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ABSTRACT 

Completions and a strong completion of a quasi-

uniform space are constructed and examined. It is shown 

that the trivial completion of a To space is T 0 • Ex­

amples are given to show that a T 1 space need not have a 

T 1 strong completion and a T 2 space need not have a T 2 

completion. The nontrivial completion constructed is 

shown to be T 1 if the space is T 1 and the quasi-uniform 

structure is the Pervin structure. It is shown that a 

space can be uniformizable and admit a strongly complete 

quasi-uniform structure and not admit a complete uniform 

structure. 

Several counter-examples are provided concerning 

properties which hold in a uniform space but do not hold 

in a quasi-uniform space. It is shown that if each mem­

ber of a quasi-uniform structure is a neighborhood of the 

diagonal then the topology is uniformizable. 
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I. INTRODUCTION 

Let (X,U) be a quasi-uniform space. The primary 

problem in Chapter III is to construct a completion 

for (X,U). It is shown that it is impossible in general 

to construct a completion which preserves the Hausdorff 

separation property. A trivial completion for any (X,U) 

is given which preserves the T 0 separation property, but 

the trivial completion is not T
1

• Several nontrivial 

completions are given for special classes of quasi-uniform 

spaces. One of these constructions preserves the T
1 

separation property when U is the Pervin quasi-uniform 

structure. A parallel discussion of strong completions 

is also considered, and an example is given to show that 

not every T 1 space need have a T 1 strong completion. A 

sufficient condition for the concepts of complete and 

strongly complete to coincide is given. An example of a 

uniformizable space which does not admit a complete uni­

form structure is shown to admit a strongly complete quasi­

uniform structure. 

In Chapter IV we consider some well-known properties 

of uniform space which fail to carry over for quasi-

uniform spaces. It is of interest to have conditions 

on U that will guarantee that U is compatible with a uni-

form structure. It is shown that if each U E U is a neigh-

borhood of the diagonal in X x X then U is compatible 

with a uniform structure. ~ necessary and sufficient con-

l 



_l 
dition for U ~ U to be a quasi-uniform structure is pre-

sented. A class of separation properties which is depend-

ent on the particular quasi-uniform structure under con-

sideration is defined and some of their properties are 

studied. 

Finally, an example is given to show that a sequence 

of quasi-uniformly continuous, (continuous) functions 

may converge quasi-uniformly to a function g and g not 

be quasi-uniformly continuous, (continuous). 

The topological terminology found in this thesis is 

consistent with the definitions found in Gaal [11]. The 

definitions of concepts related to quasi-uniform spaces 

can be found in Murdeshwar and Naimpally [16], with the 

following exception. By U o V we mean { (x,y) there 

exists z EX such that (x,z) E U and (z,y) E V}. This 

is the definition of U o V found in Gaal [11]. 

2 



II. REVIEW OF THE LITERATURE 

In 1955, Krishnan [14] essentially showed that every 

topological space admitted a compatible quasi-uniform 

structure. In 1960, Csaszar [3] showed this more explicit­

ly and in 1962, Pervin [19] gave a useful and simple con­

struction of a compatible quasi-uniform structure for a 

given topology. Fletcher [7] gave a construction for a 

family of compatible quasi-uniform structures. 

In 1960, Csaszar [3] extended the notions of a Cauchy 

filter and completeness to a quasi-uniform space. Isbell 

[13] noted that the convergent filters were not necessarily 

Cauchy, so Sieber and Pervin [20] in 1965 proposed the def­

inition of Cauchy filter which is now in use. They defined 

a space to be complete if every Cauchy filter converged. 

We will call a space strongly complete if it has this pro­

perty. In this paper, they showed that every ultrafilter 

is Cauchy in a pre-compact space. They obtained the 

following generalization of the Niemytzki-Tychonoff 

Theorem [18]. A topological space is compact if and only 

if it is strongly complete with respect to every com­

patible quasi-uniform structure. 

In 1966, Murdeshwar and Naimpally [16] continued 

to use the definition of Cauchy filter proposed by Sieber 

and Pervin [20] but defined a quasi-uniform space to be 

complete if every Cauchy filter had a nonvoid adherence. 

3 
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By making use of the fact that every ultrafilter in a 

pre-compact space is Cauchy, the corresponding generali-

zation of the Niemytzki-Tychonoff Theorem carried over 

for this new definition of completeness. 

Sieber and Pervin [20] proposed the question, does 

every quasi-uniform space have a completion? Stoltenberg 

[22] in 1967 showed that every quasi-uniform space had a 

strong completion. However his construction left open the 

question of whether every Hausdorff quasi-uniform space 

had a Hausdorff completion. The techniques used by Liu [15] 

motivated the completions developed in this thesis. 

In 1965, Naimpally [17] showed that if (X,U) and (Y,V) 

were quasi-uniform spaces and Y is T
3 

and V the Pervin 

structure then U and C are closed in (F,W), where F = YX 

and W is the quasi-uniform structure of quasi-uniform con-

vergence and u (C) is the set of all quasi-uniformly con­

tinuous (continuous) mappings from (X,U) to (Y,V). 
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III. COMPLETIONS OF A QUASI-UNIFORM SPACE 

A. TRIVIAL COMPLETION AND SOME EXAMPLES 

DEFINITION 1. Let X be a nonempty set. A quasi-uni-

form structure for X is a family U of subsets of X x x 

such that: 

( 1) /:, = { (x, x) : X E X} C u for each u E u. 
' 

( 2) if u E u and uc v, then v E u ; 
( 3) if U, v E u f then un v E u. 

' 

( 4) for each u E u there exists V E.: u such that 

v 0 v cu. 

DEFINITION 2. If U is a quasi-uniform structure for 

a set X, let tu = { A c X : if a s A there exists U E U such 

that U [a] C A}. Then tu lS the quasi-uniform topology on 

X generated by U. 

DEFINITION 3. Let (X,t) be a topological space and 

let U be a quasi-uniform structure for X. Then U is com-

patible if t = tu. 

If (X,t) is a topological space and 0 s t, let 

S(O) = 0 X 0 u (X-0) X X. 

In [19], Pervin showed that { S(O) : 0 E t} lS a subbase 

for a compatible quasi-uniform structure for X. We will 

refer to this as the Pervin structure. The following def-

inition is due to Sieber-Pervin [20] and is equivalent to 

the usual definition of a Cauchy filter in a uniform space. 

DEFINITION 4. Let (X,U) be a quasi-uniform space 



and F a filter on X. F is U-Cauchy if for every u E U 

there exists x = x(U) such that U[x] E F. 

DEFINITION 5. A quasi-uniform space (X,U) is 

strongly complete if every U-cauchy filter converges. 

(X,U) is said to be complete if every U-Cauchy filter has 

an adherent point. 

DEFINITION 6. Let (X,U) and (Y,V) be quasi-uniform 

spaces and f a mapping from X toY. The mapping f is said 

to be quasi-uniformly continuous if for each V E V there 

exists U E U such that (a,b) E U implies that (f(a) ,f(b)) 

E V. 

DEFINITION 7. Two quasi-uniform spaces (X,U) and 

(Y,V) are said to be quasi-uniformly isomorphic relative 

to U and V if there exists a one-to-one mapping f of X 

onto Y such that f and £-
1 

are quasi-uniformly continuous. 

DEFINITION 8. A completion of a quasi-uniform space 

(X,U) is a complete quasi-uniform space (Y,V) such that 

X is quasi-uniformly isomorphic (relative to U and V) 

to a dense subset of Y. 

In [22], Stoltenberg proved that every quasi-uniform 

space has a strong completion. The proof is long and in­

volved and it is not clear if any separation properties 

the space may possess carry over to the completion. The 

following construction shows that every quasi-uniform 

space has a rather simple completion. 

6 
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CONSTRUCTION 1. Let (X,U) be a quasi-uniform space 

and put X* = X U { S} where s ~ X. For U t: U, let 

S(U) = U U { (S,x) X E X*}. 

Then B = { S(U) : U t: U} forms a base for a quasi-uniform 

structure U* for X*. Note that S(U) [13] =X* for each 

Us U, and S(U) [x] = U[x] if x t: X. Clearly, every filter 

F on X* converges to s. Hence (X*,U*) is strongly complete. 

Also, u = { U* n X X X : U* E U*} and 

l : (X,U) -+ (X*,U*) 

is a quasi-uniform isomorphism. Since X is dense in X*, 

(X*,U*) is a completion of (X,U) In fact, X* is compact 

and t = t 1 1 {X* } . u. * u. '-J 

Fletcher [7], working independently, also discovered 

the above construction. If X is T 0 , then X* is T 0 • X* is 

never T
1 

since the only open set containing S is X*. Thus 

the following question naturally arises. 

quasi-uniform space have a T 2 (T 1 ) completion or strong com-

pletion? 

EXAMPLE 1. We give an example of a Hausdorff quasi-

uniform space that does not have a Hausdorff completion 

and consequently does not have a Hausdorff strong comple-

tion. Let X denote the real numbers and A = { 1/n : n = 

1,2, ••• }. Set 

t = { E-B : B c A and E is open in the usual topology}. 

(X,t) is Hausdorff but not T 3 • Let U denote the Pervin 

quasi-uniform structure generated by t. Suppose (X*,U*) 



is a completion for (X,U). We may assume that X = X* 

and U = { U* n x x X : U* E U*}. Let F be the filter on X 

generated by { A,{1/2,1/3, ... }, {1/3,1/4, ... }, ... }. Then 

there exists an ultrafilter M ~n X such that M ~ F. Since 
'V U is pre-compact, M is a Cauchy filter. Let M be the ul-

trafilter on X* generated by M. If u* E U*, u* n x x x = 

U E U so that there exists x E X such that u [x] E /d. 

"' Clearly U* [x] E M. Hence M is Cauchy. Since (X*,U*) lS 

'V 

complete, there exists x* s X* such that M converges to x*. 

Thus every open neighborhood of x* must meet every set of 

the form { 1/n, 1/ (n+1), ... }, (n E N). vve show that o and 

x* can not be separated by disjoint open sets. Let 

u = (X-A X X-A) u (A X X) . 

Then there exists U* E U* such that u = U* n X X X. Now 

U*[o] n A= [0. Therefore, o ~ x*. 

that 0 E 0
1 

and X* E 0
2

• Then 0 1 n X E t so there exists 

s > o such that ((-E,E)- A) C 0 1 ()X. 

positive integers N and k such that 

1/N ~ £ and 1/k E 02 n X n 

~ow there exists 

1 /N ' 1 I ( N + 1 ) ( . . . 1 . 

Since 1/k E 0 2 n X E t there exists 8 > o such that 

(1/k- 8,1/k + 8) -A C 0 2 n X, Clearly 

[ (- E I E) - A] () [ ( l /k ·- 0 ' 1 /k + 8) - A] ~ 0. 

Therefore, 0 1 n 0 2 ~~and (X*,U*) is not Hausdorff. 

EXAJ'vlPLE 2 . We give an example of a quasi-uniform 

structure U for the set N of natural numbers such that: 

(1) tu is the discrete topology, and 

8 



( 2) (N,U) does not have a T
1 

strong completion. Let 

u 
n 

= { (x,y) : x = y or x ~ n}, B = { U n E N}, and let 
n 

U denote the quasi-uniformity generated by the base B. 

Suppose (N*,U*) is a strong completion ~or (N,U). We may 

assume that N N* and u = U* n N X N. If F = {N}, F is a 
"v 

Cauchy filter on (N,U). Let F ~enote the Cauchy filter 

on (N*,U*) generated by F. Since (N*,U*) is strongly 

complete, there exists n* E N* such that P converges to 

n*. Clearly, n* E N* - N. Let 0* be any open set in N* 
'V 

containing n*. Then 0* E F and 0* n N E F. Thus 

0* n N = N. For each n E N, we have n E 0* for every open 

set in N* containing n*. Thus N* is not T 1 • 

B. CONSTRUCTIONS OF A COMPLETION 

LEMMA 1. Let (X,U) be a quasi-uniform space and S 

a subbase for U. Then a filter F converges to x if and 

only if for each S E S we have S[x] ~ F. 

Throughout this section we will let (X,U) denote a 

quasi-uniform space with a base B such that for any V E B 

we have that V o V = V. If U has a subbase with this 

property then the base generated by the subbase also has 

this property. It is clear that the Pervin quasi-uniform 

structure has such a base as well as the class of quasi-

uniform structures introduced by Fletcher in [7]. We 

will say that two Cauchy ultrafilters M
1 

and 1\l
2 

on X 

are equivalent provided U[x] E M
1 

if and only if U[x] E M
2

• 

9 
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Certainly this is an equivalence relation on the set 

of all Cauchy ultrafilters on X. We will denote the 

equivalence class containing ,\! by 1'·.!. 

Set !\ = { M M is a nonconvergent Cauchy ultrafilter 

on X} and X* = XU!\. D(V) will denote the set of all 

mappings 6 from!\ to X such that V[6(M)J c M where V c B. 

Since AI is Cauchy, D (V) f ~ for each V c B. For V F~ B 

and 6 c D(V), we set 

S(V,6) = V U 6 U { (/d,y) ,\j t: II and y c V [ 6 ( ,\!) ] } • 

LEMMA 2. S* = { S(V,6) : V t: B, c') c D(V)} forms a 

subbase for a quasi-uniform structure U* on X*. 

PROOF. It is clear that S* f ~. Let S (V, ()) 1: S*. 

Then S (V, cS) ::;) 6 and we show that S (V, cS) o S (V, cS) C S (V, 6) • 

Suppose (x*,y*) c S(V,6) and (y*,z*) c S(V,6). Case (a). 

If x* = x c X, then y* = y c X and z* = z c X. Thus 

(x,y) c V, (y,z) c V and since V o V = V, we :1a- 7 2 (x*,z*) = 
h 

( X , Z ) E S ( V 1 6 ) . CaSe ( b ) . X* = \J c f, • 

have (x*,z*) = (y*,z*) E s (V, 6) • If y* 

' 

If y* = ,lj we 

= " .L 
E X, then 

z * = z c X, y c V [ 6 (,\1) ] , and ( y, z) t: V. Iience ( 6 (t.l) , y) 

c V and consequently ( 6 (i\1), z) c V since V ) V = V. Then 

z* = z c V[6(i\,j)] and (x*,z*) = (:\f,z) E S(V,cS). Therefore, 

s (V, cS) 0 s (V, cS) c s (V, 6) . I I 

THEOREM 1. (X*,U*) is complete. 

PROOF. Let F be a Cauchy filter on X*. Then F C .\l 

where M is an ultrafilter. If Jl! converges, F has an 

adherent point and U* is complete. Suppose tl is not 
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convergent. We show that X s M. Let S(U,6) s U*. 

Since M is Cauchy, there exists x* s X* such that s (U, 6) [x*] 
"' 

E M. If x* = M1 s A, then 

A 

M does not converge to M1 implies there exists S(V,6) s S* 

such that s (V, 6) [ M 
1

] ~ M. Since M is Cauchy, there 
A 

exists z* f. M1 such that S (V ,y) [z*] s ,\{. Now if z* s X 

A 

there is nothing to show; so we suppose that z* = M2 s A. 
A A 

Then M1 f. M2 and we have 
A A 

(V[y(M2)] u {.\!2}) (l (U[6(Ml)] u {,\{1}) EM. 

Thus X s M since 

X~ V[y(M2)] n U[6(Ml)] EM. 

M = { M E M : M C X} is an ultrafilter on X. 
0 

We show that M0 is U-Cauchy. If U s U, there exist V s B 

with V CU. Let 6 s D(V). Trien S(V,6) s U* so there 

exists x* s X* such that s (V, 6) [x*] s AI. If x* s X we 

have V[x*] s M and thus U[x*] s M
0

• If x* _M s A, then 
A 

V[6(;\,{)] U {M} s ,\1 and since X s M, we have V[6(M)] sM. 

Consequently, U [ o UA) ] s M 0 • Thus M 0 is Cauchy on X. 

Either M0 is convergent on X or it is not. Case (1) M
0 

converges to x. Let S (V, 6) s S*. Then S(V,6) [x] = 

V [x] s A! 0 • Thus S (V, 6) [x] s ,\-f and we have that M con-

verges to x which is a contradiction. Case (2). ,\! 0 

is nonconvergent on X. Then M0 s A and we show that M 

converges to M
0

• If S(V,6) E S*. 
A 

S(V,6) [M 0 ] = V[o (M 0 )] U {M
0

}. 



Now V[o(M 0 )] s M0 and consequently S(V,o) [J\,1
0

] sM. 

Therefore, M converges to M0 and this is a contra-

diction.// 

THEOREH 2. (X*,U*) is a completion for (X,U). 

PROOF. By theorem l, (X*,U*) is complete. Let 

M s A and U* E U*. Now there exists S(V 1 ,o 1 ), ••• , 

S(V ,o ) c S* such that 
n n 

A 

n n s cv. , o . ) c u*. We have 
l l l 

S ( V . , o . ) [ M] = { M} U V. [ 6 . ( ,1{) ] for i = 1, 2 , •.• n . 
l l l l 

Since V.[o.(M)] s M for eacn i = 1,2, ... ,n, we have 
l l 

n 
n v. [o. (M)J -:~ ¢. Now 

l l 
A n A 

u* [ M J n x => en s cv. , o . ) ) [ M J n x 
l l 

n 
= n S(V. ,o,) [M] n X 

l l 

n 
= nv.[o.(M)J -:1¢. 

l l 

Thus M E X and X= X*. Let U' denote the induced quasi-

uniform structure of U* on X. If U s U there exists 

V s B with V CU. Let o s D(V). Then S(V,o) s U* and 

v = s cv, o) n x x x. Thus v E U' and hence u E u· . 

Suppose U s U'. Then there exists U* c U* such that 

u = u* n x x x. Since U* c U* there exists S (V 
1

, o 
1

) , ••• , 

n 
S(V ,o ) s S* such that U* ~ n S(V. ,o.). Consequently, 

n n 1 1 

n 
(n s (v , o ) ) n x x x c u* n x x x u. 

'l'herefore, 

that U = U' . 

l l l 

n 
(1 V C U and hence U E Lf. 

i 
Thus we have shown 

From this it follows that the identity 

mapping i: (X,U) ·~ (X,U* tl X x X) is a quasi-uniform 

isomorphism.// 

12 



One can let A = { F F is a nonconvergent Cauchy 

filter on (X,U) }. Then using the same construction we 
0 0 

get a strong completion of (X,U). Denote it by (X,U). 
0 0 

It is clear that (X,U) is not in general the trivial 

strong completion given in construction l. 

EXA.l'\iPLE 3 . A space (X,U) may be T
1 

and (X*,U*) 

Consider the space (N,U) described in example 2. not T 
1 

• 

It is clear that U o U = U for each U in the base B. 
n n n n 

Thus we may construct the completion (N*,U*). There 

exists an ultrafilter M containing the filter base 

{ {n,n+l, ... } : n s N}. Since U is pre-compact, \·Je have 

that M is a Cauchy filter. Since M is nonconvergent, 

;ll E N * . 

fore, 

Let S(U ,6) s S*. 
n 

Clearly, 6(\l) > n. 

s ( u , c5 ) [ M J = u [ c5 UA ) J U Ul} 
n n 

= N U { ;\1}. 

Hence (N*,U*) 1s not T
1

• 

There-

THEORE1'1 3. Let (X,t) be a T
1 

topological space and 

U the Pervin quasi-uniform structure. Then (X*,U*) lS 

a T
1 

completion for (X,U). 

PROOF. If x,y s X, x ~ y, there exists O,W s t such 

that X E 0, y E: W, X ~ W, and Y ~ 0. Since X s t*, we 

have O,W s t*. Let 11A
1 

~ 1\l 2 be points in/\ and S(U,cS) s 

S*. Then 

{ M 
1 

} U U [ o ( ,\1
1 

) ] and , 

13 
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Suppose x s X and M s A. Since M does not converge to 

x, we have {x} ~ M. Now X - {x} s M since M is an ultra-

filter. Set 

u (X - {x}) x (X {x}) U {x} x X. 

Let x 1 s X and x 1 ~ x; if X = {x} we would have X* = X. 

Define 8 by 8(M) = x
1 

for each M s A. Clearly, U[x
1

] = 

X - {x} E N for each nonconvergent ultrafilter N. Thus 
~ ~ 

8 E D ( U) and S ( U 1 8) E S * . Now s ( u ' 6 ) [ M ] = 01} u ( X - { X } ) 

and X is a neighborhood of x that does not contain M. 

Therefore, (X* ,U*) is T 1 ./I 

DEFINITION 9. (X,U) 1s R
3 

if given x s X and u s G, 

there exists a symmetric V s U such that (V o V) [x] C U[x]. 

The above condition was introduced in [16]. It might 

be described as a local symmetric triangle inequality. 

In [16, p.41] 1 it was shown that if (X,t) is regular, then 

the Pervin structure is R3 • 

THEOREM 4. Let (X,U) be a T 1 and R3 quasi-uniform 

space. Then (X*,U*) is a T 1 space. 

PROOF. It suffices to show that for each x s X and 

1IA f fl there exists 0 1 , 0 7 t: t* such that x < 0 1 1 M s 0 2 , 

~ 

x ~ 0 7 , and M 4 01. Let x and AI be given. Since M 

does not converge to x, there exists U E U such that 

U[x] ~ 11A. There exists a symmetric V s U such that (V o V) 

[x] C U[x]. M is Cauchy implies that there exists x 0 s X 

with V[x 0 ] f~ M. We show that x ~ V[x 0 ]. Suppose x E 

Then (x,x
0

) E V and (x
0

,a) s V. 
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Hence a c: (V o V) [x] C U[x]. But this implies that V[x
0

J C 

U(x] which is impossible since U[x] ~ M. There exist 
A 

o E D(V) with o (;\!) = x 0 • Then 
A A 

X ~ V[x 0 ] U {Af} = S (V, o) [,\!] 

while M ~ X, an open neighborhood of x. Thus (X*,U*) 

THEOREi-1 5. Listed here are some easily verified 

properties of (X*,U*). 

(l) X is an open dense subset of X*. 

(2) (X,U) is T 0 if and only if (X*,U*) is T 0 • 

(3) If (X*,U*) has property P and P is an open 

hereditary property, then (X,U) has property P. 

(4) A is closed in X* and the subspace topology 

on A is the discrete topology. 

(5) If (X*,U*) is pre-compact and Hausdorff, 

then (X,U) is completely regular. 
0 0 

These properties also hold for (X,U). 

PROOF. (l) . By theorem 2, X= X*. Let x r X 

and S(U,o) c: U*. Then S(U,o) [x] U[x] C X. Hence X 

is open in X*. ( 2) • Since T 0 is a hereditary property 

the sufficiency is clear. Suppose (X,U) is T 0 , then since 

X is open in X* it suffices to consider the case where 
A A 

x* + ,vr E A , x*, ~~~ E X*. Let S(U,o) [ U* and we have that 
A 

M ~ S(U,cS) [ x*] . Hence X* is To. Statement ( 3) follows 

from (l) . ( 4) • A is closed in X* by (l) , and for any 

S(U,cS) E U* we have that {l.f} = f\ n S(U,cS) [:1.1] for any 
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M E A. Therefore the subspace topology on A is discrete. 

(5). If (X*,U*) is pre-compact and Hausdorff then since 

it is complete it must be a compact Hausdorff space. 

Therefore the subspace (X,U) must be completely regular.// 

C. A COHPLETION FOR A PRE-COMPACT STRUCTURE AND FURTHER 

EXAMPLES 

Let (X,U) be a pre-compact quasi-uniform space. 
~-

Define X* as before and set S(U) = U U ~ U { (M,y) 

andy E U[x] E M for some x E X}. 

LEMMA 3. B* = { S(U): U E U} forms a base for a 

quasi-uniform structure for X*. Denote it by 0. 

PROOF. B* f ~ and ~ c s(u; for each S(U) s B*. 

Suppose S(U) and S(V) belong to 13*. Then S(U n V) s B 

and we show that 

S(U () V) C S(U) n S(V). 

Let (x,y) E S(U n V). If X E X, then (x,y) E U n V and 
~ 

thus (x,y) E S(U) n S(V). If x = M s A, then y ln 

which case (x, y) E S (U) () S (V), or there exists z "' X 

such that y E (U n V) [z] E M. Thus y E U [ z] f: 1\l and 

y E V[z] E AL Hence (x,y) E S(U) n S(V). Let S(U) E 

B*. Then there exists V E U such th~t V o V CU. We 

show that S(V) o S(V)CS(U), let (x,y)E S(V) and (y,z) 

E S(V). If x ~ X then (x,yJ E V and (y,z) E V and there-

fore (x,z) E V o V CUC S(U). Now if X= ,q f !\and 
~ 

y = M then ( x, z) (y,z)E S(V) C S(U). If x = s: and 
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y E X, then there exist s s X such that y l V[s] ,\J and 

(y,z) E V. Hence (s,z) E V o V C U, that is, z , U[s] ~ 

v [ s] • Thus U[s] "M and we have that (x,z) = UJ,z) ,_ S(U). 

Therefore S(V) o S(V) C S(U) and we have that B* is a base 

for a quasi-uniform structure on X*.// 

THEOREM 6. 
'\, 

(X*,U) is complete. 

PROOF. Suppose (X*,~) is not complete. Then there 

exists a nonconvergent Cauchy ultrafilter M* on X*. Using 

the same argument as in the proof of theorem l we have that 

M C X} is an ultrafilter on X. Since (X,U) 

is pre-compact it follows that 1\l is Cauchy [ 16, p. 51] . 
''v 

Case (1). M converges to x E X. Let U r U. Then there 

exists S(V) such that S(V) Cu. Since x c lim ,\1, V [x] ;\j. 

Hence V[x] E M*, and U[x] ~ S(V) [x] = V[x] implies that 

U[x] E M*. Thus x E lim M* but this is impossible. Case 
'\~ 

( 2) • lim M = ¢. Then :vl E X. Let U c U, then there exists 

S (V) C U. Now S(V)[,\1] = 00 U ( U ( V[y]: V[y] c ,'•{}). 

Hence S (V) [M] E M and therefore U [,\!] r-: ,\l. Consequently 

M E lim M which is a contradiction. Thus there are no 
''v 

nonconvergent Cauchy ultrafilters on (X*,U); that is, 
'\, 

(X*,U) is complete.// 
'\, 

THEOREM 7. (X*,U) is a completion for (X,U). 

'" PROOF. By the previous theorem (X*,U) 1s complete. 
'0 

It is clear that X= X*. We show that U = U . 
X 

Let u 

~ I then there exists v E ~ such that u = v n X X X. Now 
X 

there exists w E U such that S (H) C V, hence W C U and we 



'\, '\, 

have that U 
X 

:s. u. Let u E u, then S(U) E u and u = S(U) n 

X X X E ux. Thus the identity mapping l 

(X, U) lS a quasi-uniform isomorphism.// 

We note that the Pervin quasi-uniform structure lS 

pre-compact. A proof similar to the proof of theorem 4 
'\, 

shows that if (X,U) is T 1 and R
3

, then (X*,U) is T
1

• 

THEORE.:'1 8. Let (X,U) be a pre-compact quasi-uniform 

space. 
'\, 

(l) (X*,U) is pre-compact if and only if A is 
'\, 

finite if and only if (X*,U) is compact. 

(2) X* is T 3 implies that X* is compact. 
'\, 

PROOF. (l) follows from the definition of U and 

the fact that completeness and pre-compactness are equi-

valent to compactness. Since every ultrafilter on X lS 

Cauchy, it must converge to a point in X* and hence 

(2) follows from theorem 4.17 in [16] .;; 

EXAMPLE 4. Let N = {1,2,3, ... } and let U denote the 

quasi-uniform structure generated by the base B 

n c: N}, where Un = { (x,y) x = y or y ~ x ~ n}. 

{ u 
n 

Let ,\j 0 

be an ultrafilter containing {N,{2,3,4, ... }, { 3 , 4 , 5 ' . . . } , 

... }.Then Mo EA. We show that A c= {,\10} and (::*,tu*> lS 

homeomorphic to (N ,t ) , the one-point compactification 
00 00 

of (N, t) . 

Let tv! be a nonconvergent Cauchy ultrafilter on N. 

Note that U [k] = {k} if k < n, and U [k] = {k, k+', ... } n - n 

if k .?. n. It follows that Un[k] s :.1 if and only 

18 



Therefore, M ~ M0 and A= {M 0 }. Let i : N* 

~ Noo be the identity on Nand i(n
0

) = oo N o'v i and i- 1 

are continuous at each n E N. We show that i is continu-
A 

ous at M 0 • Let 0 (X - 0) U {oo} E t Since 0 is com-

pact, there exists k such that n E 0 implies n < k. Now 

{k,k+l 1 • • •} 

V{Mol- 8 is defined by 6(M) = k for each ME A. Now i(S 

( u k 1 8 ) [ .~~ 0 ] ) = { k 1 k + l 1 • • • } v { 00 } C 0 
00 

• '0Je show that 
A 

.-1 
l 

is continuous at oo. Let S(Uk,6) be given. Now o(A1 0 ) .:.::. k, 
A 

so let 0 = {1,2, ..• ,8 (M
0
)-l) }. (If 8 (,"i

0
) = 1, then k = 1 

and S(U 1 ,6) [M 0 ] = N* and there is nothing to show.) Let 

0 {oo} U (N- 0). 

(N- 0) = S(Uk,6) [M 0 ]. 

EXAMPLE 5. Let I denote the set of integers and Un 

/', U { (X 1 Y) : X = Y 1 Y .::. X ?_ n 1 Or Y _2 X < -n} • Let U de-

note the quasi-uniform structure generated by the base 

{ U : n = 0,1,2, ... }. 
n 

and U is pre-compact. 

Then I has the discrete topology 

Let M be an ultrafilter contain-oo 

ing the f i 1 ter base { { 2, 3, 4, ... } , { 3, 4, 5, ... } , ... } and AI 
-oo 

be an ultrafilter containing the filter base {{-2,-3, ... }, 
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{-3,-4, ... }, ... }. Then Moo and 1\l_co are nonconvergent Cauchy 

ultrafilters. 
A 

Hence M "I M 
00 -00 

Now by considering the various cases, as 

in example 3, we have that A= {M ,M }. 
-co 

Thus (I*,U*) lS 

compact. Now we show that I* is Hausdorff. Since I is 

discrete and open in I*, it is clear that distinct points 



in I are separated by disjoint open sets in I*. 

k E I. Choose n > k and -m < k. There exists cS 1 

such that cS 1 <~C!) = n, cS 1 (tC! ) 
= -co 

A 

= m, and cS 2 (M ) - m. Now 
-co 

{k} (I S(Un,o
1

) [Moo] = 0 and 

{k} (\ S(Um,o 2 ) [M_oo) = 0. 
A 

There exists o E D(U 2 ) where cS(M
00

) = 2 and cS(M 

Then 
A 

S(U2,cS) [M] (l S(U2,cS) [M 1 
oo -oo 

Now let 

E D(U ) 
n 

= -2. 

({M 0 } u {2,3,4, ... }) n ({M } u {-2,-3,-4, ... }) =f. 
-co 

Hence I* is Hausdorff. 

D. CAUCHY FILTERS 

In a uniform space the adherence of a Cauchy filter 

equals its limit. The following example shows that this 

is not necessarily the case in a quasi-uniform space. 

EXAMPLE 6. Let X {1,2,3,4,5} and~={ (x,y) 

X < y}. Since W o W W we have that {~} forms a base for 

a quasi-uniform structure. Denote the structure by U. 

Set F = {X,{2,3,4,5}}. Then F is a Cauchy filter since 

W[2) E F. It is clear that lim F = {1,2} while adh F = X. 

Hence we have a cauchy filter whose limit is not equal to 

its adherence. 

It is natural to wonder if there are quasi-uniform 

spaces, that are not uniform spaces, in which the limit 

of every Cauchy filter equals its adherence. The follow-

20 
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ing theorem shows that such spaces do exist. 

THEOREM 9. Let (X,U) be a R
3 

quasi-uniform space. 

If F is a Cauchy filter then lim F = adh F. 

PROOF. Let F be a Cauchy filter. It suffices to 

prove that adh F C lim F. Let x E adh F and U E U. 

Since (X,U) is R3 there exists a symmetric V E U such that 

(V o V o V) [x] C U [x] . Since F is Cauchy there exists 

a E X such that V[a] E F. We ~ill show that V[a] C U[x]. 

Since X E adh F there exists b E V[x] n V[a]. Hence (x,b) 

E V and (a,b) E V. Let c E V [a] . Then (a,c) E V. Since 

Vis symmetric, (b,a) E V. Thus (x,b) E V, (b,a) E V, and 

(a,c) E V. Therefore c E (v o V o V) [x] C U[x]. Hence 

V[a] C U[x], and we have U[x] E F. Thus x E lim F.// 

COROLLARY. Let (X,U) be a R 3 quasi-uniform space. 

(X,U) is complete if and only if it is strongly complete. 

PROOF. The result is obvious by theorem 9. and the 

definitions.// 

In a complete uniform space if lim F + ¢ then it 

follows that F is Cauchy. It is natural then to ask if in 

a complete quasi-uniform space we have a filter F such that 

adh F + ¢, does it follow that F is Cauchy. The follow­

ing example shows that such a filter need not be Cauchy. 

EXAI-iPLE 7 . Let X denote the set of positive integers. 

Set Un = { (x,y) : x y, or x l and y 

2 andy= 2n + 2k + l, where k = 1,2, ... }. 

2n + 2k, or x 

For example, 

u 3 = 6 U{(l,S), (1,10), ... } u {(2,9), (2,11), ... }. 



Let B = { un : n = 1,2, ... }. To show B is a base for a 

quasi-uniform structure it suffices to prove that un o un 

cun for each n = 1,2,.0. Let Un be given, and (x,y) ~ 

U and ( y, z) s U . 
n n :£ x = y, then (x,z) = (y,z) f: u . 

n 
If 

x f y then either x = 1 or x = 2. Suppose x = 1, then y ~ 

2n + 2 > 2. Hence z = y and we have that (x,z) = (x,y) E 

U . On the other hand, if x = 2 then y ~ 2n + 2 + 1 > 3 
n 

and therefore y = z. Thus (x,z) = (x,y) E Un. Therefore 

B generates a quasi-uniform structure which we will denote 

by u. The topology generated by U is compact since given 

any open cover there exists 0 1 containing 1 and a 0~ con-

taining 2. Clearly 0 1 U 0 2 contain all but at most a 

finite number of members of X. Hence (X,U) lS compact and 

therefore strongly complete. 

The sets of the form { n,n+1, ... } (n s X) generate 

a filter F and 1 s adh F, but F is not Cauchy. 

In a uniform space it is well known that the neigh-

borhood filters are minimal among the Cauchy filters. 

This does not hold in general for quasi-uniform spaces 

as the following example indicates. 

EXAHPLE 8. Consider the space in example 6. Let 

N(4) denote the neighborhood filter of 4. Clearly N(4) 

is the collection of super sets of {4,5}. ,~J ( 5) is the 

collection of all super sets of {5}. Now N(4) ~ N(S) 

and thus N(5) is not minimal among the Cauchy filters. 

22 



E. A COUNTER-EXAI:1PLE 

The following theorem shows that: 

(1) A uniformizable space can admit a strongly com­

plete quasi-uniform structure and not admit a 

complete uniform structure. 
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(2) A space can be uniformizable and admit a strongly 

complete quasi-uniform structure and not be real 

compact. 

(3) A countably compact space may admit a quasi­

uniform structure that is not pre-compact. 

(This can not happen with uniform structures.) 

Let W denote the ordinals less than Q, the first 

uncountable ordinal. 

W. It is well known 

t will denote the order topology for 

[12, p. 74] that (vl,t) is normal, 

countably compact, not metrizable, and not real compact. 

Dieudonne [5] showed that (W,t) admits a unique compatible 

uniform structure U and (W,U) is not complete. 

THEOREM 10. (W,t) admits a strongly complete quasi-

uniform structure. 

PROOF. Let P denote the Pervin quasi-uniform struc-

ture for t. Set L = { (xI y) X :::. y}. Let s = u n L 

U ~ P}. I£ AsS, then A~~. If U n L s Sand V n L s S, 

then U n V E P and (U n L) n (V n L) = (U nv) n L £ S. 

Suppose U n L c S, then there exists V c P such that V o V 

CU. Thus V () L ~- S and (V () L) o (V () L) C U () L. For 



suppose (a,b) c V n L and (b,c) c v n L. Then (a, c) t.: u . 

Also (a,b) c L implies a ~ b and (b,c) c L implies b c. 

Hence a~ c; that is, (a,c) c L. Therefore (a,c) c u ~ L. 

Thus S is a base for a quasi-uniform structure. Denote 

the generated quasi-uniform structure by U. We will show 

that t = t . 
u 

and x c 0. 

Since P ~ U we have that t ~ tu. 

Then there exists L n u E u such that X E (L n 
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U) [x] C 0. Now U[x] is a neighborhood of x with respect to 

t. L[x] = [I,x] = [I,x+I) is also a neighborhood of x with 

respect to t. Thus 

L [x] (\ U[x] = (L () U) [x] 

is a neighborhood of X with respect to t. Hence 0 '- t and 

we have that t = tu. 

We now show that (W, U) is complete. Let W* = [ 1 , o~] 

and let A1 be a Cauchy ultrafilter on vv. Let ,\! * denote the 

generated ultrafilter on W*. Since W* is compact there 

exists w c W* such that w E lim M*. Case l. If w c vv, 

then w E lim M. Case 2. Suppose w = st. Since :d is Cauchy 

and L c U, there exists x c W such that L[x] = [I,x] 

Hence [ 1 , x] c M *. Now ( x, Q] is a neighborhood of \2 and 

since 1'-'l* converges to Q we have that (x, st] c ,\!*, but this 

is impossible. Hence w c W and by case l, we have that 

w c lim M. Therefore (W,U) is complete. 

An alternate proof that (W,U) lS complete can be 

given. Let M be a Cauchy ultrafilter on W. Since L t. U 

there exists x E W such that [l,x] = L[x] c M. 



be the trace of M on [l,x], then M
1 

lS an ultrafilter on 

[l,x]. Since [l,x] is compact there exists z r [l ,x] such 

that z slim M
1

• Hence z slim M. 

We now show that (X,U) is R
3

• Let L n u E u and w ~ 

W. Then there exists x s vJ such that (x,w] C (L n U) [w]. 

Let 0 = [ 1 ,x], S = (x,w], and T = (w,rt). Then 0, S, and T 

are open. Set 

v 1 = o x o u (W-o) x w 

v = s X s u (W-S) X w 
2 

v 3 T X T u (W-T) X w 

Then V 1 , V2 , V 3 belong toP and hence to U. 

see that 

z = v
1 

n v
2 

n v
3 

It is easy to 

(0 X 0) u (S X S) u (T X T). 
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Thus Z s U, z is synunetric, and z o z = z. Now Z[w] = (x,w] 

c (L n U) [w] . Therefore (W,U) is R3 and by the corollary to 

theorem 9 we have that (W,U) is strongly complete.// 

F. GENERAL PROPERTIES FOR A COMPLETION 

It is apparent that not all of the properties of a 

completion for a uniform space carry over for a quasi-uni-

form space. In this section we note that irregardless of 

the definitions of "Cauchy" filter and "completeness" not 

all of the pleasant properties of a "completion" are going 

to be preserved in a quasi-uniform space. 

We would like a definition of "Cauchy" filter and 
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"completeness" that would satisfy the following conditions. 

(a) The definitions would reduce to the ordinary 

definitions on a uniform space. 

(b) There exists at least one completion for every 

quasi-uniform space. 

(c) If (X,U) is T 2 , then there exists a T 7 completion. 

(d) If (X,U) is compact, then (X,U) is complete. 

(e) If f (X,U) ~ (Y,V) is quasi-uniformly contin-

uous where (Y,V) is complete and T 2 , then there 

exists a quasi-uniformly continuous extension 
'\., 

f : (X*,U*) ~ (Y,V) where (X*,U*) is any comple-

tion of (X,U). 

(f) If (X,U) is pre-compact then (X*,U*) is coP1pact 

where (X*,U*) is any completion of (X,U). 

(g) Every convergent filter is Cauchy. 

It is clear that each of these conditions hold 1n a 

uniform space. 

THEOREM 11. (c) and (f) can not both hold (for all 

spaces (X,U)). 

PROOF. Let (X,t) be a T 2 space that is not T 3 and 

U the Pervin quasi-uniform structure for t. By (c) there 

exists a T 2 completion (X*,U*) for (X,U) and by (f) (X*,U*) 

1s compact. Hence (X,U) is T 3 which is iP1possible.// 

THEOREM 12. (d) and (e) can not both hold (for all 

space (X,U)). 

PROOF. Let X = ( o, 1l and U the Pervin quasi-uniform 



structure associated with the usual topology. Let Y = 

[-1,1] and let V be the Pervin structure associated with 

the usual topology on Y. ( y 1 v) 

(d) it is complete. Define f 

is ~ and compact and by 
2 

X~ Y by f(x) =sin 1/x. 

Now f is continuous and since U and V are the Pervin 
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structures it follows that f is quasi-uniformly continuous. 

Now X*= [o,11 is compact with the usual topology. 

Let U* be the Pervin structure for X*. By (d) we have 

that (X*,U*) is complete, hence it is a completion of (A,U). 

Now by (e) there exists a quasi-uniformly continuous exten-
rv 

sion f : X* ~ Y, but this implies that f has a continuous 

extension to [o,I] which is impossible. Therefore {d) and 

(e) can not both hold.// 

THEOREM 13. If (d) holds then (b) holds. 

PROOF. The trivial completion is compact and by (d) 

it is complete.// 

Considering our usual definition of Cauchy filter we 

obtain the following summary. 

Complete (or Strongly Complete) 

(a) holds 

(b) holds 

(c) does not hold 

(d) holds 

(e) does not hold (See theorem 12.) 

(f) does not hold 

(g) holds 
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To see that (f) does not hold consider the space in 

example 2. Since every filter is Cauchy in this space it 

is clear that there are infinitely many nonconvergent 

Cauchy filters. Let A denote this collection. Now the 
0 0 

construction of the strong completion (X,U) carries over 
0 0 

with A redefined as above. If (X,U) is compact then it 

must be pre-compact and hence A would be finite, which it 

is not. 
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IV. SOME THEOREMS AND EXAMPLES REGARDING 

QUASI-UNIFORM SPACES 

A. NEIGHBORHOODS OF ~ 

One of the points of interest is the following. Given 

a quasi-uniform structure U for a set X, when is U compat-

ible with a uniform structure? By definition U is compat-

ible with a uniform structure if and only if the topology 

generated is uniformizable. Other sufficient conditions 

will be obtained. 

DEFINITION l. A quasi-uniform space (X,U) is said to 

have property P if each U E U is a neighborhood of ~ in 

X x X with respect to the product topology. 

It is well known that a compact uniform space has prop-

erty P. The following example shows that this need not be 

the case in a quasi-uniform space. It also demonstrates 

that a quasi-uniform structure may be compatible with a un-

iform structure and not have property P. 

EXAMPLE l. Let X= [0,2] with the usual topology and 

let U denote the Pervin quasi-uniform structure. Now 0 

( 
1 3

) E t SO U 2'2 0 X 0 u (X-0) X X E u. Suppose that U is 

a neighborhood of ~, then there exists E > o such that 

1 l ( --E -+E) 2 , 2 X Now p = 

Hence U is not a neighborhood of L. 

The following example shows that a quasi-uniform 

structure can have property P and not be a uniform struc-
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ture. 

EXAMPLE 2. Let N denote the positive integers and 

set Un = { (x,y) : x y or n s: x s: y} . Then { Un : n = 

1,2, ••• } forms a quasi-uniform base. Let U denote the 

quasi-uniform structure generated by this base. It is clear 

that U is not a uniform structure and the topology generat-

ed is the discrete topology. Hence 6 is open in X x X, and 

therefore each U s U is a neighborhood of 6. 

In the above example we note that U is compatible 

with a uniform structure. The following theorem shows that 

if U satisfies property P then this is always the case. 

DEFINITION 2. Let (X,U) be a quasi-uniform space. 

Then u- 1 = { u- 1 u E U} is a quasi-uniform structure on 

X and it is called the conjugate quasi-uniform structure of 

U. U V u- 1 denotes the smallest quasi-uniform structure 

-1 
which contains both U and U . 

THEOREM 1. Let (X,U) be a quasi-uniform space satis-

fying property P. Then U is compatible with a uniform 

structure. 

PROOF. Let t and s denote the topologies generated 

by the quasi-uniform structures U and U V u- 1
, respective­

ly. It is clear that U V u- 1 1s a uniform structure and 

that t .::.:. s. Thus it suffices to show that s < t. It is 

clear that sets of the form u n u- 1 
I where u E U, form a 

uniform base for u v u- 1
• Let 0 s s and x s 0. rrhen there 

exists U n U- 1 SUCh that X E (U n U-
1

) [x] C 0. Since U is 



a neighborhood of b with respect to t x t, there exists 

Q ~ t such that x E Q and Q x Q CU. Hence Q X Q c u- 1 • 

Therefore, 

X E Q C U[X] n u- 1 [x] 

= (U {') u- 1 ) [x] 

Co 

Hence 0 s t and thus t = s.// 

COROLLARY. Let (X,U) be a complete quasi-uniform 

space ~ith property P. Then there exists a compatible 

complete uniform structure. 

PROOF. In the above proof we showed that U V u- 1 
lS 

a compatible uniform structure. Since U is complete and 

u - u v u- 1 it follows that u v u- 1 is co~plete.// 

Every closed subspace of a complete quasi-uniforn 

space is complete. A complete subspace of a Hausdorff 

uniform space is closed. The following theorem gives an 

analogous result for a complete Hausdorff quasi-uniform 

space that satisfies property P. 

'rHEOREM 2. Let (X,U) be an arL,itrary r:ausdorff 

quasi-uniform space with property P. If Y C X, and (Y,Uy) 

1s strongly complete then Y is closed in X. 
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PROOF. 
-

Let a l. Y. Now U[a] n Y f 0, and B = { U[a]n 

Y : U E U} forms a filter base on Y. Let F denote the fil-

ter on Y generated by B. If u E u, then v = u n y X y E uy. 

Since u is a neighborhood of A, there exists 0 s t such that 

a f 0 and 0 x 0 CU. Now 0 n y f ,0 and 0 n y X 0 f1 y c v. 
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Let b E: 0 (\ Y. Then V [b] ~ 0 n Y and hence F is Cauchy on 

Y. Since Y is strongly complete there exists c s y such 

that c s lim F. Let F' be the filter on X generated by F. 

Then c c lim F' and a s lim F' and since X is Hausdorff we 

have that a= c s Y. Hence Y is closed in X.// 

DEFINITION 3. Let (X,U) be a quasi-uniform space. We 

will say that (X,U) has property S if for each x, the col-

lection { V[x] : V s U, V is symmetric} forms a fundamental 

system of neighborhoods for x with respect to the topology 

generated by U. 

The following question arises naturally. If U has 

U-l property P, then does have property P? Since this type 

of question will be of interest later, we make the follow-

lng definition. 

DEFINITION 4. A property Q will be called a quasi-con-

jugate invariant if a quasi-uniform structure Ll has ;?roperty 

Q implies that u-l also has property Q. 

The space considered in example 2, Chapter III, clearly 
_l 

has property P since its topology is discrete. Now U ~' c: 

suppose u~ 1 is a neighborhood of 6 with respect to the 

product conjugate topology. Then there exi~ts 0 F tu-l with 

k 

0 and ox o c u- 1
• 

' -' 
Thus taere exists positive integer 

2 such that {2,k,k+l," .. } C 0. Hence (2,k) s u r: 
;) 

which 

ls impossible. Therefore U-l does not have property P, that 

is property P is not a quasi-conjugate invariant. 

THEOREH 3. Let (X,U) be a quasi-uniform space satis-



fying properties P and S. Then U- 1 satisfies property P. 

PROOF. Let u- 1 U-1 
E • Since U has property P, we 

have that for each x c X there exist V(x) s U such that 

V(x) [x] X V(x) [x] c u. Hence V(x) [x] X V(x) [x] c u- 1 for 

each x c X. By property S there exists a symmetric T(x) 

U such that T(x) [x] C V(x) [x] for each x E X. Since T(x) 

is symmetric it follows that T(x) U-1 
E for each x f X. 
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Thus U { T (x) [x] x T (x) [x] x c X}C U { V(x) [x] x V(x) [x] 

: x s x} c u- 1 
• Hence u- 1 is a neighborhood of A. with res-

pect to the product conjugate topology and therefore u- 1 

has property P.// 

COROLLARY. Let (X,U) be a quasi-uniform s~ace. If l/ 

satisfies properties P and S then u- 1 is compatible with a 

uniform structure. 

PROOF. The result lS an immediate consequence of 

theorems l and 3.// 

Theorem 1.47 in [16] shows that if tu is weaker than 

the conjugate topology then the conjugate topology is uni-

formizable . . U (U-l)-1 Slnce = it follows that if tu is 

stronger than the conjugate topology, then tu is uniformiz-

able. 

THEOREM 4. Let (X,U) be a quasi-uniform space. If U 

(U- 1 ) has property S then tu_1 (tu) lS uniformizable. 

PROOF. Suppose U has property S. Then tu is weaker 

than the conjugate topology, for let 0 c tu and x c 0. 

Since U satisfies property S we have that there exists a 



symmetric V E U such that x E V[x] C 0. -l Hence V E U and 

Then by theorem 1.47 in [16] we have that t 
u_-1 

is uniformizable. Now suppose that u-l has property s and 

let 0 E t With X E 0. u_-l Then there exists a symmetric 

U-1 ] V E with X E V[x C 0. Since V is symmetric we have 
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that V E U and thus 0 E t . 
u Therefore tu._ 1 ~ tu. and conse-

quently we have that tu. is uniformizable.// 

COROLLARY 1. If (X,t) is T 3 then it has a uniformiz-

able conjugate topology. 

PROOF. By theorem 3.17 in [16] U, the Pervin quasi-

uniform structure, has property S. tu._ 1 is uniformizable by 

theorem 4.// 

COROLLARY 2 • Let (X,U) be a quasi-uniform space such 

-l that U and U have property S. Then t 
(,(_ 

t 1 and t is u- u 

uniformizable. 

PROOF. Since U has property S we have tu. ~ tu._ 1 and 

since u- 1 has property S we obtain tu.-1 ~ tu.. Hence tu_ = 

and thus t, = t V t = t 
u. u u-l u 

uniformizable.// 

-1 
B. U 1\ U 

v u_--l • Therefore tu. is 

DEFINITION 5. Let U and V be quasi-uniform structures 

on X. Then U ~ V = { U 

THEOREM 5. Let U and V be quasi-uniform structures 

on X. If U A V is a quasi-uniform structure on X then 

U A V is the greatest lower bound of the quasi-uniform 
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structures U and V. 

PROOF. It is clear that U A V ~ U and U A V ~ V. Now 

suppose that S is a quasi-uniform structure such that S U 

and S :;: V. If s E S, then s ~ u n v. Hence S ~ U A V.// 

It lS well known that if u l and U;o are quasi-uniform struc-

tures for X then u " u need not be a quasi-uniform struc-l 2 

ture. The following example shows that even u ;\ u-J need 

not be a quasi-uniform structure. 

EXAMPLE 3. Let X denote the natural numbers and set 

Un = { (x,y) : x = y or x = 1 andy~ n}. Let U be the 

quasi-uniform structure generated by { U : n = J ,), ... }. 
n 

Now 

U = { (X 1 y) : X = y Or X = l and j_' _:::. 11 

or y = and x .:::. 4 } c U 1\ U-
1 

• 

-l 
Suppose there exists V E U A U such that V r; V C U. <:;' ,_,lnce 

V E U there exists n EX such that (J,k) c V for each k ~ n. 

Similarly, since V E u-l there exists m F X such that (k,l) 

E V for each k .:::. m. Lett= max{m,n}. Then t ...:. 14 since 

v cu. Now (t,J) c V and (l,t+J) t: V anr-t therefore (t,t+!) 

E U which is inpossible. Hence U A U- does not form a 

quasi-uniform structure. 

LEMMA l. If u A u-l is a quasi-uniform structure then 

U ~ u- 1 is a uniform structure. 

PROOF. Then 0 F u and hence u- 1 

-l u . -l -l 
Also, U E U and thus U E [; . Therefore E 



DEFINITION 6. A quasi-uniform space (X,U) is said to 

have property * if for each symmetric U E U there exists a 

symmetric V E U such that V o V CU. 

It is apparent that each uniform structure possesses 
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property * Not every quasi-uniform structure has property 

* as the space in example 1 demonstrates. It is clear that 

property * is a quasi-conjugate invariant property. It is 

an easy exercise to show that property * does not imply and 

lS not implied by any of the usual separation properties. 

However, as the next theorem shows it does characterize 

those structures U for which U A u- 1 is a quasi-uniform 

structure. 

THEOREM 6. Let (X,U) be a quasi-uniform structure. 

U A u- 1 is a quasi-uniform structure if and only if (X,U) 

satisfies property *· 

PROOF. Suppose (X,U) satisfies property *. Clearly 

u " u-1 
=t= $5 and if u E u ;\ u-1 then u ::> [',. Now u f_: u 1\ u-1 

and v::> u implies v E u and v E u- 1 • Hence v E u 1\ u- 1 • 

Now U, v E u 1\ u impiies u nv E u and u n v E u- 1 • 'l'hus 

u (\ v E u /\ u-1 • Let u E u /\ u-1. Then u-1 
E u ' and T = 

u ~ u- 1 
E U and T is symmetric. By hypothesis there exists 

a symmetric v E U such that V o V CT. Since V is symmet-

ric, We haVe V E u- 1 and thUS V E LJ !\ LJ-
1

• 

lS a quasi-uniform structure. 

Hence U !\ u-l 

Now suppose that U A u- 1 is a quasi-uniform structure. 

Let U E U and U be symmetric. Then u E u A u- 1 and there 



exists V s U A u- 1 such that V o V Cu. Now v s U and 

v s u- 1 • Hence V- 1 
c u, v- 1 u- 1 ct th f v 1 
G s , an ere ore - s 

U A u- 1 
• Let S v n v- 1 • Then S s U and S is symmetric 

and more over s o s = (V n v- 1
) 0 (v n v- 1

) c v o v c u. 

Hence (X,U) satisfies property *.// 

on X. 

THEOREM 7. Let U1 and U2 be quasi-uniform structures 

Suppose U1 A U2 is a quasi-uniform structure, and 

denote the topology it generates by t. Then t = t 1 1\ t
2 

, 

where t
1 

and t
2 

are the topologies generated by U
1 

and U
2 

respectively. 
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PROOF. Then there exists U s U 1 

and V s U2 such that x s U[x] C 0 and x s V[x] C 0. Then 

U U V s U 1 1\ U 2 and x s (U U V) [x] C 0. Therefore 0 s t. 

Now suppose x s 0 E t. Then there exists U s U 1 ~ U2 such 

that x s U[x] C 0. Since u E u1 and u E U2, we have that 

0 E t 1 and 0 E t 2 and hence 0 E t 1 A t 2 • Therefore, t = 

COROLLARY. L2t G denote the family of all quasi-uni-

form structures which generate the topology t on the set X. 

Then if U1 and U2 are in G and U1 A U2 is a quasi-uniform 

structure, then u1 A u2 E G. 

THEOREM 8. Let (X,U) be a quasi-uniform space satis-

fying property * 

( i) If U A U- 1 generates t then t 1 is uniformiz-u. u.-

able. 

(ii) If U A U- 1 generates tu._ 1 then tu. is uniforrniz-
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able. 

PROOF. ( i) By hypothesis tu ~ tu_ 1 and from theorem 

1.47 in [16] we have that tu-1 is uniformizable. ( ii) . By 

hypothesis tu-1 ~ tu and by the remark following theorem 3 

we have that tu is uniformizable.ll 

THEOREM 9. Let (X,U) be a quasi-uniform structure. 

U V u-l generates t if and only if there exists a compat­u 

ible uniformity stronger than U. 

PROOF. The necessity is obvious. Suppose there exists 

compatible uniform structure v such that u v . Let u -l a ~ 

E u-l then u E u and thus u-1 E v . Hence u < u v u-1 
~ v. I -

Now let t denote the topolog~ generated by u v u-1 . Then 

Hence U V u- 1 generate 

THEOREJVI 10. Let (X,U) be a quasi-uniform space satis-

fying property *· Then there exists a weaker compatible un-

iform structure if and only if U A u-l generates tu. 

PROOF. The sufficiency is clear. Suppose V is a com-

patible uniform structure such that V ~ U. If V E V, we 

have that V-] E V and hence V E U and V_l E U. That is, 

V E U and V C u-l. Thus v c U A u- 1 and we have that V ~ U 

A u-~. 1 t d b U 1\ U-l by t. Denote the topo ogy genera e y 

Then t ~ t ~ t since V ~ U A u- 1 ~ U and the hypothesis 
u u 

that V generates t . 
u 

L 1\ U- 1 II Thus 1 generates tu. 

C. SATURATED QUASI-UNIFORM SPACES 
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DEFINITION 7. A topological space (X,t) is called sat-

urated if for each x s X there exists a minimal open set 

containing x. That is, for each x s X there exists an open 

set Ox containing x such that if 0 s t and x s 0, then Ox C 

0. 

It is clear that a topological space (X,t) is saturated 

if and only if every intersection of open sets is open. 

DEFINITION 8. A quasi-uniform space (X,U) is called 

quasi-saturated if n{ u : u E U} E u. 
LEivWlA 2. A quasi-uniform space (X,U) is quasi-satu-

rated if and only if there exists a unique base for U con-

sisting of a single set. 

PROOF. The sufficiency is clear. Let V = n { U : U 

E U } • By hypoth2sis V s U. Set B = { V} . It suffices to 

show that V o V C v. Since V s U there exists U s U such 

that U o U C. V . But V C U and thus V o V c U o U C V. 

Hence B is a base for U. The uniqueness is obvious.// 

LEMMA 3. If (X,U) is quasi-saturated then tu is a 

saturated topology. 

PROOF. Let B = [W} be the base for U developed in 

lemma 2· Let x s 0, where 0 s t . 
:.L 

Then x s W[x] C 0, and 

W[x] is the rninimal open set containing the point x.// 

THEOREM 11. If (X,U) is quasi-saturated then (X,U) 

lS strongly complete. 

PROOF. Let F be a Cauchy filter. Let B = {W} be the 

base for U consisting of a single set. Then, since F is 
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Cauchy, there exists x E X such that W[x] E F. Hence for 

each U E U we have U[x] ~ W[x] 1 and therefore U[x] E F and 

x E lim F.// 

THEOREM 12. Let (XIt) be a saturated topological 

space. Then there exists a strongly complete compatible 

quasi-saturated quasi-uniform structure. 

PROOF. Let Ox denote the minimal open set containing 

x. Set W = { ( x 1 y) : y E Ox 1 x E X} . Then {\'J} forms a 

base for a quasi-uniform structure which we will denote by 

u. It suffices to show that W o W c w. Let (a 1 b) E W and 

(b 1 c) E W. Then b E Oa and c E Ob. Since Ob is the mini-

mal open set containing b we have that c E ObC Oa· Hence 

(a 1 c) E VV. If 0 E t and X E 0 then X E OX C 01 but OX = 

W [x] • Thus t < t . - u If 0 E tu_ and X E 0 then X E OX = W[x] 

C 0 and hence tu ~ t. By theorem 11 (X 1 U) is strongly com-

plete .// 

Fletcher has shown in [7] that if a topological space 

has property Q then it admits a compatible strongly complete 

quasi-uniform structure. Fletcher's theorem is a clear gen-

eralization of theorem 12. 

The following example shows that metacompact and para-

compact are not necessary conditions for a topological space 

to admit a strongly complete structure. 

EXAMPLE 4. Let N denote the natural numbers and t = 

{N 1 ~ 1 { 1} 1 { l 17} 1 { 1 121 3} 1 • • •} • (N 1 t) is a saturated topolog-

ical space. Set Oi = {1 1 2 1 ••• 1 i} 1 then { Oi : i = 1 1 2 1 • •• } 



is an open cover for (N,t). Let { Q : a s Q} be an open 
a 

refinement of { Oi: i = 1,2 ••• }. Suppose that 1 is con-
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tained in only a finite number of the Oa, say Qa , ... , Qa . 
1 n 

n 
Clearly each Q,~ + N and further the set U Qa. has a maxi-

"' 1 l 

mum element, say r. Now r is contained in some QB + Qa· 
l 

fori= 1, ••• ,n. Then {1,2, ••• ,r} C Q6 , that is 1 s o6 

which is a contradiction. Hence (~,t) is a saturated 

space that is not metacompact. 

THEOREM 13. Quasi-saturated is a quasi-conjugate in-

variant. 

PROOF. Suppose (X,U) is a quasi-saturated quasi-uni-

form structure. Then there exists W s U such that if U s 

U then W CU. It is clear that {W- 1
} forms a base for u- 1 

and hence by lemma 2, u- 1 is quasi-saturated. I I 

THEOREH 14. Let (X,U) be a quasi-saturated quasi-

uniform space with a base {W}. Let Ox denote the minimal 

open set in tu containing x. Then W is a neighborhood of 

/',.; that is, U has property P if and only if W = U { Ox x 

PROOF. The sufficiency is evident. If W is a neigh-

borhood of /',. then ~-J ::::> U { Ox x Ox : x s X}. If (a,b) E It¥, 

then b E W (a] C 0a • Hence (a,b) E Oa X oac U{ Ox X Ox: 

X E X}.// 

THEOREM 15. Let U and V be compatible quasi-uniform 

structures on X. If V is quasi-saturated then U ~ V. 

PROOF. Let U s U and {V} the base for V. If (x,y) s 
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V, then y E V[x] C U[x]. This follows since V[x] is the 

smallest open set containing x. Hence (x,y) E U and we 

have V C U and thus U E V.// 

COROLLARY. If (X,t) is saturated then there exists 

one and only one compatible quasi-saturated quasi-uniform 

structure. 

PROOF. The result is an immediate consequence of 

theorems ll and 15.// 

Fletcher [6] working independently has obtained slml-

lar results for finite topological spaces. 

D. 0-COMPLETE 

DEFINITION 9. A filter F will be called an open filter 

if it has a base consisting of open sets. 

DEFINITION 10. Let (X,U) be a quasi-uniform space. 

(X,U) will be called o-complete if every open Cauchy filter 

has a nonempty adherence. (X,U) will be called strongly 

o-complete if every open Cauchy filter has a nonempty limit. 

DEFINITION 11. A topological space (X,t) is called 

generalized absolutely closed if every open cover { 0 } 
a 

has a finite subcollection Oa , ... ,0 such that X= 
l an 

DEFINITION 12. A filter F in a quasi-uniform space 

(X,U) is said to contain arbitrarily small open sets if for 

each u E U there exists x E X and Ox E tu such that x E Ox 

C U[x] and Ox E F. 



It is clear that if (X,U) is complete, (strongly com­

plete), then it is o-cornplete, (strongly o-cornplete). 

LEMJI.1A 4. Let (X,U) be a quasi-uniform space such 

that every Cauchy filter contains arbitrarily small open 
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sets. Then (X,U) is strongly o-cornplete implies that (X,U) 

is strongly complete. 

PROOF. Let F be a Cauchy filter and let B = { 0 : 0 

s F and 0 is open}. Let G be the filter generated by B. 

Since F contains arbitrarily small open sets we have that 

G is an open Cauchy filter. The result follows from the 

fact that lim G = lim F.// 

It is an easy observation that if (X,t) is a general-

ized absolutely closed topological space and U is any corn-

patible quasi-uniform structure then (X,U) is o-cornplete. 

This is true since in a generalized absolutely closed space 

every open filter has a nonempty adherence. 

LEMMA 5. If (X,U) is pre-compact then every open ul-

trafilter is Cauchy. 

PROOF. Let M be CJ.r open ultrafilter on X; that is, 1\l 

is a maximal element in the class of all open filters on X. 

Let U E U, then there exists V E U such that V o V CU. 

Since U is pre-compact there exists x 1 , ••• ,Xn s X such that 

n 
i 1,2, •.• ,n. Hence u oi =X and so there exists ok E u 

1 

since M is an open ultrafilter. Now U[xk] ~ Ok and there-

Consequently M is Cauchy.// 



44 

LEMMA 6. Let (X,U) be a quasi-uniform space. If 

(X,U) is pre-compact and o~complete then X is generalized 

absolutely closed. 

PROOF. It suffices to show that every open ultrafil-

ter has a nonempty adherence. Let M be an open ultrafilter, 

then since U is pre-compact M is Cauchy by lemma 5. Since 

(X,U) is a-complete we have that adh A1 =f fJ.// 

THEOREM 16. Let (X,U) be a uniform space. (X,U) is 

generalized absolutely closed if and only if (X,U) is pre-

compact and a-complete. 

PROOF. Lemma 3 is a generalization of the sufficiency. 

Suppose (X,U) is generalized absolutely closed, then (X,U) 

is a-complete by a previous comment. We now show that 

(X,U) is pre-compact. Let U s U, then there exists a sym-

metric V s U such that V o V CU. Now { V[x] : x s X} is 

a neighborhood cover of X. Since X is generalized absolute-

ly closed we have that there exists x 1 , ••• ,xn s X such that 

X 
n 
U V[xi]. 
l 

f fj. Let 

z <: V[y] n V[xi]. 'I' hen ( y, z) E V 1 s V and since V 

is symmetric we have that (xi,z) s V and (z,y) s V. Thus 

(xi,y) s V o v C U or y s U[xi]. 

therefore (X,U) is pre-compact.// 

n 
Hence X = U U[xi] and 

l 

Fletcher and Naimpally [10] working independently ob-

tained analogous results to those found in this section. 

They call a-complete, almost complete and generalized ab­

solutely closed, almost compact. They defined a quasi-un-



iform space (X,U) to be almost pre-compact if for each u c 

U there exists x 1 , ••• ,xn c X such that X= a U[x.J. 
l l 

Using 

these definitions they obtained the following generaliza­

tion to lemma 6. A topological space is almost-compact 

if and only if every compatible quasi-uniform structure 

is almost complete and almost pre-compact. 

E. q-T. SEPARATION AXIOMS 
l 

Let (X,U) be a quasi-uniform space. X is t 0 if and 

only if given x f y there exists U c U such that either 

x ~ U [ y) or y ~ U [ x] • X is T
1 

if and only if given x f y 

there exists U c U such that x ¢ U[y] andy ~ U[x]. Simi-

larly, X is T 2 if and only if given x f y there exists u c 

U such that U[x] n U[y] = ~- The following example shows 

that this characterization does not carry over for an ar-

bitrary T quasi-uniform space. 
3 

EXAMPLE 5. Let X denote the natural numbers and let 
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U be the quasi-uniform structure generated by the base con-

sisting of all sets of the form Un = { (x,y) : x = y or 

x ~ n}, for n c X. Now tu is the discrete topology, so 

F = {2,4,6, ... } is closed in X. 

U [2n) =X, so U[F] =X. 
n 

If U c U, there exists 

Thus (X,U) is T
3

, but 

there does not exist U c U such that U[l] ~ U[F] = ~-

DEFINITION 13. A quasi-uniform space (X,U) is called 

q-T if given x ¢ F, F closed, there exists U c U such 
3 

that U[x] n U[F] = ~-



It is clear that if a space is g-T 3 then it is T
3

• 

Example 1 showed that a space can be T
3 

but not q-T
3

• we 

will show that every uniform space is q-T
3

• 

THEOREM 17. Let (X,U) be a R
3 

quasi-uniform space. 

Then (X,U) is q-T
3

• 

PROOF. Let F be closed in X and x ~ F. Since X - F 

is open there exists U E U such that U[x] n F = 0. Since 

(X,U) is R
3 

there exists a symmetric V s U such that 

(V o V) [x] C U [x] • Suppose a s V[x] n V[F]. Then there 

exists f s F such that (f,a) s V and (x,a) s v. Since V 

is symmetric we have (x,a) s V and (a,£) s V. Thus f s 

(V o V) [x] C U[x]. But this is impossible since U[x] n 

F = 0. Hence V[x] n V[F] = 0.// 

COROLLARY. Every uniform space is q-T 3 • 

DEFINITION 14. A quasi-uniform space is called g-T 4 

if for every pair of disjoint closed sets F and G there 

exists U s U such that U[F] n U[G] = 0. 

It is clear that every q-T
4 

space lS T
4 

and moreover 

every g-T
4 

+ T
0 

space is a q-T
3 

space; that is, quasi­

normal implies quasi-regular. 

LEMl"iA 7. Let (X,U) be a q-T quasi-uniform space and 
4 

F closed in X. Then (F,UF) is a q-T 4 space. 

PROOF. Let G and H be closed disjoint subsets of F, 

then G and H are closed and disjoint in X. Since (X,U) lS 

q-T4 there exists u E u such that U[G] n U[H] = 0- Let 

v = u n F X F. Then v E UF and V[G] n V[H] = 0- Hence 
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A space can be T 4 and not q-T 4 ; consider the space 1n 

example 5 with F = {2,4, ... } and G = {1,3, ... }. 

DEFINITION 15. A quasi-uniform space (X,U) is called 

q-T 5 if for every pair of separated sets F and G there 

exists U s U such that U[F] 0 U[G] = 0. 

Clearly every q-T 5 space is T 5 • The space 1n example 

1 is T 5 but not q-T 5 • It is also evident that each space 

is a q-T 4 space. 

LEMMA 8. If (X,U) is q-T 5 then every subspace is 

q-Ts. 

PROOF. Let Y C X and F and G separated in (Y,Uy). 

Now (clX F) n Y ~ ely F. Since F and G are separated 1n Y 

we have that (ely F) n G = 0. Now (clX F) n G C (clX F) n 

G n Y (ely F) (J G ~ 0. Similarly (clX G) n F = 0. Thus 

F and G are separated in X and hence there exists U s U 

such that U[G) n U[F] = 0. Let v = u n y X Y. Then v E 

Uy and V[G] n V[F) = 0. Hence (Y,Uy) is q-T 5 .// 

THEOREM 18. Let (X,t) be a topological space and U 

the Pervin quasi-uniform structure for t. 

then (X,U) is q-Ti for 1 

If (X,t) is T. , 
l 

PROOF. For 1 = 3 the result follows by theorem 17, 
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since the Pervin structure of a T 3 space is R3 • Let i = 4. 

Let F, G be disjoint closed sets in X. Then there exists 

0, Q s t such that F C 0, G C Q and 0 n Q = 0. Let S ~ 

0 x 0 U (X-O) x X and T = Q x Q U (X-Q) x X. Then set 



u s n T 

[0 X 0 u Q X Q] u [X - (0 u Q) X X] 

Now U[F] = 0 and U[G] = Q, hence U[F] n U[G] Hence 

(X, U) lS q-T
4

• 

manner.// 

The proof for i = 5 follows in the same 
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LEI1l'1A 9. Let (X,U) be a saturated quasi-uniform space. 

If X is Ti then it is q-Ti fori= 3,4,5. 

PROOF. If U is quasi-saturated then there exists a 

base consisting of a single set w. Suppose X is T 3 and x ~ 

F where F is closed. Then there exists open sets 0 and Q 

such that X E 0, F C Q, and 0 n Q = ~. Now W[x] C 0 and 

W[F] C: Q. Hence (X,U) is q-T
3

• The proofs for q-T
4 

and 

q-T 5 follow in a similar manner.// 

EXAMPLE 6. Let X denote the natural numbers. Let U 

be the uniform structure generated by the base consisting 

of the sets Un = { (x,y) : x = y or x ~nand y ~ n}. The 

topology generated is discrete and hence T
5 

and T
4

• (X, U) 

is clearly not q-T
4 

and hence not q-T 5 • Thus we see that 

a uniform space may be T 4 (T 5 ) and not q-T 4 (q-T 5 ). 

THEOREM 19. 

space. 

Let (X,U) be a compact q-T
3 

quasi-uniform 

Then (X,U) is q-T 4 . 

PROOF. Let F and G be disjoint closed sets. Suppose 

that for each u E u we have U[F] n U[G] + ~- B = { U [F] () 

U [G] U E U} is a filter base. Since X is compact there 

exists x ~ adh B. We may suppose that x ~ F, since clear-

ly x i F ()G. By hypothesis X is q-T so there exists 
3 
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U E U such that U[x] n U[F] = ~- Then U[x] n (U[F] n U[G]) 

= ~' but this is impossible since x c adh B. Therefore 

(X' u) is q-T 4 • I I 

COROLLARY. Let (X,U) be a compact uniform space. 

Then (X,U) is q-T 4 • 

The following characterization of q-T 3 seems compli­

cated but it proves a helpful tool in the following theorem. 

L E i''L.'VlA 1 0 • (X,U) is q-T 3 if and only if for each open 

set 0 and x c 0 there exists U c U such that U[x] C X -

U[X- 0]. 

PROOF. The proof follows immediately from the defini-

tion of q-T 3 .11 

is 

X E 

0· l 

X E 

THEOREf--1 2 0 • 

q-T3 for each l . 

PROOF. Let X = nxi and u = n u .. Sufficiency. Let l 

0 where 0 lS open in X. Then there exists rrioi where 

lS open in t· and 0· is x. except for i = i 1 ' ••• ' ik and l l l 

n.o. co. 
l l 

For each i = i 1 , ••• ,ik there exists Ui c 
k 

u. such that u. [x· ] c: Xi - u. [X. - oi ] . Let U = TIU. 
1 k 1 k 

1
k k 1 k 1 k k l 

where ui =xi X xi for l + il, ... ,ik. Then u E u. Suppose 

that y E U[x] n U[X - 0]. Then there exists a E X - 0 such 

that y c U[a]. If a t 0 then there exists ik such that 

t 0
1
· • Thus y 1· c U1· [x. ] and y 1· c U[ai ] . Thus Yik c 
k k k 1 k k k 

U· [x· ] C X· - U. [X. - 0
1
· ] . But Y· c U[a. ] CU. 

lk lk lk lk lk k lk lk lk 

[Xi - o. ] which is impossible. 
k lk 

Therefore U[x] n U[X - 0] 

= ~ and hence U[x) C X - U[X - 0] and by lemma 10 we have 
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that (X,U) lS q-T 3 • 

Necessity. Let xi s Oi, where Oi is open in Xi. Let 

x be any point in X with the ith coordinate equal to xi. 

Then there exists Us U such that U[x] C X- U[X- ni 1 (Oi)] 

There exists nkuk C U where uk = Xk x Xk except for ~ fi­

nite number of indices and Uk s Uk for each k. 

Then 

Suppose y. s 
l 

Ui[xi] n Ui[Xi - Oi]. Then there exists ai s Xi - Oi such 

that (a.,y.) s u .. Choosey,= x. for all j + i. Then y = 
l l l J J 

_l 
(yk) s (ITJ.;.Ykl [x] and therefore y s X- (rrkuk) [X- TTi (Oi)]. 

Define a= (a.) by a. = y. for each j + i. Then a s X-
J J J 

-1 
11i (Oi) since ai s Xi- oi. Now (a,y) s nkuk since for 

each k + i (ak,yk) = (yk,yk) s Uk and for k = l we have 

(a.,y.) 
l l 

Therefore (a,y) -1 EX- TT. 
l 

(Oi). Hence y s rrkuk[X- TTi
1 

(Oi)] which is a contra­

diction. Therefore 

U · [x ·] n U · [X· - 0 ·] = ~. 
l l l l l 

Thus U i [xi] C Xi - U i [Xi -- Oi] and by lemma 10 we have that 

each factor spac~ is q-T3.// 

It is easy to see that the product of a family of a 

family of q-T 4 spaces need not be q-T 4 • Let (Xa,ta) be a 

family of T 4 topological spaces such that (rraxa,nata) is not 



rl' 4 • Let U 
a be the Pervin structure associated with t . 

a 
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Then each factor space (X U ) a' a is q-T
4 

by theorem 18. Hence 

if n U were c-T then n t would be T
4 

which is impossible. a a j_ 4 a a 

F. A COUNTER-EXAMPLE IN (F,0)J 

DEFINITION 16. Let (X,U) and (Y,V) be quasi-uniform 

spaces. Let F denote the set of all functions from X to 

Y. For each V s V we let 

W ( V) = { ( f , g ) s F x F : ( f ( x) , g ( x) ) s V for each x s X } • 

The collection of all such W(V) forms a base for a quasi-

uniform structure which we denote by W. (F,(v) is then a 

quasi-uniform space and W is called the quasi-unifor~ 

structure of quasi-uniform convergence. 

The following example shows that neither the set of 

all continuous mappings from X to Y nor the set of all 

quasi-uniformly continuous mappings from (X,U) to (Y,V) 

need be closed in (F,W). 

EXANPLE 7. Let X and Y denote the integers. 

u = { (x,y) c~ X x X : x n 
y or x = l andy ~ n}. 

Let 

Set 8 = { Un: n = 1,~, ... }. Then G is a base for a quasl-

uniform structure on X, which we will denote by U. 

'i'he set of all 

vn = { (x,y) s Y x Y : x = y or x .:.: n} 

where n = 1,2, ••• , forms a base for a quasi-uniform struc-

ture for Y, which we will denote by V. The topology on Y 

is discrete. Define f: (X,LI) ~)- (Y,V) by f(x) = x for each 



X E X. The function f is not continuous since f- 1 (1) 

{1} ~ tx, and hence not quasi-uniformly continuous. 

For each natural number n, define 

fn : (X,U) ~ (Y,V) by, 

fn(x) = x for x < n 

= 1 for x 2: n. 

We will show that each fn is quasi-uniformly continuous. 

Let fn and Vm E V be given. It suffices to show that if 

(a,b) E Unthen (fn(a),fn(b)) EVm. 

fn(b) and thus (fn(a) ,fn(b)) E Vm. 

and b .:::. n. 

If a= b, then fn(a) 

If a + b, then a = 1 

Thus 

each fn is quasi-uniformly continuous and by theorem 1.24, 

in [16] it is continuous. 

Let F denote the set of all functions from X to Y and 
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W the quasi-uniform structure of quasi-uniform convergence. 

Let U C F denote the set of all quasi-uniformly continuous 

functions from (X,U) to (Y,V), and let C c F denote the col­

lection of all continuous functions from (X,U) to (Y,V). 

We have shown that each fn E U C C, and f ~ C. We now show 

that f c: U. Let Vn be given. We claim that fn E W(Vn) [f] 

Consider (f(x),fn(x)); ifx < nthen (f(x),fn(x)) = (x,x) 

s Vn' and if x.::: n then (f(x) ,fn(x)) = (x,1) E Vn. Hence 

fn E W(Vn) [f] and since Vn was arbitrary, we have that f c: 

IT c c. But f ~ C. Hence neither U nor C is closed in (F,W) 
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V. SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS 

We noted that a quasi-uniform space need not have 

a T1 or T 2 strong completion nor a T 2 completion. It is 

of interest to know if an arbitrary space has a T 1 com­

pletion. Our construction showed that for certain classes 

a T1 completion exists. No one as yet has exhibited a 

topological space that does not admit a complete or strong-

ly complete quasi-uniform structure. Our example demon-

strates that a space can be uniformizable, admit a strong­

ly complete structure and not admit a complete uniform 

structure. 

It seems that the present definition of Cauchy 

filter may admit too many filters. In Chapter III, ex­

ample 2, we saw that F = {X} was a Cauchy filter. Since 

the topology on X is discrete this seems a bit unreason­

able. Thus the study of other classes of "Cauchy" filters 

would appear to be worthwhile. Since Section F, Chapter 

III showed that regardless of the definition of "Cauchy" 

filter and "completeness" not all of the pleasant prop­

erties of the completion of a Hausdorff uniform space 

could be preserved for a quasi-uniform space, it seems 

logical for one to decide which of these properties 

should be preserved, if possible, before a new defini­

tion of "Cauchy" filter is proposed. 

On the other hand it can be noted that for special 

classes the completion constructed in Chapter III, Section 



B, has many of the desired properties. 

In Chapter IV several topics were considered. i'1any 

other areas in quasi-uniform spaces also remain open to 

investigation. No one has as yet characterized the uni-

versal quasi-uniform structure associated with a given 

topology, and no necessary and sufficient conditions are 

known for when a topology admits a minimal quasi-uniform 

structure. Necessary and sufficient conditions were 

gl'ven for u 1\ u- 1 to be a . 'f quas1-un1 orm structure. We 

showed that U and C need not be closed in (F,W) and 

Naimpally [17] showed that if (Y,V) 1s T 3 and V is the 

Pervin structure then U and C are closed in (F,W). More 

general conditions to insure that U and C be closed or 

complete seem desirable. 

The q-T. separation properties seem to this author 
l 

to at least be an interesting concept when one is more 

concerned about the particular quasi-uniform structure 

than the generated topology. 
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