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ABSTRACT

In the first work a recurrent neural network (RNN) is employed for MIMO channel

prediction. A novel PSO-EA-DEPSO off-line training algorithm is presented and is shown

to outperform PSO, PSO-EA, and DEPSO. This predictor is shown to be robust to varying

channel scenarios. New expressions for the received SNR, array gain, average probability of

error, and diversity gain are derived.

Next, a new expression for the outage capacity of a MIMO system with no CSI at

the transmitter and an estimate at the receiver is presented. Since the outage capacity is

a function of the first and second moments of the mutual information, new closed form

approximations are derived at low and high effective SNR. Also at low effective SNR a new

result for the outage capacity is presented. Finally, the outage capacity for a frequency

selective channel is derived.

This is followed by a MIMO RNN predictor that operates online. A single RNN is

constructed to predict all of the MIMO sub-channels instantaneously. The extended Kalman

filter (EKF) and real-time recurrent learning (RTRL) algorithms are applied to compare

the MSE of the prediction error.

A new expression for the channel estimation error of a continuously varying MIMO

channel is derived next. The optimal amount of time to send training pilots is investigated

for different channel scenarios. Special cases of the new expression for the channel estimation

error lead to previously established results.

The last work investigates the performance of a MIMO aeronautical system in a two-

ray ground reflection scenario. The ergodic capacity is analyzed when the altitude, horizon-

tal displacement, antenna separation, and aircraft velocity are varied.
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1. SUMMARY OF WORK

In this section a brief overview of each section of the dissertation is presented.

1.1. MIMO BEAM-FORMING WITH NEURAL NETWORK CHANNEL PRE-
DICTION TRAINED BY A NOVEL PSO-EA-DEPSO-ALGORITHM

A new hybrid algorithm based on particle swarm optimization (PSO), evolutionary

algorithm (EA), and differential evolution (DE) is presented for training a recurrent neural

network (RNN) for multiple-input multiple-output (MIMO) channel prediction. The hybrid

algorithm is shown to outperform PSO, DEPSO, and PSO-EA. To explore the effects of

channel prediction error at the receiver, new expressions for the received SNR, array gain,

average probability of error, and diversity order are derived and analyzed.

1.2. MULTIPLE-INPUT MULTIPLE-OUTPUT RAYLEIGH FADING OUT-
AGE CAPACITY WITH CHANNEL UNCERTAINTY

New analytical bounds for the outage capacity of a multiple-input multiple-output

(MIMO) Rayleigh flat fading wireless system are derived for the case when the channel is

unknown at the transmitter while the receiver has access to channel state information (CSI).

To aid in the understanding of these bounds, new accurate closed-form approximations for

the mean and variance of the mutual information are derived when the system is operating

in the low and high effective signal-to-noise ratio (SNR) regimes. Also, at low effective SNR

new accurate closed form approximations for the outage capacity bounds are presented. To

show how the bounds are affected by a doppler shift, a MIMO wireless system employing

pilot symbol assisted modulation (PSAM) is considered. To conclude, the established re-

sults for the flat fading case are shown to hold for frequency selective channels.
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1.3. MIMO CHANNEL PREDICTION USING RECURRENT NEURAL NET-
WORKS

Adaptive modulation is a communication technique capable of maximizing through-

put while guaranteeing a fixed symbol error rate (SER). However, this technique requires

instantaneous channel state information at the transmitter. This can be obtained by pre-

dicting channel states at the receiver and feeding them back to the trasnmitter. Existing

algorithms used to predict single-input single-output (SISO) channels with recurrent neural

networks (RNN) are extended to multiple-input multiple-output (MIMO) channels for use

with adaptive modulation and their performance is demonstrated in several examples.

1.4. MODELING CHANNEL ESTIMATION ERROR IN CONTINUOUSLY
VARYING MIMO CHANNELS

The accuracy of channel estimation plays a crucial role in the demodulation of data

symbols sent across an unknown wireless medium. In this work a new analytical expres-

sion for the channel estimation error of a multiple-input multiple-output (MIMO) system

is obtained when the wireless medium is continuously changing in the temporal domain.

Numerical examples are provided to illustrate our findings.

1.5. SINGLE BOUNCE AIR TO GROUND CHANNEL CAPACITY FOR
MIMO SYSTEMS

This paper addresses the air-to-ground communication problem, where multiple trans-

mit antennas are used on the aircraft to combat multi-path interference. The channel is

assumed to have a line-of-sight component and a single ground reflection. Multiple-input

multiple-output (MIMO) techniques can be used in this situation, to increase the reliability

and data rate. In this paper we discuss how the MIMO channel capacity changes with the
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aircraft antenna configuration, altitude, velocity, range, and a number of other parameters.

For comparison, the MIMO results are compared to systems which have single antennas at

the transmitter, at the receiver, or at both ends.
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2. MIMO BEAM-FORMING WITH NEURAL NETWORK CHANNEL
PREDICTION TRAINED BY A NOVEL PSO-EA-DEPSO

2.1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have been shown to provide signifi-

cant gains in both spectral efficiency and reliability [1]. These results, however, are based on

the assumption that the transmitter and/or receiver have perfect knowledge of the channel

state information (CSI). An alternative to this is to estimate the channel at the receiver

and send the channel state information (CSI) back to the transmitter. This approach suf-

fers from outdated CSI upon arrival at the transmitter when the channel varies with time.

Performance can be improved in this case by sending back a prediction of the CSI.

Unlike the use of classical prediction techniques [2], a recurrent neural network (RNN)

is proposed for prediction. In [3] an extended Kalman filter (EKF) was employed for train-

ing a RNN for time series prediction. A hybrid particle swarm optimization evolutionary

algorithm (PSO-EA) was utilized in [4] for time series. In this work, a new hybrid algorithm

composed of PSO, EA, and differential evolution (DE) is proposed for MIMO channel pre-

diction. It is shown that this hybrid algorithm outperforms PSO, DEPSO, PSO-EA, and a

Levinson-Durbin linear predictor. New expressions for the received SNR, array gain, average

probability of error, and diversity order are derived to analyze the performance degradation

due to prediction error.

The rest of this paper is organized as follows. The next section describes the MIMO

beam-forming input/output model. This is followed by the channel model in Section 3.

After this the RNN used for MIMO channel prediction is introduced. Section 5 provides a

brief review of related off-line training algorithms and the proposal of a novel PSO-EA-DE

hybrid training algorithm. The training results for the different training algorithms are
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presented next. The received SNR, array gain, average probability of error, and diversity

order are derived and analyzed in Section 7 which is followed by the concluding remarks.

2.2. MIMO RECEIVED MODEL

A MIMO wireless flat fading baseband communication system with Nt transmit an-

tennas and Nr receive antennas is modeled at discrete time k by

y(k) = H(k)x(k) + n(k),

where y(k) is the Nr× 1 received vector, x(k) is the Nt× 1 transmitted symbol vector with

xi(k), i = 1, . . . , Nt, belonging to constellation C, and n(k) is the white noise vector of size

Nr×1 with ni

iid
∼ CN (0, No)

1, i = 1, . . . , Nr. The Nr×Nt channel matrix H(k) = {hmn(k)}

describes the complex channel gain between the mth receiver antenna and nth transmit

antenna. Denoting Pt as the total transmit power, the transmitted symbols must satisfy

E||x(k)||22 = Pt (2.1)

The beam-formed symbols are expressed in two scenarios, when the transmitter and

receiver have full channel state information (CSI) and when they only have access to the

prediction.

Let H(k) = U (k)D(k)V (k)H be the singular value decomposition (SVD) of the

MIMO channel matrix. The ith column of the unitary matrices U (k) and V (k), denoted

by ui and vi respectively, are the left and right singular vectors corresponding to the ith

singular value σHi
(k) satisfying 0 ≤ σHi−1

(k) ≤ σHi
(k) ≤ σHi+1

(k) ≤ σHr(H(k))
(k), where

r(H(k)) = rank(H(k)). If x̃(k) = v1(k)x(k) the received beam-formed symbol is

u1(k)Hy(k) = σH1(k)x(k) + u1(k)Hn(k).

1This notation stands for a complex normal random variable with mean zero and variance No.
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When the transmitter and receiver only have a prediction of the channel matrix Ĥ(k) =

Û (k)D̂(k)V̂ (k)H , the received symbols are

û1(k)Hy(k) = û1(k)HU (k)D(k)V (k)H v̂1(k)x(k) + û1(k)Hn(k).

To supply the transmitter with the dominant left singular vector a feedback link must

be established. Let td be defined as the total delay arising from processing and transmission

latencies. To prevent the CSI from becoming stale [5]

td ¿ .423

fd

,

where fd is the maximum doppler frequency. This seems discouraging since for a maximum

doppler frequency of 100 Hz the total delay must be less than 4.23 ms. However, the accurate

estimation of the doppler frequency has been a well researched topic [6, 7]. Assuming a worst

case approximation error of .5 Hz, the maximum delay increases to .846 sec which will be

adequate for most wireless latencies [8].

2.3. CHANNEL MODEL

The MIMO sub-channels are represented by [9]

gmn(k) = f

(
gI

mn(k) + jgQ
mn(k)

)
,

where f : C→ C is bounded,

gI
mn(k) =

√
2

M

M∑
n=1

cos(2πfdkTs cos(αn) + φn)

is the in-phase component,

gQ
mn(k) =

√
2

M

M∑
n=1

cos(2πfdkTs sin(αn) + ψn)
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is the quadrature component, Ts is the sampling period, and

αn =
2πn− π + θ

4M
.

The parameters φn, ψn, and θ are U [−π, π), where U [a, b] is a uniform random variable be-

tween a and b. To accommodate the possibility of spatial correlation between both transmit

and receive antennas we model the overall channel by

H(k) = ΦRx(k)1/2G(k)ΦTx(k)1/2, (2.2)

where

ΦTx , 1

Nr

Nr∑
r=1

E{hr,·(k)Hhr,·(k)}

ΦRx , 1

Nt

Nt∑
r=1

E{hr(k)hH
r (k)}

with hi,· denoting the ith row of H(k). These correlation matrices are dependent on many

parameters, including the angle of arrival, transmit and receiver antenna distances, and

angle spread [10]. Since the focus of this work will not be emphasized on any particular an-

tenna geometry, we will maintain spatial generality and consider a simple Toeplitz stucture

[11]

ΦTx =




1 γt γ4
t . . . γ

(Nt−1)2

t

γt 1 γt
. . .

...

γ4
t γt 1

. . . γ4
t

...
. . . . . . . . . γt

γ
(Nt−1)2

t . . . γ4
t γt 1



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ΦRx =




1 γr γ4
r . . . γ

(Nr−1)2

r

γr 1 γr
. . .

...

γ4
r γr 1

. . . γ4
r

...
. . . . . . . . . γr

γ
(Nr−1)2

r . . . γ4
r γr 1




.

It should be noted that the simplicity of this model does not prevent accurate approxima-
tions for a variety of antenna configurations.

2.4. CHANNEL ESTIMATION

For a reasonable prediction it is necessary for the RNN to learn the statistics of the

fading process. Following the same procedure in [12], [13], and [14] the channel is written

in terms of its minimum mean squared error (MMSE) estimate H̃(k) by

H̃(k) = H(k) + W (k),

where H̃(k) and W (k) are uncorrelated with h̃mn(k) ∼ CN (0, σh̃(k)2) and

wmn(k) ∼ CN (0, σw(k)2). The channel estimation error between the mth receiver and nth

transmitter is thus

σ2
w(k) = |σ2

h(k)− σ2
h̃
(k)|.

2.5. A RECURRENT NEURAL NETWORK FOR CHANNEL PREDICTION

The recurrent neural network used for prediction is shown in Figure 2.1. The output

of the activation functions are

dj(k) = φj

( Np+m∑
i=1

ajisi(k)

)
, j = 1, . . . , m,

where

s(k) = [d1(k − 1) · · · dm(k − 1), h̃mn(k) . . . h̃mn(k −Np)]
T .
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is the RNN input and

φj(x) = tanh(x), j = 1, . . . , m

are the non-linear activation functions. The RNN predictor is implemented in two stages.

During the first d1(k − 1), . . . , dm(k − 1) = 0. The outputs are then fed back to form s(k).

Finally the output of the second stage d1(k) is the RNN prediction. Unless otherwise stated,

Np = 5 and m = 2 will be chosen.2

2.6. TRAINING ALGORITHMS FOR RNN PREDICTOR

Before directly proceeding to the proposed hybrid algorithm PSO, EA, PSO-EA, and

DEPSO are briefly summarized.

2.6.1. PSO. PSO is a evolutionary computation technique developed by Kennedy

and Eberhart in 1995 [15]. It was inspired by swarm intelligence where a collection of

unsophisticated individuals (particles) can solve complex problems by interacting with one

another. Some examples of this behavior are a flock of birds or a school of fish. PSO has been

shown to be an algorithm that when used properly can perform multi-parameter optimiza-

tion [16]. Some applications of PSO include artificial life, social psychology, engineering,

and computer science.

Let P be the number of particles in the swarm and D the number of particle dimen-

sions. At each epoch the velocity and positions for the ith particle and dth dimension are

respectively governed by

vid = wvid + c1U(0, 1)(pbestid − xid) + c2U(0, 1)(gbestd − xid) (2.3)

xid = xid + vid.

The parameter w is the inertia constant while c1 and c2 are the cognitive and social accel-

eration constants respectively.

2This value of m was found by simulation to reduce the complexity of the RNN while producing satis-
factory results.
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Figure 2.1 RNN for channel prediction.

2.6.2. EA. Each parent or offspring in the EA algorithm is represented as a

chromosome made up of genes. Given a population N of chromosomes, for every generation

each parent is described by its genes wi and self adaptive parameter βi, i = 1, . . . , N, both

of which are Nw × 1 vectors. Each parent/chromosome generates an offspring Ṕi with β́i

and ẃi updated according to [4]

β́ij = βij exp(τN (0, 1)) (2.4)

ẃij = wij + β́ijN (0, 1), (2.5)

where τ = 1/
√

2
√

Nw. The parents are then put through a selection process where the

losers are eliminated and replaced by the winners offspring.

2.6.3. PSO-EA. The hybrid PSO-EA algorithm combines the swarm behavior

with increased diversity through mutation of the “fitter” particles. For every iteration, the

particles with the lowest fitness values are discarded and the survivors produce offspring

with velocities and positions calculated by (2.4) and (2.5) respectively. For more details,

the reader is referred to [4].
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2.6.4. DEPSO. DEPSO is a hybrid of DE and PSO which provides diversity

on the population while keeping the swarm searching capabilities intact [17]. Letting P =

{1, . . . , P} be the swarm alphabet, the pbest of each particle is updated by

IF(rand(·) < Pc)OR(i == ξ)

THEN pbestid = gbestd + ∆L

where

∆L =
1

L

L∑
j=1

pbestAj − pbestBj

and ξ, A,B ∈ P are randomly chosen.

2.6.5. Hybrid PSO-EA-DEPSO Algorithm. In this work, a new algorithm is

proposed that is a hybrid version of PSO, EA, and DEPSO. The block diagram is displayed

in Figure 2.2. The idea behind the algorithm is to alternate between PSO, EA, and DEPSO

to continually provide diversity for the particles/parents. This in theory prevents the par-

ticles/parents from reaching a premature convergence. The PSO algorithm is implemented

for one fourth of the total iterations to converge quickly on the potential solution. The

PSO-EA and DEPSO algorithms then alternate for the remaining iterations. For PSO, the

velocity, position, and pbest values are all initialized from a uniform distribution.

2.7. TRAINING RESULTS

The RNN in Figure 2.1 is trained off-line with data generated from (2.2). This is less

restrictive than online training [3, 18, 19] where it was assumed therein that the instanta-

neous value of the error (and hence full channel knowledge) is known at the receiver. We

also propose a more robust training method than in [20], where the RNN weights had to be

retrained whenever the channel changed. The fitness function is defined to be

MSE(k) , 1

Ntrain

Ntrain∑

k=1

(
hA

mn(k)− ĥA
mn(k)

)2

(2.6)
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While not Converged

Evaluate Fitness

Converged?

N

Y
Done!

Alternate Between
PSO-EA and DEPSO

PSO# Iter > ¼ x Total Iter?
N

Y

Figure 2.2 Hybrid PSO-EA-DEPSO training algorithm.

where A ∈ {I,Q} and Ntrain is the number of training samples. When a specified number

of iterations have occurred or the fitness function has reached a desired value, the RNN

weights are frozen and brought online.

To provide a comparison of the training algorithms described in the previous section,

a 2 × 2 spatially uncorrelated MIMO channel with f(x) = x, γt = γr = 0, σ2
w(k) = .001, and

normalized doppler frequency fdTs = 0.05 is predicted using PSO, DEPSO, PSO-EA, and

the new hybrid PSO-EA-DEPSO algorithm. Since the training algorithms use a stochastic

search for the optimum RNN weights, convergence in the mean squared error is investigated.

The experiment consists of fifty independent trials. For each training algorithm, the mean

of the lowest value of (2.6) that has currently been found for h11(k) is plotted versus the

number of iterations in Figures 2.3 and 2.4. For the first fifty iterations the proposed hybrid

algorithm is operating in PSO mode and thus the performance is comparable to that of

PSO. For the remaining iterations the hybrid algorithm uses its diversity to outperform the

competition.
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Although accurate training of the weights is important, the robustness to different

channel conditions is also critical for the RNN predictor. To investigate this the weights

are trained with the new hybrid PSO-EA-DEPSO training algorithm when f(x) = x, γt =

γr = 0, σ2
w(k) = 0.01 and fdTs = 0.1 and are brought online to predict a channel with a time

varying fdTs. The in-phase and quadrature channel coefficients along with their predictions

are illustrated in Figures 2.5 and 2.6 respectively. The accuracy of these predictions verify

the robustness of the RNN equipped with the new PSO-EA-DEPSO training algorithm.

The RNN using the new hybrid algorithm is compared to a fifth order feed-forward

linear predictor using the Levinson-Durbin Algorithm [21] for f(x) = exp(x)x, fdTs = 0.5

and σ2
w(k) = 0.01. Observing Figures 2.7 and 2.8 the RNN outperforms the linear predictor.

This example suggests the RNN trained with the PSO-EA-DEPSO algorithm is capable

of predicting certain non-linear, non-stationary channels better than the Levinson-Durbin

linear predictor.

2.8. PERFORMANCE MEASURES OF RNN PREDICTOR

Now that good training performance has been established, the impact of prediction

error at the receiver is investigated. In this section, new expressions for the received SNR,

array gain, probability of error, and diversity gain are derived for a MIMO RNN channel

predictor. All of these measures are dependent on the received SNR which will be the

starting point of the derivation. For convenience the discrete time dependence will become

implicit.



14

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iterations

A
vg

. M
S

E

In−Phase Component of channel

 

 
New
PSO
DEPSO
EAPSO

Figure 2.3 Mean squared error comparison for several training algorithms of in-phase com-
ponent when fdTs = 0.05.

0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

Iterations

A
vg

. M
S

E

Quadrature Component of channel

 

 
New
PSO
DEPSO
EAPSO

Figure 2.4 Mean squared error comparison for several training algorithms of quadrature
component when fdTs = 0.05.



15

0 100 200 300 400 500
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Samples (k)

hI 11
(k

)

 

 
Actual
Prediction

Figure 2.5 Comparison of new hybrid PSO-EA-DEPSO with the actual in-phase channel
coefficients for varying fdTs.

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

Samples (k)

hQ 11
(k

)

 

 
Actual
Prediction

Figure 2.6 Comparison of new hybrid PSO-EA-DEPSO with the actual quadrature channel
coefficients for varying fdTs.



16

0 10 20 30 40 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples (k)

h 11I
(k

)

 

 
Actual
RNN
Linear

Figure 2.7 MSE of RNN predictor.

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Samples (k)

S
qu

ar
ed

 E
rr

or
 o

f h
11I

(k
)

 

 
RNN
Linear

Figure 2.8 MSE of linear predictor.
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2.8.1. Received SNR. The instantaneous received SNR for the MIMO beam-

former when the receiver knows the channel is defined as

ρbf , ρσ2
H1

.

where ρ , Es

No
is the SNR of a SISO AWGN channel (see (??)). Since the RNN is equipped

with non-linear activation functions, the exact distribution of the predictor is difficult and

cumbersome. Writing v̂1 = v1 + ∆v1 and û1 = u1 + ∆u1 the received SNR for the MIMO

RNN predictor is

ρbf =
σ2

H1

β + ρ−1
, (2.7)

where

β ,
∣∣∣∣σH1v

H
1 ∆v1 + σH1∆uH

1 u1 + ∆uH
1 H∆v1

∣∣∣∣
2

. (2.8)

2.8.2. Array Gain. The array gain measures the increase in average received

SNR compared to a SISO system and is defined as

η , E{ρbf}
ρ

.

For a MIMO RNN predictor, the array gain becomes

η =
E{σ2

H1
}

ρE{β}+ 1
(2.9)

which indicates the prediction error will have a negative influence on the array gain with

increasing SNR. In other words, the prediction error introduces an irreducible noise floor.

To analyze the increase in performance note that

‖H‖2
F

r(H)
≤ σ2

H1
≤ ‖H‖2

F , (2.10)
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where ‖ · ‖F is the Frobenius norm [22]. Let H = vec(H), where vec(·) stacks the columns

of its argument from left to right. Then [23]

H =
(
Φ

T/2
Tx ⊗Φ

1/2
Rx

)
vec(G)

where ⊗ denotes the kronecker product. It follows after several manipulations and various

kronecker product properties that

E‖H‖2
F = E‖H‖2

F = trace(Φ2
Tx)trace(Φ2

Rx).

Therefore

trace(Φ2
Tx)trace(Φ2

Rx)

r(H)
≤ E{σ2

H1
} ≤ trace(Φ2

Tx)trace(Φ2
Rx)

which after substitution into (2.9) yields the following new bounds for the array gain

trace(Φ2
Tx)trace(Φ2

Rx)

r(H)(ρE{β}+ 1)
≤ η ≤ trace(Φ2

Tx)trace(Φ2
Rx)

ρE{β}+ 1
.

Although the array gain is potentially higher for spatially correlated channels, when exact

knowledge of the correlation matrices is not available, we can expect the array gain to fall

off more dramatically than the spatially uncorrelated case. This will occur if the RNN

is trained using a spatially uncorrelated channel when in fact the antennas are spatially

dependent.

To support these observations the array gain is plotted for a 2 × 2 MIMO system

with f(x) = x, fdTs = 0.1 for the uncorrelated case in Figure 2.9 and with γt = γr = 0.7

in Figure 2.10 for various channel estimation errors. For both cases, the RNN was trained

using a spatially uncorrelated channel with fdTs = 0.1 whose estimation error matched the

online channel of interest. As discussed, the array gain is larger for the spatial correlation

case but deteriorates faster.
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2.8.3. Average Probability of Error. The probability of error was approximated

for SISO systems in [24] by

Pe ≈ LQ

(√
ρd2

2

)
, (2.11)

where Q(·) is the Gaussian Q function [25] while L and d are respectively the number

of nearest neighbors and minimum Euclidean distance in the normalized constellation3.

Inserting (2.7) into (2.11), the average probability of error for a MIMO system is

E{Pe} ≈ LE



Q




√
σ2

H1
d2

2(β + ρ−1)






 . (2.12)

Observing this expression, the average probability will behave similar to the perfect CSI

case until the noise floor becomes saturated by β.

2.8.4. Diversity Order. The diversity order of a system is the slope of the

average probability of error at high SNR. Applying the Chernoff bound [25] and (2.10) to

(2.12) the probability of error is bounded by

L exp


−

σ2
H1

d2

4

(
β + ρ−1

)


 ≤ Pe ≤ L exp


−

σ2
H1

d2

4r(H)

(
β + ρ−1

)


 .

3This is just C normalized such that the average symbol energy is unity.
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Figure 2.9 Array gain for a 2 × 2 MIMO beam-forming fast fading uncorrelated channel.
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Applying the moment generating function in [26] it follows after several manipulations

that the bounds on the average probability of error E{Pe} at high SNR are

L




d2

4

(
β + ρ−1

)




−r(R)

r(R)∏
i=1

(λRi
)−1 ≤ E{Pe} ≤ L




d2

4r(H)

(
β + ρ−1

)




−r(R)

r(R)∏
i=1

(λRi
)−1

where R , E{vec(HHH)}. To find the rank of this matrix, it follows using the same

techniques when deriving the array gain that

R =
(
ΦT

Tx ⊗ΦRx

)
.

Using the rank property of kronecker products

r(R) = r(ΦTx)r(ΦRx). (2.13)

This result indicates that the diversity order depends on both the spatial correlation and

channel prediction error. Unlike the array gain, the diversity order is larger when the

antennas are spatially uncorrelated [26]. As long as the prediction error does not dominate

the noise floor the diversity order will match the perfect CSI case.

The average probability of error was simulated for a 2 × 2 MIMO system when f(x) =

x, fdTs = 0.1, γt = γr = 0 using 105 BPSK symbols with symbol period T = Ts for various

channel estimation errors in Figure 2.11 and with γt = γr = 0.7 in Figure 2.12. For both

cases, the RNN was trained with f(x) = x, γt = γr = 0, and fdTs = 0.1 whose estimation

error matched the online channel of interest. When the antennas are spatially uncorrelated

the diversity order is clearly larger as discussed earlier. In both configurations when the

channel estimation error increases, the average probability of error begins to saturate due

to the irreducible noise floor caused by the prediction error. To show the accuracy of the
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Figure 2.11 BER comparison for a 2 × 2 MIMO beam-forming fast fading spatially uncor-
related channel.
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Figure 2.12 BER comparison for a 2 × 2 MIMO beam-forming fast fading spatially corre-
lated channel.
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Figure 2.13 BER comparison for a 2 × 2 MIMO beam-forming fast fading spatially corre-
lated channel.

new analytic expression for the average probability of error, (2.12) is plotted versus the

simulated results in Figure 2.13 and is seen to be in excellent agreement.

2.9. CONCLUSION

A recursive neural network trained off-line by a novel PSO-EA-DEPSO was used to

predict a MIMO channel. This training algorithm was shown to be superior to PSO, PSO-

EA, and DEPSO for different fast fading scenarios. The RNN predictor was then shown to

outperform a linear predictor trained by the Levinson-Durbin algorithm. New expressions

for the received SNR, array gain, average probability of error, and diversity order for the

MIMO RNN predictor were then derived. The array gain for spatially correlated systems

was shown to be higher and decay sharper than spatially uncorrelated systems. The diversity

order for the RNN predictor was shown to equal the perfect CSI case for small estimation

errors and gradually worsen.
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The application of the hybrid PSO-EA-DEPSO algorithm to frequency selective chan-

nels remains to be investigated. Also, the use of perturbation theory to analyze the degra-

dation in performance due to prediction error is being explored.
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3. MULTIPLE-INPUT MULTIPLE-OUTPUT RAYLEIGH FADING
OUTAGE CAPACITY WITH CHANNEL UNCERTAINTY

3.1. INTRODUCTION

To achieve the capacity promised in Shannon’s channel coding theorem, one may need

to use codewords which grow exponentially with respect to the uncertainty of the channel.

When finite decoding constraints are placed on a wireless receiver that is subject to deep

fades, the ergodic capacity may not be the best measure of system potential. In particular,

it was shown in [27, 28] that when the decoding time is constrained, there exists a non-zero

probability (independent of the code length and consequently the data rate) for which the

probability of error did not exponentially decrease with the code length, thus having an

ergodic capacity of zero.

An alternative measure that was first considered in [29] is the outage capacity, which

is defined to be the maximum achievable rate that can be maintained subject to an outage

probability. This definition can be understood as follows. Since the transmitter does not

know the channel it must choose an achievable code with a data rate independent of the

instantaneous received SNR and hence capacity. When the data rate is lower than the

capacity there will be no errors. Otherwise, some bits may be decoded incorrectly, for

which case an outage event is declared.

The channel coding theorem also assumes that the receiver has perfect knowledge of

channel state information (CSI). In time-varying mobile fading environments, this assump-

tion may not be reasonable, and one should include the resulting decrease in capacity cal-

culations. This was considered for a SISO system in [30], where upper and lower bounds for

the instantaneous mutual information were obtained under imperfect CSI. These bounds

were used in [31] to develop upper and lower bounds on the outage capacity of a SISO

Rayleigh flat fading channel.
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Multiple-input multiple-output (MIMO) systems have been shown to provide an in-

crease in capacity while maintaining the same operating bandwidth [1]. In this work the

results of the SISO case in [31] are extended to arrive at new analytical bounds for the

outage capacity of a Rayleigh fading MIMO system under channel uncertainty. Since these

bounds are a function of the mean and variance of the instantaneous mutual information,

the exact values for these moments are derived. To gain insight into these expressions,

new accurate closed form approximations of the mean and variance for systems operating

in the low and high effective signal-to-noise ratio (SNR) regimes are derived. Also, new

accurate closed form approximations of the outage capacity are found at low effective SNR.

As an application the bounds are analyzed for a MIMO system using pilot symbol assisted

modulation (PSAM). To conclude, these results are shown to hold for frequency selective

channels.

The rest of this work is organized is follows. The next section mathematically describes

the received symbol vectors as well as the MIMO channel model. We end the section with

previously attained upper and lower bounds for the instantaneous mutual information. In

Section 3.3 we derive new analytic bounds for the outage capacity of a MIMO Rayleigh

flat fading system and derive accurate approximations for systems operating in the high

and low effective SNR regimes. The analytic bounds are then applied to PSAM for channel

estimation in Section 3.4. The outage capacity for a MIMO frequency selective channel is

considered next in Section 3.5. This is followed by our concluding remarks in Section 3.6.

3.2. SYSTEM MODELS/PREVIOUS RESULTS

A MIMO baseband system with Nt transmit antennas and Nr receive antennas at

discrete time η is described by

y(η) =
L−1∑
i=0

H(η, i)x(η − i) + n(η) (3.1)
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where y(η) is the Nr × 1 complex valued received symbol vector, x(η) is the Nt × 1 trans-

mitted vector with E‖x(η)‖2
2 = P , n(η) is the noise vector of size Nr × 1 with ni

iid
∼

CN (0, No), i = 1, . . . , Nr, and L is the number of resolvable delay paths (see Appendix B

for more details). The Nr × Nt MIMO channel matrix satisfies hmn(η, i) ∼ CN (0, 1) with

sub-channel autocorrelations

Rhmnhmn(τ, i) = Jo(2πfdi
Tsτ), τ = 0, 1, . . .

where fdi
is the maximum doppler frequency for the ith delay path, Ts is the sampling

period, and Jo(·) is the zeroth order Bessel function of the first kind. It is assumed that the

sub-channels are uncorrelated both spatially and with respect to different path delays, i.e.,

E{H(η, i)HH(η, j)} = Nrδk(i− j)INt (3.2)

E{H(η, i)H(η, j)H} = Ntδk(i− j)INr . (3.3)

where δk(·) denotes the kronecker delta.

Before investigating the frequency selective channel, we will consider first a Rayleigh

flat fading channel (L = 0). In particular it will be shown that the results obtained in the

flat fading case will be directly applicable to frequency selective channels.

Following the same reasoning as [12], [13], and [14], the channel is written in terms of

its minimum mean squared error (MMSE) estimate Ĥ(η)

H(η) = Ĥ(η) + E(η)

where Ĥ(η) and E(η) are uncorrelated with ĥmn(η) ∼ CN (0, σ2
ĥ
) and emn(η) ∼ CN (0, σ2

e).

The channel estimation error between the mth receiver and nth transmitter is thus

σ2
e = 1− σ2

ĥ
.
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3.2.1. Exact mutual information. The exact mutual information for imperfect

CSI at the receiver was shown in [30] to be difficult. In particular, it was shown if the

distribution of the channel estimation error is unknown, then mismatch issues need to be

considered [32]. When the distribution error is known, the calculation of the conditional

entropy is possible but may be impractical. The focus is now turned to obtaining upper

and lower bounds for the instantaneous mutual information.

3.2.2. Bounds on mutual information. The upper and lower bounds for the

instantaneous mutual information I(x(η); y(η)) were extended in [12] to multiple antennas

at the transmitter and receiver to yield for Nr ≤ Nt

Ilb(η) = log2 det

(
INr +

ρ(1− σ2
e)

Nt(1 + ρσ2
e)

Ĥ(η) Ĥ(η)H

)

Iub(η) = Ilb + NrEx

{
log2

ρσ2
e + 1

ρ
Nt

σ2
e‖x‖2

2 + 1

}

where Ĥ(η) , Ĥ(η)/σĥ, x is a Nr x 1 vector with xn

iid
∼ CN (0, 1), and Ĥ(η) Ĥ(η)H has

a Wishart distribution, and ρ , P
No

is the SNR. At this stage it is convenient to define

another measure of SNR which will be used throughout the remainder of this work. Let the

effective SNR, also denoted by ρeff , be defined as the SNR due to the presence of channel

estimation error at the receiver. This is expressed mathematically as

ρeff , ρ(1− σ2
e)

Nt(1 + ρσ2
e)

For Nr > Nt we have

Ilb(η) = log2 det

(
INt +

ρ(1− σ2
e)

Nt(1 + ρσ2
e)

Ĥ(η)H Ĥ(η)

)
(3.4)

Iub(η) = Ilb + NrEx

{
log2

ρσ2
e + 1

ρτ

Nt
σ2

e‖x‖2
2 + 1

}
. (3.5)
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In either case the upper and lower bounds are the same due to the identity

det

(
INr +

ρ(1− σ2
e)

Nt(1 + ρσ2
e)

Ĥ(η) Ĥ(η)H

)
= det

(
INt +

ρ(1− σ2
e)

Nt(1 + ρσ2
e)

Ĥ(η)H Ĥ(η)

)
.

For the remainder of this work the time dependence will be assumed autonomous for con-

venience unless explicitly stated.

3.3. OUTAGE CAPACITY FOR A MIMO RAYLEIGH FLAT FADING CHAN-
NEL

An outage event is defined to occur when the instantaneous mutual information is

strictly less than some fixed data rate r. The outage probability is defined to be [31]

Po(I) , P (I(x; y) ≤ r). (3.6)

Due to the monotonicity of a cumulative distribution function, the outage capacity can be

defined as

C(Po(I)) , argmax
r

{r > 0 : Po(I) = P}

where P is the desired outage probability. Observing the inequalities

Po(Iub) ≤ Po(I)

Po(I) ≤ Po(Ilb)

it follows that

Clb(Po(Ilb)) , argmax
r

{r > 0 : Po(Ilb) = P} (3.7)

Cub(Po(Iub)) , argmax
r

{r > 0 : Po(Iub) = P} (3.8)
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are the lower and upper bounds for the outage capacity. In order to solve for r in (3.7)

and (3.8), the probability density function (pdf) for (3.4) and (3.5) must be obtained. The

mutual information can be written as

Ilb =
N∑

i=1

log2

(
1 +

ρ(1− σ2
e)

Nt(1 + ρσ2
e)

λi

)
(3.9)

Iub = Ilb + NrEx

{
log2

ρσ2
e + 1

ρτ

Nt
σ2

e‖x‖2
2 + 1

}
(3.10)

where N = rank(H) and λi is the ith unordered eigenvalue of a Wishart matrix. Letting

k , min(Nr, Nt), l , max(Nr, Nt) and d , l − k, the pdf of the unordered eigenvalue is [1]

fλ(λ) =
exp (−λ)

k

k−1∑
i=0

i!

(i + d)!

(
Ld

i (λ)
)2

λd (3.11)

where Ld
i (x) is the associated Laguerre polynomial defined by

Ld
i (x) ,

i∑
p=0

(−1)p




i + d

i− p


 xp

p!
. (3.12)

Observing (3.11) and (3.12), it is clear that finding the pdf of (3.9) and (3.10) is rather in-

volved compared to the SISO case in [31] where simple pdf transformations were performed.

They can, however, be utilized for calculating (3.7) and (3.8) numerically, which will be

known as the numerical upper and lower bounds on the outage capacity. This method is

not attractive when the solution requires a lot of computational time4 or when an analytical

expression is desired. A contribution of this work is to find new analytic upper and lower

bounds to (3.7) and (3.8).

The derivation will start with [33], where it is shown for Nt, Nt ≥ 2 that I(x; y) can

be well approximated by a Gaussian random variable. The lower and upper bounds satisfy

4It is also possible the numerical solution may oscillate and never converge.
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Ilb ∼ N (µIlb
, σ2

I) and Iub ∼ N (µIub
, σ2

I) where

µIlb
=

∫ ∞

0

log2

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ + 1

)
K(λ, λ)dλ (3.13)

µIub
= µIlb

+ NrEx

{
log2

ρσ2
e + 1

ρτ

Nt
σ2

e‖x‖2
2 + 1

}
(3.14)

σ2
I =

∫ ∞

0

log2
2

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ + 1

)
K(λ, λ)dλ (3.15)

−
∫ ∞

0

∫ ∞

0

log2

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ1 + 1

)

× log2

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ2 + 1

)
K2(λ1, λ2)dλ1dλ2

and

K(x, y) ,
k−1∑
i=0

i!

(i + d)!
Ld

i (x)Ld
i (y)xd/2yd/2 exp (−(x/2 + y/2)).

This allows us the write the desired probabilities in (3.7) and (3.8) as

P(Ilb ≤ r) =

∫ r

0

1√
2πσIlb

exp

(−(x− µIlb
)2

2σ2
Ilb

)
dx (3.16)

P(Iub ≤ r) =

∫ r

0

1√
2πσIub

exp

(−(x− µIub
)2

2σ2
Iub

)
dx. (3.17)

which leads to the following new result for analytic upper and lower bounds of the MIMO

outage capacity with channel uncertainty.

Theorem 3.1. The outage capacity for a Rayleigh flat fading MIMO system with no CSI

at the transmitter and channel estimation at the receiver is bounded by

Clb(P ) =





µIlb
− σI

√
W

(
1

2πα2
lb

)
for 0 < P < 0.159

µIlb
− σI

√
2π

(
Q

(
µIlb

σI

)
+ P − 1

2

)
for 0.159 < P < 0.5

µIlb
+ σI

√
2π

(
Q

(
µIlb

σI

)
+ P − 1

2

)
for 0.5 < P < 0.841

µIlb
+ σI

√
W

(
1

2πβ2
lb

)
for 0.841 < P < 1

(3.18)
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and

Cub(P ) =





µIub
− σI

√
W

(
1

2πα2
ub

)
for 0 < P < 0.159

µIub
− σI

√
2π

(
Q

(
µIub

σI

)
+ P − 1

2

)
for 0.159 < P < 0.5

µIub
+ σI

√
2π

(
Q

(
µIub

σI

)
+ P − 1

2

)
for 0.5 < P < 0.841

µIub
+ σI

√
W

(
1

2πβ2
ub

)
for 0.841 < P < 1

(3.19)

where

αlb , Q

(
µIlb

σI

)
+ P

αub , Q

(
µIub

σI

)
+ P

βlb , −Q

(
µIlb

σI

)
+ 1− P

βub , −Q

(
µIub

σI

)
+ 1− P

and Q(·) and W (·) are respectively the Gaussian Q function and Lambert’s W function [34].

Proof. Without loss of generality only the lower bound will be considered. Writing (3.16)

in terms of Q functions we obtain

Q

(
r − µIlb

σI

)
= Q

(
µIlb

σI

)
+ (1− P ). (3.20)

The following approximations for the Q function are employed

Q(x) ≈ 1/2

(
1− 2√

2π
x

)
,−1 < x < 1 (3.21)

Q(x) ≈ 1√
2πx

exp (−x2/2) , x > 1 (3.22)

Q(x) ≈ 1− 1√
2πx

exp (−x2/2) , x < −1. (3.23)
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There are four distinct cases to consider.

(I)
r−µIlb

σI
< −1. Using (3.23) in (3.20) we obtain after several several manipulations

(
r − µIlb

−σI

)2

exp

(
r − µIlb

−σI

)2

=
1

2πα2
lb

.

Noting the definition of the lambert W function we obtain

(
r − µIlb

−σI

)2

= W

(
1

2πα2
lb

)

from which after taking the square root and solving for r the result follows.

(II) −1 <
r−µIlb

σI
< 0. Using (3.21) in (3.20) we obtain

r − µIlb

σI
=

√
2π

2

(
− 2Q

(
µIlb

σI

)
+ 1− 2P

)

and obtain the result after solving for r.

(III) 0 <
r−µIlb

σI
< 1. Using (3.21) in (3.20) and following the same method as Case II, the

result follows.

(IV)
r−µIlb

σI
> 1. Using (3.22) in (3.20) and following the same procedure in Case I yields

the desired result.

It remains to show the outage probabilities corresponding to the values of
r−µIlb

σI
. For a

Gaussian random variable, it is well known that

P (|x− µ| < σ) ≤ 0.682

P (|x− µ| < 2σ) ≤ 0.95

P (|x− µ| < 3σ) ≤ 0.997.
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Thus

r − µIlb

σI
< −1 implies 0 < P < 0.159

−1 <
r − µIlb

σI
< 0 implies 0.159 < P < 0.5

0 <
r − µIlb

σI
< 1 implies 0.5 < P < 0.841

r − µIlb

σI
> 1 implies 0.841 < P < 1

which completes the proof.

At this point it is difficult to gain insight on (3.18) and (3.19) due to their complicated

structure. It is therefore appropriate to show by illustration how the new analytic bounds

behave with respect to various parameters.

First let Nt = 2, Nr = 5, and σ2
e = 0.01. The analytic and numerical bounds are plotted

for comparison in Figure 3.1 for various P . The two methods of calculating the bounds are

observed to be in close agreement. It is also noted that increasing the outage probability
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Figure 3.1 Comparison of numerical and analytical bounds for the MIMO outage capacity
with channel uncertainty for various P when Nt = 2, Nr = 5, and σ2

e = 0.01.
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increases the outage capacity bounds. This follows immediately from the definition of outage

probability in (3.6).

The number of transmit and receive antennas are now varied while fixing P = 0.05 and

σ2
e = 0.01 in Figure 3.2. The outage capacity bounds appear logarithmic with increasing

received SNR and linear with increasing antenna elements which are fundamental results

for MIMO capacity [1].

The importance of accurate channel estimation is demonstrated in Figure 3.3 for Nt =

2, Nr = 5, P = 0.05, and σ2
e = 0.01. At high SNR the outage capacity bounds saturate

and loosen as the estimation error increases. The saturation can be explained by inaccurate

channel estimation effectively adding noise, or equivalently uncertainty, to the system which

prevents the differential entropy from decreasing at high SNR. The looseness in the bounds

follows by visualizing the upper and lower bounds of the mutual information as two extremes,

the former is when the estimation error behaves as noise, the latter when it presents itself

as transmit power.
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Noting that the outage capacity is a function of the mean and variance of the mutual

information, a new exact expression for these moments is now presented. Although cum-

bersome, they can be implemented using numerical integration techniques which avoid the

inaccuracies that can result from Monte Carlo simulations.

Theorem 3.2. The mean and variance of the instantaneous mutual information for a

MIMO Rayleigh flat fading system with no CSI at the transmitter and channel estimation

at the receiver are

µIlb
=

k−1∑
i=0

i∑
p1=0

i∑
p2=0

(−1)p1+p2

i!




i + d

i− p1







i + d

i− p2




ln 2 (i + d)!p1!p2!

×G31
23


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
0, 1

0, 0, p1 + p2 + d


 (3.24)

µIub
= µIlb

+ Nr log2(Ntσ
2
e + 1)

− Nr

∫ ∞

0

1

2Nt/2Γ(Nt/2)
xNt/2−1e−x/2 log2(xσ2

e + 1)dλ (3.25)

σ2
I =

k−1∑
i=0

i∑
p1=0

i∑
p2=0

p1+p2+d∑
j=0

(−1)d−j

×

2e
Nt(1+ρσ2

e)

ρ(1−σ2
e) i!




p1 + p2 + d

j







i + d

i− p1







i + d

i− p2




(ln 2)2(i + d)!p1!p2!
( ρ(1−σ2

e)
Nt(1+ρσ2

e)

)p1+p2+d+1

×G34
40


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
−j,−j,−j

0,−j − 1,−j − 1,−j − 1




−
[

k−1∑
i=0

i∑
p1=0

i∑
p2=0

(−1)p1+p2

i!




i + d

i− p1







i + d

i− p2




(ln 2)2(i + d)!p1!p2!

×G31
23


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
0, 1

0, 0, p1 + p2 + d




]2

(3.26)
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Proof. We begin by noting that

K(λ, λ) =
k−1∑
i=0

ΨiL
d
i (λ)Ld

i (λ)λde−λ

=
k−1∑
i=0

i∑
p1=0

i∑
p2=0

ΨiΦp1Φp2λ
p1+p2+de−λ

and substituting in (3.13) yields

µIlb
=

1

ln 2

k−1∑
i=0

i∑
p1=0

i∑
p2=0

ΨiΦp1Φp2

∫ ∞

0

ln

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ + 1

)
λp1+p2+de−λdλ

=
1

ln 2

k−1∑
i=0

i∑
p1=0

i∑
p2=0

ΨiΦp1Φp2G
31
23


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
0, 1

0, 0, p1 + p2 + d




=
k−1∑
i=0

i∑
p1=0

i∑
p2=0

(−1)p1+p2

i!




i + d

i− p1







i + d

i− p2




ln 2 (i + d)!p1!p2!

×G31
23


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
0, 1

0, 0, p1 + p2 + d



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where the second equality is obtained from (11),(21) in [35] and G(·) is the Meijer G function

[34, 35]. The variance evaluation begins by noting that

∫ ∞

0

log2
2

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ + 1

)
K(λ, λ)dλ

=
1

(ln 2)2

k−1∑
i=0

i∑
p1=0

i∑
p2=0

ΨiΦp1Φp2

∫ ∞

0

ln2

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ + 1

)
λp1+p2+de−λdλ

=
k−1∑
i=0

i∑
p1=0

i∑
p2=0

ΨiΦp1Φp2

2e
Nt(1+ρσ2

e)

ρ(1−σ2
e)

(ln 2)2
(

ρ(1−σ2
e)

Nt(1+ρσ2
e)

)p1+p2+d+1

×
p1+p2+d∑

j=0




p1 + p2 + d

j


 (−1)p1+p2+d−j

×G40
34


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
−j,−j,−j

0,−j − 1,−j − 1,−j − 1




=
k−1∑
i=1

i∑
p1=0

i∑
p2=0

p1+p2+d∑
j=0

(−1)d−j i!

(i + d)!p1!p2!




p1 + p2 + d

j







i + d

i− p1




×




i + d

i− p2


 2e

Nt(1+ρσ2
e)

ρ(1−σ2
e)

(ln 2)2
( ρ(1−σ2

e)
Nt(1+ρσ2

e)

)p1+p2+d+1

×G40
34


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
−j,−j,−j

0,−j − 1,−j − 1,−j − 1


 (3.27)

where the third equality is obtained from [36]. The second term in (3.15) is obtained by

first writing

K2(λ1, λ2) =

( k−1∑
i=0

ΨiL
d
i (λ1)L

d
i (λ2)(λ1λ2)

d/2e−(λ1+λ2)/2

)

×
( k−1∑

j=0

ΨiL
d
i (λ1)L

d
i (λ2)(λ1λ2)

d/2e−(λ1+λ2)/2

)

= (λ1λ2)
de−(λ1+λ2)

k−1∑
i=0

k−1∑
j=0

ΨiΨjL
d
i (λ1)L

d
i (λ2)L

d
j (λ1)L

d
j (λ2).
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Substituting this into (3.15) yields

∫ ∞

0

∫ ∞

0

log2

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ1 + 1

)
log2

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ2 + 1

)
K2(λ1, λ2)dλ1dλ2

=
1

(ln 2)2

k−1∑
i=0

k−1∑
j=0

i∑
p1=0

i∑
p2=0

j∑
p3=0

j∑
p4=0

ΨiΨjΦp1Φp2Φp3Φp4

×
∫ ∞

0

ln

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ1 + 1

)
e−λ1λp1+p3+d

1 dλ1

×
∫ ∞

0

ln

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

λ2 + 1

)
e−λ2λp1+p3+d

2 dλ2

=
k−1∑
i=0

k−1∑
j=0

i∑
p1=0

i∑
p2=0

j∑
p3=0

j∑
p4=0

(−1)p1+p2+p3+p4
i!

(ln 2)2(i + d)!p1!p2!p3!p4!




i + d

i− p1




×




i + d

i− p2







i + d

i− p3







i + d

i− p4


 G31

23


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
0, 1

0, 0, p1 + p3 + d




×G31
23


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
0, 1

0, 0, p2 + p4 + d




=

[
k−1∑
i=0

i∑
p1=0

i∑
p2=0

(−1)p1+p2

i!




i + d

i− p1







i + d

i− p2




(ln 2)2(i + d)!p1!p2!

×G31
23


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
0, 1

0, 0, p1 + p2 + d




]2

(3.28)
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Subtracting (3.27) from (3.28) yields the variance

σ2
I =

k−1∑
i=0

i∑
p1=0

i∑
p2=0

p1+p2+d∑
j=0

(−1)d−j

2e
Nt(1+ρσ2

e)

ρ(1−σ2
e) i!




p1 + p2 + d

j







i + d

i− p1







i + d

i− p2




(ln 2)2(i + d)!p1!p2!
(

ρ(1−σ2
e)

Nt(1+ρσ2
e)

)p1+p2+d+1

×G34
40


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
−j,−j,−j

0,−j − 1,−j − 1,−j − 1




−
[

k−1∑
i=0

i∑
p1=0

i∑
p2=0

(−1)p1+p2

i!




i + d

i− p1







i + d

i− p2




(ln 2)2(i + d)!p1!p2!

×G31
23


Nt(1 + ρσ2

e)

ρ(1− σ2
e)

∣∣∣∣
0, 1

0, 0, p1 + p2 + d




]2

which is the desired result.

To provide additional insight and relieve the computational burden of numerical inte-

gration, the next topic will be the derivation of new accurate closed form approximations for

these moments. The approximations are driven by the asymptotic behavior of the logarithm.

3.3.1. Low Effective SNR. The following approximation for the logarithm is

valid in the low effective SNR regime

log(1 + x) ≈ x

ln 2
, (3.29)

and is utilized for the following new result.

Theorem 3.3. The mean and variance of the mutual information of a MIMO Rayleigh flat

fading system with no CSI at the transmitter and channel estimation at the receiver are well
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approximated at low effective SNR by

µIlb
≈ ρ(1− σ2

e)

ln 2 Nt(1 + ρσ2
e)

k(k + d) (3.30)

µIlb
≈ µIub

+ Mub (3.31)

σ2
I ≈

(
ρ(1− σ2

e)

ln 2 (1 + ρσ2
e)

)2
Nr

Nt

(3.32)

where

Mub =





0 for ρσ2
e < 0.5

Nr

ln 2

(
ln Nt

2
− ψ

(
Nt

2

))
for ρσ2

e > 2

Nr

ln 2
(ρ−ρ−)

(ρ+−ρ−)

(
ln Nt

2
− ψ

(
Nt

2

))
otherwise

and

ρ− = max{ρ ∈ R : ρσ2
e < 0.5}

ρ+ = min{ρ ∈ R : ρσ2
e > 2}

with ψ(·) being the psi function [34].

Proof. We begin by using (3.29) to approximate (3.13) by

µIlb
=

∫ ∞

0

ρ(1− σ2
e)

ln 2 Nt(1 + ρσ2
e)

λK(λ, λ)dλ

=
k−1∑
i=0

ρ(1− σ2
e)

ln 2 Nt(1 + ρσ2
e)

i!

(i + d)!

∫ ∞

0

Ld
i (λ)Ld

i (λ)λd+1 exp (−λ)dλ. (3.33)

Using the identities [34]

Ld−1
i (λ) = Ld

i (λ)− Ld
i−1(λ) (3.34)

∫ ∞

0

exp (−x)xαLα
n(x)Lα

m(x)dx =





0 , m 6= n

Γ(α+n+1)
n!

, m = n

(3.35)
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we obtain after several manipulations

µIlb
=

ρ(1− σ2
e)

ln 2 Nt(1 + ρσ2
e)

k(k + d) (3.36)

Noting that at low effective SNR the approximation σe ≈ 1 holds and there are three cases

to consider for Mub.

1. ρσ2
e < 0.5. This renders the approximation

ln

(
ρτ

Nt

σ2
e‖x‖2

2 + 1

)
≈ ρσ2

e‖x‖2
2

ln 2 Nt

. (3.37)

Since ||x||22 ∼ χ2
Nt

it follows that

Mub = 0. (3.38)

2. ρσ2
e ≥ 2. Then

ln

(
ρσ2

e + 1
ρτ

Nt
‖x‖2

2σ
2
e + 1

)
≈ ln

(
Nt

‖x‖2
2

)
. (3.39)

Using the identity [34]

∫ ∞

0

µνxν−1 exp (−µx) ln x

Γ(ν)
dx = ψ(ν) + ln 2 (3.40)

we obtain

Mub =
Nr

ln 2

(
ln

Nt

2
− ψ

(
Nt

2

))
.

3. 0.5 < ρσ2
e < 2. In this region it is difficult to find a simple logarithmic approximation.

Observing from Figure 3.4 that the upper bound of the mean increases in a linear

fashion, a first order linear interpolation is employed to obtain

Mub =
Nr

ln 2

(ρ− ρ−)

(ρ+ − ρ−)

(
ln

Nt

2
−Ψ

(
Nt

2

))
(3.41)
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where

ρ− = max{ρ ∈ R : ρσ2
e < 0.5}

ρ+ = min{ρ ∈ R : ρσ2
e > 2}.

Using the assumption now in (3.29), the variance can be expressed as

σ2
I =

(
ρ(1− σ2

e)

ln 2 Nt(1 + ρσ2
e)

)2

(I1 − I2) (3.42)

where

I1 =

∫ ∞

0

λ2K(λ, λ)dλ

I2 =

∫ ∞

0

∫ ∞

0

λ1λ2K
2(λ1, λ2)dλ1dλ2.

Expanding I1 first gives

I1 =

(
ρ(1− σ2

e)

ln 2 Nt(1 + ρσ2
e)

)2 k−1∑
i=0

i!

(i + d)!

∫ ∞

0

Ld
i (λ)Ld

i (λ)λd+2 exp (−λ)dλ.

After applying (3.35) we obtain after several manipulations

I1 =

(
ρ(1− σ2

e)

ln 2 Nt(1 + ρσ2
e)

)2

k(k + d)(d + 2k).

Focusing now on I2 we have

I2 =

(
ρ(1− σ2

e)

ln 2 Nt(1 + ρσ2
e)

)2 ∫ ∞

0

∫ ∞

0

λd+1
1 λd+1

2 exp (−λ1 − λ2)

×
( k−1∑

i=0

i!

(i + d)!
Ld

i (λ1)L
d
i (λ2)

)( k−1∑
j=0

j!

(j + d)!
Ld

j (λ1)L
d
j (λ2)

)
dλ1dλ2

=

(
ρ(1− σ2

e)

ln 2 Nt(1 + ρσ2
e)

)2( ∑
i,j∈A

IA +
∑

i,j∈Ac

IAc

)
(3.43)
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where A = {(i, j) ∈ {0, . . . , k − 1} × {0, . . . , k − 1} : i = j} and

IA =

(
i!

(i + d)!

∫ ∞

0

λd+1 exp (−λ)Ld
i (λ)Ld

i (λ)dλ

)2

= (2i + d + 1)2 (3.44)

IAc =
i!

(i + d)!

(i + 1)!

(i + 1 + d)!

( ∫ ∞

0

λd+1 exp (−λ)Ld
i (λ)Ld

j (λ)dλ

)2

= (i + 1)(i + d + 1). (3.45)

Substituting (3.44) and (3.45) into (3.43) yields

I2 =

(
ρ(1− σ2

e)

ln 2 Nt(1 + ρσ2
e)

)2(
k

3

(
3d2 + 4k2 + 6dk − 1

)
+

k

3
(k − 1)(2k − 1 + 3d)

)
.

Subtracting I2 from I1 yields the variance

σ2
I =

(
ρ(1− σ2

e)

ln 2 Nt(1 + ρσ2
e)

)2(
k(k + d)

)
=

(
ρ(1− σ2

e)

ln 2 (1 + ρσ2
e)

)2
Nr

Nt

.

The approximations are examined by plotting the effective received SNR along with

(3.30)-(3.32) for Nt = 2, Nr = 5, and σ2
e = 0.95 in Figure 3.4. A comparison with (3.13)-

(3.15) indicates there is close agreement. The simplification of these moments lead to new

closed form estimates for the outage capacity.

Theorem 3.4. The outage capacity bounds of a MIMO Rayleigh flat fading system operating

at low effective SNR with no CSI at the transmitter and channel estimation at the receiver
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Figure 3.4 Comparison of numerical and approximate moments for the mutual information
at low effective SNR when Nt = 2, Nr = 5, and σ2

e = 0.95.

are well approximated by

Clb(P ) ≈





Nrρ(1−σ2
e)

ln 2 (1+ρσ2
e)

(
1−

√
W

(
1

2πα2
lb

)
kl

)
for 0 < P < 0.159

Nrρ(1−σ2
e)

ln 2 (1+ρσ2
e)

(
1−

√
2π
kl

(
Q

(√
kl

)
+ P − 1

2

))
for 0.159 < P < 0.5

Nrρ(1−σ2
e)

ln 2 (1+ρσ2
e)

(
1 +

√
2π
kl

(
Q

(√
kl

)
+ P − 1

2

))
for 0.5 < P < 0.841

Nrρ(1−σ2
e)

ln 2 (1+ρσ2
e)

(
1 +

√
W

(
1

2πβ2
lb

)
kl

)
for 0.841 < P < 1

and

Cub(P ) ≈





Nrρ(1−σ2
e)

ln 2 (1+ρσ2
e)

(
1−

√
W

(
1

2πα2
lb

)
kl

)
+ Mub for 0 < P < 0.159

Nrρ(1−σ2
e)

ln 2 (1+ρσ2
e)

(
1−

√
2π
kl

(
Q

(√
kl + δ

)
+ P − 1

2

))
+ Mub for 0.159 < P < 0.5

Nrρ(1−σ2
e)

ln 2 (1+ρσ2
e)

(
1 +

√
2π
kl

(
Q

(√
kl + δ

)
+ P − 1

2

))
+ Mub for 0.5 < P < 0.841

Nrρ(1−σ2
e)

ln 2 (1+ρσ2
e)

(
1 +

√
W

(
1

2πβ2
lb

)
kl

)
+ Mub for 0.841 < P < 1
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where

αlb , Q

(√
kl

)
+ P

αub , Q

(√
kl + δ

)
+ P

βlb , −Q

(√
kl

)
+ 1− P

βub , −Q

(√
kl + δ

)
+ 1− P

and

δ , ln 2MubNt(1 + ρσ2
e)√

klρ(1− σ2
e)

along with

Mub =





0 for ρσ2
e < 0.5

Nr

ln 2

(
ln Nt

2
−Ψ

(
Nt

2

))
for ρσ2

e > 2

Nr

ln 2
(ρ−ρ−)

(ρ+−ρ−)

(
ln Nt

2
−Ψ

(
Nt

2

))
otherwise

where

ρ− = max{ρ ∈ R : ρσ2
e < 0.5}

ρ+ = min{ρ ∈ R : ρσ2
e > 2}

Proof. This follows at once upon inserting (3.30)-(3.32) into (3.18) and (3.19).

We begin the discussion with a qualitative analysis. Starting with the lower bound,

for each case the outage capacity is depicted by K(1 ± a). We now show a → 0 when the

number of antennas are sufficiently large. For .159 < P < .841 this is straightforward since

the Q function is bounded. For the remaining two scenarios, observe that the estimate

W (x) ≤ x holds. Therefore

0 ≤
W

(
1

2π(Q(
√

kl)+P )2

)

kl
≤ 1

2πP 2kl
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which is squeezed to zero as the number of antenna elements are increased. The factored

term K shows that the outage capacity increases linearly with Nr and saturates as the

estimation error worsens. Note that no linear increase occurs when increasing Nt because the

transmit covariance matrix allocates equal power on each antenna [25] when the transmitter

does not know the channel. When the error is small, the capacity increases linearly with

received SNR, consistent with [1].

The behavior of the upper bound is similar to the lower bound minus two exceptions.

The first is the inclusion of δ into the Q functions. By close inspection δ is non-negative,

causing a to vanish quicker. The second is the presence of Mub, which is composed of strictly

increasing functions. Observing that [34]

lim
Nt→∞

ψ(Nt) = ln Nt (3.46)

it is clear that Mub will vanish for a sufficiently large number of transmit antennas. This

suggests at low effective SNR that increasing the number of transmit antennas does not

benefit the outage capacity.

Numerical examples are now provided to validate our observations. Letting Nt =

2, Nr = 5, and σ2
e = 0.95, the outage capacity using the approximations in Theorem 3.4 are

compared to the actual outage capacity in Figure 3.5. The approximations are seen to be

in close agreement over the range of received SNR.

The impact on the outage capacity approximations when the number of transmit

antennas are varied for Nr = 2, 4 along with P = 0.05 and σ2
e = 0.95 are illustrated in

Figure 3.6. As indicated in the analysis, increasing the number of receive elements increases

the outage capacity while increasing the number of transmit antennas has little impact.

3.3.2. High Effective SNR. When operating in the high effective SNR regime

the approximation

log2(1 + x) ≈ log2 x
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is valid. The upper and lower bounds for the mutual information are well approximated for

Nr ≤ Nt by

Ilb = log2 det

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

Ĥ Ĥ
H

)

Iub = Ilb + NrEx

{
log2

Ntσ
2
e + 1

‖x‖2
2σ

2
e + 1

}
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Figure 3.5 Comparison of numerical bounds and their approximations for the MIMO outage
capacity with channel uncertainty at low effective SNR for various P when
Nt = 2, Nr = 5, and σ2

e = 0.95.
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and for Nr > Nt

Ilb = log2 det

(
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

Ĥ
H

Ĥ

)

Iub = Ilb + NrEx

{
log2

Ntσ
2
e + 1

‖x‖2
2σ

2
e + 1

}

which leads to new closed form approximate moments at high SNR.

Theorem 3.5. The mean and variance of the instantaneous mutual information for a

MIMO Rayleigh flat fading system with no CSI at the transmitter and channel estimation

at the receiver are well approximated at high effective SNR by

µIlb
≈ 1

ln 2

( k−1∑
i=0

ψ(k + d− i) + k ln
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

)
(3.47)

µIub
≈ µIlb

+ Mub (3.48)

σ2
I ≈ 1

(ln 2)2

k−1∑
i=0

ζ(2, k + d− i) (3.49)

where

Mub =





0 for ρσ2
e < 0.5

Nr

ln 2

(
ln Nt

2
− ψ

(
Nt

2

))
for ρσ2

e > 2

Nr

ln 2
(ρ−ρ−)

(ρ+−ρ−)

(
ln Nt

2
− ψ

(
Nt

2

))
otherwise

and

ρ− = max{ρ ∈ R : ρσ2
e < 0.5}

ρ+ = min{ρ ∈ R : ρσ2
e > 2}

with ζ(·, ·) being the Riemann zeta function [34].

Proof. Assume that Nr ≤ Nt. We begin by noting for iid complex normal matrices at high

effective SNR that [37]

det HHH

2−k
∼

k∏
i=1

χ2
2(k+d−i+1).
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Since the eigenvalues of HHH and HHH are the same, the result holds as well for Nr > Nt.

It is routine to show that

Ilb ∼
k−1∑
i=0

ln(χ2
2(k+d−i)) + k ln

ρ(1− σ2
e)

Nt(1 + ρσ2
e)

(3.50)

and therefore

µIlb
=

1

ln 2

(
E

{ k−1∑
i=0

ln(χ2
2(k+d−i))

}
+ k ln

ρ(1− σ2
e)

Nt(1 + ρσ2
e)

)
.

Invoking the fact that the chi squared random variables are independent

µIlb
=

1

ln 2

( k−1∑
i=0

E
{

ln(χ2
2(k+d−i))

}
+ k ln

ρ(1− σ2
e)

Nt(1 + ρσ2
e)

)
.

Utilizing (3.40) we obtain

µIlb
=

1

ln 2

( k−1∑
i=0

ψ(k + d− i) + k ln
ρ(1− σ2

e)

Nt(1 + ρσ2
e)

)
.

The derivation of Mub and hence of µIub
is precisely the same as in the proof of Theorem

3.3. The variance is found by utilizing the chi squared independence again along with

V ar(x + a) = V ar(x) to yield

σ2
I =

k−1∑
i=0

V ar

{
ln(χ2

2(k+d−i))

}

=
k−1∑
i=0

(
E ln(χ2

2(k+d−i))
2 − µ2

Ilb

)
.

Observing that [34]

∫ ∞

0

µνxν−1 exp (−µx) ln x2

Γ(ν)
dx = (ψ(ν)− ln 2)2 + ζ(2, ν)
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we obtain

σ2
I =

1

(ln 2)2

k−1∑
i=0

ζ(2, k + d− i)

which is the desired result.

Since (3.47)-(3.49) are difficult to simplify, expressions for the outage capacity are

omitted. It is worth mentioning that with the aid of (3.46) the estimate

k−1∑
i=0

ψ(k + d− i) ≤ k ln l

holds and when inserted into (3.47) yields

µIlb
≤ k

(
ln

(
l

Nt

)
+ ln ρ

)

which implies that the outage capacity increases linearly with the minimum number of

antenna elements and is logarithmic with an increase in SNR, consistent with Figure 3.2.

To illustrate these results (3.13)-(3.15) are plotted against the high effective SNR

approximations for Nt = 2, Nr = 5 and σe = 0.001 in Figure 3.7. Comparing these new

approximations with the exact moments, there is close agreement. These moments are then

used to calculate the outage capacity bounds for various P in Figure 3.8 which again are in

close proximity.

3.4. PILOT SYMBOL ASSISTED MODULATION

In this section the estimation error of a Rayleigh fast fading channel is analyzed for a

MIMO system equipped with PSAM [38, 39]. Each transmit antenna sends length Tb symbol

packets, Nt of which are pilots. Let D , Tb −Nt denote the number of data symbols. For

each transmit antenna, a spreading code of length Nt is defined by [39]

cn , [cn(0) . . . cn(Nt − 1)]T , n = 1, . . . , Nt
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with the property

cH
n cm = δk(n−m)

During the ith packet the pilot symbols are spread by

xn(i) = xn(i)cn, n = 1, . . . , Nt.

from which

ym(i) =
N∑

n=1

xn(i)hmn(i) + n, m = 1, . . . , Nr

where ym(i) = [ym(iTb) . . . ym(iTb + (Nt − 1))]T and n is a noise vector with iid CN (0, No)

entries. The receiver calculates the crude estimates

h̃mn(i) = cH
n ym = hmn(i) + cH

n n/xn(i). (3.51)

and feeds them to a M th order Wiener filter to estimate the channel during data transmission

[38].

Letting P = 0.05, fdTs = 0.1, Nt = 2, Nr = 5, T = 10, and M = 10 the analytic

bounds are plotted in Figure 3.9 for various sampling periods after channel estimation. The

outage capacity deviates substantially from the case of perfect CSI when the elapsed time

exceeds one sample period. At elapsed time 6Ts, the outage capacity saturates over the

SNR range, indicating a high estimation error. This is because for fast fading systems the

symbol period should be much less than the coherence time which is inversely proportional

to the doppler spread. A popular rule of thumb for modern wireless systems is [5]

fdTs ¿ .423. (3.52)

Since this condition is not satisfied for fdTs = 0.1, it is not surprising to see sub-par

performance. Next the outage capacity bounds when fdTs = 0.005 are plotted in Figure
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3.10. The outage capacity remains in close proximity to the case of perfect CSI up until a

SNR of 30 dB. This is expected since (3.52) is now satisfied.

3.5. FREQUENCY SELECTIVE CHANNEL

The analytical bounds for the outage capacity of the frequency selective Rayleigh

MIMO channel described in (4.1) can be derived by utilizing OFDM with B carriers to

obtain the frequency flat channels

H(η, ω) ,
L−1∑
i=0

H(i) exp(−j2πi(ω/B)), ω = 1, . . . , B.

The bandwidth of each sub-band is chosen to be the coherence bandwidth of {H(η)}L
η=1.

It follows from the linearity of the DFT that the each channel is complex Gaussian. Direct

calculation of the covariance matrices corresponding to each column of H(η, ω) with (3.3) in

mind verifies the sub-channels of H(η, ω) are CN (0, 1). Similar to the time domain analysis,

the channel estimation error for a MMSE estimate retains its orthogonality[40]

σ2
E = 1− σ2

Ĥ.

The upper and lower bounds of the mutual information are

Ilb(η) =
1

B

B∑
ω=1

log2 det

(
INr +

ρ(1− σ2
E)

Nt(1 + ρσ2
E)

Ĥ(η, ω) Ĥ(η, ω)H

)

Iub = Ilb + NrEx

{
log2

ρσ2
E + 1

ρτ

Nt
σ2
E‖x‖2

2 + 1

}

Since the bins are chosen so that each channel sub-band is independent, it immediately

follows that Ilb ∼ N (µIlb
, σ2

I) and Iub ∼ N (µIub
, σ2

I), which verifies that the outage capacity

for a frequency selective channel maintains the same form as the flat fading case. The claim
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that application of the results in Sections 3 and 4 to frequency selective channels is hereby

established.

3.6. CONCLUSION

Analytic upper and lower bounds for the outage capacity of a MIMO Rayleigh flat

fading wireless channel with no CSI at the transmitter and channel estimation at the receiver

were derived. Numerical examples illustrated that the outage capacity increased with the

number of antennas, received SNR, and outage probability. They also became saturated at

high received SNR when the estimation error became significant. To solidify these behaviors

with analysis, the bounds were approximated for systems operating in the low and high

effective SNR regimes. For low effective SNR, new accurate approximations for the mean,

variance, and outage capacity were derived and were shown to behave similar to the MIMO

ergodic capacity with channel estimation at the receiver. For the high effective SNR case,

new accurate closed form expressions for the mean and variance were derived and the outage

capacity was shown to be logarithmic with increased received SNR. We next considered how

the outage capacity was affected by the doppler frequency using PSAM. The outage capacity

was shown for a fast fading channel to significantly degrade, while for a slow fading channel

it was shown that the outage capacity remained close to the perfect CSI case for a wide

range of received SNR.

The outage capacity was then investigated for a frequency selective fading channel.

Since the bandwidth of each frequency sub-band was chosen to be the coherence bandwidth,

the bounds had the same form as a frequency flat channel.



59

4. MIMO CHANNEL PREDICTION USING RECURRENT NEURAL
NETWORKS

4.1. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communication systems have recently

received a considerable amount of attention [1, 41]. There have been numerous papers which

report promising gains in capacity and diversity [26]. These results all stem from the as-

sumption that the receiver and/or transmitter have perfect knowledge of the channel. In

a typical telemetry application this is not the case and the receiver must settle for an esti-

mate of the channel. Example channel estimation techniques include sending pilot symbols

in bursts [42], periodically, [39], or in space time block codes [43].

Accurate channel estimation is often crucial for satisfactory decoding performance

at the receiver. Additional performance improvements can be obtained using adaptive

modulation techniques if channel state information (CSI) is available at the transmitter.

If full CSI is available, the water-filling algorithm can be applied to achieve capacity [1]

or pre-coding can be performed on transmitted symbols to achieve a better symbol error

rate (SER) [44] . With partial CSI, the transmitter can adapt the modulation scheme to

maximize spectral efficiency given a minimum SER specification [45].

A feedback link between the receiver and transmitter is commonly used to obtain CSI

at the transmitter. When a channel undergoes fast fading (for example, from doppler shifts

due to transmitter/receiver motion), CSI may become outdated quickly, prohibiting the

transmitter from adapting correctly. Performance can be improved in this case by sending

back a prediction of the CSI.

Previous works have used linear prediction techniques to predict CSI. In many teleme-

try applications, however, the received signal is corrupted by non-linear effects such as

distortion from power amplification. In these situations non-linear prediction techniques
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become appropriate. This was originally done in [46] for multi-layer perceptron (MLP)

neural networks. This was then extended to recurrent neural networks (RNN) for channel

prediction in [19]. All of these approaches are valid for single-input single-output (SISO)

systems. The contribution of this work is to extend these prediction results to the MIMO

case.

The next section describes the input-output MIMO signal model. Section 4.3 provides

the channel estimate/prediction model. The RNN used for channel estimation and the RNN

weight update equations are provided in Sections 4.4 and 4.5 respectively. Finally, MIMO

channel prediction results using the proposed RNN are presented, followed by a conclusion

summarizing the work.

4.2. INPUT-OUTPUT DESCRIPTION

A MIMO wireless baseband communication system with Nt transmit antennas and Nr

receive antennas is described at discrete time k by

r(k) = H(k)s(k) + n(k),

where r is the Nr × 1 received vector, s is the Nt × 1 transmitted symbol vector with each

si belonging to constellation C., and n is the white noise vector of size Nr × 1 with ni

iid
∼

CN (0, No). The Nr ×Nt channel matrix H(k) is modeled by

H(k) = f

(√
α(k)G(k) +

√
1− α(k)W (k)

)
, (4.1)

where f : CNr −→ CNr is a bounded function, 0 < α(k) < 1, W (k) is a noise matrix with

wmn(k)
iid
∼ CN (0, σ2

w), and gmn(k) is the gain between the mth receiver and nth transmitter
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with temporal correlation modeled by Jakes [3]. Specifically, each sub-channel autocorrela-

tion function satisfies

Rgmngmn(τ) = J0(2πfdTsτ), τ = 0, 1, . . .

where fd is the maximum doppler frequency and Ts is the symbol period. Denoting Ps as

the total transmit power, the transmitted symbols must satisfy

E||s(k)|| (4.2)

4.3. CHANNEL ESTIMATION

Accurate prediction of future CSI requires knowledge of channel fading statistics. Fol-

lowing the same procedure in [12], [13], and [14], the minimum mean squared error (MMSE)

estimate obtained at discrete time i , Nek is modeled as

H̃(i) = H(i) + Ẽ(i), (4.3)

where H̃(i) and Ẽ(i) are uncorrelated with h̃mn(k) ∼ CN (0, σh̃(k)2) and

ẽmn(k) ∼ CN (0, σw(k)2). The channel estimation error between the mth receiver and nth

transmitter is thus

σ2
ẽ = |1− σ2

h̃
(k)|.

Taking the vec(·) of both sides of (4.3) yields

h̃(i) = h(i) + ẽ(i).

This form will be convenient when discussing the operation of the RNN predictor. Observing

the block diagram in Figure 4.1, the Np most recent estimates are used for the prediction.
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Figure 4.1 Block diagram of MIMO channel predictor.

4.4. A RECURRENT NEURAL NETWORK

A RNN with n input neurons, m hidden neurons, and r output neurons shown in Figure

4.2 is constructed for non-linear MIMO channel prediction. All outputs of the hidden layers

are fed back to the input layer. The activation functions are described by the mapping

Φ : Cm −→ Cm with real and imaginary components defined by

Φ(·) = φ(·) + jφ(·) = tanh(·) + jtanh(·).

Since the neural network is implemented on a signal processing unit (with sampling period

possibly different than the receiver analog to digital converter (ADC)), the discrete time

index n (not to be confused with the number of input neurons) will be employed. Using

the equivalent state space representation model in [47] the input-output relationship can be

extended to MIMO systems by

y(n + 1) = Cx(n + 1)

x(n + 1) = Φ(W x(n)x(n) + W u(n)u(n)),
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Figure 4.2 State space representation of a recurrent neural network.

where C is a r×m real valued matrix and W x(n) and W u(n) are complex valued neural net-

work weight matrices of size m×m and m×n respectively. Letting W (n) = [W x(n)W u(n)]

and z(n) = [x(n)u(n)]T the real (I ) and imaginary (Q) components of the state vector are

x(n + 1) = φ

(
W I(n)zI(n)−W Q(n)zQ(n)

)
+ jφ

(
W I(n)zQ(n) + W Q(n)zI(n)

)
,

which is the desired form for deriving the RNN weight updates.

4.5. MIMO RNN WEIGHT UPDATES

For accurate channel prediction, the neural network weights should minimize an ap-

propriate cost function. The squared error between the neural network prediction and the

most recent channel estimate is proposed as

J(n) =
1

2
eH(n + 1)e(n + 1), (4.4)

where

e(n + 1) , h̃(n)−Cx(n + 1). (4.5)
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Although this is not the actual prediction error, it provides a realistic way of measuring

the performance, as opposed to [19] which assumes the instantaneous channel is available

when calculating this error. The real time recurrent learning (RTRL) and Extended Kalman

Filter (EKF) algorithms are considered for training the RNN weights. The RTRL seeks to

minimize the instantaneous value of (4.4) whereas the EKF minimizes the expected value

of (4.4).

Let wi be the ith column of W T . The weight updates for the RTRL algorithm are

[18, 47]

∆wi
(n + 1) = γg[(e

I(n))T C (eQ(n))T C]




ΛII
i (n) + jΛIQ

i (n)

ΛQI
i (n) + jΛQQ

i (n)


 + γmwi(n)

wi(n + 1) = ∆wi
(n + 1) + wi(n),

where γg is the learning gain, γm is the momentum gain, and ΛAB satisfies the following

recursion




ΛII
i (n + 1) ΛIQ

i (n + 1)

ΛQI
i (n + 1) ΛQQ

i (n + 1)


 =




φ 0

0 φ







W I
x(n) −W Q

x (n)

W Q
x (n) W I

x(n)







ΛII
i (n) ΛIQ

i (n)

ΛQI
i (n) ΛQQ

i (n)




+




zI
i (n) −zQ

i (n)

zQ
i (n) zI

i (n)




with the initialization 


ΛII
i (0) ΛIQ

i (0)

ΛQI
i (0) ΛQQ

i (0)


 = 0.

Before the weight updates for the EKF are given, the complex Jacobian in [18] is corrected

to

Λ(n + 1) =
∂(x(n + 1))

∂(wI(n))
+ j

∂(x(n + 1))

∂(wQ(n))

= ΛII
i (n)−ΛQQ

i (n) + j

(
ΛQI

i (n) + ΛIQ
i (n)

)
.
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This is applied to the EKF weight updates

Γ(n) = [Λ(n)P (n)ΛH(n) + R(n)]−1

K(n) = P (n)ΛH(n)Γ(n)

wi(n + 1) = wi(n) + K(n)e(n)

P (n + 1) = P (n)−K(n)Λ(n)P (n) + Q(n)

with the following initializations

R(0) = µ−1(I + jI)

Q(0) = ρ(I + jI)

P (0) = ε−1(I + jI).

A contribution of this work is the ability to predict all NrNt sub-channels simultaneously

by letting

y(n + 1) = ĥ(n + 1)

u(n) =

[
h̃(n) h̃(n− 1) · · · h̃(n−Np)

]T

.

4.6. DELAYED PREDICTION

In certain situations it may be unrealistic to assume that the RNN predictor has

instantaneous access to the MMSE estimates. In this case the prediction error and RNN

inputs are only updated every Ns samples and the RNN output is the Ns sample delayed

prediction.
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4.7. PREDICTION RESULTS

This section presents numerical examples to compare the tracking capability of the

EKF and RTRL algorithms. Parameters held constant are given in Table 4.1. The MSE(SSE)

of the EKF and RTRL algorithms is shown in Figure 4.3 when Ns = 1. The EKF outper-

forms the RTRL algorithm and reaches an average MSE that is two orders of magnitude

smaller. The comparison between the actual channel coefficients and their predictions for

each MIMO sub-channel are shown in Figures 4.4-4.7. These plots verify the EKF predic-

tions match the actual channel much better than the RTRL predictions.

Next, the two training algorithms are compared in a delayed prediction scenario for

Ns = 10. Once again the MSE indicates the EKF performance is superior to the RTRL

as seen in Figure 4.8. The comparison between the actual channel coefficients and their

predictions for each MIMO sub-channel are shown in Figures 4.9-4.12. These plots verify

the EKF predictions are able to track the channel reasonably well in comparison to the

RTRL algorithm when the RNN weights are only updated every 10 sampling periods.

An example comparing the EKF neural network predictor to a linear predictor using

the Levinson-Durbin recursion is considered next. The fixed parameters are given in Table

4.2. The non-linear channel is described by (4.1) when f(·) = [tanh(·) · · · tanh(·)]T ,

fdTs = 0.1, and α(k) takes on the values zero or one for random time intervals. The noise

variance is σ2
w = 0.1. The MSE comparison in Figure 4.13 indicates that the EKF predictor

slightly outperforms the L-D approach. The real and imaginary components of the
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Table 4.1 Parameters Values for channel tracking example

Parameter Value Description
fj(a) a No Distortion
Nr 2 Receive Antennas
Nt 2 Transmit Antennas
Np 5 Previous Channel Estimates
Ne 1 Samples Between Estimation
σ2

e .001 Estimation Error
fd 500 Hz Doppler Frequency
Ts 10 msec Symbol Period
Th 1 Prediction step
µ .1 EKF measurement noise parameter
ρ .1 EKF process noise parameter
ε 10 EKF error covariance parameter
γg .001 RTRL learning gain
γm .3 RTRL momentum gain
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Figure 4.3 Mean squared error between EKF and RTRL algorithms when Ns = 1.
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Figure 4.4 Real component of MIMO channel coefficients using EKF algorithm when Ns =
1.
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Figure 4.5 Imaginary component of MIMO channel coefficients using EKF algorithm when
Ns = 1.
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Figure 4.6 Real component of MIMO channel coefficients using RTRL algorithm when Ns =
1.
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Figure 4.7 Imaginary component of MIMO channel coefficients using RTRL algorithm when
Ns = 1.
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Table 4.2 Parameters Values for non-linear channel example

Parameter Value Description
fj(a) tanh(a) Non-linear Distortion
Nr 2 Receive Antennas
Nt 2 Transmit Antennas
Np 5 Previous Channel Estimates
Ne 1 Samples Between Estimation
σ2

e .001 Estimation Error
Ts 10 msec Symbol Period
µ .1 EKF measurement noise parameter
ρ .1 EKF process noise parameter
ε 10 EKF error covariance parameter
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Figure 4.8 Mean squared error between EKF and RTRL algorithms when Ns = 1.
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Figure 4.9 Real component of MIMO channel coefficients using EKF algorithm when Ns =
10.
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Figure 4.10 Imaginary component of MIMO channel coefficients using EKF algorithm when
Ns = 10.
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Figure 4.11 Real component of MIMO channel coefficients using RTRL algorithm when
Ns = 10.
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Figure 4.12 Imaginary component of MIMO channel coefficients using RTRL algorithm
when Ns = 10.
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Figure 4.13 Mean squared error between EKF and L-D algorithm for a non-linear channel.

sub-channel corresponding to the first transmit and receive antennas are displayed in Figure

4.14. Unlike the linear predictor, the EKF neural network predictor is able to explore the

non-linear correlations present in the channel.

4.8. CONCLUSION

Existing SISO prediction algorithms were extended to the MIMO case for the EKF

and RTRL algorithms. Examples presented show the EKF algorithm outperformed the

RTRL algorithm in both single and multi step prediction. When channel non-linearities are

present, the neural network predictor using the EKF algorithm outperformed the Levinson-

Durbin linear predictor.
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Figure 4.14 Real and imaginary components of a MIMO non-linear sub-channel.
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5. MODELING CHANNEL ESTIMATION ERROR IN CONTINUOUSLY
VARYING MIMO CHANNELS

5.1. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communication systems have the ca-

pability of providing a substantial increase in data rate [1, 48]. For optimal performance,

one must assume that the receiver has perfect channel state information (CSI). When this

is not the case, incorrect decoding at the receiver may result.

This situation motivates the use of pilot symbols to estimate the CSI. One can measure

how close this estimate is to the actual channel coefficients by measuring the mean squared

error (MSE) between the true channel and its estimate. In [42] the MSE was found for the

Rayleigh block fading scenario, where the channel is assumed to remain constant for a block

of transmitted symbols. This was extended to an arbitrary channel distribution in [49].

These works did not take into account different channel models or consider a channel that

is time varying during the payload. Time variation was considered in [50], but the channel

distribution for the diffuse component was assumed to be Rayleigh and no expression for

the MSE was found.

In this work, a new expression for the MSE is derived for an arbitrary channel distri-

bution that is continuously varying in time. From this result, optimal values for the training

time are found and are shown to vary according to the temporal autocorrelation between

channel coefficients. The rate of change of the MSE with received SNR and number of trans-

mit and receive antennas is investigated. 5 Particular cases of the new MSE expression are

shown to match previous results. The case of Rayleigh fading is presented to show how the

channel estimation error can increase dramatically as time between training increases.

5Knowing how these parameters affect the MSE can be beneficial to the transmitter in a smart antenna
environment or when the receiver is utilizing a low rate feedback loop to the transmitter.
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Figure 5.1 Block diagram for a MIMO system.

The rest of this work is presented as follows. The next section describes the mathe-

matical models that are used to derive the main result. This is followed by previous results

that relate to our work. A new expression for the channel estimation error for a continuously

changing MIMO channel is next derived. Optimal values for the amount of time to spend

training are found and the number of antennas and received SNR are varied to show how

the rate of change of the MSE is affected. Special cases of our result are shown to yield

expressions that have occurred in the literature. This is followed by our concluding remarks.

5.2. MATHEMATICAL MODELS

5.2.1. Received symbols. Let the received symbols of a baseband MIMO channel

with Nt transmitters and Nr receivers be described at discrete time index k by

y(k) =

√
ρ

Nt

H(k)x(k) + n(k) (5.1)

where ρ = Es

No
is the SNR with average symbol energy Es and noise variance No, y(k) is

the Nr× 1 received symbol vector, H(k) is the Nr ×Nt flat fading MIMO channel matrix,

x(k) is the Nt× 1 transmitted symbol vector with E||x(k)||22 = Nt, and n(k) is the Nr



77

x 1 noise vector with elements ni(k)
iid
∼ CN (0, 1), i = 1, . . . , Nr. A block diagram of

the overall MIMO system is illustrated in Figure 5.1. Throughout this work assume that

the antennas are spaced sufficiently apart at the transmitter and receiver so that H(k) is

spatially uncorrelated. The channel matrix also satisfies

E||H(k)||2F
NtNr

= 1 (5.2)

where || · ||F is the Frobenius norm.

5.2.2. Training Phase. Suppose that each transmitter sends Tτ consecutive pilot

symbols at the beginning of a T symbol block to form the Nt × Tτ matrix X(τ). As seen

in Figure 5.2, the receiver obtains the noise corrupted symbols according to (5.1) which

are sent to a buffer to obtain the Nr × Tτ matrix Y (τ). To make training feasible, assume

that the channel, denoted by H(τ), does not change throughout the training interval. The

received symbols during the training period can be written as

Y (τ) =

√
ρτ

Nt

H(τ)X(τ) + N(τ)

where ρτ is the SNR during training and N(τ) is the Nr × Tτ noise matrix. The training

matrix is restricted such that

||X(τ)||F = TτNt.

5.2.3. Channel Variation. During the data phase assume the channel varies k

symbols in advance from H(τ) by [50]

H(τ + k) =
√

αkH(τ) +
√

1− αkW (τ + k) , k = Tτ + 1, . . . , T. 6 (5.3)

The parameter αk is deterministic but unknown and W (τ + k) is a Nr x Nt matrix with

wmn(τ + k)
iid
∼ CN (0, 1). Assuming that W (τ + k), N(τ), and H(τ) are all uncorrelated

6The combining of τ and k is a slight abuse of notation but is effective at describing the channel variation
once confusion is avoided.
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Figure 5.2 Block diagram of training scheme.

along with recognizing (5.3) as NrNt independent kth order autoregressive processes, it

follows that

αk =

[
rhh(kTs)

rhh(0)

]2

where Ts is the symbol period and rhh(·) is the sub-channel autocorrelation function.

5.3. PREVIOUS RESULTS

In [42] the authors assumed Rayleigh block fading, where H(k) = H(τ) throughout

the block and hmn(τ)
iid
∼ CN (0, 1). The MSE between H(τ) and the linear minimum mean

square error (LMMSE) estimate Ĥ(τ) was shown to be

σ2
bf =

1

1 + ρτ Tτ

Nt

. (5.4)



79

In [49] the MSE for the linear minimum mean squared error (LMMSE) estimate for an

arbitrary channel distribution under block fading was found to be

σ2
bf =

1
ρτ Tτ

Nt
+ Nr

Nt
trace(R−1

Hτ Hτ
)
. (5.5)

where

RHτ Hτ , E{H(τ)HH(τ)}. (5.6)

These results do not take into account a general channel distribution that is time varying

during the payload. A contribution of this work fulfills that task.

5.4. CHANNEL ESTIMATION ERROR OF CONTINUOUSLY VARYING
MIMO CHANNEL

The MSE for a continuously varying MIMO channel is defined by

σ2
cf (k) , E{‖H(τ + k)− Ĥ(τ)‖2

F} (5.7)

where Ĥτ is the LMMSE expressed by

Ĥτ =

√
ρτ

Nt

Y τRY τ Y τ X
H
τ RHτ Hτ .

Expanding (5.7), we have

σ2
cf (k) = trace(αkRHτ Hτ )

+ trace((1− αk)NrINt) + trace(
ρτ

Nt

(1− 2
√

αk)RHτ Hτ X(τ)R−1
Y τ Y τ

X(τ)HRHτ Hτ )

= (αk + 1− 2
√

αk)trace(RHτ Hτ ) + (1− αk)NrNt

− (1− 2
√

αk)trace([R−1
Hτ Hτ

+
ρτ

NtNt

X(τ)X(τ)H ]−1). (5.8)
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We now find find a training matrix such that XτX
H
τ is non-singular which minimizes

(5.8). Since only the third term depends on Xτ , the minimization can be stated as

arg min
XH

τ

trace([R−1
Hτ Hτ

+
ρτ

NtNt

X(τ)X(τ)H ]−1) (5.9)

such that

trace(X(τ)X(τ)H) = NtTτ . (5.10)

Setting the derivative of (5.9) with respect to X(τ)H equal to zero it can be shown that

[
R−1

Hτ Hτ
+

ρτ

NtNr

X(τ)X(τ)H

]−2

= λINt . (5.11)

Invoking the eigenvalue decomposition of matrices we may write

X(τ)X(τ)H = QΓQH − NtNr

ρτ

R−1
Hτ Hτ

(5.12)

where Q is a unitary matrix and Γ is a diagonal matrix. Substituting (5.12) into (5.11)

gives

[
ρτ

NrNt

QΓQH

]−2

= λINt .

Solving for Γ gives

Γ =
NtNr

ρτ

√
λ

INt (5.13)

Substituting (5.13) into (5.12) gives

X(τ)X(τ)H =
NtNr

ρτ

√
λ

INt −
NtNr

ρτ

R−1
Hτ Hτ

(5.14)
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We now take the trace of both sides of (5.14) and invoke (5.10) to get

NtNr

ρτ

√
λ

=
Nr

ρτ

trace(R−1
Hτ Hτ

) + Tτ

which gives

X(τ)X(τ)H =

(
Nr

ρτ

trace(R−1
Hτ Hτ

) + Tτ

)
INt −

NtNr

ρτ

R−1
Hτ Hτ

. (5.15)

Plugging (5.15) into (5.8), simplifying, and taking (5.2) into account, the normalized MSE

can be expressed by

σ̃2
cf (k) ,

σ2
cf (k)

NrNt

= 2(1−√αk)−
(1− 2

√
αk)

ρτ Tτ

Nt
+ Nr

Nt
trace(R−1

Hτ Hτ
)

. (5.16)

Note that the additional noise term used to model the channel variation in (5.3) results in

0 ≤ σ̃2
cf (k) ≤ 2.

5.4.1. Optimal Training Length.

The optimal training length is now investigated. The partial derivative of (5.16) with

respect to Tτ can be written as

∂σ̃2
cf (k)

∂Tτ

= − ∂

∂Tτ

[
(1− 2

√
αk)

ρτ Tτ

Nt
+ Nr

Nt
traceR−1

Hτ Hτ

]

=
(1− 2

√
αk)

(Tτ Nt

ρτ
+ NrNt

ρ2
τ

traceR−1
Hτ Hτ

)2
. (5.17)

Observe that since the denominator in (5.17) is positive, the sign of the derivative is com-

pletely dependent on αk. This yields three possible cases.

1. αk = 1/4: Clearly
∂σ̃2

cf (k)

∂Tτ
= 0 which means σ̃2

cf (k) is constant for every Tτ , which

suggests choosing Tτ = 0. The channel coefficients in this case do not possess enough

correlation to warrant training.
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2. αk < 1/4: Since the derivative is positive, σ̃2
cf (k) is strictly increasing, inferring the

choice of Tτ = 0. This is justified by noting that when αk is decreased, the channel

coefficients becomes less correlated and hence deviate substantially from a training

estimate.

3. αk > 1/4: Through similar reasoning as Case 2, σ̃2
cf (k) is strictly decreasing which

justifies making Tτ as large as possible. When the channel coefficients are highly

correlated, they are less susceptible to variation, making it beneficial to spend sufficient

time learning the channel

Looking at (5.17), it is clear that increasing Nr or Nt would result in decreasing the rate of

change of the MSE, whereas increasing ρτ will have the opposite effect.

To illustrate these results with a simple example (5.16) and (5.17) have been plotted

respectively in Figures 5.3 and 5.4 for various values of ρτ , αk, and Nt under the assumption

of iid Rayleigh fading. The graphs validate the optimal training values for the different

values of αk and also exemplify how the rate of change of the MSE varies with ρτ , Nt, and

Nr. We now summarize these results into the following proposition.

Proposition 5.1. Given a MIMO continuously varying channel with parameters

(αk, ρτ , Nr, Nt, Tτ) the optimal time to spend training is

1. Tτ = 0 when αk ≤ 1/4.

2. Tτ = D when αk > 1/4.

Furthermore, larger Nt and Nr reduce the rate of change of the MSE, whereas a larger ρτ

accelerates the rate of change.
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5.5. SPECIAL CASES

In this section special cases of our new result for the channel estimation error of

a continuously varying MIMO channel are presented which yield previous forms in the

literature. These are followed by the uncorrelated block fading and Rayleigh time varying

cases.

5.5.1. Rayleigh Block Fading. Let αk = 1 for all k and RHτ Hτ = NrINt . Then

(5.16) reduces to

σ̃2
cf (k) =

1

1 + ρτ Tτ

Nt

, k = Tτ + 1, . . . , T

which is precisely (5.4).

5.5.2. Arbitrary Block Fading. Suppose αk = 1 for all k. Then (5.16) becomes

σ̃2
cf (k) =

1
ρτ Tτ

Nt
+ Nr

Nt
trace(R−1

Hτ Hτ
)

, k = Tτ + 1, . . . , T

which is exactly (5.5).

5.5.3. Uncorrelated Block Fading. Let αk = 0 for all k. Then (5.16) can be

written as

σ̃2
cf (k) = 2− 1

ρτ Tτ

Nt
+ Nr

Nt
trace(R−1

Hτ Hτ
)

, k = Tτ + 1, . . . , T . (5.18)

We now seek the Hτ that minimizes (5.18). It can be shown [51] that

trace(R−1
Hτ Hτ

) ≥
∑

i

1

[RHτ Hτ ]ii
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with equality if and only if RHτ Hτ is diagonal. We now seek to find the optimal diagonal

matrix that satisfies

arg min
RHτ Hτ

trace(R−1
Hτ Hτ

)

such that

E||H(τ)||F = NrNt .

Differentiating with respect to RHτ Hτ , setting the result equal to zero and applying the

constraint we obtain

RHτ Hτ = NrINt

which shows that the MSE is minimized under time-uncorrelated block fading when the

channel coefficients are uncorrelated. The MSE is

σ̃2
cf (k) =

2

1 + Nt

ρτ Tτ

+
1

ρτ Tτ

Nt
+ 1

, k = Tτ + 1, . . . , T. (5.19)

5.5.4. Rayleigh Time Varying. Letting RHτ Hτ = NrINt , the channel estimation

error can be written as

σ̃cf
2(k) =

2(1−√αk)

1 + Nt

ρτ Tτ

+
1

ρτ Tτ

Nt
+ 1

.

The MSE is expressed as the sum of two terms, the first is the error due to the time

varying nature of the channel and the second is the Rayleigh block fading MSE previously

mentioned. Unlike the block fading term, an increase in ρτ or Tτ adversely affects the time

varying term, necessitating a tradeoff between the two components. Note that when αk = 0

this simplifies to (5.19) which happens to be the worst case scenario for this case. This is

not surprising since highly correlated channel coefficients will fluctuate less and thus remain

close to their estimate. A concrete example is now presented to illustrate this behavior.
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Figure 5.5 Mean squared error comparison for the Rayleigh block fading case and the
Rayleigh time varying case as a function of symbol period for various Tτ when
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Assume that the temporal variation in the channel obeys Jake’s model resulting in [3]

αk = Jo(2πkfdTs)
2

where fd is the maximum doppler frequency and Jo(·) is the zero order bessel function of

the first kind. When fd is not accurately tracked, frequency dispersion can corrupt the

spectrum of the transmitted signal. The coherence time is the time domain dual for doppler

frequency and is interpreted to be the maximum time a signal can pass undistorted (due to

frequency dispersion) through the channel. A common expression for the coherence time is

[5]

Tc =
.423

fd

.

Therefore choosing a normalized frequency that satisfies

fdTs ¿ .423 (5.20)

will result in a static channel (with respect to doppler shift) throughout a symbol period.

The MSE will now be investigated for different values of fdTs.

Let fdTs = .0002 and Nr = Nr = 3. Looking at Figure 5.5 one can see that the

continuously fading MSE does not deviate substantially from the block fading case for 100

symbol periods. This reinforces the constraint on the normalized frequency in (5.20) which

prevents αk from impacting the time varying component of the MSE.

Suppose now that fdTs = .2. The results in Figure 5.6 indicate that the continuously

fading MSE varies drastically from the block fading case. The normalized frequency no

longer satisfies (5.20), thereby causing αk to fluctuate and negatively impact the MSE dur-

ing the payload.
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5.6. CONCLUSION

Previous expressions for the channel estimation error did not take into account an

arbitrary channel that varies temporally during the payload. The main topic of this work

accomplished that task. Optimal values for the training time were found and it was shown

how different values for the received SNR and the number of antennas affected the rate of

change of the channel estimation error. Special cases of this new expression were shown to

yield previous results in the literature. For Rayleigh flat fading it was shown that varying

the normalized frequency impacted the accuracy of the channel estimate and hence the

channel estimation error.
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6. SINGLE BOUNCE AIR TO GROUND CHANNEL CAPACITY FOR
MIMO SYSTEMS

6.1. INTRODUCTION

Since the inception of multiple-input multiple-output (MIMO) antennas for digital

communications, dramatic increases in capacity have been have been reported [1, 48]. The

main topic of this work is to investigate how the capacity of an air to ground aeronautical

communication link is affected by various physical parameters.

This paper is organized as follows. In the first section, the continuous time channel

model is defined. Next, the discretized channel model is presented. An analysis is then pre-

sented that describes mathematically how the capacity will be affected by varying numerous

parameters. This is followed by our concluding remarks.

6.2. CHANNEL MODEL

An aircraft flying with velocity v(t) at an altitude of htx toward a base station is

displayed in Figure 6.1. The aircraft and base station are separated by a distance dhor. Let

the baseband channel impulse response for a single reflection be represented by

hb(t) = e−j2πfcτ1(t)δ(τ − τ1(t)) + Γe−j2πfcτ2(t)δ(τ − τ2(t)) (6.1)

where fc is the carrier frequency and τi(t) is the delay of the ith incoming wave. Noting that

the wavelength λ = c
fc

where c is the speed of light we have

hb(t) = e
−j2πd(t)

λ δ
(
τ − d(t)

c

)
+ Γe

−j2πd̂(t)
λ δ

(
τ − d̂(t)

c

)
(6.2)
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Figure 6.1 Scenario of an aircraft flying toward the base station.

where

d(t) =
√

(htx − hrx)2 + (dhor(t))2 (6.3)

=
√

(htx − hrx)2 + (xo − v(t)t)2 (6.4)

d̂(t) =
√

(htx + hrx)2 + (xo − v(t)t)2 (6.5)

are respectively the LOS and reflected distances while xo is the initial horizontal displace-

ment.

The presence of velocity in (6.9) and (6.10) suggests the possibility of channel distortion

due to doppler shift if the carrier frequency and aircraft velocity are not sufficiently tracked.

The two paths are assumed to be unresolvable at the receiver if (Appendix A)

|τ1(t)− τ2(t)| ¿ B−1 (6.6)

or equivalently

∣∣∣∣∣

√
(htx − hrx)2 + (v(t)t)2 −

√
(htx + hrx)2 + (v(t)t)2

c

∣∣∣∣∣ ¿ B−1 (6.7)
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To find what signal bandwidths satisfy this constraint, we present a concrete example. A

Lockheed Martin/Boeing F-22 Raptor is traveling at its supercruise velocity of Mach 1.82

(1,220 mph, 542.2 m/s) at an altitude of 50,000 ft (15,240 m). The aircraft is initially

10,000 m from the base station whose antenna height is 100 ft (30.48 m). The two path

delays are plotted in Figure 6.2 along with their difference in absolute value in Figure 6.3.

The dip in Figure 6.2 occurs when the aircraft is directly over the base station. Observing

Figure 6.3, the signal bandwidth can be in the MHz range and still satisfy (6.7). It should

be noted that the narrow-band assumption for a two ray model has also been employed in

[52, 53, 54, 55].

For simulation purposes, the wireless channel must be digitized. To simplify the no-

tation, the subscript in (6.1) will be dropped and the base-band assumption will be used

throughout the remainder of the paper. Using (A.10) for Np = 2, b1(k) = 1, b2(k) = Γ, the

channel at discrete time kTs is

h(k) = e−j2πfcτ1(k) + Γe−j2πfcτ2(k)

h(k) = e
−j2πd(k)

λ + Γe
−j2πd̂(k)

λ (6.8)

where

d(k) =
√

(htx − hrx)2 + (xo − v(k)kTs)2 (6.9)

d̂(k) =
√

(htx + hrx)2 + (xo − v(k)kTs)2 (6.10)

and Ts is the sampling period. For MIMO systems, we extend (6.8) to account for multiple

antenna elements at the transmitter and receiver and express the channel coefficient between

the mth receiver and nth transmitter as

hmn(k) = e
−j2πdmn(k)

λ + Γe
−j2πd̂mn(k)

λ . (6.11)
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Thus the channel matrix can be expressed at the kth sample as

H(k) =




h11(k) . . . h1Nt(k)

...
. . .

...

hNr1(k) . . . hNrNt(k)




(6.12)

where Nt and Nr are respectively the number of transmit and receive antennas. For the

remainder of this paper the dependence on k will be suppressed.

6.3. CAPACITY

The performance measure chosen in this work to compare the different scenarios is

the ergodic capacity. For our discussion, we will look at the following scenarios which are

illustrated in Figure 6.4:

1. one transmitter and one receiver antenna

2. two horizontally spaced transmitter antennas and two vertically spaced receiver an-

tennas

3. four rectangular spaced transmitter antennas and four rectangular receiver antennas

For the first case, the capacity is

Csiso = log2(1 + ρ|h|2) (6.13)

where ρ is the SNR. For the remaining geometries, the MIMO capacity is

Cmimo = log2 det

(
I +

ρ

Nt

HHH

)
. (6.14)

We are now ready to state the following theorem.
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Figure 6.4 Three different antenna scenarios.(Top) One antenna at the transmitter and
receiver. (Middle) Two horizontally spaced antennas at the transmitter and
two vertically spaced antennas at the receiver. (Bottom) Four rectangularly
spaced antennas at the transmitter and four rectangularly spaced antennas at
the receiver.

Theorem 6.1. If −1 < Γ < 1 then the capacity is always greater than zero.

Proof. Expanding (6.11) into real and imaginary parts, the channel coefficient between the

mth receiver and nth transmitter is

hmn =

(
cos

(
2πdmn

λ

)
+ Γ cos

(
2πd̂mn

λ

))
− j

(
sin

(
2πdmn

λ

)
+ Γ sin

(
2πd̂mn

λ

))
. (6.15)

Clearly, for Cmimo to equal zero

cos

(
2πdmn

λ

)
= −Γ cos

(
2πd̂mn

λ

)
(6.16)

sin

(
2πdmn

λ

)
= −Γ sin

(
2πd̂mn

λ

)
(6.17)
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for all m and n. Observing (6.16) and (6.17), the following condition must be satisfied

cos

(
2πdmn

λ

)

cos

(
2πd̂mn

λ

) =

sin

(
2πdmn

λ

)

sin

(
2πd̂mn

λ

) (6.18)

(6.19)

or equivalently

sin

(
2π

λ

(
d̂mn − dmn

))
= 0 (6.20)

where the appropriate trigonometric identity has been used. There are only two solutions

modulo 2π for (6.20),which are 2π
λ

(d̂mn − dmn) = 0, π. For the first case we easily find that

Γ = −1. For the second case

cos

(
2π
λ

dmn + π

)

cos

(
2π
λ

dmn

) = −Γ (6.21)

(6.22)

which implies Γ = 1.

An alternate expression for the capacity of a MIMO channel can be written as

Cmimo = log2

M∏
i=1

(1 +
ρ

Nt

σ2
i ) (6.23)

=
M∑
i=1

log2(1 +
ρ

Nt

σi
2) (6.24)
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where M = rank(H) and σ2
i is the ith singular value of H satisfying 0 ≤ σi−1 ≤ σi ≤ σi+1 ≤

σM . Thus, increasing the number of high strength eigen-channels will have a positive effect

on the ergodic capacity.

6.4. SPATIAL VARIATION

For MIMO systems, the separation between antennas can play a significant role in

performance. Suppose we have a 4x4 MIMO system with rectangular spacing at both the

transmitter and receiver, as illustrated in Figure 6.4. To separate the effect on performance

due to spatial variation and frequency dispersion, it is assumed in this subsection that the

doppler frequency is perfectly estimated and removed at the receiver. Let the antennas be

uniformly spaced and separated by dsep. The LOS and reflected distances for two of the

sub-channels are

d11 =
√

(xrx − xtx)2 + (hrx − htx − dsep)2 (6.25)

d̂11 =
√

(xrx − xtx)2 + (hrx + htx + dsep)
2

(6.26)

d12 =
√

(xrx − xtx − dsep)2 + (hrx − htx − dsep)2 (6.27)

d̂12 =
√

(xrx − xtx − dsep)2 + (hrx + htx + dsep)
2

. (6.28)

Note that increasing the separation between antennas causes a larger discrepancy between

the LOS and reflected distances. This discrepancy will prevent the phases in (6.11) from

matching and consequently cancel the transmitted signal. Thus it is expected that increasing

the antenna separation will have a positive effect on the ergodic capacity. This performance

gain is compromised at high altitudes and/or large horizontal displacements since htx and

dhor will dominate (6.25)-(6.28) and thereby weaken the ability to differentiate between the
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reflected and LOS distances.

6.5. DOPPLER EFFECT

For certain applications accurate tracking of the doppler frequency may not be possible.

The approach taken here is to lump the channel estimation error into an effective SNR. The

capacity is then lower bounded as [56]

Cmimo ≥ log2 det

(
I +

ρeff

Nt

HHH

)
(6.29)

where the effective SNR is

ρeff =
ρ(1− β) + ρβαk

1 + αkNr

Tτ
+ (1− αk)ρβ

. (6.30)

The parameter 0 < β < 1 determines the line of site strength (0 is pure LOS), αk =

Jo(2πfdkTs) is the zeroth order bessel function of the first kind, fd = v
λ

is the maximum

doppler frequency, and Tτ is the number of training symbols. Observing (6.30), as the

channel becomes uncorrelated (αk → 0) the effective SNR, and consequently the capacity,

decrease.

6.6. NUMERICAL RESULTS

To verify the results in the preceding two subsections, we present some numerical

examples. For all simulations the carrier frequency is 1 GHz, the base station is at a height

of 30.48 m (100 ft), the initial horizontal difference is 10000 m (30000 ft), the SNR was

10 dB, and the number of samples taken are 20000. We decided to use the three different

antenna geometries illustrated in Figure 6.4.

The first set of experiments consisted of varying the altitude of the aircraft as well as

the antenna separation (in terms of the wavelength λ) for Γ = 1. This value for the
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Figure 6.5 Effect on capacity due to different antenna separations for a 1x1 scenario with
aircraft flying at an altitude of 304.8 m (1000 ft).
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Figure 6.6 Effect on capacity due to different antenna separations for a 1x1 scenario with
aircraft flying at an altitude 12,192 m (40000 ft).
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Figure 6.7 Effect on capacity due to different antenna separations for a 2x2 scenario with
aircraft flying at an altitude of 304.8 m (1000 ft)
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Figure 6.8 Effect on capacity due to different antenna separations for a 2x2 scenario with
aircraft flying at an altitude of 12,192 m (40000 ft).



100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

Horizontal distance (m)

C
ap

ac
ity

(b
/s

/H
z)

 

 .5 λ

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

Horizontal distance (m)

C
ap

ac
ity

(b
/s

/H
z)

 

 
5 λ

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

Horizontal distance (m)

C
ap

ac
ity

(b
/s

/H
z)

 

 
10 λ

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

Horizontal distance (m)

C
ap

ac
ity

(b
/s

/H
z)

 

 
30 λ

Figure 6.9 Effect on capacity due to different antenna separations for a 4x4 scenario with
aircraft flying at an altitude of 304.8 m (1000 ft)
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Figure 6.10 Effect on capacity due to different antenna separations for a 4x4 scenario with
aircraft flying at an altitude of 12,192 m (40000 ft).
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reflection coefficient is chosen to provide a worst case scenario for null occurence. These

results are reported in Figures 6.5-6.9. It is clear that increasing the antenna separation

is beneficial to the performance which supports our previous observation. Note also that

increasing the number of antennas decreases the number of nulls. This is not surprising,

since more antennas create additional paths for the transmitted signals to reach the receiver.

To further illustrate this the singular values of the 4x4 case are plotted in Figures 6.11 and

6.12. As the antenna spacing is increased, more significant non-zero singular values become

apparent. When the aircraft is flying at higher altitudes and/or is far away from the base

station, a change in antenna spacing has virtually no impact on obtaining more significant

non-zero singular values. This verifies our discussion in the previous subsections.

In the next simulation, the reflection coefficient as well as the altitude are varied while

keeping the antenna spacing at 5λ to see how the performance is affected. We observe in

Figures 6.13-6.16 that for 0 < Γ < 1 the capacity never goes to zero. This justifies Lemma

6.1 in the previous section. We see in Figure 6.8 that a decrease in absolute value in Γ

corresponds to a smaller capacity variation around the Γ = 0 scenario. When observing

Figures 6.15 and 6.16, there are distances where the variation in capacity never goes below

the Γ = 0 line. Moreover, the capacity varies the same for both attenuation factors and

is actually better for higher absolute values of Γ. This can be explained by recalling that

multiple antennas at the transmitter and receiver provide more paths for the transmitted

signals to reach the receiver. Since the spacing is 5λ, the performance benefits due to antenna

spacing illustrated in the previous section apply here as well. This added robustness to null

occurrence will allow better performance for higher values of Γ. Unlike SISO systems, MIMO

systems having “destructive” interference can be desirable for performance.

In the final simulation both velocity and altitude were varied and (6.29) and (6.30)

were used to evaluate the performance. The channel was estimated using pilot symbols for

Tτ = 10. Observing Figure 6.17 and 6.18, at low altitude the performance is greatly affected

by a change in velocity opposed to a higher altitude. This is due to the presence of
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Figure 6.11 Singular values for a 4x4 scenario with an aircraft flying at altitude of 304.8 m
(1000 ft).
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Figure 6.12 Singular values for a 4x4 scenario with aircraft flying at 12,192 m (40000 ft).
For both scenarios, the antenna separation is (from top to bottom) .5λ, 5λ,
10λ, and 30λ.
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Figure 6.13 Effect on capacity for different reflection coefficients for a 1x1 scenario with
aircraft flying at an altitude of 304.8 m (1000 ft)
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Figure 6.14 Effect on capacity for different reflection coefficients for a 1x1 scenario with
aircraft flying at an altitude of 12,192 m (40000 ft).
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Figure 6.15 Effect on capacity for different reflection coefficients for a 4x4 scenario with
aircraft flying at an altitude of 304.8 m (1000 ft)
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Figure 6.16 Effect on capacity for different reflection coefficients for a 4x4 scenario with
aircraft flying at an altitude of 12,192 m (40000 ft).
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more resolvable paths and hence more non-zero singular values (Figure 6.12) which follows

from the previous discussion on altitude and horizontal displacement. This corresponds to a

larger value of β. This places more emphasis on the second term in the numerator in (6.30)

as well as the third term in the denominator. Clearly αt will have a significant impact on

the capacity: the faster the velocity, the faster the bessel function will go to zero which will

result in ρeff going to zero. When the aircraft is flying at a higher altitude, we have shown

that the channel paths become unresolvable which yields a smaller value for β. Since ρβ

becomes negligible and Nr/Tτ < 1, it is clear that ρeff is less sensitive to a doppler shift.

Hence, the capacity is severely attenuated due to a doppler shift at low altitudes, but only

slightly affected at high altitudes.

6.7. CONCLUSION

A channel model that takes into consideration the altitude, antenna separation, and

doppler shift was obtained. An aircraft flying at low altitudes and small horizontal displace-

ment was found to have more desirable performance when the doppler shift is accurately

tracked. When the number of antennas and their separation were increased, the capacity

had a significant decrease in null occurrence and was less sensitive to a change in the reflec-

tion coefficient. In fact it was shown that for MIMO systems a higher value for the reflection

coefficient was beneficial to the performance.

An expression for the capacity in terms of a effective SNR was used to account for the

error in channel estimation due to a doppler shift. From this we were able to conclude that

the velocity of an aircraft affected the performance more significantly at lower altitudes.
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Figure 6.17 Effect on capacity, doppler shift, and effective SNR for an aircraft flying at
various velocities at an altitude of 304.8 m (1000 ft)
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Figure 6.18 Effect on capacity, doppler shift, and effective SNR for an aircraft flying at
various velocities at an altitude of 12,192 m (40000 ft).
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APPENDIX
A LOW PASS DISCRETE TIME MIMO MODEL

In this section a low pass discrete time channel model is derived for both SISO and

MIMO systems.

SISO Systems. Recall that the output for a SISO noise free wireless baseband system can

be represented by

yb(t) =

Np∑
i=1

ai(t)e
−j2πfcτi(t)xb(t− τi(t)) (A.1)

where Np is the number of delay paths, ai(t) is a real number describing the channel gain,

fc is the carrier frequency, τi(t) is the ith path delay, and xb(t) is the baseband transmitted

signal. Assuming that xb(t) is band-limited to B Hz, application of the sinc interpolation

theorem yields [57]

xb(t) =
B

fs

∞∑
n=−∞

xb(nTs)sinc(B(t− nTs)) (A.2)

where Ts is the sampling rate of the signal. For simplicity let Ts = 1
B

. Substituting (A.2)

into (A.1) we obtain

yb(t) =
∞∑

n=−∞
xb(nTs)

Np∑
i=1

ai(t)e
−j2πfcτi(t)sinc(B(t− τi(t))− n)) (A.3)

If we now sample yb(t) at integer of multiples of Ts the discrete time baseband output is

yb(kTs) =
∞∑

n=−∞
xb(nTs)

Np∑
i=1

ai(kTs)e
−j2πfcτi(kTs)sinc(k − n−Bτi(kTs)))) (A.4)
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Letting m = k − n and defining y(k) , yb(kTs), x(n) , xb(bTs), bi(k) , ai(kTs), and

τi(k) , τi(kTs)
7 we may write

y(k) =
∞∑

m=−∞
x(k −m)h(k, m) (A.5)

where

h(k,m) ,
Np∑
i=1

bi(k)e−j2πfcτi(k)sinc(m−Bτi(k)) (A.6)

Looking at (A.6) the channel paths are resolved into temporal components of length m
B

.

Since τi(k) > 0, we must have m ≥ 0. If στ is the root mean squared (RMS) delay spread

[53], the number of resolvable multi-path components M must satisfy

M

B
≈ στ (A.7)

which yields

M ≈ bBστc (A.8)

Therefore (A.6) can be written as

y(k) =
M−1∑
m=0

x(k −m)h(k,m) (A.9)

Flat Fading. Suppose that all path delays are in the interval
[

m
B
− 1

2B
, m

B
+ 1

2B

]
. Then

it follows directly that

h(k) ≈
Np∑
i=1

bi(k)e−j2πfcτi(k). (A.10)

The channel has been reduced to a complex gain and only affects the current symbol.

7This is a convenient slight abuse of notation.
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MIMO Systems. Utilizing (A.9), the input-output relationship for a discrete time

noise free MIMO system with Nt transmit and Nr receive antennas is described by

y(k) =
M−1∑
m=0

H(k, m)x(k −m) (A.11)

where the sub-channel corresponding to transmit antenna i and receiver antenna j is

hij(k, m) ,
Np∑
i=1

bi(k)e−j2πfcτi(k)sinc(m−Bτi(k)) (A.12)
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