$
\begin{equation*}
\xi_{\mathrm{X}}=\frac{\mathrm{kT}}{\mathrm{D}_{\mathrm{XX}} \eta_{\mathrm{X}}}\left[\frac{\mathrm{~N}}{\overline{\overline{\mathrm{~V}}}_{\mathrm{X}}}\right]^{1 / 3} \tag{38a}
\end{equation*}
$$

where $\left(\overline{\mathrm{V}}_{\mathrm{X}} / \mathrm{N}\right)^{1 / 3}$ is assumed equal to $\lambda_{2} \lambda_{3} / \lambda_{1}$. This equation, along with self diffusion coefficients, viscosities, and molar volumes for pure components, was used by Li and Chang to obtain a value of 6.0 for $\boldsymbol{\xi}$.

Ree et al. (1958) evaluated $\boldsymbol{\xi}$ in a similar manner by using dilute binary
diffusivities and obtained an average value of 5.60 . This value was subsequently used by Olander (1963).

Gainer and Metzner also evaluated $\boldsymbol{\xi}$ by using Equation 1. They obtained an average value of 6.0 for all solvents except the lower normal paraffin alcohols (i.e., methyl and ethyl alcohol) for which ξ was 8.0. They used self diffusion data and molar volumes that were possibly calculated by using Kopp's rule for the normal boiling temperature.

The parameter ξ was re-evaluated by the author to account for the hexagonal close-packing correction factor, $\sqrt{2}$, used in the evaluation of λ and also to use experimental values of the molar volumes at the same temperature as the self diffusion and viscosity measurements. The following equation, obtained from Equations 14, 15, and 16 was used to determine ξ :

$$
\begin{equation*}
\xi_{\mathrm{X}}=\frac{\mathrm{kT}}{\mathrm{D}_{\mathrm{XX}} \eta_{\mathrm{X}}}\left(\frac{\mathrm{~N}}{\sqrt{2 \nabla_{X}}}\right)^{1 / 3} \tag{38b}
\end{equation*}
$$

The results are indicated in Table I. As observed by earlier investigators, the average value of $\boldsymbol{\xi}$ found in this work for methanol and ethanol $(\xi=7.5)$ is considerably higher than that of most other solvents $(\boldsymbol{\xi}=5.6)$. These average values have been used in the model developed in this work in the temperature range of about 0° to $30^{\circ} \mathrm{C}$.

As may be noted in Table I, the values of the geometric parameter, ξ, for water were not included in the table or used in the calculation of the average ξ. These data were not included, because as indicated by Johnson and Babb (1956), serious disagreement exists among various investigators as

TABLE I
ξ AND THE VISCOUS ACTIVATION FREE ENERGY
FOR VARIOUS PURE COMPOUNDS

Compound	Tem ${ }^{\circ} \mathrm{C}$	ξ	$\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{BB}}}$ Kcal/Mole
Benzene	15	5.10	3.074
	25	5.34	3.099
	35	5.58	3.126
	45	6.06	3.156
Ethanol	15	7.27	3.197
	25	6.77	3.216
	35	6.59	3.230
	45	6.36	3.219
Methanol	15	7.06	2.574
	25	7.19	2.582
	35	7.29	2.591
n-Propanol	15	4.91	3.741
	25	5.24	3.747
	35	5.43	3.739
	45	5.54	3.730
i-Propanol	15	4.76	3.843
	25	4.63	3.830
	35	4.55	3.817
	45	4.55	3.791
n-Butanol	25	5.67	3.842
	35	5.28	3.930
	45	5.42	3.962
n -Pentane	25	5.28	2.659
n-Hexane	25	4.96	2.901

TABLE I (continued)
\(\left.\begin{array}{llll}\hline \& Temp \& \& \Delta F_{D_{\mathrm{BB}}}

Compound \& { }^{\circ} \mathrm{C} \& \xi \& \mathrm{Kcal} / \mathrm{Mole}\end{array}\right]\)| | | 4.94 |
| :--- | :--- | :--- |
| n-Heptane | 25 | 5.54 |
| n-Octane | 25 | 4.81 |
| n-Nonane | 25 | 4.73 |
| n-Decane | 25 | |

to the value of $D_{X X}$ for water. If one used these widely varying data for the self diffusion coefficient, the values of $\boldsymbol{\xi}$ for water will range from 4.1 to 6.3 . These values bracket the value of 5.6 used in this work

The effect of temperature on the geometric parameter, ξ, was investigated to determine if any general relationship for systems of solvents could be obtained. Neutron and X-ray diffraction data (Eyring and Marchi, 1963) indicate that the number of nearest neighbors to a molecule increases in an orderly manner as the temperature is decreased. For some of the compounds studied in this work, $\boldsymbol{\xi}$ was found to increase as the temperature decreased; however, for other systems, $\boldsymbol{\xi}$ decreased as the temperature decreased. There appears to be no correlation of $\boldsymbol{\xi}$ with reduced temperature and reduced pressure.

The values of ξ in Table I were determined from self diffusion coefficients. Because the geometry with respect to the nearest neighbors for the pure solvents should vary when a solute molecule has a volume considerably different than a solvent molecule, the $\boldsymbol{\xi}$ value for binary systems might differ from those indicated in Table I. This possibility will be investigated at a later date.

B. Evaluation of the parameter f.

The parameter f is defined in this work as the fraction of the total diffusional activation free energy which can be attributed to the hole formation portion of the liquid phase transport process (see Equation 27). A similar term, f', was used by Olander (1963), except that it was based upon the jump
step contribution ($f^{\prime}=1-f$). Using a graphical analysis of a wide variety of diffusion data, Olander found f^{\prime} equaled 0.50. Gainer and Metzner (1965) also used a value of f^{\prime} equal to 0.50 in their development. Before determining the f value to be used in the model developed for this work, the value of f^{\prime} determined by both Olander (1963) and Gainer (1964) was re-examined in this paper.

Olander (1963) graphically curve-fitted experimental data selected from the literature to the following relation:

$$
\begin{equation*}
\mathrm{Y}=\frac{\mathrm{D}_{\mathrm{AB}} \eta_{\mathrm{B}}}{\mathrm{~T}}\left(\frac{\xi}{\mathrm{k}}\right)\left(\frac{\overline{\mathrm{V}}_{\mathrm{B}}^{2 / 3}}{\mathrm{~N}}\right)=\exp \left(\mathrm{f}^{\prime} \delta\right) \tag{39a}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=\frac{\Delta \mathrm{F}_{\mathrm{DB}}}{\mathrm{RT}}\left[1-\frac{\Delta \mathrm{F}_{\mathrm{DA}}}{\Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{BB}}}}\right]^{1 / 2} \tag{39b}
\end{equation*}
$$

He obtained a value of f^{\prime} equal to 0.50 . However, by using the same data, the author obtained a value of 0.397 but employed a nonlinear, least squares, curve-fitting technique to obtain f^{\prime} (i.e., $f \cong 0.60$). The data were also correlated with a slightly modified form of Equation 39a. The argument of the exponent was taken to equal (f ' $\delta+b$), where b was merely an empirical constant that was included so as not to force the curve-fit through ($\mathrm{Y}=1.00$, $\delta=0$). The value of f thus obtained was very close to 0.60 but still was not 0.50 . The use of 0.60 rather than 0.50 leads to only a small difference in the estimation of D_{AB} using the OIander (1963) model; however, as will be shown later, the model developed in this article is much more sensitive to
values of f . Olander (1963) discussed the possibility of f values being different from the tentative values of 0.50 recommended in his work.

As mentioned earlier, Gainer and Metzner (1965) used a value of f^{\prime} equal to 0.5 in their model. They assumed this value on the basis of Olander's (1963) work. Gainer (1964) supported this choice with a study of one of about 14 systems used in his study. The value of D_{AB} predicted by his model was compared with the experimentally determined diffusivity for the methanol (A)-glycerol (B) system using three different values of $f^{\prime}(1 / 3,1 / 2,2 / 3)$. For this one system, the optimum value of f^{\prime} obtained by Gainer appeared to about 0.50 --similar to Olander's observation. In this work, the optimum value of f^{\prime} using the original Gainer and Metzner (1965) model for other high-viscosity systems for which Gainer experimentally obtained molecular diffusivities was determined. Five systems were studied (hexanol-glycerol, hexanol-triethylene glycol, water-glycerol, water ethylene glycol, and methanol-glycerol). The value of f which minimized the deviation between the experimental and the predicted $D_{A B}$ for an individual system was determined, along with the value of f^{\prime} which minimized the average absolute percentage deviation (AAPD) for all of the systems. The parameter, f^{\prime}, was varied from zero to one in increments of 0.025 in a direct search for the value of f^{\prime} that minimized the deviation. The same type of search procedure is used later in this article for all models studied.

The above re-examination of Gainer's data, to test the assumption that f^{\prime} equals one-half, resulted in some interesting
observations not directly related to the determination of an optimum f^{\prime}. The prediction $D_{A B}$ using the Gainer and Metzner model is dependent upon good estimations of $\mathrm{V}_{\mathrm{X}}, \eta_{\mathrm{X}}$, and $\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}$. According to Gainer and Metzner (1965), the values of the heats of vaporization were determined using the Bondi and Simkin (1957) article. Most of the values of the heats of vaporization used by Gainer and Metzner are not currently available (Gainer, 1969). Thus, one can only compare the viscous activation energies, $\mathrm{E}_{\eta_{\mathrm{B}}}$, that they obtained and tabulated (Gainer, 1964) with the $\mathrm{E}_{\eta_{\mathrm{B}}}$ values that were calculated using Equation 12 and our values of $\Delta E_{B}^{v a p}$ (calculated from $\Delta H_{B}^{\mathrm{vap}}$). In this study, either experimentally determined heats of vaporization were used or values of $\Delta H_{B}^{\text {vap }}$ were calculated using vapor pressure versus temperature data and the Clausius-Clapeyron equation. The values of $\mathrm{E}_{\eta_{\mathrm{B}}}$ generally agree to within 10 percent. However, Gainer (1964) reports E of n -hexanol at $25^{\circ} \mathrm{C}$ to be $3910 \mathrm{cal} / \mathrm{mole}$, compared with 1850 that was obtained in this work. Part of this large discrepancy may be due to Gainer's use of the Bondi and Simkin (1957) approach to evaluate $\Delta \mathrm{H}_{\mathrm{X}}^{\text {vap }}$ and part may be attributed to the values of the molar volume he used.

The molar volumes used in this work were those calculated from the density of the liquid components at the temperature of the diffusion experiment; whereas, the molar volumes used by Gainer
appear to be calculated using Kopp's rule at the boiling point
(although Gainer does not state this explicitly). In some cases, these values of the molar volume differ from one another by as much as 50 percent, e.g., for the solvent glycerol. Such differences can lead to final differences of 15 percent and more when estimating the molecular diffusivity.

The viscosity data used by Gainer and Metzner (1965) and those measured in this work or obtained in the literature agree within several percent except for the ethylene glycol and triethylene glycol data. The data used here for these two glycols were measured in this laboratory and the results agreed within about 5 percent with literature data; however, the viscosity data differed by about 20 percent from the values used by Gainer and Metzner. The value of the viscosity of n-hexanol used by Gainer and Metzner was not reported so no comparison was possible.

The predicted values of D_{AB} are sensitive to the physical property data one selects for use in the calculations and, as discussed above, there is some concern as to what these values are or should be. Thus in the author's re-estimation of optimum values of f, the study of the above-mentioned five systems was restricted first by using the exact physical property data of Gainer and Metzner and second by using our best estimations or measurements. The physical property data actually used in this study for each system are tabulated in Appendix A.

Using Gainer and Metzner's model and their physical property data, the value of f which minimized the AAPD for all five systems was determined
as 0.550 . The values of f which minimized the deviation for each system considered separately varied from 0.400 to 0.600 . Thus, Gainer and Metzner's study of one system was fortunately very representative of most of their systems.

When Gainer and Metzner's model was used with what is believed to be more accurate physical property data, the value of f which minimized the AAPD for all five systems was 0.650 . In this case, individual system f values ranged from 0.40 to 0.75 . The effect of the use of the best estimates of physical property data on the predicted diffusivity was pronounced only with the glycerin (A) - hexanol (B) system. For this system, the experimental D_{AB} is $0.060 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{sec}$, that predicted by Gainer's original model is $0.077\left(10^{-6}\right) \mathrm{cm}^{2} / \mathrm{sec}$. When an optimum f (viz., 0.650) and the best estimates or measurements of the physical property data is used, the $D_{A B}$ predicted is $0.113 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{sec}$.

In this work, the Gainer and Metzner model was also modified so that the viscous activation energy, $\mathrm{E}_{\eta_{\mathrm{B}}}$, is calculated from experimental viscosity versus temperature data using the following relation

$$
\begin{equation*}
\mathrm{E}_{\eta_{\mathrm{B}}}=\mathrm{R} \frac{\mathrm{~d}\left(\ln \eta_{\mathrm{B}}\right)}{\mathrm{d}\left(\mathrm{~T}^{-1}\right)} \tag{40}
\end{equation*}
$$ physical property data evaluated in this work, values of the parameter f vary from 0.725 to 0.900 . The value of f for the methanol-glycerol system using this "modified" approach to the Gainer and Metzner model will be examined

more carefully in the following sections.
There is also evidence in the literature to suggest that for many systems the fraction of the total energy of activation for molecular transport processes due to the hole formation step, f, is closer to 0.9 than to 0.5 . Using the data of Jobling and Lawrence (1951) for the viscosity of normal liquids at constant volume, Bockris et al. (1964) concluded that the predominant term ΔH_{D} is the enthalpy to form a hole, i.e., $\Delta H_{D_{A B}}^{h}$, and that $\Delta H_{D_{A B}}^{j}$ contributes very little (10 percent) to the total enthalpy of activation. The results of this analysis appear to be similar to an earlier anal ysis reported by Glasstone et al. (1941) who considered that the activation energy of viscosity for a constant volume process, $\mathrm{E}_{\eta_{\mathrm{B}}}$, equaled the activation energy of the jump step, $\mathrm{E}_{\eta_{\mathrm{B}}}^{\mathrm{j}}$. Glasstone, et al. (1941) analyzed constant volume viscosity versus temperature data with a modified rate equation for viscous transport in order to compute $\mathrm{E}_{\eta_{\mathrm{B}}}^{\mathrm{j}}$. They reported values of f ranging between 0.8 and 0.9 for most "normal" liquids.

Bockris et al. (1964) have indicated by using binary diffusion data how the ratio $\left(\Delta H_{D}^{j} / \Delta H_{D B}\right.$) should vary as a function of the isothermal compressibility coefficient of pressure. The ratio was reported to be equal to about 0.01 for normal alcohols, 0.04 for hydrocarbons, and 0.17 for glycols; that is f is approximately equal to $0.99,0.96$, and 0.83 , respectively. They calculated $\Delta H_{D_{A B}}^{j}$ from the following expression:

$$
\Delta H_{D_{A B}}^{j}=-R \frac{\partial \ln D_{A B}}{\partial(1 / T)_{V}}
$$

The assumption that the activation energy of diffusion (or viscous transport) at constant volume represents only the jump-step contribution has been disputed (Collins, 1957). The activation energy of diffusion measured at constant pressure is considered to be the sum of the jump and hole formation activation energies.

The calculation of f using the constant volume and constant pressure self diffusion energies $\left(\mathrm{E}_{\mathrm{D}_{\mathrm{BB}}}\right)_{\mathrm{P}}$ and $\left(\mathrm{E}_{\mathrm{D}_{\mathrm{BB}}}\right)_{\mathrm{V}}$ reported by McCall et al. (1959) has been re-examined in this work, and the parameter f has been calculated from the following expression:

$$
\begin{equation*}
\mathrm{f}=\left[\left(\mathrm{E}_{\mathrm{D}_{\mathrm{BB}}}\right)_{\mathrm{P}}-\left(\mathrm{E}_{\mathrm{D}_{\mathrm{BB}}}\right)_{\mathrm{V}}\right] /\left(\mathrm{E}_{\mathrm{D}_{\mathrm{BB}}}\right)_{\mathrm{P}} \tag{41}
\end{equation*}
$$

The results are presented in Table II. With a few exceptions, notably water and methanol, f values tend to be concentrated in the range of values found by the above workers who used this general approach and also found in this work, by using the search for optimal f values in conjunction with the various diffusion models described earlier in this paper. For nonassociating solvents such as benzene and isopentane, f is generally greater than two-thirds. Olander (1963) suggests that for hydrogen bonded molecules f should be less than one-half-which is indicated in Table II.

It should be pointed out that the data in Table II for water imply that $\Delta H_{D_{B B}}^{j}$ is equal to the total activation enthalpy. This does not agree with the observations of Glasstone et al. (1941). They state that $\Delta H_{D_{B B}}^{j}$ is negative, but they do not reveal their source of data nor the magnitude of $\Delta H_{D_{B B}}^{j}$.

TABLE II

ACTIVATION ENERGY AT CONSTANT PRESSURE AND

VOLUME, AND THE PARAMETER f
FOR SELF DIFFUSION

Compound	$\begin{aligned} & \left(\mathrm{E}_{\mathrm{D}_{\mathrm{BB}}}\right)_{\mathrm{P}} \\ & \text { Kcal/Mole } \end{aligned}$	$\begin{aligned} & \left(\mathrm{E}_{\mathrm{D}_{\mathrm{BB}}}\right)_{\mathrm{V}} \\ & \mathrm{Kcal} / \mathrm{Mole} \end{aligned}$	f	Ref.
Benzene	2.780	0.780	0.72	a
Methanol	3.500	2.700	0.23	b
Water	4.950	4.950	0.00	c
Nitromethane	3.810	0.790	0.79	c
Acetone	2.030	1.000	0.51	c
Benzene	2.000	0.230	0.88	c
Cyclohexane	4.560	2.380	0.48	c
i-Pentane	1.730	0.190	0.89	c
Carbon Tetrachloride	3.300	1.070	0.68	d

a. Hiraoka et al. (1958a)
b. Hiraoka et al. (1958b)
c. McCall et al. (1959)
d. Watts et al. (1955)

The above discussion suggests that the value of f equal to one-half that was used by Olander (1963) and Gainer and Metzner (1965) should probably be somewhat larger--perhaps about 0.8. It is also recognized, however, that the value of f varies, and in cases widely, from system to system. The model developed in this work (D_{M}), the original Gainer and Metzner model (D_{GM}), the modified Gainer and Metzner model ($\mathrm{D}_{\mathrm{GM}}^{\prime}$) and the Olander model (D_{O}) are dependent upon the value of f used. In the following sections, the best value of f to use for a given diffusivity prediction technique ($\mathrm{D}_{\mathrm{GM}}, \mathrm{D}_{\mathrm{GM}}^{\prime}, \mathrm{D}_{\mathrm{O}}, \mathrm{D}_{\mathrm{M}}$) will be determined by the direct search optimization technique outlined above which minimizes the AAPD for all solute-solvent pairs within a given type of system (low viscosity, nonassociating; low viscosity, associating; high viscosity, associating).

The parameter f will be considered to be constant for its respective model within each of the three major types of systems, i.e., the hole formation step is assumed to require the same fraction of total activation energy for each binary solution within a major system category. In some special cases, a major type of system will also be broken into subsystems for which a single value of f will be used. (Such a generalization is an oversimplification in reality; and the best values of f for individual binary systems are expected to vary from the best f value for a given category of systems.)

In the following discussion, experimental binary diffusivities will be compared with six different diffusion coefficient prediction techniques: Wilke-Chang method (D_{WC}), original Olander model (D_{O}), original Gainer
and Metzner model (D_{GM}), with $\mathrm{f}=0.5$, the Gainer and Metzner model with an optimum f and experimental values of $E_{\eta_{B}}$, and the model developed in this work (D_{M}) with an optimum value of f .

C. Predictions for nonassociating systems (low viscosity).

A comparison of the experimental values for the binary molecular diffusion coefficients of the 28 different solute-solvent systems that exhibit negligible hydrogen bonding between the binary pairs (Table III) and the predicted diffusivities of the various models will be made in this section.

The author's modification of the Gainer and Metzner model (optimum $f=$ 0.850 and experimental $\mathrm{E}_{\eta_{\mathrm{B}}}$) predicts diffusion coefficients with an average absolute percent deviation (AAPD) of 16.9 percent. This may be compared with AAPD values of $17.3,18.9,21.0,21.9$ and 35.8 percent that result, respectively, from the predictions of the Olander equation $(f=0.5)$, the model proposed in this work ($f=0.675$), the original Gainer and Metzner model (with an optimum $f=0.90$), the Wilke-Chang equation, and the original Gainer and Metzner model ($f=0.5$). The modified Gainer and Metzner model is clearly superior to the original Gainer and Metzner model. Likewise, the original Gainer and Metzner model is improved considerably by the optimization of f.

For those models for which AAPD was optimized, the best value of f was in the range of about 0.70 to 0.90 --which appears to be in agreement with predictions based upon viscosity data discussed earlier. This range of f contrasts with the value of f equal to about one half that was found by Olander (1963) and used by Gainer and Metzner (1965).
table III
EXPERIMENTAL AND PREDICTED DIFFUSITITIES
$\left(\times 10^{5} \mathrm{~cm}^{2} / \mathrm{SEC}\right)$ FOR LOW VISCOSITY
SYSTEMS

Solvent	Solute	$\begin{gathered} \text { Temp } \\ { }^{0_{C}} \end{gathered}$	$\begin{gathered} \eta \\ \text { ср } \end{gathered}$	$\mathrm{D}_{\mathrm{EXP}}$	(REF)	${ }^{\text {WWC }}$	$\begin{gathered} \Delta(\text { WC }) \\ \% \end{gathered}$	${ }^{\text {D }}$	$\begin{gathered} \Delta\left(D_{0}\right) \\ \% \end{gathered}$	$\mathrm{D}_{\text {GM }}$	$\begin{gathered} \Delta(\mathrm{GM}) \\ \% \end{gathered}$	D_{GM}	$\begin{gathered} \Delta(\mathrm{GM}) \\ \% \end{gathered}$	$\mathrm{D}_{\mathrm{GM}}^{\prime}$	$\begin{gathered} \Delta^{2}(G M) \\ \% \end{gathered}$	D_{M}	$\begin{gathered} \Delta(M) \\ \% \end{gathered}$
Benzene	Acetic acid	15	0.696	1.92	a	2.14	11.5	1.84	4.2	2.15	12.0	1.87	2.6	1.81	5.7	1.75	8.9
"	Carbon Tetrachloride	15	0.696	1.60	a	1.68	5.0	1.72	7.5	2.03	26.9	1.90	18.8	1.79	11.9	1.47	8.1
"	Chloroform	15	0.696	2.39	a	1.89	20.9	2.06	13.7	1.90	20.5	1.82	23.8	1.97	17.6	1.87	21.8
"	Hexane	15	0.696	2.15	a	1.39	35.3	2.11	1.9	2.89	34.4	2.15	0.0	1.86	13.5	2.13	0.9
"	Methanol	15	0.696	2.50	a	3.10	24.0	2.45	2.0	2.02	19.2	1.45	42.0	1.57	37.2	2.54	1.6
"	Ethanol	15	0.696	2.25	a	2.34	4.0	1.82	19.1	1.30	42.2	1.30	42.2	1.38	38.7	1.72	23.6
"	Metbyl Ethyl Ketone	30	0.569	2.09	b	2.25	7.6	2.77	32.6	3.01	44.0	2.43	16.3	2.42	15.8	2.55	22.0
"	Cyclohexane	25	0.610	2.09	c	1.82	12.9	1.98	5.3	2.15	2.9	2.16	3.4	1.94	7.2	1.69	19.1 34.7
"	Acetone	25	0.610	4.12	c	2.42	41.3	2.86	30.6	3.96	3.9	2.44	40.8	2.87	30.3	2.69	34.7
Toluene	Ethanol	15 15	0.623	3.00	a	2.84	5.3	1.95	35.0	1.37 1.81	54.3	1.37 1.88	54.3	1.42 1.91	52.7	1.95	35.0 12.1
"1	Chlorobenzene	15 30	0.623 0.523	1.90 2.21	a	1.91 2.66	0.5 20.4	1.91 2.91	0.5 31.7	1.81 3.02	4.7 36.6	1.88 2.48	12.1 12.2	1.91 2.46	11.5	1.67 2.69	12.1 21.7
"	Methyl Ethyl Ketone n -Propanol	30 25	0.523 0.553	2.21 3.56	b	2.66 2.73	20.4 23.3	2.91 1.90 3.9	31.7 46.6	3.02 1.32	36.6 62.9	2.88 1.86	12.2 47.8	2.46 2.09	11.3 41.3	2.69 1.74	21.7 51.1
rane	Benzene	15	0.337	3.70	a	3.80	2.7	3.23	12.7	2.33	37.0	2.98	19.5	3.28	11.4	3.01	18.6
析	Methyl Ethyl Ketone	30	0.278	3.74	b	4.84	29.4	4.57	22.2	4.04	8.0	4.13	10.4	4.53	21.1	4.27	14.2
Methanol	Benzene	15	0.623	2.40	a	1.73	27.9	2.27	5.4	5.88	145.0	3.00	25.0	3.71	54.6	1.74	27.5
Chloroform	Benzene	15	0.596	2.51	a	2.53	0.8	2.19	12.6	2.01	19.9	2.09	16.7	2.03	19.1	1.92	23.5
Carbon Tetrachloride	Benzene	15	1.038	1.08	a	1.65	52.8	1.43	32.4	1.04	3.7 1.6	1.12 1.36	5.7	1.18	9.2	1.31	21.3 2.3
	Cyclohexane	25	0.888	1.28	-	1.76	37.5	1.48	15.7	1.26 1.45	1.6	1.36 1.39	6.2	1.28 1.42	0.0 4.1	1.31 1.48	2.3 0.0
Chlorobenzene	Toluene ${ }_{\text {Bromobenzene }}$	15 15	0.844 0.844	1.48 1.40	a	1.53	8.4	1.63	10.1	1.45 1.31	6.4	1.39 1.37	6.4 1.4	1.42	4.4 1.4	1.20	14.3
Ethanol	Benzene	15	1.327	1.67	a	0.84	49.7	1.21	27.6	3.19	91.0	1.31	21.6	1.60	4.2	0.93	44.3
${ }^{\prime \prime}$	Toluene	15	1.327	1.60	a	0.74	53.8	1.19	25.6	3.47	116.9	1.37	14.4	1.65	3.1	1.03	35.6
Bromobenzene	Chlorobenzene	15	1.196	1.10	a	1.30	18.2	1.17	6.4	1.05	4.5	1.00	9.1	1.03	6.4	1.07	2.7
Acetone	Benzene	25	0.308	2.75	c	3.50	28.7	3.91	42.2	7.09	157.8	4.85	76.4	4.93	79.3	3.22	17.1
n-Propanol	Toluene	25	1.950	1.35	d	0.50 1.48	63.0 21.3	0.96 1.70	28.9	1.22 1.46	22.3	0.78 1.43	42.2 23.6	1.32	18.2	1.04 1.58	23.0 16.0
cyclohexane	Benzene ${ }_{\text {Carbon }}$ Tetrachloride		0.883	1.48	$\stackrel{\text { c }}{\text { e }}$	1.42	21.3 4.1	1.51	9.6 2.2	1.68	13.5	1.55	23.6 4.7	1.54 1.56	18.1 5.4	1.36	16.0 8.1
Average absolute percent deviation							21.9		17.3		35.8		21.0		18.8		18.9
Value of the parameter f used									0.50		0.50		0.900		0.850		0.675

a. Johnson and Babb (1956)

Amourdam and Laddhe (1967)
. Shroff and Shemilt (1966)
e. Kulkarni et al. (1965)

Figure 3 indicates the dependence of the AAPD for each prediction model of the parameter f. In the case of the Olander model, the AAPD varies only slightly as the parameter f varies from zero to one. All other models, however, show a stronger dependence on f for these nonassociating, low viscosity systems. This shows, of course, that there is greater scatter in the optimum value of f for the individual solute-solvent systems for the Olander model. This appears to be so because the difference between $\Delta F_{\eta_{B}}$ and $\Delta F_{D_{A B}}$ is small, and thus, the exponential term is probably close to unity. This implies that a small error in the evaluation of that difference could yield a large error in the best value of the parameter f one obtains.

The values of f discussed above are for an assumed constant value for the entire set of nonassociating systems. The values of the optimum f for individual solute-solvent systems (not indicated in Table III) are consistently in the range of 0.6 to 1.0 . For a few systems, they are, however, found to be nearer zero.

On the basis of this comparison, it would appear that the modified Gainer and Metzner equation best predicts diffusion coefficients for low viscosity, nonassociating systems. Except for the original Gainer and Metzner model, all prediction expressions are of comparable accuracy. In view of this, the relatively easy-to-use Wilke-Chang (1955) equation is recommended for these binary solutions.
D. Predictions for associating systems (low viscosity).

A comparison of the experimental values of the binary molecular

Figure 3. The average absolute percent deviation versus the fraction f for 28 low viscosity nonassociating systems.
diffusion coefficients for 19 different solute-solvent associating systems with with the predicted diffusivities for various models will be discussed in this section. These comparisons are shown in Tables IV, V and VI and in Figures 4, 5 and 6 .

The Wilke-Chang equation clearly predicts the diffusivities for this class of systems far better than any of the other equations when all of the data are considered together (as in Table IV). Since the AAPD's are all greater than 40 percent for all the other equations and less than 20 percent for Wilke-Chang equation, this relatively easy-to-use equation is again recommended for this set of binary solutions.

A closer look at Table IV reveals that for all of the equations except the Wilke-Chang equation, the diffusivities for the systems where water is the solvent (aqueous systems) are predicted much less accurately than for systems where water is not the solvent. The reason for this condition is that the parameter f is quite different for these two subdivisions within this category of systems. On this basis, these subdivisions were studied separately, and the results are given in Tables V and VI and in Figures 5 and 6.

For the aqueous systems shown in Table V, the Wilke-Chang equation is still far superior to any of the other equations and is still recommended for calculating diffusivities for this subdivision. This result was not unexpected since a great deal of the data upon which the Wilke-Chang equation was based was of this particular type.

The optimum value of the parametter f for these aqueous solvent systems varies quite widely. Olander's model and the Gainer and Metzner modified
table iv
2XPERIMENTAL AND PREDIOTED DIFFUSIVITIES
$\left(\times 10^{5} \mathrm{~cm}^{2} / \mathrm{SEC}\right)$ FOR LOA VISCOSITY
ASSOCIATING SYSTEMS

*Johnson and Babb (1956)

TABLE V
EXPERIMENTAL AND PREDICTED DIFPUSIVITIES
$\left(\times 10^{5} \mathrm{~cm}^{2} /\right.$ SBC $)$ FOR LOW VISCOSITY
associating aqueous systems

TABLE VI
EXPERIMENTAL AND PREDICTED DIPFUSIVITIES
$\left(\times 10^{5} \mathrm{~cm}^{2} /\right.$ SEC $)$ FOR LOW VISOOSITY
ASSOCIATING NONAQUEOUS SYSTEMS

Figure 4. The average absolute percent deviation versus the fraction f for 19 low viscosity associating systems.

Figure 5. The average absolute percent deviation versus the fraction f for 7 low viscosity associating aqueous systems.

Figure 6. The average absolute percent deviation versus the fraction f for 12 low viscosity associating nonaqueous systems.
model both give values of f that are less than 0.5 . This fact agrees with Olander's statement that $\Delta \mathrm{F}_{\mathrm{D}}^{\mathrm{j}}$, should be larger than normal for hydrogenbonded substances. On the other hand, Gainer and Metzner's original model and the model developed in this work give values of f that are greater than 1.0. Eyring, in Glasstone et al. (1941), indicates that the activation energy for the jump step is negative for water. This agrees with an f value of more than 1.0. Thus the proper value for the parameter f is still open to question when water is the solvent.

For those systems where water is not the solvent shown in Table VI and Figure 6, but where association between binary pairs exists, the model developed in this work predicts the diffusivities significantly better than any of the other models tested. The AAPD for the model developed in this work is 14.7 as compared to 21.8 for the Wilke-Chang equation, 22.0 for the modified Gainer and Metzner model, 21,4 and 102.0 for the original Gainer and Metzner model with an optimum f and f equal to 0.5 , respectively, and 51. 2 for Olander's model.

For those models for which the AAPD is optimized, the best value of f for the nonaqueous solvent systems ranges from 0.950 to 1.0. This range agrees very well with the value of $f(0.99)$ estimated by Bockris et al. (1964) for normal al cohols.

This comparison shows that the model developed in this work gives the best prediction for the diffusivities of nonaqueous solvent, low viscosity, asso ciating systems. When the proper optimum value of f is used, all of the
models give average deviations of less than 25 percent. Because the model developed in this work gives significantly lower deviations, the model is recommended for calculating diffusivities for this subclass of systems. When the necessary data are not available, the Wilke-Chang equation serves as an excellent substitute.
E. Predictions for high viscosity systems.

The results of a comparison of the experimental values of the binary molecular diffusion coefficients for 19 high viscosity, solute-solvent systems with the predicted diffusivities of the various models are summarized in Table VII and in Figure 7 when all the data are analyzed together.

The diffusivities for the first five systems shown in Table VII (i.e., those where ethylene glycol and cyclohexanol are the solutes) were measured in this work. The diffusivities of these systems at other temperatures were also measured in this work, but were not included in Table VII. They were not used here so that the results would not be unduly weighted by these few moderately high viscosity glycol systems. The effect of temperature on the diffusivities for these systems will be investigated in a separate study. The diffusivities for the remainder of the systems shown in Table VII are from the work of Gainer and Metzner (1965).

None of the equations tested adequately predict the entire set of data. The best model is the modified Gainer and Metzner model (with an optimum f of 0.850), which has an average deviation of 39.9 percent. Table VI reveals, however, that some of the equations tested do adequately predict some of the

TABi.s VIt
EX: Ertnentel and ifedicted diffusivities
$\left(\times 10^{6} \mathrm{~cm}^{2} / \mathrm{SEC}\right)$ FOR HIG: VISCOSITY
SYSTEMS

Solvent	Solute	$\begin{gathered} \text { Temp } \\ 0_{0} \end{gathered}$	$\begin{gathered} \eta \\ \text { poise } \end{gathered}$	FET	($\mathrm{NWO}_{\mathrm{NO}}$)	$\Delta \text { (MC) }$	To	$\underset{\pi}{\Delta\left(D_{0}\right)}$	$\mathrm{D}_{\text {GM }}$	$\begin{gathered} \Delta(\mathrm{GM}) \\ \% \end{gathered}$	D_{GM}	$\begin{gathered} \Delta(\mathrm{GM}) \\ \% \end{gathered}$	$\mathrm{D}_{\mathrm{GM}}^{\prime}$	Δ	D_{M}	$\begin{gathered} \Delta(\mathrm{M}) \\ \% \end{gathered}$
Propylene Glycol	Sthylene alycol	30	0.326	0.53	0.493	8.9	0.621	17.2	0.545	2.8	0.513	3.2	0.639	20.6	0.505	4.7
niethylene Glycol	Ethylene slycol	30	0.216	0.65	0.361	32.5	0.826	27.1	0.795	22.3	0.739	13.7	0.717	10.3	0.710	9.2
sthylene glycol	Cyclohexanol	30	0.135	0.64	0.681	6.4	0.803	25.5	1.27	98.4	1.23	92.2	0.859	34.2	0.882	37.8
Propylene Glycol	Syclohexanol	30	0.326	0.31	0.313	1.0	0.398	28.4	0.476	53.5	0.464	49.7	0.388	25.2	0.386	24.5
Dlethylene Glycol	Cyclohe xanol	30	0.216	0.50	0.559	11.8	0.531	6.2	0.548	9.6	0.560	11.9	0.403	19.4	0.498	0.4
Glycerin	Hexanol	25	9.5	0.060	0.011	81.7	0.138	130.0	0.273	355.0	0.131	118.3	0.122	103.3	0.124	106.7
Triethylene Glycol	Hexanol	0	1.60	0.51	0.077	84.9	0.324	36.5	0.360	29.4	0.234	54.1	0.207	47.1	0.0175	65.7
Glycerin	Yater	20	1.4 .8 13.6	0.133 0.064	0.0105 0.0179	92.1 72.0	0.162 0.540	21.8 140.6	0.190 0.052	42.9 18.8	0.089 0.032	33.1 50.0	0.099 0.065	25.6 1.6	0.041 0.044	69.2 31.3
Glycerin ethylene glycol	Vethanol water	21 20	13.6 0.206	0.064 1.90	0.0179 0.618	72.0 65.7	0.540 2.64	140.6 46.7	0.052 2.65	47.2	0.032 1.91	50.0 6.1	0.065 1.32	26.7	0.044 1.46	18.9
slycerin	He xanol	0	121.0	0.0137	0.0008	94.2	0.0182	32.5	0.0386	181.8	0.0157	14.6	0.0149	8.8	0.0157	14.6
sthylene alycol	n-1myl alcohol	30	0.135	2.08	0.716	65.6	1.51	27.4	2.34	12.5	1.95	6.2	1.48	28.8	1.66	20.2
Bthylene alycol	n -Hexane	30	0.135	8. ? 0	0.670	91.8	2.85	65.2	12.03	46.7	6.66	18.8	3.60	56.1	4.01	51.1
"Chrysene"	n-He xanol $\mathrm{n}-\mathrm{Amyl}$ il coho	23.4 33.4	24.5 74.5	0.193 0.160	$0.0069 ?$ 0.00763	96.4 95.2	0.0302 0.0350	84.4 78.1	0.0504 0.0621	73.9 61.2	0.0265 0.0310	86.3 80.6	0.0478 0.0536	75.2 66.5	0.0122 0.0131	93.7 91.8
"Chrysere"	n-recane	22.0	24.5	0.077	0.00530	93.1	0.0467	39.4	0.0392	49.1	0.0219	71.6	0.0537	30.2	0.0177	77.0
"Hendecane".	n - He x xnol	22.0	40.0	$0.10 \times$	0.00557	94.6	0.0211	79.5	0.0584	43.3	0.0247	76.0	0.0492	52.2	0.0078	92.4
"Hendecane"	n-Octanol $n-$ necane	32.0	40.0 $\therefore .0$	0.0635 0.150	0.00476 $0.00+28$	92.5 97.1	0.0163 0.0339	74.3 77.4	0.0368 0.0354	42.0 76.4	0.0175 0.0170	72.4 88.7	0.0353 0.0456	44.3 69.6	0.0067 0.0090	89.5 94.0
'verage absolute percent deviation						66.5		54.6		66.7		49.9		39.9		52.3
The parameter f used								0.50		0.50		0.625		0.850		0.825

"Ohrysene" $1: 1,2,3,4,5,6,7,3,13,14,15,16$ dodecanydrochrysene
"Hคntecane" 1s 1, 1-di-(alpha-decalyl)-nendecane

Figure 7. The average absolute percent deviation versus the fraction f for 19 high viscosity systems.
individual systems and that logical subgroups of systems do exist. The most logical subgroups of systems seem to be the extremely high viscosity systems and the more moderate high viscosity systems. Because of this, the systems whose solvents are labeled "hendecane" and "chrysene" were studied as one subgroup and the remainder as another subgroup.

The first subgroup, shown in Table VIII, contains (see Figure 8) the more moderate high viscosity systems. These systems have at least one material that exhibits hydrogen bonding, and for most of the binary pairs both the solute and solvent exhibit hydrogen bonding. The results show that the original Gainer and Metzner model, the modified Gainer and Metzner model, and the model developed by the author all predict the data to about the same degree of accuracy; namely the average percent deviation is around 35. Olander's model gives a slightly higher deviation when the parameter f is taken to be one half, but when the optimized value of 0.650 is used, the average deviation is 31.0 percent.

The optimum f values range from 0.65 to 0.85 . This range is also in agreement with the range predicted by Eyring in Glasstone et al. (1941). Bockris et al. (1964) shows, as discussed earlier, that for glycols the value of f should be around 0.83 . The modified Gainer and Metzner model and the model developed in this work have optimum values of f of 0.850 and 0.825 , respectively. Thus, these two models substantiate Bockris' results almost exactly.

The second subgroup, shown in Table IX and Figure 9, consists of
table vili
BXPERIMENTAL AND PREDICTED DIFFUSIVITIES
$\left(x 10^{6} \mathrm{Sm}^{2} / \mathrm{SEC}\right.$) FOR MODERATELY HIGH VISCOSITY
SYSTEMS

Solvent	Solute	$\begin{gathered} \text { Temp } \\ \circ_{0} \end{gathered}$	$\begin{gathered} \eta \\ \text { poise } \end{gathered}$	$\mathrm{D}_{\text {EXe }}$	Dic	$\begin{gathered} \Delta(\mathrm{nC}) \\ 4 \end{gathered}$	${ }^{3} 0$	$\Delta\left(\eta_{0}\right)$	D_{GM}	$\Delta(G M)$		$\Delta(\mathrm{GM})$	$D_{G M}^{\prime}$	$\Delta_{\square}^{\prime}(G M)$	D_{M}	$\begin{gathered} \Delta(M) \\ \% \end{gathered}$
Fropylene Glycol	Ethylene Glycol	30	0.326	0.53	0.483	8.9	0.621	17.2	0.545	2.3	0.507	4.3	0.639	20.6	0.505	4.7
Diethylene	Ethylene	30	0.216	0.65	0.461	32.5	0.826	27.1	0.795	22.3	0.729	12.2	0.717	10.3	0.710	9.2
Glycol ethylene	Glycol cyclohexanol	30	0.135	0.64	0.681	6.4	0.803	25.5	1.21	98.4	1.23	92.2	0.859	34.2	0.882	37.8
Glycol																
Eropylene slycol	"	30	0.326	0.31	0.313	1.0	0.398	28.4	0.476	53.5	0.461	48.7	0.388	25.2	0.386	24.5
niethylene	"	30	0.216	0.50	0.559	11.8	0.513	6.2	0.543	9.6	0.562	12.9	0.403	19.4	0,498	0.4
Glycol glycerin	Hexanol	25	9.5	0.06	0.011	81.7	0.138	130.0	0.273	355.0	0.113	83.3	0.122	103.3	0.124	106.7
Triethylene glycol	Hexapol	0	1.60	0.51	0.077	51.0	0.324	36.5	0.360	29.4	0.215	57.8	0.207	47.1	0.175	65.7
nlycerin	Water	20	14.8	0.133	0.0105	92.1	0.162	21.8	0.190	42.9	0.076	42.9	0.099	25.6	0.041	69.2
alycerin	Methanol	21	13.6	0.064	0.0179	72.0	0.154	140.6	$0.05 ?$	18.8	0.029	54.7	0.065	1.6	0.044	31.3
Ethylene alycol	Water	20	0.206	1.80	0.618	65.7	3.64	46.7	2.65	47.2	1.78	1.1	1.32	26.7	1.46	18.9
alycerin	Hexanol	0	121.0	.0137	. 008	94.3	0.182	32.5	. 0396	131.8	0.131	4.4	. 0149	8.8	. 0157	14.6
Ethylene Glycol	n-4myl alconol	30	0.135	2.03	0.716	55.6	1.51	77.4		12.5		9.6	1.48	28.8	1.66	20.2
Ethylene Glycol	Hexane	30	0.135	8.20	0.670	2. 3	3.85	65.2	12.03	46.7	5.92	27.8	3.60	56.1	4.01	51.1
Average absol	te percent devi	tion				51.9		46.5		70.8		35.1		31.4		34.9
ralue of f								0.50		0.50		0.65		0.85		0.825

Figure 8. The average absolute percent deviation versus the fraction f for 13 moderately high viscosity systems.

TABLE IX
EXPERIMENTAL AND EREDICTED DIFFUSIVITIES
$\left(\times 10^{6} \mathrm{~cm}^{2} / \mathrm{SEC}\right)$ FOR EXTREMELY HIGH VISCOSITY
SYSTEMS

Solvent	solute	$\begin{gathered} \text { Temp } \\ o_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \eta \\ \text { poise } \end{gathered}$	$\mathrm{D}_{\text {S }} \mathrm{XF}$	${ }^{\text {nic }}$	$\Delta(\text { (NO) }$	${ }^{\circ} 0$	$\begin{gathered} \Delta\left(D_{\mathrm{C}}\right) \\ \frac{\pi}{b} \end{gathered}$	${ }^{7} \mathrm{~F}$	$\Delta(G M)$	$\mathrm{F}_{3} \mathrm{~m}$	$\begin{gathered} \Delta(\mathrm{GM}) \\ \Rightarrow \end{gathered}$	${ }^{\circ} \mathrm{GM}$	$\begin{gathered} \Delta^{\prime}(\sigma M) \\ \sigma_{8} \end{gathered}$	D_{M}	$\begin{gathered} \Delta(\mathrm{M}) \\ \% \end{gathered}$
"Ohrysene"	He xanol	23.4	24.5	0.193	0.00674	96.4	0.030	84.4	0.050	73.9	0.034	56.5	0.073	62.2	0.095	50.8
"1	n-Amyl Alcohol	23.4	24.5	0.150	0.00744	$95 . ?$	0.035	73.1	0.062	61.2	0.108	32.5	0.083	48.1	0.116	27.5
"	necane	22.0	24.5	0.077	0.00516	33.1	0.047	39.4	0.039	49.1	0.062	19.5	0.083	7.2	0.264	242.8
"Hentecane"	He xanol	22.0	40.0	0.103	0.00557	94.6	0.021	79.5	0.058	43.3	0.116	12.6	0.085	17.5	0.098	4.9
	Octyl Alochol	22.0	40.0	0.0635	0.00476	92.5	0.016	74.3	0.037	42.0	0.067	5.5	0.053	8.7	0.065	2.4
"	necane	22.0	40.0	0.150	0.00428	97.1	0.034	77.4	0.035	76.4	0.064	57.3	0.078	48.0	0.143	4.7
Average absolute percent deviation						24.9		72.3		57.6		30.6		32.0		55.5
Value of the	parameter f use							0.50		0.50		0.40		0.825	0.525	

"Chrysene" is $1,2,3,4,5,6,7,8,13,14,15,16$ dodecahydrochrysene
"Hendecane" is 1, 1-di-(alpha-decalyl)-hendecane

Figure 9. The average absolute percent deviation versus the fraction f for 6 extremely high viscosity systems.
systems whose solvents are "hendecane" and "chrysene". The modified and original Gainer and Metzner models, with optimized f values, give average deviations of about 30 percent. None of the other models tested adequately predicted the diffusivities for this subgroup. The optimum f values for this subgroup vary from 0.225 to 0.825 . There appears to be no systematic correlation for these f values.

The average absolute percent deviations in Table VI range from 39.9 to 67.2 percent when all of the 19 high-viscosity systems are considered together. One significant fact that can be obtained from this table is that the diffusion coefficients measured in this laboratory (i.e., the systems whose solutes are ethylene glycol and cyclohexanol) are predicted generally with greater precision than those taken from Gainer and Metzner's work. The apparent reason for this is that the diffusivities reported by Gainer and Metzner were not measured at very low solute concentrations as was done in this work. The highest solute concentration used in this work was approximately 0.025 moles per liter. In contrast, the concentrations used in the work of Gainer and Metzner were not explicitly stated, but an analysis of their data indicates interfacial concentrations ranging from a high of eight moles per liter to a low of 0.1 moles per liter.

One would expect their data to be very concentration dependent (or concentration average values) since the diffusion coefficients of associating systems, especially high viscosity systems, are known to vary greatly with concentration. This is expected to happen even at fairly low concentrations.

On the basis of this, the average absolute percent deviations versus f were recalculated using only the experimental results of this project.

The results of this recalculation are shown in Table X and in Figure 10. The average deviation is lowest for the Wilke-Chang equation--the value being 12.1 percent. This is comparable with the $14.8,17.9,20.8$, and 37.3 percent deviation for the authors' model, the modified Gainer and Metzner model, Olander's model, and the original Gainer and Metzner model, respectively. It is interesting to note that none of the equations tested gives an average value of the absolute percent deviation greater than 25 except the original Gainer and Metzner model. Thus, one might speculate that all of the equations tested predict adequately the diffusion coefficients for all types of systems at concentrations approaching infinite dilution. This could apply even to the ability of the Wilke-Chang equation to predict the diffusion coefficients of moderately high vis cosity systems.

The optimum f values are between 0.775 and $0.925-$ as expected from the results of Eyring in Glasstone et al. (1941) and Bockris (1964)--for all of the models except Olander's.

On the basis of the author's study, the Wilke-Chang equation can adequately predict the diffusivities for moderately high viscosity systems-to about 30 centipoise or more--but it is definitely not adequate for high viscosity systems. All of the other equations tested also predict quite adequately the diffusivities for the moderately high viscosity systems. It is also important to note that the predictions are much more accurate for these other equations when an optimized f value is used than when a value of one-half

TABLE X
EXPERIMENTAL AND PREDICTED DIFFUSIVITIES
$\left(\times 10^{6} \mathrm{~cm}^{2} / \mathrm{SEC}\right)$ FOR HIGH VISCOSITY
SYSTEMS MEASURBD IN THIS WORK

Figure 10. The average absolute percent deviation versus the fraction f for 5 high viscosity systems measured in this work.
is used for the f parameter.

For the higher viscosity systems, the equation developed in this work, the original and modified Gainer and Metzner model, and the Olander model, all can be used to predict the diffusion coefficients. Again, an optimized value of f will give more accurate results. Since the data reported by Gainer and Metzner are probably concentration dependent, the value of the parameter f shown in Table VIII should be used for these calculations. It is obvious here that more high-viscosity diffusivities at low solute concentrations are needed.

VI. CONCLUSIONS

The Eyring rate theory equation has been successfully modified to enable one to predict binary molecular diffusion coefficients for a variety of liquidliquid systems. The activation free energy, $\Delta F_{D_{A B}}$, has been evaluated in terms of the self-diffusion, activation-free energies of the solute and solvent. This was accomplished through the use of regular solution theory by relating the bond-breaking energy of the jump step to the bond-breaking energy in evaporation. The assumptions used in this development have been tested (with the meager data available in the literature), and these preliminary results showed the assumptions to be valid.

Comparisons of the ability of the equation developed in this work with the equations developed by Olander, by Gainer and Metzner, and by Wilke and Chang to accurately predict the diffusion coefficients were made for three general types of systems. Generally, the results showed the Wilke-Chang equation to be adequate for most low viscosity systems as well as for the moderately high viscosity systems studied in this project. Likewise, all of the other equations tested adequately predicted the diffusion coefficients for these same systems. This is especially true if the optimized value of the parameter f is used instead of the value of one-half suggested by Olander and by Gainer and Metzner.

The diffusivities for the high viscosity systems are more accurately predicted by the three modified forms of the Eyring absolute rate theory equation than by the Wilke-Chang equation. Since these three equations give similarily adequate results, the availability of data for the system of interest is a very important consideration. The equation developed in this work and the
equation developed by Olander require less data than the Gainer and Metzner model and are thus preferred. As for the low viscosity systems, the three modified forms of the Eyring absolute rate theory equation give superior results when an optimized value of the parameter f is used. This is even more evident for the high viscosity systems, since the AAPD's are more dependent upon f for these systems.

The parameter f generally is in the range of 0.65 to 1.0 for most of the systems and for most of the equations studied. This range agrees with the estimation by Eyring that the jump step portion of the total activation energy should constitute about 10 to 20 percent of the total activation energy.

More specifically, the value of the parameter f is between 0.95 and 1.00 for all of the equations tested for the low viscosity associating systems-excepting those containing water as the solvent. This agrees almost exactly with the estimation by Bockris et al. (1964) that f is about 0.99 for normal alcohols. On the other hand, the value of the parameter f for aqueous systems varies considerably depending upon the model being tested.

Olander's equation shows very little dependence of the average absolute percent deviation on the parameter f. For normal liquids, this means that the choice of f equal to one-half by Olander was a good one. In general, however, the optimized value of f gives better agreement between calculated and experimental diffusivities than the value of one-half. This is especially true for the low viscosity associating systems and for some high viscosity systems.

The diffusion coefficients reported by Gainer and Metzner may be subject to severe error due to a possible concentration dependence. Thus, the values
of f used for future predictions should only be based on the data obtained in this laboratory until more accurate high viscosity diffusion data are available.
VII. APPENDICES

APPENDIX A

PHYSICAL PROPERTIES AND PARAMETERS
USED FOR CALCULATIONS

A. Selection of Data.

In this section the methods used to select the various physical properties and parameters used in calculating the binary diffusivities will be presented. They are as follows:

1. k , the Boltzman constant $1.3805(10)^{-16} \mathrm{erg} /{ }^{\mathrm{O}} \mathrm{K}$.
2. h, the Planck constant $6.6242(10)^{-27} \mathrm{erg} / \mathrm{sec}$.
3. N , the Avogadro number $6.023(10)^{23}$ molecules/mole.
4. R, the universal gas constant $1.987(10)^{-3} \mathrm{Kcal} / \mathrm{mole}$.
5. T , the temperature at which the diffusivity was required in ${ }^{0} \mathrm{~K}$.
6. \bar{V}_{X}, the molar volume of component X at the temperature of interest (except for use with the Wilke-Chang equation) was used in units of $\mathrm{cm}^{3} / \mathrm{mole}$. This is readily obtainable from the density and the molecular weight of the component. The density is usually obtainable from one of the following references:
a. The Handbook of Chemistry and Physics, (1965).
b. Perry (1963)
c. The International Critical Tables (1926.).
d. Timmermans (1959).
e. Tables of the A.P.I. Research Project 44 (1968).

If not available from these references, the density can be measured [Daniels et al. (1962)]. For all the systems reported in this work, the density data were available in the above references except for the solvents ethylene glycol, diethylene glycol and propylene glycol. The densities for these were measured by Moore (1967). The densities of the systems "Hendecane" and "Chrysene" were also not available in the above references; they were measured by Lowitz et al. (1959).

When used in the Wilke-Chang equation, the solute molar volume in $\mathrm{cm}^{3} /$ mole is required at the boiling point. This was calculated using Kopp's rule and the "Atomic Volumes" given in Treybal (1963).
7. η_{B}, the viscosity of the solvent (or solution of solute A in solvent B at infinite dilution) was used in units of poise. The viscosity is usually available from one of the references discussed above.
8. ξ, the geometric parameter in the diffusion coefficient was set equal to 5.6 for all solvents for Olander's equation. It was 5.6 for D_{M} for all solvents except methanol and ethanol for which it was equal to 7.5 . $\boldsymbol{\xi}$ was 6.0 for Gainer and Metzner's equation for all solvents except methanol and ethanol for which the value of 8.0 was used.
9. \varnothing, the molecular association constant in the Wilke-Chang equation was equal to 2.6 for water, 1.9 for methanol, 1.5 for ethanol and 1.0 for all other solvents.
10. $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{XX}}}$, for use in Olander's equation was calculated by the following
equation:

$$
\begin{equation*}
\Delta \mathrm{F}_{\eta_{\mathrm{X}}}=\mathrm{RT} \ln \left(\eta_{\mathrm{X}} \overline{\mathrm{~V}}_{\mathrm{X}} / \mathrm{hN}\right) \tag{A-1}
\end{equation*}
$$

and the assumption that $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{XX}}}$ equals $\Delta \mathrm{F} \eta_{\mathrm{X}}$. The selection of the terms in this equation has been described previously. When used in Equation $29, \Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{XX}}}$ is calculated using the following equation

$$
\begin{equation*}
\Delta{ }_{\eta_{\mathrm{X}}}=\mathrm{RT} \ln \left(\sqrt{2} \eta_{\mathrm{X}} \overline{\mathrm{~V}}_{\mathrm{X}} / \mathrm{hN}\right) \tag{A-2}
\end{equation*}
$$

and the assumption that $\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{XX}}}$ equals $\Delta \mathrm{F} \eta_{\mathrm{X}}$.
11. $\mathrm{E}_{\eta_{\mathrm{X}}}$, for use in the modified Gainer and Metzner equation was calculated from viscosity data versus temperature with the following equation:

$$
\begin{equation*}
\mathrm{E}_{\eta_{\mathrm{X}}}=\mathrm{RT} \frac{\mathrm{~d} \ln \eta_{\mathrm{X}}}{\mathrm{~d}(\mathrm{l} / \mathrm{T})} \tag{A-3}
\end{equation*}
$$

When used in the original Gainer and Metzner equation, $\mathrm{E}_{\eta_{\mathrm{X}}}$ was calculated with the following equation:

$$
\begin{equation*}
\mathrm{E}_{\eta_{\mathrm{X}}}=\mathrm{RT} \ln \left(\left(\eta_{\mathrm{X}} \overline{\mathrm{~V}}_{\mathrm{X}} \Delta \mathrm{E}_{\mathrm{X}}^{\mathrm{vap}}\right) /\left(1.09(10)^{-3} \mathrm{M}^{\frac{1}{2}} \mathrm{~T}^{3 / 2}\right)\right) \tag{A-4}
\end{equation*}
$$

The data necessary for use in both of the above equations have already been discussed, except the energy of vaporization term which will be discussed later.
12. α, the volumetric coefficient of thermal expansion, is calculated from the following equation:

$$
\begin{equation*}
\alpha_{x}=\frac{1}{\bar{v}_{X}} \frac{d \bar{v}_{X}}{d T} \tag{A-5}
\end{equation*}
$$

and molecular volume data as a function of temperature.
13. $E_{D_{X X}}$, when used for all forms of the Gainer and Metzner equation, ${ }^{E_{D_{X X}}}$ is assumed equal to $E_{\eta_{\mathrm{X}}}$. All of the necessary data used in these equations have been discussed previously.
14. The term $\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}$ is usually given in one of the references discussed earlier. These data are usually at the normal boiling point. When it was not available at the desired temperature, it was corrected by the following equation (see Perry, 1963)

$$
\begin{equation*}
\frac{\Delta \mathrm{H}_{\mathrm{T}_{1}}^{\mathrm{vap}}}{\Delta \mathrm{H}_{\mathrm{T}_{2}}^{\mathrm{vap}}}=\left(\frac{\mathrm{T}_{\mathrm{c}}-\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{c}}-\mathrm{T}_{1}}\right) 0.38 \tag{A-6}
\end{equation*}
$$

When no value of the $\Delta H_{\mathrm{X}}^{\mathrm{vap}}$ was available, it was calculated from the Claperyon-Clausis equation [see Moore (1955)] and the vapor pressure data given in Jordan (1954). In just two cases (viz. for "Hendecane" and "Chrysene"), the enthalpy of vaporization at the normal boiling was estimated by Trouton's rule (see Perry, 1963)

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}=(21) \mathrm{T}_{\text {boiling }} \tag{A-7}
\end{equation*}
$$

15. $\mathrm{E}_{\eta_{\mathrm{X}-\mathrm{D}}}$ (used in the Gainer and Metzner equation) was calculated from the ratio

$$
\begin{equation*}
\frac{{ }^{\mathrm{E}} \eta_{\mathrm{X}-\mathrm{D}}}{\mathrm{E}_{\eta_{\mathrm{X}}}}=\frac{\Delta \mathrm{H}_{\mathrm{X}-\mathrm{D}}^{\mathrm{vap}}}{\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}} \tag{A-8}
\end{equation*}
$$

The evaluation of $\Delta H_{X}^{\text {vap }}$ is discussed above. The term $\Delta H_{X-D}^{\text {vap }}$ is the enthalpy of vaporization of the hydrocarbon homologue of X at
the same reduced temperature.
16. ${ }^{\mathrm{E}} \eta_{\mathrm{X}-\mathrm{H}}$ is calculated from the equation

$$
\begin{equation*}
{ }^{\mathrm{E}} \eta_{\mathrm{X}-\mathrm{H}}=\mathrm{E}_{\eta_{\mathrm{X}}}-\mathrm{E}_{\eta_{\mathrm{X}-\mathrm{D}}} \tag{A-9}
\end{equation*}
$$

17. $\Delta \mathrm{E}_{\mathrm{X}}^{\mathrm{vap}}$ is simply obtained from the $\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}$ by the equation

$$
\begin{equation*}
\Delta \mathrm{E}_{\mathrm{X}}^{\mathrm{vap}}=\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}-\mathrm{RT} \tag{A-10}
\end{equation*}
$$

B. Data

The following tables contain the data collected from the literature and the parameters used in order to perform the necessary calculations throughout the thesis.

Table A-I shows the molecular weight, the solvent association parameter used in the Wilke-Chang correlation, and the parameter ξ used in the various forms of the absolute rate theory equations.

Table A-II gives the density data used to calculate the diffusion coefficients and the volumetric coefficient of expansion at constant pressure.

Table A-III gives the viscosity data used in the calculations.
Table A-IV gives the value of the molar volume obtained from Kopp's rule, the heat of vaporization, and the ratio of the heat of vaporization due to dispersion force bonds to the total heat of vaporization

Table A-V gives the viscosity, self diffusion, and volumetric coefficient of thermal expansion at constant pressure data used in the calculation of the parameter $\boldsymbol{\xi}$.

Table A-VI gives the binary diffusion and heat of mixing at infinite dilution data used to test the validity of assumptions as shown in Figures 1 and 2.

TABLE A-I
MOLECULAR WEIGHT AND PARAMETERS USED FOR
DIFFUSIVITY PREDICTIONS

Solvent	$\underset{\mathrm{C}}{\mathrm{Temp}_{\mathrm{O}}}$	Solvent Assoc. Parameter for $D_{W C}$	Molecular Weight	$\mathrm{D}_{\text {GM }}$	ξ D_{O}	D_{M}
Benzene	15.0	1.0	78.11	6.0	5.6	5.6
Benzene	25.0	1.0	78.11	6.0	5.6	5.6
Benzene	30.0	1.0	78.11	6.0	5.6	5.6
Toluene	15.0	1.0	92.13	6.0	5.6	5.6
Toluene	25.0	1.0	92.13	6.0	5.6	5.6
Toluene	30.0	1.0	92.13	6.0	5.6	5.6
Hexane	15.0	1.0	86.17	6.0	5.6	5.6
Hexane	30.0	1.0	86.17	6.0	5.6	5.6
Methanol	15.0	1.9	32.04	8.0	5.6	7.5
Methanol	30.0	1.9	32.04	8.0	5.6	7.5
n -Propanol	15.0	1.0	60.09	6.0	5.6	5.6
n-Propanol	25.0	1.0	60.09	6.0	5.6	5.6
i-Propanol	15.0	1.0	60.09	6.0	5.6	5.6
n-Butanol	15.0	1.0	74.12	6.0	5.6	5.6
i-Butanol	15.0	1.0	74.12	6.0	5.6	5.6
Acetic Acid	15.0	1.0	60.05	6.0	5.6	5.6
Chloroform	15.0	1.0	119.39	6.0	5.6	5.6
Carbon Tetrachloride	15.0	1.0	153.84	6.0	5.6	5.6
Carbon Tetrachloride	25.0	1.0	153.84	6.0	5.6	5.6
Chlorobenzene	15.0	1.0	112.56	6.0	5.6	5.6
Bromobenzene	15.0	1.0	157.02	6.0	5.6	5.6
Ethanol	15.0	1.5	46.07	8.0	5.6	7.5
Ether	15.0	1.0	74.12	6.0	5.6	5.6
Acetone	15.0	1.0	58.08	6.0	5.6	5.6
Acetone	25.0	1.0	58.08	6.0	5.6	5.6
Water	15.0	2.6	18.00	6.0	5.6	5.6
Water	21.0	2.6	18.00	6.0	5.6	5.6
Methyl Ethyl Ketone	30.0	1.0	72.10	6.0	5.6	5.6
Cyclohexane	25.0	1.0	84.16	6.0	5.6	5.6
Ethylene Glycol	30.0	1.0	62.10	6.0	5.6	5.6
Ethylene Glycol	20.0	1.0	62.10	6.0	5.6	5.6

TABLE A-I (continued)

Solvent	$\underset{\mathrm{C}}{\mathrm{Temp}_{\mathrm{C}}^{2}}$	Solvent Assoc. Parameter for $D_{W C}$	Molecular Weight	$\mathrm{D}_{\text {GM }}$	D_{O}	D_{M}
Propylene Glycol	30.0	1.0	76.10	6.0	5.6	5.6
Diethylene Glycol	30.0	1.0	106.10	6.0	5.6	5.6
Triethylene Glycol	0.0	1.0	150.20	6.0	5.6	5.6
Cyclohexanol	30.0	1.0	100.20	6.0	5.6	5.6
Glycerin	0.0	1.0	92.10	6.0	5.6	5.6
Glycerin	20.0	1.0	92.10	6.0	5.6	5.6
Glycerin	21.0	1.0	92.10	6.0	5.6	5.6
Glycerin	25.0	1.0	92.10	6.0	5.6	5.6
Hexanol	0.0	1.0	102.20	6.0	5.6	5.6
Hexanol	25.0	1.0	102.20	6.0	5.6	5.6
Hexanol	22.0	1.0	102.20	6.0	5.6	5.6
Hexanol	23.4	1.0	102.20	6.0	5.6	5.6
n-Amyl Alcohol	23.4	1.0	88.20	6.0	5.6	5.6
n-Amyl Alcohol	30.0	1.0	88.20	6.0	5.6	5.6
"Chrysene"	22.0	1.0	240.40	6.0	5.6	5.6
n -Decane	22.0	1.0	142.30	6.0	5.6	5.6
"Hendecane"	22.0	1.0	418.80	6.0	5.6	5.6
n-Octanol	22.0	1.0	130.20	6.0	5.6	5.6

"Chrysene" is 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16 - dodecahydrochrysene "Hendecane" is 1, 1-di-(alpha-decalyl)-hendecane

TABLE A-II
DENSITY DATA USED FOR
DIFFUSIVITY PREDICTIONS

Solvent	$\underset{\mathrm{C}}{\text { Temp }}$	Density at $\mathrm{T}^{\circ} \mathrm{C}$ Gr. $/ \mathrm{Cm}^{3}$	$\begin{aligned} & \text { Density at } \\ & \mathrm{T}+15^{\circ} \mathrm{C} 3 \\ & \mathrm{Gr} . / \mathrm{Cm} \end{aligned}$	Ref-Page
Benzene	15.0	0.88420	0.86844	T-144
Benzene	25.0	0.87365	0.85760	T-144
Benzene	30.0	0.86844	0.85220*	T-144
Toluene	15.0	0.87160	0.85770	T-152
Toluene	25.0	0.86258*	0.84830	T-152
Toluene	30.0	0.85770	0.84360*	T-152
Hexane	15.0	0.66380	0.65055	T-44
Hexane	30.0	0.65055	0.63508**	T-44
Methanol	15.0	0.79609	0.78208	T-304
Methanol	30.0	$0.79030 *$	0.77610*	T-304
n-Propanol	15.0	0.80749	0.79600	T-315
n-Propanol	25.0	0.79980	0.78500	T-315
i-Propanol	15.0	0.78916	0.77690	T-317
n-Butanol	15.0	0.81337	0.80206	T-319
i-Butanol	15.0	0.80576	0.79437	T-321
Acetic Acid	15.0	1.05310*	1.03802	T-382
Chloroform	15.0	1.49845	1.47060	T-220
Carbon Tetrachloride	15.0	1.60370	1.57480	T-226
Carbon Tetrachloride	25.0	1.58430	1.55570	T-226
Chlorobenzene	15.0	1.11172	1.09550	T-284
Bromobenzene	15.0	1.50170	1.48150	T-288
Ethanol	15.0	0.79367	0.78096	T-310
Ether	15.0	0.71925	0.70205	T-344
Acetone	15.0	0.79597	0.77931	T-355
Acetone	25.0	0.78458	0.76820	T-355
Water	15.0	0.99913	0.99568	P-3.70
Water	21.0	0.99723	0.99406	P-3.70
Methyl Ethyl Ketone	30.0	0.79452	0.77970**	T-361
Cyclohexane	25.0	0.77385	0.75985*	T-195
Ethylene Glycol	30.0	1.10620	1.09580*	M
Ethylene Glycol	20.0	1.11320**	1.10280*	M

TABLE A-II (continued)

Solvent	$\underset{\mathrm{O}_{\mathrm{C}}}{\text { Temp }}$	Density at $\mathrm{T}^{\circ} \mathrm{C}$ Gr. $/ \mathrm{Cm}^{3}$	$\begin{aligned} & \text { Density }_{\text {\# }} \text { t } \\ & \mathrm{T}+15^{\circ} \mathrm{C} \\ & \mathrm{Gr} . / \mathrm{Cm} \end{aligned}$	Ref-Page
Propylene Glycol	30.0	1.02920	1.01770*	M
Diethylene Glycol	30.0	1.10920	1.09850*	M
Triethylene Glycol	0.0	1.13880**	1.12730**	M
Cyclohexanol	30.0	0.94155	0.92994	T-491
Glycerin	0.0	1.27370**	1.26440	T-336
Glycerin	20.0	1.26130**	1.25190*	T-336
Glycerin	21.0	1.26080*	1.25130*	T-336
Glycerin	25.0	1.25830*	1.24900	T-336
Hexanol	0.0	0.83285	0.82239	T-330
Hexanol	25.0	0.81560*	0.81524**	T-330
Hexanol	22.0	0.81750*	0.80710*	T-330
Hexanol	23.4	0.81660*	0.80610*	T-330
n-Amyl Alcohol	23.4	0.81240*	0.80170*	T-326
n-Amyl Alcohol	30.0	0.80760	0.79700**	T-326
"Chrysene"	22.0	0.04800**	1.03850**	L
n -Decane	22.0	0.72850*	0.71710*	A-288
"Hendecane"	22.0	0.93020**	0.92090**	L
n-Octanol	22.0	0.82730*	0.81710**	T-332

* Interpolated from data given in specified reference
** Extrapolated from data given in specified reference
T Timmermans (1959a)
P Perry (1963)
M Moore (1967)
A American Petroleum Institute Research Project 44 (1968)
L Lowitz et al. (1959)
\# The densities at T and $\mathrm{T}+15{ }^{\circ} \mathrm{C}$ were used in Equation A-5 to calculate α.

TABLE A-III

VISCOSITY DATA USED FOR
DIFFUSIVITY PREDICTIONS

Solvent	$\underset{\mathrm{C}}{\mathrm{Temp}}$	Viscosity at $\mathrm{T}^{\circ} \mathrm{C}$ cp	Viscosity at $\mathrm{T}+15^{\circ} \mathrm{C}$ cp	Ref-Page
Benzene	15.0	0.696	0.569	T-146
Benzene	25.0	0.610	0.504*	T-146
Benzene	30.0	0.569	0.475*	T-146
Toluene	15.0	0.623	0.523	T-152
Toluene	25.0	0.553*	0.467*	T-152
Toluene	30.0	0.523	0.440*	T-152
Hexane	15.0	0.337	0.278	T-44
Hexane	30.0	0.278	0.229**	T-44
Methanol	15.0	0.623	0.510	T-305
Methanol	30.0	0.567*	0.476*	T-305
n-Propanol	15.0	2.522	1.722	T-315
n -Propanol	25.0	1.950*	1.325**	T-315
i-Propanol	15.0	2.859	1.765	T-317
n-Butanol	15.0	3.379	2.271	T-320
i-Butanol	15.0	4.703	2.876	T-322
Acetic Acid	15.0	1.314	1.040	T-382
Chloroform	15.0	0.569	0.514	T-220
Carbon Tetrachloride	15.0	1.038	0.845	T-227
Carbon Tetrachloride	25.0	0.888	0.739	T-227
Chlorobenzene	15.0	0.844	0.711	T-285
Bromobenzene	15.0	1.196	0.985	T-288
Ethanol	15.0	1.327*	1.065*	T-311
Ether	15.0	0.247	0.227**	T-344
Acetone	15.0	0.355	0.295	T-355
Acetone	25.0	0.308	0.271**	T-355
Water	15.0	1.104	1.011	P-3.201
Water	21.0	1.005	0.722	P-3.201
Methyl Ethyl Ketone	30.0	0.365	0.312**	T-361
Cyclohexane	25.0	0.883*	0.683*	T-195
Ethylene Glycol	30.0	13.56	7.98*	M
Ethylene Glycol	20.0	20.62 **	11.30	M

TABLE A-III (continued)

Solvent	$\underset{\mathrm{C}}{\mathrm{Temp}^{\text {Temp }}}$	Viscosity at $\mathrm{T}^{\circ} \mathrm{C}$ cp	Viscosity at $\mathrm{T}+15^{\circ} \mathrm{C}$ cp	
Propylene Glycol	30.0	32.63	15.50 *	M
Diethylene Glycol	30.0	21.61	12.	M
Triethylene Glycol	0.0	160. **	56.	M
Cyclohexanol	30.0	41.07	17.19	T-491
Glycerin	0.0	12100. +	2267.	T-337
Glycerin	21.0	1360.	349. **	T-337
Glycerin	20.0	1480.	382. **	T-337
Glycerin	25.0	950.	245. **	T-337
Hexanol	0.0	0.880**	0.620	T-330
Hexanol	25.0	0.437*	0.287**	T-330
Hexanol	22.0	0.498*	0.310*	T-330
Hexanol	23.4	0.476*	0.297**	T-330
n-Amyl Alcohol	23.4	3.610*	2.310**	T-326
n-Amyl Alcohol	30.0	2.987**	1.880**	T-326
"Chrysene"	22.0	2450. +	570. **	L
n -Decane	22.0	0.906*	0.703*	T-116
"Hendecane"'	22.0	4000. +	810. **	L
n-Octanol	22.0	8.22 *	4.76 **	T-332

* Interpolated from data given in specified reference
** Extrapolated from data given in specified reference
+ Gainer and Metzner (1965)
T Timmermans (1959)
M Moore (1967)
A American Petroleum Institute Research Project 44 (1968)
L Lowitz et al. (1959)
\# The viscosity at T and $\mathrm{T}+15{ }^{\circ} \mathrm{C}$ were used in Equation $\mathrm{A}-3$ to calculate $\mathrm{E}_{\eta_{\mathrm{B}}}$.

TABLE A-IV
MOLAR VOLUME AND $\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{Vap}}$ USED FOR

DIFFUSIVITY PREDICTIONS

Solvent	$\underset{{ }_{\mathrm{O}}^{\mathrm{C}}}{\text { Temp }}$	$\overline{\mathrm{V}}_{\mathrm{A}}$ at B.P. Kopp's Rules $\mathrm{Cm} / \mathrm{Mole}$	$\begin{aligned} & \Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}} \\ & \mathrm{Cal} / \text { Mole } \end{aligned}$	Ref-Page	$\frac{\Delta \mathrm{H}_{\mathrm{X}-\mathrm{D}}^{\mathrm{vap}}}{\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}}$
Benzene	15.0	96.0	8100	T-149	1.000
Benzene	25.0	96.0	8100	T-149	1.000
Benzene	30.0	96.0	8100	T-149	1.000
Toluene	15.0	118.2	8840	T-153	1.000
Toluene	25.0	118.2	8840	T-153	1.000
Toluene	30.0	118.2	8840	T-153	1.000
Hexane	15.0	140.6	7540**	T-47	1.000
Hexane	30.0	140.6	7540 *	T-47	1.000
Methanol	15.0	37.0	8950 *	T-306	0.395
Methanol	30.0	37.0	8950 *	T-306	0.395
n-Propanol	15.0	81.4	10400*	T-316	0.555
n-Propanol	25.0	81.4	10400*	T-316	0.555
i-Propanol	15.0	81.4	10240*	T-318	0.540
n-Butanol	15.0	103.6	10530*	T-320	0.611
i-Butanol	15.0	103.6	10460*	T-322	0.598
Acetic Acid	15.0	68.4	6030*	P-3.112	0.910
Chloroform	15.0	84.8	8360*	T-221	1.000
Carbon Tetrachloride	15.0	103.2	7830*	T-228	1.000
Carbon Tetrachloride	25.0	103.2	7830*	T-228	1.000
Chlorobenzene	15.0	114.4	8900*	P-3.113	1.000
Bromobenzene	15.0	119.3	9200*	P-3.113	1.000
Ethanol	15.0	59.2	10000*	T-312	0.463
Ether	15.0	107.2	6620*	T-345	0.900
Acetone	15.0	74.0	7610**	T-356	0.384
Acetone	25.0	74.0	7610*	T-356	0.384
Water	15.0	75.6	10250	P-3.191	0.202
Water	21.0	75.6	10250	P-3.191	0.100
Methyl Ethyl Ketone	30.0	96.2	6500*	T-361	0.960
Cyclohexane	25.0	118.2	7050	T-197	1.000

TABLE A-IV (continued)

Solvent	$\underset{\mathrm{C}}{\mathrm{Temp}}$	$\overline{\mathrm{V}}_{\mathrm{A}}$ at B.P. Kopp's Rule $\mathrm{Cm}^{3} / \mathrm{Mole}$	$\begin{aligned} & \Delta H_{X}^{v a p} \\ & \mathrm{Cal} / \mathrm{Mole} \end{aligned}$	Ref-Page	$\frac{\Delta H_{\mathrm{X}-\mathrm{D}}^{\mathrm{vap}}}{\Delta \mathrm{H}_{\mathrm{X}}^{\mathrm{vap}}}$
Ethylene Glycol	30.0	66.6	19100+	J-72	0.331
Ethylene Glycol	20.0	66.6	19300+	J-72	0.331
Propylene Glycol	30.0	88.8	15500+	J-73	0.454
Diethylene Glycol	30.0	118.4	12250+	J-73	0.568
Triethylene Glycol	0.0	170.2	17400+	J-73	0.914
Cyclohexanol	30.0	136.9	12700+	J-73	0.666
Glycerin	0.0	96.2	23400+	J-80	0.365
Glycerin	20.0	96.2	24000+	J- 80	0.365
Clycerin	21.0	96.2	$23800+$	J- 80	0.365
Glycerin	25.0	96.2	23800+	J-80	0.365
Hexanol	0.0	148.0	12700+	J- 67	0.750
Hexanol	25.0	148.0	12420+	J- 67	0.754
Hexanol	22.0	148.0	12420+	J-67	0.754
Hexanol	23.4	148.0	12730+	J- 67	0.754
n-Amyl Alcohol	23.4	125.8	12730*	P-3.113	0.668
n-Amyl Alcohol	30.0	125.8	12580*	P-3.113	0.668
"Chrysene"	22.0	340.2	8620	TR	1.000
n -Decane	22.0	229.4	12280	A-436	1.000
"Hendecane"	22.0	658.6	8960	TR	1.000
n-Octanol	22.0	192.4	16220	P-3.113	0.696

* Corrected for temperature by Equation A-6
+ Estimated from vapor pressure data and Claperyon-Clausis equation, Moore (1955)
T Timmermans (1959a)
P Perry (1963)
J Jordan (1954)
A American Petroleum Institute Research Project 44 (1968)
TR Estimated by Troutons Rule, Perry (1963).

DENSITY, VISCOSITY,SELF DIFFUSION COEFFICIENT

AND α USED FOR CALCULATING THE PARAMETER ξ

Compound	$\begin{gathered} \text { Temp } \\ { }^{o_{C}} \end{gathered}$	Density $\text { Gr. } / \mathrm{Cm}^{3}$	Viscosity cp	Ref-Page	$\begin{gathered} \mathrm{D}_{\mathrm{BB}^{2}}{ }^{(10)^{5}} \\ \mathrm{Cm}^{2} / \mathrm{sec} \end{gathered}$	Ref	$\begin{aligned} & \alpha(10)^{3 \#} \\ & { }_{0} \mathrm{C}^{-1} \end{aligned}$	Ref-Page
Benzene	15	0.88420	0.696	T-146	1.88	JB	1.206	I-29
Benzene	25	0.87365	0.610*	T-146	2.15	JB	1.225	I-29
Benzene	35	0.86277*	0.525*	T-146	2.40	JB	1.245	I-29
Benzene	45	0.85220*	0.475*	T-146	2.67	JB	1.268	I-29
Ethanol	15	0.79367	1.360*	T-311	0.80	JB	1.062	I-27
Ethanol	25	0.78503	1.120	T-311	1.05	JB	1.088	I-27
Ethanol	35	0.77641 **	0.949*	T-311	1.31	JB	1.116	I-27
Ethanol	45	0.76706**	0.780*	T-311	1.70	JB	1.152	I-27
Methanol	15	0.79609	0.623	T-305	1.93	JB	1.178	I-27
Methanol	25	0.78660	0.551**	T-305	2.27	JB	1.202	I-27
Methanol	35	0.77711*	0.479**	T-305	2.65	JB	1.228	I-27
n-Propanol	15	0.80749**	2.522	T-315	0.504	JB	0.987	I-28
n-Propanol	25	0.79980*	1.950*	T-315	0.646	JB	0.983	I-28
n-Propanol	35	0.79207*	1.710**	T-315	0.814	JB	1.014	I-28
n-Propanol	45	0.78545*	1.380**	T-315	1.017	JB	1.046	I-28
i-Propanol	15	0.78916	2.859	T-317	0.474	JB	1.035	I-28
i-Propanol	25	0.78095	2.420*	T-317	0.649	JB	1.053	I-28

TABLE A-V (continued)

Compound	Temp ${ }^{\circ} \mathrm{C}$	Density $\mathrm{Gr} . / \mathrm{Cm}^{3}$	Viscosity cp	Ref-Page	$\begin{aligned} & \mathrm{D}_{\mathrm{BB}^{2}}{ }^{(10)^{5}} \\ & \mathrm{Cm}^{2} / \mathrm{sec} \end{aligned}$	Ref	$\begin{aligned} & \alpha(10)^{3 \#} \\ & { }^{\circ} \mathrm{C}^{-1} \end{aligned}$	Ref-Page
i-Propanol	35	0.77275**	1.900**	T-317	0.867	JB	1.071	I-28
i-Propanol	45	0.76445**	1.480**	T-317	1.145	JB	1.090	I-28
n-Pentane	25	0.62133	0.22	DM	5.45	DM	1.466	I-29
n -Hexane	25	0.65502	0.29	DM	4.21	DM	1.250	I-29
n-Octane	25	0.69882	0.51	DM	2.00	DM	1.147	I-29
n -Nonane	25	0.71328	0.67	DM	1.70	DM	1.022	I-30
n-Decane	25	0.72043	0.85	DM	1.31	DM	0.968	I-30

* Interpolated from data given in specified reference
** Extrapolated from data given in specified reference
\# Calculated from data given in reference
T Timmermans (1959a)
JB Johnson and Babb (1956)
I International Critical Tables (1926)
DM Douglass and McCall (1959)

TABLE A-VI

BINARY DIFFUSION AND HEAT OF MIXING

AT INFINITE DILUTION DATA

Solvent	Solute	Temp ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{D}_{\mathrm{AB}}{ }^{(10)^{5}} \\ & \mathrm{Cm}^{5} / \mathrm{Sec} \end{aligned}$	Ref	$\begin{aligned} & \overrightarrow{\mathrm{H}}_{\mathrm{AB}}^{\mathrm{mix}} \\ & \mathrm{Kcal} / \mathrm{Mole} \end{aligned}$	Ref
Benzene	Carbon Tetrachloride	10.0	1.466	JB	0.100 (at $20^{\circ} \mathrm{C}$)*	T
Benzene	Carbon Tetrachloride	25.3	1. 912	JB		
Benzene	Carbon Tetrachloride	40.0	2.432	JB		
Benzene	Ethanol	15.0	2.37\#	JB	3.690 (at $\left.20^{\circ} \mathrm{C}\right)^{* *}$	M
Benzene	Ethanol	27.0	3.22\#	JB		
Benzene	Chloroform	15.0	2.39	JB	$-0.290\left(\text { at } 15^{\circ} \mathrm{C}\right)^{* *}$	T
Benzene	Methanol	11.0	3.14\#	JB	$3.64\left(\text { at } 20^{\circ} \mathrm{C}\right)^{* *}$	M
Benzene	Methanol	27.1	3.08\#	JB		
Water	n-Butanol	1.0	0.44\#	JB	-2.85 (at $\left.15^{\circ} \mathrm{C}\right)$	Ba
Water	n -Butanol	25.0	0.97\#	JB		
Water	n-Propanol	11.0	0.79\#	JB	-2.85 (at $15^{\circ} \mathrm{C}$)	Ba
Water	n-Propanol	15.0	0.87	JB		
Water	Methanol	15.0	1.26	JB	-1.756 (at $25^{\circ} \mathrm{C}$)	Bb
Water	Ethanol	10.0	0.85\#	JB	-2.75 (at $15^{\circ} \mathrm{C}$)	Bb
Water	Ethanol	15.0	1.00	JB		
Water	Ethanol	25.0	1.24	JB		

* Interpolated from data given in specified reference

TABLE A-VI (continued)
** Extrapolated from data given in specified reference
\# Extrapolated linearly to zero concentration from data given in specified reference
M Mrazek and Van Ness (1961)
JB Johnson and Babb (1956)
T Timmermans (1959b)
Ba Bertrand et al. (1966)
Bb Bertrand et. al. (1968)

APP ENDIX B

EXPERIMENTAL PROCEDURES AND RESULTS

Wall et al. (1952 and 1958) devised a method for measuring molecular diffusivities for binary systems of low viscosity, high molecular weight aqueous polymer solutions. The conventional steady-state methods available at that time were impractical due to the slow rate of mass transfer of these high molecular weight polymers.

The original method employed a porous disc of unglazed porcelain. This disc was first soaked in an aqueous solution of the polymer for a time sufficient to enable a uniform concentration of the polymer in the solvent to develop throughout the disc. The disc was then transferred to a well agitated pure solvent bath. At various time intervals the water agitation was stopped, and the apparent weight of the disc was measured. These data allowed the molecular diffusivity to be calculated. This method should be applicable to the high viscosity systems of interest here where the mass transfer rate is also expected to be small.

Marcinkowsky, Nelson and Kraus (1965) devised an experimental technique very similar to the method described above except that the disc was filled with a radioactive tracer of strong gamma emission (viz., Na-22). They flushed fresh solvent past the disc so that the solute concentration outside the disc was nearly zero. By placing their detector close to the disc but outside the apparatus, they were able to measure the radioactivity of the tracer left in the porous disc versus time and, subsequently, determine the
molecular diffusivity. This radioactive tracer method could be used for organic solvents only by measuring the activity of the solute in the bath, because the low beta energy of C-14 could not be detected by the technique used above.

These methods have been modified for use in this work as described in the following sections.

A. Description of Apparatus

The apparatus used in this investigation is shown in Figures B-1 through B-6. The basic components include (1) a porous plate immersed in a solvent bath which is stirred vigorously with a mechanical stirrer, (2) a constant temperature bath, and (3) a counting apparatus. The details of the apparatus are as follows.

1. The Porous Disc. The porous plates are about $2-7 / 8$ inches square and about $1 / 4$ inch thick. The plates were obtained from Fis her Scientific Company and were ground on a carborun dum (No. 203) grinding sheet with water. They were cleaned with 12 molar HCl and distilled water and then with acetone, and again with distilled water. The edges of the porous plates were sealed with an epoxy resin (with a thickening filler to prevent capillary action) and cured. They were then mounted in aluminum frames for support.
2. Solvent Bath. The solvent baths are aluminum boxes about $6 \times 31 / 2 \times$ $11 / 4$ inches with small clips in the bottom. These clips held the porous plates in place.
3. Stirring Apparatus. The stirring assemblies are mounted on rods

Figure B-1. Schematic diagram of porous plate and associated equipment.

Figure B-2. Porous plate fitted with stirring blades used to measure diffusivities.

Figure B-3. Porous plate beside stirring blade used to measure diffusivities.

Figure B-4. Porous plate, stirring blade and solvent bath used to measure diffusivities.

Figure B-5. End view of constant temperature bath showing cams and variable speed motor.

Figure B-6. Front view of constant temperature bath.
which are allowed to move vertically and are connected to eccentrically mounted cams. The cams are mounted on a shaft which is driven by a variable speed transmission motor. The stirring blades are mounted on a frame which has four horizontal stirring blades on each side of a porous plate. The blades themselves are equilaterally triangular in shape, and as they move up and down they wipe the solvent away from the surface of the porous plates. The blades serve to reduce the resistance to mass transfer in the solvent bath immediately adjacent to the porous plates, and they also keep the solute concentration in the bath uniform during the unsteady-state buildup of the solute concentration.
4. Constant Temperature Bath. The constant temperature bath is made of sheet aluminum and contains approximately thirty gallons of transformer oil. The oil is agitated by a centrifugal pump. The temperature in the bath is coarsely controlled by a cooling coil (through which tap water is passed) and a heating element that is controlled by a variable voltage rheostat. The fine temperature control heater is made of about 30 feet of 30 gauge nichrome wire wrapped on a plexiglass frame. This fine-control heater is connected to a relay which is in turn connected to a mercury, thermometer-type thermoregulator. The bath temperature can be controlled to within $\pm 0.01^{\circ} \mathrm{C}$ over the desired temperature range. The temperature of the experiments ranged from about 25° to $50^{\circ} \mathrm{C}$.
5. Counting Apparatus. The tracer materials used were C-14 tagged. No good-quality, inexpensive method is available for continuously counting the C-14 tracer in the solvent bath. Perhaps the best method of doing this would
be by a liquid scintillation method. However, the scintillation materials, if added to the solvent, would alter the physical properties of the solvent and give rise to erroneous molecular diffusivities (i. e., a diffusivity through a multicomponent system). Because of these difficulties, small samples of the liquid in the solvent bath (i. e., outside of the porous plate) were removed at various time intervals.

The radioactivity of the solute in the liquid was counted using a liquid scintillation technique. Liquid scintillation counting is a method of assay in which self-absorption and window absorption of nuclear radiation are eliminated by dissolving or suspending the sample in a scontillation liquid as described by Overman and Clark (1960). The samples to be counted were dissolved in a solution of toluene (the primary solvent which absorbs most of the energy of the beta particle and transfers the energy to the primary scintillator), 5-diphenyloxazole (the primary scintillator), 1, 4-bis-2-(4 methyl-5-phenyl-oxazolyl)benzene (the secondary scintillator), and ethyl al cohol (a diluent which aids in the dissolution of the sample to be counted). These solutions are described in detail later.

The samples were counted in the Soils Laboratory in the Agriculture Department on the Columbia campus of the University of Missouri on a Packard model 3310 liquid scintillation spectrometer. The results of each count were automatically typed out on a Monroe digital printer.

For the standardization runs, the aqueous sodium chloride samples were evaporated to dryness and counted using a standard Gieger-Mueller detector
and scaler. Due to the poor condition of the scalers used, each sample was counted in two different units and the results averaged.
B. Experimental Procedure.

The porous plates were first soaked in a solution of solute plus solvent until a constant concentration of solute was obtained throughout the porous plate. This soaking period varied from ten hours for a standardization run to three days for the highly viscous solvents. The time necessary to obtain a constant concentration of solute throughout the porous plate was decreased by heating the soaking solution to 50° to $70^{\circ} \mathrm{C}$.

After the porous plates were removed from the soaking solution and blotted to remove excess solution from the surfaces, they were mounted in the solvent baths. The solvent baths were then mounted in the constant temperature bath. The stirring plates were set in motion and approximately 300 milliliters of pure solvent were added to the bath. The initial time was recorded as the average of the initial pouring time and the final pouring time, usually ± 0.1 minutes.

During the course of the run, one milliliter samples were removed from the solvent baths and set aside for later counting. The number of samples removed during a run generally was twelve. This caused the volume of the solvent bath to decrease from 300 milliliters to about 288 milliliters.

Preliminary experiments showed that there was very little change in the rate of increase in solute concentration as the stirring speed was changed from 100 to 200 cycles per minute. Thus, this latter speed was used.

After each run, the cells were soaked in a very dilute solution (about 0.5 molar) of nitric acid for several hours, in several batches of distilled water for about five to eight hours each, and then dried at $110^{\circ} \mathrm{C}$ for twelve hours.

The standardization runs were performed at the beginning of this work and at the end to see if there was any significant change in the characteristics of the porous diffusion plates as a result of either rubbing of the stirring blades on the porous plates, adsorption of foreign material in the pores, or any other causes. C. Measurements of Solvent Viscosities

Moore, (1967) determined the solvent viscosities of the glycols used in this work. The results obtained from his work are listed in Appendix A as well as in an unpublished report. The viscosities were measured using a series of modified Canon-Fenske capillary viscometers. The densities were also measured by Moore (1967) using a standard pycnometer. The temperature was controlled during the viscosity and density measurements to $\pm 0.02^{\circ} \mathrm{C}$.

The thermometers used for both the diffusion coefficient measurements and the viscosity and density measurements were calibrated by Moore (1967) by using a National Bureau of Standards thermometer.

D. Description of Materials

1. Solvents. The solvents used include ethylene glycol, diethylene glycol, and propylene glycol and were donated for use in this project by the Dow Chemical Company. Each was further purified by vacuum distillation.
2. Solutes. The solutes ethylene glycol and cyclohexanol were C-14 tagged. Both were purchased from the New England Nuclear Corporation in
standard form.
The sodium chloride was obtained from the University of Missouri - Rolla, Department of Chemistry. For each standardization run 0.0195 gram of salt was irradiated in the University of Missouri - Rolla Nuclear Reactor Facility. The time the samples were irradiated varied from ten minutes to one hour depending upon core position, power and time elapsed before using.
3. Solutions for Measuring Diffusivities. The ethylene glycol came as a solution of 3.65 milligrams of ethylene glycol in methanol. To this was added about four milliliters of non-tagged ethylene glycol. The methanol was distilled off by applying an aspirator vacuum (approximately 20 millimeters of mercury) for forty minutes with stirring and heating up to about $35^{\circ} \mathrm{C}$. One milliliter of this solution was then added to each of three battery jars containing 150 milliliters each of ethylene glycol, propylene glycol, and diethylene glycol. These solutions were then used to soak the porous plates in before each run when ethylene glycol was the solute. The concentration of ethylene glycol was $4.5(10)^{-2}$ moles per liter in the solvents propylene glycol and diethylene glycol. The concentration of C-14 tagged ethylene glycol in the non-active ethylene glycol was $3.6(10)^{-5}$ moles per liter.

The cyclohexanol comes in standard form as a solution in benzene. (In this case $5.40 \mathrm{mg} / .094 \mathrm{ml}$ of benzene). To this was added exactly 4 milliliters of nonradioactive cyclohexanol. The benzene was then removed under an aspirator vacuum. One milliliter of this solution was then added to each of three battery jars, each of which contained 200 milliliters of the appropriate
solvent. The porous plates were then soaked in these solutions when cyclohexanol was the solute. This gave a concentration of 2.41×10^{-2} moles per liter of cyclohexanol in each of the three solvents. The fourth aliquots of both the ethylene glycol and cyclohexanol were kept for future work.
4. Scintillation Liquid. The scintillation liquid was made of toluene (spectro quality) purchased from Arthur Thomas Co. as the primary solvent with ethanol obtained from the University of Missouri - Rolla, Department of Chemistry as a diluent. The primary scintillator was PPO, and the secondary scintillator was Dimethyl-POPOP (both these were purchased from Packard Instrument Co.). Slightly different amounts of ethanol were used to dissolve each of the different solvents used as mentioned above. The scintillation liquid was made up of the following amounts as shown in Table B-I for the solvents shown, each in one liter of toluene.
5. Standardization Solutions. The solutions used for standardizing the cells were of sodium chloride in water. They were made up of $0.0195 \pm .0003$ grams of NaCl , which had been irradiated in the University of Missouri - Rolla Reactor Facility for about one hour, which was dissolved in 300 milliliters of distilled water. The porous plates were soaked ove rnight in this solution before the run was begun. These solutions had a concentration of 0.00111 moles of $\mathrm{NaCl} /$ liter.

E. Analysis of Data

1. Equations Describing Diffusion. The following is a development of the equations necessary for the analysis of data for diffusion of a solute out of

TABLE B-I

AMOUNTS OF ETHANOL, PPO, AND DIMETHYL-POPOP

IN ONE LITER OF TOLUENE
FOR SCINTILLATION COUNTING

	Milliliters of Ethanol	Grams of PPO	Grams of Dimethyl POPOP
Ethylene Glycol	250	4.40	0.1150
Propylene Glycol	160	3.71	0.1060
Diethylene Glycol	140	3.64	0.1040

a porous plate which is suspended in an initially pure solvent. Diffusion in only one direction out of the plate need be considered since the edges of the porous plates were sealed with an epoxy glue. The experimental conditions to be imposed such that the following equations are valid are:

1. For dilute solutions the diffusivity is not a function of concentration; thus all solutions will be less than 10^{-2} molar.
2. The diffusivity is a function of temperature, thus it will be controlled to $\pm 0.01^{\circ} \mathrm{C}$.
3. The pores in the porous plate are small enough that any natural convection effects within the plate may be disregarded.
4. The bulk flow terms in the diffusion equations are negligible.
5. The solvent is stirred sufficiently fast so that there is no resistance to diffusion outside the porous plate.

Referring to Figure B-7, the equation for diffusion can be written

$$
\begin{equation*}
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}} \tag{B-1}
\end{equation*}
$$

The subscriptsAB are omitted from D in this section for simplicity. With the boundary conditions:

1. For short time periods, i.e., $t \leqslant 0.3 \mathrm{~L}_{\mathrm{eff}}^{2} / \mathrm{D}$

$$
\begin{equation*}
C(\infty, t)=C_{0} \tag{B-2}
\end{equation*}
$$

2. The initial concentration in the porous plate is C_{o}

$$
\begin{equation*}
C(x, 0)=C_{0} \tag{B-3}
\end{equation*}
$$

3. There is no resistance to diffusion outside the porous plate at x equal

Figure B-7. Boundaries of porous plate and concentration profiles at times indicated.
zero

$$
\begin{equation*}
\mathrm{C}(0, \mathrm{t})=\mathrm{C}_{\mathrm{f}}(\mathrm{t}) \tag{B-4}
\end{equation*}
$$

The equations describing the conditions in the solvent bath are

1. The amount of solute diffusing out of the porous plate may be accounted for by a material balance at the surfaces (i.e., $x=0$) as:

$$
\begin{equation*}
V_{f} \frac{\mathrm{dC}_{\mathrm{f}}(\mathrm{t})}{\mathrm{dt}} \equiv-2 \mathrm{DA}_{T} \frac{\partial \mathrm{C}(0, \mathrm{t})}{\partial \mathrm{x}} \tag{B-5}
\end{equation*}
$$

2. If initially the concentration in the solvent bath is $\mathrm{C}_{\mathrm{f}}^{\mathrm{O}}$, then

$$
\begin{equation*}
C_{f}(0)=C_{f}^{o} \tag{B-6}
\end{equation*}
$$

Taking the Laplace transforms of equations $\mathrm{B}-1, \mathrm{~B}-2, \mathrm{~B}-4$, and $\mathrm{B}-5$ gives

$$
\begin{align*}
& s \bar{C}(x, s)-C_{o}=D \frac{d^{2} \bar{C}(x, s)}{d x^{2}} \tag{B-7}\\
& \bar{C}(\infty, s)=C_{o} / s \tag{B-8}\\
& \bar{C}(0, s)=\bar{C}_{f}(s) \tag{B-9}\\
& V_{f}\left(\bar{S}_{f}(s)-C_{f}^{o}\right)=-2 D A \tag{B-10}\\
& T
\end{align*}
$$

The Laplace transform of equation B-1 was taken without justification that the Laplace transform of the second derivative of $C(x, t)$ with respect to x is equal to the second derivative of the Laplace transform of $C(x, t)$ with respect to x . This cannot be justified since the function $\mathrm{C}(\mathrm{x}, \mathrm{t})$ is unknown. Justification of the final function will be made with respect to the boundary conditions to show that they are satisfied. The total solution of Equation B-7 becomes

$$
\begin{equation*}
\overline{\mathrm{C}}(\mathrm{x}, \mathrm{~s})=\mathrm{A}_{1}^{\prime} \exp (-\sqrt{\mathrm{s} / \mathrm{D}} \mathrm{x})+\mathrm{A}_{2}^{\prime} \exp (\sqrt{\mathrm{s} / \mathrm{D}} \mathrm{x})+\mathrm{C}_{\mathrm{o}} / \mathrm{s} \tag{B-11}
\end{equation*}
$$

From Equation $B-8, A_{2}^{\prime}=0$. Thus the total solution reduces to

$$
\begin{equation*}
\overline{C(x}, s)=A_{1}^{\prime} \exp (-\sqrt{s / D} x)+C_{0} / s \tag{B-12}
\end{equation*}
$$

The derivative of Equation B-12 with respect to x is

$$
\begin{equation*}
\mathrm{d} \overline{\mathbf{C}}(x, s) / d x=-\sqrt{s / D} A_{1}^{\prime} \exp (-\sqrt{s / D} x) \tag{B-13}
\end{equation*}
$$

By introducing Equation B-12 into Equation B-9 and the result along with Equation B-13 into Equation B-10, the resulting equation can be solved for A_{1}^{\prime} to give

$$
\begin{equation*}
A_{1}^{\prime}=\left(C_{f}^{o}-C_{o}\right) /\left[\left(2 A_{T} D \sqrt{s / D} / V_{f}\right)+s\right] \tag{B-14}
\end{equation*}
$$

Introducing Equation B-14 into Equation B-13 and the result into B-10 gives

$$
\begin{equation*}
V_{f}\left(s \bar{C}_{f}(s)-C_{f}^{0}\right)=V_{f} K \sqrt{s}\left(C_{f}^{0}-C_{o}\right) /(K / s+s) \tag{B-15}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{K}=2 \mathrm{~A}_{\mathrm{T}} \sqrt{\overline{\mathrm{D}} / \mathrm{V}_{\mathrm{f}}} \tag{B-16}
\end{equation*}
$$

Rearranging gives

$$
\begin{equation*}
\bar{C}_{f}(s)=C_{f}^{o} / s+\left(C_{f}^{o}-C_{o}\right) / s\left(1+K^{-1} \sqrt{s}\right) \tag{B-17}
\end{equation*}
$$

The inverse Laplace transform is given in the Handbook of Chemistry and Physics (1965) as

$$
\begin{equation*}
C_{f}(t)=C_{o}+\left(C_{f}^{0}-C_{o}\right) \exp \left(K^{2} t\right) \operatorname{erfc}(K \sqrt{t}) \tag{B.-18}
\end{equation*}
$$

or

$$
\begin{equation*}
C_{f}(t)=C_{o}+\left(C_{f}^{o}-C_{o}\right) \exp \left(K^{2} t\right)(1 .-\operatorname{erf}(\mathrm{K} / \mathrm{t})) \tag{B-19}
\end{equation*}
$$

Equation B-19 at $t=0$ gives the value of C_{f} as C_{f}^{0}. Thus, this satisfies the boundary conditions. This equation is good for short diffusion times, and
when rearranged takes the form

$$
\begin{equation*}
\frac{C_{o}-C_{f}}{C_{o}-C_{f}^{o}}=\exp \left(K^{2} t\right)\left(1-\operatorname{erf}\left(K t^{\frac{1}{2}}\right)\right. \tag{B-20}
\end{equation*}
$$

Holander and Barker (1963) have shown that a much more simple equation can be obtained when the concentration outside of the porous plate is assumed to be the same as the initial concentration outside the porous plate. The boundary conditions for Equation B-1 are now

1. For short time periods,

$$
\begin{equation*}
c(\infty, t)=c_{0} \tag{B-2}
\end{equation*}
$$

2. The initial concentration in the porous plate is C_{O}

$$
\begin{equation*}
C(x, 0)=C_{0} \tag{B-3}
\end{equation*}
$$

3. If there is no resistance to diffusion outside the porous plates

$$
\begin{align*}
& \text { (at } \mathrm{x}=0 \text {) } \\
& \mathrm{C}(0, \mathrm{t})=\mathrm{C}_{\mathrm{f}}^{0} \tag{B-21}
\end{align*}
$$

Taking the Laplace transform of Equations B-1, B-2, and B-21 gives

$$
\begin{align*}
& s \bar{C}(x, s)-C_{o}=D \frac{d^{2} \bar{C}(x, s)}{d x^{2}} \tag{B-7}\\
& \bar{C}(\infty, s)=C_{0} / s \tag{B-8}
\end{align*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{C}}(0, \mathrm{~s})=\mathrm{C}_{\mathrm{f}}^{\mathrm{o}} / \mathrm{s} \tag{B-22}
\end{equation*}
$$

The total solution of Equation B-7 is again

$$
\begin{equation*}
\bar{C}(x, s)=A_{1}^{\prime} \exp (-\sqrt{s / D} x)+A_{2}^{\prime} \exp (\sqrt{s / D} x)+C_{0} / s \tag{B-11}
\end{equation*}
$$

From equation $B-8, A_{2}^{\prime}$ is zero and

$$
\begin{equation*}
\bar{C}(x, s)=A_{1}^{\prime} \exp (-\sqrt{s / D} x)+C_{0} / s \tag{B-12}
\end{equation*}
$$

From Equation B-22

$$
\begin{equation*}
A_{1}^{\prime}=\left(C_{f}^{o}-C_{o}\right) / s \tag{B-23}
\end{equation*}
$$

Thus, $\overline{\mathrm{C}}(\mathrm{x}, \mathrm{s})$ is

$$
\begin{equation*}
\bar{C}(x, s)=s^{-1}\left(C_{f}^{0}-C_{o}\right) \exp (\sqrt{s / D} x)+C_{o} / s \tag{B-24}
\end{equation*}
$$

The inverse Laplace transform of B-24 is given in the Handbook of Chemistry and Physics (1965) as

$$
\begin{equation*}
\mathrm{c}(\mathrm{x}, \mathrm{t})=\mathrm{C}_{\mathrm{o}}+\left(\mathrm{C}_{\mathrm{f}}^{\mathrm{o}}-\mathrm{C}_{\mathrm{o}}\right)\left[1 .-\operatorname{erf}\left(\frac{\mathrm{x}}{2 \sqrt{\mathrm{Dt}}}\right)\right] \tag{B-25}
\end{equation*}
$$

The material balance

$$
\begin{equation*}
\frac{\mathrm{dC}_{\mathrm{f}}(\mathrm{t})}{\mathrm{dt}}=-2 \mathrm{DA} \frac{\mathrm{C}(0, \mathrm{t})}{\mathrm{x}} \tag{B-26}
\end{equation*}
$$

can now be solved by introducing Equation B-26 to give

$$
\begin{equation*}
C_{f}=C_{f}^{o}+\frac{4 A_{T} C_{o} \sqrt{D / \pi}}{V_{f}} \sqrt{t} \tag{B-27}
\end{equation*}
$$

Equation B-27 at $t=0$ gives the value of C_{f} as $\mathrm{C}_{\mathrm{f}}^{\mathrm{o}}$. Thus, this satisfies the boundary conditions. This equation and Equation B-20 are only valid when the product $D t / L_{\text {eff }}{ }^{2}$ is equal to or less than 0.3 . This is due to the choice of the boundary condition that $C(x, t)$ does not change at $x=\infty$ (i.e. the center of the diffusion cell, where x really is equal to $L_{\text {eff }}$).

Equation B-27 can be considered a linear approximation to Equation B-20 and can be used without prior knowledge of the parameters to be obtained during the least squares analysis. It will be used only to obtain an estimate of C_{f}^{o} and D (or A_{T}, whichever is unknown). These estimates will then be used to enter the nonlinear least squares analysis of Equation B-20 for C_{f}^{O} and D (or A_{T}, whichever is unknown). The details of the least squares
analysis and the program used is given later.
2. Conversion of Activity Data to Concentration Data. The activity data obtained for a standardization or diffusivity measurement were corrected only by subtracting the measured background. It was not necessary to correct for counting efficiency for the samples taken for the standardization runs because the geometry for each count was the same. Correction for self absorption of sodium chloride was negligible due to the very dilute solutions that were sampled. The decay of $\mathrm{Na}-24$ is sufficiently fast (half life of 15.0 hours) that it was necessary to allow for decay time. The radioactive decay was accounted for by multiplying the measured activity less the background by $\exp \frac{0.693 t}{t_{\frac{i}{2}}}$
where t is the time elapsed from the beginning of the run to the time the sample was counted. The half life used for the decay correction $t_{\frac{1}{2}}=15.0$ hours) was measured since it was possible, upon irradiation of the sodium chloride sample, to obtain radioactive species other than $\mathrm{Na}-24$.

The counting efficiency in liquid scintillation spectrometers varies with the concentration of diluent, and with the concentration of the primary and secondary scintillators. To avoid the necessity of correcting for slight variations in the concentration of these materials, enough of the solution was prepared to add to all the samples for each run.

The initial concentration inside the porous plate is known for the sample that is taken from the soaking cell. The concentrations of all samples removed from the solvent bath were obtained readily since the activity is
directly proportional to the concentrations.
3. Method of Least Squares Analysis. Equation B-27 may be used with the concentration data directly for very short time periods to obtain an initial estimate of the diffusivity (or the area of mass transfer in the case of a standardization run). To perform this technique, the concentration versus the square root of time is fit by least squares to a straight line. The slope of this line is

$$
\frac{4 \mathrm{~A}_{\mathrm{T}} \mathrm{C}_{0} \sqrt{\mathrm{D}}}{\sqrt{\pi \mathrm{~V}_{\mathrm{f}}}}
$$

and the intercept at time equals zero is assumed to equal C_{f}^{0}.
The ave rage value of V_{f} was used in this and all subsequent analyses.
This average value was calculated as follows

$$
\begin{equation*}
\mathrm{V}_{\mathrm{f}}=300.0-\mathrm{N} / 2 \tag{B-28}
\end{equation*}
$$

For these experiments, 300 milliliters of solvent were added during each run and N is the number of data points used in the analysis. The use of an average value of V_{f} will lead to slightly erroneous results. However, the error introduced by this should be less than 3 or 4% since the true volume is in the worst case 292 ± 8 milliliters.

The number of data points to be used was determined in the following manner. Equations B-20 and B-27 are valid as long as the time for which the diffusion was allowed to occur did not exceed

$$
\begin{equation*}
\mathrm{t} \leq 0.3 \mathrm{~L}_{\mathrm{eff}}{ }^{2} / \mathrm{D} \tag{B-29}
\end{equation*}
$$

The effective value of L was approximated by $W u$ (1968) by using a nonlinear, three variable, least square fitting technique with the following equation:

$$
\begin{equation*}
\frac{\mathrm{C}_{\mathrm{f}}-\mathrm{C}_{\mathrm{o}}}{\mathrm{C}_{\mathrm{o}}-\mathrm{C}_{\mathrm{f}}^{0}}=\frac{1}{1+\alpha}-\sum_{\mathrm{n}=1}^{\infty} \frac{\exp \left(-\mathrm{Db}_{\mathrm{n}}^{2} \mathrm{t} / \mathrm{L}_{\mathrm{eff}}^{2}\right)}{\left(1+\alpha+\alpha^{2} \mathrm{~b}_{\mathrm{n}}^{2}\right)} \tag{B-30}
\end{equation*}
$$

In this equation, b_{n} is the nth root of the equation

$$
\begin{equation*}
\tan b_{n}=\alpha b_{n} \tag{B-31}
\end{equation*}
$$

and α is the volume of the liquid surrounding the plate divided by the volume of the porous plate that is occupied by the liquid.

In his work, Wu assumed $\mathrm{C}_{\mathrm{f}}^{\mathrm{o}}, \mathrm{L}_{\text {eff }}$, and α were all unknown for the standardization runs. An average value of $L_{\text {eff }}$ was found by him to be 0.544 and was used to determine the number of terms to be used in the analysis of a standardization run in this work. For the diffusivity determination runs, the values of $L_{\text {eff }}$ as calculated by Wu varied considerably from run to run. Thus, the value that he obtained for each individual run was used. These values are listed with the results for each run in Tables B-IV through B-IX.

The values of the diffusivity obtained by Wu (1968) were used as the initial values to estimate t in Equation B-29.

Equation B-20 may be written in the following form

$$
\begin{equation*}
C_{f_{i}}=C_{o}+\left(C_{f}^{o}-C_{o}\right) \exp \left[\frac{4 D A_{T}^{2} \pi t_{i}}{V_{f}^{2}}\right]\left[1 .-\operatorname{erf} \frac{2 A_{T} \sqrt{D t_{i}}}{V_{f}}\right] \tag{B-32}
\end{equation*}
$$

where $C_{f_{i}}$ is the actual experimentally measured value of the concentration at the time t_{i}.

For the following analysis, the two parameters that will be determined by least squares technique are C_{f}^{0} and A_{T}. Since Equation $B-32$ is not linear in the parameters, a nonlinear least squares analysis was used. This
analysis requires an iterative technique.
The initial values of A_{T} will be denoted by $A_{T}{ }^{\circ}$, and the initial value of C_{f}^{0} will be denoted by C_{f}^{00}. If A_{T}^{o} and C_{f}^{00} are substituted into Equation $B-32$, the result will be an approximate value of $\mathrm{C}_{\mathrm{f}_{\mathrm{i}}}, \mathrm{C}_{\mathrm{f}_{\mathrm{i}}}^{\prime}$, which is given by

$$
\begin{equation*}
C_{f_{i}}^{\prime}=C_{o}+\left(C_{f}^{o o}-C_{o}\right) \exp \left[\frac{4 D A_{T}^{o 2_{i}} t_{i}^{i}}{V_{f}^{2}}\right]\left[1 .-\operatorname{erf} \frac{2 A_{T}^{o} \sqrt{D t}}{V_{f}}\right] \tag{B-33}
\end{equation*}
$$

The residuals or differences for each data point, i, of the actual value of $C_{f_{i}}$ from the approximate value, $C_{f_{i}}^{\prime}$, are then

$$
\begin{equation*}
r_{i}=C_{f_{i}}\left(t_{i}, C_{f}^{o}, A_{T}\right)-C_{f_{i}} \tag{B-34}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{f}}^{\prime}$ is given by Equation B-33. Letting $\delta \mathrm{A}_{\mathrm{T}}$ be a small correction to the initial value of A_{T}, A_{T}^{o}, such that

$$
\begin{equation*}
A_{T}=A_{T}^{o}+\delta A_{T} \tag{B-35}
\end{equation*}
$$

and similarly for $\mathrm{C}_{\mathrm{f}}^{\mathbf{0}}$, such that

$$
\begin{equation*}
\mathrm{C}_{\mathrm{f}}^{\mathrm{o}}=\mathrm{C}_{\mathrm{f}}^{\mathrm{oo}}+\delta \mathrm{C}_{\mathrm{f}}^{\mathrm{o}} \tag{B-36}
\end{equation*}
$$

then Equation B-34 for the residual terms becomes

$$
\begin{equation*}
C_{f_{i}}+r_{i}=C_{f_{i}}^{\prime}\left(t_{i}, C_{f}^{o o}+\delta C_{f}^{o}, A_{T}^{o}+\delta A_{T}\right) \tag{B-37}
\end{equation*}
$$

By conside ring the right hand side of Equation B-33 as a function of A_{T} and C_{f}^{o}, the following Taylor series expansion can be applied to Equation B-37 to give

$$
\begin{equation*}
C_{f_{i}}+r_{i}=C_{f_{i}}^{\prime}\left(t_{i}, C_{f}^{o o}, A_{T}^{o}\right)+\left(\frac{\partial C_{f_{i}}}{\partial C_{f}^{o}}\right)_{o} \delta C_{f}^{o}+\left(\frac{\partial C_{f_{i}}}{\partial A_{T}}\right)_{o} \delta A_{T} \tag{B-38}
\end{equation*}
$$

The subscript o means a quantity is evaluated at t_{i}, A_{T}^{O} and C_{f}^{00}. All the
second and higher order terms in the Taylor series expansion have been negle cted.

Each data point may be described by Equation B-38. The resulting equations are linear in the correction terms $\delta \mathrm{C}_{\mathrm{f}}^{\mathrm{O}}$ and $\delta \mathrm{A}_{\mathrm{T}}$ and may be handled in a manner similar to any other linear equation containing two unknown variables.

Once the correction terms are evaluated by applying the linear least squares technique to Equation $B-32$. The new values of A_{T} and C_{f}^{0}, namely

$$
\begin{equation*}
A_{T}=A_{T}^{O}+\delta A_{T} \tag{B-39}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{f}^{o}=C_{f}^{o o}+\delta C_{f}^{o} \tag{B-40}
\end{equation*}
$$

may be substituted back into Equation $B-38$ for A_{T}° and C_{f}^{00} and the process repeated. The process may be repeated as many times as is necessary to allow the correction terms $\delta \mathrm{A}_{\mathrm{T}}$ and $\delta \mathrm{C}_{\mathrm{f}}^{\mathrm{O}}$ to approach zero.

Since all the data wereobtained by counting a radioactive sample for a specified time, the probable error for each sample or data point is different. Thus each data point should carry a different weight during the least square fitting technique. This is simply accomplished by multiplying the residual (as determined by Equation B-34) by an appropriate weighting factor.

The probable error for a total count of a radioactive sample is equal to the square root of that count. Since the concentrations were obtained by merely multiplying the total count by a constant for any one run, the probable error of the concentration terms is also approximately equal to the square
root of the concentration. (This is true for all the diffusivity determination runs since all of the samples were counted for the same length of time and for most of the standardization runs).

The relation between the probable error and the proper weighting factor is shown by Scarborough (1962) to be:

$$
\text { weighting factor }=1 / \text { (probable error }^{2}
$$

Thus a weighting factor of this type was used. Since the probable error is equal to the square root of the count, the weighting factor becomes, weighting factor $=1 /$ count

Radioactive decay is a statistical process. For this reason some total counts that are measured for a short period of time may be excessively lower (and others excessively higher) than the true or mean count rate for that period. The weighting factor as given above could conceivably be wrong for counts that are measured for a short time period. To avoid this possibility, the counts were all measured for a sufficient length of time (viz. from several minutes for high activity samples up to one hour for low activity samples). Most samples were counted for five minutes.

The actual program used to determine the area of mass transfer for a standardization run with the input data and the results are given below. F. Experimental Results

The results shown in this section will include the results obtained from the standardization runs as well as the results of the experimentally measured diffusion coefficients.

```
$IN 
$IBJMR
    DTMENSITLIST, DECK
    DIMFNSION DATA(20,3),A(5),DA(2),LIST(4),D2SQ(20)
    FXTFRNAL STNI
    EXTERNAL STDZ
    OQ11 KKK=1,19
    RFAN(5,101) NTOT,NPUN,NSOU,NSOV,TEMP
C....NTMT ISS THE NUMBER DF DAYA POINTS. 
C.....NRIJN IS THE NUMBER IF THE RUN.NSUU IS THE NUMBFR OF THF SNLUT
C.....NSDU IS THE NUMBFR OF THF SQLUTF.NS IS THE NUMGER OF THF SOLVENT
C.....TEMN IS THE TFMPERATURE DF THE RUN IS DEG C. 
```



```
C.....DATA(I,DFAN (5,IOIS THF MOLAQ CDNCENTRATION OF THF SAMPLE.
C.....LIST([), IOLSHESST(INGER OF OATA POINTS USFO IN THE ANALYSIS.
    REAO(S,IOO)(ARI),I=L,5)
C......A(1) IS THF INITIAL CTNCENTRATION IN THE RATH.
C......A(2) IS THF NTFFNSIVITY
C....AA(3) IS THE INITIAL CNNG,ENTRATION IN THE DORCUS PLATE.
C.....AR4) IS THE AREA OF MASS TRANSFER.AS THE AVFQAGF VOLUME INI THE SOLVFNT RATH.
```



```
    n\cap15 I= 1, NTMT
    \capATA(I, 3)=CATA(NT\capT,1)/XK7
C.....OATA(T,2) IS THE RATIU OF THE CONCFNTRATINN TOT THF COUNT.
    IF(5514,3-DATA(T, 2))14,14,13
    13 LTSTIII=I
    4 EONTINUE 
C.....ñSQ (I)=SQRT(OATA(I,?)') NF THF TIMEAT WHICH THF SAMPLF WAS REMUVEN
    TRONA THF PATH.
    15 DATA(I,1)=1.1i*DATA(I,1)
        XXX=LIST(1)
        A(5)=3CC.0-(xXX/2.)
        A(2)=1.li*A(3)
        WRITF(6,109) NPUN,NSTIU,NSTV,TFMP
        WRITE(6,110)(OATA(I,I),NATA(T,?),DつSO(T),I=1,NTOT)
        WRITE(6,110)(DATA(I,1),
C....LLIST(2)=2 IS THF NUMPER TF VARIARIFS RFING FITTFR.
C....LISTS(3)=? IS THF: NIMMRFR MF ITFRATITNS ALLOWFN MR OFRFORMEN.
C.....LIST(4) IS THF ERRMR SIGNAL.
    CALL FITALLIHFSNI, EROR,SIGNAL,*,LIST)
    NPITE(6,1II)
    WRITE(6,'12O) LIST(1)
    WR ITE(G,1112) A(SI)
    WR ITE(6,113) A(?)
    WRTTE(6,115) A(4)
    WRITE(6,115) A(4)
    WRITE(K,116)
```

```
            LIST(2)=2
            LIST(3)=10
            WRITF(6,120) LIST(1)
            CALL. rITALL, STOZ, ПATA,A,DA,D,LIST)
            WRITE(6,11Q) A(1)
            WRITE(6,119) A(?)
            WRITE(6,123) x1
            WRITE{G;,\22) LIST(3)
            SUM=0.0
            vj\Delta=LIST(1)
            Dก 10 J=1,N,JA
            p=A(1)+(?.*A(3)*A(?)*SQRT(ПATA(J,?)/(A(4)*3.14159))/A(5))*A(4)*2.-
            2OATA(J,1)
    O S(IM=S(JM+(ARS(F)/DATA(J,l))
        XJA=L.IST(I)
            SUM=100*SUM/XJA
C....SIMMIS THF AVERAGF ABCNLIITF DFVIATION OF THE RESIDUALS.
        NPITE (t, IOE) SUM
        WDITF(E,10Q) OA(I)
C.....DA(1) IS THF STANOARO DFVIATITN CF THF INITIAL CONCFNTRATION IN THF BATH.
C.....DA(2J SNOHE STANDARO DEVIATINN OF THE DIFFUSIVITY.
            NDITF (E, l?I) LIST(4)
        ll CONTINUF
        ST\capP
    1OO FORMAT (2F18.9)
    1O1 FIIRMAT (415,C14.7)
    105 FORMAT{9X,2GHCONCFNTPATIMN/CNINT RATIM=,F18.8I
    106 FCRMAT (9X, 36HAVEFAGE A3SOLUTE DFRCFNT DFVIATITIN=,F18.8)
```



```
    ?'FEIRMAT)
    212HTEMPFRATIJRF=,F14.7%)
    10 FOPMAT(9X, I 4HCONCENTPATTON=,F18. 3,%X,5HTIMF=,E18.8,4X, GHTIMF**.5=,
    2F(8.8)
    11 FORMAT (16X,4YHPARAMFTFRS AND INTTIAL VALUES FRMM FOUATION 3.10)
    112 FIRMAT(9X,3OHINITIAL CONC.ENTRATTON IN BATH=,F19.8)
    113 FORMAT (OX, 22HARFA DF AHASS TRANSFFR=,E1R.8)
    14 FURMAT(9X,38HTNITIAL CONTFNTOATION INOOR(IIS OLATF=FIR.R)
    115 FORMAT(9X,12FDIFFUSIVITY=,FIR.RI
    116 FIRMAT(OX,32FAVERAGF VOLUME IN SNLVENT BATH =,FI8.R)
    117 FORMAT (20X, 2OHRESIITTS FDGM FON 3.9)
    11R FORMAT(GX, วOHINITIAL COAC. IN RATH=,FIR.R)
    11ओ FTRRMAT(GX, DJHAREA IIE MASS*TRAVSFER=,EIQ.R)
    120 FRRMAT(GX,I 4HNO. NF TFRMS =, I 5)
    121 FCRQAT (QX,13HFRROR SIGNAL=, (5)
    1う2 FTIRMAT (9x,21FNUMRFR ITF ITEDATIONS=, [5)
    123 FOPMAT (OX,18FFFFECTIVE IFNGTH=,FIQ.Q)
    END
&IRFTC STND LIST,OFCK
        SURROUTINE STDT(R,OATA,A,CA,DY,N,J)
        X=OATA(J,2)
C.....X AND Y ARF DIJMMY VARTARLFS IISEN GNLY TO PRESFQVF THE OATA.
DY=Y##ATA(J,3)
C.....DY IS THF VAQIANCF IIF THE CONCFNTDATITN.
```

```
    R=2**\Delta(2)*SORT(\Delta(4)*X)/AI5)
```



```
    NA(I) ANS DA(\I ARE THE PRATIAL OERIVATIVFS OE THE PEOIDUAL WITH
    RFSDECT TO THF INITIAL CONCENTRATION IN THF QATH AND THF MASS
    TRANSFER AREA RESOFCTIVELY
    R=(A(3)+((A)(1)-A(3))\pinA(1)
C.....R IS THF RESIDUAL OR THE FUNCTION LESS THE EXPERIMFNTAL
    vallue OF thF GONC,FNTRATION
    RETURN
&IGFTC STI
    SUBROUTINFIST,DECK STMIR,DATA,A,DA,DY,N,J)
    OIMENSION OATA(2O,2I,A`SI,DA\Z)
    X=DATA (J,2)
    Y= DATASJ,'RE OUMMY VARIARLFS USED CNLY TO DRESERVE THE DATA.
    OY=Y*DATA(j,z)
c.....OY IS THF VARIANCE IIF THF CONCENIRATION.
    0a(l)=1.0
    DA(2)=4.*A(3)*SQRT(A 4)*X/3.141591/A(5)
C.....DA(II ANMGA(2) ARF THF DPATIAL NFDIVATIVES OF THF RFOIRUAL WITH
C. RFSOECT TOTHE INITIALLVCNN
    R=A(1)+חA(T)**A(2)-Y
r.....R IS THE RESIMUAI OR THE FUNCTITN LESS THE FXOFDIMENTAL.
    VALIJF OF THF CONEFNTPATIION
    RFTURN
    EN?
SIBFTC, FITS LIST,NECK
    SURRNUTINE FITALLIDESID,X,P,OP,O,LIST)
    DCUBLE PRECISION BCTOI, SUM
    EOUIVAL ENCF (S,KK),(C(2),NF[X),(S(3),KSIG),(S(4),A),(R,RR)
    DATA MAX,MMAX,CONV/20,4C3,0.ON1/
    INITIALTYF
    JJ=LIST(1)
    KK=LIST(2)
    \ST(3)=0
    NFDFE:JJ-KK
    IF(LIOUPS.FQ.O) GO TO 10
    MOST=?*KK
    IF(KK.1.T.l.OR.VFRFF.LT.O) in TO 14
    IFIKK.GT.MAXI rin Tn is
    NFIX=KK TERATIOM LINO
    NF I X = Kk
        DO ? N=1,M\DeltaX
        B(N)=0.0
        n0, ? M=1, MAX
    2 A(M,N)=O.O
        CALL RESID(R,X,O,DR,VAR,KK,J)
        IF(VAR:NF:O.OI GO TH 4
        NFIX=NF YX+1
        IF(NFIX.GT.MAX),GOTR 15
        IF(NFIX.GT:MOST) 今, TO 14
C.....CAACILAIFE FIX POINT FLFMFNTS
```

```
    O\cap ; M= l,KK
    A(M,NFIX)=DO(M)
    A(NFIX,M)}=DP(M
    GO TR 6
    -CALCULÁTE REGIILAR DOINT
    O\cap 5 N=1,KK
        R(N)=R(N)+R*DP(N)/VAP
        nO }5M=N,K
    5 A(M,N)=A(M,N)+\capP(M)*ロP(N)/VAR
    5 AIM,N)=AC
C....FINISHOFF MATRIX
            DO }7\textrm{N}=1,K
    OM M=N,KK
C.....INVFOT MATRIX
    KS IG=0
    CALL MATINVIA,NFIX,KSIO)
```



```
        BIG=0.0
        กO }7\textrm{M}=1,\textrm{KK
        SUM=0.0
        Dत & N=1,NFIX
    8 SUM=SUM-A(M,N)*R(N)
        DP(M)=SUM
        O(M)=P(M)+511M
    7 BIG=RTF+AMAX1(\triangleRS(SIJM)-CCNV*ARS(D(M)),D.O)
        IST(3)=L[ST(3)+1
        IF(BIG&EO;O&O) GOMTO
    rO TO
C....CONVEQGENCF ACHIFVFN -- COMDUTE VARTANCES
    O=0.0
        IF(NFRFE.FO.O) RU TO 12
        SUM=0.0
        OALL1 J==1,JJ, X,P, \capP,VAR,KK,J)
        IFYVAF.FOOO-O),GU TO Il
        SUM=SUM +Q*RIVAR
    1L CONTINIJE
    Q=SQRT(SNGL(SUM)/FLOAT(NFDFF))
    12 ก\cap 13 K=1,KK
    DP(K)=SORT(ABS(A(K,K)))
        IF(KSIG.NF.O) GO Tr.. IG
        RETURN
    14 LIST(4)=LIST(4)+1
    16 IST(4)=\IST(4)+1
    17 LIST(4)=1SST(4)+1
    l% LIST(4)=1ST(4)=LIST(4)+1
    IIIST(4)=LTST(4)+I
C.....FNTRY FOR SAVING MATRIX
    ENTRY FITSAV(HDLDI
    DIMENSION HOLD(I)
    DO20 N=1,MMAX
    20 HOL\O(N)=S(N)
```

```
    RFTURN
R.....FNTRY FOD RESTMPING SAVED MATRIX
    ENTRY FITRAKOHFLD)
    OIMFNSIIN HFLDI
    ?1 S(N)=HEL\cap(N)
        RFTIQNELD(N)
        FNTRY FOR VAPIANCF OF RFSIDIIAI AT XX FOLIOWS
        ENTRY FITVAR (FIINC, XX, PAR, RFS,DRFS,I)
        CAILL FIJNCIRFS,XX,PAR,RR,VAR,KK,LI
    VAR=0.0
    On 23 K=1,KK
    SUM=0.0.O
22 SUM=S(UM+A(K,N)*BH(N)
2}3\mp@code{VAR=VAR+SUM*RQ(K)
    VAR=VAR+SUM*RR(K)
    RFTIRN
    FND
```

RUN $=1$ SO	SOLUTE=	SOLVENT=	TEMPERATURE=	25.0
CONCENTRATION=	$\mathrm{N}=0.30630491 \mathrm{E}-05$	TIME $=$	0.10200000 E 02	
CONCENTRATION=	$\mathrm{N}=\quad 0.40487843 \mathrm{E}-05$	TIME =	0.27000000 E 02	
CONCENTRATION=	$\mathrm{N}=0.36149085 \mathrm{E}-05$	TIME=	0.42000000 E 02	
CONCENTRATION=	$N=\quad 0.66381519 \mathrm{E}-05$	TIME=	0.19199999 E 03	
CONCENTRATION=	$N=0.10483953 \mathrm{E}-04$	TIME $=$	0.49200000 E 03	
CONCENTRATION=	$N=0.13302548 \mathrm{E}-04$	TIME=	0.84000000 E 03	
CONCENTRATION=	$\mathrm{N}=0.16425219 \mathrm{E}-04$	TIME $=$	0.13560000 E 04	
CONCENTRATION=	$\mathrm{N}=0.19105843 \mathrm{E}-04$	TIME $=$	0.20280000 E 04	
CONCENTRATION=	$\mathrm{N}=0.24144401 \mathrm{E}-04$	TIME $=$	0.32460000 E 04	
CONCENTRATION=	$\mathrm{N}=0.27595536 \mathrm{E}-04$	TIME=	0.41460000 E 04	
CONCENTRATION=	$\mathrm{N}=0.29989435 \mathrm{E}-04$	TIME $=$	0.51419999 E 04	
CONCENTRATION=	$\mathrm{N}=0.29853037 \mathrm{E}-04$	TIME $=$	0.60419999 E 04	
CONCENTRATION=	$\mathrm{N}=0.29714181 \mathrm{E}-04$	TIME =	0.69419999 E 04	
CONCENTRATION=	$\mathrm{N}=0.33790732 \mathrm{E}-04$	TIME=	0.78420000 E 04	
CONCENTRATION=	$\mathrm{N}=0.37246194 \mathrm{E}-04$	TIME=	0.87420000 E 04	
CONCENTRATION=	$\mathrm{N}=0.37982825 \mathrm{E}-04$	TIME $=$	0.96420000 E 04	
CONCENTRATION=	$\mathrm{N}=0.40054215 \mathrm{E}-04$	TIME $=$	0.10541999 E 05	
CONCENTRATION=	$\mathrm{N}=\quad 0.42009882 \mathrm{E}-04$	TIME=	0.11442000 E 05	
CONCENTRATION=	$\mathrm{N}=0.42493771 \mathrm{E}-04$	TIME=	0.12443999 E 05	
CONCENTRATION=	$\mathrm{N}=\quad 0.51539584 \mathrm{E}-04$	TIME=	0.63120000 E 05	
CONCENTRATION/COUNT RATIO $=0.40837342 \mathrm{E}-08$				
NO. OF TERMS $=11$				
INITIAL CONCENTRATION IN BATH $=0.15648379 \mathrm{E}-05$				
AREA OF MASS TRANSFER= 0.11644274 E 02				
INITIAL CONCENTRATION IN POROUS PLATE $=0.11100000 \mathrm{E}-02$				
DIFFUSIVITY $=0.16100000 \mathrm{E}-04$				
AVERAGE VOLUME IN SOLVENT BATH=RESULTS FROM EQN B-33				
NO. OF TERMS $=11$				

INITIAL CONC. IN BATH' $=0.15194262 \mathrm{E}-05$ AREA OF MASS TRANSFER= 0.11865972 E 02 EFFECTIVE LENGTH $=-0.00000000 \mathrm{E}-19$
NUMBER OF ITERATIONS= 2
AVERAGE ABSOLUTE PERCENT DEVIATION $=0.44057584 \mathrm{E} 01$
STANDARD DEVIATION OF INITIAL CONCENTRATION IN BATH= $0.72612161 E-07$
STANDARD DEVIATION OF DIFFUSIVITY= $0.90748133 \mathrm{E}-01$
ERROR SIGNAL= 1

1. Standardization. The data obtained from the standardization runs are summarized in Table B-II as runs numbered 1 through 14 and 105 through 110. These summarized results include the run number, the number of data points used in the analysis and the corresponding average solvent bath volume, the initial concentration of the solute in the bath and its standard deviation, the area of mass transfer and its standard deviation, and the average absolute percent deviation of the residuals. For this latter term the percent deviation of the residuals is defined by, ,

$$
\begin{equation*}
\operatorname{DEV}=100 \% \frac{\left|\frac{C_{f_{i}}-C_{f_{i}}}{}\right|}{C_{f_{i}}} \tag{B-41}
\end{equation*}
$$

All of the standardization runs were performed at $25.0^{\circ} \mathrm{C}$ were the diffusion coefficient of sodium chloride is $(0.161 \pm .001) \times 10^{-5}$ square centim eters per second (Harned and Owen, 1958).

The results obtained for the standardization runs are also summarized in Table B-III. The areas determined show agreement to $\pm 5 \%$ for any one cell. The runs numbered one through fourteen were performed at the beginning of this project and those numbered 105 through 110 at the end. The values of the area of mass transfer do not show any trends either increasing or decreasing. This indicates that during the course of this work the pores in the plates did not significantly collect any foreign particles.

While counting the samples taken from these standardization runs, it was noticed that periodically the counters being used would malfunction. This was usually noticed by an unusual drift in the count rate obtained for one sample of a series of samples. To minimize the possibility of errors

RESULTS FOR THE STANDARDIZATION RUNS

Run Number	$\begin{aligned} & \text { Cell } \\ & \text { inn. } \end{aligned}$	A verrege Volume in Solvent Bath, cm^{3}	Number of Data Points	Initial Concentration in Bath mole/liter $\times 10^{5}$	standard Deviation of Initial Concentration $\times 10^{6}$	Area of Mass Trancfer om?	Standard Deviation of Area	Average Percent Deviation of Residuals
1	1	294.5	11	0.1519	0.0726	11.87	0.0907	4.41
2	1	294.5	11	0.1270	0.1130	12.12	0.1443	5.41
3	2	294.5	11	0.1424	0.1231	14.14	0.1565	15.86
4	3	295.0	10	-0.0421	0.1233	11.70	0.1565	6.65
5	2	294.5	! 1	-0.1018	0.0587	12.74	0.1189	13.56
6	3	295.0	10	-0.1223	0.0949	13.01	0.1125	5.66
7	4	294.5	11	-0.0318	0.0705	12.79	0.1125	7.33
8	4	294.5	11	-0.0168	0.1063	i1. 46	0.1531	9.83
9	5	294.5	11	-0.0826	0.0781	12.14	0.1419	10.11
10	5	294.5	11	-0.0915	0.0742	10.20	0.1398	15.10
12	1	294.5	11	-0.0736	0.0488	12.62	0.0953	6.34
13	6	294.5	11	-0.0955	0.0594	10.98	0.1287	10.87
14	6	294.5	$1:$	-0.1452	0.0280	10.38	0.0880	5.34
105	1	295.5	9	-0.0280	$0.15: 9$	11.51	0.2141	7.59
106	2	295.0	10	-0.1014	0.1303	10.87	0.1826	6.44
107	6	295.5	9	-0.2746	0.1561	11.90	0.2398	2.18
103	3	296.0	8	-0.0328	0.1526	11.18	0.2144	4.49
109	4	296.0	8	0.0604	0.0718	11.51	0.0858	6.54
110	5	296.0	8	-0.1282	0.1137	14.58	0.1438	5.74

Solute NaCl
Solvent Water
Temperature $25.0^{\circ} \mathrm{C}$
Diffusivity $=0.161(10)^{-4} \mathrm{~cm}^{2} / \mathrm{sec}$
Initial concentration of porous plate $=0.0111$ moles/liter
Effective length $=0.544 \mathrm{~cm}(w u, 1968)$

TABLE B-III

STANDARDIZATION RESULTS

SUMMARIZED

Cell Number	Average Area of Mass Transfer, cm^{2}
1	12.03 ± 0.6
2	12.59 ± 1.6
3	11.96 ± 1.1
4	11.92 ± 0.9
5	12.31 ± 2.3
6	11.09 ± 0.9
Average of Cells:	11.98

obtained from these drifts, each sample was counted by two different counters in rapid succession. Likewise, the samples taken during the diffusivity determination runs were counted twice; however, the liquid scintillation counter used for these samples did not show this drift. This unusual drift in the count rate was probably due to the poor counters used as they were very old.

During the data analysis of the diffusivity determination runs it was noticed, by Wu (1968), that if the individual cell average area of mass transfer was used, the results did not yield a smooth Arrhenius activation energy plot of the calculated diffusivities versus reciprocal temperature. On the other hand, if the average area for all cells was used, the determined diffusivities gave a smooth Arrhenius activation energy plot. This indicates that some error was introduced during the standardization runs that was not introduced during the diffusivity determination runs. That error is probably due to the counters used as indicated above. Thus, the average area of mass transfer of 11.98 square centimeters as shown in Table B-III was used in the data analysis for all of the diffusivity determination runs.

This average area should be very close for all cells as they were all made to the same dimensions. The use of this average probably limits the accuracy of the experimentally determined diffusivities to approximately ten percent or more.

The results obtained for the area of mass transfer from the analysis by Equations B-20 and B-27 differ in most cases by less than 10%. The results
of the data analysis obtained from Equation B-20 will be used here since this equation was developed by including the effects of the solute concentration increase in the solvent bath.
2. Diffusivities. The data obtained from these runs are summarized in Tables B-IV through B-IX and appear as runs 50 through 104. Shown with other data for each run are the values of the diffusivity and the initial concentrations obtained from the leastsquaresanalysis of Equation B-20. The experimentally measured diffusion coefficients at the given temperatures are summarized in Table B-X. The activation energies and the free energies of activation for each temperature are also given in Table B-X for each system. The diffusion coefficients shown in Table B-X are the average values of all the runs made for any specified solvent-solute system at the temperature indicated.

Figures B-8 and B-9 show the variation of the binary diffusion coefficients as a function of reciprocal temperature. The activation energies given in Table B-X are calculated from these data. The activation energies vary from 4.48 to $9.92 \mathrm{Kcal} / \mathrm{mole}$. On the other hand, the free energies of activation vary only from 4.70 to $5.66 \mathrm{Kcal} / \mathrm{mole}$.

Estimates of the entropies of activation for these six systems vary from about 0 to 17 entropy units. Bondi (1946) shows entropies of activation for viscous flow that range from -10 to 100 entropy units for the viscous materials that he investigated.

Bondi (1946) also has shown that there exists a "degree of proportionality" between the enthalpy of activation and the entropy of activation. The activation

TABLE B-IV

RESULTS FOR THE DIFFUSIVITY RUNS FOR THE
DIFFUSION OF CYCLOHEXANOL INTO
PROPYLENE GLYCOL

Run	$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	$\mathrm{Temp}_{\mathrm{o}_{\mathrm{C}}}$	A verage Jolvent Volumecm^{2}	Number of Data Points	Effective* Length cm	Initial Bath Concentration mole/liter $\times 10^{4}$	Standard Deviation of Initial Concentration$\times 10^{6}$	$\begin{gathered} \text { Diffusivity } \\ \text { cm } \mathrm{m}^{2} / \mathrm{sec} \text {. } \\ \times 10^{6} \end{gathered}$	Standard Peviation of Diffusivity $\times 10^{8}$	Average Percent Deviation of Residuals
91	3	26.6	293.0	14	0.324	0.1826	1.6704	0.2810	0.7573	8.11
92	3	26.0	292.5	15	0.325	0.0856	0.5510	0.2365	0.2678	2.05
97	6	30.0	292.5	15	0.320	0.1280	1.2657	0.3121	0.6454	2.60
98	6	30.0	292.5	15	0.322	0.1314	$1.275 ?$	0.3082	0.6433	2.89
103	3	39.9	295.0	10	0.375	0.6622	2.0126	0.5549	1.5374	3.18
104	3	39.9	295.0	10	0.373	0.6362	2.0033	0.5886	1.5934	3.10

Initial concentration in porous plate $=0.0241$ moles/liter
Area of mass transfer $=11.98 \mathrm{~cm}^{2}$
*ivu (1968)

TABLE B-V
RESUITS FOR THE DIFFUSIVITY RUNS FOR THE
DIFFUSION OF CYCLOHEXANOL INTO
DIETHYLENE ALYCOL

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Temp } \\ \mathrm{o}_{\mathrm{C}} \end{gathered}$	Average Solvent Volume	Number of Data Points	Effective* Length	Initial Bath Concentration mole/liter $\times 10^{4}$	Standard Deviation of Initial Concentration $\times 10^{5}$	$\begin{gathered} \text { Diffusivity } \\ \text { cm } / \mathrm{sec} \text {. } \\ \times 10^{6} \end{gathered}$	standard Deviation of Diffusivity $\times 10^{7}$	A verage Percent Deviation of Residuals
89	5	26.6	294.5	11	0.345	0.3059	0.2221	0.4621	0.1539	2.17
90	5	26.6	294.5	11	0.344	0.2678	0.2117	0.4586	0.1488	5.70
95	2	30.0	292.5	15	0.332	0.2219	0.1579	0.4980	0.0994	2.80
96	2	30.0	292.5	15	0.333	0.2254	0.1542	0.4950	0.0974	4.24
101	5	39.9	294.0	$1 ?$	0.499	0.9780	0.2645	0.8278	0.1970	2.10
102	5	39.9	295.0	10	0.462	0.9624	0.2750	0.8257	0.2511	2.85

Initial Concentration in porous plate $=0.0241$ moles $/ 1 i t e r$
Area of mass transfer $=11.98 \mathrm{~cm}^{2}$
*Wu (1968)

TABLE B-VI
RESULTS FOR THE DIFFUSIVITY RUNS FOR THE

DIFFUSION OF CYCLOHEXANOL INTO

ETHYLENE GLYCOL

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { cell } \\ & \text { No. } \end{aligned}$	$\operatorname{Temp}_{\mathrm{o}_{\mathrm{C}}}$	A verage Solvent Yolume Cm	Number of Tata Foints	$\begin{aligned} & \text { Effective } \\ & \text { Length } \\ & \text { cm } \end{aligned}$	Initial Bath Concentration mole/liter $\times 10^{4}$	Standard Deviation of Initial Concentration $\times 10^{5}$	$\begin{gathered} \text { Diffusivity } \\ \text { cm } / \text { sec. } \\ \times 10^{6} \end{gathered}$	$\begin{aligned} & \text { Standard } \\ & \text { Deviation of } \\ & \text { Diffusivity } \\ & \times 10^{7} \end{aligned}$	\triangle verage Fercent Deviation of Residuals
87	4	26.6	295.5	9	0.330	0.2744	0.2573	0.5951	0.2602	6.46
88	4	26.6	295.5	9	0.325	0.2843	0.2487	0.6209	0.2580	3.64
93	1	30.0	293.5	13	0.357	0.5336	0.2778	0.6132	0.1690	3.84
94	1	30.0	293.0	14	0.356	0.4953	0.2208	0.6547	0.1551	4.5 ?
99	4	39.9	296.0	8	0.444	0.5252	0.2965	1.0362	0.4476	2.71
100	4	39.9	295.5	9	0.474	$0.482 ?$	0.2626	1. 1078	0.3489	3.24

Initial concentration in porous plate $=0.0241$ moles $/$ liter
Area of mass transfer $=11.98 \mathrm{~cm}^{2}$

* N u (1968)

TABLE B-VII
 RESULTS FOR THE DIFFUSIVITY RUNS FOR THE
 DIFFUSION OF ETHYLENE GLYCOL INTO
 ETHYLENE GLYCOL

Run No .	$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	$\mathrm{Temp}_{\mathrm{o}_{\mathrm{C}}}$	Average Solvent $\underset{\text { cm }}{\text { Volume }}$	Number of Data Points	Effective* Length cm	Initial Bath Concentration mole/liter	Standard Deviation of Indtial Concentration	Diffusivity $\mathrm{cm} \text { 2/sec. }$	Standard Deviation of Diffusivity	Average Percent Deviation of Residuals
						$\times 10^{7}$	$\times 10^{8}$	$\times 10^{5}$	$\times 10^{7}$	
51	4	25.0	297.0	6	0.324	0.4257	0.2191	0.0976	0.2646	10.51
52	4	25.0	297.0	6	0.339	0.4839	0.2319	0.1041	0.2864	12.43
57	1	25.0	295.5	9	0.545	0.3129	0.2201	0.0916	0.1526	2.76
58	1	25.0	295.5	9	0.536	0.2956	0.2187	0.0912	0.1519	2.22
63	4	30.0	295.5	9	0.582	0.3374	0.2184	0.1145	0.1821	4.94
64	4	30.0	296.0	8	0.558	0.3353	0.2277	0.1127	0.2131	2.19
69	1	40.0	297.0	6	0.459	0.5581	0.3478	0.1543	0.5311	4.39
70	1	40.0	297.0	6	0.502	0.4997	0.3392	0.1548	0.5227	3.06
75	4	40.0	295.5	9	0.546	0.4865	0.3592	0.1497	0.3682	2.96
76	4	40.0	295.0	10	0.568	0.4764	0.3450	0.1446	0.3057	2.09
81	1	50.0	297.0	6	0.354	0.3170	0.4054	0.2067	0.7685	3.05

Initial concentration in porous plate $=0.000036$ moles $/ 1 i t e r$
Area of mass transfer $=11.98 \mathrm{~cm}^{2}$
*Wu (1968)

TABLE B-VIII
RESULTS FOR THE DIFFUSIVITY RUNS FOR THE
DIFFUSION OF ETHYLENE GLYCOL INTO
DIETHYLENE GLYOOL

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	$\operatorname{Temp}_{\mathrm{O}_{\sim}}$	\triangle verage Solvent $\underset{\mathrm{cm}}{\mathrm{Vol} \mathrm{m}^{2}}$	Number of Data Points	$\begin{aligned} & \text { Effective* } \\ & \text { Length } \\ & \text { cm } \end{aligned}$	$\begin{aligned} & \text { Initial } \\ & \text { Bath } \\ & \text { coneentratina } \\ & \text { mole/liter } \\ & \times 10^{4} \end{aligned}$	Standari neviation of Inttial Concentration $\times 105$	$\begin{gathered} \text { Diffusivity } \\ \mathrm{cm} \text { ? } / \mathrm{sec} \text {. } \\ \times 10^{5} \end{gathered}$	Standard Deviation of Diffusivity $\times 10^{8}$	Average Percent Deviation of Residuals
59	2	25.0	294.5	11	0.475	0.5510	0.2746	0.0563	0.9013	2.83
60	2	25.0	294.5	11	0.493	0.4728	0.2597	0.0554	0.8653	3.48
65	5	30.0	293.5	$i 3$	0.740	0.5124	0.2480	0.0624	0.7627	5.40
66	5	30.0	295.0	10	0. 498	0.5361	0.2756	0.0676	1.1596	3.07
77	5	40.0	295.5	9	0.407	0.995 ?	0.5:78	0.0926	3.3147	3.61
79	5	$\therefore 2.0$	395.5	9	0.1.10	0.7808	0.5175	0.1066	3.48!1	2.17

Initial concentration in porous plate $=0.045$ moles $/ 1 i t e r$
Ares of mass trancfer $=1: .98 \mathrm{~cm}^{2}$

* Tu (1968)
mABTE B-IX
RESULTS FOR TGE DIFFUSIVITY RUNS FOR THE
DIFFUSION OF ETHYLENE GIYCOL INTO
FROPYLENE GLIDOE

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	Temp	1verace Talvent Values cm	Yuber of Data Pointe	$\begin{aligned} & \text { Refective* } \\ & \text { Lengtr. } \\ & \text { com } \end{aligned}$	```Tu{tial Bat:1 Soncentration nole/liter \times10:```	$\begin{aligned} & \text { Standart } \\ & \text { Ceviation } \\ & \text { of Initial } \\ & \text { Concentration } \\ & \times 105 \end{aligned}$	$\begin{aligned} & \text { Diffusivity } \\ & \text { cm } 2 / \text { sec. } \\ & \times 10^{6} \end{aligned}$	$\begin{aligned} & \text { Etandard } \\ & \text { Deviation of } \\ & \text { Diffusivity } \\ & \quad \times 10^{8} \end{aligned}$	Iverage Fercent Deviation of Residuals
61	6	25.0	294.5	11	0.479	0.3245	0.2254	0.4866	0.7588	5.84
52	6	25.0	294. 5	11	0.525	0.3782	$0 . ? 350$	0.4772	0.7535	5.75
67	3	30.0	292.5	15	0.774	0.2545	0.1596	0.5274	0.5136	4.65
68	3	30.0	29'.0	12	0.56:	0.0434	0.1945	0. 5363	0.6882	7.15
73	6	40.0	297.0	6	0.423	0.4:87	0.29:5	1.0293	3.3815	9.27
74	5	40.0	296.5	7	0.479	0.5204	0.2490	0.8189	1.7930	8.04
35	6	52.0	297.5	5	2.3'9	0.0710	0.3204	1.2531	3.6511	: . 88
86	5	50.0	297.5	5	0.349	$0.082{ }^{1}$	0.3727	1.2657	4,2417	!. 40

Initial concentration in porous plate $=0.045$ moles $/ 1 i t e r$
4rea of mass transfer $=1.98 \mathrm{~cm}^{\text {? }}$
*Nu (968)

TABLE B-X
EXPERIMENTALLY MEASURED DIFFUSION COEFFICIENTS,
ACTIVATION ENERGY AND FREE ENERGY
OF ACTIVATION AT THE TEMPERATURES INDICATED

Figure B-8. Diffusivities of ethylene glycol in the solvents ethylene glycol, propylene gylcol and diethylene glycol versus temperature.

Figure B-9. Diffusivities of cyclohexanol in the solvents ethylene glycol, propylene glycol and diethylene glycol versus temperature.
energies in Table B-X are onlyslightly different (by less than 10\%) from the enthalpy of activation. The free energy of activation defined by

$$
\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}=\Delta \mathrm{H}_{\mathrm{D}_{\mathrm{AB}}}-\mathrm{T}^{\mathrm{T}} \mathrm{~S}_{\mathrm{DB}}
$$

Thus, since this degree of proportionality between the enthalpy and entropy of activation exists, one should expect the free energy of activation to deviate much less from system to system than does the activation energy. This is of course shown in Table B-X.

G. Programs

The following program was used to predict the diffusivities by the WilkeChang equation, the modified Gainer and Metzner equation, the Olander equation, and the equation developed in this work.

```
$IN YGW0645 MITCHFLL,R D.D. DIFGM
C.....THIS PROGRAM CALCULATES THF DIFFUSION COEFFICIENTS RY THF WILKE-
    CHANG EQUATION IDWCI: BY OLANDERIS EQUATIQN IDOI, BY GAINERIS
    FQUATION, RUT USTNG THE EXPERMFNTAL VALUES OF THE VISCOUS ACTTVATION
    ENERGY (DGMPI, AND BY EQUATIONS DMI,DM2,AND DMS AS DEVELOPEN IN THIS
    WORK
    #IMENSION EDD(41), EDN(41)
    DIMENSION SOUM(4I,60),RAT(41), ENH(41),FDH(41)
    DIMENSION DEN(2,41),VIS(2,41),FN(41),EN(41),ALP(41),XP(41), XM(41)
    2,7(41), Z7(41),DRP(41),V(41),RA'(41)
    READ (5,2OC) IRUN
    DO 8? JRUN=1, IRUN
    READ(5,200) NWAY,NSTD,NTOT,NH2O
C.....NSTO IS THE NUMBER OF'PURENLIOUIDS FOR WHICH DATA IS READ IN. IS THE NUMRER OF SYSTFMS FMR WHICH THE DIFFUSIVITIFS ARE
    CALCULATED
    CORF=2.0**0.166667
    READ (5,106) (RAT (I),I= I,NSTD)
C.....RAT IS THE RATIO OII THF ENNSHALPY OF VAPORIZATION DUF TO DISPERSION
    FORCE RONOS TO THE TOTAL
    REAN (5,100)((DEN(I,j), I= 1,2),J=1,NSTD)
C.....DEN IS THE DENSITYY.
V...VIS IS THF VISCOIS(I,JI,I=1,2),J=1,NSTO)
C....VIS IS THF VISCOSITY
    REAO (5,100) (XP(IJ,XM(I),T(I),ZZ(I), DBP(I),I=1,NSTD)
C.....XP IS THE SOLVENT PARAMETFR FOR USE IN THF WILKE-CHANGGFQUATION.
C.....XM IS THE MOLECULAR WEIGHT.
C.....Z IS XI FOR USE IN GIANER AND MFTZNER'S EQUATION.
C......7.7 IS XI FUR USE IN EQUATIONS DMZ AND DMX. IS THE MOLAR VOLUME AT THE ROILING POINT.
C....REAC(S,100) R,CK,XK,AVGN,H
C....R IS THE UNIVFRSAL GAS CONSTANT
C.....CK IS THE CONSTANT USEN IN THE WILKE-CHANG EQUATION.
C.....XK IS THF BMLTTMAN CONSTANT.
C.....AVGN IS THE AVIGADRO NUMRFR.
C.....H IS THE PLANCK CONSTANT.
    WRITE (6,150) R
    WRITE (6,151) H
    WRITE (6,153) AVGN
C....SAM,AS WELL AS SUM,SOUN,SOM,SUME, AMD SCME RELOW, ARE USED IN
    SAM,AS WELL AS SUM,SOUN, SOM, SUME, AMD SCME RELOW, ARE US
    DO 10 J=1,NSTO
C..... J IS THE SOLVENT NUMBER, SFE LIST BELOW
C....TI IS THE TEMPERATURE FOR WHICH THE DATA ARE USEFUL FOR THIS SOLVENT.
    T2=T1+15.
    WRITE (6,155) J
    WRITE (6,157) XP(J)
    WRITF (6,158) XM(J) 
```

```
            WRITE(6,109) DEN(1,J),TI,NEN(?,J),T2
            WRITE(6,111) VIS(1,J),T1,VIS(?,J);T?
```



```
C....TPANSFER.
        ALP(J)= DEN(1,J)*((1./DFN(2,J))-(1./DEN(1,J)))/ (T2 -T1)
C....ALP IS THE COEFFICIENT OF VOLUMETRIC EXPANSINN.
C.....ED IS THESSELF-DIFFUSION ACTIVATION ENFR&O')FOR EQUATICNS DMI AND DM3.
        WRITE (6,160) FN(J)
        10 WRITE (6,161) EDIJ)
        ENHIO =1,NSTD
        ENH(I)= EN(I)* (IAORAT (I)'GRGY FOR VISCNSITY DUF TD HYORIGGN BONDING.
C....ENHIII=ED(I)A*IIG-RAT(II)
    EDD(I)=ED(I)*RAT(I)
C....EDD IS THE ACTIVATIDN ENERGY FOR DIFFUSION DUE TO DISPERSICN FCRCES.
C.....ENN IS ENHF ACTIVATION ENFRGY FOP VISCOSITY DUE TO OISPFRSION FORCES.
    DO 11, J=1,NTOT
```



```
    IP=1
    DWC=(CK*T1*((XP(NA)*XM(NR))**.5)/(VIS(1,NR)*(ORD(NA)**.6)))*.0001
C.....DWC IS THE DIFFUSIVITY AS CALCULATED BY THE WTLKF-CHANG EQUATION.
    V(NA)=XM(NA)/DEN(I,NA)
C....V IS THF MOLAR VOLUME AT THF TEMPERATURE TI.
    V(NB)= XM(NB)/ DEN(1,NR)
    RA(NA) =(V NA)/AVGN)** 0.23333
C.....RA IS THE MOLECULAR RANIUS.
    RA(NB)=(V(NB)/AVGN)** O.Z3333
    RAB=(RA(NP)+RA(NA))/2.00
C.....RAB IS AN AVERAGE MOLECULAR RADIUS
    DFBR=R*T 1*AlOG(VIS(1,NB)*V(NR)/(AVGN*H)
C.....DFBO IS THE ACTIVATION FREF FNFRGY OF THF SOLVFNT B FOR OLANNER'S MONEL.
    DFAQ=R*T 1*ALOG(VIS(I,NA)*V(NA)/(AVGN*H))
C.....DFAN IS THE ACTIVATION FRFF FNERGY OF THF SOLUTF A FRR GLANDER'S MPDFL.
    DEV5=(DACT-DWC)/OACT
C.....DEV5 IS THE FRACTIONAL DFVIATION IN THF WILKE-CHANG OIFFUSIVITY.
    SAM=SAM+ABS(DEVS)
C.....THIS SECTION IS HERE TO SUPPPESS UNNEFDED DUTPUT WHEN DFSIRED.
    IF (NWAY) 30, 31,30
    30 IF (J-1)42,32,42 NA,NR
    2 WRITE (6,103) NA,NR
        WRITE(6,112) NWC.,NEV5
        GN TH 42
    3) WRITF (6
        WRITE (6,103) NA,NB
        WRITE (6,170) T1,DACT,VIS(1,NB)
        WRITE(6,112) NWC,DEV5
    42 CONTINUE
    OFR=DFBn+(R*T1*(ALOG(2.0**0.5)))
C.....DFB IS THE ACTIVATION FRFE ENFRGY FOR MCDEI UMI FOR SOLVFNT R.
C....OFA IS THE ACTIVATIDN FREE ENFRGY FOR MDNEL OMI FOR SOLUTE A.
```

```
C....DFAH IS THF ACTIVATION FREE ENERGY DUE TH HYDROGEN RONDING FOR SOLUTE A.
C....DFBH IS THE ACTIVATION FREF FNERGY DUE TO HYOROGEN BCNDING FOR SOLVENT R.
CMFA=DFA*RAT(NA)
    DFR=DFB*RAT (NB)
C....DDFR IS THE ACTIVATION FFRE FNFRGY FOR SOIVENT B DUF TO DISPFRSION
        X=R*T 1* (1*-(Tl*ALP(NB)/马,))
        XY= -SORT(((RA(NB)*RA(NA)/((RAR)**2))**12)*27(NA)*FDD(NA)*EDO(NB)
    2(ZZ(NB))
    XY= - SQRT (RA(NA)*EDH(NA)*RA(NB)*EDH(NR)*ZZ(NR)/(RAB*RAB*
    2Z7(NB))!
        XZY=-Z(NA)*SQRT(RA(NB)*RA(NA)*FNH(NA) *ENH(NB)/(RAB*RAB))/Z(NR)
        XX=-Z(NA)*SQRT((RA(NR)*RA(NA)/((RAB)**2))**1 \*EON(NB)*EON(NA)I/
    2Z(NB)
    XZZ=-2.*V(NA)*SQRT((FD(NA)*ED(NB)/(V(NA)*V(NR))))
C.....X, XYY XZX, XZY, XX AND XZZ APFGGROUPS OF TERMS'TO RE USED TN THF
    EXPONENTS OFF THF VARIUS EQUATIONS RELOW.
    TANT = RA(NR)/SORT((RA(NA)**2)+(2.*RA(NA)*RA(NB)))
C....TANT IS THE TANGENT IF THE ANGLE THFTA, SEF DERIVATION OF FOUATIDN DM3.
C.....LP
C.MMOLECULF
    MOLECULF:
    OO 17 IP = 1,40
    F=IP
    F=0.025*F
C.....F IS THAT FRACTION OF THE ACTIVATION (FREE) ENERGY CUF TO THE
    HOLE FORMATION STEP.
C....AFFIS IS THAT FRACTION DF THF ACTIVATION (FREF) ENERGY DUE TO THF
    JUMP STFP; (RA(NB)*5.6))*EXP(AF*(DFBO-SQPT(DFRO*DFAO))/(R*T1))
    DO={XK*T1'
C.....DO IS THE DIFFUSIVITY AS CALCULATED AY OLANDFRIS MDDFL
    ZG=(F*DFB/RAT(NR))-(DFR*V(NA)*(1.-F)/(V(NB)*RAT(NR))i+i2.*V(NA)*
    ?(1.-F)*SQRT(DFA*NFB/(V(NA)*V(NB)*RAT(NA)*RAT(NR))))
        XDGM=(1:-F)*(FN(NB)+XX+XZY)
            XDM1=(F*X)+(i, -Fi*ZP*(XY+XZX)
            XDMP=(F*X)+((1.-F)*(EN(NB)+((V(NA)/V(NB))*ED(NR))+(XZ7.)))
C.....ZG, XOGM, XOMI, AND XIMM2 ARE TERMS USED IN THE EXPCNENTS OF THF
    ZGG, XOGM, XOMI,
```



```
    OMM= ISK*T1/(ZZ(NB)*VIS(I,NBI))*(EXP(XDMI/(R*TI)); (RA(NR)*CORF)
C.....DMZ IS THE DIFFUSIVITY AS CALCULATED BY THF EOUATION NMZ.
NM2=(XK*T1/(ZZ(NR)\not=VIS(1,NR)))*(EXP(XDM2)(R#T1))\/(PA(NE)*CORF)
C.....DM2 IS THEDIFFUSIVITY AS CALCULATED RY EDUATION DMP.
```



```
    OMI=1.O7*DMI H
C.....DMI=IS THE DIFFUSIVITY AS CALCULATED BY EQUATIGN DMI.
    SUM(ID,J)=(DACT-DOI/OACT
    SUM(IP;J)=(DACT-DGM)/DACT
    SUME(IP,J)=(DACT-DM1)/DAC.T
    SOUM(IP,J)=(\capACT-DMMST-DMS)/DACT
    C.....THIS SECTIONNACT-DM3I/DACT ISNERE TO SUPPRESS UNNEFDEN OUTPUT WHEN DESIRED.
```

```
    IF(NWAY)20,21,20
    20 IF(J-1)12,22,12
    WRITE (G,IO5)SUM(IP,J),SOM(IP,J),SUME(IP,J),SCME( IP,J),SOUMIIP,J)
    GOTO 12
    WRITE (6,104) F,DO,DGM,DM1,DM2,DM3
    WRITE (6,1004)SUM(IP, J),SOM(IP,J), SUME(IP,J),SCME( [P,J),SOUMIIP,J)
    1? CONTINU
    WRITE (6,171)
    WRITE (6,171)
    F=J
    F=0.025*F
    WW=0.0
    W=0.0
    X=0.0
    Y=0.0
    Y=0.0
    WW.W, }X\mathrm{ , Y AND U ARE THE AVERAGF DEVIATIDNS OF THE DIFFUSIVITIES.
    OO 14'I=1,NTOT
    WW=WW+ABS(SOUM(J,I))
    14U=U + ABS(SDME(J,I))
    M YY=NTIRY
    W=W/XYY
    X=X/XYZ
    Y=Y/XYY
    U=U/XYZ
    WW =WW/XY
    15 WRITE(6,172)F,W,X,Y,U,WW
    SAM=SAM/XYZ
    WRITF (6,173) SAM
    88 CONTINUE
    STOP
100 FORMAT (4E18.8)
101 FORMAT (4E18,8)
102 FORMAT (2I6,2E18, SORMUTE CONE =,I I,5X,15H SOLVENT CODE =, I 3)
106 FORMAT(8F9.5)
```



```
2=,F7.5,3H AT,FG.1,18H DEGG C,IN GRAM/CC)
111 FORMAT. I1OX, 13H VISCOSITY =,F7.5,3H AT,FG.1,6H DEG C,4X,13H VISCO
1112SITY =,F7.5,3H AT,F6.1,16H DFG`C, IN POISE)
l
    2OLE)
    151 FORMAT (10X, 21H PLANCK CONSTANT,H = ,F18.8,8H ERR*SEC)
    15% FORMAT(10X,24H ROLTZMAN CONSTANT,XK = E18.8,8H ERG/DEG)
    153 FORMAT, 10X,24H ROLGADRO NLMBFR,AVGN = E18.8.7H 1/MCLEI
    154 FORMATI IOX,5OH EMPERICAL CONSTANT FOR WILKE-CHANG FQUATION,CK = ,
    155 FORMAGI(IHC,10X,18H SOLVFNT NUNBER = ,131
```

```
156 FORMATIIOX,83H FRACTION OF TOTAL FNTHALPY OF VAPCRIZATION ATTRIBIJT
2F% FORMATIIOX,5AG SOLVENT ASSDCIATION. PARAMFTFR FOR WILKE-CHANG EOUAT
158 FION =AT,F5.2)
159 FORMMAT(1OX,23H XI FOR EQUATION DGM = F5.2,36H AND XI FOR EQUATIO
```



```
161 FORMAT (10X, 64H SELF OIFFUSION ACTIVATION FNERGY FOR EQIJATION DM2 A
```



```
163%FORMATIIOX; 41H MOLAR VILLME AT THF BOILING POINT,DBF=,F1O.5,
170 FORMÄT(10X, 14H TEMPERATURF = ,FG.2,GH DEG C, 18H DISIFFUSIVITY = ,
2F12:5,1OH CM**2/SFC,15H VISCOSITY = *FR,5,GH POISE) FOR FACH FI
172 FDRMAT(5X,5H F = ,F5.3,QH DDO = , F11.8,9H DDGM = ,F11.G,GH ODM1
    2=,F11.8,9H DDM2 = F'F11.8,9H DOM3 = 'FF11.R)
172 FORMAT(5X;8
    FND
```

```
YGW0645 MITCHELL.R.O.
    UNIVERSAL GAS CONSTANT.R = 1.98700 CAL/DEG*MOLE
    PLANCK EJNSTANT,H = 0.56250000E-26 ERG#SEC
    BOLTZMAN LONSTANT,XK = 0.13805400E-15 ERG/ DEG
    AVUGADKJ NUMBER,AVGN = 0.60225200E 2'+ 1/MOLE
    EMPERICAL CONSTAVT FOR WILKE-CHANG EQUATION,CK = 0.74000000E-05
```



```
    SJLVENT ASSOEIATION PARAMETER FOR WILKE-CHANG EQJATIOV = L.OD
    MULEGULAR WEIGHT OF SOLVENT,XM = 62.1JJ GRAM/MOLE
    XI FJR EQUATION UGM = 6.00 AND XI FOR EQUATION DMZ AND DM3 = 12.00
    MOLAR VOLUME AT THE BOILING POINT,DBP = 66.60000 CC/MOLE
    OENSITY = 1.1OO20 AT 303.0 DEG C DENSITY = 1.095B0 AT 318.0 DEG C, IN GRAM/EC
    VISCJSITY = O.13560 AT 303.0 DEG C VISCOSITY = 0.07980 AT 318.0 DEGC, IN POISE
    VISCJUS ACTIVATIDN ENERGY,EN = 6767.12933 CALIDEG*MOLE
    SELF DIFFUSIUN AETIVATION ENERGY FOR EQUATION DM2 AND DM3,ED = 0 203.54272 CAL DDEG*MOLE
    CUEFFIEIENT UF VOLUMETRIC EXPANSION,ALP = 0.0006327 L/DEG
    SULVENT NUMBER = 2 2 FNALPY OF VAPORIZATION ATTRIBJTED TO DISPERSION FORCE BONUS = TOTAL ENTHALP 0F 0.331
    HKACTIOV OF TOIAL ENTHALPY OF VAPQRIZATION ATTRIBJTEO TO DISPER
    SULVENT A SSOEIATION PARAMETER FOR WILKE-CHANG EQUATI
    MULECULAR WEIGHT OF SOLVENT, XM = G2.LJJ GRAM/MMOLE 
    MULAK VJLUME AT THE JOILING POINT,DBP = 66.50000 CC/MOLE
    UENSITY = L.11320 AT 293.0 DEG C DENSITY = 1.10280 AT 308.0 DEG C. IN GRAM/CC
    VISCOSITY = 0.20620 AT 293.0 DEG C VISCOSITY = 0.11300 AT 308.0 DEG C, IN POISE
    VISCJUS AETIVATIJN ENERGY,EN = 7190.03223 CAL/DEG*MDLE
    SELF DIFFUSION ASTIVATION ENERGY FOR EQUATION DM2 AND DM3, ED = 6643.58966 CALIDEG*MOLE
    COEFFIEIENT OH VJLUMETRIC EXPANSION,ALP = 0.0006287 L/DEG
    SULVENT NUMBER = '3
    SULVENT ASSOCIATION PARAMETER FOR WILKE-GHANG EQUATIOY = 1.0J
    MULECULAR WEIGHT OF SOLVENT,XM = 76.10J GRAM/MOLE
    XI FJR EQUATION JGM = 6.00 ANO XI FOR EQUATION DM2 AND DM3 = 12.00
    MOLAR VJLUME AT THE BOILING POLNT.DBP = 88.300JO CCIMOLE
    DENSITY = 1.J2920 AT 303.0 DES C DENSITY = 1.01770 AT 318.0 OEG C, IN GRAMにC
    VISCJSITY = 0.32630 AT 303.0 DEG C VISCOSITY = 0.15500 AT 318.0 DEG C, IN POISE
    VISCJSITY = U.32630 AT 303.0 DEG C V VISCOSITY = O.15500
    VISCJUS ACTIVATIJN ENERRGY,EN = YNGOR LGUATION UM2 AND DMM,ED = 8944.93945 CAL/DEG*MDLE
    SELF UIFFUSIUN AETIVATION ENERGY FOR EQUATION DM2 AND DM3,ED = 8944.93945 CAL/DEG*MDLE
    SOLVENT NUMDER = ' 4
    GRACTIUN UF TOTAL ENTHALPY OF VAPORILATIUN ATTRIBUTEDTO DISPE
    SOLVENT ASSUCIATIJN PARAMETER FOR WILKE-GHANG EQJATION
    MULESULAR WEIGHT UF SULVENT, XM = 106.1JJ GKAM/MOLE
    DM3 = 12.00
    MULAR VIL UME AT THE BOILING PUINT,OBP = 118.40000 CC/MOLE
    MENSITY = 1.LOY2U AT 303.0 DES C OBP OENSITY = 1.09850 AT 318.0 DEG C, IN GRAM/CC
    UENSITY = L.LOY20 AT 303.0 DESC
        UENSITY = 1.09850 AT 318.0 DEG C, IN GRAM/EC
    VISCJUS ACTIVATIJN ENERGY,EN = 7508.23508 CALIOEG*MOLE
    SELH UIFFUSI NN TIVATION ENERGYY FOR EOUATION UMZ ANO DMZ, ED
    SELF UIFFUSIUN ALTIVATION ENERGY FOR EQUAIION NMZ AND DM3,ED = 6945.662IL CAL/DEG*MJLE
    SIJLVENT NUMBER = 5
    FRACTIUN OF TUTAL ENTHALPY OF VAPORIZATION ATIRIBUTEO TO OISPERSION FORCE BONDS = 0.914
    SOLVENT ASSJEIATIJN PARAMETER FOK WILKE-FHANG EQJATIOV = 1.0J
    MULECULAR WEIGHT UF SOLVENT,XM = 150.20J GRAM/MOLE
    MULECUULAR WEIGHT OF SOLVENT,XM = 150.2OJ GRAM/MOLE 
    MULAR VJLUME AT THE BOILING PIJINT,DBP = 170.20000 CC/MDLE
```

```
YGW0645 YITCHELL,R.D.
    DENSITY = 1.13880 AT 273.0 DEG C DENSITY = 1.12730 AT 288.0 DEG C, IN GRAM/CC
    VISCJSITY = 1.60000 AT 273.0 DEG C VISCOSITY = 0.56000 AT 288.0 DEGC, IN POISE
    SELF SS ACTIVATIJN ENERGY,EN = 10933.95008 CAL/DEG*MOLE
    COEFFIEIENT OF VOLUMETRIC EXPANY FOR EQUATION DML AND DM3,EO = 10425.08044 CAL/DEG*MOLE
    COEFFIEIENT OF VOLUMETRIC EXPANSION,ALP = 0.0006801 1/DEG
    SOLVENT NUMBER = 6
    FRACTION OF TOTAL ENTHALPY OF VAPORIZATION ATTRIBUTEO TO DISPERSION FORCE BONDS = 0.666
    SOLVENT ASSOEIATION PARAMETER FOR WILKE-CHANG EQUATIOY = 1.0J
    MOLECULAR WEIGHT OF SOLVENT, XM = 100.20J GRAM/MOLE
    XI FJR EZUATION JGM = 6.00 AND XI FOR EQUATION DM2 AND DM3 = 12.00
    MOLAR VOLUME AT THE BOILING POI NT,DBP = 136.90000 CC/MOLE
    VISCJSITY = 0.41070 ST 303 OEG C O SNSITY = 0.92994 AT 318.0 DEG C, IN GRAM/GC
```



```
    COEFFIEIENT OF VOLUMETRIC EXPANSION,ALP = ONION DM2 AND DM3,ED = 10565.08972 CAL/DEG*MOLE
    SOLVENT NUMBER = 7
    FRACTIOV OF TOTAL ENTHALPY OF VAPORIZATION ATTRIBUTED TO DISPERSION FORCE BONDS = 0. 372
    SJLVENT ASSOCIATION PARAMETER FOR WILKE-CHANG EQUATION = 1.0J
    MI L
    XI FJR EJUATION JGM = 6.00 ANO XI FOR EQUATION OM2 ANO DM3 = 12.00
    MULAR TYY = UME AT THE BOILING POINT,OBP = 96.20000 CC/MOLE
    DENSITY = 1.25830 AT 298.0 DEG C DENS ITY = 1.24700 AT 313.0 DEG C, IN GRAM/CC
    VISCJSITY = 9.50000 AT 298.0 DEG C VISCOSITY = 2.45000 AT 313.0 DEG C, IN POISE
    VISCOUS ACTIVATIJN ENERGY,EN = 16744.43413 CAL/OEG*MOLE
    COEFFIEIENT OF VOLUMETRIC EXPANSION,ALP = 0, ONO AND DM3,EDD = 16181.55505 CAL/DEG*MOLE
    COEFFIEIENT OF VOLUMETRIC EXPANSION,ALP = 0.0004964 L/DEG
    FSOLVENT NUMBER = & 8
    SOLVENT ASSOLIAIION PARAMETER FOR WILKE-CHANG EQNATION = 1.0J
    GRaMIDN DM
    XI FJR EQUAMUN JGM = 6.00 AND NI FOR EQUATIDN DM2 AND DM3 = 12.00
    MOLAITYLU
    L.25190 AT 308.0 DEG C, IN GRAM/CC
    VISCJUS ACTIVATION ENERGY,EN = 16190.55710 CAL/DEG*MOL
```



```
    ED = 15636.92896 CAL/DEG*MJLE
    CDEFFIEIENT OF VOLUMETRIC EXPANSION,ALP = , O005005 1/DEG
    FROLVENT NUMBER = ENTHALPY OF VAPORIZATION ATTRIBUTED TD DISPERSION FORCE BONDS = 0FTAL ENTHAS 0.368
    FRACIION AF STOTAL ENTHALAMETER FOR WILKE-CHANG EQJATION = 1.0J
    SULVENT ASSUEIANT OF SOLVENT, XM = 92.1JJ GRAM/MOLE
    XI FJR EJUATIUN,GM =6.00 AND XI FOR EQUATION DM2 AND DM3 = 12.00
    MULAZ VJLUME AT THE BUILING POINT,DBP= 95.200JO CC/MDLE
```



```
    VISCJUS ACTIIVATIJN ENERGY,EN DEG C 16368.35339 CALIDEGG*MDLE
    SELF DIFFUSIJN ALTIVATION ENERGY FDR EQUATION DM2 AND DM3,ED = 15813.15161 CAL TDEG*MJLE
    COEFFIEIENT UF VJLUMETRIC EXPANSION,ALP = 0.0005061 1/DEG
    SOLVENT NUMBER = 10
    ENTHALPY OF VAPQRIZATION ATTRIBUTED TO DISPERSIUN FORCE BONDS = 0.754
    SOLVENT ASSUEIATION PARAMETER FDR WILKE-CHANG EQJATIOV = 1.0J
    MJLECULAR WEIGHT OF SOLVENT,XM = 102.2JJ GRAM/MOLE
    XI FJK EJUATION JGM = 6.00 AND XI FOR EQUATION DM2 AND DM3 = 12.00
    XI FJR EJUATION JGM = G.ON PNNT,OBP= = 448.00000 CC/MDLE
```

```
YGW0645 YITTCHELL,R.O.
    UENSITY = 0.81560 AT 298.0 DES C DENSITY = 0.81524 AT 313.0 DEG C, IN GRAM/CC
    VISCJSITY = 0.00437 AT 298.0 DEG C VISCOSITY = 0.00287 AT 313.0 DEG C, IN INRAMOICC
    VISCJUS ACTIVATION ENERGY,EN = 5194.95399 CAL/DEEG*MDLE
```



```
    SULVENT NUMBER = II FRACTION OF TUTAL ENTHALPY OF VAPORIZATION ATTRIBUTEDTO DISPERSION FORCE BONDS = 0.750
    FRACTION OF TUTAL ENTHALPY OF VAPORIZATION ATTRIBUTEDTO DISPEAS
    SOLVENT ASSOEIATION PARAMETER FOR WILKE-CHANG EQNAT 
```



```
    XI FJK EZUATIUN JGM = 6. OO AND XI FOR EQUATIION DM2 AND DM3 = 12.00
    MOLAR YJLUME AT NHE BOILING POINT,DBP = 148.JJOJO CCIMOLE
    DENSITY = 0.83285 AT 273.0 DEG C DENSITY = 0.82239 AT 238.0 DEG C, IN GRAM/EC
    VISCJSITY = U.OU880 AT 273.0 DEG C VISCOSITY = 0.30577 AT 288.0 DEG C, IN POISE
    VISCJUS ACTIVATION ENERGY,EN = 4395.98468 CAL/DEEG*MOLE
```



```
    SULVENT NUMBER = 12
    FRACTIOY OF TOTAL ENTHALPY OF VAPORIZATION ATTRIBUTED TO DISPERSION FORCE BONDS = 0.100
    SULVENT ASSUEIATION PAKAMETER FOR WILKE-CHANG EQUATIOV = 2.60
    MOLECULAR WEIGHT OF SOLVENT,XM = 18.0JJ GRAM/MOLE
    M STM = 6.00 AND XI FOR EQUATIDN DM2 AND DM3 = 12.00
    MULAR VJLUME AT THE BOILING POINT,DBP = 75.60000 CC/MOLE
    DENSITY = 0.99723 AT 293.0 DEG C DENSITY = 0.99406 AT 308.0 DEG C, IN GRAM/CC
    VISCJSITY = U.01005 AT 293.0 DEG C VISCOSITY = 0.00722 AT 308.0 DEG C, IN POISE
    VISCJUS ACTIVATIJN ENERGY,EN = 3953.50595 CAL/DEGG*MOLE
    SELF DIFFUSIUN ACTIVATION ENERGY FOR EQUATIION DM2 AND DM3,ED = 3383.40332 CALIDEG*MOLE
    COEFFIEIENT OF VOLUMETRIC EXPANSION,ALP = 0.0002125 1/DEG
    SOLVENT NUMBER = 13
    FRACTIOV OF TOTAL ENTHALPY OF VAPORIZATION ATTRIBUTEDTO DISPERSION FORCE BONDS = 0.395
    SOLVENT ASSULIATIJN PAKAMETER FOR WILKE-CHANG EQJATIUN = 1.90
    MULEEULAR WEIGHT OF SOLVENT,XM = 32.00J GRAM/MOLE
    XI FJK EQUATION JGM = 8.00 AND XI FOR EQUATION DM2 AND DM3 = 16.00
    MOLAR VJLUME AT THE BOILING POINT,DHP = 35.90000 CC/MOLE
    UENSITY = 0.79030 AT 294.0 UEG C DONSIFY = O.77510 AT 309.0 DEG C, IN GRAM/EC
    VENSITY = . . A9030 AT 294.0 UES C
        VENSITYY=0.77510 AT 309.0 DEG C, IN GRAM/CC
    VISCJSITY = U.00576 AT 294.0 DEG C VISCOSITY = O.3047%
    SELF UIFFUSIJN ALTI VATIUN ENERGY FOR EQUATION DMZ AND DM3,ED = 1780.42723 CAL/DEG*MJLE
    COEFFIEIENT UF VOLUMETRIC EXPANSION,ALP = 3.0012198 I/DEG
    SOLVENT NUMBER = 14
    FKACTION OF TOTAL ENTHALPY OF VAPORIZATIUN ATTRIBJTED TO DISPERSION FORCE BONDS = 0. 365
    SOLVENT ASSOCIATION PARAMETER FOR WILKE-CHANG EQUATIOY = 1.0J
    MOLECULAR WEIGHT OF SOLVENT,XM = 92.10J GRAM/MOLE
    XI FJR EQUATION JGM = 6.00 AND XI FOR EQUATION DN2 AND DM3 = 12.00
    MULAR VOLUME AT THE BOILIING POINT,DBP = 96.20000 CC/MOLE
    DENSITY = 1.27370 AT 273.0 DEG C DENSITY = 1.26440 AT 288.0 DEG C, IN GRAM/CC
    VISCJSITY = 1.00000 AT 273.0 DEG C VISCOSITY = 2.67000 AT 288.0 DEG C, IN POISE
    VISCJUS ALTIVATIJN ENERGY,EN = 174442.60132 CAL/DEGGMDLE
    SELF UIFFUSIJN AZTIVATION ENERGY FOR EQUATIUN DM2 AND DM3,ED = 16924.35547 CAL /DEG*MJLE
    COEFFIEIENT UF VOLUMETRIC EXPANSION,ALP = 0.0004903 1/DEG
    SULVENT NUMBER = 15
    FRACTIOV UF TOTAL ENTHALPY OF VAPORILATION ATTRIBUTED TO OISPERSION FORCE BONOS = 0.668
    SJLVENT ASSUEIATIJN PARAMETER FOR WILKE-CHANG EQJATIOV = 1.0J
    MULECULAK WEIGHT OF SOLVENT,XM = 88.2JJ GRAM/MOLE
    XI FJR EQUATIUN JGM = 0.00 AND XI FOR EQUATION DM2 AND DM3 = 12.00
    MOLAR VOLUME AT THE BOILING POINT,DBP = 125.3JOJO CC/MOLE
```

```
YGW0645 MITOHELL,R.J.
    DENSITY = O.80760 AT 303.0 DEG C DENSITY = 0.79700 AT 318.0 DEG C, IN GRAM/CC
    VISCJSITY = 0.02980 AT 303.0 DEG C VISCOSITY = 0.01880 AT 318.0 DEG C, IN POISE
    VISCJUS ACTIVATION ENERGY,EN = 5879.614444 CAL/DEGGMOLE
    CLLF DIFFNSION NOIIVATION ENERGY FOR EQUATION DM2 AND DM3,ED = 5331.46954 CAL/DDEG*MJLE
    COEFFIEIENT OF VOLUMETRIC EXPANSION,ALP= 0.0008867 1/DEG
    FRACTION OF TOTAL ENTHALPY OF VAPORIZATION ATTRIBUTED TO DISPERSION FORCE BONDS = 1.000
    SOLVENT ASSOFIATION PARAMETER FOR WILKE-CHANG EQNATIDN = 1.0J
    MULECULAR WEIGHT OF SOLVENT,XM = 86.20J GRAM/MOLE
    XI FJR EQUATIION SGM % 6.00 AND XI FOR EQUATION DM2 AND DM3 = 12.00
    MOLAR VILUME AT THE BOILING POINT,DHP = 140.60000 CC/MOLE
    MENSITY = 0.65050 AT 303.0 DEG C D DENSIIY = 0.63720 AT 318.0 DEG C, IN GRAM/CC
    IN VISCOSITY = 0.00227 AT 3L8.0 DEG C, IN POISE
    ISCJUS ACTIVATIUN ENERGY,EN = 2586.83170 CAL/DEG*MJLE
    SELF DIFFUSIUN AこTIVATIUN ENERGOY FOR EQUATION DM2 AND DM3,ED = 2069.38553 CAL/DEG*MOLE
    COEFFIEIENT OF VJLUMETRIC EXPANSION,ALP = 0.00L3915 L/DEG
    FRACTIUN OF TOTAL ENTHALPY OF VAPORIZATION ATTRIBUTED TO DISPERSION FORCE BONDS = 1.000
    SOLVENT ASSOEIATION PARAMETER FOR WILKE-CHANG EQUATION = 1.0D
    YOLECULAR WEIGHT OF SOLVENT,XM = 240.40J GRAM/MOLE
    XI FJR EJUATIION JGM = 6.00 AND XI FOR EQUATIION DM2 AND DM3 = 12.00
    MULAR VILUME AT THE BOILING POINT,DBP = 340.20000 CC/MOLE
    JENSITY = 1.04800 AT 295.0 DEG C ODSNSITY = 1.03850 AT 310.0 DEG C, IN GRAM/CC
    ISCJSITYY = 4.50000 AT 295.0 DEG C VISCOSITY = 5.70000 AT 310.0 DEG C, IN POISE
    ISCJUS ACTIVATIJN ENERGY,EN = 17664.82959 CAL/DEG*MOLE
    SELF DIFFUSIJN AETIVATION ENERGY FOR EQUATION DM2 AND DM3,ED = 17113.81616 CAL/DEG*MJLE
    CUEFFIEIENT JF VJLUMETRIC EXPANSION,ALP = 0.0006097 1/DEG
    SOLVENT NUMBER = IB IBALPY OF VAPORIZATION ATTRIBUTED TO DISPERSION FORCE BONDS = 0.668
    SOLVENT ASSUEIATION PARAMETER FOR WILKE-CHANG EQUATIOV = 1.0J
    MULESULAR WEIGHT OF SOLVENT,XM = 102.2JJ GRAM/MOLE
    XI FJR EQUATIUN DGM = 6.00 ANO XI FOR EQUATIDN DM2 AND DM3 = 12.00
    MULAR VOLUME AT THE BOILING POINT,DBP = 148.00000 CC/MOLE
    LENSITY = 0.81660 AT 296.4 DES' C DENSITY = 0.80510 AT 311.4 DEG C, IN GRAM/CC
    UENSITY = 0.81660 AT 296.4 DEG C C DENSITY = 0.80510 AT 311.4 DEG C, IN GRAM/CC
    VISCJSITY = 0.04760 AT 296.4 DEG C VISCOSITY = 0.029
```



```
    OEFFIEIENT UF VJLUMETRIC EXPANSION,ALP = 0.0008684 1/DEG
    SULVENT NUMBER = L9 OMS OF VAPORIZATION ATTRIBUTED TO DISPERSION FORCE BONDS = 0.668
    FRACTION OF TOTAL ENTHALPY OF VAPORILATION ATTRIBUTED YO DISPER
    SOLVENT ASSOEIATIUN PARAMETER FOR WILKE-CHANG EQNAT
    M, NT FOR EOUATION DM2 AND DM3 = 12.00
    XI FJR ENUATION JGM = G.OO AND XI FOR EQUATIONOMM2 ANNOLE
    MOLSN DENSITY = 3.80170 AT 311.4 DEG C, IN GRAM/EC
    OENSITY = 0.81240 AT 296.4 DEG C C VISCOSITY = 0.02310 AT 311.4 DEG C, IN POISE
    VISCJUS ACTIVATIJN ENERGY,EN = 5458.65180 CAL/DEG*MJLE
```



```
    CUEFFIEIENT OF VOLUMETRIC EXPANSION,ALP = 0.0008899 1/OEG
```

 SULVENT NUMSER \(=20\) ENTHAPY OF VAPURIZATION ATTRIBJTED TO DISPERSION FORCE BONDS \(=1.000\)
 RRACTIOV OF TUTAL ENTHALPY OF VAPURIZATIGNAATRGUATION = 1.03
 SULVENT ASSOEIATION PARAMETER FOK WILKE-CHANG EQUAI
 (FOR EQUATION DM2 AND DM3 \(=12.00\)
 XI FJR EUUATIUN JGM \(=6.00\) ANN XI FOR 229.40000 CC/MOLE
 YGW 0645 YITCHELL,K. D.
DENSITY $=0.72850$
DENSITY $=0.72850$ AT 295.0 DEG
VISCJSITY $=0.00906$ AT 295.0 DEG C
VISCJUS ACTIVATIJN AKERGY EN 3073.12799 CALIDEGHMOLE
SELF DIFFUSIUN AこTIVATI ON ENERGY FOR EQUATION DM2 AND DM3, ED $=2548.05078$ CAL/DEG*MOLE
LOEFFIEIEVT JF VOLUMETRIC EXPANSIUN,ALP $=0.00105981 / D E G \quad 2$
SOLVENT NUMBER $=21$
FRACTIUV OF TOTAL ENTHALPY OF VAPURIZATIQN ATTRIBUTED TO DISPERSION FORCE BONDS $=1.000$ SULVENT ASSUEIATION PARAMETER FOR WILKE-CHANG EQUATIDN $=1.03$
MOLECULAK WEIGHT OF SOLVENT,XM $=418.803$ GRAM/MOLE
XI FJK EJUATION JGM $=6.00$ AND XI FOR EQUATION DM2 AND DM3 $=12.00$
MULAZ VJLUME AT THE SOILING POINT,DBP $=658.60000$ CC/MOLE
$\begin{array}{lll}\text { VENSITY } \approx 0.93020 \text { AT 295.0 DES C } & \text { OENSITY }=0.92390 \text { A } \\ \text { VISCJDITY }=0.00000 \text { AT } 295.0 \text { DEG } C \quad \text { VISCUSITY }=8.10000\end{array}$
. 310.0 DEG C. IN POISE
SELF DIFFUSIUN A:TIVATION ENERGY FUR EOUATION DMZ AND DM
CUEFFIEIENT OF VOLUMETRIC EXPANSION,ALP = $3.00067321 / D E G=18799.00659$ CAL/DEG*MJLE
SULVENT NUMBER $=22$
(ODISPERSION FORCE BONDS $=0.668$ SULVENT ASSJEIATIJN PAKAMETER FOR WILKE-CHANG EQJATIOV $=1.00$
XI FJR EQUATION JIM $=6.00$ AND XI FUR EQUATION DM2 AND DM $3=12.00$
YJLAR VOLUME AT THE BUILING POINT, DBP $=148.00000 \mathrm{CC} / \mathrm{MOLE}$
OENSITY $=0.81750$ AT 295.0 UEG C UENSITY $=0.80710$ AT 310.0 DEG C, IN GRAM/EC
VISCJSITY $=0.04980$ AT 295.0 DEG $C \quad$ VISCUSITY $=0.03100$ AT 3L0.0 DEG C, IN POIS
VISCJUS AC̈TIVATIJN ENERGY,EN = 5742.40859 CAL/DEG*MOLE
SULF
SULVENT NUMBER $=23$
(
SULECUL A SSJIIATION PARAMETER FOR WILKE-CHANG EQJATION $=1.0 J$

UENSITY $=0$ O C DENSITY $=0$ CC/MOLE
VISCJSITY $=0.08220$ AT 295.0 DEG C VISCOSITY $=0.34760$ AT 310 DEG C, IN GRAM/にC
VISCJUS ACTIVATIJN ENERGY,EN = 6618. 19275 CAL/DEG*MOLE
SELF OIFFUSIJN ACTIVATIUN ENERSY FOR EQUATION DMZ AND DM3,ED $=6079.99603 \mathrm{CAL} / D E G * Y J L E$
CUEFFIEIENT OF VOLUMETKIC EXPANSION,ALP = 0.0008322 1/DEG
SULUTE CUUE $=18$ SOLVENT CODE $=17$
CWC = CMAERATURE $=290.40$ DES C DIFFUSIVITY $=0.19300 E-06$ CY**2/SEC VISCJSITY $=24.50000$ POISE
$F=0.0 .69223576 E-08 \quad U W W C=0.96413$
UJJ $=0.20043 E-06$
0.050
$F=0.015$ $00=0.18142 E-06$ DUJ $=0.0599455$
$F=U$ UUJ $=0.16421 E-06$ DGM $=0.50717 \mathrm{E}-0$ DSM $=779.5287563$ DMI $=0.29170 E-05 \quad$ DM2 $=0.40717 E 01 \quad$ JM3 $=0.39173 E-1$ OGM $=0.33307 E-01$ DDML $=-14.11384 J 5$ DDM $=927.0000000$ JDM3 $=0.9979998$ OGM $=0.33307 E-01$ UML $=0.24578 E-05$ UM2 $=0.23978 E$ O1 DM3 $=0.52775 E-13$ UGM $=0.4804588$ DDML $=-11.7345685$ DDM2 $=835.8750000$ DDM3 $=0.9977797$ DOGM $=348.21875 E-O 1$ DML $=0.20707 E-O 5$ DM2 $=0.14120 E 01$ DM3 $=0.7110 J E-13$
 $\begin{aligned} \text { UGM } & =0.14364 E-01 \text { DMI }=0.17449 E-O 5 \quad D M 2=0.83155 E ~ O O ~ D M 3\end{aligned}=0.95787 E-13$
 F JJJ $=0.2298418$
$F=0.1<3$
$F=0.150$
$r=0.175$
OOGM $=892.041 J 156$ DDMI $=-6.6175014$ DDM $=260.1875000$ JDM3 $=0.9999993$
0
UOGM $=110.4914551$ DDMI $=-5.4183297$ DDM2 $=174.4062500$ JDM $=0.9999991$
$F=0.200$

The following program was used to predict the diffusivities for the original Gainer and Metzner equation.

```
$IO}\mathrm{ $IRJNG YGO645 MITCHELL,R.D. DIFGM
$ GO 000336 MAN M, 12/19/69 MNMNOOO
```



```
    ORIGINAL GAINER ANDA MFTZNFR MODEL
    DIMENSION H(30), HH(30), C(20),7(30), XM(30),V(30), R(30),DE(30)
    OIMENSION E(30),EH(30),FD(30),SUM(40,30)
    OO&8,5,200) IRUN
    RFAC(5,200) NWAY,NTOT,NSYS
C.....NTOT IS THE NUMRER OF LIOUIOS FOR WHICH OATA IS READ IN.
C....NSYS IS THE NUMRER NF
C.....XR IS THE UNIVFRSAL GAS CONSTANT.
C......XK IS THE EOLTZMAN CONSTANT.
    WRITE (GF, AVOGADRO NUMRER.
    WRITE (6,150) XR
    WRITE (6,152) XK
    OO 1 I= 1, NTOT
    RFAD(5,1OI) H(I),HH(I),D(I), TII),XM(I),V(II,T
C.....H IS THE ENTHALPY DF VAPORIZATINN.H IS THE RATIN OF THE FNTHALPY OF VAPORIZATIDN DUF TO OISPERSION
C FIQCE BONDS TO THE TOTAL.
C.....D IS THE DENSITY.D
C.....? JS XI FOR THF G}\triangleINFR-MFTZNFR MOOEL..
C....XXM IS THF MOLFCULAR HFIGHT.
C.....VV IS THF VISCNSITYY.
C.....T IS THE TFMOFRATURE
R(I)=(XM(I)/(D(I)*XN) )**0.3333
C.....R IS THE MOLECUULAP RAOIUS.
C.....DF(IS=H(I)-XR*T
    F(I)=XP*T*ALOG(VII)*NEII)*(PXM(IJ/D(I))**0.6667)/(0.00109*(SQRT(
    2XM([)))*(T**1.5)))
C.....E IS THE ACTIVATION ENERGY FOR VISCOUSS TRANSFER FCR THF CRIGINAL
C\cdots...GALINFR MODNEL.
C.....FENIS=E(I)*HH(I)
C.....EHH IS=F(I)-ED(I)
    WRITE (6,155)
    WRITE (6,155) I
    WQ IT
    WROITE (6,151) O(I)
    WRITE(G,11II)V(I),T
    UU=NSYS
        Cn ? T=1,NSYS
```



```
        WRITE (6,1\cap3) NA,NR
        WRITE (6,17C) T,NACT,V(NR)
        70? IP = 1,40
        F=ID
        F=0.025*F
```

```
C.....F IS THAT FRACTIIN DF THE ACTIVATION ENERGY DUE TO THF HDLE
    FORMATTON TERM.
    A=1.-F
C.....A IS THAT FRACTIIIN OF THE ACTIVATION ENERGY DUE TO THE JUMP TERM.
    RAB=(R(NA)+R(NB))/2.
C.....RAE IS THE AVFRAGE RADIUS DF THE TWO MOLECULES IN FACH SYSTEM.
    RAB=R(NB)种(NA)/(RAB**2)
    DFLE=(E(NB)*A)-(Z(NA)) Z(NB))*(SQRT(A*A *RAB*EH(NA)*EH(NB))
    2+SQRT(A*A *(DAB**12)*ED(NA)*ED(NB)))
C.....DFLE IS PART OF THF FXDONENTTAL TERM FOR THE ORIGINAL GAINFR MODEL.
    DX=XK*T*(EXP(DELF/(XR*T)))/(Z(NA)*V(NB)*R(NR))
C.....DX IS THE NIFFUSIVITY AS CALCULATED RY THE DRIGINAL GAINER MODEL..
    SIJM(IP,I)=(DACT-DX)/OACT
C....SUM IS THE FRACTIDNAL DEVIATION. THIS SECTION IS HERE TO SUOPRFSS UNNEFDED DUTPUT WHFN DESIRED.
    IF(NWAYI20.21,?O
    20 IFIINAY, 2,:2l,
    GO In 2
    O1 CINTINUE
        WRITE (A,103) NA,NR
        WRITE (6,170) T,DACT,V(NB)
        WRITE (6,121) F,OX,SUM(ID,I)
        2
        CONTINUE
        DO 4 J=1,40
            F=J
            F=0.025*F
            U=O.0
            กก z I=1,NSYS
        3U=U+ABS (SUM(J, Y))
            U=U/UU
C.....U IS THE AVFRAGE FRACTIONAL DEVIATION.
    4 WRITF (E,104) F,U
    88 CONTINUE
        STחO
    100 FORMAT (4F1S.R.)
    102 FORMAT (2IG,4F18.8)
    103 FORMAT (1X,14H SOLUTF CODF =, 13,5X,15H SCLVFNT CODE =, I3)
```



```
    104 FORMAT\IOX,5HFF=,F5.3,32H AVERAGEGFRACTIONAL DFVIATION
    12O FORMAT (IOX,3OH FNTHALPY OF VAODRITATION,H = FF10.3,GH CAL/MOLEI
```



```
    2OLF)
    151 FORMAT (10X, 11H OFNSITY = F8.5,8H GRAM/CC)
    151 FORMAT (10X,%&H BOLTZMAN CONSTANT,XK=,E18.R,8H FRG/DEGI
    l5% FORMAT, (1OX, \4H AVNGADRONNUMBERNXNN = ',EIB. %,7H I/MOLE)
    156 FORMAT(IOX,ROH FRACTION OF TITAL FNTHALPY OF VAPORIZATION ATTRIBUT
    2EO TO CISPERSION FORCF RONDS =,F6.3)
    158 FORMATIIOX, 34H MOI ECULAR WFIGHT'OF SOLVENT,XM =,FR.3,10H GRAM/MOL
    2% 2E
    159 FORMAT(1CX, 34H XI FOR GATNER-NFTYNFR FQUATION = F4.2)
    160 FORMAT (1OX, 32H VISCOUS ACTIVATION FNEQHY,FF=,F12.5,13H CAL/DEG*M
    2OLF)
```



```
    200 FORMAT(2I5)
```

YGWOO45 HITEHELL，R．UUNIVERSAL GAS CUNSTANT，XR＝ 1.98730 CAL／UEG＊MULEBOLTZMAN CUNSTANT，XK $=0.138030 J J E-15$ ERG／DEGAVOGADRO NUMBER，XN $=0.6023$ JOUJE 2 ＇t $1 / M O L E$
SULVENT NUMJER $=1$
ENTHALPY OF VAPORLZATIUN，H $=8100.003 \mathrm{CAL} / \mathrm{MOLE}$
FRACTIUY UF TOTAL ENTHALPY VAPURILATION ATTKIBJTEU IJ UISPEスSIJV fjRCF nUNJS＝L．GしO
DENSITY $=0.88420$ GRAM／CC
XI FUR GAINER－MEIZNEK EUUATION $=0.20$
MULECULAK WEIGHT UF SULVENT，XM $=$
VIDCJSITY $=0.00090$ AT 288.0 DE＇C
VISCJUS ACTIVATIJN ENERGY，$=1770.82449$ CAL／UEG＊MJLE
SULVENT NUMEER $=2$ENTHALPY OF VAPORILATLUN，H $=8840.0 J J$ LAL／MULE
FRACTIOV OF TOTAL ENTHALPY OFUENSITY $=0.87100$ GRAM／CC
XI FOR GAINER－METZNER EQUATION $=6.00$
MULEEULAR WEIGHT OF SOLVENT，XM $=$
VISCUSITY $=U .00023$ AT 288.0 UEG C
VISCUSITY $=$ U．00023 AT 288．0 JEG C
VISCJUS ACTIVATIUN ENERGY．ESULVENT NUMBER＝ 3
ENTHALPY OF VAPURILATLON，H $=7240 . U J J \mathrm{CAL} / \mathrm{MULE}$
FRALTIUY UF TUTAL ENTHALPY FRACIIUV UF TUTAL ENTHALPY
JENSITY $=0.66380$ GRAM／CC
XI FUR GAINEK－METLNER EWUATIUN＝ $2.4 J$
MULECULAK WEIGHT UF SULVENT，XM $=$
VISLUSITY $=$ U．OO3 37 AT $288 . U$ ULG
VISCUSITY $=$ U．00337 AT 288.0 UEG し
ISCJUS ACTIVATIJN ENEKGYPE $=1430.32 j 37$ CAL／UEG＊MILE
SULVENT NUMBER $=4$
ENTHALPY OF VAPURI ZATIUN，H＝ BY50．JUO LAL／MULE
FRALTIUN OF TOTAL ENTHALPY VAPURIZATIUN ATTRIKJTEU TU OLDPERSIOV F．IRCL BLNDS $=3.295$
DENSITY $=1.79609$ SRAM／CC
XI FJR GAINER－METZNER EQUATI UN $=8.10$
MOLECULAR WEIGHT UF SULVENT，XM $=$
$V I S C O S I T Y ~=~ U . O O O 23 ~ A T ~$
V $88 . U ~ D C G ~$
VISCJUS ACTIVATIUN ENEKJY，E $=1723.67773$ LAL／UEG＊MJLE
SULVENT NUMBER $=5$
ENTHALPY OF VAPUKI ZATIUN，H $=$ IU世DU．JUJOENSITY＝O．8U749 BRAM／CC
MULEJULAR WEIGHT UF SULVENT，XM $=0.0$ 50．J7J GKAM／M．JLE
VISCJSITY $=0.02522$ AT $288 . U$ UtG
VISCJUS ACTIVATIUN ENEKJY，C＝ 2 OOY．7うラ75 CAL／JtG＊MJI．E
SULVENT NUMSEK＝ 6
OF VAPORL ZATIUN．H＝L02＋0．0JJ CAL／MULE
FRACTIOV OF TOTAL ENTHALPY
UENSITY $=0.78910$ GKAM／CC
XI FOK GAINER－METZNER EGUATIDN $=0.40$
MULEEULAR WEIGHT UF SULVENT，XH $=0.0$
VISCD SITY $=0.02859$ AT 288.0 UEG し
VISCUUS ACTIVATIUN ENEKGY，E $=27+J .39523$ LAL／UEG＊YJLE
SULVENT NUMBER $={ }^{7}{ }^{7}$ IUN，H $=10530.05 \mathrm{JCAL} / \mathrm{MOLE}$
ENTHALPY OF VAPURI

```
YGW0645 MITCHELL,R.D.
    FRACTIUV UF TUTAL ENTHALPY UF VAPURIZATION ATTRIBJTEU TU UISPEKSIUN FJRCE HUNDS = O.KLL
    UENSITY = U.81337 GRAM/LC
    XI FUR GAINER-METZNER EQUATIUN = 0.LU
    MULEGULAK WEIGHT UF SULVENT,XM = 74.12J GRAM/MULE
    VISLUSITY = U.03374 AT 2४8.U DEG C
    VISCJUS ACTIVATIJN ENERGY,E = 2861.92345 CAL/DEG*MOLE
        SULVENT NUMOEK = %
    ENIHALPY OF VAPORIZATIUN,H = 10400.0JJ CAL/MOLE
    FRACTIUN OF TUTAL ENTHALPY UF VAPURIZAIION ATTKIBJTEO TU UISPERSION rJKGE BONUS = 0.5YO
    UENSITY = U.80570 GRAM/CC
    XI FJR GAINEK-METLNER EQUATION = 0.00
    MJLECULAR WEIGHT OF SOLVENT,XM = 74.120 GRAM/MIJLE
    VISCJSITY = U.U4703 AT 288.0 DE'G C
    VISCJUS ACTIVATIJN ENEKGY,E = 30bu.075SJ CAL/IJEG*MJLE
    SULVENT NUMDEK = 9
    E:VIHALPY UF VAPUKIZATIUN,H= 5030.00J CAL/MDLE
    FRACTIUV UT TUIAL ENTHALPY UF VAHURIZATION ATIRIBJTEO IJ UISPERSIUN FJRCL BGNOS = O.SIU
    DENSITY = 1.05310 SRAM/CC
    XI FJR GAINLK-METZNER EUUATILNN = 0.0J
    MLLECULAR WEIOHT UF SULVENT,XM = 0J.05J GKAM/MULE
    VI SCUSITY = U.U1314 AT 288.U UEG C
    VISJUS AOTIVATIJN ENERGY,E = 1742.J7J24 CAL/UEÖ#MJLE
    SULVENT NUMSEK = 10
    EVTHALPY OH VAPORILATIUN,H=122UO.3JJ CAL/MULE
    FRALTIUN UF TUTAL ENTHALPY UF VAPORIZATIUN AITKIBJTEO IU UISNGRSIJV FJKGE BUA,S = 1.:GW
    UEIVS[TY = L.4984b UKNAM/CL
    XI FUR GAINER-METZNEK EQUATION = 0.OU
    MULEUULAR WEIGHT OF SULVENT,XM= 11%.37J GRAM/MULE
    MULELULAR WEIGHT OF SULVENT,XM = I
    VISCJSITY = O.00590 AT 288.O UL゙G C
    SULVENT NUMUER = 11 
    FRACTIUN OF TOTAL ENTHALPY OF VAPORIZATIUN ATTKIBJTEO IU OLSPRKSIUV FJRCF LONUS = 1.OG%
    DEINSITY = 1.6U37U SRAM/CC
    XI FUK JAINEK-METLNER EQUATIUN = 5.8U
    MULEEULAR WEISHT OF SULVENT, XM = 153.34) GRAM/MULE
    VISCUSITY = 0.0103% AT 28d.0 0LG C
    V[JCJUS AGTIVATIUN ENEKÜY,E = 181b.1b४LC CAL/IJEG*MJLE
    SULVENT NUMOBEK = 122
    FKACTIUN UF TUTAL ENTHALPY UF VAPURIZATIJN ATTRIBJTEU ID UISHERSIUN FISCF GUNUS = 1.J.U
    UENSITY = 1.11172 SRAM/CC
    XI FJR SAINER-METZNEK EJUATION = 0.00
    MJLECULAK WCLGHT OF SULVENT,XM = L2L.jうJ UKAM/MOLE
    MULECULAK WCLGHT OF SULVENT,XM = 
```



```
SNULVENT NUMSER = 1'3
```



```
UEiNSITY = 1.5017U GRAM/CC
XL FJR SAINLR-METZNEK EQUATIUN = 0.JU
MJLECULAR WEIGHT UF SULVENT,XM = 1,7.02J LKAM/MILE
VISCUSITY = U.01190 AT 288.0 DEG C
VISCUSITY = U.OI190 AT 288.0 DEG 2023.21'+5* CAL/UEG*MJLE
```

```
YGW0645 MITCHELL,R.D.
    SULVENT NUMBER = 14
    ENTHALPY OF VAPORIZATION,H = 10000.0JJ CAL/MOLE
    FKACTIUN OF TOTAL ENTHALPY OF VAPORIZAIIUN ATTRIBJTED TO DISPERSIOV FJRCE BONOS = 0.463
    DENSITY = 0.79367 GRAM/CC
    XI FOR GAINER-METZNER EQUATION = 8.30
    MULECULAR WEIGHT OF SOLVENT, XM = 46.07J GRAM/MOLE
    VISCOSITY = 0.01330 AT 288.0 DEG C
    VISCOUS ACTIVATIUN ENERGY,E = 2261.04739 CALJUEG*MJLE
    SULVENT NUMBER = 15
    ENTHALPY OF VAPORIZATIUN,H = 6620.0J0 CAL/MOLE
    FRACTIUN OF TOTAL ENTHALPY OF VAPURIZAIION AITRIBJTEU TJ DISPEKSION FORCE BONOS = 0.9UO
    DENSITY = 0.71925 GKAM/CC
    XI FOR GAINER-METZNER EQUATION = 0.00
    MULECULAK WEIGHT OF SOLVENT,XM = 74.12J GRAM/MOLE
    VISCUSITY = 0.00247 AT 288.0 DEG C
    VISCIUS ACTIVATIUN ENERSY,E = 1126.48772 CAL/OEG*MJLE
    SULVENT NUMBER = 16
    ENTHALPY OF VAPQRI LATIUN,H = 13100.000 CAL/MOLE
    FRACTIUN UF TOTAL ENTHALPY OF VAPUKILATION ATIRIOJTEU TJ UISPERSIUN FURCE BUNUS = 0. 3&4
    DENSITY = 0.795.26 GRAM/CC
    XI FJR GAINER-METZNER EQUATION = b.JJ
    MULECULAR WEIGHT OF SOLVENT,XM= 58.11J GRAM/MULE
    VISCUSITY = 0.00355 AT 288.0 DEG C
    VISCOUS ACTIVATION ENEKGY.E = 1089.27315 CAL/UEG*MJLE
    SULVENT NUMBER = 17 
    ENTHALPY UF VAPORIZATION,H = LUCTIUN UF TOTAL ENTHALPY UF VAPORIZATIUN ATTRIBJTEU TO UISBRZSIOV FJRCE BUNOS = 3.1OO
    FKACTIUV UF TOTAL ENTHALPY
    DENSITY = 0.99913 GRAM/CL
    MOLECULAR WEIGHT UF SOLVENT,XM= 18.0JJ GRAM/MIJLE
    VISCUSITY = 0.01104 AT 2$8.0 JEG C
    VISCOUS ACTIVATIUN ENERGY,E = 1971.9535% CAL/UEG*MJLE
    SULVENT NUMBER = 18
    ENTHALPY UF VAPORILATION,H = 0500.00J CAL/MOLE
    FRACTIUN UF TOTAL ENIHALPY OF VAPORILATIUN ATTRIBJTED IO JISHERSIJV FJRLE UONDS = J.GIO
    DENSITY = 0.79452 GRAM/CC
    XI FJR GAINER-METZNER EQUATIUN = 0.00
    MOLECULAR WEIGHT OF SOLVENT,XM=7 72.1JJ GRAM/MOLE
    VISCUSITY = 0.00365 AT 303.0 Je'́S C
    VISCUUS ACTIVATIUN ENERGY,E = 131b.by4ち% CAL/UEG*MJLE
    SULVENT NUMBER = 19
    ENTHALPY UH VAPORII ZATION,H=7USO.UJJ CAL/MOLE
    FKACTIUN UF TUTAL ENTHALPY OF VAPURILATIUN ATTRIbJTED TO DISPEKSIOV FJRCE BUNUS = L.OUU
    FRACTIUN OF T.70928 ORAM/CC
    UENSITY = GI FUK GAINER-METZNER EQUATIUN = %.JU
    XI FUK GAINER-METZNER EUUATIIUN = %.JU 
    MULECULAK WEIGHT UF SULVENT,XM=
    VIOCOUS ACTIVATIUN LENEKGY,E = LG7O.SOJ4ל LAL/UEG*MJLE
    SOLVENT NUMBER = 20
    ENTHALPY UF VAPORILATLINN,H = 8100.JOO LAL/MULE
    FRACTION OF TUTAL ENTHALPY UF VAPURIZATION ATTRIBJTEU TU UISPLKSIJN FJKLL JONUS = 1.OLO
    HENSITY = 0.80844 GRAM/CC
    XI FJK GAINER-METLNER EQUATION = 0. LO
    MOLECULAR WEIGHI OF SULVENT, XM=78.1JJ GRAM/MOLL
```

```
YGW0045 MITCHELL,R.O.
    VISCOSITY = 0.00569 AT 303.0 DEG C
    VISCJUS ACTIVATION ENERGY,E = 1700.723d0 CAL/DEG*MILE
    SULVENT NUMBER =21
    ENTHALPY OF VAPONILATIUN,H = 8LO0.00U CAL/MOLE
    FRACTION OF TOTAL ENTHALPY OF VAPURILATIUN ATTRIBJTEU TD UISPLRSIOV FJRCE BUNUS = L.JUU
    DENSITY = 0.87368 GRAM/CC
    XI FOR GAINER-METZNER EUUATION =0.20
    MULECULAR WEIGHT OF SULVENT, XM = 76.1J0 GKAM/MULE
    VISCOSITY = 0.00599 AT 298.0 DEG C
    VISCOUS ACTIVATION ENERGY,E = 17LO.27121 CAL/DEG*MJLE
    SOLVENT NUMBER = 22
    ENTHALPY OF VAPURIZATIUN,H = 131VU.0JO CAL/MOLE
    FRACTION OF TOTAL ENTHALPY OF VAPURIZATIUN ATTRIBJTED IO UISHERSION FJKCF BONDS = 0. 384
    DENSITY = 0.78250 SKAM/CC
    XI FJR GAINER-METZNER EQUATION = 6.00
    MOLECULAR WEIGHT OF SULVENT;XM= 5O.1JJ GRAM/MULE
    VISCUSITY = 0.00302 AT 298.0 DEG C
    VISCUSITY = 0.00302 AT 298.0 DEG し
        SULVENT NUMBER = 23
    ENTHALPY OF VAPQRIZATIUN,H = % 8840.0JO CAL/MOLE
    FRACTION OF TOTAL ENTHALPY OF VAPORILATION ATTKIBJTEU TJ UISPENSIDN FIJRCE BONOS = 1.WWG
    DENSITY = 0.85770 GRAM/CC
    XI FUR GAINER-METZNER E゙QUATION = 0.JU
    MULECULAR WL [ÖTT UF SOLVENT,XM = 92.1JJ GRAM/MIJLE
    VISCJSITY = 0.0UO23 AT 303.O UEG L 
    SULVENT NUMSER = 24
    EINTHALPY UF VAPGRIZATION,H = ४४40.JJU CALIMOLE 
    UENSITY = U.80220 GRAM/CC
    XI FJR GAINER-METZNER EWUATIION = 0.0U
    MULELULAR WEIGHT UF SULVENT,XM = 92.1JO GKAM/MULE
    VISCJSITY = U.VO555 AT 2צ8.O DEG C
    VISCJUS AGTIVATIJN ENERGY,E = 1748.Zち45J CAL/UEG*MJLE
        JULVENT NUMSER = 25
    ENTHALPY OF VAPORILATIUN,H=10400.JJJ CAL/MULE
    FRACTIUN UF TOTAL ENTHALPY OF VAPURIZATION ATTRIBJTEU IU UISHRRSIUV FJKCE BUNUS= 1.)UL
    UEIVSITY = U.79730 GKAM/LC
    XI FUR GAINER-METZNER EQUATION = 6.5U
    MULECULAR WEIGHT OF SOLVENT,XM = SU.1J) GKAM/MULE
    VISCJSITY = 0.01970 AT 298.0 UEG C
    VISCUUS ACTIVATIJN ENEKGY,E = 25४`.70453 CAL/JLG*MJLE
    SULVENT NUMBER = 20
```



```
    FKACTIUN UF TOTAL ENTHALPY UF VAHUR[LATIUN ATTKIBJTEU IU BISRLKSIJV r.JRGL bUNIJS = L.JUO
    UENSITY = L.65055 GRAM/CC
    XI FJR GAINER-METZNER EUUATION = 5.40
    MULELULAK WEIGHT OF SOLVENT,XM = $O.LJJ GKAM/MULE
    VISCOSITY = 0.00278 AT 303.0 DEG C
    VISCUUS ACTIVATIUN ENERGY,E = 1348.51っ70 CAL/UEG*MJLE
    SULVENT NUMBER = 27
    ENTHALPY UT VAPURILATIUN,H = 7OSU.UJO CAL/MULE 
```

```
    YOWOO45 MITCHELL,R.U.O
        OENSITY = 1.582UO GRAMICCTION = 5.80
        XI FJK SAINEER-METZNER EWUATION = 5.80
    MULELULAK WEIGHT OF SULVENT, XM = 1ל3.४JJ GKAM/MULE
    VISCOSITY =0.0091O AT 298.0 ULG C
    VISCUUS AGTIVATIÜN ENERGY,EZ = 1774.70%70 CAL/UEG*MJLE
SULUTE COUE = 17 SOLVENT CUUE = 
```



```
    F=0.050 JGM = 0.19021E-04 DDGM = -3.34020
```



```
    F=0.150 DGM = 0.15418E-O4 ODGM = DN - N.13946
    F=U.200 OGM = 0.13882E-04 }\quad\mathrm{ UDGM = -3.62727
    F=0.250 DGM = O.12498E-04 
    F=0.350 DGM = 0.10131E-04 UOGM = -2.37712
    F=0.400 USM = 0.91217E-05 UDGM = - 2.04356
    F=0.450 JJM = 0.82126E-05 DOGM = -1.73754
    F=U.500 JJM = 0.73942E-05 UUSM = -1.40472
    F=0.550 DGM = 0.60573t-05 ODGM = -1.217J4
    F=0.600 UGM = 0.5993 &E-OS 
    F=0.700 DGM = 0.48587E-05 UDGM = -J.01756
    F}=0.750 JGM=0.43745E-05 DDGM = -3.45816
    F=0.800 JOM = 0.39385t-05 UUEM = -J.31284
    F=0.850 JSM = 0.3540UE -05 UDGM = -J.182J0
    F=U.900 U'GM = 0.31926E:O5 UDGM = -U.30421
    F=0.950 UGM = 0.28744E-05 JUGM = J.0.4185
    F=1.0UO JSM = 0.2530OL-US UUGM = J.13734
    F=1.050 U'MM = 0.10807E-U5 UNGM = 0.4.0777
    F=1.100 UGM = 0.10793t-O5 UUGM = J.6335%
    F=1.200 JGM = 0.40693E-00 JDGM = J.8%%430
    F=1.250 JGM = 0.30431E-06 UUGM = U.04556
    F=1.30U JSM = 0.19833t-00 JUGM = J..733B9
    F=1.350 JSM = 0.12920K-60 
    F=1.40U JSM = 0.84244t-U7 UNGM = U.47172 
    F=1.5U0 JJM = 0.3578St-07 UOGM = UGM = 0.2332115-07 UOGM = 4.7.38.7
    F=1.550 JOM = 0.23321E-O7 UOGM = U.47223
    F=1.650 JGM = 0.99J6OE-08 JDGM = J.94,70
    F=1.700 JGM=0.6470LL-UN JUGM = U.74705
    F=1.750 JGM = 0.42077E-08 UOGM = 0.9995U 
    F=1.80U JSM = 0.27423E-U8 UDLM = J.99709
```



```
    F=1.950 JEM = O.75915E-UY UDGM = U.97.775
    F=2.00U UGM=0.44477E-UY UUGM = J..7>704
 SOLUTE LUDE = 17 SULVENT CUUE = 14
```



```
SOLUTE ÜUDE = 17 SOLVENT CUUE = 4
```



```
SULUTE CUDE = 17 SULVENT COJE =
    TEMPERATURE =288.UU JEO C = S
SULUTE LUDE = 17 SULVENT CUSE = S
    TUE = 9 SULVENNT CUUE = 4
```



```
SOLUTE CODE = 14 SOLVENT COUE = 1J
```



```
SULUTE CUDE = L5 SULVENT CUUE゙=1J
```


VIII. NOMENCLATURE

A	= proportionality constant in Equation 37
${ }^{\text {A }}$ T	$\begin{aligned} = & \text { effective mass transfer area on surface of porous plate, } \\ & \mathrm{cm}^{2} \end{aligned}$
$A_{1}^{\prime}, A_{2}^{\prime}$	$=$ constants defined by Equation B-11
b_{n}	$=$ the nth root of Equation B-31
C	$=$ solute concentration in porous plate, mole/liter
$\overline{\mathrm{C}}$	$=$ Laplace transform of C
C_{0}	= initial solute concentration in porous plate, mole/liter
C_{f}	= solute concentration in solvent bath, mole/liter
$\overline{\mathrm{C}}_{\mathrm{f}}$	$=$ Laplace transform of C_{f}
$\mathrm{C}_{\mathrm{f}}^{0}$	= initial solute concentration in solvent bath, mole/liter
$\mathrm{C}_{\mathrm{f}_{\mathrm{i}}}$	$=$ solute concentration of sample number i removed from the solvent bath, mole/liter
$C_{\text {fi }}^{\prime}$	= solute concentration calculated using the curvefitted parameters for sample number i removed from the solvent bath, mole/liter
$\mathrm{C}_{1}, \mathrm{C}_{2}$	$=$ constants in Equation 8
$\mathrm{D}_{\text {AB }}$	$=$ binary diffusion coefficients, $\mathrm{cm}^{2} / \mathrm{sec}$.
$\mathrm{D}_{\mathrm{BB}}, \mathrm{D}_{\mathrm{XX}}$	$=$ self diffusion coefficients, $\mathrm{cm}^{2} / \mathrm{sec}$.
$\mathrm{D}_{\text {GM }}$	= binary diffusion coefficient calculated by the original Gainer and Metzner model, $\mathrm{cm}^{2} / \mathrm{sec}$.
$\mathrm{D}_{\text {GM }}^{\prime}$	$=$ binary diffusion coefficient calculated by the modified Gainer and Metzner model, $\mathrm{cm}^{2} / \mathrm{sec}$.

D_{M}	$=$ binary diffusion coefficient calculated by Equations 29 and $13, \mathrm{~cm}^{2} /$ sec.
D_{O}	$\begin{aligned} = & \text { binary diffusion coefficient calculated by Olander's } \\ & \text { model, } \mathrm{cm}^{2} / \mathrm{sec} . \end{aligned}$
$\mathrm{D}_{\text {WC }}$	$=$ binary diffusion coefficient calculated by the WilkeChang equation, $\mathrm{cm}^{2} / \mathrm{sec}$.
DEV	= percent deviation of calculated from experimental diffusivity.
$\mathrm{E}_{\mathrm{D}_{\mathrm{AB}}}, \mathrm{E}_{\mathrm{D}_{\mathrm{BB}}}$	= activation energy for diffusion, Kcal/mole
$\mathrm{E}_{\mathrm{D}_{\mathrm{BB}-\mathrm{H}}}$	$=$ activation energy for diffusion due to hydrogen bonding, Kcal/mole
$\mathrm{E}_{\mathrm{D}_{\mathrm{BB}}-\mathrm{D}}$	$=$ activation energy for diffusion due to "dispersion force" bonds, Kcal/mole
${ }^{\mathrm{E}} \eta_{\mathrm{B}}$	= activation energy for viscosity, Kcal/mole
${ }^{\mathrm{E}} \eta_{\mathrm{B}-\mathrm{H}}$	$=$ activation energy for viscosity due to hydrogen bonding, Kcal/mole
${ }^{\mathrm{E}} \eta_{\mathrm{B}-\mathrm{D}}$	= activation energy for viscosity due to "dispersion force" bonds, Kcal/mole
$\begin{gathered} \Delta \mathrm{E}^{\mathrm{vap}} \\ \overline{\Delta \mathrm{E}}_{\mathrm{AB}}^{\mathrm{vap}} \end{gathered}$	```= energy of vaporization, Kcal/mole = partial molar energy of vaporization of a solute A from solvent, B, Kcal/mole```
f	$=$ the ratio of the activation (free) energies due to hole formation to the total,
f^{\prime}	$=$ the ratio of the activation (free) energies due to the jump step to the total ($=1-\mathrm{f}$)

$\Delta \mathrm{F}_{\mathrm{D}_{\mathrm{AB}}}, \Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{BB}}}, \Delta \mathrm{~F}_{\mathrm{D}_{\mathrm{AA}}}$	= activation free energy for diffusion, Kcal/mole
${ }^{\Delta \mathrm{F}} \eta_{\mathrm{B}},{ }^{\Delta \mathrm{F}} \eta_{\mathrm{X}}$	$=$ activation free energy for viscosity, Kcal/mole
h	$=$ the Planck constant, $6.6242\left(10^{-27}\right) \mathrm{erg} / \mathrm{sec}$
$\Delta H^{\text {vap }}$	= enthalpy of vaporization, Kcal/mole
$\Delta \mathrm{H}_{\mathrm{X}-\mathrm{H}}^{\mathrm{vap}}$	= enthalpy of vaporization due to hydrogen bonding, Kcal/mole
$\Delta \mathrm{H}_{\mathrm{X}-\mathrm{D}}^{\mathrm{vap}}$	= enthalpy of vaporization due to dispersion force bonds, Kcal/mole
$\overline{\Delta H}_{\mathrm{AB}}^{\operatorname{mix}}$	$=$ partial molar enthalpy of mixing of A in B, Kcal/mole
$\Delta \mathrm{H}_{\mathrm{D}_{\mathrm{AB}}}, \Delta \mathrm{H}_{\mathrm{D}_{\mathrm{BB}}}$	= enthalpy of activation for diffusion, Kcal/mole
k	$=$ the Boltzman constant, $1.3805\left(10^{-16}\right)$
k, k^{\prime}	$=$ constants of proportionality in Equations 19 and 21
K	$=2 \mathrm{~A}_{\mathrm{T}} \sqrt{D_{\mathrm{D}}}{ }_{\mathrm{AB}} / \mathrm{V}_{\mathrm{f}}, \text { sec. }^{-1 / 2}$
$\mathrm{L}_{\text {eff }}$	$=$ effective pore length in porous plate, cm
M	$=$ molecular weight, grams $/ \mathrm{mole}$
N	```= the Avagadro number, 6.023\times10 23 molecules/ mole```
N	$=$ the number of samples taken for analysis during any one run
$Q_{A B}$	$=$ partition function for equilibrium state
Q_{AB}	= partition function for activated state

R	$=$ the universal gas constant, $1.987(10)^{-3} \mathrm{Kcal} / \mathrm{mole}{ }^{0} \mathrm{~K}$
$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$	= approximate molecular radius, cm
$\mathrm{R}_{\text {AB }}$	= arithmetic average of R_{A} and R_{B}
S	$=$ Laplace transform variable
S	$=$ the weighted sum of the square of the deviation of the actual concentration of sample i from the concentration of sample i calculated using the curve fit parameters
T	= temperature, ${ }^{\circ} \mathrm{K}$
T_{c}	= critical temperature, ${ }^{0} \mathrm{~K}$
t	= time, sec
$\mathrm{t}_{\frac{1}{2}}$	= half-life, hr^{-1}
$\overline{\mathrm{V}}$	$=$ molar volume, $\mathrm{cm}^{3} / \mathrm{mole}$
V_{f}	= average volume of solvent in solvent bath during a run, milliliters
W_{i}	$=$ weighting factor
x	$=$ length, cm
Y	$=$ variable defined by Equation 39a
Z	= proportionality constant in Equation 23

Greek Letters

α	$=$ ratio of volume of solvent bath to void volume of porous plate
α_{x}	$=$ thermal coefficient of volumetric expansion, ${ }^{\circ} \mathrm{C}^{-1}$
δ	$=$ defined by Equation 39b
${ }^{\delta A}{ }_{T}$	$=$ correction to A_{T} calculated in least squares program
δC_{f}^{o}	$=$ correction to $\mathrm{C}_{\mathrm{f}}^{\mathrm{o}}$ calculated in least squares program
Δ	$\begin{aligned} = & \text { absolute percent deviation of predicted diffusivity from } \\ & \text { experimental diffusivity } \end{aligned}$
ϵ	= Lennard-Jones force constant
$\epsilon_{\mathrm{o}}^{\prime}, \epsilon_{\mathrm{o}}^{\prime}, \epsilon_{\mathrm{o}}^{\prime},$	
$\epsilon_{\mathrm{o}_{\mathrm{BB}}^{\prime}}^{\prime}$	= zero point energy difference
$\eta_{\mathrm{B}}, \eta_{\mathrm{X}}$	= coefficient of viscosity, poise
$\lambda_{1}, \lambda_{2}, \lambda_{3}$	$=$ the distance between neighboring molecules in the ith direction, cm
λ	$=$ the distance between equilibrium positions in the direction of motion, cm
$\xi, \xi_{\mathrm{A}}, \xi_{\mathrm{B}}, \xi_{\mathrm{X}}$	= a lattice parameter in the rate theory equation
σ	$=$ the standard deviation of the sample equation

Subs cripts

i
p = at constant pressure
v
$\mathrm{A}, \mathrm{B}, \mathrm{X}$
boiling, 1, 2

Superscripts

h $\quad=$ due to the hole formation process
j $\quad=$ due to the jump process
o
$=$ boiling temperature, temperature 1 and temperature 2 all in ${ }^{\mathrm{O}} \mathrm{K}$.
$=$ sample number \mathbf{i}
$=$ at constant volume
$=$ components A, B, and X
$=$ refers to initial estimate of variable used in iterative least squares program

IX. BIBLIOGRAPHY

1. American Petroleum Institute Research Project 44. Thermodynamic Research Center, Texas A \& M University, College Station, Texas (1968).
2. Amourdam, E. J., Laddha, G. S., J. Chem. Engr. Data 12, 389 (1967).
3. Bertrand, G. L., Millero, F. J., Wu, C. H., Hepler, L. G., J. Phys. Chem. 70, 699 (1966).
4. Bertrand, G. L., Larson, J. W., Hepler, L. G., J. Phys. Chem. 72, 4194 (1968).
5. Bockris, J. O'M., Yoshikawa, S., Richards, S. R., J. Phys. Chem. 68, 1838 (1964).
6. Bondi, A., J. Chem. Phys. 14, 591 (1946).
7. Bondi, A., Simkin, D. J., A.I.Ch.E. J. 1,473 (1957).
8. Daniels, F., Williams, J. W., Bender, P., Alberty, R. A., Cornwall, C. D., "Experimental Physical Chemistry" 6 ed., pp. 452-455, McGraw-Hill, New York, 1962.
9. Collins, F. C., J. Chem. Phys. 26, 398 (1957).
10. Eyring, H., Marchi, R., J. Chem. Ed. 40 , 526 (1963).
11. Gainer, J. L., Ph.D. Thesis, University of Delaware, Newark, Delaware 1964.
12. Gainer, J. L., Metzner, A. B., A. I.Ch. E. -Ind. Chem. Eng. Symposium Series No. 6, 74 (1965).
13. Gainer, J. L., Private Communication, 1969.
14. Glasstone, S., Laidler, K. J., Eyring, H., "The Theory of Rate Processes",
pp. 477-551, McGraw-Hill, New York, 1941.
15. "Handbook of Chemistry and Physics", 45th ed., Chemical Rubber Publishing Co., Cleveland, Ohio, 1965.
16. Harned, H. S., Owen, B. B., "The Physical Chemistry of Electrolyte Solutions'", 3rded., p. 255, Reinhold, New York, 1958.
17. Hildebrand, J.H., Scott, R. L., "The Solubility of Nonelectrolytes", 3rd ed., pp. 119-133, Dover, New York, 1964.
18. Hiraoka, H., Izui, Y., Osugi, J., Jono, W., Rev. Phys. Chem. Japan 28, 61 (1958a).
19. Hiraoka, H., Osugi, J., Jono, W., Rev. Phys. Chem. Japan 28, 52 (1958b).
20. Hollander, M. V., Barker, J. J., A.I.Ch. E. J. 2, 514 (1963).
21. "International Critical Tables" 1st ed., Washburn, E. W. ed., McGraw-Hill, New York, 1926.
22. Jobling, A., Lawrence, A. S. C., Proc. Roy. Soc. A206, 257 (1951).
23. Johnson, P. A., Babb, A. L., Chem. Revs. 56, 387 (1956).
24. Jordan, T. E. "Vapor Pressure of Organic Compounds", Interscience Publishers, New York 1954.
25. Kulkarni, M. V., Allen, G. F., Lyons, P. A., J. Phys. Chem. 69, 2491 (1965).
26. Li, J. C., Pin Chang, J. Chem. Phys. 23, 518 (1955).
27. Lowitz, D. A., Spencer, J. W., Webb, W., Schiessler, R. W., J. Chem. Phys. 30, 73 (1959).
28. Marcinkowsky, A. E., Nelson, F., Kraus, K. A., J. Phys. Chem. 69,

303 (1965).
29. McCall, D. W., Douglass, D. C., J. Phys. Chem. 71, 987 (1967).
30. McCall, D. W., Douglass, D. C., Anderson, E. W., J. Chem. Phys. 31 , 1555 (1959).
31. McLaughlin, E., Trans. Far. Soc. 55, 29 (1959).
32. Moore, J. W., Unpublished Report, University of Missouri - Rolla, Rolla, Missouri, 1967.
33. Moore, W. J., "Physical Chemistry" 2nd ed., Prentice-Hall, New York, 1955.
34. Mrazek, R. V., Van Ness, H. C., A.I.Ch.E. J. J, 190 (1961).
35. Olander, D. R., A.I.Ch.E. J. 2, 207 (1963).
36. Overman, R. T., Clark, H.M., "Radioisotope Techniques", pp. 187-191, McGraw-Hill, New York, 1960.
37. Perry, J. H., "Chemical Engineers' Handbook", 4th ed., McGraw-Hill, New York, 1963.
38. Ree, F. H., Ree, T., Eyring, H., Ind. Eng. Chem. $\underbrace{50,1036 \text { (1958). }}$
39. Ree, T. S., Ree, T., Eyring, H., J. Phys. Chem. 68,3262 (1964).
40. Reid, R. C., Sherwood, T. K., "Properties of Gases and Liquids", p. 520, McGraw-Hill, New York, 1966.
41. Scarborough, J. B., "Numerical Mathematical Analysis", 5th ed., p. 494, The John Hopkins Press, Baltimore, 1962.
42. Shroff, G. H., Shemilt, L. W., J. Chem. Eng. Data 11, 183 (1966).
43. Timmermans, J. "The Physico-Chemical Constants of Binary Systems on

Concentrated Solutions", Vol. 1., Interscience Publishers, New York, 1959.
44. Timmermans, J. "The Physico-Chemical Constants of Pure Organic Compounds", Elsevier Publishing Co., New York, 1950.
45. Treybal, R. E., "Liquid Extraction", McGraw-Hill, New York, 1963.
46. Wall, F. T., Grieger, P. F., Childers, C. W., J. Am. Chem. Soc. ${\underset{\sim}{l}}_{74}$ 3562 (1952).
47. Wall, F. T., Wendt, R. C., J. Phys. Chem. 62, 1581 (1958).
48. Watts, H., Alder, B. J., Hildebrand, J. H., J. Chem. Phys. 23, 659 (1955).
49. Wilke, C. R., Chang P., A.I.Ch.E. J. 1,264 (1955).
50. Wu, P. C., M.S. Thesis, University of Missouri - Rolla, Rolla, Missouri 1968.
51. Wu, P., Wellek, R. M., to be submitted to Ind. Eng. Chem. Fund. (1970).

VITA
Ronald Dean Mitchell was born on April 23, 1941 in Mount Ayr, Iowa. He received his primary education in Brentwood, Old Manroe and O'Fallon, Missouri, and his secondary education at St. Charles, Missouri. He has received his college education from the University of Missouri - Rolla, Rolla, Miss ouri, receiving the Bachelor of Science Degree in Chemical Engineering and the Master of Science Degree in Chemical Engineering in 1963 and 1964, respectively.

He has been enrolled in the Graduate School of the University of Missouri Rolla from June 1963 to July 1967. He was then employed as a Senior Engineer at the Westinghouse Electric Company, Bettis Atomic Power Laboratory in West Mifflin, Pennsylvania. He entered the United States Army in January, 1968, and was attached for duty to the National Aeronautics and Space Administration, Lewis Research Center in Cleveland, Ohio. Since February, 1970, he has been enrolled in the Graduate School of the University of Missouri Rolla.

He married the former Miss Carol Ruth Gehrs of O^{\prime} Fallon, Missouri on August 31, 1963.

