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ABSTRACT 

From a practical perspective, host-guest complexes are vehicles for understanding 

and using supramolecular interactions for purposeful function in sensors, molecular 

machines and switches, while from a fundamental perspective they may lead to novel 

supramolecular protection schemes in basic organic reactions. 

This dissertation examines the interactions of cucurbiturils as barrel-shaped hosts, 

exhibiting a hydrophobic cavity, with substituted benzoylpyrydinium, phenypyrylium, 

and diazaanthraquinonediium cations as guests. 

In water, N-methyl-4-(p-substituted benzoyl)pyridinium cations exist in 

equilibrium with their hydrated forms (gem-diols ), whose concentrations depend on the 

para substituent. In the presence of cucurbit[7]uril (CB[7]), the benzoyl group shows a 

preference for the CB[7] cavity, and the ketone to gem-diol equilibrium is shifted toward 

the keto form, meaning that the stabilization through hydrophobic interactions of the 

benzoyl group in the CB[7] cavity exceeds the hydrogen bonding stabilization of the 

gem-diols in the aqueous environment. In an aprotic polar solvent such as 

dimethylsulfoxide, 4-benzoylpyridinium cations undergo heterogeneous electron transfer 

simultaneously from both their free state as well as their complexes with CB[7]. 

In the same line of work, N,N'-dimethyl-2,6-diaza-9,10-anthraquinonediium 

dication in water not only exists in equilibrium with its gem-diol but also forms 

aggregates which cause line-broadening in 1H NMR. At low pH (<1), the aggregates 

break up and the equilibrium is shifted exclusively toward the quinone form. In the 

presence of CB[7], the quinone form undergoes inclusion with CB[7] by slow exchange 

in both water and aqueous acid. Both free and CB[7]-intercalated quinone forms are 

observed by 1 H NMR. 

To gain more insight on the intercalation of monocationic guests in the 

cucurbituril cavity not only as a function of their hydrophobic properties but also in terms 

of their shape, size and the size of the cavity, 4-phenylpyrylium cation (Pylm) was 

chosen as a guest and both CB[7] and CB[8] as hosts. The size and shape of the guest 

was modified by 2,6-substitution (Me, iPr, Ph, t-Bu). In water, 2,6-disubsituted-Pylm 

form dimers, but they enter as such only in CB[8]. All guests insert their 4-phenyl groups 

in either cavity, except (iPr-Pylm)2@CB[8] where iPr-groups are inserted. 

Stereochemistry is interpreted by an interplay of size and hydrophobicity of pyrylium 

substituents, solvation effects, and size and flexibility of the hosts. 
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SECTION 

1. INTRODUCTION 

During the early 1970's, D. J. Cram, J. M. Lehn, and C. J. Pedersen conducted 

research that became a platform for the development of supramolecular chemistry. They 

were honored with a Nobel prize in 1987 for this contribution. 1-5 

Lehn, Jean-Marie defines supramolecular chemistry as "the chemistry of the 

intermolecular bond, covering the structures and functions of the entities formed by the 

association of two or more chemical species." 3•5 Vogtle, Fritz notes that, "In contrast to 

molecular chemistry, which is predominately based upon the covalent bonding of atoms, 

supramolecular chemistry is based upon intermolecular interactions (Figure 1.1 ), i.e., on 

the association of two or more building blocks, which are held together by intermolecular 

bond." 6•7 

Molecular precursors 

@ . . 

Guest Host 

Molecular chemistry 

@ Coval~nt molecules 
Chermcal nature 

---,•~ Shape 
Redox properties 
HOMO-LUMO gap 
polarity 
Vibration and rotation 
Magnetism 
Chirality 

Supramolecular Chemistry 

® { Specific characteristic 
function. ~r properties 
Recogrutlon 
Catalysis 
Transport 

Supramolecule (complex) 
Degree of order 
Interactions between subunits 
Synunetry of packing 
Intermolecular interactions 

Figure 1.1. Comparison between supramolecular chemistry and molecular chemistry. 
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Supramolecular chemistry includes but is not limited to molecular recognition, 

molecular self-assembly, and molecules with specific shapes. The molecular recognition 

is the most fundamental concept in supramolecular chemistry. 

1.1 HISTORY OF MOLECULAR RECOGNITION 

Molecular recognition is the weak, reversible, and selective binding between two 

molecules through various interactions. It is based on molecular shape, size, charge, 

hydrogen bonding, and other factors. 

Although the term was coined very recently, molecular recognition dates back to 

the era of Louis Pasteur. 8 Pasteur noted that, when tartaric acid is crystallized, it forms 

two kinds of crystals, enantiomers that are mirror images of each other. Living creatures 

such as moths and yeast selectively recognize only one type of crystal enantiomers and 

leave the other untouched. This discovery of selective recognition led to the development 

of the lock-and-key concept. This concept later served as a platform for the development 

of supramolecular chemistry. 

In nature, molecular recognition events abound, for example, Valinomycin, 

macromolecular dodecadepsipeptide selectively recognizes and binds potassium over 

sodium and transports it through cell membrane. Another well known case of natural 

molecular recognition is related to a polysaccharide known as cyclodextrin. 

Several artificial molecular recognition events have been reported. Notably, 

crown ethers discovered by Pedersen,2·9 led to the foundation of research on artificial 

hosts. 

1.2 PROCESS RESPONSIBLE FOR MOLECULAR RECOGNITION 10-12 

Various molecular interactions play an important role during the molecular 

recognition process (Table 1.1 ), for example: (a) Ionic and dipolar interactions or 

electrostatic interactions; (b) hydrogen bonding; (c) Van der Waals interactions; and (d) 

hydrophobic interactions. 



Table 1.1. Summary of supramolecular interactions. 

Interaction 

I on-Ion 

ion-Dipole 

Dipole-dipole 

Hydrogen Bonding 

Cation-n 

Tt- Tt 

Van der waals 

Hydrophobic 

Strength 

(kJ mor1) 

200-300 

50-200 

5-50 

4-120 

5-80 

0-50 

<5 but variable depending on surface area 

Related to solvent-solvent interaction energy 

Example 

sodium[15]crown-5 

acetone 

water 

K+ in benzene 

benzene and graphite 

Ar, packing in molecular 

crystal 

cyclodextrin inclusion 
compounds 
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1.2.1. Electrostatic Interactions. Electrostatic interactions occur between 

charged species that may be either attractive between opposite charges, or repulsive 

between similar charges. Those attractive and repulsive forces play an important role in 

molecular recognition since their magnitude is higher than those of other noncovalent 

interactions, and depends on the nature of the medium and the dielectric constant of the 

molecules. For example, a greater extent of electrostatic interaction is observed in more 

hydrophobic environments with smaller dielectric constants. 

Based on the nature of the charges, electrostatic interactions can be subclassified 

into one of the following categories: 

1.2.1.1. Ion-ion interactions. Ion-ion interactions are nondirectional, and their 

strength is comparable to the strength of covalent bonding. Examples include sodium 

chloride, and tetrabutylammonium chloride (Figure 1.2). 
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CHLORIDE ION SODIUM ION 

~Cl- / Na+ 

a b 

Figure 1.2. a. Sodium chloride ionic lattice; b. tetrabutylammonium chloride. 

1.2.1.2. Ion-dipole interactions. Ion-dipole interactions are weaker than ion-ion 

interactions. They are directional, meaning that the two species that bear the ion and the 

dipole charges must align favorably to develop such interactions. Examples include 

hydrated sodium ion, and sodium crown ether complex (Figure 1.3). 

H20 

H20,,,,,, \ ___ PH2 
·· Na+ 

H20,- \ "oH2 
OH2 

a 

1\ 

r-0\ 10) 
0-Na+-o 

\_j \_) 
\___J 

b 

Figure 1.3. a. Hydrated sodium ion; b. Sodium crown ether complex. 
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1.2.1.3. Dipole-dipole interactions. Dipole-dipole interactions are the weakest of 

all. They are also directional. They bring two dipoles closer together in a specific 

orientation, and they are very important for many supramolecular and biological systems. 

Example includes intermolecular interaction between positive carbon and carbonyl 

oxygen (Figure 1.4). 

o8-
R' 8+ 8- II ,,, ~+ 

'·c=o-----~ u 

R~ Ff- ~R 
~R 

Q::C., 
8- 8+ '''R' 

Figure 1.4. Dipole - dipole interaction in carbonyls. 

1.2.2. Hydrogen Bonding. 11 -12 Hydrogen bonding is generally noted as D-H---A 

(Figure 1.5) where D is a donor atom such as oxygen or nitrogen and A is an acceptor 

atom such as oxygen, nitrogen or fluorine. Most often, donors and acceptors are 

electronegative atoms with lone pairs of electrons. The strength of a hydrogen bond 

varies depending on the nature of the donors, acceptors and the environment. Typically, 

such bonds are in the range of ca 4-60 kJ mole-1. Hydrogen bonding plays an important 

role in supramolecular chemistry and in biological systems in which it determines the 

shape of many proteins, the helix structure of DNA, and substrate recognition by 

enzymes. 

R o+ o- R 

o- t-H-------o=\ o+ 
R R 
Donor Acceptor 

a b 

Figure 1.5. a. General representation of donor and acceptor during hydrogen bond 
formation; b. Hydrogen bond between amine and ketone. 
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Based on length, strength, and geometry, hydrogen bonds can be divided into 

three categories: 

1.2.2.1. Strong hydrogen bonding. Hydrogen bonding occurs in strong acidic 

media. One example is hydrogen fluoride, where the hydrogen bond is strong and 

comparable to a covalent bond. Strong hydrogen bonding is linear, with the hydrogen 

atom between the donor and the acceptor. 

1.2.2.2. Moderate hydrogen bonding. Moderate hydrogen bonding occurs via 

sharing of lone pairs of electrons between neutral donor and neutral acceptor molecules. 

They are slightly bent in nature and examples (Figure 1.6) include hydrogen bonding in 

proteins i.e., interactions in amides, and dimerization of carboxylic acids. The strength of 

these bonds is in the range of 16-60 kJ mole.- 1 

H 
I 

H~~N ?--------H-Nh 

I /; 'I ~ 
~N N-H-------- N 

backbone N=< }-NJ., 

O-H------·0 

R-<\ }-R 
N-H-------- 0 backbone 0------ H-0 

I 
H 

Guanine Cytosine 

a b 

Figure 1.6. a. Hydrogen bonding interaction between guanine and cytosine; 
b. Dimerization of carboxylic acid. 
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1.2.2.3. Weak hydrogen bonding. The strength of weak hydrogen bonding is less 

than 12 kJ mole-1 and highly nonlinear. It occurs with unconventional donor and 

acceptor atoms. When such atoms are in the vicinity of highly electronegative atoms, 

they become more acidic, encouraging weak hydrogen bonding interactions. Examples 

include the interaction of C-H---N of nitromethane and C-H---0 of pyridyl crown ether 

(Figure 1.7). 13 

a b 

Figure 1.7. a. Crystal structure of pyridyl crown ether and nitromethane; b. Pyridyl 
crown ether. 

1.2.3. Van der Waals Interactions. 14 When two neutral molecules are close to 

one another, their interaction creates induced dipoles through the uneven distribution of 

electrons. Those induced dipoles align in such a way that the partial negative charge of 

one is attracted by the partial positive charge of another. The interaction between those 

charges creates a London interaction (Figure 1.8). The strength of this interaction 

depends on the polarizability of atoms, the distance between two molecules, and other 

factors. 
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Nucleus 

o-

Figure 1.8. A London interaction between two inert atoms. 

1.2.4. Hydrophobic Effect. 15 Hydrophobic interactions take place, for example, 

between hydrocarbons or hydrocarbon-like groups in water. A representative example is 

chloroform in water. This interaction is responsible for the aggregation of hydrophobic 

molecules in water. Hydrophobic groups aggregate together to minimize the number of 

water molecules with which they interact. This interaction plays a vital role in molecular 

recognition in aqueous media. On the basis of the thermodynamics, hydrophobic 

interactions can be divided into two types. 

1.2.4.1. Enthalpic hydrophobic effect. Most hosts (e.g., cyclodextrins, 

cucurbit[n]urils, and cyclophanes) have hydrophobic cavities. The water inside then 

interacts weakly with the cavity. When a guest forms a complex with the host, it expels 

water from the cavity and interacts strongly with it. The expelled water interacts with 

bulk water, which is more favorable than the interaction of water with the hydrophobic 

cavity (Figure 1.9). 

0 - H 
H H' 

O, H H H 
I ' 0 0, 

H H H 

w0 H,O 0-H 
H H' 

Solvated host Solvated guest Complex 

Figure 1.9. Hydrophobic binding of guest and host in aqueous solution. 
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1.2.4.2. Entropic hydrophobic effect. In bulk water, the host and guest occupy 

their positions, when they form complex, one of them, either host or guest, leaves its 

position, which creates a hole or void that is filled by water (Figure 1.1 0). By 

minimizing the disruption in the bulk water, creation of such a hole favors the entropic 

gain, which lowers the overall free energy of the system. 

Figure 1.10. Creating hole or void during the complex formation. 

1.3. TYPES OF HOST 

The host-guest chemistry, which is also refer to as molecular recognition, is the 

foundation of supramolecular chemistry. The molecule or atom that is recognized is 

called a guest, and the molecule that recognizes the guest is called a host. 16' 17 Examples 

of hosts include crown ethers, cyclodextrins, calixarenes, and cucurbit[n]urils. 

1.3.1 Crown Ethers. 18 Crown ethers were the first artificial hosts developed by 

Pedersen, when he was working on bisphenol-A, and noted a reaction byproduct, 18a 

which upon examination, showed some interesting chemical properties, for example an 

ability to increase the solubility of potassium permanganate in benzene. Also the 

solubility of that compound in alcohol was enhanced in the presence of Na+. Based on 

those properties, Pedersen postulated a structure in which all the oxygen atoms 

coordinate with metal and has the shape of a crown (Figure 1.11 ). 
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a b 

Figure 1.11. a. 18-Crown-6-ether; b. Sodium -18-crown-6-ether complex. 

1.3.2. Cyclodextrin.19·2° Cyclodextrins are naturally occurring macrocyclic host 

consisting of repeating units of saccharides (Figure 1.12). In nature, they are synthesized 

from starch, a macrocyclic glycopyranoside, by an enzymatic reaction. Based on the 

number of repeating units such as six, seven, or eight, it is refered to a , ~' or y 

cyclodextrin, respectively. 

Cyclodextrin has a primary alcohol on the narrow side of the molecule and a 

secondary alcohol on the wider side. The alcohol functionality of cyclodextrin can be 

tailored to meet specific requirements, which makes it a versatile host (Figure 1.13). The 

cavity is hydrophobic as the macrocycle has no polar groups inside. Based on the cavity 

size (Figure 1.12c ), cyclodextrin can accommodate various guests ranging from inorganic 

ions to gases molecules.21 

L--------0--------~ 

a b c 

Figure 1.12. a. a-Cyclodextrin; b. Bird-eye v1ew of a-cyclodextrin; c. Physical 
properties of cyclodextrin. 



~'~R . . . . . . . . ... ... .... .. 
· l:·~· .. ·~ · . ·~ 

.. .. ···--

1 R=COOH 
3 R= CH(OH)CN(R) 
8 R- a-t(OH)Pr(S) 
t R= CH(OH)Pr(R) 
10 R= CH(OH)Pr(RS) 
11R=CH(OH}l 
12 R= Ct-lp.l 

a b 

Figure 1.13. a. Glycoside hydrolysis catalysed by the modified-cyclodextrin; 
b. Proposed mechanism for the catalysis. 

11 

CN 

1.3.3. Calixarene.23 Calixarene, a chalice-shaped molecule (Figure 1.14), was 

synthesized by interconnecting the phenols with methylene bridges. Calixarene adopts 

various conformations and its cavity size depends on the number of repeating phenolic 

groups. 

a b 

Figure 1.14. a. Calix carater shape of p-t-butyl-calix[4]arene; b. p-t-butyl-calix[4]arene. 
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A calixarene with four phenolic groups adopts the following conformations 

(Figure 1.15), each with its own guest selectivity?4 

• All the phenols point in the same directions, a condition known as cone 

conformation. 

• One phenol points opposite to the others (partial cone structure). 

• Alternate phenols point in opposite directions ( 1, 3 alternative). 

• Adjacent phenols point in opposite directions ( 1, 2 alternative). 

K•, Ag• 

Figure 1.15. Conformational changes with guest selectivity of calixarene. 
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1.3.4. Cucurbit[n]uri1.25-27 (pronounced 'kyu ker bit yur eel' 25). Cucurbituril is a 

self-assembled macrocyclic compound formed from the condensation of formaldehyde 

and glycoluril. That condensation was first reported in 1905, when Behrend published an 

article on condensation products of glycoluril and formaldehyde?8 Due to a lack of 

suitable analytical . methods, Behrend could not characterize the product other than to 

provide the molecular formula. Later in 1981, Mock et al. , characterized the condensation 

product of glycoluril and formaldehyde and reported the chemical structure by single­

crystal X-ray crystallography.29 The crystal structure revealed a pumpkin-shaped 

molecule with D6h symmetry and repeating units of six glycolurils and a cavity of 

approximately 5.5 A in diameter?9 That cavity is accessible both sides through the 

carbonyl portals, which have a diameter of about 4 A. Although comparable to 

cyclodextrin in terms of cavity hydrophobicity, and guest binding, cucurbit[n]uril differs 

in its symmetrical structure with two identical portals. 

1.3.4.1. Synthesis. In 2000, Kim et al} 1 after modifying the original reaction 

conditions, were able to synthesize cucurbit[ n ]uril, with n = 5-9. (Scheme 1.1) 

Scheme 1.1. Synthesis of cucurbit[n]urils (CB[n]). 

a,b 

c 
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Based on the reaction conditions (Scheme 1.1 ), the ratio of homologues such as 

CB[n], n=6,7,8,10 can be controlled. More drastic conditions like high temperature and 

higher pH favor cucurbit[6]uril, and milder conditions such as low temperatures and an 

extended period of heating with dilute acid produce cucurbit[7]uril. Day et al. ,36 

investigated the reaction mechanism and the reaction conditions for the optimized 

synthesis of various homologues. Pure homologues can be separated by repeated 

recrystallizations. 

1.3.4.2. Fundamental properties. 26'27 All homologues of CB [ n] have been 

thoroughly characterized by single X-ray crystallography (Figurel.l6), NMR, MS, and 

other techniques. Table 1.2, shows the physical properties of cucurbiturils in comparison 

with cyclodextrins. 

The properties of reported cucurbit[ n ]uril were later extensively studied by 

numerous research groups.29'31 '32'36 The cucurbituril homologues form stable complex 

with metals, hydrocarbons, protonated alkyl, and aryl amines.32-35 Although the guest 

binding properties are comparable to those of other hosts such as crown ethers, 

cyclodextrins, calixarenes, cucubit[ n ]uri I has its own drawback of poor solubility in most 

of the common solvents except in neutral or acidified aqueous solutions. Furthermore, it 

is difficult to functionalize it. These two drawbacks were later addressed by Kim et al. 33 

I· .. ... j ../ 
/ 

../ ,. , ... 
..,, 

' -' l -
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Figure 1.16. X-ray crystallography structures of cucurbituril homologues. 



Table 1.2. Physical properties of cucurbituril homologues in comparison with 
cyclodextrins. 

Mr a [A]Iaf b [A]Ial c [A]Ial V[A3 ] 
SH20 Stability 

pKa 
[mM) roq 

CB[S] 830 2.4 4.4 9.1 82 20-30 >420 
CB[6] 996 3.9 5.8 9.1 164 O.Q18 425 3.02 
CB[7] 1163 5.4 7.3 9.1 279 20-30 370 
CB[8] 1329 6.9 8.8 9.1 479 <0.01 >420 

CB[lO] 1661 9.0-11.0 10.7-12.6 9.1 
a.-CD 972 4.7 5.3 7.9 174 149 297 12.332 

~-CD 1135 6.0 6.5 7.9 262 16 314 12.202 

Y-CD 1297 7.5 8.3 7.9 427 178 293 12.081 

[a] The values quoted for a, b, and c for CB[n] take into account the van der Waals radii of the 
relevant atoms. [b] Determined from the X-ray structure ofthe CB[S]@CB[lO] complex. 

15 

1.3.4.3. CB[n] as a host. Cucurbituril homologues have the characteristic features 

of a hydrophobic cavity and carbonyl groups on both sides of the portals. The polar 

carbonyl groups are responsible for hydrogen bonding and ion-dipole interactions with 

the guest. Because of these two interactions, the carbonyl groups interact with positively 

charged guest molecules. Figure 1.17 shows different binding interactions between CB[6] 

and hexanediammonium ion during the complex formation. 

Hydrophobic 
binding Region 

Cation-Binding 
Regions 

Two H Bonds 
Per Portal 

I on· Dipole 
Interactions 

Figure 1.17. Various intercations between CB[6] and hexanediammonium ion. 
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Because of differences in the cavity size, cucurbituril homologues show different 

binding properties for guest molecules.3740 Smaller CB[5] cavity promotes binding with 

relatively small guest molecules, whereas the bigger cavity of CB[lO] can accept CB[5) 

as a guest.41 Figure 1.18 lists guest that can be included for each host. 

CB[5] CB[6] CB[7) CB[8] CB[lO] 

m· r-\ 

N2,o,. Ar •NHs(CH:z}11NH, • c"" "") 
(n = 4-7, K. > 101) NH HN 

,# 
\....J 

NH4• 
THF,ben%8n41 ·~ ( "'\,}l a j 2~~ alkaH metal Ions \.:: ~ I, " 

~ H,C-G-ctytH; 
.NH 

\:: . 
H,C·~C~ 

HH ./ 

binding to (K.- 3 X 102) 
/-~.1- '• the carbonyl 

o.. and m-isomers c:P '-' ·--· oxygens ·'.-r(~ \ roOH 1 

of the portal& are not Included. ~ \:~~~ :~·· \ HO i 
-- ./ 

Figure 1.18. List of representative guests for corresponding hosts. 

1.3.4.4. Applications of the host-guest chemistry of CB[n].Recently, many 

researchers have focused on artificial devices such as molecular machines, and molecular 

shuttles that can be controlled by external stimulii such as light,30 heat, 54 pH,55and redox 

process. 56 The following examples show that the inclusion complex of cucurbit[n]uril can 

also be used for such applications. 

Based on the size of the guest, the larger cavity of CB[8] can sometimes 

accommodate two guest molecules.42-27 For example, Kim et al. ,47•48 reported the 

formation of a 1:1:1 charge transfer complex between methyl viologen (MV) and 2,6-

dihydroxynaphthalene (Np(OH)2). The formation of this complex is favored by the 

enhancement of the charge transfer between electron-deficient methylviologen and 

electron-rich 2,6-dihydroxynapthalene inside the hydrophobic cavity of CB[8] . This 

ternary CB[8]:MV:Np(OH)2 complex could be used as a tool to design various 

supramolecular vehicles, molecular loops, molecular necklace, and so on. 

The following example49 shows that the 1:1:1 complex of CB[8]:MV:Np(OH)2 

could be used to design a molecular loop (Figures 1.19 & 1.20), that could be controlled 

by an external stimuli. 
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reduction 

oxidation 

Figure 1.19. Pictorial representation of molecular loop. 

Under external redox stimulus, the ternary 1:1:1 complex of CB[8]:MV:Np(OH)2 

forms one electron reduced complex of (MV+· : Np(OH)2 inside the CB[8] cavity (Figure 

21a). This complex reacts with free MV+. and undergoes a guest exchange, expelling 

Np(OH)2 while simultaneously taking up a second MV+. from outside. This simultaneous 

exclusion of Np(OH)2 and inclusion MV+. leads to the formation of a 1:1:1 MV+: 

MV+·:CB[8] complex. 

The redox controlled guest exchange permits the design of molecular machines 

that can be switched on and off, i.e., locked and unlocked, by external redox stimulus. 

Figure 21 b demonstrates the concept of such redox driven molecular machines. 

+2e- § + 
-2e-

22+ 

a 

OO"~i{Q)---@•~f"-
111 

------~~-~1 ~ ... 

b ~: (§__: 
... MV2+ as. 

Figure 1.20. a. Redox controlled guest exchange; b. Redox controlled molecular loop. 
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Sun et al.,50 reported the first inclusion complex of a molecule (Ru2+-MV2+­

Np(OH)2) containing Ru(bpy)3, 2,6-dihydroxynaphthalene and viologen as components 

with CB[8]. The Ru2+-MV2+-Np(OH)2 forms 1:1 complex with CB[8] by back folding 

the naphthalene residue and inserting together with the viologen part of the molecule 

(Figure 1.21 ). The back folding of naphthalene and the formation of a complex with 

viologen is favored due to the charge transfer complex between electron-rich naphthalene 

and electron-deficient viologen. When this complex is irradiated with visible light, it 

produces photo induced radical MV+., which becomes a partner radical by accompanying 

the naphthalene part of the molecule that is stabilized by the CB[8] cavity. 

Jrol 
~tH 

CB[8) 

Figure 1. 21. Graphical representation of inclusion of a molecule (Ru2+ -MV2+ -Np(OH)2) 
with CB[8]. 

Aqueous electrochemical studies of free Ru2+ -MV2+ -Np(OH)2 compound (Figure 1.22) 

shows that the peak potentials corresponding to the redox couples MV2+ /MV+ , and MV+ /MV0 

are -0.519 V and -0.841 V, respectively. Following inclusion with CB[8] , they changed to -0.66 

and -1.23 V, respectively. In addition, the half wave oxidation potential of Ru3+ I Ru2+ is shifted 

from 1.04 7 to 1.052 V. These studies confirm that when the viologen part of a molecule is inside 

the CB[8], it experiences stabilization from the cavity, which in tum makes it harder to reduce. 

Furthermore, the charge transfer complex formed between naphthalene and the viologen inside 

the CB[8] makes it also harder to reduce. Electrochemical studies also show that, because of the 

inclusion, the electron transfer from the excited state of Ru(bpy)3 to the viologen part of a 

molecule is also slightly harder to reduce after the molecule is included inside the cavity. 
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Figure 1.22. Electrochemical study of a molecule (Ru2+-MV2+-Np(OH)2) with CB[8]. 
(Top) Cyclic voltammograms oftriad (Ru2+-MV2+-Np(OH)2) (1 x 10-3 M) (solid line) and 
ligand (MV2+-Np(OH)2) (1 x 10-3 M) (dashed line) in acetonitrile, with Bl4NPF6 (0.1 M) 
as supporting electrolyte, glassy carbon disk as working electrode, and Ag/ AgN03 as 
reference electrode. (Bottom) Differential pulse voltammograms of triad Ru2+-MV2+­
Np(OH)2 (1 x 10-3 M) in the absence (solid line) and in the presence (dashed line) of 1 
equiv of CB[8] in 0.1 M phosphate buffered (pH 7.0) water solution at room temperature, 
glassy carbon as working electrode, Ag/ AgCl as reference electrode; scan rate: v = 0.1 V 

- I s . 

Steinke et al.,51 used CB[6] as a reaction vessel for 1 ,3-dipolar cycloaddition 

that leads to the formation of self-threading polyrotaxane. The CB[6] catalysis ofthe 1,3-

dipolar cycloaddition (Figure 1.23) facilitates simultaneous polymerization and 

rotaxane formation. The author used ammonium azido and ammonium alkyne as the 

reactant for 1,3 -dipolar addition, which may have formed a 1 :2 inclusion complex with 

CB[6]. As the reaction proceeded, the stoichiometry changed to 1:1 and formed self­

threading polyrotaxane (Figure 1.24). The use of CB[6] as a catalyst has the advantage 

of not only catalyzing the reaction, but also assisting the self-threading of the monomers. 



cucurbituril h 
\-/ 

0 0 

Figure 1.23. 1 ,3-Dipolar cycloaddition catalyzed by CB[6]. 

Figure 1.24. Formation ofpolyrotaxane catalysed by CB[6]. 
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Under normal aqueous conditions, the photo excitation of diazastilbene produces 

mainly hydration, isomerization, and cyclization; 52·53 it does not result in the dimerization 

of the reactant because the three former reactions are significantly faster than 

dimerization. To revert the reaction, i.e., to get dimerization as the main reaction product, 

Kim et al. , showed that CB[8] can be used as templating agent that forms a 1 :2 inclusion 

complex with diazastilbene. 
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Kim et al.,52 reported that CB[8] mediates the photo dimerization of aminostilbene 

m water (Figure 1.25). The protonated aminostilbene under aqueous conditions forms a 

2:1 inclusion complex with CB[8]. The two aminostilbenes can preorient either syn- or 

anti- inside the CB[8]. Because of the geometrical restriction of CB[8], the two 

aminostilbenes form the most stable conformation of a syn adduct. Upon photoirradiation 

for 30 min, the syn-adduct undergoes a [2+2] photocycloaddition, and subsequent base 

treatment produces the tetrakis ( 4-aminophenyl)cyclobutane. 

+ 

CB(8)·syn OB(8)·ants (lrace) 

Figure 1. 25. CB[8] mediated dimerization of diaminostilbene in water. 

By following Kim's work, Maddipatla et al.,53 showed that diazastilbene also 

behaves exactly like aminostilbene. It forms a 2:1 complex with CB[8], which upon 

photoirradiation undergoes [2+ 2] cycloaddition and forms syn as a major and anti as a 

minor product (Figure 1.26). Because of the templating effect of CB[8], there was no 

hydration, isomerization or cyclization. 

"-~·",, CB 7 

Counter ion: Cl· 

CB(8J Soluuon 

SyrtH-H .\):nH-T 

11 

· l ~-" 
H'QS ~+ 

11 

Allli H-T 

Figure 1.26. CB[8] mediated dimerization of diazastilbene in water. 

Allli H-H 
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This dissertation examines the interactions of cucurbiturils as barrel-shaped hosts, 

having a hydrophobic cavity, with substituted benzoylpyrydinium (papers I &2), 

diazaanthraquinonediium (paper 3), and phenypyrylium (paper 4) cations as guests. 

Paper 1 focuses on the use of CB[7] to control the keto to gem-diol equilibrium. 

In water, N-methyl-4-(p-substituted benzoyl)pyridinium cations exist in equilibrium with 

their hydrated forms (gem-diols). In the presence of CB[7], the keto form is favored by 

CB[7] over the gem-diol as the former is more hydrophobic in nature. This selective 

inclusion causes the shift of keto to gem-diol equilibrium toward the keto form, meaning 

that the stabilization through hydrophobic interactions of the benzoyl group in the CB[7] 

cavity exceeds the hydrogen bonding stabilization of the gem-diol in the aqueous 

environment. 

In Paper 2, since substituted benzoylpyrydinium cations have two redox centers 

that show chemically reversible electron transfer in aprotic solvents such as DMSO, it 

became possible to measure rates of heterogeneous e-transfer by simple cyclic 

voltammetry. It was found that 4-benzoylpyrydinium cations undergo heterogeneous 

electron transfer simultaneously from both their free state as well as their complexes with 

CB[7]. 

Paper 3 is m the same line of work as paper I. The qumone to gem-diol 

equilibrium was studied usmg N,N '-dimethyl-2,6-diaza-9,10-anthraquinonediium 

dication as a guest and CB[7] as a host. In neutral aqueous media, quinone exists as an 

aggregate in equilibrium with its gem-diol. In acidic media (pH<1 ), the aggregate breaks 

up and also the quinone to gem-diol equilibrium is shifted exclusively towards the keto 

form. Under both neutral and acidic conditions, the quinone form undergoes inclusion 

with CB[7] by slow exchange in which both free and CB[7]-intercalated forms were 

observed by 1H NMR. 

In paper 4, in order to understand the role of guest's size, shape and size of cavity 

during the inclusion process, 2,6-disubsituted-4-phenylpyrylium cations (Pylm) were 

chosen as guests with CB[7] and CB[8] as hosts. The size and shape of the guest was 

modified by changing the nature of the substituents at 2 and 6 positions (Me, iPr, Ph, t­

Bu). These pyryliums exist as dimers in water and as such they enter the CB[8] cavity 

(2: 1 complexes) whereas with CB[7], the dimers break up forming I: I complexes. All 
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pyrylium guests form inclusion complexes by inserting the 4-phenyl part of the molecule 

with both hosts, expect the iPr-Pylm guest which forms an inclusion complex with 

CB[S] by placing the isopropyl group inside the cavity. These studies reveal that 

intercalation is controlled by an interplay of size and hydrophobicity of guests, solvation 

effects, and size and flexibility of the hosts. 
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1.1. ABSTRACT 

In water, N-methyl-4-(p-substituted benzoyl)pyridinium cations, BP-X, exist in 

equilibrium with their hydrated forms (gem-diols), whose concentrations depend on the 

para-substituent (-X). In the presence of cucurbit[7]uril (CB[7]), the benzoyl group 

shows a preference for the CB[7] cavity (Figure 1.1), and the ketone to gem-diol 

equilibrium is shifted towards the keto form, meaning that the stabilization realized 

through hydrophobic interactions of the benzoyl group in the CB[7] cavity exceeds the 

hydrogen-bonding stabilization of the gem-diols in the aqueous environment. 

,OXQ.~ __ c_a_~-· 
N02 

Figure 1.1. Schematic representation of controlling ketone to gem-diol equilibrium. 

t Visiting faculty at the University of Missouri-Rolla, Summer 2007. 
: Fonnerly, University of Missouri-Rolla. 
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1.2. INTRODUCTION 

Host-guest complexes are vehicles for understanding and using supramolecular 

interactions for purposeful function in sensors, molecular machines and switches. 1 

Cucurbiturils (CB[ x], 5 :S x :::; 1 0), the result of a condensation reaction between glucouril 

and formaldehyde, are barrel-shaped hosts ( Figure 1.2) with a hydrophobic cavity whose 

mean internal diameter ranges from 4.4 A ( CB [ 5]) to > 1 0 A ( CB [ 10]). 2•3 

0 

NAN 
H..; <-H NYN 

0 

CB[7] 

Figure 1.2. Pictorial representation of cucurbit[7]uril. 

Since the rims are formed by the negative ends of the carbonyl dipoles, they can 

develop hydrogen bonding and ion-dipole interactions with their environment. 

Consequently, some members of the CB[x] family are water soluble, and the cavity can 

bind one or more cationic guests, depending on their size. This property has been 

explored recently in conjunction with photoisomerization and photodimerization. For 

instance, only one trans-diaminostilbene dihydrochloride dication (DAS) can be 

accommodated in CB[7]; irradiation leads to the cis-isomer, which is not thermally 

converted back to trans- at room temperature owing to stabilization by interaction of both 

terminal protonated amines with the two negative rims of CB[7].4 CB[8], however, can 

accommodate two molecules of DAS leading to stereoselective photodimerization.5 

Similar results have been obtained more recently with 2:1 complexes between trans- I ,2-

bis-(4-pyridyl)ethylene and CB[8],6 while CB[7] can accommodate two of the smaller 2-

aminopyridine hydrochloride cations whose irradiation leads to stereoselective [ 4+4] 

photodimerization.7 Modulation of thermal equilibria of the quests are also known, e.g., 

shifting the 4,4 '-bis-( dimethylamino) diphenyl carbinol/carbocation equilibrium towards 

the carbocation with CB[7].8 Here we demonstrate host-guest interactions between CB[7] 

and a family of guests based on the N-methyl-4-(p-substituted benzoyl) pyridinium cation 

(BP-X, where X = -OCH3, -CH3, -H, -Br, -CHO, -N02, -S+(CH3)2), and we report that the 
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ketone to gem-diol equilibrium in water ( eq 1) is controlled by the preference of the keto 

form for the CB[7] cavity. 

Scheme 1.1. Ketone to gem-diol equilibrium ofBP-X. 

( 1) 

1.3. RESULTS AND DISCUSSION 

In aqueous solution, carbonyl compounds exist in equilibrium with their hydrated 

forms (gem-diols). The concentration of the latter is usually very low, but it can increase 

if substitution renders the carbonyl group more susceptible to nucleophilic addition.9 The 

position of this equilibrium can be of vital importance in biological systems where 

reactivity may be either associated with or stereoelectronically controlled by only one of 

the two forms. 10-13 Ideally, the carbonyl/gem-diol equilibrium would be controlled with 

supramolecular additives rather than by modifying the substrate or the environment (e.g., 

by changing the pH). 

All BP-Xs of this study were available from previous work, 14 and were chosen as 

model ketones because of their water solubility, their relation to the NAD+/NADH 

coenzyme of dehydrogenases, their expected adjustable aptitude for hydration by para­

substitution, and their structural similarity to methyl viologen (N,N' -dimethyl-4,4 '­

bipyridinium dication, MV2+), 15 .1 6 which warrants interaction with CB[7]. In this regard it 

is noted that MV2+ fits well in CB[7] and the two positive charges are stabilized by ion-

d. 1 . . . h h b 1 f h . 2 15 16 1po e mteractwns Wit t e car ony groups o t e nms. · · By the same token, 

however, since BP-Xs have only one pyridinium ring, their orientation relative to the 

cavity of CB[7] was not obvious a priori: they could assume either an exo- or an enda­

stereochemistry as illustrated below: 
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endo-BP-X@CBJ7J exo-BP-X@CBI7) 

Figure 1.3. Possible orientations ofBP-X in CB[7]. 

The exo- versus endo-orientation was elucidated by 1H NMR. As shown in Figure 

1.4 for the aromatic region, in the presence of CB[7] (purchased from Aldrich), the 1H 

NMR of BP-H (X = H) in D20 shows an up field shift for all protons, consistent with the 

endo-BP-H@CB[7]. Identical results were observed for all BP-X of this study. The exo­

orientation is in fact observed with the corresponding N-hexyl-4-(p-substituted benzoyl) 

pyridiniurn cations, by analogy to that reported for hexyl viologen (N,N' -dihexyl-4,4 '­

bipyridiniurn dication; refer to the Supporting Information). 16 
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10,12 

7.5 7.2 6.9 

Figure 1.4. Room temperature (23 °C) 1H NMR of the aromatic region ofBP-H (X= H; 
16.1 mM) in D20/0.l M KCl before (A) and after (B) addition of 1.25 mol equivalents of 
CB[7]. The upfield shift of all protons supports the endo-orientation. The small 
"impurities" in the baseline is the gem-diol form of BP-H in equilibrium with the 
dominant keto form. 
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Clearly, the benzoyl group, despite possible H-bonding interactions with the 

solvent through the carbonyl oxygen, prefers to retreat into the hydrophobic cavity where 

it must enjoy greater stabilization through hydrophobic interactions. As shown in Figure 

1.5, upon intercalation in CB[7] the longest wavelength electronic absorption of BP-X 

decreases in analogy to what has been reported for MV2+. 17 The 1:1 stoichiometry of the 

resulting BP-X@CB[7] complexes is supported by the presence of stable isosbestic 

points in the UV -titration of BP-X with CB[7] and in the case of BP-H it was confirmed 

by a peak at m/z = 1361.58 (expected at m/z = 1361.20) in the ESI mass spectrum of the 

BP-H/CB[7] aqueous solution (see Supporting Information). The strong binding aptitude 

of BP-H with CB[7] is reflected in the equilibrium constant for complex formation (Keq 

= (6.2 ± 2.1) x 103 M-1, by analysis of the UV titration data of Figure 1.5: Supporting 

Information). 18 
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220 240 260 280 300 320 340 360 

Wavelength (nm) 

Figure 1.5. Room temperature (23 °C) titration of BP-H (9.88 x 10-5 M) in H20/0.1 M 
KCl with CB[7]. (Initial pH~6.0; after addition of CB[7] , pH~4.0 . Results identical in 
phosphate buffer at pH = 7.0.) Inset curve: by non-linear regression (see Supporting 
Information). 
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Similarly, all the other BP-Xs examined showed strong binding aptitudes towards 

CB[7]. Equilibrium constants, Keq, increase with electron withdrawing substitution 

(Figure 1.6, p = 0.58 ± 0.06) reflecting that as the benzoyl group becomes more electron 

deficient, its ability to form H-bonding with the aqueous environment decreases, thus 

increasing its preference for the hydrophobic interior of CBI7]. The extreme case of BP­

S+(CHJ)z is noteworthy because it shows an abnormally high affinity for CB[7] (Keq = 

(3.6 ± 1.0) x 105 M- 1), most probably because that complex is stabilized by two cation­

dipole interactions, much like MV2+ whose Keq~2 x 105 M-1. 15-1 

5.6 p = 0.58:!: 0.06 -S+(CH3)2 f 
R2 = 0.954 

5.2 

I 
I 

cr 4.8 I 
~Q) 

I 
0> I 0 

4.4 

4.0 

3.6 

-0.3 0.0 0.3 0.6 0.9 

ap-X 

Figure 1.6. Substitution effects for the BP-X + CB[7] ~ BP-X@CB[7] equilibrium 
in D20/0.1 M KCl showing that as BP-X becomes more electron deficient, its 
compatibility with the hydrophobic cavity of CB[7] increases. 

If the effect of substitution is also followed by 1H NMR (no CB[7] present) we 

are able to see that as X- becomes more electron withdrawing (e .g., going from -H to -

N02), in aqueous solutions BP-X exist in equilibrium with progressively increasing 

amounts of their gem-diol forms, whose identity was confirmed by the 13C NMR 

signature resonance of the C(OH)z carbon at ~94.5 ppm. The relative ratio of the two 
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forms, and therefore the value of each ketone ~ gem-diol equilibrium constant 

(Kdiot) is extracted directly from the 1H NMR spectra. ~iot data show a good Hammett 

correlation (Figure 1. 7) with a reaction constant p = 1.31 ± 0.02, that is similar to values 

reported for substituted benzaldehydes (1.71-1.75). 19 
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p = 1.41!. 0.18 
R2 = 0.952 

·0.2 0.0 0.2 04 06 08 

cr p-X 

Figure 1.7. Substitution effect for the keto/gem-diol equilibrium in D20 /0.1 M KCl with 
and without 1.0 mol equivalent of CB[7] . ([BP-X] = 16.0 ± 0.6 mM.) Equilibrium 
constants, Kctiob directly from 1 H NMR data: spectra recorded 15 min and 24 h after 
dissolving BP-X in D20/0.1 M KCl were practically identical. Data for BP-S+(CH3)2 are 
not included because the t112 of the ketone to gem-dio1 equilibrium was a few hours. 

The effect of CB[7] upon the keto/gem-diol equilibrium is best illustrated with the 

N-methyl-4-(p-formylbenzoyl)pyridinium cation (BP-CHO), which in CH3CN appears as 

a pure compound (Figure 1.8A), while in D20 consists of a mixture of three forms 

(Figure 1.88)?0 Upon addition of increasing amounts of CB[7] (Figures 1.8C and 1.8D) 

the fate of the individual forms in equilibrium can be followed separately: the dicarbonyl 

form, BP-CHO, shows an evolution-pattern similar to that of BP-H in Figure 1.4, 

underscoring the preference of the benzoyl group for the CB[7] cavity. A similar case is 

made for the hydrated aldehyde: BP-CH(OH)2. However, when the gem-diol is on the 

benzoyl group only small chemical shift changes are observed with increasing the 

concentration of CB[7) indicating that this form is oriented mostly outside the cavity. 

Starting with similar geometries (the carbonyl or the gem-diol groups inside the cavity), 
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PM3-optimized structures of BP-N02@CB[7] and ofthe corresponding gem-diol support 

that the gem-diol of the benzoyl group prefers to stay outside the cavity, where 

presumably it can be further stabilized by hydrogen bonding with the aqueous 

environment. 21 
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Figure 1.8. 1H NMR data of BP-CHO in CD3CN (A) and in D20/0.l M KCl without 
CB[7] (B), with 0.75 mol equivalents (C), and 1.25 mol equivalents ofCB[7] (D). 
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gem-diol_of_BP-N02@CB[71 

Figure 1.9. PM3-optimized structures of BP-N02@CB[7] and of the corresponding 
gem-diol. 

The most significant observation in Figure 1.8, however, is that upon addition of 

increasing amounts of CB[7], the relative amount ofBP-CHO increases at the expense of 

both hydrated forms. After addition of 1.25 mol equivalent of CB[7] into the aqueous 

solution of BP-CHO, the 1H NMR spectrum (Figure 1.8D) looks similar to that in 

CD3CN (Figure 1.8A), while the relative ratios of the three forms BP-CHO:gem­

diol:hydrated aldehyde change from 1.0:0.26:0.20 to 1.0:0.06:<0.01 after addition of one 

equivalent of CB[7].22 The new keto~ gem-diol equilibrium constants after addition 

of CB[7], still show a good Hammett correlation (Figure 1.7). The new line runs almost 

parallel to (p = 1.41 ± 0.18), but below the one representing the keto/gem-diol 

equilibrium before the addition of CB[7] reflecting similar stereoelectronic factors but 

much lower equilibrium concentrations of gem-diols. Clearly, the stabilization realized by 

H-bonding of the gem-diols in water is still less than the stabilization realized through 

hydrophobic interactions of the benzoyl groups in the interior of the cavity.23 It is 

noteworthy that in systems where the benzoylpyridinium group assumes the exo­

configuration (the case of N-hexyl-4-benzoylpyridinium cations), the keto to gem-diol 

equilibrium is affected less by the presence of CB[7] (see Supporting Information). 
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1.4. CONCLUSIONS 

The results described herewith have been possible because all BP-X@CB[7] 

complexes seem to include strong hydrophobic interactions with the CB[7] cavity and are 

oriented endo- in water. Our results viewed together with those reported in recent and 

current literature suggest that the broader scope of exerting control on potentially useful 

homogeneous reactions of the guest via host-guest interactions should be explored 

further?,4-7 Finally, BP-X@CB[7] having one redox center, the benzoyl group, inside the 

cavity invites further studies of the electron transfer through the cage wall. 
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Appendix S.l.l , Equilibrium Constant Calculations and Data.; Appendix S. l.2, 

Room temperature 1H NMR of N-hexyl-4-benzoylpyridinum tetrafluoroborate in 0 20 /0.1 

M KCl, with and without 1.25 mol excess of CB[7] ; Appendix S.1.3, Room temperature 

1H NMR of N-methyl-4-(p-nitrobenzoyl)pyridinum tetrafluoroborate in 0 20 /0.1 M KCl, 

with and without 1.25 mol excess of CB(7]; Appendix S.1.4, Full 1 H NMR titration of N­

methyl-4-(p-nitrobenzoyl)pyridinum tetrafluoroborate in 0 20/0.1 M KCl at room 

temperature; Appendix S. l.5, Room temperature 1H NMR of N-hexyl-4-(p­

nitrobenzoyl)pyridinum tetrafluoroborate in D20/0.l M KCl, with and without 1.25 mol 

excess of CB[7]; Appendix S.1.6, Selected ESI mass spectral data. 

Appendix S.l.l: Equilibrium Constant Calculations and data. 
UV absorption data were analyzed in order to find equilibrium constants of the 

host+ guest ~complex reaction using eq 4.5 in "Binding Constants The Measurement 

of Molecular Complex Stability" by K. A. Connors, John Wiley &Sons, New York, 

1987, Chapter 4, p 148. 

(4.5) 

M is the difference in absorbance at a certain wavelength of the substrate and the 

complex, b is the optical path (1 em), S1 is the total substrate concentration (free and 

complexed) where substrate here is the N-methyl-4-(p-substituted benzoyl) pyridinium 

cation (BP-X), K11 is the equilibrium constant for 1: 1 complex formation (which is our 

case), L1c:11 is the difference in extinction coefficients between BP-X and its complex with 

CB[7], and (L] is the equilibrium concentration of free titrant, namely CB[7] . If [L]>>St. 

then we can consider [L]~L1 • Then we can invert eq. 4.5, obtain eq. 4.10 (the Benesi­

Hildebrand equation), plot liM versus l /L1 and obtain K11 by dividing intercept over 

slope of the expected straight line. (L1 is the total concentration of CB(7] , free and 

complexed.) 

b 1 
= +--

M S,KII/!ic:.,ILI Sl/!ic:., l 
( 4.1 0) 
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If the condition [L]>>Lt is not met, then we need to calculate [L] as a function of L1 via eq 

2.39 of Connors book, p 44: 

L = [L]+ KIISJL] 
I 1 +KII[L] 

Thus, by rearranging 4.5 and substituting into 2.39 one can obtain: 

M 
[L]=L1--

b!1~ I 

(2.39) 

Substituting now the last equation back into 4.5 we obtain a quadratic equation 

that can be solved into: 

bl1&ttlLr + Sr + _l_ ± (L1 + Sr + - 1- )2 - 4S1L1 j 
Ktt Ktt 

M=--------=------------
2 

The experimental data consist of measured absorption difference M (A-A0 ) 

versus added (total) concentration of CB[7] (L1). S, is a known constant for each titration, 

while bL1&11 and K11 are treated as adjustable parameters that are obtained by non-linear 

least square fitting of the M versus L1 data. Table S 1 provides the values obtained for 

K 11 (which for the purposes of this paper is referred to as Keq) and for bLl&II for the BP-X 

compounds studied. The log (Kcq) values are shown in the Hammett plot of Figure 1.7 in 

the paper. 
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Table S.l.l. Equilibrium constant data obtained via spectrophotometric titrations and 
non-linear data fitting for the host-guest complex formation of the various BP-Xs of this 
study with C8[7]. 

Compound 

BP-OCH3 4.3 ± 0.9 3.0 ± 0.3 

BP-CH3 5.3 ± 0.8 2.3 ± 0.2 

BP-H 6.2 ± 2.1 2.4 ± 0.4 

BP-Br 6.9±1.1 3.0± 0.2 

BP-CHO 13.1 ± 4.0 4.9± 0.5 

BP-N02 18.7 ± 6.0 3.3 ± 0.3 

BP-S+(CH3)2 357 ± 104 3.4±0.1 

Table 8.1.2. Absorbance data for BP-OCH3 a 

[CB[7)] , (M) Absorbance 

0.0 1.097 

1.591E-04 0.975 0.122 

1.909E-04 0.958 0.139 

2.545E-04 0.921 0.176 

2.863E-04 0.920 0.177 

3.818E-04 0.888 0.209 

3.672E-04 0.889 0.208 

a. S1 = 1.22 >< 10-4 M 
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Table S.1.3. Absorbance data for BP-CH3a 

[CB[7]] , (M) Absorbance 

0.00 1.036 

5.54E-05 0.994 0.042 

8.31E-05 0.981 0.055 

9.69E-05 0.975 0.061 

1.11 E-04 0.966 0.070 

1.38E-04 0.953 0.083 

1.66E-04 0.943 0.093 

1.94E-04 0.936 0.100 

2.22E-04 0.922 0.114 

2.77E-04 0.910 0.126 

a. St = 1.00 x 10-4 M 

Table S.1.4. Absorbance data for BP-Ha 

[CB[7]], (M) Absorbance A0 -A 

0.0 0.912 0 

2.1 OE-05 0.910 0.002 

4.20E-05 0.876 0.036 

8.39E-05 0.845 0.067 

1.259E-04 0.824 0.088 

1.68E-04 0.812 0.100 

2.098E-04 0.794 0.118 

2.518E-04 0.776 0.136 

2.937E-04 0.769 0.143 

3.357E-04 0.766 0.146 

a. S1 = 9.88 x 10-5 M 
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Table S.l.S. Absorbance data for BP-Bra 

[CB[7]], (M) Absorbance A0-A 

0 1.137 

5.64E-05 1.081 0.056 

8.46E-05 1.060 0.077 

9.87E-05 1.045 0.092 

1.128E-04 1.037 0.100 

1.41 OE-04 1.014 0.123 

1.692E-04 1.004 0.133 

1.974E-04 0.992 0.145 

2.256E-04 0.976 0.161 

2.820E-04 0.966 0.171 

a. St = 9.57 x 10-5 M 

Table S.1.6. Absorbance data for BP-CHOa 

[CB[7]], (M) Absorbance A0 -A 

0 1.875 0 

5.28E-05 1.745 0.130 

7.92E-05 1.680 0.195 

9.24E-05 1.685 0.190 

1.056E-04 1.640 0.235 

1.320E-04 1.599 0.276 

1.584E-04 1.549 0.326 

1.848E-04 1.545 0.330 

2.112E-04 1.529 0.346 

2.640E-04 1.493 0.382 

a. St = 1.11 x 1 04 M 
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Table S.1.7. Absorbance data for BP-N02a 

[CB[7)] , (M) Absorbance 

0 1.649 0 

4.92E-05 1.547 0.102 

8.61 E-05 1.515 0.134 

8.61E-05 1.496 0.153 

9.84E-05 1.494 0.155 

1.230E-04 1.453 0.196 

1.476E-04 1.439 0.210 

1.721 E-04 1.431 0.218 

1.967E-04 1.403 0.246 

2.459E-04 1.397 0.252 

a. St = 1.02 X 10-4 M 

Table S.1.8. Absorbance data for BP-S+(CH3)23 

[CB[7]] , (M) Absorbance 

0 0.319 

2.67E-05 0.222 0.097 

5.33E-05 0.147 0.172 

8.00E-05 0.100 0.219 

1.066E-04 0.081 0.238 

1.333E-04 0.076 0.243 

1.599E-04 0.070 0.249 

1.866E-04 0.068 0.251 

2.132E-04 0.067 0.252 

2.666E-04 0.070 0.249 

a. St = 7.48 X w-s M 
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Calculation of the equilibrium constants for the ketone to gem-diol reaction 

Kdiol was calculated as the ratio of the peak integrals for the gem-diol and ketone 

protons. About 3 mg of each BP-X was dissolved in 0.5 ml of D20 with KCl (0.1 M) and 

was titrated with CB[7]. Data obtained by 1H NMR using relaxation time = 250 s. The 

concentration ratio of gem-diol to ketone reaches its limiting value after addition of one 

mol equivalent of CB[7] (see Figure 4.2 S-B below), and therefore Kctiol in the presence of 

CB[7] were calculated in the presence of one equivalent of CB[7]. 

. [gem- diol] 
Kdiol = Kdioi[D20] = [ketone] 

Table 8.1.9. Equilibrium constant data for the gem-diol formation reaction in D20 at 
room temperature without CB[7]. 

Compound 

BP-CH3 

BP-H 

BP-Br 

BP-CHO 

BP-N02 

Kctiol 

0.04I ± O.OI 0 

0.060 ± 0.002 

O.II8 ± 0.013 

0.258 ± 0.002 

0.6I5 ± 0.025 

Table 8.1.10. Equilibrium constant data for the gem-diol formation reaction in DzO at 
room temperature with one mol equivalent of CB[7]. 

Compound 

BP-CH3 

BP-H 

BP-Br 

BP-CHO 

BP-N02 

Kctiol 

0.006 ± 0.00 I 

0.020 ± 0.004 

0.038± O.OI5 

0.060 ± 0.00 I 

O.I60 ± 0.02I 



Appendix 8.1.2: Room temperature 1H NMR of N-hexyl-4-benzoylpyridinum 
tetrafluoroborate. 
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Figure S.l.l. Room temperature (23 °C) 1H NMR of N-hexyl-4-benzoylpyridinum 
tetrafluoroborate in D20/0.1 M KCl before (bottom) and after (top) addition of 1.25 mol 
equivalent of CB[7]. The strong upfield shift of the hexyl protons supports the exo­
orientation in analogy to results reported for hexyl viologen.s1 The small "impurities" in 
the baseline is the gem-diol form of N-hexyl-4-benzoylpyridinum cation in equilibrium 
with the dominant keto form. 

Sl. Moon, K.; Kaifer, A. E. Org. Lett. 2004, 6, 185-188. 



Appendix S.1.3: Room temperature (23 °C) 1H NMR of N-methyl-4-(p­
nitrobenzoyl)pyridinium tetrafluoroborate. 
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Figure S.1.2. Room temperature (23 °C) 1H NMR of N-methyl-4-(p­
nitrobenzoyl)pyridinium tetrafluoroborate in D20/0.1 M KCl before (bottom) and after 
(top) addition of 1.25 mol equivalent of CB[7]. The Kdiol equilibrium constant is 
calculated from the 1H NMR integral of H2,6 before and after addition of CB[7]. Before 
CB[7] addition, KdioF0.615. After CB[7] addition, KdioF0.160. 
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Appendix 8.1.4: Room temperature 1H NMR of N-methyl-4-(p-nitrobenzoyl)pyridinum 
tetrafluoroborate. 
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Figure 8.1.3. Full 1H NMR titration of N-methyl-4-(p-nitrobenzoyl)pyridinium (BP­
N02) tetrafluoroborate (16 mM) with CB[7] in D20/0.l M KCI at room temperature (23 
oc). 



Appendix S.1.5: Full 1H NMR titration of N-methyl-4-(p-nitrobenzoyl)pyridinum 
tetrafl uoro borate. 
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Figure S.1.4. Room temperature (23 °C) 1H NMR of N-hexyl-4-(p­
nitrobenzoyl)pyridinurn tetrafluoroborate in D20/0.l M KCl before (bottom) and after 
(top) addition of 1.25 mol equivalent of CB[7]. The upfield shift of the hexyl protons 
again supports the exo-orientation. The ratio gem-diol:keto form of N-hexyl-4-
benzoylpyridinurn cation before addition of CB[7] gives Kd;oF 0.637, which is about 
equal to Kd;ot in the case ofthe N-methyl derivative (Kd;oF0.615, see Figure S.l.2). After 
addition of CB[7] Kd;oF0.372, versus Kd;oF0.160 for the N-methyl-4-benzoylpyridinum 
cation (see Figure S.1.2). The higher amount of the gem-diol form in the case of the N­
hexyl derivative is attributed to the exo-orientation (see Figure S.l.l) and therefore the 
less efficient "protection" of the carbonyl against hydration. 
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Appendix 8.1.6: Selected ESI mass spectral data. 
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Figure 8.1.5. Selected ESI mass spec.tral data. 
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Appendix S.1.7: Selected 2D NMR spectra. 
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Figure S.1.6. 1H_IH COSY NMR of BP-N02 in D20. 
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Figure S.1.7. 1H_IH COSY NMR of BP-CHO in D20. 
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2.1. ABSTRACT 
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N-Methyl-, N-benzyl- and N-hexyl-4-benzoylpyridinium monocations (Me-BP, 

Bz-BP and Hex-BP, respectively) form stable host-guest complexes with cucurbit[7]uril 

(CB[7]) (Keq ~ 0.6-1.9 x 103 M"1). Irrespective of the orientation of the guest) (endo- or 

exo-) e-transfer in all three systems is controlled by the host-guest equilibrium, showing 

simultaneous reversible e-transfer from the free guests and quasi-reversible processes 

from the complexes. For Me-BP@CB[7] (Figure 2.1) the standard rate constant is ks=l.O 

x 10"4 cm·s-1 corresponding to a distance of 5.7 A between Me-BP and the electrode, in 

agreement with the distance of the intercalated guest from the outer perimeter of 

CB[7](5.3A). 

JU·- DMSO 

Me-BP 

Me-BP{a),CBI71 

~ Me-8P@CBI71 

ICWlf'Me(VIl 
- 0.06 
- 0 .10 
-020 
- 0.40 
- 0 .80 
-Ulll 

-1.5 -1.0 ~.5 0.0 
volts vs. Ag/AgCI 

Figure 2.1. Schematic representation of intercalation and electron transfer between Me­
BP and CB[7]. 

t Visiting faculty at the University of Missouri-Rolla, Summer 2007. 
t Fc,>Jll)~rly, Universizy of Missouri-Rolla. 
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2.2 INTRODUCTION 

The redox chemistry of host-guest complexes is studied for its relevance to 

biological electron transfer (e.g., in redox proteins) and also to applications based on 

molecular recognition (e.g., sensors). 1 The overwhelming majority of those studies report 

e-transfer exclusively from the free guests. Very few aberrations from this trend have 

been reported, e.g., when the guest is locked inside the host (case of 

hemicacerand/ferrocene),2 or in the case of dicationic methylviologen (MV) m 

cucurbit[x]uril (CB[x], x=7, 8) where heterogeneous e-transfer takes place exclusively 

from the complex. 1'3 Simultaneous homogeneous e-transfer has been reported from free 

and CB[7]-intercalated (trimethylammonio )methylferrocene,4 while here we provide 

evidence whereas a new class of guests, the N-substituted-4-benzoyl-pyridinium cations, 

undergoes e-transfer simultaneously from both their free state as well as their complexes 

with CB[7] . 

CB[7], a water-soluble barrel-shaped host, consists of 7 glycoluril groups and 14 

methylene bridges at both ends. The two rims are formed by the glycoluril carbonyl 

oxygens, thereby are negatively charged and they develop ion-dipole interactions with 

cationic guests.5 Since the portal diameter of CB[7] (5.4 A) is wide enough for MV to 

enter the cavity easily, and also the length of the two species are comparable (9.1 A and 

7.3 A, respectively), MV@CB[7] maximizes both the hydrophobic and the ion-dipole 

interactions between the two species resulting in a high complex formation constant 

(Keq=2x105 M-1). 1 

2.3 RESULTS AND DISCUSSION 

Monocationic N-methyl-4-benzoylpyridinium (Me-BP) is similar in length (7.7 

A) to MV and intercalates in CB[7] from water assuming an endo-orientation that places 

the benzoyl group inside the cavity.6 Furthermore, in analogy to MV, Me-BP undergoes 

two sequential e-transfers.7 However, unlike viologen, electrochemical studies with Me­

BP cannot be conducted in water, because its 2e reduced form develops hydrogen 

bonding with the solvent, shifting and merging the second reduction wave with the first, 

leading directly to the benzyl alcohol via a chemically irreversible 2e reduction process. 7d 

Thus, e-transfer studies of the Me-BP/CB[7] system had to be conducted in organic 
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aprotic media. CB[7] is not soluble in organic solvents; however, these studies became 

possible because the complexation itself increases the solubility of CB[7] in DMSO to 

the ten-millimolar range, in analogy to what has been observed with heptyl viologen. 8 

Nevertheless, the orientation ofthe Me-BP@CB[7] complex in DMSO (exo- or endo-) is 

not obvious a priory and it may have important implications in the electrochemical 

reduction of the guest; hence, the latter should be considered together with the former. 

For this, the relative orientation and electrochemistry of Me-BP@CB[7] were considered 

comparatively with two other control systems (Figure 2.2), Bz-BP@CB[7] and Hex­

BP@CB[7] which, in analogy to corresponding viologens,8·9 assume exo-orientations 

placing their most hydrophobic groups (benzyl and hexyl) inside the CB[7] cavity, 

leaving their benzoyl groups outside. 

0 0 0 

14 6 

Me-BP Hex-BP Bz-BP 

Figure 2.2. Structure of the compounds used in the study. 

Synthesis of the three guests has been described before.7b-c CB[7] was prepared 

by modification of a literature procedure (see Supporting Information). 10 The 

stoichiometry of the three CB[7] complexes is 1:1 (by ESI mass spectrometry in water 

and by Job's plots in DMSO; see Supporting Information). 11 The possible orientations of 

the complexes was investigated with PM3 semiempirical calculations 12 using OFT­

optimized structures (6-31G(d) basis set) for all three guests and CB[7). All results 

(Figure 2.3) show two local minima very close in energy (e.g. -0.3501 vs. -0.3647 a.u. for 

Me-BP@CB[7] and -0.306 vs. -0.315 a.u. for Bz-BP@CB[7]) corresponding to the 

endo- and exo- orientations, respectively). 

The actual orientation in DMSO was investigated by 1H-NMR in comparison to 

water. All chemical shifts have been color-coded and are summarized in Scheme 2.1. 
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Scheme 2.1. Color-coded 1H-NMR data for Me-BP and Bz-BP in the presence of I mol 
equivalent ofCB[7). 
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In D20 all aromatic protons move upfield in the presence of CB[7] (compare 

Figures 2.4A-3.4D), consistent with the enda-orientation where the entire 

benzoylpyridinium system is inside the cavity (Figure 2.3A). 13 In DMSO-d6 some 

protons move upfield, some downfield, while others hardly move (Scheme 2.1 ), 

consistent with an intermediate state between endo- and exo- (compare Scheme 2.1 with 

Figures 2.3A and 2.38). In both solvents, the evolution of the chemical shifts from zero 

to 1.25 mol equivalents of CB[7] is consistent with fast exchange of Me-BP between its 

free and complexed states. The line-broadening observed in DMSO-d6, taken together 

with the position of Me-BP in the cavity might originate from the equilibrium between 

the endo- and exo- forms. The more effective retreat of Me-BP inside CB[7] in water is 

attributed exclusively to the solvent polarity.8 
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By 1H-NMR again, the mode of intercalation of Hex-BP and Bz-BP with CBI7] 

is the same in both water and DMSO, and analogous to the interaction of Me-BP with 

CB[7] in DMSO in the sense that some protons move strongly upfield, some downfield 

and some protons hardly move at all. Figure 2.5 demonstrates those patterns for Bz-BP 

and the results have been color-coded in Scheme 2.1. (Results for Hex-BP are given in 

Supporting Information). Clearly Bz-BP@CB[7] assumes the exo-orientation (compare 

Figures 2.3C, 2.3D and Scheme 2.1 ), signifying the importance of placing the most 

hydrophobic group inside the cavity. 

Figure 2.3. PM3 optimized structures for Me-BP@CB[7] (A, B) and Bz-BP@CB[7] 
(C, D) showing two minima: an endo- (A, C) and an exo- (B, D). 
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Figure 2.4. 1H NMR at 23 °C ofthe aromatic protons ofMe-BP in D20 (A-D; 21.1 mM) 
and DMSO-d6 (E-H; 9.1 mM). A,H: no CB[7]. B,G: 0.5 mol equiv of CB[7]. C,F: 1.0 
mol eq. ofCB[7]. D,E: 1.25 mol equiv ofCB[7]. 

All equilibrium constants, Keq, of the guest-host complex formation reactions 

were determined from spectrophotometric titration data (e.g., Figure 2.6 for Me-BP) 

using the Benesi-Hildebrand double reciprocal method (see Inset in Figure 2.6; 

Keq=slopelintercept) and the results are summarized in Table 2.1. 14 Qualitatively, the 

evolution of the absorption spectra by adding CB[7] supports the modes of inclusion 

identified by 1H-NMR. 
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Table 2.1. Equilibrium constants (Keq) of the host-guest complex formation in water and 
DMSO at 23 oc.a 

guest 

Me-BP 

Hex-BP 

Bz-BP 

in water 

(3.1 ± 0.3) X 103· b 

(9.1 ± 0.1) X 103 

(3 .4 ± 0.1) X 1 03 

in DMSO 

( 0. 59 ± 0.13) X 1 03 

(1.3 ± 0.5) X 103 

(1.9 ± 0.04) X 103 

a. Experiments conducted twice, errors are spreads. b. Value reported before (6.2 ± 2.1 x I 03 M- 1) 

was obtained through non-linear fit of titration results at low CB[7] concentrations. 5 

For Me-BP, for example, the different mode of inclusion in the two solvents 

causes an absorbance increase in water (Figure 2.6A) and a decrease in DMSO (Figure 

2.6B), matching the relative polarity of the environment around the benzoyl 

chromophore: in water ( endo-orientation) the chromophore is inside the hydrophobic 

cavity, while in DMSO it also interacts with the portal carbonyl dipoles. Since in both 

solvents Bz-BP@CB[7J and Hex-BP@CB[7] are exo-oriented, the benzoyl groups are 

near the portal dipoles and the absorbance increases by adding CB[7J (see Supporting 

Information). Overall, Keq values are higher in water than in DMSO. Hex-BP, with the 

longest hydrophobic group, has the highest tendency to avoid water, while in less polar 

DMSO, its Keq is similar to that ofBz-BP. 
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Figure 2.5. 1H NMR at 23 °C of the aromatic region of Bz-BP. A, D: no CB[7], in D20 
(9.4 mM) and DMSO-d6 (18.8 mM), respectively. B, C: plus 1.0 mol equiv of CB[7] in 
D20 and DMSO-d6, respectively. 

The redox chemistry of the three host-guest complexes was studied by cyclic 

voltammetry in DMS0/0.1 M NaC104 . All free guests show two chemically reversible I e 

reductions (ip,c;::;ip.a) of the pyridinium and the benzoyl group, respectively. 7 Data for Me­

BP are shown in Figure 2.7, for Bz-BP and Hex-BP see Supporting Information. 
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Figure 2.6. Titration at 23 °C of Me-BP with CB[7] in H20/0.1 M KCl (A, [Me­
BP]=l.01 X 10'4 M, Amax=274 nm) and in DMS0/0.1 M NaCl04 (8, [Me-BP]=2.03 X 10' 
4 M, Amax=270 nm). 

In the absence of CB[7], voltammograms normalized by dividing the faradaic 

current by the square root of the sweep rate coincide (Figure 2.7 A), showing fast 

interfacial e-transfer kinetics (electrochemical reversibility). Upon addition of CB[7] we 

note two new waves (in addition to the old ones) at more positive potentials relative to 

those of free Me-BP (Figure 2.78). 
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Figure 2.7. Normalized voltammetry of Me-BP (3.2 mM) in Ar-degassed DMS0/0.1 M 
NaCl04 using a Au-disk (0.0201 cm2) working electrode. A. No CB[7]; Inset: raw data. 
B. After addition of 1 mol equiv of CB[7]; Inset: voltammetry by adding CB[7] (raw 
data). 

Normalized voltammograms no longer coincide implying quasi-reversible (slow) 

interfacial e-transfer. The positive shift of the first new wave is consistent with 

complexation that stabilizes the LUMO ofthe free guest; 15 based on nF~=RnnKeq and 

LJ£112-:::::,~, the wave of Me-BP@CB[7] should be 0.162 V more positive than the wave 

of free Me-BP, in agreement with the experiment (0.201 V). Based on Keq=590 M-1 

(Table 2.1), an equimolar solution (3.2 mM) of Me-BP and CB[7] contains 1.6 mM of 

each free guest and Me-BP@CB[7], in agreement with the relative sizes of the 

voltammetric waves (taking into consideration the significantly lower diffusion 

coefficient expected for Me-BP@CB[7]). The peak-to-peak separation (LJEp-p) of the 

wave assigned to Me-BP@CB[7] increases with the sweep rate, (as expected from a 

quasi-reversible e-transfer). Bz-BP@CB[7] and Hex-BP@CB[7] behave similarly (see 

Supporting information.) supporting that irrespective of the guest position in the cavity 
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the rate of e-transfer is low. Mp-p in the case of Me-BP@CB[7] is measured easily and it 

was analyzed according to Kochi's method (see Supporting information), 16 yielding a 

standard rate constant ks = 1.0 x 10-4 cms-1 (comparable to the one reported for MV). 1 

With a reversibility limit forks at about 0.03 cms-1 (this value yields 11Ep-p=65 m V at 0.1 

vs-1 for D=I0-5 cm2s-1), and a distance attenuation factor for long-range electron transfer 

of 10 nm-1, 17 it is calculated that in Me-BP@CB[7] e-transfer takes place from a distance 

of 5.7 A, which is about equal to the vertical distance (5.3 A) between the edge of the rim 

and the outer perimeter ofCB[7]. Spectroelectrochemically (see Supporting information), 

the neutral 1 e reduced form of Me-BP (Me-BP') remains intercalated in CB[7] and from 

the positive shift (~0.12 V) of its reduction wave from the 2nd wave of free Me-BP it is 

calculated that its formation equilibrium constant from free Me-BP and CB[7] is :::::110 

M-I. 

2.4. CONCLUSIONS 

Clearly, the ability to observe electrochemically both of the free and the 

complexed guest in the Me-BP/CB[7] systems is determined by the pre e-transfer Keq·18 

In the MV/CB[7] system, where Keq=2x 105 M-1, the equilibrium concentration of free 

MV is very small and consequently it is not observed electrochemically. 1 These results 

have definite implications in the design of molecular devices, while the aptitude of the 

most hydrophobic groups for the cavity is further explored for supramolecular protection 

in fundamental organic reactions such as the Hoffmann elimination and the Sandmeyer 

reaction. 
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Appendix S.2.1, Preparation of CB[7]; Appendix S.2.2, Stoichiometry 

determination for Me-BP@CB[7), Hex-BP@CB[7) and Bz-BP@CB[7) in water (ESI 

mass spectroscopy) and in DMSO (via Job Plots); Appendix S.2.3, Additional 1H-NMR 

information for the Me-BP/CB[7] and Bz-BP/CB[7) systems; Appendix S.2.4, 1H-NMR 

data of Hex-BP in DzO and DMSO-d6; Appendix S.2.5, Optical absorption data for Bz­

BP and Hex-BP in water and DMSO; Appendix S.2.6, Electrochemical data for Bz-BP 

and Hex-BP in DMS0/0.1 M NaCl04; Appendix S.2.7, Spectroelectrochemical data for 

Me-BP in DMS0/0.1 M NaC104; Appendix S.2.8, Kinetic analysis of the electrochemical 

data for the Me-BP/CB[7) system. 

Appendix S.2.1: Preparation ofCB[7]. 
CB[7) was prepared by modification of a literature procedure.1 Glycoluril (20.0 g, 

141 mmol) was mixed with finely powdered paraformaldehyde (8.45 g, 202 mmol) in a 

500 mL beaker. HCl (5M, 250 mL) was ice-cooled and it was added slowly to the beaker 

under magnetic stirring. After the addition was complete, the beaker was covered with a 

watch glass and it was heated to ~90 °C. Heating of the reaction mixture under stirring 

was continued for five days while the volume was maintained at ~250 mL by addition 

ofHCl. 

On the fifth day, the reaction mixture was cooled to room temperature and 

methanol (400 mL) was added causing immediate formation of a white precipitate. The 

precipitate was filtered and it was air-dried at room temperature. The dry white solid was 

suspended in 400 mL of 20% aqueous glycerol in a 500 mL beaker and the solution was 

heated to ~80 °C under vigorous stirring for about 3 h. The heterogeneous mixture was 

filtered and the colorless aqueous glycerol solution was transferred to a 1 L beaker and 

CH30H (400 mL) was added. A white precipitate was formed immediately, and the 

suspension was allowed to stand at room temperature for 24 h. Subsequently, the mixture 

was suction-filtered and the solid was rinsed on the filter with plenty of methanol till all 

glycerol was removed (monitored by 1H NMR with samples taken from the precipitate 

and dried in a vacuum heating oven). At the end the precipitate was dried in the open air 

I. Haltennan, R. L.; Moore, J. L.; Manne!, L. M. J. Org. Chern. 2008, 73 (8), 3266 -3269. 
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for about three days. The purity of the product was checked by 1H NMR and was more 

than 95%. 

The crude product was purified further by first dissolving it in the minimum 

amount of water. (To facilitate dissolution, one may need to add a few drops of HCI.) 

Subsequently, enough methanol was added to the homogeneous clear solution to induce 

cloudiness and the mixture was placed in the refrigerator for about 6 h. The precipitate 

that was formed was filtered and dried. Recrystallization was repeated twice. Yield of 

pure CB[7]: 4 g (3.44 mmol, 17.1 %). 

Appendix S.2.2: Stoichiometry determination for Me-BP@CB[7], Hex-BP@CB[7] and 
Bz-BP@CB[7] in water (ESI mass spectrometry) and in DMSO (via Job plots). 

ESI mass spectra 
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Figure S.2.1. ESI/MS of Me-BP@CB[7] and Bz-BP@CB[7] in H20. 
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Absorption spectra for Job plot of Mp-BP@CB[7) 
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Figure S.2.2. Job plot of Me-BP@CB[7], Bz-BP@CB[7] and Hex-BP@CB[7J m 
DMSO. 

2. (a) Job, P. Anna/i di Chimica App/icata 1928, 9, 113-203. (b) Krunz, M. M.; Pfendt, L. B. Microchem. 

J. 1983, 28, 162-167. (c) Cartwright, H. M. Microchem. J. 1986, 34, 313-318. 



Appendix 8.2.3: Additional 1H-NMR information for the Me-BP/CB[7] and Bz­
BP/CB[7] systems. 

Data for Me-BP/CB[7] in DzO and DMSO-d6 (no salts added) 
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Figure 8.2.3. 1H-NMR at 23 °C of the aromatic protons of Me-BP in D20 (A-D; 21.1 
mM)3 and DMSO-d6 (E-H; 9.1 mM). A,H: no CB[7]. B,G: 0.5 mol eq. ofCB[7] . C,F: 1.0 
mol eq. of CB[7]. D,E: 1.25 mol eq. of CB[7]. 

3. 1 H-NMR of Me-BP in 0 20 in our previous studies was conducted in the presence of 0.1 M 
KCI. 3 In this study, in order to correlate the 1H-NMR data with the structures obtained via semi­
empirical calculations, 1H-NMR was conducted in the absence of salts. We observe that the mode 
of inclusion does not change in the presence or absence of KCI: all protons move upfield in both 
cases, but to a lesser extent with KCI. 
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The largest shifts are observed for H3,5 (0.24 ppm), H9,13 (0.58 ppm), H10,12 

(0.34 ppm) and Hll (0.28 ppm). Protons H2,6 move upfield by only 0.06 ppm indicating 

that they are near the carbonyls (i.e, the transition zone between the interior-shielding and 

exterior-deshielding), while the N-CH3 protons are almost insensitive to the presence of 

CB[7], moving downfield by 0.03 ppm indicating that they are outside but not very near 

the portals. On the contrary, in DMSO-d6 some aromatic protons move upfield and some 

downfield. Protons H2,6 and H3,5 move upfield by 0.25 ppm, while protons HI 0,12 and 

Hll at the other end of Me-BP are practically insensitive to the presence of CB(7] . 

Protons H9,13 and the N-CH3 protons both move downfieldby 0.57 ppm and 0.73 ppm, 

respectively. From these data, in DMSO-d6 H2,6 and H3,5 are inside the cavity, H9,13 

and the N-methyl protons are just outside and interact strongly with the carbonyls at the 

two portals, leaving H 10,12 and H 11 outside and far from the cavity. 

Data for Bz-BP/CB[7) 
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Figure S.2.4. Room temperature (23 °C) 1H-NMR of the aromatic region of Bz-BP. A, 
D: no CB(7], in D20 (9.4 mM) and DMSO-d6 (18.8 mM), respectively. B, C: plus 1.0 
mol equivalent of CB[7] in DzO and DMSO-d6, respectively. 
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In both D20 and DMSO-d6 benzyl protons move upfield (0.5-0.9 ppm) indicating 

that the benzyl group is inside the cavity. Similarly, H2,6 move upfield (by 0.23 ppm in 

D20 and by 0.50 ppm in DMSO-d6) indicating that they are also inside the cavity. H3,5 

move 0.16 ppm downfield in D20 and only 0.04 ppm upfiled in DMSO-d6, indicating that 

they are in the transition carbonyl region. H9, 13 move downfield in both solvents (0.34 

ppm in D20 and 0.35 ppm in DMSO-d6) indicating that they are outside and near the 

portal oxygens. Hl0,12 and Hll are practically insensitive to CBI7], moving downfield 

by only 0.02-0.04 ppm indicating that they are outside and far from the portals. 

Appendix S.2.4: 1H-NMR data ofHex-BP in D20 and DMSO-d6 
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Figure S.2.5. Room temperature (23 °C) 1H-NMR of the aromatic region of Hex-BP. A, 
D: no CBI7], in D20 (12.8 mM) and DMSO-d6 (13 .5 mM), respectively. B, C: plus 1.0 
mol equivalent of CBI7] in D20 and DMSO-d6, respectively. 
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Appendix S.2.5: Optical absorption data for Bz-BP and Hex-BP in water and DMSO. 
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Figure S.2.6. Left: Room temperature (23 °C) titration of Bz-BP (2.05 X 1 o-5 M) with 
CB[7] in H20/0.1 M KCl; Amax=274 nm. Right: Benesi-Hildebrand plot. 
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Figure S.2.7. Top: Room temperature (23 °C) titration of Bz-BP (1.72 X 10-4 M) with 
CB(7] in DMS0/0.1 M NaCl04; Amax=274 nm. Bottom: Benesi-Hildebrand plot. 
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Hex-BP in water 
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Figure S.2.8. Left: Evolution of the absorption spectra of Hex-BP (2.14 X 104 M) in 
water/0.1 M KCI upon addition ofCB[7]. Right: Benesi-Hildebrand plot. 
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Figure S.2.9. Left: Evolution of the absorption spectra of Hex-BP in DMS0/0.1 M 
NaCI04 upon addition of CB[7). Right: Benesi-Hildebrand plot. 
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Appendix S.2.6: Electrochemical data for Me-BP, Bz-BP and Hex-BP in DMS0/0.1 M 
NaC104 
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Figure S.2.10. Normalized voltammetry (by dividing faradaic current by the square root 
ofthe sweep rate) ofMe-BP (3.2 mM) in Ar-degassed DMS0/0.1 M NaC104 using a Au­
disk (0.0201 cm2) working electrode. A. No CB[7); Inset: raw data. B. After addition of 1 
mol equivalent of CB[7]; Inset: Successive voltammograms by adding CB[7] (raw data). 
Me-BP 

£ 112(1 st wave): -0.606 V vs. Ag/AgCl (L1Ep-p = 0.060 V) 

£ 112(2nct wave): -1.185 V vs. Ag/AgCl (Mp-p = 0.070 V) 

Me-BP@CB[7] 

£ 112(1 st wave): -0.405 V vs. Ag/AgCl (L1Ep-p varies, see Appendix 8) 

E112(2nd wave): -1.070 V vs. Ag/AgCl (L1Ep-p varies) 

For the exact peak positions at the various sweep rates see the kinetic analysis in 

Appendix 8, below. 
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Figure S.2.11. Normalized voltammetry (by dividing faradaic current by the sq uare root 
of the sweep rate) of Bz-BP (3.0 mM) in Ar-degassed DMS0/0.1 M NaCIO-t using a Au­
disk (0.0201 cm2) working electrode. A. No CBI71: Inset: raw data. B. After addition of I 
mol equivalent of CBI7]; Inset: Successive voltammograms by adding CBI71 (raw data). 

Although the re-oxidation wave owing to the first-electron reduction or Bz­

BP@CBI71 is clearly visible and its peak potential shifts in the positive direction by 

increasing the sweep rate (indicating quasi-reversibility and slow interfacial e-transfer 

kinetics), analysis according to Kochi's method was not attempted because the reduction 

wave is merged with the reduction wave of free Bz-BP and determination of the peak-to­

peak separation is not possible. 
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Figure S.2.12. Normalized voltammetry (by dividing faradaic current by the square root 
of the sweep rate) of Hex-BP (3.3 mM) in Ar-degassed DMS0/0.1 M NaCl04 using a 
Au-disk (0.0201 cm2) working electrode. A. No CB[7]; Inset: raw data. B. After addition 
of 1 mol equivalent of CB[7]. 

Again, although the re-oxidation wave owing to the first-electron reduction of 

Hex-BP@CB[7] is clearly visible and its peak potential shifts in the positive direction by 

increasing the sweep rate (indicating quasi-reversibility and slow interfacial e-transfer 

kinetics), analysis according to Kochi ' s method was not attempted because the reduction 

wave is merged with the reduction wave of free Hex-BP and determination of the peak­

to-peak separation is not possible. 



Appendix 8.2.7: Spectroelectrochemical data for Me-BP in DMS0/0.1 M NaC104. 
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Figure 8.2.13. Spectroelectrochemistry of the one-electron reduced form Me-BP and of 
Me-BP@CB[7] using a thin layer cell ( ~0.15 mm thick) made of two ITO glasses in a 
solution containing Me-BP (3.0 mM) without (black line) and with (red line) 1 mol 
equivalent of CB [7]. 

The presence of CB[7] causes a change in the vibrational resolution of the 

absorpion spectrum of the 1e-reduced form of Me-BP, signifying that the neutral radical 

does form a complex with CB[7]. 



Appendix S.2.8: Kinetic analysis of the electrochemical data for the Me-BP/CB[7] 
system. 

77 

The peak-to-peak separation can be introduced in eq. S 1,4 for the calculation of 

the standard rate constant ks of a quasi-reversible e-transfer process: 

k. = 2.18(Df3wnFv)112 exj flw 2nF (Eanodtc _ EcmhodtcJ 
·' RT I[_ RT P P 

(S 1) 

where D is the diffusion coefficient of the redox active species (approximated 

here at 8x 1 o-6 cm2s- 1), n is the number of electrons exchanged with the electrode per 

molecule, F the Faraday constant, R the gas constant, T the absolute temperature, v the 

potential sweep rate (in Vs- 1), E;nodicand E;whodi"(in volt) are the anodic and cathodic 

peak-current potentials, and the transfer coefficient f3w is given by eq S2,5 

fJ = ll. 8 57 R Tj[£ cathodic _ £ c~rhodic I I 
w nF P P ' 2 

(S2) 

where E;~';odn is the potential (in volt) where the cathodic current is equal to half the 

h d. k c· /2) h . d d Ecathod" cat o IC pea current lpc t at IS recor e at P . 

The ks value may vary as the potential sweep rate, v, mcreases. The ks value 

reported for the quasi-reversible 1e reduction of Me-BP@CB[7] (1.0 x 10-4 cms- 1) is the 

one reached asymptotically at high LlEp-p separations (high potential scan rates). 

4. Eq. 26 in: Klingler, R. J.; Kochi, J. K. J. Phys. Chem. 1981, 85, 1731-1541. 

5. Eq. 24 in the reference of footnote 4 . 
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Figure S.2.14. Standard rate constants, ks, calculated via equations S I and S2 from the 
data of Figure S.2.8 at various potential scan rates. 

Table S.2.1. Data extracted from Figure S.2.8 for the derivation of the standard rate 
constant, ks, ofthe first-electron reduction ofMe-BP@CB(7] according to eq.s Sl and 
S2. 

Scan rate E1.«1) E,.,r]) LJEp-p(lj E,.cf!) Ep-af21 J£,., (2) ;,. . if'_ ... : E,._, .. ,rJ1 E, J 11- Er-,,-/ l j p •• k, .. 
(Vis) (tnV) (tnV) (tnV) (mV) (mV) (mV) (J.IA) (J.IA) (tnV) (V) (em's) 

0.05 -487.50 -311.80 175.7 -636.74 -570.18 66.56 -27.28 -13.68 -4~0.53 0.0669 0 712 2.31E-04 

0.1 -504 04 -305.19 198.85 -633.44 -573.49 59.95 -30.46 -15.23 -438.30 0.0657 0.715 2 04E-04 

0.2 -520.57 -295.26 125.31 -636 74 -570.18 66 .56 -32.79 -16.39 -453 .19 0.0674 0 708 1.73E-04 

0.4 -533.80 -275.42 258.38 -649.97 -570.18 79.79 -35.91 -17.95 -469.71 0.0641 0744 1.27E-04 

0.8 -550.34 -262.19 288.15 -646.66 -573.49 7317 -38.68 -19.34 -479.23 00711 0 671 9.98E-05 

1.0 -55365 -258.88 294.77 -646.66 -566.8.8 79.78 -383 -19.15 -486.26 0 0674 0 708 9.72E-05 
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3.1. ABSTRACT 
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N,N'-dimethyl-2,6-diaza-9,10-anthraquinonediium dication (DAAQ) in water not 

only exists in equilibrium with its gem-diol but also forms aggregates which cause line­

broadening in 1H NMR. At low pH (<1), the aggregates break up and the equilibrium is 

shifted exclusively toward the quinone form. In the presence of CB[7], the quinone form 

undergoes inclusion with CB[7] by slow exchange in both water and aqueous acid. Both 

free and CB[7]-intercalated quinone forms are observed by 1H NMR. 

3.2. INTRODUCTION 

Aza and diazaanthraquinones represent an important class of antitumoru and 

antimicrobial agents.3 Moreover, anthraquinone derivatives show two successive electron 

reduction steps that make them ideal molecules for sensors in electroanalytical 

applications. Because of their unique photophysical properties, they are used as 

chemosensors for metal ions4 and anions.5·6 They are also being used in photoinduced 

electron transfer as electron acceptors linked to a plethora of different molecules ranging 

from conjugated polymers, 7 to porphyrin-containing polyamide dendrimers. 8 

Several studies regarding the intercalation of anthraquinone derivatives with 

DNA9 and synthetic hosts such as cucurbit[7]uril (CB[7]) 10 and cyclodextrin11 have been 

published. Recently, we have reported that monocationic N-substituted-4-

benzoylpyridiniums can be oriented either exo- or endo-, placing the most hydrophobic 

group inside the hydrophobic CB[7] cavity. 12·13 The driving force is so strong that those 

guests shift their keto to gem-diol equilibrium towards the keto form in order to place the 

keto form inside the cavity, despite the solvent (H20) stabilization of the gem-diol via H-

t Formerly. University of Missouri-Rolla. 
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bonding. As an extension to this work, and in order to test the generality of these results, 

we set out to study the effect of keto to gem-diol equilibrium on dicationic guests such as 

N,N'-dimethyl-2,6-diaza-9,10-anthraquinonediium (DAAQ) in the presence ofCB[7]. 

3.3. RESULTS AND DISCUSSION 

3.3.1. 1H NMR Study. According to Figure 3.1, DAAQ in DCl-D20 (4.67 Molar, 

pH<1) shows only three signals in the aromatic region corresponding to H1,6(s), Hu(d) 

and H4,9(d) of the quinone form. In 0 20, DAAQ shows extra peaks in addition to the 

peak broadening. Careful examination reveals that these extra peaks: H1 (s), H6 (s), H1 

(d), Hs (d), H4.9 (partially overlapping d) come from the gem-diol, a product of hydration 

of DAAQ (Scheme 3.1). Hydration of carbonyl compounds has been investigated in 

recent years, 12 including an analysis in terms of multidimentional Marcus theory. 14 On 

the other hand, DAAQ in anhydrous DMSO-d6, shows three broad singlets suggesting 

aggregate formation (DAAQ)n. This is supported by X-ray crystallography, as the BF4-

counter ions promote electrostatic aggregate formation by holding together DAAQ 

dications which would have had otherwise electrostatic repulsions via their positively 

charged nitrogens (see Supporting Information). Upon titration of a solution of DAAQ in 

D20 with varied mol equivalents of aq. DCl, disappearance of the gem-diol peaks and 

progressively conversion of the broad aggregate (DAAQ)n, peaks into sharper quinone 

peaks was observed (Figure 3 .2). Thus in the presence of an acid (pH< 1 ), the equilibrium 

of Scheme 3.1 is shifted towards the quinone form DAAQ via protonation of one of the 

hydroxyl groups of the gem-diol, followed by dehydration. 
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Scheme 3.1. Hydration of DAAQ 
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Figure 3.1. 1H NMR spectra of the aromatic region of DAAQ in 0 20 , DMSO-d6 and 
DCIID20. 
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Figure 3.2. Titration of a solution of DAAQ in D20 (20 mM) with different mol 
equivalents of DC I. 

1H NMR is a reliable tool for structural elucidation of host-guest complexes. 

Figure 3.3 shows the evolution of the spectra of DAAQ in DCl/D20 upon progressive 

addition of CB[7]. When 0.25 mol equivalents of CB[7] were added, quinone forms an 

inclusion complex with CB[7] with such a slow rate so that both intercalated: 

DAAQ@CB[7] and free DAAQ can be observed within the time scale of 1H NMR. As 

the addition of CB[7] progresses, the amount of DAAQ@CB[7] increases at the expense 

of DAAQ. At saturation (addition of 1.25 mol equivalents of CB[7]), only the 

DAAQ@CB[7] peaks are visible. H~,6 and H4.8 are being shielded upfield by 0.376 ppm 

and 0.106 ppm, respectively, indicating that are inside the CB[7] host. On the other hand, 

H3.8 and the -Me groups are deshielded by 0.075 ppm and 0.144 ppm, respectively, 
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meaning that they are located in the vicinity of the rim oxygens, just outside the CB[7] 

cavity. 
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Figure 3.3. 1H NMR spectra of DAAQ in DC1/D20 with different mol equivalents of 
CB[7];.: DAAQ@CB[7], .A.: Free DAAQ. 

Figure 3.4 shows the 1H NMR ofDAAQ in 0 20 followed by progressive addition 

of CB[7]. As the addition of CB[7] progresses, intercalated and free DAAQ are noted. 

After adding 1.25 mole equivalents ofCB[7], H 1.6 and H4•9 are shielded by 0.365 ppm and 

0.056 ppm, respectively (inside the cavity). While protons H3.8 are deshielded by 0.159 

ppm (outside the cavity). Clearly, both carbonyl groups of the quinone are inside the 

CB[7] cavity. In addition, the peaks corresponding to gem-diol have disappeared, 

meaning that when the DAAQ is inside the cavity of CB[7] , hydration is prohibited 

because the cavity is hydrophobic in nature. Also, (DAAQ)n aggregates break up as 

DAAQ enters the CB[7] cavity resulting in sharper peaks corresponding to 

DAAQ@CB[7) . 
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Figure 3.4. 1H NMR spectra ofDAAQ in D20 with different mol equivalents of 
CB[7]; .: DAAQ@CB[7], .. : Free DAAQ. 
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3.3.2. Mass Spectroscopy. The presence of gem-diol (mlz = 601.2) is confirmed 

by ESI/MS of an aqueous solution of DAAQ (Figure 3.5). Moreover, ESIIMS shows the 

formation of aggregates [(DAAQ)n.(BF4)2(n-1)]2+ where n=2-8. On the other hand, 

ESIIMS of an aqueous solution of DAAQ@CB[7] (Figure 3.6) reveals the formation of a 

1:1 complex ofDAAQ with CB[7] (m/z = 701.5). 
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Figure 3.5. ESIIMS of DAAQ in H20. 
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3.3.3. PM3 Calculation. The 83L YP/6-31 G* basis was used to optimize the 

CB[7] and DAAQ structures. These optimized structures were used as an input for PM3 

calculation. Figure 3.7 shows the PM3 optimized structure of DAAQ@CB[7], which 

reveals that the protons H 1.6 and H4.9 are inside the cavity, whereas the protons H3.8 are 

outside ofthe cavity. 

Figure 3.7. PM3 optimized structure of DAAQ@CB[7]. 

PM3 calculation adds support to the NMR study of DAAQ@CB[7]. This shows 

that the carbonyl group is inside the cavity where it experiences hydrophobic interactions. 

Because of these interactions, the gem-diol of DAAQ, which is hydrophilic in nature, 

does not intercalate in CB[7]. 
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3.3.4. UV-Vis Study. The binding constant of DAAQ with CB[7] was calculated 

via spectrophotometric titrations at 225 nm (Figure 3.8). Nonlinear regression analysis of 

the data (see Supporting lnformation)15 gave a very strong binding constant Keq = 

(3.61±1.63) x 106 M-1 which is ~3 orders of magnitude greater than the binding constant 

of monocationic benzoylpyrydinium guests 12 but closer to dicationic methylviologens 

whose Keq ~ 2 x 105 M-1 with CB[7].16-18 The recorded UV-Vis spectra reveal the 

presence of an isosbestic point at 320 nm implying that two different chromophores are 

present in the system and as the concentration of CB(7] increases, the absorbance of one 

chromophore is increased at the expense of the other. This shows that equilibrium of 

quinone to gem-diol is affected by the CB[7] and it favors the quinone form. 

30 
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Figure 3.8. Spectrophotometric titration of DAAQ (3.96 10-5 M) with CB[7] in H20. 
Inset: non-linear fit (R2=0.9936) of the absorbance at 225 nm versus total concentration 
of CB[7] (see Supporting Information). 
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3.4. CONCLUSIONS 

Host-guest interactions of dicationic quinone DAAQ with CB(7] are reported for 

the first time. DAAQ exists in equilibrium with its gem-diol form in water, whereas it 

exists as a quinone in DMSO and aqueous acid (pH<1). In neutral pH, DAAQ shows 

line-broadening in 1H NMR due to formation of aggregates which are supported by X-ray 

crystallography, as BF4- promotes electrostatic aggregate formation by holding together 

DAAQ dications which would have had otherwise electrostatic repulsions via their 

positively charged nitrogens. At low pH (<1), the aggregates break up and the 

equilibrium is shifted exclusively toward the quinone form. In the presence of CB(7], the 

quinone form undergoes inclusion with CB[7] by slow exchange in both water and 

aqueous acid. Both free and CB(7]-intercalated quinone forms are observed by 1H NMR. 

The resulting DAAQ@CB[7] complex is stable with a very high binding constant (3.61 x 

106 M-1), most probably because this complex is stabilized by two cation-dipole 

interactions. 

3.5. EXPERIMENTAL 

3.5.1.Materials. All starting materials and solvents were obtained from Sigma­

Aldrich and used without further purification. CB(7] was prepared as described in our 

. k 13 previOus wor . 

3.5.1.1. 5,1 0-dioxo-5,1 0-dihydropyrido [3,4-g] isoquinoline (or 2,6-diaza-9, 10-

anthraquinone). It was synthesized according to the literature.19 Mp 230-2320C (lit.19 

mp 234-236 °C); 1H NMR (CDC13) 8 8.11 (dd, J= 5.1 Hz, J= 0.8 Hz, 2 H), 9.20 (d, J= 

5.1 Hz, 2 H), and 9.59 (d, J = 0.8 Hz, 2 H); 13C NMR 8 119.0, 125.8, 137.9, 149.8, 156.4, 

182.0. 

3.5.1.2. 2, 7-dimethyl-5,1 0-dioxo-5,1 O-dihydropyrido(3,4-g]isoquinoline-2, 7-

diium bis(tetrafluoroborate) (or N,N'-dimethyl-2,6-diaza-9,10-anthraquinonediium 

bis(tetrafluoroborate), DAAQ). 2,6-Diaza-9, 1 0-anthraquinone (0.30 g, 1.43 mmol) was 

dissolved in nitromethane (20 mL) in a 50 mL round bottom flask. To this solution, under 

N2, a solution of trimethyloxonium tetrafluoroborate (0.63 g, 4.26 mmol) in nitromethane 

(1 0 mL) was added dropwise under vigorous stirring at room temperature. The reaction 

mixture was stirred for 30 min at room temperature followed by the addition of diethyl 
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ether. The crude product thus precipitated was filtered and recrystallized in boiling water. 

Yield: 0.21 g (36%); mp 242-246 °C dec; 1H NMR (DCl, 4.67 Min 0 20) 8 9.62 (s, 2H), 

9.16 (d, J = 6.2 Hz, 2H), 8.60 (d, J = 6.4 Hz, 2H), 4.51 (s, 6H). The structure was 

confirmed by X-ray analysis (Figures S.3.1 and S.3.2). 

3.5.2. General Methods and Equipment. 1H NMR spectra were recorded on a 

Varian INOV A 400 MHz NMR spectrometer. UV -vis spectra were recorded with an 

Ocean Optics, Inc., model CHEM2000 miniature fiber optic spectrophotometer. 

Experimental data were analyzed with origin pro 8 software. Mass spectrometry was 

performed using a TSQ7000 triple quadruple mass spectrometer with electrospray 

ionization (ESI) at the University of Missouri-Columbia. PM3 semiempirical calculations 

using OFT-optimized structures (6-31G(d) basis set) were performed in windows XP 

with Gaussian '03 software. Melting points were uncorrected. X-ray crystallography was 

done on a Bruker Smart Apex diffractometer. A suitable crystal was selected and 

mounted on a glass fiber using epoxy-based glue. The data were collected at room 

temperature employing a scan of 0.3°in ro with an exposure time of 20 s/frame. The cell 

refinement and data reduction were carried out with SAINT, the program SADABS was 

used for the absorption correction. The structure was solved by direct methods using 

SHELXS-97 and difference Fourier syntheses. Full-matrix least-squares refinement 

against IF21 was carried out using the SHELXTL-PLUS suit of programs. All non­

hydrogen atoms were refined anisotropically. Hydrogen atoms were placed geometrically 

and held in the riding mode during the final refinement. 

3.5.2.1. NMR titrations of DAAQ with CB[7] in D20. DAAQ (3.4 mg, 0.0082 

mmol) was dissolved in 0 20 (0.5 mL) and equilibrated for about 30 min before its 1H 

NMR spectrum was recorded. To this solution, an incremental amount of CB[7] (0.25, 

1.25 mol ratio vs DAAQ) was added to form the inclusion complex. The 1H NMR 

spectra were referenced versus residual H in DzO. 

3.5.2.2. NMR titrations of DAAQ with CB(7] in D20/DCI. DCl (0.25 mL, 40% 

v/v) was added to equal volume of 0 20. The resulting solvent mixture was added to 

DAAQ (2.5 mg, 0.0060 mmol). The sample was then transferred into a double jacket 

NMR tube (Wilmad LabGlass) in which the inner tube was filled with DAAQ and the 
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outer tube was filled with D20. The latter was used as an external reference. To the inner 

tube, was added an incremental amount of CB[7] (0.25, 0. 75, 1.25 mol ratio vs. DAAQ). 

3.5.2.3. NMR titrations of DAAQ with DCI. To a solution of DAAQ in D20 (20 

mM) were added progressively varied volumes of aq. DCl and the 1 H NMR spectra were 

recorded after each addition. 

3.5.2.4. Determination of the binding constant of DAAQ with CB[7].The 

binding constant was determined spectrophotometrically at 225 nm in H20. Stock 

solutions of DAAQ (3.96 x 10-4 M) and CB[7] (2.72 x 10-4 M) in H20 were freshly 

prepared before each run. In a series of 10 mL volumetric flasks, a constant volume ( 1 

mL) of the DAAQ solution was added, followed by the addition of varied volumes of the 

CB[7] solution. The mixtures were diluted to the 10 mL mark with H20. The absorbance 

of those solutions was recorded in a UV-Vis spectrophotometer. Plot of the change in 

absorbance at 225 nm was fitted using non-linear regression. The reported binding 

constant is the average of two such measurements. Data analysis is given in the 

supporting information. 
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Appendix S.3.1, Absorption data for measurement of equilibrium constant of 

DAAQ with CB[7]; Appendix S.3.2, Calculation of the equilibrium constants for the 

DAAQ I CB[7] complex formation; Appendix S.3.3, XRD ofDAAQ. 

Appendix S.3.1: Absorption data for measurement of equilibrium constant of DAAQ 
with CB[7] 

Table S.3.1. Absorption data for the [DAAQ] I CB[7] system. 

Run-1 Run-2 

[DAAQ] [CB(7]] [DAAQ] [CB[7]] 

3.96E-05 0 0 3.96E-05 
0 0 

3.96E-05 5.43E-06 0.02381 3.96E-05 5.09E-06 0.0334 

3.96E-05 8.15E-06 0.04823 3.96E-05 1.02E-05 0.07181 

3.96E-05 1.63E-05 0.09859 3.96E-05 2.04E-05 0.12928 

3.96E-05 2.17E-05 0.12736 3.96E-05 2.55E-05 0.15169 

3.96E-05 2.45E-05 0.14508 3.96E-05 3.05E-05 0.17138 

3.96E-05 2.72E-05 0.16162 3.96E-05 3.56E-05 0.1941 

3.96E-05 3.26E-05 0.18922 3.96E-05 4.07E-05 0.21718 

3.96E-05 3.53E-05 0.20371 3.96E-05 4.58E-05 0.22664 

3.96E-05 3.80E-05 0.22074 3.96E-05 5.60E-05 0.22325 

3.96E-05 4.35E-05 0.23594 3.96E-05 6.62E-05 0.22633 

3.96E-05 4.62E-05 0.24907 3.96E-05 8.14E-05 0.22032 

3.96E-05 5.43E-05 0.25414 
3.96E-05 5.98E-05 0.25576 
3.96E-05 7.06E-05 0.24431 

l<eq = 1.98E+06 M·1 b~E11 = 3.19E+03 M-1 Keq = 5.24E+06 M-1 b~Eu = 2.89E+03 M-1 
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Appendix S.3.2: Calculation of the equilibrium constants for the DAAQ I CB(7] 
complex formation. 

UV absorption data were analyzed in order to find equilibrium constants of the host + 

guest ~ complex reaction using eq 4.5 in "Binding Constants The Measurement of 

Molecular Complex Stability" by K. A. Connors, John Wiley &Sons, New York, 1987, 

Chapter 4, p 148. 

M = SIK]]~Cji[L] 
b 1+K11 [L] 

(4.5) 

M is the difference in absorbance at a certain wavelength of the substrate and the 

complex, b is the optical Itrth (1 em), Sr is the total substrate concentration (free and 

complexed) where substrate here is N,N'-dimethyl-2,6-diaza-9, 1 0-anthraquinonediium 

bis(tetrafluoroborate) (DAAQ), K 11 is the equilibrium constant for 1:1 complex formation 

(which is our case), L1c:11 is the difference in extinction coefficients between DAAQ and 

its complex with CB(7], and (L] is the equilibrium concentration of free titrant, namely 

CB[7]. If [L]>>St, then we can consider [L]~Lt. Then we can invert eq. 4.5, obtain eq. 

4.10 (the Benesi-Hildebrand equation), plot 1/M versus liLt and obtain K11 by dividing 

intercept over slope of the expected straight line. (Lt is the total concentration of CB(7], 

free and complexed.) 

b 1 1 
= +--

M s1K11~Ci 1L1 s~~E11 
( 4.1 0) 

If the condition [L]>>Lt is not met, then we need to calculate [L] as a function of Lt via eq 
D 

2.39 of Connors book, p 44: 

(2.39) 

Thus, by rearranging 4.5 an~1 substituting into 2.39 one can obtain: 
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Substituting now the last equation back into 4.5 we obtain a quadratic equation that can 

be solved into: 

The experimental data consist of measured absorption difference M (A-A0 ) 

versus added (total) concentration of CB[7] (L1) . St is a known constant for each titration, 

while bL1&t 1 and K11 are treated as adjustable parameters that are obtained by non-linear 

least square fitting of the M versus L1 data. Table S 1 provides the values obtained for 

Ktt (which for the purposes of this paper is referred to as Keq) and for bLl&tt for DAAQ. 
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Appendix 8.3.3: XRD of DAAQ. 

F~l FI
2

AI 

11AI 

Fl AI 13AI 

Figure 8.3.1. ORTEP plot of N,N'-dimethyl-2,6-diaza-9,10-anthraquinonediium 
bis(tetrafluoroborate) (DAAQ). Thermal ellipsoids are drawn at the 35% probability 
level. 

Figure 8.3.2. Packing diagram for N,N '-dimethyl-2,6-diaza-9, I 0-anthraquinonediium 
bis(tetrafluoroborate) (DAAQ). Projection down the c axis. 
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4.1. ABSTRACT 
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Complexes of the pyrylium cation with cucurbit[x]urils (CB[x], x=7,8) show 

interesting photoluminescence that is related to their stereochemistry, however the latter 

has been debated. Here we report that in H20, 2,6-disubsituted-4-phenyl pyryliums form 

dimers, but they enter as such only in CB[8]. All guests insert their 4-phenyl groups in 

either cavity, except (iPr-Pylm)z@CB[8], which inserts the iPr-groups (Figure 4.1). 

Stereochemistry is interpreted by the size and hydrophobicity of the pyrylium 

substituents, out-of-cavity solvation effects, and size and flexibility of the hosts. 

CB[7) CB[8) 

(pyrylium)@CB[7) (pyryliumh@CB[8[ 

Pyrylium 

(R= Me, iPr, t-Bu, Ph) 

Figure 4.1. Schematic representation of inclusion of pyrylium with cucurbituril. 

:Formerly, University of Missouri-Rolla. 
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4.2. INTRODUCTION 

Cucurbit[x]urils (CB[x]) are water-soluble, barrel-shaped hosts prepared by 

condensation of x mol of glycoluril and 2x mol of formaldehyde. 1 The two rims, formed 

by the negative ends of the glycoluril carbonyl dipoles, are at a fixed distance (9.1 A) for 

all x, while the portal/cavity diameters vary (e.g., 5.4 A/7.3 A for CB[7], and 6.9 A/8.8 A 

for CB[8]). CB[x]s show an affinity for cationic guests, and intercalation of dications 

with a length matching the portal distance (e.g, dimethylviologen; 7.3 A) has been 

studied extensively. The latter guest is stretched along the axis of the barrel, placing the 

positive Ns near the negative rim Os? On the other hand, monocationic N-substituted-4-

benzoylpyridiniums can be oriented either exo- or endo-, placing the most hydrophobic 

group inside the hydrophobic cavity.3,4 In fact, that driving force is so intense that those 

guests forfeit H-bonding with the solvent (H20), shifting their keto/gem-diol equilibrium 

towards the keto form in order to place the benzoyl group inside the cavity. Those results 

invite a global study for the intercalation of monocationic guests, not only as a function 

of their hydrophobic properties but also in terms of their shape and the size of the cavity. 

For this, the 4-phenyl pyrylium cation, whose size and hydrophobicity can be modified 

by 2,6-substitution, is a viable system: 

Indeed, the 4-phenylpyrylium cation has been a suitable guest for studying 

intercalation in cyclodextrins, showing an increasing preference for the hydrophobic 

interior of the host as hydrophobic substituents at the c-position of the 4-phenyl ring 

become longer. 5 Further, owing to positive ion-dipole interactions, Ph-Pylm forms even 

more stable complexes with cucurbiturils placing the 4-phenyl group inside the cavity.6 

In this regard, the size of CB[ x] plays a profound role in the relative mobility of the 

phenyl groups: in CB[7], Ph-Pylm does not get as deep as in CB[8) and, once in the 

cavity, the tight fit restricts rotation of the 4-phenyl group while rotation of the 2- and 6-

phenyl groups is free. On the other hand, once in CB[8], rotation of the 4-phenyl group 

inside the cavity is free, while rotation of the 2- and 6-phenyl groups is inhibited by the 

portal oxygens that stand on the way ofthe Hcts. That restricted rotation slows relaxation 

of the excited state, and the guest shows long-wavelength room temperature emission, 

which has been attributed to phosphorescence and has been explored m 

electroluminescent devices.6 Quite recently, this description has been revised as crystal 
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structure determination of the Ph-Pylm complex with CB[8] has shown that actually two 

Ph-Pylm moieties enter the cavity, both from the same side.7 

4.3. RESULTS AND DISCUSSION 

Clearly, those results warrant a thorough examination of the CB[x]-pyrylium 

system, not only for its possible utility, but also for its basic chemistry. It is thus reported 

herewith that in H20 all four pyryliums of this study exist in equilibrium with their 

dimers, and they form 1:1 complexes with CB[7] and 2:1 complexes with CB[8]. In 

CB[7] all four guests intercalate with the 4-phenyl group inside the cavity. In CB[8], 

dimers of Me-, t-Bu- and Ph-Pylm have a similar orientation as the monomers in CB[7]. 

However, the stereochemistry of (iPr-Pylm)2@CB[8] is opposite 

Scheme 4.1. Structure of compounds used for the study. 

5 
6 

Me-Pylm iPr-Pylm t-Bu-Pylm 

Synthesis of the four guests (see Supporting Information) was carried out 

according to literature procedures. ESI-MS shows that in solution all four guests form 

dimers, presumably J-aggregates,8 in analogy to the crystalline packing of Me-Pylm 

(Supporting Information). Dimerization equilibrium constants (Kd, Table 4.1) were 

calculated spectrophotometrically (Figure 4.2 and Supporting Information), and they 

increase with the substituent hydrophobicity. The corresponding free enthalpies (5.4-7.6 

kcal mor1) fall in the typical range of non-covalent interactions. 
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Figure 4.2. Typical absorption of a guest (iPr-Pylm) as a function of its concentration in 
H20. The red-shift is attributed to ]-aggregation. Inset: non-linear fit (R2=0.992) of cat 
325 nrn versus concentration. 

All four guests form I: I complexes with CB[7] (by Job's plots, see Supporting 

Information), and 2:1 complexes with CB[8] (by ESI-MS, Figure 4.3). In all cases, the 

1: 1 complexes with CB[8] are also present. The intercalation mechanisms with both hosts 

are summarized in Scheme 4.2. 

Table 4.1. Dimerization constants for pyryliums in water. 

Me-Pylm iPr-Pylm 

4 3.2x l0 

t-Bu-Pylm Ph-Pylm 

3.9x105 
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Figure 4.3. ESI-MS data with freshly made samples of the four guests in H20 (-10-5 M) 
and -1:1 mol/mol ofCB[8]. A: Me-Pylm; B: iPr-Pylm; C: t-Bu-Pylm; D: Ph-Pylm. 

Equilibrium constants K[7], K[8].I and KrsJ,l (Table 4.2) were calculated vta 

spectrophotometric titrations (e.g., Figure 4.4 and Supporting Information).9 K[7] 

decreases from Me-Pylm to Ph-Pylm reflecting presumably the guest position in the 

CB[7] cavity: as supported by 1H NMR below, at first approximation, bulkier 

substituents seem to prevent pyrylium from going as deep, thus those complexes do not 

realize maximum stabilization. With regards to CB[8], although a similar trend is not 

readily identifiable with Kr81,~, K[8}.2 does follow an analogous trend with K[7]: once the 

first pyrylium has entered the larger CB[8] cavity, there is a significant driving force to 

take up a second guest (Kr8p > K[8J.I) but size-restrictions by the 2,6-groups impose a 

downward trend on Kr8p from Me- to Ph-Pylm. Finally, KrsJ.3 values (calculated via 

K[8}. 3=Kr81,1Kr8p/Kd) show a trend-reversal for iPr-Pylm, implying a larger driving force 

for intercalation, which can only be explained by changes in stereochemistry. 
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Scheme 4.2. Intercalation mechanism of Me-, iPr-, t-Bu- and Ph-Pylm in CB[7) and 

CB[8). 

Pylm@CB[8] + Pylm (Pylmh@CB[8] 

CB[8] KraJ, 1 CB[8] KraJ,J 

Pylm + Pylm (Pylmh 

CB[7] Kf1l 

Pylm@CB[7] 

1H NMR is a reliable tool for structural elucidation of host-guest complexes. 

Figure 4.5 shows the evolution of the spectra of Me-Pylm upon progressive addition of 

CB[7] or CB[8]. (For other guests see Supporting Information) The initial line­

broadening is attributed to site-exchange between free and intercalated guest, and 

indirectly supports the stoichiometry of the complexes: the resonance lines become sharp 

again after addition of 1 mol equivalent of CB[7) and 2 mol equivalents of CB[8), 

reflecting also the high equilibrium constants of intercalation (Table 4.2). 
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Table 4.2. Equilibrium constants (M-1) per Scheme 4.2 

Kf71 KtB/,1 Ktat.2 Ktat.3 

Me- (3±1)x 105 (1.2±0.3)x104 5.6xl06 6.7x106 

iPr- (1±1)x105 (8+8)x 104 4.8x 106 12x1 06 

t-Bu- (8±3)x104 (4±4)x104 1.7x105 5.7x104 

Ph- (6±2)x104 (3±2)x 104 1.5x 105 1.2x 104 

0.4 
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<1) 0.45 
u 0.0 c 
t\1 
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;..... 0 3 6 9 
0 0.30 [CB(8]] (10-S M) CJ:l 

,J:::i 

< 
0.15 

225 300 375 450 

Wavelength (nm) 

Figure 4.4. Spectrophotometric titration in H20 of Me-Pylm (4.74 10-5 M) with CB[8] . 
Multiple spectral inter-sections reflect the multistep processes of Scheme 4.2. Inset: non­
linear fit (R2=0.990) of absorbance as indicated. 
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Further, Figure 4.5 shows that all protons (aromatic and aliphatic) of Me-Pylm 

are shifted in the same direction with both hosts, implying that the guest monomer (case 

of CB(7]) and the guest dimer (case of CB[8]) are positioned similarly in the respective 

cavities. Thus, all aromatic Hs of Me-Pylm move upfield, signifying that they are located 

inside the cavity, while aliphatic Hs (CH3) move downfield, signifying that they are 

located in the vicinity of the rim oxygens, just outside the cavity. In tum, Figure 4.6 

shows and compares the 1H NMR data for all guests with both hosts and Scheme 4.3 uses 

color-coding to summarize the results. Thus, first, we observe that all four guests are 

oriented similarly in CB[7] placing their 4-phenyl groups in the host. Further, t-Bu- and 

Ph-Pylm do not sit as deep as Me- and iPr-Pylm in the CB[7] cavity. It is tempting to 

attribute those differences to the size of the 2,6-substituents, however, PM3 optimized 

structures (Supporting Information) show that all three iPr-, t-Bu- and Ph-Pylm are able 

to sink at the same depth inside the host cavity. Therefore, the actual position of the 

guests is determined not only by their size/hydro-phobicity, but also by external factors, 

as for example solvation of the pyrylium oxygen that sits outside the cavity. In CB[8), the 

dimers of Me-, t-Bu- and Ph-Pylm are oriented similarly as in CB[7], namely with their 

4-phenyl group in the cavity. t-Bu-Pylm enters deeper in CB[8] than in CB[7], reflecting 

the relative sizes of the portals. On the other hand, Me- and Ph-Pylm seem to enter as 

deep in CB[8] as in CB[7], which is rather surprising, and it should reflect that Ph-Pylm 

enters both hosts with similar orientation. 
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Figure 4.5. A: 1H NMR of Me-Pylrn in D20. B, C: Plus 0.5 and 1.0 mol equivalent of 
CB[7]. D, E: Plus 1.0 and 2.0 mol equivalents ofCB[8]. 

Nevertheless, what is fascinating with CB[8], is the orientation of iPr-Pylrn, 

which places the two isopropyl groups inside the cavity leaving the 4-phenyl group 

outside. This orientation has to be considered globally. Clearly, all four guests give up 

favorable dimerization in solution, in order to gain hydrophobic stabilization in CB[7]. In 

CB[8], with size-restrictions relaxed, all guests enter as dimers. Next, guests would strive 

to place their most hydrophobic groups in the cavity. Apparently, iPr groups are 

sufficiently hydrophobic, and simultaneously present less crowding than the larger t-Bu 

and Ph groups of t-Bu- and Ph-Pylrn, so that the stereochemistry of (iPr-Pylrn)2@CB[8] 

is determined by hydrophobic interactions, while in (t-Bu-Pylrn)2@CB[8] and (Ph­

Pylrn)2@CB[8] by the size of the substituents. 



106 

3,5 c b +CBI81 

~---······························ 
Ph-Pylm 

+CBI71 

3,J'---------:::l:_A _______ 12,6-t-Bu 
.. ·· ... ~~-········ 

t-_B_u_-P_y_Im ___ 3,--:5 ~'==·:_:·.:_ .• : .•. _. -_:_·:~-_=_=:_::_ ... _··_·······_······_·····_· -- _______ ,_,\.1._2_,6_-r-_B_u 

+_c_s_'_7'_3_1/ ~- =::~ <:~Q __________ j 2.6-t-Bu 

+CBI81 

2,6-CHMe2 

+ CB[81 ~--. . 3,irt... c' ~- ~ ---- ----------___ 2_,~.__-c_''/_M_c2 ___ JL 
iP_r_-P_y_Im ___ ·._.}_;-5~ 2_6_CHMc2 I :f6~~~Me2 

+_c_B_I7_1 _____ ;,~SI~···· _······_·····-._:·-::::::_:_·: .... _ .. ~_~ .. ~_ •. _, .... ~~ t~-- -"'-2_,6_-c_H_Mc--2 __ _...12.6-CI-!Me 2 

+_c_B_I8_1 _______ ~3=~~'-------~~~----~1~2-.6--M_c ______ _ 
__ ............. . 

3,5 ~:.:::~~-:::::::.::: 1112,6-Mc 

+_C_B_I7_1____ ;:~:1:: <:~"-~: , ~ b ---1~~~--6--M-c ____ _ 

.. ·e::~ .. 

Me-Pylm 

8.5 8.0 7.5 7.0 6.5 3.0 1.5 

8,ppm 

Figure 4.6. 1H NMR of the four guests after addition of 1 mol equivalent of CB[7] or 2 
mol equivalents of CB[8]. Notice the opposite shifts of iPr-Pylm in the two hosts. 

Now the question is what is the orientation of the dimers in CB[8]. As mentioned 

above, recent XRD data show that both Ph-Pylm enter as an H-aggregate from the same 

portal.7 That should break down the Dsh symmetry of CB[8], which is confirmed by 1H 

NMR (Figure 4.6).The same symmetry break-down is observed with (iPr­

Pylm)2@CB[8], therefore the orientation of that dimer should be similar. The symmetry 
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of CB[8] is preserved in (Me-Pylm)z@CB[8] and (t-Bu-Pylm)z@CB[8], signify-ing that 

the two guests enter from opposite portals (Supporting Information). It is noted also that 

the same host distortion (by 1 H NMR - see Supporting Information) is observed in three 

of the four CB[7] complexes. Surprisingly, t-Bu-Pylm@CB[7] retains the symmetry of 

the host as apparently the width of t-Bu-Pylm is just large enough and cannot be 

accommodated even by stretching of the portal, thereby CB[7] prefers to retain its 

original minimum-energy cylindrical conformation. 

X y 

Ph-Pylm 

t-Bu-Pylm 

iPr-Pylm 

Me-Pylm 

6.0 5.5 5.0 4.5 4.0 3.5 

Figure 4.7. 1H NMR (020) ofCB[8] after addition of2 mol equivalents ofthe pyryliums 
shown at left. Upon asymmetric intercalation of iPr- and Ph-Pylm the CHAHx protons at 
the two rims (x, y) are no longer equivalent. 
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Scheme 4.3. Color-coded 1 H NMR data 

in CB[7] in CB[8] 

- 0.7-1.3 ppm upfield (center inside) 
- 0.3-0.6 ppm upfield (inside) 
- 0.15-0.3 ppm upfield (inside-close to portals) 
- 0.07-0.36 ppm downfield (outside-close to portals) 
- 0.00-0.06 ppm downfield (rim or far outside) 

4.4. CONCLUSIONS 

The stereochemistry of host-guest complexes is extremely important for 

supramolecular protection, separations and in general for technology based on molecular 

recognition. However, simple guest structure considerations may be poor predictors for 

the stoichiometry and strereochemistry of a complex, and reliance on modeling might be 

dangerous. In the case of the four pyrylium cations of this study, not only the size and 

shape of the substituents, but also the ability of the guest to dimerize as well as solvation 

effects and the flexibility of the host play important roles. 
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constants of Me-Pylm, iPr-Pylm, t-Bu-Pylm and Ph-Pylm in water; Appendix S.4.4 

Determination of equilibrium constants of the four pyryliums with cucurbiturils : 4.a in 

the presence of CB[7]; 4.b in the presence of CB[8]; Appendix S.4.5 1H NMR spectra of 

the four pyryliums I CB[7] or CB[8] systems; Appendix S.4.6 Crystal structure of Me­

Pylm; Appendix S.4.7 Results from PM3 calculations:7.a CB[7] intercalation; 7.b CB[8] 

intercalation; Appendix S.4.8: References. 

Appendix S.4.1: Synthesis of the four 2,6-disubstituted-4-phenyl-pyryliums. 

Scheme S.2.1. Synthesis of 2,6-dimethyl-4-phenylpyrylium tetrafluoroborate (Me-Pylm) 

~ 0 0 u . + )1._0~ 

Me-Pylm was prepared according to reference S I. Acetic anhydride (20 mL) was 

added dropwise to tetrafluoroboric acid (50% w/w, 2.0 g, 0.0248 mol) under ice-cold 

conditions and the mixture was stirred till evolution of fumes ceased. To this 

homogenous, ice-cold mixture, a-methyl styrene (3.12 mL, 0.0248 mol) was added, and 

the new mixture was stirred for about 2 h, then it was let stand overnight at room 

temperature, and subsequently it was poured in to diethyl ether. The precipitate was 

collected, dried and further purified by recrystallization from hot water. Yield: 0.932 g 

(14 %); mp: 202-203 °C (lit.s 1196 °C; recrystallized from hot H20). 



Scheme S.2.2. Synthesis of 2,6-diisopropyl-4-phenylpyrylium tetrafluoroborate (iPr­
Pylm) 

112 

Isobutyric anhydride (1 0 mL, 0.060 mol) was added dropwise to tetrafluoroboric 

acid (50% w/w, 2 g, 0.024 mol) under ice-cold conditions and the mixture was stirred till 

evolution of fumes ceased. To this homogeneous, ice-cold mixture, a-methyl styrene (1.6 

mL, 0.012 mol) was added, and the new mixture was stirred for 1 hat room temperature 

and then it was refluxed overnight. After cooling, the precipitate was collected, dried and 

further purified by recrystallization from methylene chloride/hexane at -1 0 °C. Yield: 

1.64 g ( 41.6%); mp: 192-194 oc (litYt78 °C; recrystallized from hot ether). 

Scheme S.2.3. Synthesis of 2,6-di-t-butyl-4-phenylpyrylium tetrafluoroborate (t-Bu­
Pylm) 

0 

NaOH ... 

+~ 
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t-Bu-Pylm was synthesized from benzylidenepinacolone and t-butyl methyl 

ketone. In tum, benzylidenepinacolone was synthesized according to reference 2 from 

benzaldehyde and t-butyl methyl ketone. 

Benzaldehyde (2.34 mL, 0.023 mol) was added to the solution of !-butyl methyl 

ketone (2.86 mL, 0.023 mol) in 100 mL of ethanol. To the reaction mixture, NaOH (1 g, 

0.0235 mol) dissolved in 5 mL of water was added dropwise at room temperature. After 

the addition of the NaOH solution was complete, the mixture was diluted with 25 mL of 

water and was stirred at room temperature for 5 h. Then - 75% of the solvent was 

removed with a rotary evaporator, and the remaining solution was extracted with 

methylene chloride. The extract was washed with water and dried with anhydrous sodium 

sulfate. Without further purification, the brownish liquid was used in the next step. 

t-Butyl methyl ketone (2.86 mL, 0.023 mol) dissolved in 40 mL of 1 ,2-

dichloroethane was added to the brownish liquid (benzylidenepinacolone) from the 

previous step. Tetrafluoroboric acid (50% w/w, 3.7 mL, 0.046 mol) in ether was added to 

the reaction mixture and the new mixture was refluxed for about 6 h. At the end of the 

period, it was cooled to room temperature and was poured into diethyl ether (- three fold 

in volume). The oil that was formed was separated and it was further purified by 

recrystallizion from dichloromethane/hexane at -10 °C, giving a light yellowish solid. 

Yield: 0.921 g (11 %); mp: 218-220 °C. 

2,4,6-triphenylpyrylium tetrafluoroborate (Ph-Pylm) 

Purchased from Acros. mp: 249-250 °C 



Appendix S.4.2: Determination ofthe stoichiometry of the Me-Pylm and Ph-Pylm 
complexes with CB[7] via Job's plots. 
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Figure S.4.1. Job's plots. XryJm = mole fraction of pyrylium: Xrylm = mol Pylm I (mol 
Pylm +mol CB[7]). The maxima of the Job's plot are at X=0.5, therefore the complex 
stoichiometry is 1: 1. 
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Appendix S.4.3: Determination of dimerization constants of Me-Pylm, iPr-Pylm, t-Bu­
Pylm and Ph-Pylm in water. 

Those were determined spectrophotometrically from molar absorptivity (E) at Amax 

as a function of the concentration data (Figures 4.2 and S.4.I-S.4.3), using eqs S I-S4 

(equations 6-8 of reference S3). 
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Figure S.4.2. Absorption of Me-Pylm as a function of its concentration in H20. Inset: 
non-linear fit (R2=0.990) of£ at 325 nm versus concentration. 
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Figure S.4.3. Absorption of t-Bu-Pylm as a function of its concentration in H20. Inset: 
non-linear fit (R2=0.961) of &at 305 run versus concentration. 
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Figure S.4.4. Absorption of Ph-Pylm as a function of its concentration in H20. Inset: 
non-linear fit (R2=0.937) of & at 405 nm versus concentration. 



Appendix 8.4.4: Determination of binding constants of the four pyryliums with 
cucurbiturils. 
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Binding constants were determined spectrophotometrically, by keeping the 

pyrylium salt concentration constant and varying the concentration of the corresponding 

cucurbituril. 

Stock solutions with known concentrations of the pyrylium salts and the 

corresponding cucurbituril were prepared freshly before each run. In a series of I 0 mL 

volumetric flasks, a constant volume of the pyrylium solution was added, followed by the 

addition of varied volumes of the cucurbituril solution. The mixtures were diluted to the 

10 mL mark. The absorbance of those solutions were recorded in a UV-Vis 

spectrophotometer. Plots of the change in absorbance at a specific wavelength were fitted 

using non-linear regression analysis and the appropriate mechanism. 

Each titration was conducted twice and the reported equilibrium constants are 

averages. The concentration of the cucurbiturils was kept low ( -1 o-s M) to minimize 

dimerization. Nevertheless, the dimerization equilibrium was taken into consideration in 

the analysis. 

Appendix S.4.4a: Determination of equilibrium constants of the four pyryliums with 
CB[7]. 

Intercalation of pyryliums in CB[7] is described adequately by: 

Kf7J 
Pylm + CB[7] Pylm@CBI71 

The change in the absorbance (M) owing to this equilibrium is given by equation S5 (eq 

4.5, page 148, reference S4): 

M = [P]Kp]~EII[L] (S5) 
b I+ K 171 [L] 

where: 

b is the optical path length 
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~£II=~( Er-monomer+Er-dimer -EPylm@CBJ7J) 

[P] is the monomer concentration, given by eq S2 above 

[L] is the concentration of free (uncomplexed) CB[7], described by equation S6 (eq 4.9, 

page 149, reference S4): 

[L] - [L] + [P]K[7J[L] 
Total - } + K[?][L] 

where [L]rotal is the total concentration of free and complexed CB[7]. 

(S6) 



Table S.4.1. Absorption data for the Me-Pylm I CB[7] system. 
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Figure S.4.5. Absorption of Me-Pylm (2.87 x 10·5 M) in water upon addition of CB[7] . 
Inset: non-linear fit (R2=0.997) of the absorbance at 325 nm versus total concentration of 
CB[7]. 



Table 8.4.2. Absorption data for the iPr-Pylm I CB[7] system. 

Run 1 Run2 

JiPr-PylmJ JCBJ7Jl A-Ao [iPr-Pylm] JCBJ7Jl 

3.66E-05 O.OOE+OO 0.0000 3.43E-05 O.OOE+OO 

3.66E-05 5.85E-06 0.0701 3.43E-05 3.06E-06 

3.66E-05 1.17E-05 0.1287 3.43E-05 6.12E-06 

3.66E-05 1.75E-05 0.2110 3.43E-05 9.18E-06 

3.66E-05 2.34E-05 0.2846 3.43E-05 1.22E-05 

3.66E-05 2.92E-05 0.3571 3.43E-05 1.84E-05 

3.66E-05 3.51E-05 0.4051 3.43E-05 2.14E-05 

3.66E-05 4.09E-05 0.4226 3.43E-05 2.45E-05 

3.66E-05 4.68E-05 0.4240 3.43E-05 2.76E-05 

3.66E-05 5.26E-05 0.4105 3.43E-05 3.06E-05 

3.66E-05 5.85E-05 0.4251 3.43E-05 3.37E-05 

3.66E-05 7.02E-05 0.4293 3.43E-05 3.67E-05 

Kf71 = 1.10E+05 M-1 Kf71 o;=8.19E+04 M- 1 

bt1c o;=2.98E+04 M- 1 Me o;=2.29E+04 M- 1 
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Figure 8.4.6. Absorption of iPr-Pylm (3.66 x 10-5 M) in water upon addition of CB[7]. 
Inset: non-linear fit (R2=0.963) of the absorbance at 325 nm versus total concentration of 
CB[7]. 



Table S.4.3. Absorption data for the t-Bu-Pylm I CB[7] system. 
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Figure S.4.7. Absorption oft-Bu-Pylm (2 .61 x 10·5 M) in water upon addition ofCB[7]. 
Inset: non-linear fit (R2=0.978) of the absorbance at 305 nm. versus total concentration 
ofCB[7]. 



Table S.4.4. Absorption data for the Ph-Pylm I CB[7] system. 

Run-1 

IPh-Pylm) [CB)7)] A-Ao 

2.37E-05 O.OOE+OO 0.0000 

2.37E-05 6.02E-06 0.0279 

2.37E-05 8.43E-06 0.0382 

2.37E-05 1.08E-05 0.0467 

2.37E-05 1.32E-05 0.0495 

2.37E-05 1.56E-05 0.0634 

2.37E-05 1.81E-05 0.0702 

2.37E-05 2.29E-05 0.0811 

2.37E-05 3.01E-05 0.1010 

2.37E-05 3.61E-05 0.1081 
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2.37E-05 5.42E-05 0.1092 

Kf71 = 4.17E+04 M-1 

bAe = 3.52E+04 M-1 

0.6 

0.0 
200 300 400 

Run-2 

)Ph-Pylm) [CB)7)] A-Ao 

3.18E-05 O.OOE+OO 0.0000 

3.18E-05 2.13E-05 0.1424 

3.18E-05 2.67E-05 0.1647 

3.18E-05 3.20E-05 0.1854 

3.18E-05 3.73E-05 0.2028 

3.18E-05 4.26E-05 0.2067 

3.18E-05 4.80E-05 0.2105 

3.18E-05 5.33E-05 0.2089 

3.18E-05 6.40E-05 0.2092 

3.18E-05 7.46E-05 0.2135 

Kf71 = 8.05E+04 M-1 

bAe = 4.53E+04 M-1 

14 

'C 0 ;· 0 
:::. 7 

~ 
~ 

--~-- ~-----~--

0.0 2 5 50 

[CB[7[] (10-5 M) 

500 600 
Wavelength (nm) 

122 

Figure S.4.8. Absorption of Ph-Pylm (2.37 X 10-5 M) in water upon addition of CB[7]. 
Inset: non-linear fit (R2=0.982) of the absorbance at 275 nm versus total concentration of 
CB[7]. 



Appendix S.5.4b: Determination of equilibrium constants of the four pyryliums with 
CB[8]. 
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At low concentrations (1 o-s M) in water, pyryliums exist mostly as monomers and the 

intercalation in CB[8] is described adequately by: 

Ktaf,I 
Pylm + CB[8] Pylm@CB[8] 

Pylm@CB[8] + Pylm (Pylmh@CB[8] 

The change in the absorbance owing to this equilibrium is given by equation S7 (eq 4.28, 

case of multi equilibria, page 161, reference S4): 

where: 

b is the optical path length 

~Eii=~(Ep_monomer+Ep_dimer -EpyJm@CBISJ) 

~E 12=~( EP-monomcr +EP-dimer -~Pylm)2@CBJSI)) 

[P] is the monomer concentration, given by eq S2 above 

(S7) 

[L] is the concentration of free (uncomplexed) CB[8], described by equation S8 (eq 4.29, 

page 161, reference S4 ): 

(S8) 

A simplified solution of this equation is equation S9 (equation 2.43, page 45, reference 

S4): 
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[L] [L]rotat+2K[s].t K:sJ.z [PI [Lifotal 
(S9) 

1 + [K] (8].1 [P]+4K[a].t4K[a].2 [P J [ LITotal 

where [L]rotal is the total concentration of free and complexed CB(8). 

Finally, the equilibrium constant K[sp, for direct intercalation of the dimer according to: 

CB[8] + (Pylmh 

is given by equation S 10: 

(Pylmh@CB[8] 

_ K[s].t K[a).z 
K[aL3 (S I 0) 



Table S.4.5. Absorption data for the Me-Pylm I CB[8] system. 

Run I Run 2 

IMe- Pylml [CBI81J A-A0 IMe-Pylml [CBI81J A-Ao 

4.74E-05 O.OOE+OO 0.000 2.03E-05 O.OOE+OO 0.0000 
4.74E-05 l.IOE-05 0.113 2.03E-05 5.79E-06 0.0898 
4.74E-05 3.30E-05 0.202 2.03E-05 1.16E-05 0.1307 
4.74E-05 2.20E-05 0.236 2.03E-05 1.74E-05 0.1452 
4.74E-05 6.6IE-05 0.285 2.03E-05 2.32E-05 0.1498 
4.74E-05 8.81E-05 0.302 2.03E-05 2.90E-05 0.1527 
4.74E-05 9.91E-05 0.346 2.03E-05 3.48E-05 0.1539 
4.74E-05 l.IOE-04 0.352 2.03E-05 4.06E-05 0.1552 
4.74E-05 4.41 E-05 0.365 2.03E-05 4.63E-05 0.1527 
4.74E-05 5.51 E-05 0.381 2.03E-05 5.21E-05 0.1526 

K 181.1 = 9.33E+03 M-1 K 1111,1 = 1.46E+04 M-1 

K/8/, 1 x K/8/,2 = 2.11 E+09 M-1 K/8/.1 X K /11/,2 = 1.33E+ ll M'1 
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Figure S.4.9. Spectrophotometric titration in H20 of Me-Pylm (4.74 x 10-5 M) with 
CB[8]. Multiple spectral inter-sections reflect the multistep processes of Scheme I. Inset: 
non-linear fit (R2=0.990) of absorbance as indicated. 



Table S.4.6. Absorption data for the iPr-Pylm I CB[8] system. 

Run I Run 2 

liPr-Pylml [CBI811 A-A0 liPr-Pylml [CBI81] A-A0 

3.78E-06 O.OOE+OO 0.0000 3.96E-06 O.OOE+OO 0.0000 

3.78E-06 9.63E-07 0.0169 3.96E-06 8.58E-07 0.0186 

3.78E-06 1.93E-06 0.0351 3.96E-06 1.72E-06 0.0326 

3.78E-06 2.89E-06 0.0567 3.96E-06 2.57E-06 0.0483 

3.78E-06 3.37E-06 0.0655 3.96E-06 3.43E-06 0.0630 

3.78E-06 4.33E-06 0.0726 3.96E-06 4.29E-06 0.0769 

3.78E-06 6.26E-06 0.0755 3.96E-06 5.15E-06 0.0843 

3.78E-06 9.63E-06 0.0758 3.96E-06 6.00E-06 0.0860 

3.78E-06 1.44E-05 0.0717 3.96E-06 6.86E-06 0.0864 

3.96E-06 7.72E-06 0.0878 

3.96E-06 8.58E-06 0.0854 

3.96E-06 9.44E-06 0.0853 

K fxt 1 = 1.64 E+5 M' 1 K f!ifl = 1.19E+3 M' 1 
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Figure S.4.10. Absorption ofiPr-Pylm (3.78 x 10-5 M) in water upon addition ofCB[8). 
Inset: non-linear fit (R2=0.976) of the absorbance at 325 nm versus total concentration of 
CB[8] . 
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Table S.4.7. Absorption data for the t-Bu-Pylm I CB[8] system. 

Run I Run 2 

lt-Bu-Pylml [CB[81] A-A0 lt-Bu-Pylml [CBI71] A-Ao 

3.23E-05 O.OOE+OO 0.0000 3.87E-05 O.OOE+OO 0.0000 
3.23E-05 6.86E-06 0.0403 3.87E-05 8.79E-06 0.0389 

3.23E-05 1.72E-05 0.0721 3.87E-05 1.32E-05 0.0532 

3.23E-05 2.57E-05 0.0827 3.87E-05 2.20E-05 0.0843 

3.23E-05 3.09E-05 0.0990 3.87E-05 3.08E-05 0.1044 

3.23E-05 4.12E-05 0.106 1 3.87E-05 4.39E-05 0.1254 

3.23E-05 5.15E-05 0.1079 3.87E-05 5.27E-05 0.1369 

3.23E-05 6.18E-05 0.1119 3.87E-05 6.59E-05 0.1491 

3.87E-05 7.47E-05 0.1525 

3.87E-05 8.79E-05 0.1570 
3.87E-05 I.IOE-04 0.1649 

K t8f. l = 8.25 E+4 M-1 K /ii/.1 = 1.03 E+4 M-1 

K /11 /. 1 X K /8{.2 = 1.12E+ IO M- 1 K filj, l X K fii/,2 = 4.72E+09 M-1 

b~c 11 = 1.22 E+4 M- 1 b~c 11 = 1.99 E+4 M- 1 

b~c 12 = 1.24 E+4 M- 1 b~c12 = 1.57 E+4 M-1 
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Figure S.4.11. Absorption of t-Bu-Pylm (3 .87 x 10-5 M) in water upon addition of 
CB[8] . Inset: non-linear fit (R2=0.997) of the absorbance at 305 nm versus total 
concentration of CB [8]. 



Table 8.4.8. Absorption data for the Ph-Pylm I CB[8] system. 

Run 1 Run- 2 

IPh-Pylml ICBI811 A-Ao IPh-Pylml ICBI811 

4.09E-05 O.OOE+OO 0.0000 6.56E-05 O.OOE+OO 

4.09E-05 1.10E-05 0.1297 6.56E-05 1.11 E-05 

4.09E-05 2.20E-05 0.2431 6.56E-05 2.23E-05 

4.09E-05 2.75E-05 0.2531 6.56E-05 2.78E-05 

4.09E-05 3.86E-05 0.2604 6.56E-05 3.34E-05 

4.09E-05 5.51E-05 0.2644 6.56E-05 3.90E-05 

4.09E-05 6.61E-05 0.2552 6.56E-05 5.01E-05 

4.09E-05 7.71E-05 0.2599 6.56E-05 6.68E-05 

6.56E-05 7.79E-05 

Kfllf,l = 3.99 E+4 M- 1 Ktlif.l = 9.76 E+3 M-1 

K/8/.1 X K/11/,2 = 2.90E+09 M'1 K/li/.1 XK/Ii/,2 = 4.34E+09 M' 1 

b~E11 = 1.13 E+5 M- 1 

b~E12 = 2.15.91 E+4 M- 1 
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Figure 8.4.12. Absorption of Ph-Pylm ( 4.09 x 10·5 M) in water upon addition of CB[8] . 
Inset: non-linear fit (R2=0. 977) of the absorbance at 275 nm versus total concentration of 
CB[8]. 
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Appendix 8.4.5: 1H NMR spectra of the four pyryliums I CB(7] or CB(S] systems. 

3,5 
Me-Pylm:CB[7] b 2,6-Me 
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I :0. 7-=-5 - -----: '----~--: 

8.0 7.6 7.2 6.8 3.2 2.8 
8, ppm 

Figure 8.4.13. Evolution of the 1H NMR spectrum of Me-Pylm in D20 by progressive 
addition ofCB[7]. On the left, mol ratio ofthe pyrylium to CB[7]. 

iPr-Pylm:CBI71 a b I -13,5 2.6-CHMe, 
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Figure 8.4.14. Evolution of the 1H NMR spectrum of iPr-Pylm in D20 by progressive 
addition ofCB(7]. On the left, mol ratio of the pyrylium to CB(7] . 



130 

3,5 
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Figure S.4.15. Evolution of the 1H NMR spectrum of t-Bu-Pylm in D20 by progressive 
addition ofCB[7]. On the left, mol ratio ofthe pyrylium to CB[7]. 
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Figure S.4.16. Evolution of the 1H NMR spectrum of Ph-Pylm in 0 20 by progressive 
addition of CB[7]. On the left, mol ratio of the pyrylium to CB[7]. 
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Figure S.4.17. Evolution of the 1H NMR spectrum of Me-Pylm in D20 by progressive 
addition ofCB[8]. On the left, mol ratio of the pyrylium to CB[8]. 

+ Ph-Pylm __ .-----

+ t-Bu-Pylm 
---~ 

+ iPr-Pylm 

+ Me-Pylm 
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6.0 5.5 5.0 4.5 4.0 
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Figure S.4.18. 1H NMR (D20) in the CBI7] range after addition of I mol equivalent of 
the pyryliums shown at left. Notice the symmetry brake-down of the CH2 protons around 
the rim upon intercalation of Me-Pylm, iPr-Pylm and Ph-Pylm. 
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Appendix S.4.6: Crystal structure ofMe-Pylm. 

Figure 8.4.19. Crystal structure of Me-Pylm showing formation of head-to-tail 
]-aggregates. Formation of similar structures in solution by increasing concentration is 
responsible for the red shift in the absorption spectra. 
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Appendix S.4.7: Results from PM3 calculations. 

(A) Me-Pylm@CB[7] (-0.3745 a.u.) 

~ . • ·' \~ 
r "\ '?;' \ 

p p-.I If ... <6 _, .. ,, • -' . 
p ., ~ "\ .. ' <::1 ._. 

(B) iPr-Pylm@CB[7] (-0.3957 a.u.) 

(C) t-Bu-Pylm@CB[7] (-0.4063 a.u.) 

(D) Ph-Pylm@CB[7] (-0.2604 a.u.) 

Figure 8.4.20. Parts A-D: PM3 calculations for the Pyrylium@CB[7] systems as 
indicated. 
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7.b CB[8] intercalation. 

(A) (Me-Pylm)2@CB[8] (-0.1902 a.u.) 
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~ ~ ~ 
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(B) (t-Bu-Pylm)2@CB[8] (-0.2691 a.u.) 

Figure S.4.21. Parts A, B: PM3 calculations for the (Pyrylium)2@CB[8] systems as 
indicated. 
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3. CONCLUSIONS 

In paper I, it has been demonstrated that the hydrophobic cavity of cucurbit[7]uril 

(CB[7]) could be used to control the equilibrium between the ketone and its gem diol 

form. In water, N-methyl-4-(p-substituted benzoyl) pyridinium cations, BP-X exist in 

equilibrium with their gem-diols and concentration of the latter is determined by the 

nature of p-substituents (X). In the presence of CB[7], the equilibrium is shifted towards 

the keto form which undergoes inclusion. This study reveals that the stabilization of 

benzoyl group inside the CB[7] cavity exceeds the hydrogen bonding stabilization of 

gem-diol in aqueous environment. 

Paper 2 has been focused on studying the heterogeneous electron transfer on 

complexes of CB[7] with N-Methyl-, N-benzyl- and N-hexyl-4-benzoylpyridinium 

monocations (Me-BP, Bz-BP and Hex-BP, respectively). These guests, based on their 

hydrophobicity, orient either endo-or exo- and all the three complexes, irrespective of 

their orientations, show reversible simultaneous e-transfer from the free guest and quasi­

reversible process from the complexes. 

In Paper 3, N,N '-dimethyl-2,6-diaza-9, I 0-anthraquinonediium dication (DAAQ) 

was chosen as an extension of studying the keto to gem-diol equilibrium by host guest 

chemistry. This compound not only exists in equilibrium with its gem-diol form, but also 

forms aggregates in water. In strongly acidic media, the aggregates break up and 

equilibrium shifts exclusively towards the quinone form. Under both neutral and acidic 

conditions, the quinone form undergoes inclusion with CB(7] by slow exchange in which 

both free and CB[7]-intercalated forms were observed by 1H NMR. 

In Paper 4, in order to understand the role of guest 's size, shape and size of cavity 

during the inclusion process, 2,6-disubsituted-4-phenylpyrylium cations (Pylm) were 

chosen as guests with CB[7] and CB[S] as hosts. The size and shape of the guest was 

modified by changing the nature of the substituents at 2 and 6 positions (Me, iPr, Ph, t­

Bu). These pyryliums exist as dimers in water and as such they enter the CB[S] cavity 

(2: I complexes) whereas with CB[7] , the dimers break up forming I: I complexes. All 

pyrylium guests form inclusion complexes by inserting the 4-phenyl part of the molecule 
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with both hosts, expect the iPr-Pylm guest which forms an inclusion complex with 

CB[8] by placing the isopropyl group inside the cavity. These studies reveal that 

intercalation is controlled by an interplay of size and hydrophobicity of guests, solvation 

effects, and size and flexibility of the hosts. 
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