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ABSTRACT 

Various topological spaces are examined in an effort 

to describe topological spaces from a knowledge of their 

class of continuous selfmaps or their class of autohomeo­

morphisms. Relationships between topologies and their 

continuous selfmaps are considered. Several examples of 

topological spaces are given and their corresponding classes 

of continuous selfmaps are described completely. The prob­

lem, given a set X and a topology U when does there exist 

a topology V either weaker or stronger than U such that the 

class of continuous selfmaps of (X,V) contains the class of 

continuous selfmaps of {X,U), is considered. 

M* and S** spaces are defined and some of their prop­

erties are considered. Two M* (or S**) spaces are shown to 

be homeomorphic if and only if certain semigroups of contin­

uous selfmaps are isomorphic. 



iii 

ACKNOWLEDGEMENTS 

The author wishes to express his sincere appreciation 

to Dr. A. Glen Haddock and Dr. Troy L. Hicks of the Depart­

ment of Mathematics for their aid in the selection of this 

thesis subject and for their guidance and encouragement in 

the preparation of this dissertation. 

The author also expresses his gratitude to his wife 

and family for their patience and understanding during 

these years of graduate study. 



iv 

TABLE OF CONTENTS 

CHAPTER PAGE 

I. 

II. 

III. 

IV. 

v. 

INTRODUCTION 

REVIEW OF THE LITERATURE 

SEMIGROUPS OF ALL CONTINUOUS SELFMAPS • 

A. Comparing Topologies with their Continuous 

1 

3 

6 

Selfrnaps . . . . . . . . . . . . . . . . . . 6 

B. The Space of Real Numbers with the Usual 
Topology • • • • • . . • • • • • • • • • 14 

c. Characterizing Spaces (X,t) by C(X,t) 

HOMEOMORPHISMS FROM A SPACE TO ITSELF 

A. Partially Ordered Array of Spaces 

B. Completely Homogeneous Spaces 

c. 1-1, Onto, Continuous Selfmaps 

a-SEMIGROUPS OF CONTINUOUS SELFMAPS • 

A. Some Known Results 

B. S**-Spaces . . . . . . . . . 
c. M*-Spaces . . . . . . . . . . . . . . . . . 
D. Examples . . . . . . . . . . . . . . . . . . 

18 

34 

34 

38 

42 

47 

47 

48 

60 

63 

VI. SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS • • • • 70 

REFERENCES 72 

VITA . . . . . . . . . . . . 74 



1 

I. INTRODUCTION 

Let C(X) (or C(X,t) if the topology is to be stressed) 

denote the semigroup under composition of all continuous 

mappings from a topological space X into X. Likewise, let 

H(X) denote the group of autohomeomorphisms on X. 

Although the problem of determining if a function from 

a topological space to itself is continuous is basic in the 

study of topology, it is frequently difficult to determine 

whether a functon is or is not continuous. Hence several 

examples of topological spaces are considered from the 

point of view of obtaining simple rules which characterize 

their continuous selfmaps. A converse type of a problem, 

that of finding all topologies which can be assigned to X 

which have a given semigroup of selfmaps, is considered and 

some topologies are characterized by their autohomeomor-

phisms. 

It is clear that C(X,D) and C(X,t0 ) each consist of all 

selfmaps, where D and t 0 represent the discrete and trivial 

topologies respectively. Thus for any topology U defined 

on X, U is stronger than t 0 and weaker than D while C(X,U) 

is a subset of both C(X,D) and C(X,t ). 
0 

Problems of exam-

ining the effect on C(X,U) by changing the topology U are 

considered in searching for a topology V either weaker or 

stronger than U such that C(X,V) contains C(X,U). A simi­

lar problem exists when continuous selfmaps are replaced 

by autohomeomorphisms. 
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Another important problem in this area is to study the 

relationship between the topological properties of a space 

X and the algebraic properties of C(X). To this end we 

note that if X andY are homeomorphic then C{X) and C(Y) 

are isomorphic. In particular if h is a homeomorphism from 

X to Y then the mapping from C(X) to C(Y) defined by 

~(f) = h of o h-1 is an isomorphism. Setting X equal to 

Y and recalling that C(X,D) = C(X,t0 ) it becomes evident 

that C(X) being isomorphic to C(Y) is not sufficient to 

imply that X and Y are homeomorphic. Thus it is desirable 

to find classes of topological spaces and semigroups of 

continuous selfmaps such that within this class two spaces 

are homeomorphic if and only if certain semigroups of con­

tinuous selfmaps are isomorphic. 



II. REVIEW OF THE LITERATURE 

In 1948, Everett and Ulam [1] posed the following 

question. Given the class of all homeomorphisms from a 

topological space to itself, what other topologies exist 

3 

on the same set which have the same set of homeomorphisms? 

No results appeared until 1963 when Whittaker [2] studied 

a related problem. He proved if X and Y are compact, lo­

cally Euclidean manifolds and if ~ is an isomorphism from 

H(X) to H(Y) then there exists a homeomorphism h from X 

onto Y such that ~(f)= h of o h-1 for each fin H(X). It 

follows immediately from this result that if (X,U) and 

(X,V) are compact, locally Euclidean manifolds such that 

H(X,U) = H(X,V) then (X,U) and (X,V) are homeomorphic. 

Yu-Lee Lee in [3] developed some methods which enabled 

him to start either with certain locally compact spaces or 

certain first countable Hausdorff spaces and to construct 

another topological space with the same class of homeomor­

phisms. In [4] Yu-Lee Lee showed that given an n-manifold 

(X,U) there exists no other Hausdorff space (X,V) such that 

H(X,U) = H(X,V) and one of the following conditions is sat-

isfied: 1) (X,V) is locally compact, 2) (X,V) is first 

countable, or 3) (X,V) is locally arcwise connected. 

In 1964, Magill [5] considered the problem of deter­

mining a class of spaces such that if two spaces X and Y 

belong to this class then X and Y are homeomorphic if and 

only if C(X) and C(Y) are isomorphic. Magill defined a 
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class of spaces called S-spaces with the required property. 

The class of S-spaces includes all locally Euclidean spaces 

and also all a-dimensional Hausdorff spaces. Later Magill 

[6,7,8] found other collections of spaces which satisfied 

his basic problem. 

Hicks and Haddock [9] extended Magill's results from 

S-spaces to M-spaces and obtained several results involving 

arbitrary semigroups of continuous selfmaps which contain 

the collection of constant selfmaps. 

There were actually forerunners to the problem stated 

by Magill. In 1939, Gelfand and Kolmogoroff [10] studied 

the problem from the point of view of considering the ring 

S(X) of continuous mappings from X to the reals. They 

proved that two completely regular, compact spaces X and 

Yare homeomorphic if and only if S(X) is isomorphic to 

S(Y). Previous to this time Stone [11] studied the same 

problem but introduced a topology on the ring of continuous 

functions. Much work has been done in the area of rings of 

continuous functions and a collection of these results can 

be found in Gillman and Jerison [12]. 

Just as Stone introduced a topology on the ring of 

continuous functions S(X), Weschler [13] also introduced a 

topology on H(X). He found a family of topological spaces 

such that if X and Y are spaces belonging to this family 

and if H(X) and H(Y) are both isomorphic and homeomorphic 

then X and Y are homeomorphic. Thomas [14] and Wiginton 



and Shrader [15] obtained similar results over slightly 

different families of spaces. 

5 
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III. SEMIGROUPS OF ALL CONTINUOUS SELFMAPS 

A. COMPARING TOPOLOGIES WITH THEIR CONTINUOUS SELFMAPS 

In what follows C(X,t) will be used to denote the col­

lection of continuous selfmaps from the space (X,t) to 

(X,t). It is easy to see that for any topology t the con­

stant selfmaps as well as the identity selfmap are continu­

ous. It is also a trivial matter to show that the topol­

ogies D and t 0 , where D and t 0 denote the discrete and triv­

ial topologies respectively, are characterized in the sense 

that they are the only topologies on X with the property 

that every selfmap is continuous. To see this assume there 

exists a topology U such that t 0 < U < D and such that 

C(X,U) = C(X,D) = C(X,t0 ). Let 0 be a proper subset of X 

such that 0 is in U, let A be an arbitrary subset of X and 

let x and y be elements of 0 and X - 0 respectively. Then 

define a function f such that f maps each element of A to 

x and each element of X - A to y. Since f is assumed to be 

continuous, f-l(o) = A must be an open set. A is arbitrary 

and thus U = D, which is a contradiction. 

A method for finding topologies U and V which can be 

put on a set X with the property that C(X,U) = C{X,V) will 

now be shown. 

The following definition is due to Lorrain [16]. 

DEFINITION 1. A space {X,t) is said to be a saturated 

space if and only if the intersection of an arbitrary num-
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ber of open sets is open. 

Clearly, any topology on a finite set is saturated, 

however; there are many other saturated spaces as can be 

seen by the following theorem. 

THEOREM 1. If (X,t) is a topological space such that 

for each x in X there exists a neighborhood of x, say Nx, 

which intersects only a finite number of closed sets (the 

family of closed sets is locally finite), then t is a sat-

urated topology. 

PROOF. Let {Fa : a is in A} be an arbitrary family of 

closed sets and let x be an element of X - U Fa. Then 
ae:A 

there exists a neighborhood Nx of x which intersects only 

a finite number of these closed sets, say F 1 , F 2 , ••• , Fn. 

Since x is in no Fa, x is in each of the open sets X - Fi 
n 

fori= 1, 2, .•. , n. Therefore Nx ~ ( n (X- Fi)) is 
i=l 

an open neighborhood of x which is a subset of X - U Fa. 
ae:A 

Thus X - U 
ae:A 

Fa is open and hence U Fa is closed, which 
ae:A 

is equivalent to t being saturated.// 

The converse of this theorem is not true as can be 

seen by letting (X,t) be the set of positive integers with 

the saturated topology t = {O: 1 e: 0 and oc X} U {~}. 

Since there are infinitely many closed sets containing the 

element 2, every neighborhood of 2 must intersect infinitely 

many closed sets. 

THEOREM 2. If (X,U) is a saturated space and V = {O : 

X- 0 is in U} then C(X,U) = C(X,V). 



PROOF. Let f be an element of C(X,U) and let F be a 

closed set of (X,V). Hence F is open in U and therefore 

f-l(F) is in U which implies f-l(F) is closed in V. Thus 
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f is in C(X,V). Similarily C(X,V) is a subset of C(X,U) .// 

Note that V as defined in theorem 2 is a topology if 

and only if U is a saturated topology. Also, V is a sat­

urated topology. This implies that if U is a saturated 

topology different from the discrete topology then U can 

not be a T1 space. For if U is assumed to be a saturated 

T1 space then V is the discrete topology. This follows 

since each singleton is closed in U and hence open in V. 

Because of the way that V is constructed from U, V being 

discrete implies U is discrete. 

Given a set X and a topology U such that t 0 < U. < D, 

it follows that C(X,U) is a proper subset of both C(X,t0 ) 

and C(X,D). Some results will now be given which are use-

ful when attempting to find a topology V comparable with U 

such that C(X,V) contains C(X,U). 

THEOREM 3. Let X be an arbitrary set and let { ta : 

a in A} be a collection of topologies on X, then 

i) n C (X,ta) is a subset of C (X, n ta} and 
ae:A ae:A 

ii) n C(X,ta) is a subset of C(X,T) where Tis the 
ae:A 

least upper bound of the topologies in { ta : a in A}. 

PROOF. .i) Let f e: (\ C (X, ta) and let 0 e: (\ ta • 
ae:A ae:A 

Then since 0 is in each ta and f is in each C(X,ta) it 



follows that f-1(0) is in n ta and hence f £ C(X, 
a£A 

ii) Again let f £ n C(X,ta) and let 0 £ U ta. 
a£A a£A 
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n 
a£A 
Note 

U ta is a subbase for T. Since 0 is a member of some ta 
a£A 
and since f is also in C(X,ta) it follows that f-l(o) is in 

ta. Therefore f-1(0) is in the subbase U ta and hence in 
a£A 

T. Thus f £ C(X,t) .// 

If C(X,t) = C(X,U) then it follows immediately that 

C(X,U) is a subset of C(x,tn U) and t n u is a topology 

comparable to u. Also C(X,U) is a subset of C(X, lub 

{ t,U}) and lub { t,U} is a topology comparable to u. 

Examples illustrating the use of theorems 2 and 3 will 

now be given. 

1). Let X be the set of positive integers. Let t 1 be the 

topology consisting of supersets of the element 1; that 

is, t 1 = { 0 : 1 £ 0 and 0 C X} V { 4l}. Let t 2 be the 

cofini te topology on X; that is, t 2 = { 0 : 0 c X and X - 0 

is a finite set} U C4l}. It will be shown that C(X,t 1 ) = 

{ f f is a constant function or f(l) = 1} and C(X,t2 ) = 

{ f f is a constant function or f is a finite to one 

function}. A function is said to be finite to one if and 

only if each element of X has at most a finite number of 

preimages. From theorem 3 it follows that every function 

f which is constant, or is finite to one and maps 1 onto 1 

is in C (X,t) where t = tl n t 2 = { 0 : 1 £ 0 and X - 0 is 

finite } U { + } • 
2) • Let X = { 1 1 2 , 3 1 4 } 1 t 1 = { 4» 1 { 1 1 2 } 1 { 3 } 1 { 1 1 2 1 3 } 1 



{ 3,4}, X} and t 2 = {O: X- 0£ t 1}. It follows from 

theorem 2 that C(X,tl) = C(X,t2)• Note V = t1 n t2 = 
{ <f>, { 1,2}, { 3,4}, X} is weaker than t 1 however from 

theorem 3 it follows that C(X,V) ~ C(X,t 1) while 

u = tl u t2 = { <f>, { 1,2}, { 1,2,3}, { 1,2,4}, { 3}, 

10 

{ 3,4}, X} is stronger than t 1 such that C(X,U) ::::::> C(X,t 1). 

Other methods for finding a topology V comparable to 

U such that C(X,V) ~ C(X,U), are given in the next two 

theorems. 

DEFINITION 2. Let (X,U) be a given space then S and 
s 

Sw are defined as follows: 

ss = { o : o € u} U { oi 

nonempty index set I} U 

in I}. 

0. is not in U and i is in a 
~ 

{ f-l (0.) : f is in c (X,U) and i is 
1: 

Sw = { 0 : 0 £ U} -( { o. : 0. is in U and i is in a nonempty 
~ ~ 

index set I} U { 0 : 0 £ U and f-1 (0) = 0. for some i in I 
~ 

and some fin C(X,U)}). 

THEOREM 4. (X,V) is a topological space with a sub-

base of the form S if and only if 
s 

i) V_is stronger than U and 

ii) C (X, U) C. C (X, V) 

PROOF. Assuming i) and ii) trivially there exists a 

subbase for (X,V) of the form Ss' namely ss = { 0 : 0 is 

in U} U {Oi: oi is in v- U} U { f-lcoi) : f is in C(X,U) 

and oi is in v- U}. 

On the other hand if V has a subbase of the form Ss' 



it is immediate that V is stronger than U. 

To show that C(X,U) c: c (X IV) let g be a function in 

C(X,U) and let 0 be in Ss. 

CASE 1. If 0 is in u than g-lco> is in u. Therefore 

g-l(o) is in Ss which is a subset of v. 
CASE 2. If 0 = Oi for some i in I, then g-l(o) is in ss 

which is a subset of v. 
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CASE 3. If o = f-lcoi) for some f in C(X,U) and i in I, 

then g-l(o) = g-l(f-1 (oi)) = h-lcoi) where h =fog is in 

C(X,U). Therefore g-l(o) = h-l(oi) is in Ss which is a 

subset of V. 

The three cases taken together indicate that g-1 of 

any subbase element of V is in v. Therefore g is in C(X,V) 

and hence c (X, U) c: C (X, V) ./I 

The following example illustrates the use of this 

theorem. Let X be the set of real numbers and let U = { 0 

X- 0 is finite} \.J { <fl}. Let I= { 1} and let 0 1 =X-

{ 1,2,3,4, .•• }. The topology V obtained from the theorem 

is V = {0 : X - 0 is countable} lJ { 4>}. It will be shown 

on page 19 that in this example the set C(X,V) actually 

properly contains the set C(X,U). 

A theorem similar to.theorem 4 can be obtained for the 

set Sw. 

THEOREM 5. (X,V) is a topological space with a subbase 

of the form Sw if and only if 

i) V is weaker than U and 
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ii) C(X,U) c: C(X,V) 

PROOF. Again assuming i) and ii) trivially there 

exists a subbase of (X, V) of the form Sw, namely Sw = { 0 : 

0 is in U} - ( { oi : oi is in v - U} u { 0 : 0 E u and 

f-l(o) = oi for some oi in v- u and some fin C(X,U)}). 

If V has a subbase of the form Sw it is immediate that 

V is weaker than u. 

To show that C(X,U) is a subset of C(X,V) let g be a 

function from C(X,U) and let 0 be from Sw. It is necessary 

to show that g- 1 (0) belongs to v. From the form of Sw 

g-1 (0) ~ Oi for any i in I otherwise 0 would not be in Sw. 

Neither can g-l(o) equal a set 0* where there exists an f 

in C(X,U) and an i in I such that f-1(0*) = oi. For this 

would imply that f-lcg-l(o)) = oi. That is h-l(o) = oi 

where h = g o f is in C(X 1 U). This in turn would imply 0 

is not in Sw• Therefore g-l(o) is in Sw and hence in V.// 

The following example illustrates the use of this 

theorem. Let X = { a 1 b 1 c} 1 U = { 4> 1 { a} 1 { b} 1 { b 1 c} 

{ a 1 b} 1 X} and let Sw = { 0 : 0 is in U} - ( { { b}} U { 0 

f- 1 co> = { b} for f in C (X 1 U) } ) • Since the function f 

defined by f(a) = c 1 f(b) =band f(c) = c is in C(XIU) 

and since f-lc { a,b}) = {_b} the set {alb} will not be in 

Sw• Then Sw is a subbase for V = { 4> 1 {a} 1 { b,c} 1 X}. 

It is easy to see that V = U (\ { 0 : X - 0 is in U} and 

hence by theorem 2 and theorem 3 it follows that 

C(X,V) ::::> C(X,U). 
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Some methods for finding a topology V comparable to U 

such that C(X,V) ~ C(X,U) have been considered. However, 

frequently there does not exist a topology V with this 

property. Several such spaces will be given throughout 

the remainder of this chapter. 

The following definition is given in a paper by Hicks 

and Haddock [9]. 

DEFINITION 3. A space (X,U) is called an M space if 

and only if the set {H(f) f is in C(X,U)} forms a basis 

for the closed sets of (X,U), where H(f) = {x: f(x) = x}. 

This definition will be changed slightly to yield the 

definition of an M1 space. 

DEFINITION 4. A space (X,U) is called an M1 space if 

and only if the set {H(f) f is in C(X,U)} forms a sub-

basis for the closed sets of {X,U). 

It follows immediately that if {X,U) and (X,V) are 

M1 spaces such that C{X,U) = C(X,V) then U = v. This is 

true since both spaces have the same subbase for their 

closed sets. 

Two theorems concerning M1 spaces will now be given. 

THEOREM 6. If (X,U) is an M1 space then there does 

not exist V such that (X,V) is an M1 space and such that 

t 0 < V < U while C(X,V)~ C(X,U). (t0 denotes the triv­

ial topology). 

PROOF. Assume there exists a topology V satisfying 

the conclusion. Let UF = {H(f) : f is in C(X,U)} and let 
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Vp = { H (f) f is in C(X,V)}. Since UF and VF are sub-

bases for the closed sets of (X,U) and {X,V) respectively 

and since VF ~ UF, it follows that V is at least as strong 

as U. This is a contradiction.// 

THEOREM 7. If (X,U) is an M1 space and {X,V) is any 

T2 space such that C (X, U) c. c (X, V) then U. ~ V. 

PROOF. Since V is T2 and C(X,U) c C(X,V), H(f) is 

closed in V for each f in C(X,U). Thus the set of closed 

sets in V contains a subbase for the closed sets of U and 

thus U $ V.// 

The same proof holds if the condition {X,V) is T2 is 

replaced by the weaker condition H(f) is closed in V for 

each f in C(X,U). An example will be given on page 64 

showing that H(f) being closed for each continuous self­

map is a weaker condition then the property of being T2 • 

B. THE SPACE OF REAL NUMBERS WITH THE USUAL TOPOLOGY 

(R,U) shall denote the space of real numbers with the 

usual topology. It will be established in this section 

that there does not exist a topology V weaker than U such 

that C(R,V) ::>C{R,U). Although it is not known if there 

exists a topology V stronger than U such that C(R,V) ~ 

C{R,U), results will be given which will make it unnecessary 

to examine certain topologies in search for such a V. 

THEOREM 8. There does not exist a topology v such that 

t 0 . <V. <U while C(R,V) contains C(R,U). 
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PROOF. Assume there exists a topology V such that 

t 0 < V < U and C (R,V) contains C (R,U). 

CASE 1. Assume there exists a set in V of the form 

{ x : x > a} for some real number "a" . (A similar argument 

can be made if there exists a set in V of the form { x 

x < b}). Note fc(x) = x - c + a is in C (R,V) for each c 

in R. Hence f~;l ( { x x > a}) = { x : x > c} is in V for 

each real number c. Likewise gc(x) = - x + c + a is in 

C(R,V) for each c in Rand hence g-1({ x: x >a})= { x 

x. <c} is in V. Thus a subbase for U is contained in V. 

This implies V is at least as strong as U which contradicts 

the hypothesis of this theorem. 

CASE 2. Assume there exists an interval (a,b) in V. Again 

requiring C(R,V) ~ C(R,U) is sufficient to imply that 

f(x) = (x~b 
+ a+b 

2 

for all x < 0 

is in C(R,V). 

for all x > 0 

Therefore f-l((a,b)) = {x: x < b-a} is in V. Using the 
2 

fact that { x : x < b-a } is in V and the results of case 1 
2 

is sufficient to imply again that V must be at least as 

strong as u. 
CASE 3. Let 0 be an arbitrary set in V such that 0 ~ ~ and 

0 ~ R. Since V is assumed to be weaker than U, 0 is also 

in u. A well-known theorem which states every 0 in U can 

be written as a countable union of disjoint open intervals 
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will now be used. This theorem can be found in Royden (17]. 

The possibilities which have not already been treated in 

cases 1 and 2 will now be considered. 

i) Let 0 = (- oo 1 a) U ( b 1 oo) • 

for all X s. a+b 
The function f(x) = {:+b 2 is in C(X,V). 

a+b 
2 for all X > -2-

Therefore f-l(o) = (- 00 
I a) is in v and hence by case 1, 

V must be at least as strong as u. 

K 
ii) Let 0 = U (ai 1 bi) where K is either finite or oo , 

i=l 
and the intervals are pairwise disjoint. Zero, one or 

two of these intervals might be unbounded. For some 

j,(aj,bj) is an interval with finite bounds otherwise case 1 

or subcase i) of case 3 applies. 

{

aj for all x s..aj 

The function f(x) = x for all x in (a.,b.) is in C(X,V). 
J J 

bj for all x ~ bj 

Since neither aj nor bj is in o, f-l(o) is (ajlbj). This 

implies (aj 1 bj) is in V and then by case 2 1 Vis at least 

as strong as U. 

In each case we get a contradiction and thus the theo-

rem is proven.// 

THEOREM 9. If C(R,V) ~ C(R,U) and for some 0 in V, 0 

has a largest element (or smallest element) then V is the 

discrete topology. 

PROOF. Let "a" be the largest element of 0. Define 
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f(x) = - x + 2a. Then f is in C(R,V) and f- 1 (0) has "a" 

as the smallest element. Therefore f-1 (0) n 0 = { a} is 

in V. For each c in R define hc(x) = x + a - c. Then he 

is in C(R,V) and hence h(;l< {a}) = { c} is in V for each 

real number c. Therefore every singleton is in V and hence 

V is the discrete topology.// 

It follows immediately that if C(R,V) ~ C(R,U) and 

there is a set 0 in V which is finite or is a closed or 

half closed interval with respect to U then V is the dis­

crete topology. 

In the above theorem it was not necessary to know that 

V was comparable to U in order to arrive at the conclusion. 

However this is not true in the f:Jllowing theorem. 

THEOREM 10. If C(R,V) ~ C(R,U), V > U, and for some 0 

in V there exists real numbers a and b such that (a,b) () 0 

is a singleton, then V is the discrete topology. 

PROOF. Assume (a,b) n 0 = { d}. Then { d} is in V 

and by theorem 9,V is the discrete topology.// 

In the next two theorems it will again not be necessary 

to require in advance that V is stronger than u. 

THEOREM 11. If C(R,V)~ C(R,U) and if some 0 in Vis 

the set of all rational numbers then V is the discrete 

topology. 

PROOF. Clearly f(x) = eX is in C(R,V). It will now 

be shown that f-l(o)n 0 = {zero}. That is, it will be 

shown that the only rational number mapped into a rational 
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number by f(x) is zero. Assume ex = r where x is in 0 
s 

and x is different from zero. Note r and s are both posi-

tive since ex is a positive function. Assume x = p/q is a 

nonzero rational number where p is positive. Now eP/q = r 
s 

implies eP = (r)q = m where m is rq or sq depending on 
s n 

whether q is positive or negative. n is defined similarly. 

Now eP = ~ implies neP - m = 0 which implies e is a solu-
n 

tion to the polynomial equation nxP - m ~ 0. This implies 

e is an algebraic number which contradicts the fact that e 

is a transcendental number. Therefore {zero} is in V and 

by theorem 9, V must be the discrete topology.// 

This theorem can be generalized as follows. 

THEOREM 12. If C(R,V) ~ C(R,U) and if some 0 in V is 

a subset of rational numbers then V is the discrete topology. 

PROOF. If 0 is a singleton then by theorem 9, V is 

the discrete topology. On the other hand if there exist 

distinct rationals "a" and "b" in 0 then f(x) = a - 1 + ex-b 

is in C(R,V). Note f(b) = a and it follows from the proof 

of theorem 11 that b is the only element of 0 which maps 

into o. Thus f- 1 (o)n 0 = {b} and again it follows from 

theorem 9 that V must be the discrete topology.// 

C. CHARACTERIZING SPACES (X,t) BY C(X,t) 

In this section certain semigroups of continuous self-

maps C(X) will be given and all topologies twill be found 

so that C(X) = C(X,t). 
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First of all if C(X,t) consists of all functions from 

X to X then t could be t 0 or D. In fact it was shown on 

page 6 that these are the only topologies with this property. 

On the other hand, if C(X) consists only of the con­

stant selfmaps and the identity function then there may or 

may not be topologies t such that C(X,t) = C(X). In fact 

the answer is dependent on the set X. For example there is 

no topology which can be put on three points such that the 

only continuous selfmaps are the constant functions and 

the identity. However de-Groot [18] gives 2c nonhomeomor­

phic subspaces of the Euclidean plane with this property. 

In the next four theorems spaces will be characterized 

by their continuous selfmaps, but first some definitions 

will he given. 

DEFINITION 5. A function f is defined to be ~ to one 

if f-1( { x}) is a set with cardinality ~ or less for every 

x in X. 

DEFINITION 6. A space (X,t) is said to have the ~ -

complement topology if and only if t = { 0 : 0 = ~ or X - 0 

has cardinality ~ or less}. 

The following is an extension of a result by Hicks and 

Haddock [9]. Their proof carries through but will be given 

here for completeness. 

THEOREM 13. Let X be an arbitrary set. 

i) C(X,t) = { f : f is a constant or finite to one function} 

if and only if t is the finite complement topology. 



ii) C (X, t) = { f : f is a constant or countable to one 

function} if and only if t is the countable complement 

topology. 
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iii) C ex,t) = { f : f is a constant or J.l to one function} 

if and only if t is the J.l complement topology. 

sumed to be a transfinite cardinal number). 

eJ.l is as-

PROOF of iii). We will assume the cardinality of X 

is greater than J..l• If not twill become the discrete to­

pology and the result will follow immediately. Assume t 

is the J..l-complement topology. If f is a constant function 

then f is in cex,t). Assume f is a nonconstant J.l to one 

function and let o be in t. Note f-lex>= f-leou(x- O)) = 

f-leo> U f-lex - O) = x. Since f is J.l to one and since 

X - 0 has cardinality less than or equal to J.l it follows 

that f-leo> = x- f-lex - 0) is open, for it is the comple­

ment of f- 1 ex - O) and f-lex - O) has cardinality less than 

or equal to J..l· Therefore f is in cex,t). 

Assume f is not a constant function but that there 

exists a point 11 a 11 in X such that f- 1 ( {a}) has cardinality 

greater than J.l. Let 0 = X - { a} then f-1 (0) = f- 1 (X - { a})= 

X - f-1( {a}) fails to be open. Therefore f is not contin­

uous. Thus C (X, t) = { f : f is a constant function or f is 

J.l to one}. To show tis the only topology on X with contin­

uous functions C(X,t), assume there exists another topol-

ogy s such that C(X,t) = cex,s). Let U be a nonempty 

set in s and assume X - U ~ +· 
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\: for X ~ p 
Choose q in U and p in X - u. Define h(x) = 

for X - p 

Then h is in c (X It) = C(X,s) and hence h-l(u) = u u { p} 

is in s. Since p was an arbitrary element of X - U note 

the following property. If U is in s then each superset of 

U is in s. This follows since by arbitrary unions u U { x : 

x is in A where A c X - U} is in s. 

Suppose now that U is in s and X - U has cardinal num-

ber greater than ~. Let q be in X - u and define f(x) by r for X in u 
f(x) = Note f is neither constant 

q for X in X - u 

nor ~ to one. However it will be shown that if such a set 

U is allowed to be in s then f will be continuous. To see 

this let V be ins. If q is not in V then f-l(V) = vn U 

which is open. If q is in V then f-l(v) = V U (X-U). 

This set is open since V is in s and it was shown above 

that supersets of open sets are open. Thus it can be con-

eluded that if C(X,s) = C(X,t) and U is in s then X - U has 

cardinal number less than or equal to ~· To verify the 

converse of this statement let U c X be such that X - U has 

cardinality less than or equal to ~· Let V be in s such 

that V ~~and V ~X. If Vc U then U is a superset of V 

and hence u is ins. If v¢ u then V- u is nonempty. Let 

p be in V - U and let q be in X - V. A function g will now 

be defined which is ~ to one and hence g will be in 

C(X,t) = C(X,s). 
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X for X in un v 

X for X in X - (U U V) 
Let g(x) = 

p for X in u - v 

q for X in v - u 

Note U - V C. X - V and hence U - V has cardinality less 

than or equal to JJ. Since g is continuous g-1 (V) = (U n V) 

U (U - V) = U is in s. Therefore U is in s if and only 

if X- U has cardinality less than or equal to J.!. Hence 

s = t and the theorem is established.// 

Another topology which can be put on an arbitrary set 

X will now be considered. This particular topology is 

always possible since an arbitrary set can be well-ordered. 

DEFINITION 7. Let X be a well-ordered set with 

smallest element s and linear ordering < • Then tw and 

ctw will be defined as follows. tw = { ~' {s},X} U 

{ { x : s ~ x < r} : r is in X} and ctw = { 0 : X - 0 is in 

tw}. 

LEMMA l. (X,tw) and (X,ctw) are topological spaces 

and C(X,tw) = C(X,ctw). 

PROOF. In order to prove this lemma, it is sufficient 

to show that (X,tw) is a saturated space and then apply 

theorem 2. To this end note that ~ and X are in tw by 

definition. Also note that 

else, U { x : s . ~ x . < r a} 
ae:A 

U {X : S 

ae:A 
= { X : S 

s.x < ra} = X or 

< r} where r is 

the first element of X - U {X : S .s_x. To see 
ae:A 

that tw is saturated observe that n { X : S 

ae:A 
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{X . s 5_X < r} where r is the first element of X - n . 
ae:A 

{ X . s ~X <ra}.// . 
DEFINITION 8. The topology tw as given in definition 

and lemma 1 will be called the tower topology. 

LEMMA 2. f is in C(X,tw) if and only if f is a nonde-

creasing function. 

PROOF. Assume f is nondecreasing. Let Or = { x : 

s 5 x < r}. Since by definition f-1 (Or) = { x : f (x) < r} 

and since f is assumed to be nondecreasing either f-l(or) 

is ~ or X or else there exists a first element x* not in 

In the latter case f-1 (0 ) = { x : s s. x < x*} r 

In any case f-l(or> is in tw and thus f is in C(X,tw). 

On the other hand assume f is in C(X,tw) and f is not 

nondecreasing. Then there exist elements y and z such that 

y > z but f (z) > f (y). Let 0 = { x : s. s. x < f (z)}. Since 

f is assumed to be continuous f-l(o) must be in tw. Notice 

that y is in f- 1 (0) while z is not in f- 1 (0). Therefore 

f-l(o) can not be open since by the definition of tw there 

is no open set which contains some element but fails to 

contain a smaller element. (Recall z < y) • This is a con-

tradiction and hence if f is in C(X,tw) then f must be a 

nondecreasing function.// 

LEMMA 3. If V > tw and C(X,V) ~ C(X,tw) then Vis 

the discrete topology. 

PROOF. Let 0 be an open set from V - tw. 

CASE 1. Assume s is in 0. Let x be the first element not 

7 
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in 0 and let y be an element of 0 such that y > x. There 

is such an element y for otherwise 0 = { z . s s..z < x} . 
for all z <X 

which would imply 0 is in tw. Let f (z) = t: for all z ~X 

From lemma 2, f is continuous and thus f-l(o) = { z : z ~ x} 

is in v. Let x* be the first element of { z : z > x}. 

Since { z : s s. z < x*} is in tw and since tw < V it follows 

that { z : s s. z < x*} (\ { z : z ~ x} = { x} is in V. 

l s for z < r 

Let fr(z) = x for z = r Again by lemma 2,f is con­
r 

x* for z > r 

tinuous. Thus f;l ( { x}) = { r} is in V. Since r was arbi­

trary this implies each singleton is open in V and thus V 

is the discrete topology. 

CASE 2. Assumes is not in o. Let.x be the first element 

{ 
s for z, < x 

of 0. Define g(z) = 
x for z ~ x 

From lemma 2, g is 

continuous and therefore g-l (0) = { z : z ~ x} is in V. 

Let x* be the first element of { z z > x}. As in case 1, 

{ z : S S. z < x*} (l { Z : Z ~ X} = { X} is in V. Using the 

continuous function fr as defined in case 1, yields 

f-l( { x}) = { r} is in v. Again the fact that r is arbi­
r 

trary is sufficient to imply that V is the discrete 

topology.// 

LEMMA 4. If V > ctw and C(X,V) :J C(X,ctw) then V is 

the discrete topology. 
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PROOF. Let 0 be a set in V - ctw. 

CASE 1. Assume s is not in 0. Let x be the first element 

of 0 and let y be some element such that y is not in 0 but 

such that y > x. This is possible otherwise 0 would be 

{ z : z ~ x} which would imply 0 is in ctw. 

Define f (z) = 
r By lemma 2, fr is continu-

ous. Therefore f~ 1 (o) = { r} is in v. The fact that r is 

arbitrary implies V is the discrete topology. 

CASE 2. Assume s is in 0. Let x be the first element not 

{: for z :sr 
in o. Define gr (z) = gr is continuous 

for z > r 

and hence g~l(o) = { z z 5..,r} is in v. Therefore 

{ z . z ~ r} () { z z ~ r} = { r} is in v. Again since . 
is arbitrary V must be the discrete topology.// 

THEOREM 14. Let X be a well-ordered set with linear 

ordering < and smallest element s. C (X, V) consists pre­

cisely of the set of all nondecreasing functions if and 

only if V is either tw or ctw. 

PROOF. It follows immediately from lemmas 1 and 2 

that if V is either tw or ctw then C(X,V) consists of the 

set of all nondecreasing functions. 

The proof that if C(X,V) consists of precisely the 

nondecreasing functions then V is either tw or ctw will 

be treated in two cases. Although the theorem is true if 

r 
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X is a singleton, it will be assumed here that X has at 

least two elements. Then V is clearly neither the dis-

crete nor the trivial topology. 

CASE 1. Assume there is a set 0 in v such that 0 ~ ~ and 

0 ~ X and s is in 0. Let x be an element of X - 0. 

for z = s 
Define f(z) = Then f is continuous and 

for z > s 

f-l (0) = { s} belongs to V. For n > s define 

{ 
s for z < n 

x for z ~ n 

-1 
fn is continuous and fn ( { s}} = 

{ z : s $. z < n} belongs to V. Since n is arbitrary it 

follows that V ~ tw. But because of lemmas 2 and 3 it must 

be concluded that V = tw. 

CASE 2. Assume for every 0* in V such that O* ~ X that s 

does not belong to 0*. Let o be one such set and let n be 

the first element of o. Let m be an arbitrary element of 

X which follows s. Define fm(z) = { 
s for z. < m 

n for z ~ m 
Then 

f-1 (0) = { z : z ~ m} belongs to V. Since m is arbitrary m 
it follows that V ~ ctw. However because of lenunas 1, 2 

and 4 it must be concluded that V = ctw.// 

Another topology which can be put on an arbitrary 

set X is given in the following definition. 

DEFINITION 9. Let X be an arbitrary set with arbi­

trary subset A. Let s =' { 0 : 0 c. X and 0 ::>A} V { +}. 

(X,s) is called the "superset of A" topology. 
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It is clear that (X,s) is a saturated space and hence 

(X, sc) is a topological space where sc = { 0 : X - 0 is in s}. 

LEMMA 5. If s is the "superset of A" topology on X 

then C(X,s) = C(X,sc) = { f : f is a constant function or 

f(A)C.A}. 

PROOF. From theorem 2 it follows that C(X,s) = C(X,sc). 

If f is a constant function then f is clearly contin-

uous. Assume f (A) c A and let 0 be a nonempty open set 

then 0 :::> A. Therefore f-l (0) :::::J f-l (A) ~A. Hence f-1 (0) 

is open and thus f is in C(X,s). 

On the other hand if f(A) is not a subset of A for 

some nonconstant function f then there exists some x in A 

such that f(x) is not in A and there exists some y in X 

such that y is an image point of f but y does not equal 

f (x). Let 0 1 = A U { y} and note that f-l (0 1 ) is nonernpty 

but does not contain A. Therefore f- 1 (01) is not open and 

hence f can not be continuous.// 

Although some of the lemmas which follow are true for 

the "superset of A" topology not all of the lemmas hold. 

Thus in the next three lemmas and in theorem 15 it will be 

assumed that s is the superset of the singleton set { a}. 

sc is defined similarly. 

LEMMA 6. Let s be the "superset of { a}" topology on 

x. There does not exist a topology V such that t 0 . < V < s 

and such that C (X, V) :::::> C (X, s) • (This lemma could be ob-

tained in the more general setting of lemma 5). 



PROOF. Assume there does exist a topology V which 

satisfies the conditions of this lemma. Let 0 be a non-
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empty open set of V (\ s such that 0 ~ X, let c be an element 

of X - 0 and let B be an arbitrary subset of X such that a 

[ a for x in B is in B. Define fB(x) = From 
c for x not in B 

lemma 5 it follows that fB is continuous. Therefore 

fB1 (0) = B belongs to v. Since B was an arbitrary subset 

of X which contains { a} it follows that V :::. s which con-

tradicts the assumption that V < s .1 I 

LEMMA 7. Let s be the "superset of { a}" topology on 

X and let sc be defined as usual. There does not exist a 

topology V such that t 0 <V < s with C (X, V) -::> C (X, s ) • 
c c 

PROOF. Assume there does exist a topology V satis­

fying the conditions of this lemma. Then there exists a 

nonempty 0 in V such that a is in X - 0. Let x be some 

element of 0 and let t be an arbitrary element of X such 

( x for z = t that t ~ a. Define ft(z) = • 
a for z ~ t 

It follows 

from lemma 5 that ft is continuous. -1 Therefore ft (O) = { t}. 

Since t is an arbitrary element different from a, every 

singleton different from {a} is open and hence V ~sc. This 

contradicts the assumption that V < sc .1 I 

LEMMA 8. Let s be the "superset of { a}" topology on 

x. There does not exist a topology V such that s < V < D 

and such that C(X,V) ~C(X,s). 

PROOF. Assume there exists a topology V satisfying the 

conditions of the lemma. Let 0 be a set in V - s. Then 
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notice that a is not in 0. Let x be an element of 0 and 

define f (z) f: for z = X Then f is continuous = and 
for z I X 

f- 1 (0) = {x} is in v. Let t be an arbitrary element of X 

such that t I a and define ft (z) = [: for z = t Since 
for z I t 
ftl({x}) = {t} is = a, f is continuous. 

t 
Therefore 

in V. Since {a} is known to be in V, V contains each sin-

gleton set and thus V = D. This contradicts the assumption 

that V < D.// 

This lenuna is not true if s is the "superset of A" 

topology. To see this let X= {1,2,3} and A= {1,2}. Then 

s = {~, {1,2}, {1,2,3}} and sc = {~, {3}, {1,2,3}}. Note 

from the results of theorem 3 that V = s Usc= {~, {1,2}, 

{3}, {1,2,3}} satisfies the conditions that V > s and 

C(X,V) =:JC(X,s). 

THEOREM 15. Let X be an arbitrary set with arbitrary 

element "a". Then C(X,t) = {f : f is a constant function 

or f(a) = a} if and only if t is either s or sc where s is 

the "superset of {a}" topology. 

PROOF. It follows immediately from lemma 5 that if t 

is s or sc then C(X,t) ~ {f : f is a constant function or 

f(a) =a}. 

To show that there are exactly two topologies whose 

class of continuous selfmaps is C(X,t) assume V is a topol-

ogy such that C(X,V) = C(X,t). Clearly V is neither t 0 

nor D. 

CASE 1. Assume vn s I to. By theorem 3 it follows that 
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C{X,V n s) ~ C(X,s). Now (Vn s) ~ s otherwise lemma 6 is 

contradicted. Therefore V ~ s and hence by lemma 8, v = s. 

CASE 2. Assume V n s = t 0 • Then there exists a nonempty 

set 0 in V such that a is in X- 0. Therefore vn sc ~ t 0 • 

By theorem 3, C(X,V n sc) ::::> C(X,sc). Thus {V n sc) 2=. sc 

otherwise lemma 7 will be contradicted. Hence v ~ sc. 

Actually V = sc. For, if V properly contained sc there 

would be a set 0 in V such that 0 ~ X and such that 0 con-
. 

tains the element "a". This would contradict V(\ s = t 0 .// 

Note that if the element "a" of the superset topology 

is the same as the element "s" of the tower space then the 

tower space is strictly weaker than the "superset of { a}" 

topology while the sets C(X,tw) and C(X,s) are noncomparable 

in the sense that neither is a subset of the other. 

The last problem to be considered in this section is 

that of finding a topology t on the real numbers such that 

c (R,t) = { f : f is a constant function or ·If (x) I -+ .., as 

lxl -+ oo}. 

DEFINITION 10. Let R be the set of real numbers and 

let z = { 4>} U' { 0 : there exist real numbers a and b sat­

isfying 0 :::> ( (- oo,a) U (b, oo)) } . The space (R,Z) is called 

the fuzzy space. 

Note a set F is closed in the fuzzy space if and only 

if F is R or F is bounded. This space is nonsaturated for 

let On = (- ... , -1) V (n, oo) and note that n On is not in Z. 
n=l 
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LEMMA 9. If (R, Z) is the fuzzy space then c (R, z) = { f : 

f is a constant function or lf(x) I ~ ~ as lxl ~ ~}. 

PROOF. Assume f is a function such that lf(x) I ~ ~ as 

lxl ~ ~. Let F be a closed set. Then F is bounded and 

hence there exists a positive real number "a" such that 

F C: (-a,a). Since lf(x) I ~ ~ as lxl ~ ~ there exists a 

positive real number "b" such that lf(x) I > a for all x with 

lxl >b. Therefore f-l(F) c: f-1( {(-a,a)}) c (-b,b), hence 

f- 1 (F) is bounded and thus closed. Thus f is continuous. 

On the other hand, assume f is a nonconstant contin-

uous selfmap and assume lf(x) I does not approach ~ as 

lxl ~ ~. Then for some a > 0 there does not exist b such 

that lf(x) I ~ a for all x satisfying lxl > b. That is, for 

every b there exists some x such that lxl >band lf(x) I <a. 

Let F be the closed set (-a,a). Then f-l(F) is not bounded 

and hence f-l(F) is not closed. Therefore f is not con-

tinuous.// 

LEMMA 10. Let (R,Z) be the fuzzy space. There does 

not exist a topology V such that t 0 < V < Z and such that 

C (R, V) ::::> C (R, Z) • 

PROOF. Assume there is a topology V satisfying the 

conditions of this lemma. Let 0 be a set of V - t 0 and let 

Oz be an arbitrary set in z. Then there exist real numbers 

a 1 ,a2 ,b 1 and b 2 such that 0 ~ ((- ~,a 1 ) u (b 1 ,~ )) and 

Oz ~ ((- m,a 2 ) U (b 2 , m)). Choose p and q such that q is 

in 0 and p is in R - 0 and define f as follows. 



Let f(x) = 

X for all X <a = min 

X for all X > b = max 

q for all X in 0 - { {-z 

p for all x in R - 0 z 
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{al,a2} 

{bl'b2} 

oo, a) U (b, oo)) 

Now f is continuous and f-l(o) =oz. Since oz is arbitrary 

it follows that V = Z. This is a contradiction since it 

was assumed that V < Z ./I 

LEMMA 11. Let (R,Z) be the fuzzy space. There does 

not exist a topology V such that z < v < D while c {R, V) :::::> 

C(R,Z). 

PROOF. Assume there is a topology V which satisfies 

the conditions of the lemma. Let 0 be in V- z. Since o 

is not in Z, for each positive integer n there exists a real 

number bn such that lbnl > n and b 
n 

is in X - o. Let 

be an arbitrary element in 0 and define f as follows. 

"a" 

f(x) = 
{ :nf::rxx=i:" { [-n, -n + 1) U [n- 1, n) l - {a} 

Then f is continuous and f-l (0) = { a} belongs to V. Let 

"c" be an arbitrary real number different from "a" and 

a for x = c 

define gc(x) = a + 1 for x = a Then g is contin-

I xI for x in R - { a, c} 

uous and g~l{ {a}) = { c} is in v. Since "c" is arbitrary 

this implies V = D which is a contradiction.// 

THEOREM 16. Let R be the set of real numbers. Then 

c {R, t) = { f : f is a constant function or If (x) I + .., as 



lxl ~~}if and only if (R,t) is the fuzzy space (R,Z). 

PROOF. It follows from lemma 9 that if t = z, then 

C(R,t) = {f : f is a constant function or lf(x) I ~ ~ as 

lxl ~ ~}. 
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On the other hand assume there exists a topology V 

different from Z such that C(R,V) = C(R,Z). Clearly v is 

neither t 0 nor D. 

CASE 1. Assume vn Z ~ t 0 • Then from theorem 3 it follows 

that C(R,V() Z) ::::>C(R,Z). Therefore (V(\ Z) =·z or else 

lemma 10 is contradicted. However if {V n Z) = Z then 

V > Z and lemma 11 is contradi-cted. 

CASE 2. Assume vn Z = t 0 • Let 0 be a set of V- t 0 • 

Note 0 is in V- Z, thus a repeat of the argument used in 

the proof of lemma 11 will force V = D. This will con­

tradict the fact that vn z = t 0 • In either case a con­

tradiction is reached and hence the desired conclusion 

follows.// 
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IV. HOMEOMORPHISMS FROM A SPACE TO ITSELF 

A. PARTIALLY ORDERED ARRAY OF SPACES 

The class of all homeomorphisms from a space (X,t) 

to itself shall be denoted by H(X,t) or H(X) if the topol­

ogy is not essential to the argument. By assigning dif­

ferent topologies t to an arbitrary set X an array of spaces 

is obtained. The relation {X,t) follows (X,s) if and only 

if H{X,t) ~ H(X,s) is both reflexive and transitive. Hence 

this relation defines a partial order on the array of spaces. 

It will be shown in this chapter that this array has both 

largest elements, that is there exist topologies on X such 

that H(X,t) consists of all 1-1 onto functions, and smallest 

elements, that is there exist topologies on X such that 

H{X,t) consists of only the identity function. Since 

C{X,t0 ) and C(X,D) both consist of all functions it is ob­

vious that (X,t0 ) and (X,D) are largest elements in this 

array. Other largest elements and some smallest elements 

will be found in the work which follows. 

THEOREM 1. If C(X,t)C: C(X,s) then H(X,t)<= H{X,s). 

PROOF. Let f be an element of H{X,t). Then f is 1-1, 

onto and bicontinuous. Therefore f and f-l are elements of 

C(X,t) and hence elements of C(X,s). Thus f is in H(X,s).// 

The following is an obvious corollary. 

COROLLARY. If C(X,t) = C(X,s) then H(X,t) = H(X,s). 

Neither the converse of the theorem nor the converse 
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of the corollary are true. Examples will be given on page 

37 pointing this out. 

THEOREM 2. Let {ta 

ogies on X, then 

aEA} be a collection of topol-

i) n H(X,ta) is a subset of H(X, ~ ta} and 
aEA aEA 

ii} n H(X,t } is a subset of H(X,t} where t is the least 
aEA a 

upper bound of the collection of topologies {ta' aEA}. 

PROOF. i} Let f be an element of n H(X,ta}. Then 
aEA 

f and f-l both belong to n C(X,ta}. Hence by theorem 3 
aEA 

of chapter III, f and f-1 both belong to C(X, 1\ ta). 
aEA 

Thus f belongs to H (X I n ta) • 
aEA 

ii} The proof is similar to the proof of part i} .// 

It follows immediately from this theorem that if t and 

s are topologies on X such that H(X,t} = H(X,s), then 

i) H(X,t) is a subset of H(X,t n s) and ii) H(X,t) is a 

subset of H(X, lub. {t,s}). 

Assume (X,U) is a given space. It was seen in chapter 

III that if V has a subbase of the form Sw or Ss where Sw 

and Ss are defined on page 10 then C(X,V) ~ C(X,U). There­

fore by theorem 1, (X,V) follows (X,U) in the partially 

ordered array of spaces. 

Another class of topologies such that H(X,t)c: H(X,t*) 

where t* s t will be given after the following definition 
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due to Levine [19]. 

DEFINITION 1. Let (X,t) be a given space. The com­

plementary topology t* is defined to be the topology whose 

base is { Intt F: F is closed in (X,t)}. 

THEOREM 3. Let (X,t) be an arbitrary space. Then 

H(X,t)c= H(X,t*) and t* ~ t where t* denotes the comple­

mentary topology for t. 

PROOF. It follows immediately from definition 1 that 

t* ~ t. To show that H(X,t) is a subset of H(X,t*), let h 

be an element of H(X,t) and let 0 be an open set of t*. 

Then 0 = U Intt Fa and hence h(O) = h( U Intt Fa) 
aEA aEA 

= U h(Intt F ) = U Intt h(F ) which is in t*. 
aEA a aEA a 

The last equality holds since it will now be established 

that h(Intt Fa) = Intt h(Fa). 

i) Since h(Intt Fa) c: h(Fa) and since h E H(X,t) it follows 

that h(Intt Fa) is open. Therefore since Intt h(Fa) is the 

largest open subset of h(Fa)' the result h(Intt Fa) ~ 

Intt h(Fa) is obtained. 

ii) On the other hand if x E Intt h(Fa) then there is a set 

0 in t such that x E 0 c. h (Fa> • Thus h-1 (x) E h-1 (0) C. Fa· 

Since h-l(o) is in t it follows that h-1 (x) E Intt Fa and 

thus x E h(Intt Fa). Therefore Intt h(Fa) C: h(Intt Fa). 
-1 . . 

From the above we can conclude that h 1s cont1nuous. 

It follows by a similar argument that h is continuous. 

Since h is clearly 1-1 and onto, h must be an element of 
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H(X,t*} .// 

The following two examples illustrate theorem 3. 

1) Let X be the set of integers and let t be the finite 

complement topology. Then t* is the trivial topology. It 

will be shown in theorem 5 that H(X,t) = H(X,t*). 

2) Let X be the set of integers and let t be the "superset 

of { 1}" topology. Then t* is again the trivial topology 

and H(X,t) is a proper subset of H(X,t*). 

The next example points out that if t* is the comple­

mentary topology of t then it is not necessary for C(X,t) 

to be a subset of C(X,t*} even though it frequently happens. 

3) Let X= {1,2,3,4}, t = {~,{1}, {2}, {1,2}, {1,2,3}, 

{1,2,3,4}} then t* = {~, {1}, {2}, {1,2}, {1,2,3,4}}. 

Define the function f by f(x) = 1 if x belongs to {1,2,3} 

and f(4) = 4. Then f is in C(X,t) - C(X,t*). 

This example also points out that the converse of 

theorem 1 does not hold. By examining the topologies of 

theorem 5 it will be immediate that the converse to the 

corollary of theorem 1 also can not be established. 

Since every set can be well-ordered the following 

theorem yields smallest elements in the partially ordered 

array of spaces. 

THEOREM 4. Let X be an arbitrary set. Then the tower 

topology tw and the topology t 0 = {O : X - 0 is in tw} 

yield spaces (X,tw) and (X,t0 ) such that H(X,tw) = H(X,tc) = 

{the identity function}. 
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PROOF. From theorem l4 of chapter III, C(X,tw) con­

sists of all nondecreasing function. The identity selfmap 

is the only continuous selfmap which can be 1-1 and onto.// 

It is to be understood that these may not be the only 

smallest topologies on X, in fact 12 of the 29 possible 

topologies defined on {a,b,c} have only the identity func­

tion as an autohomeomorphism. 

In the following section all largest elements will be 

found. 

B. COMPLETELY HOMOGENEOUS SPACES 

DEFINITION 2. A space (X,t) is said to be completely 

homogeneous if and only if every 1-1 onto selfmap is a 

homeomorphism. 

The following theorem characterizes all completely 

homogeneous topologies which can be put on a set X if the 

cardinality of X is less than or equal to c. 

THEOREM 5. Let X be a set of cardinality less than or 

equal to c. Assuming the continuum hypothesis then (X,t) 

is completely homogeneous if and only if t is the trivial 

topology, the finite complement topology, the countable 

complement topology or the discrete topology. (Fe and Cc 

will denote the finite complement and countable complement 

topologies respectively). 

PROOF. From theorem 13 of chapter III each of the 

four topologies listed in the theorem are completely 
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homogeneous. 

To show that these are the only completely homogeneous 

topologies assume that V is completely homogeneous and 

V ~ t 0 • The proof is divided into three parts depending on 

the cardinality of X. 

PART 1. Assume X is finite. Let 0 be from V - t 0 • Then 

0 = {a 1 , a 2 , ••• ,an} where n is less than the cardinality 

of x. Since each 1-1 onto function is a homeomorphism it 

follows that each subset of X containing n elements is open. 

Then by taking finite intersections it follows that each 

singleton subset of X is open. Therefore V = D. 

PART 2. Assume X is an infinite countable set and let 0 

be from V - t 0 • 

If 0 is a finite set then using the argument in part 1 

it follows that V = D. 

On the other hand if 0 is countable say 0 = {a 1 , a 2 , ••• } 

then either X- 0 = {b 2 , b3, ••• }is infinite or X- 0 = 
{c 1 , c 2 , ••• en} is finite. If X- 0 is infinite define f 

such that f(a 1 ) = a 1 , f(ai) = bi fori~ 2, f(bi) = ai for 

i ~ 2 and f(x) = x for all other x in X. Then f is in 

H(X,V) and hence f(O) = {a 1 , b 2 , b 3 ••• }is open. Thus 

f(O) fl 0 = {a 1 } is open. Since (X,V) is homogeneous 

every singleton is open. Therefore V = D. If X - 0 is 

finite with n elements then each set with n elements is 

closed. By finite intersections of these closed sets it 

follows that each singleton is closed. Thus V ~Fe since 
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If V = F this part is c 

completed. However if V > Fe then there exists an open set 

Ov such that X - Ov is infinite and countable. By making 

an argument similar to the argument at the beginning of 

this paragraph it will follow that V = D. 

PART 3. Assume X has cardinality c. Let 0 be from V - t 0 • 

CASE 1. If 0 is finite then by the argument in part 1, 

V = D. 

CASE 2. If 0 is countably infinite, say 0 = {a 1 , a 2 , ••• }, 

then let D* = {d 2 , d 3 , ••• } be a countable set disjoint 

from 0. Define f such that f(a 1 ) = a 1 , f(di) = ai for 

i ~ 2, f(a.) =d. fori~ 2 and f(x) = x for all other x in 
~ ~ 

X. Since f is assumed to be a homeomorphism, f(O) = {a 1 } 

U D* is open. Therefore f (0) n 0 = {a 1} is open. By homo-

geneity each singleton is open and thus V = D. 

CASE 3. Assume 0 has cardinality c. 

SUBCASE 1. Assume X- 0 = {d 1 , d 2 , ••• , dn} is finite. As 

was shown in part 2, V ~ Fe. If V = Fe this subcase is 

completed. If V > Fe then there exists 0* in V - Fe such 

that X - O* is infinite·. 

i) If X- 0* is countable then X- 0* = {a 1 , a 2 , ••• }=A 

is closed. It will now be shown that if B = {b 1 , b 2 , ••• } 

then B is closed. In order to show that B is closed let 

{ C 3 I • •• } where C c: X and C (\ (A U B) = ~ • C= c 1 , c 2 , 

There exists a set C of this type since the cardinality of 

X is c. 



41 

Define f by f(a.) =c. fori> 1, f(c.) =a. for~ > 1 
~ ~ - ~ ~ . -

and f(x) = x for all other x in X. Then f is a homeomor-

phism and f(A) = C. Therefore C is closed. Thus define a 

homeomorphism h by h(ci) = bi for i ~ 1, h(bi) = ci for 

i ~ 1 and h(x) = x for all other x in X. Note h(C) = B and 

hence B is closed. 

Since an arbitrary countably infinite set is closed 

and since V > F0 it is necessary that V ~ C0 • If V = C c 

this subcase is completed. If V > C0 then there exists O' 

in V such that X - O' is uncountable. This leads to three 

possibilities.· 

a) If O' is finite then by case 1, V = D. 

b) If O' is countably infinite then by case 2, V = D. 

c) If O' is uncountable then O' = {a} U (O' - {a}) where 

"a" is an element of 0. Note X - O' and O' - {a} each have 

cardinality c. 

Since each of these sets has cardinality c there exist 

1-1 onto functions f 1 and f 2 which map respectively, X - O' 

and O' - {a} onto the set R of real numbers. Define a home-

amorphism h from X to X as follows. Let h(a) = a, let 

h(x) = f;l(f 1 (x)) for x in X- O' and let h(x) = f~ 1 (f 2 (x)) 

for x in O' - {a}. Then h(O') n O' = {a} must be in V. 

Therefore, by homogeneity each singleton is open and thus 

V = D. 

ii) If X - O* has cardinality c then by repeating the 

argument in c) above it follows that V = D. 
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SUBCASE 2. Assume X - 0 is countably infinite. Let x - o = 

{a 1 , a 2 , ••• }=A and let D = {d 2 , d 3 , ••• }be a subset of 

of X disjoint from A. Define a homeomorphism g by g(a 1 ) = 

2, g(d.) =a. fori~ 2 and g(x) 
~ ~ 

= X 

for all other x in X. Then g(A) is closed and hence 

g(A)n A= {a} is closed. By homogeneity it follows that 

V ~ Fe. Actually V > Fcsince X - 0 is a countably infinite 

closed set. This subcase is now completed by repeating 

the proof of case 3 starting at i) of subcase 1. 

SUBCASE 3. Assume X - 0 has cardinality c. By an argument 

similar to that given in part c) of subcase 1 it follows 

that V = D. 

All possibilities have now been considered and thus 

the theorem is established.// 

Although the previous theorem was proposed and proven 

by this author the following more general theorem has been 

recently announced. The following theorem by Larson [20] 

was announced without proof in the abstract section of the 

Notices of the American Mathematical Society. 

THEOREM 6. The only completely homogeneous topologies 

on X are the following: (1) the trivial topology, (2) the 

discrete topology and (3) topologies of the form t = {G : 

GC X and card (X- G)~m} where tb ~ m <card X. 

C. 1-1, ONTO, CONTINUOUS SELFMAPS 

In most of the examples considered so far every 1-1, 
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onto, continuous selfmap actually turns out to be a homeo­

morphism. The following question might be asked. When 

are all 1-1, onto, continuous selfmaps homeomorphisms? 

The following example shows that 1-1, onto, continu­

ous selfmaps need not be homeomorphisms. Let X be the set 

of nonnegative real numbers and lett={~, X, [0,1], [0,2], 

[0,3], ••• }then f(x) =~is a 1-1, onto function in C(X,t) 
2 

which is not a homeomorphism. Let t 1 ={~,X, [0,2], [0,4], 

[0,6], ••• }and note that t 1 < t while the spaces (X,t) 

and (X,t 1 ) are homeomorphic. It also turns out that C(X,t) 

and C(X,t 1 ) are noncomparable in the sense that neither is 

a subset of the other. 

In partial answer to the above question it is known 

that, if X is a compact, T2 space then each continuous, 

1-1, onto map is a homeomorphism. This theorem can be 

found in Kelley [21]. This theorem will now be extended 

and two other results will be given. 

The following definition is due to Levine [22]. 

DEFINITION 3. A space (X,t) is called a CC space if 

and only if closed and compact sets coincide. 

It is well known that every compact, T2 space is a 

CC space and also that many theorems defined on compact, 

T2 spaces can be extended to CC-spaces. The following is 

one such theorem. 

THEOREM 7. If (X,t) is a CC space then every 1-1, 

onto, continuous selfmap is a homeomorphism. 
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PROOF. One way to obtain the desired conclusion is to 

show that if f is a 1-1, onto, continuous selfmap then f is 

a closed function. To this end let F be a closed set in 

(X,t). Then F is compact and thus since f is continuous, 

f(F) is compact. Since f(F) is compact, f(F) is closed. 

Therefore f is a homeomorphism.// 

Let (X,t) be the space where X = {rational numbers} U 

{oo} and t is the one point compactification of the rational 

numbers where the topology on the rational numbers is the 

relative topology from the real numbers. This space is 

shown in Levine [22] to be a CC space which is not a com-

pact, T2 space. 

The following definition is due to Wilansky [23]. 

DEFINITION 4. A space (X,t) is called a US space if 

every convergent sequence has exactly one limit to which 

it converges. 

THEOREM 8. If (X,t) is a first countable, US, se-

quentially compact space then every 1-1, onto, continuous 

selfmap is a homeomorphism. 

PROOF. Let F be a closed subset of X and let f be a 

1-1, onto, continuous selfmap. f will be a homeomorphism 

if it can be shown that f(F) is closed. To this end let 

x E Cl(f(F)). Then there exists a sequence {xn) in f(F) 

such that (xn) converges to x. Since f is 1-1 and onto, 

the sequence (yn)' defined by y 0 = f- 1 <xn)' is a subset of 

F. Since (X,t) is sequentially compact there exists a 



45 

subsequence (y ) of (yn) which converges. Assume (y ) 
nk nk 

converges to y, then y must be an element of F since F is 

closed. 

to f(y). 

Since f is continuous, (xnk) = (f(ynk)) converges 

Recall that f(y) is in f(F). Since (xnk) con-

verges to f(y) and since (xn) converges, it follows that 

Cxn> converges to f(y). Since (xn) converges to both x 

and f(y) it follows by the US property that x = f(y). 

Therefore x is in f(F) and hence f(F) is closed. Thus f 

is a homeomorphism.// 

The space whose elements consist of all ordinal num-

bers less than the first uncountable ordinal number and 

whose topology is the order topology is considered on 

page 163 of Kelley [21]. It is claimed that this space is 

first countable, T2 and sequentially compact, but not 

compact. Thus this example satisfies the hypothesis of 

theorem 8, but fails to satisfy the hypothesis of theorem 7. 

The following theorem concludes this chapter. 

THEOREM 9. If f is a 1-1, onto, continuous function 

from (X,t) to (Y,V) where (X,t) is homeomorphic to (Y,V) 

and if v has a finite number of open sets V1 , V2 , ••• , Vn 

then f is a homeomorphism. 

PROOF. Clearly t has n open sets, say 0 1 , 0 2 , ••• ,On, 

labeled such that £-levi) = oi fori= 1, 2, •.• , n. Since 

f is 1-1, £-1 (Vi) ~ £-1 (Vj) fori~ j. Note f(Oi) = 

f(f- 1 (vi)) =vi. Therefore f is an open mapping and hence 

a homeomorphism.// 



COROLLARY. If f is a 1-1, onto, continuous se1fmap 

of (X,t) where t has a finite number of open sets then f 

is a homeomorphism. 
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V. a-SEMIGROUPS OF CONTINUOUS SELFMAPS 

A. SOME KNOWN RESULTS 

It is the authors intent in this chapter to extend 

some of the results by Magill [5,7,8] and Hicks and 

Haddock [9]. 

Results from the paper by Hicks and Haddock will be 

used in obtaining these extensions. Several of these re-

sults will now be listed without proof. 

DEFINITION 1. Let (X,t) be an arbitrary space. A 

semigroup of continuous selfmaps which contains the set of 

constant selfmaps is called an a-semigroup and is denoted 

by a(X). 

A constant selfmap whose only image point is 11 a 11 will 

be denoted by a, that is a(x) = a for all X in X. 

LEMMA 1. Let f be in a(X). Then f o g = f for all g 

in a(X) if and only if f = x for some x in X. 

In the discussion to follow Z(X) is used to denote 

the set of all constant selfmaps. 

Suppose ~ is an isomorphism from a(X) onto a(Y) and 

assume~* is~ restricted to Z(X). Consider the following 

diagram. 4J 
a(Y) a( X) 

u 
~· 

u 
DIAGRAM 1. Z (X) Z(Y) 

1 x* h t y* 
X y 

x* and y* are defined in the following manner. 
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x*(a) =a for each a in X and y*(b) = b for each bin Y. 

The mapping h is defined by h = y*-l o ~ o x* and it follows 

that h(x) = y if and only if ~(x) = y. 

LEMMA 2. ~*maps Z(X) onto Z(Y). Consequently, h maps 

X 1-1 and onto Y. 

THEOREM 1. Suppose ~(X) and ~(Y) are semigroups of 

selfmaps such that a(X) C ~(X) and a(Y) ~ ~(Y). ~can be 

extended to an isomorphism~ from ~(X) onto ~(Y) if and 

only if 

{1) h of o h-lE S(Y) for every f E S(X), and 

(2) h- 1o go h E S{X) for every g E S(Y). 

Furthermore if ~ can be extended then ~ is unique and 
-1 

~(f)= h of o h for every f E S(X). 

B. S**-SPACES 

In [7], Magill gives the following definition. 

DEFINITION 2. X is said to be an S*-space if it is T1 

and for each closed subset F of X and each point p in X - F 

there exists f in C(X) andy in X such that f(x) = y for 

each x in F and f(p) ~ y. 

Magill then shows that every a-dimensional Hausdorff 

space is an S*-space. He also shows that every completely 

regular Hausdorff space containing at least two distinct 

points which are connected by an arc is an S*-space. 

Magill's main theorem is the following. 

THEOREM 2. Assume X and Y are S*-spaces. ~ is an 
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isomorphism from C(X) onto C(Y) if and only if there exists 

a homeomorphism h from X onto Y such that ~(f) = h 0 f 0 h-1 

for all fin C(X). 

The following theorem gives a characterization of 

S*-spaces. 

THEOREM 3. A space X is an S*-space if and only if 

the family of sets {f-1 (x) : f E C(X), x EX} is a basis 

for the closed sets of X. 

PROOF. If X is an S*-space, it is T1 and therefore 

any set of the form f- 1 (x) where f E C(X) is closed. Let 

F be a proper closed subset of X and p E X - F. Since X 

is an S*-space there exists fp in C(X) and Yp in X such 

that fp(x) = Yp for all x in F and such that fp(p) ~ Yp· 

Since F = n {f~1 (yp) p E X - F} the family of sets is 

a basis for the closed sets of X. 

If the family of sets given in this theorem is as­

sumed to be a basis for the closed sets of X then since 

the identity map i is in C(X), i-1 (x) = {x} is closed and 

hence X is T1 • Let F be a proper closed subset of X and 
-1 

let p be in X - F. Theri F = n {fa (xa) : "a" is in an 

index set A, xa is in X and fa is in C(X)}. Since p 4 F 

there exists a E A such that f~1 (xa) :::> F but f;l (xa) does 

not contain p. That is fa(x) = xa for all X in F while 

fa(P) ~ xa. Therefore X is an S*-space.// 

The above theorem motivates the following definition. 

DEFINITION 3. X is called an S**-space if and only if 
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there exists an a-semigroup a 1 (X) of continuous selfmaps 

such that the collection of sets {f-l(x) : x £X, f £ a 1 (x) 

forms a subbasis for the closed sets of X. The semigroup 

ai(X) is said to generate a subbasis for the closed sets 

of x. 
Note i need not belong to a 1 (X) and thus X need not be 

a T1-space. The following is an example of an S**-space 

which is not T1 . Let X= {a,b,c} and lett= {~, {a}, 

{b,c}, X} and choose a 1 (X) = {a, b, c, f} where f is de­

fined by f(a) = a, f(b) = c and f(c) = c. 

LEMMA 3. Let X and Y be arbitrary topological spaces. 

If ~ is an isomorphism between arbitrary a-semigroups a(X) 

and a(Y), then there exists a bijection h from X onto Y 

such that 

i) ~(f)= h of o h-l for each fin a(X), 

ii) h(f-1 (x)) = (~(f))-1 (h(x)) for all fin a(X) and x in 

X, and 

iii) h-l(g-l(y)) = (~- 1 (g))- 1 (h- 1 (y)) for all gin a(Y) 

andy in Y. 

PROOF. Define h by h(x) = y if and only if ~(x) = Y· 

Since ~ is an isomorphism, h is a bijection from X onto Y 

by lemma 2. Note ~(x) = h(x). To establish i), let f be 

an element of a(X) and let y be an element of Y. 

Then (h o f o h-1 > (y) = h (f (h-l (y))) (y) = (~ (f (h-l (y)))) (y) 
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(4> (f) 0 y) (y) = (4> (f)) (y). 

Therefore 4>(f) = h of o h-l for each fin a(X). 

To establish ii) note that each of the following statements 

are equivalent. 

Y e: h(f- 1 (x)) 

y = h(z) and f(z) = x 

y = h(z) and f o z = x 

y = h(z) and 4>(f)o 4>(z) = 4>(x) 

y = h(z) and 4>(f)o h(z) = h(x) 

y = h ( z) and ( 4> (f) ) ( h ( z) ) = h ( x) 

y e: (4>(f))-1 (h{x)). 

iii) is established by a similar argument.// 

THEOREM 4. Let X and Y be S**-spaces generated by 

a 1 {X) and a 1 (Y) respectively. Then a bijection 4> from 

a 1 (X) onto a 1 (Y) is an isomorphism if and only if there 

exists a homeomorphism h from X to Y such that 

4>{f) = h of o h-1 for all fin a 1 {X). 

PROOF. Assume 4> is an isomorphism from a 1 (x) onto 

a 1 (Y). By i) of lemma 3 there exists a bijection h from X 

onto Y such that 4>{f) = h of o h-l for all fin a 1 (X). 

To show that h is bicontinuous let g-1 (y) be a subbase 

element for the closed sets of Y. From iii) of lemma 3 

h-l(g-l(y)) = (4>-l(g))-l(h-l(y)). Note there exists x e: X 

and f e: a 1 {X) such that h- 1 {y) = x and 4>- 1 (g) =f. Hence 

h-l(g-l(y)) = f-l{x). Since f-l(x) is a subbase element 

for the closed sets of X, it follows that h is continuous. 



Likewise h-l is seen to be continuous by using ii) of 

lemma 3. 
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On the other hand if ~ is a bijection from ai(X) onto 

ai(Y) and if there exists a homeomorphism h from X toy 

such that ~(f) = h of o h-1 for all fin ai(X) then 

~(f 0 g) = h 0 f 0 g 0 h-1 = (h 0 f 0 h-1) 0 (h 0 g 0 h-1) 

= ~(f) o ~(g) and hence ~ is an isomorphism.// 

COROLLARY 1. Let X and Y be S**-spaces. X is homeo­

morphic toY if and only if there exist isomorphic ai(X) 

and ai(Y) which generate subbases for the closed sets of X 

and Y respectively. 

PROOF. If there exist isomorphic ai(X) and ai(Y) 

which generate subbases for the closed sets of X and Y re-

spectively then from theorem 4, X and Y are homeomorphic. 

On the other hand if h is a homeomorphism from X to 

Y then ~ defined by ~(f) = h o f o h-l is an isomorphism 

from C(X) onto C(Y). Since X is an S**-space there exists 

an a-semigroup ai(X) which generates the closed sets of X. 

Define ai(Y) = ~(ai(X)). It is claimed that ai(Y) is an 

a-semigroup of continuous selfmaps which generates a sub­

basis for the closed sets of Y. From the way ~was defined, 

it is immediate that ai(Y) is an a-semigroup isomorphic to 

ai(X). To see that ai(Y) generates the closed sets of Y, 

let F be a closed set in Y. Then h-1 (F) is closed in X and 

hence can be written in the form 

ka 
( U f;1 (xa )) where each fa is in ai(X) and 
n=l n n n 



53 

each x is in X. Taking h of each side and using the fact an 
that h is 1-1 yields 

F = () 
aEA 

The last equality follows by ii) of lemma 3, since all that 

was required in lemma 3 was the fact that ~(x) = y if and 

only if h(x) = y. Since ~ is an isomorphism and h is a 

homeomorphism there exist ga in ai(Y) and Ya in Y such n n 

that ~(fan> = gan and h(xan> = Yan· 

ka 
Therefore F = n ( U g;l (Yan}). It should be noted that 

aEA n=l n 

g;l (ya ) is closed since it is the homeomorphic image of 
n n 

the closed set f;l (xa ) • Thus ai(Y) generates the closed 
n n 

sets of Y.// 

COROLLARY 2. Let X and Y be S**-spaces which are also 

T1 • Then X is homeomorphic toY if and only if C(X) is 

isomorphic to C(Y). 

PROOF. Since the spaces are T1 , let ai(X) = C(X) and 

let ai(Y) = C(Y) .// 

This corollary does not hold without the condition T1 . 

For let X = Y and assign the discrete and trivial topol-

ogies respectively. 

COROLLARY 3. If (X,t 1 ) and (X,t 2 ) are S**-spaces 

which are also T1 and if C(X,t 1 ) = C(X,t 2 ) then t 1 = t 2 • 

PROOF. Note ~ = i, therefore i(f) = h o f o h-1 = f 

for all f in C(X,t ) which implies h is the identity 
1 
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homeomorphism.// 

COROLLARY 4. Let X andY be S**-spaces. Then any iso­

morphism from a 1 {X) onto a 1 (Y) has a unique extension to an 

isomorphism from C(X) onto C(Y). 

PROOF. Let~ be an isomorphism from a 1 {X) onto a 1 (Y). 

From theorem 4 there exists a homeomorphism h from x to y 

such that ~(f) = h of o h-l for all fin a 1 (x). Note if 

f is in C(X) then h o f o h-1 is in C(Y) and if g is in 

C{Y) then h-l o go his in C{X). Therefore the corollary 

follows from theorem 1.// 

COROLLARY 5. If X is an S**-space then the automor-

phism group of a 1 (x) is isomorphic to the group, under com­

position, of all autohomeomorphisms of X. 

PROOF. Let A denote the automorphism group of a 1 {X) 

and let G denote the group of all autohomeomorphisms of X. 

From theorem 4 for each ~ in A there exists an autohomeo­

morphism h of X such that ~(f) = h o f o h-l for all f in 

a 1 (X). This autohomeomorphism is unique, for assume 

h 1o f 0 h-1 = h 0 f 0 h-1 for all f in a 1 (X) . This implies 1 

f = -1 
h1 0 h 0 f 0 h-1 0 h 1 for each f in a 1 (X) . Since 

h (x) = y if and only if ~<X'> = y by letting f = X it will 

follow that h 1 (x) = y. To see this let "a" be an arbitrary 

element of x. Then X = x(a) = (h-1 0 h 0 X 0 h-l o h 1 ){a) 
1 

h~ 1 (h(x)) = h-l(y) and thus h 1 (x) = y. Therefore hl = h. 
1 

Define the function B from A to G by B (~) = h where 

~(x) = y if and only if h(x) = y. By direct calculation it 

= 
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follows that B is a homomorphism. B is seen to be onto by 

theo~em 4. To see that B is 1-1, assume B(~) = i the iden­

tity in G. Then ~(f) = i o f o i-l = f for each f in 

ai(X). That is ~must be the identity automorphism. Hence 

since the kernel of B consists of exactly the identity 

element, B must be 1-1.// 

COROLLARY 6. Let X be an S**-space. If ai(X) = C(X) 

then every automorphism on C(X) is an inner automorphism. 

PROOF. Let~ be an automorphism on C(X). From the-

orem 4 there exists a homeomorphism h from X to X such that 

~(f) = h o f o h-l for all f in C(X). Note h and h-l are 

elements of C(X) and therefore ~ is an inner automorphism.// 

In the following r(X) and T(X) denote the closed self-

maps and the connected selfmaps respectively. 

COROLLARY 7. Let X and Y be S**-spaces such that 

ai(X) c: r(X). Then any isomorphism from ai(X) onto ai(Y) 

has a unique extension to an isomorphism from f(X) onto 

r (Y) • (Here ai(X) and ai(Y) generate the closed sets of 

X andY respectively). 

PROOF. From theorem 4, X and Y are homeomorphic with 

homeomorphism h satisfying the equation ~(f) = h o f o h-l 

for all fin ai(X). Since ~(ai(X)) = ai(Y) it follows that 

ai(Y) c: r(Y) and then the result follows from theorem 1.// 

ai(X) will always be a subset of f(X) in a compact, 

T2 space. Although these conditions are not necessary 

since the countable complement topology is neither compact 



nor T2 while every continuous function is a closed func­

tion. 
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A corollary similar to corollary 6 can be obtained by 

replacing f(X) and f(Y) by T(X) and T(Y). Here it is 

always true that ai(X) ~ T(X). 

In the following Is(X) will denote the semigroup under 

composition which is generated by the idempotent continuous 

selfmaps. 

Magill in [8] considers a class D of spaces consisting 

of topological spaces which are Hausdorff and a-dimensional 

together with all spaces which are Hausdorff, normal and 

contain an arc. 

Magill then shows that if X is in D then {f-l(x) : x 

is in X and f is in Is(X)} is a subbasis for the closed 

sets of X. His main theorem is then the following. 

THEOREM 5. Assume X and Y belong to the class D. 

Then a bijection ~ from Is(X) onto Is(Y) is an isomorphism 

if and only if there exists a homeomorphism h from X onto 

Y such that ~(f)= h of o h-1 for each fin Is(X). 

It should be noted here that each space in D is an 

S**-space and hence theorem 5 is actually an immediate cor-

ollary of theorem 4. 

DEFINITION 4. Let C be the collection of all spaces 

x which have the property that there exists an a-semigroup 

of continuous, idempotent selfmaps as(X) such that the col­

lection of sets.{f-1 (x) :xis in X and f is in a (X)} s 



forms a subbasis for the closed sets of X. A set of the 

form as(X) is said to generate the closed sets of X. 
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Again note that each space in C is also an S**-space. 

Because of theorem 4, the sets I (X) and I (Y) of theorem 5 s s 

can be replaced by a (X) and a (Y) respectively where X and s s 

Y are topological spaces in c. 

Clearly each space in D is also in c. The following 

theorem gives additional spaces in C and hence additional 

S**-spaces. 

THEOREM 6. Let (X,t) be a space satisfying the con-

dition, "if 0 is an open set and F is a closed set such 

that 0 n F ~ ~then 0 U F is open", then each closed set 

is of the form {f-l(x) :xis in X and f is in Is(X)}. 

PROOF. Let F be a closed set such that ~ ~ F ~ X and 

let q be an element of F. Define f(x) = r: for x in F 

for x in X - F 

f is idempotent since it is well known that a selfmap is 

idempotent if and only if it is the identity function when 

-1 
restricted to its range. Note f (q) = F. To see that f 

is continuous let 0 be an open set. 

CASE 1. Assume q is in o. Then f- 1 (0) = F U 0 is in t by 

hypothesis. 

CASE 2. Assume q is not in o. Then f- 1 (0) = 0- F which 

is open. 

If F = x then x-l(x) = X, while if F = ~ then 

x-l(y) = ' where x ~ y.// 
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Note the superset topology, the tower space topology, 

the finite complement topology and the countable comple­

ment topology all satisfy the conditions of theorem 6. 

COROLLARY 1. Let (X,t) be a space satisfying the 
-1 

hypothesis of theorem 6. The collection of set {f (x) 

xis in X and f is in Is(X)} is a base for the closed sets 

of (X,t) if and only if (X,t) is a T1-space. 

PROOF. If the collection of sets {f-1 (x) : x is in X 

and f is in Is(X)} is a basis for the closed sets then 

-1 i (x)={x} is closed and hence the space is T1 . On the 

other hand if the space is Tl then each f-1 (x) is closed 

and hence from theorem 6 the collection of sets {f-1 (x) 

xis in X and f is in Is(X)} forms a base for the closed 

sets of (X,t).// 

. . 

COROLLARY 2. Let (X,t) be a T1-space such that su­

persets of all nonempty open sets are again open, then the 

collection of sets {f-1 (x) :xis in X and f is in Is(X)} 

forms a base for the closed sets of X. 

PROOF. Follows immediately from theorem 6 and 

corollary 1.// 

The finite complement topology and the countable com-

plement topology obviously satisfy this corollary. 

Clearly the finite complement space belongs to C 

Also a (X) could be defined as 
s 

a 8 (X) = {f : f is the identity function or f is a constant 

function}. Hence it is possible to find non-isomorphic 
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semigroups of idempotents which generate the closed sets 

of X. 

Let IDs(X} denote the class of continuous idempotent 

selfmaps of X. 

THEOREM 7. Let X andY be arbitrary spaces. Assume 

~ is an isomorphism from C(X} onto C(Y}. Then ~ restricted 

to Is(X} yields an isomorphism from Is(X} to Is(Y). Fur­

thermore ~maps IDs(X} onto IDs(Y) in a 1-1 manner. 

PROOF. Note Is(X) is clearly isomorphic to ~(Is(X)). 

Thus it must be shown that ~(Is(X)) = Is(Y). 

To do this let ~(f) E ~(Is(X)) and note that f E Is(X). 

CASE 1. Assume f E IDs(X). Then ~(f) = ~(f of) = 

~(f} o ~(f} and hence ~(f)E ID (Y} c I (Y). 
s s 

CASE 2. Assume f E Is(X) - IDs(X). Then f = h 1 o h 2 o •.. ohm• 

Note f is written as products of powers of elements of 

IDs (X) • Only first powers are needed since h~ =h .• Hence 
l. l. 

~ ( f) = ~ ( h 1 } o ~ ( h 2 ) • • • o ~ ( hm) = g 1 o g 2 o • • • gm where 

from case 1 it is clear that gi E IDs(Y). Therefore 

~(f) E Is(Y). From cases 1 and 2 we can conclude that 

~(Is (X)) C:. Is (Y) • To establish equality let g E Is {Y) • 

Since ~ is an isomorphism from C{X) to C{Y) there exists 

h E C{X) such that ~(h) = g. 

CASE 3. Assume g E IDs(Y). Then gog= g which implies 

~(h) o ~(h)= ~(h) and hence ~(h)= ~(h o h). Since~ is 

1-1 we get h = h o h. Thus hE IDs(X) and we can conclude 

that g =~(h) E ~(I5 (X)). 
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CASE 4. Assume g E I (Y) - ID (Y). Then g = f of o f 
s s 1 2 • • • 0 n 

where each fi E IDs(X). Again since ~ is 1-1 there exists 

corresponding q 1 , q 2 , ••• , qn such that ~(qi) = fi. From 

case 3 we see that each qi E IDs(X). Therefore, 

g = ~(q) o ~(q) o ••• o ~(qn) = ~(q o ••• o q) where 
1 2. 1 n 

q 1o q 2 o o qn E Is(X) and hence g E ~(Is(X)). From 

cases 3 and 4 we get Is (Y) C ~(Is (X)) • Thus ~(Is (X)) = 

Is(Y) and the isomorphism is established. From cases 1 and 

3 we see that~ maps IDs(X) onto IDs(Y) in a 1-1 manner.// 

COROLLARY 1. Let X and Y be elements of C. Assume 

there exists isomorphic a (X) and a (Y) which generate the 
s . s 

closed sets of X andY respectively, then.Is(X) and Is(Y) 

are isomorphic. 

PROOF. Follows immediately from corollary 4 of theo­

rem 4 along with theorem 7.// 

C. M*-SPACES 

Another class of topological spaces which admit the-

orems similar to those for S**-spaces will be considered in 

this section. 

The following definitions are due to Magill in [5]. 

DEFINITION 5. Let X be a topological space and let x 

be an element of X. An open set G containing x is an 

S-neighborhood of x if it consists of x alone or if there 

exists a continuous function f mapping the closure of G 

into X such that f(x) ~ x, but f(y) = y for each Y in 
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(closure of G) - G. 

DEFINITION 6. A topological space is an S-space if it 

is Hausdorff and every point has a basis of s-neighborhoods. 

Examples of S-spaces as given by Magill are all 

a-dimensional Hausdorff spaces and all locally Euclidean 

spaces. 

Magill's main theorem is the following. 

THEOREM 8. Two S-spaces X andY are homeomorphic if 

and only if C{X) and C(Y) are isomorphic. 

Hicks and Haddock in [9] defined M-spaces as follows. 

DEFINITION 7. X is called an M-space if the collection 

of sets of the form {H(f) : f is in C(X)}.is a basis for 

the closed sets of X. Recall H(f) = {x : f(x) = x}. 

Hicks and Haddock pointed out that all S-spaces are 

M-spaces and that theorem 8 can be extended toM-spaces. 

They also give the following lemma. 

LEMMA 4. Let X andY be arbitrary topological spaces. 

If ~ is an isomorphism between arbitrary a-semigroups a(X) 

and a{Y) then there exists a bijection h from X onto Y 

such that 

i) ~(f) = h 0 f 0 h-l for each f in a(X) 1 

ii) h(H(f)) = H{~(f)) for every f in a (X) 1 and 

iii) h-l(H{g)) = H(~-l(g)) for every g in a(Y). 

DEFINITION 8. A space (X 1 t) is called an M*-space if 

there exists an a-semigroup of continuous selfmaps aF(X) 

such that the collection of sets of the form {H(f) : f is 
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in aF(X)} is a subbase for the closed sets of x. 

The proofs of theorem 9 and its corollaries parallel 

the proofs of theorem 4 and its corollaries and hence will 

not be given. Lemma 4 is used to prove theorem 9 in the 

same manner that lemma 3 was used in proving theorem 4. 

THEOREM 9. Let X andY be M*-spaces generated by 

aF(X) and ap(Y) respectively. Then a bijection ~ from 

aF(X) onto ap(Y) is an isomorphism if and only if there 

exists a homeomorphism h from X toY such that ~(f) = 

h of o h-l for all fin aF(X). 

COROLLARY 1. Let X and Y be M*-spaces. X is homeo­

morphic to Y if and only if there exist isomorphic aF(X) 

and aF(Y) which generate subbases for the closed sets of X 

and Y respectively. 

COROLLARY 2. Let X and Y be M*-spaces generated by 

aF(X) and ap(Y) where aF(X) = C(X) while aF(Y) = C(Y). 

Then X is homeomorphic to Y if and only if C(X) is isomor-

phic to C(Y). 

COROLLARY 3. Let X and Y be M* -spaces. Then any 

isomorphism from aF{X) onto aF(Y) has a unique extension 

to an isomorphism from C(X) onto C(Y). 

COROLLARY 4. If X is an M*-space then the automor­

phism group of aF(X) is isomorphic to the group, under com­

position, of all autohomeomorphisms of X. 

COROLLARY 5. Let X be an M*-space. If aF{X) = C(X) 

then every automorphism on C{X) is an inner automorphism. 
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COROLLARY 6. Let X andY be M*-spaces such that 

aF(X) c: r(X). Then any isomorphism from aF(X) onto aF(Y) 

has a unique extension to an isomorphism from r(x) onto 

r (Y) • 

Let X be the set of integers with the finite comple-

ment topology and let aF(X) = {f: f is either the identity 

selfmap or a constant selfmap}. This space is an M*-space. 

Note H(i) = X and H{a)={a} for each a in x. Since a set F 

is closed in this space if and only if F = ~' F = X or F is 

a finite set, it follows that aF{X) generates a subbase for 

the closed sets of X. Furthermore this space fails to be 

an M-space or an S-space. To see that it is not an M-space 

(
x for x an even integer 

define f by f(x) = 
x+l for x an odd integer 

Then f is 

a continuous function but H{f) = {even integers} is not 

a closed set. 

D. EXAMPLES 

EXAMPLE 1. Let {X,t) be the one-point compactification 

of the rational numbers with the relative topology. Let = 

be the point of compactification. This example is known to 

be a cc space and hence has the US property. 

CLAIM 1. If f is in C{X,t) then f{=) = =or f is a 

constant function. 

PROOF. Assume f is not a constant function and 

f(oo) = a ':f: oo. 



CASE 1. Assume there exists b # oo such that b ~ a and b 

is an image point of f. Let ob and oa be disjoint open 

intervals of rationals around "b" and "a" respectively. 

Then f- 1 <ob) and f-l(oa) are disjoint. Note f-l<oa> = 
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0~ U {oo} is a neighborhood of oo and f-l (Ob) = ob contains 

an open interval of rationals. Since 0* U {oo} is a neigh-
a 

borhood of oo, the complement of o: denoted by o:• is closed 

and compact in the rationals. Note ob c 0* I • a This is a 

contradiction since a compact set can not contain an in-

terval of rationals. 

CASE 2. Assume oo and "a" are the only two image points of 

f. Since the space is T1 , f-l(oo) = F
00 

and f- 1 (a) = Fa are 

disjoint closed sets such that F00 LJ Fa = X. Note F00 and 

Fa must also be open and hence they contain an interval. 

Thus these sets can not be compact. This is a contradic-

tion since this is a CC space.// 

CLAIM 2. H (f) = {x . f (x) = x where f is in C(X,t)} . 
is a closed set. 

PROOF. Let y be an accumulation point of H(f) such 

that y is different from oo. Also assume f is not a constant 

function. Then there exists a net {xn} in H(f) which con-

verges to y. For each positive integer k select xn from 
k 

(y 1 1 ) . Then the sequence {xnk } converges to y. 
k I y+k 

Therefore {xnk } = {f(xnk)} converges to f(y). Since this 

space has the US property each convergent sequence con­

verges to a unique limit. Thus since {xnk} converges to 
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both Y and f(y), it must be concluded that y = f(y) and 

hence y is in H(f).// 

It is well known that each H(f) is closed in a 

T2-space. This example exhibits a non T2-space with this 

property. However it will follow from claim 3 that this 

space fails to be an S-space, an M-space or an M*-space. 

CLAIM 3. The collection of sets of the form H(f) does 

not form a subbasis for the closed sets. 

PROOF. 
00 

Let 0 = {x : x < 0 } U ( U ( 1 
n=2 n 

1 )) 
n-1 u 

{x : x > 1} be an open subset of the rational numbers. Then 

the set of rationals- 0 = {1, 1 , 1 , .•. , 0} is closed and 
2 3 

compact in the rationals. This is true since any neighbor-

hood of zero with respect to the relative topology on the 

rationals contains all but a finite number of elements of 

the sequence. Therefore 0 U {oo} is in t and hence 

F = {1, 1 , 1 , ••• , 0} is thus closed in (X,t). The set F 
2 3 

can not be expressed in terms of an arbitrary intersection 

of finite unions of sets of the form H(f). The reason for 

this is that the only continuous functions which do not 

fix oo are the constant functions and they each have one 

fixed point.// 

EXAMPLE 2. Let X = {rational numbers} U {oo} and let 

t = {0 : o is in the relative topology for the rationals} U 

{A : oo is in A and X - A is finite}. 
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CLAIM 1. If f is in C(X,t) then f(oo) = oo or f is a 

constant function. 

PROOF. Assume f is not a constant function and 

f(oo) = a t- oo. 

CASE 1. Assume there exists "b" which is an image point of 

f where b t- a and b t- oo. Let Ob and oa be disjoint open 

intervals of rational numbers around "b" and "a" respec-

tively. 

Then f- 1 (ob) and f- 1 (oa) are disjoint open sets. 

Furthermore f-l(oa) is a neighborhood of oo and f-l(ob) con­

tains an open interval of rationals. This is impossible 

since neighborhoods of oo contain all but a finite number 

of points. 

CASE 2. Assume "a" and oo are the only two image points. 

Since this space is T1 , f- 1 (oo) = F00 and f- 1 (a) = Fa are 

closed and disjoint sets. Furthermore, since Fa U F 00 = X 

the sets F and F are both open and thus both contain open a oo 

intervals of rational numbers. Again this is impossible 

since one of these sets is the complement of a neighborhood 

of oo.// 

CLAIM 2. Not all sets of the form H(f) are closed. 

Hence (X,t) fails to be an M-space or an S-space. 

PROOF. Let f (x) = Let 0 1 fx for x < 0 

oo for all other x E X 

be an open set about oo then f-1(0 1 ) contains all but a 

finite number of points and hence is open. Let o be an 
2 
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open set such that~ is not in 0 2 • Note f-1 (o 2 } = o2 n 
{x : x < 0} which is an open set and hence f is continuous. 

Note H(f} = {x : x < 0} U {oo} and this is not a closed set 

for otherwise {x : x ~ 0} would be an open set. {x : x ~ o} 

is not open since zero is not an interior point.// 

CLAIM 3. (X,t} is an M*-space. 

PROOF. Let aF(X} be the sernigroup generated by {f : f 

is a constant function or f is the identity function} U 

{fb : fb(x} = x for all x ~ b, fb(~} = ~ and f(x) = x+b for 
2 

x > b, where b is an arbitrary rational number} U {fa : 

fa(x} = x for all x ~a, fa(oo} =~and fa(x} = x;a for x < a 

where a is an arbitrary rational number}. Note H(fb) = 

{x : x ~ b} U {~} and H(fa) = {x : x ~a} V {~}. The set 

{H(fb} : b is a rational number} U {H(fa} : a is a rational 

number} U {H(a) : a is in X} u {H(i) : i is the identity 

function} forms a subbasis for the closed sets of (X,t). 

aF(X) actually contains the above collection. Each addi­

tional f in aF(X) is a polygonal function and hence H(f) is 

closed. Therefore (X,t) is an M*-space.// 

EXAMPLE 3. Let X = {real numbers} and let t = {O : 

there exist real numbers a and b with 0 ~ ((-oo,a) U (b,oo))}. 

This space is called the fuzzy space and it was shown in 

chapter III that f is in C(X,t) if and only if f is a con­

stant function or lf(x} I + oo as lxl + w. 

Some properties of this space will now be noted. 

1) The continuous functions in (X,t) can become unbounded 
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in the usual sense even when x is in a bounded set. 

2) (X,t) is a T1 space which fails to be T2 • 

3) The supersets of open sets are open therefore by corol­

lary 2 of theorem 6 this space belongs to the class c of 

spaces and hence is an S**-space. 

4) H(f) need not be a closed set. Therefore (X,t) is not 

an M-space nor an S-space. To see this let f(x) = x for 

x ~ 1 and let f(l) = 2 then f is continuous but H(f) is 

not bounded and hence not closed. 

5) (X,t) is an M*-space. To see this let F be a closed 

subset of X and define fF(x) = ( 
x for x in F 

x+l for x not in F 

Then fF is continuous and H(fF) = F. Let aF 1 (X) be the 

semigroup generated by the set {f : f is a constant func­

tion} U {fF : F is a closed subset of X and fF is as de­

fined above}. Note each element of aF (X) is of the form 
1 

fF fF fF fF and H(fF 0 fF 0 0 fF ) = 0 0 0 0 0 • • . . . 
1 2 3 n 1 2 n 

n n 
n H(fF· ) = n F· is therefore closed. 

l. 
i=l l. i=l 

6) Define gF(x) = [
X for X E F 

x-1 for x ~ F 
where F is a closed sub-

set of (X,t). Then in a manner analogous to that used 

above it follows that if aF2 (X) is the semigroup generated 

by {g . g is a constant} U {gF . F is a closed subset of X} . . 
then aF2 (X) generates the closed sets of (X It) 0 However 

note that aF (X) () aF (X) = {f . f is a constant function 
0 

1 2 



69 

or f is the identity function does not generate a subbasis 

for the closed sets of (X,t). 

7) No closed and bounded subset of X is compact unless it 

is finite. 

8) The set of integers is a compact subset of X. 
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VI. SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS 

It is to be noted that for a given set X and a given 

semigroup a(X) of selfmaps there sometimes exists a topol­

ogy t such that C(X,t) = a(X). The topology t might be 

uniquely determined as was the case with the fuzzy space or 

t might be determined only to within a saturation as was 

the case with the tower space. Also because of de Groot's 

theorem in [18], which implies that there exist 2c nonhome­

omorphic subspaces of the real line which have as their 

continuous selfmaps only the identity function and the con­

stant functions, it follows that there could be several 

topologies defined on a set X such that C(X,t) = a(X). On 

the other hand the set X = {1,2,3} admits no topology t 

such that C(X,t) consists of only the identity function 

and the constant functions. Thus it must be concluded that 

the existence of t such that C(X,t) = a(X) is dependent 

both on X and a(X). 

The problem 9f finding methods to construct topologies 

t and s such that C(X,t) = C(X,s) is related to the problem 

of finding a topology t such that C(X,t) = a(X) and is a 

problem which merits further consideration. 

Although methods are given in this dissertation which 

are useful in finding a topology V comparable to a given 

topology u such that C(X,V) contains C(X,U) it should be 

noted that the success of these methods is dependent on the 

topology u. It has still. not been determined whether there 
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exists a topology V such. that V is strictly stronger than 

the usual topology U for the real numbers and such that 

C(R,V) contains C(R,U). 

Many of the examples given in chapters III, IV and v 

have the property that every 1-1, onto, continuous selfmap 

is a homeomorphism. Some theorems are given in chapter IV 

which point out when every 1-1, onto, continuous selfmap 

must be a homeomorphism. However it appears that other 

theorems might be found since many simple examples, which 

possess the property that every 1-1, onto, continuous self-

map is a homeomorphism, are not covered by any known theo-

rems. 

The classes of S** and M* spaces are fairly extensive 

classes of spaces which satisfy the property that two 

spaces are homeomorphic if and only if there exist certain 

isomorphic a-semigroups. Since there exist S**-spaces 

which fail to be T1 spaces, it follows that the class of 

S**-spaces is not a subset of the class of M*-spaces. How­

ever it is not known if every M*-space is an S**-space. 

This question was originally raised by Magill in [7], when 

he asked if there exist S-spaces which are not S*-spaces. 
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