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ABSTRACT 

This research is concerned with the optimum and suboptimum 

ways of providing self bit synchronization for binary overlapping 

signals. 

A maximum likelihood synchronizer is derived as the optimum 

approach. The suboptimum ways are those employing decision

directed feedback and matched derivative filter techniques which 

are proposed for treating the overlapping signals. Combining the 

two suboptimum techniques along with the bandlimited version of 

the overlapping signal, a suboptimum synchronizer is derived. 

The performance of the above synchronizer is evaluated by Monte 

Carlo simulation techniques. 

Finally, a bit synchronizer using nonlinear filtering theory is 

considered. The performance of a nonlinear bit synchronizer is 

discussed. 
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I. INTRODUCTION 

A. Synchronization 

A binary communication system can be described as transmitting 

and receiving a sequence of binary symbols of predetermined duration 

and form from one point of space to a second. In the transmission 

process, the duration and form of the symbols may be altered, some 

symbols may overlap with the others I and further the symbol sequence 

may be perturbed by noise of various kinds. The receiver is designed 

to recover or detect the original binary data upon receiving the 

distorted I noise perturbed signals. 

It is well known that if the epoch and the duration of each symbol 

are known at the receiver and the noise assumed additive and Gaussian, 

an optimum receiver called the matched filter or correlation detector 

achieves the minimum error probability. The matched filter following 

the coherent detector consists of an integrator I a sampler and a reset 

configuration. Bit synchronization timing is required in the matched 

filter to sample and discharge the integrator properly. If the bit 

synchronization timing for the matched filter is inaccurate I then 

sampling may take place too soon or too late, thereby reducing the 

probability of making the correct decision. 
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Basically 1 there are three levels of synchronization. Bit synchron

ization is necessary for the optimum (matched) filter in order to make 

bit by bit decisions. Word synchronization is also needed to sort out 

bits into their appropriate words. Finally 1 frame synchronization is 

required by the data user if one is to distinguish between frames. 

Further discussion about the types of synchronization are given by 

Stiffler 4 and by Golomb 1 et. al. 7 

Two different approach have been derived for obtaining bit 

synchronization in binary communications. In transmitted reference (TR) 

systems 1 a separate synchronizing signal is transmitted through a 

separate channel solely for the purpose of achieving synchronization. 

The immediate disadvantage of this approach is that the transmitted 

power must be shared by the synchronizing signal and the data signals. 

In self synchronized (SS) systems 1 the receiver consists of a epoch 

estimation portion which provides the necessary timing. The timing is 

extracted directly from the information bearing signals. In this study 1 

only self bit synchronization is investigated. 

B. The Problem 

This research considers the process of self bit synchronization 

as it applies to binary overlapping Non-Return-to-Zero (NRZ) signals. 

For convenience 1 it will be called the binary overlapping signal in the 

sequel. The difference between overlapping signals and ordinary NRZ 
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signals is that the former 1 through channel-induced distortion 1 have 

had their symbol waveforms stretched out so that each symbol may 

overlap with symbols in the preceding and following intervals. The 

resulting signal is therefore no longer anti -correlated. A formal 

description of such signals will be presented in Chapter III. 

Considerable research concerning self bit synchronization exists 

in the literature. In Chapter IC a brief review of those self bit 

synchronization techniques which are related to the development of 

this study is presented. 

In Chapter III 1 a maximum likelihood synchronizer for binary 

overlapping signals is derived. The synchronizer structure consists 

of matched filters 1 a transition detector 1 and an accumulator. The 

form of the optimum synchronizer does not however 1 lead itself to a 

simple implementation. A more practical approach called decision

directed feedback is proposed in Chapter IV. The basic idea of this 

.approach is to detect a particular symbol by properly subtracting the 

overlapping head from the preceding symbol and the overlapping tail 

from the following symbol. The result is the Decision-Directed (DD) 

detector. The performance of this detector is discussed. 

In Chapter V, synchronization using the matched derivative filter 

(MDF) and the transition detector (TD) is proposed particularly to deal 

with overlapping signals. The resulting synchronizer is called the 

Absolute-Value Bit Synchronizer (AVBS). The performance is evaluated 
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by Monte Carlo simulation techniques. 

In Chapter VI, we use the techniques developed in Chapter IV 

and Chapter V with bandlimited overlapping signals to obtain a sub

optimum synchronizer. The basic idea of this approach is to find the 

estimate of the phase by subtracting the DD detector output from the 

bandlimited signal output. The result is then multiplied by the 

derivative of the signal. For comparison, the same technique is 

applied to PCM/ split-phase signals. 

Another approach to bit synchronization problems employs non

linear filtering theory. The general nonlinear filtering approach is to 

find the optimum estimate of the bit sequence by solving the stochastic 

differential equation for the conditional probability density function. 

The advantage of this approach is that it can be used to treat more 

general communication problems for various shapes of symbol wave

forms. A bit synchronizer structure using this approach is considered 

in Chapter VII. 
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II. LITERATURE REVIEW 

A. Self Synchronization systems 

Basically, the problem can be separated into two parts, the 

epoch estimation portion and the bit detection portion. Various 

types of signals and approaches are proposed. Probability of bit 

error versus signal-to-noise ratio for different systems are used as 

measures of system performance. 

Wintz and Hancock 1 considered the problem of determining the 

performance of an epoch-correlation detector system for an M-ary 

alphabet. The phase of the carrier is ass11med known and no specific 

form is given for the epoch estimator. Probability of detection error is 

computed for binary signaling with a prescribed autocorrelation function. 

Van Horn2 presents a correlation strategy for self bit synchroniza

tion which uses a bank of correlators similar to the detection scheme 

used in some radar systems. No claims are made about the optimality 

of this system or about its practicality. 

Stiffler3 , 4 proposed a maximum likelihood procedure for estimation 

of synchronization position which requires the knowledge of the infinite 

past or at least enough of the past so that truncation errors are 

negligible. 
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Wintz and Luecke5 1 6 proposed a maximum likelihood (ML) 

synchronizer for anti-correlated signals. The ML synchronizer 

structure involves evaluating the log-hyperbolic cosine of the corre-

lation function for each time interval. For easier implementation 1 

a suboptimum system is considered. This system composed of a 

cascade of a lowpass filter 1 a square-law nonlinearity and a bandpass 

filter centered at the symbol rate. Monte Carlo simulations of the 

optimum synchronizer and of the analytical and experimental performance 

of the suboptimum systems are presented. 

The problem is closely related to the problem of obtaining the 

required reference signal for coherent detection of PSK signals. 

7 
Van Trees proposed a synchronizer which consists of transmitted 

reference carrier and a squaring loop for the self generation of a 

reference signal. He showed that optimum performance occured when 

the carrier power was decreased to zero and only the self synchronizer 

was used. Lindsey8 has evaluated the error probability for such a 

system with the assumption that the necessary bit timing was available 

for the correlation detector. 

Simon9 11 0 developed the steady-state phase-noise performance of 

an absolute value type of early-late-gate bit synchronizer with the use 

of the Fokker-Planck method. The results show that this system is 

better than two other commonly used synchronizers. 

Proakis, et. al. 11 investigates the effect of using baud Decision 

to Direct the phase Measurement process (DDM) in order to obtain 
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a less noisy measurement which in turn acts on the decisions. By 

Monte Carlo simulation on orthogonal and on anti-correlated signals, 

the results show the DDM approach yields a lower probability of error 

than that of the non-DDM method, at all signal-to-noise ratios. 

Oberst and Schilling12 ,1 3 derived upper and lower bounds on the 

probability of error for self-synchronized binary PSK systems. In 

addition to Decision Feedback (DF) and Phase Doubling (PD) systems, 

a new maximum likelihood {ML) system is derived and studied. Simula

tion results show that ML-PSK is the best and PD-PSK is the worst in 

comparing the probability of error in each case. 

For a PCM/NRZ signal, unlimited in bandwidth and in the presence 

of white Gaussian noise, the "integrate-and-dump" circuit is equivalent 

to the matched filter14 and is an optimum detector, which is defined as 

the detector that achieves the lowest probability of bit error PE for a 

given signal-to-noise ratio (SNR). In general, however, restrictions in 

bandwidth for various reasons degrade the performance of the matched 

filter or correlation detector because of intersymbol interference. The 

influence of bandwidth restriction on performance of a PCM/NRZ signal 

is considered by Martinides and Reijns 15 • The detector used in the 

investigation contains a device that integrates the signal over the bit 

period. The theoretical results were obtained by a Fourier analysis of 

the bandwidth restricted signals and by an autocorrelation analysis of 

the bandwidth restricted noise. It is shown that the theoretical and 

experiment results are in good agreement. 
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Park16 considered the PCM/NRZ systems operating in the band

limited channel with two types of bit detector, integrate-and -dump 1 

and bandlimit-and-sample. The results show that the integrate-and

dump is superior to the bandlimit-and-sample method. For a nearly 

optimum performance 1 the band limiting should not exceed about 0. 7 

of the bit rate. 

Shehadeh and Tu17 1 18 indicated that there is a fundamental error 

in Park's approach and the optimum receiving bandwidth should be set 

0. 9 of the bit rate of the transmitted NRZ signals in order to eliminate 

the effect of intersymbol interference due to bandwidth restriction. 

Further 1 Shehadeh and Tu19 investigate the PCM/ split-phase signals 

using an integrate-and-dump filter. The results, compared with those 

obtained for PCM/NRZ signals 1 indicate that the former signals require 

about twice as much bandwidth to have the same P E under same value 

of SNR. 

B. Nonlinear Filtering Theory 

When random disturbances occur and only noise corrupted measure

ments are available 1 it is well known that all the information provided 

by such measurements about the condition or "state" of a system is 

contained in the probability density function of the state conditioned on 

the entire history of the measurement. This density function thus 

becomes a prime object for study. Many authors have considered 
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the problem of deriving a stochastic differential equation for finding the 

density function when the system disturbances and the measurement 

noise are both jointly Gaussian and white. This was first done in 19 60 

35 34 36 
by Stratonovich and later by Kushner and Bucy and many others. 

Kushner34 presented an expression for the probability density of 

the state conditioned upon the observation as well as the initial data in 

the continuous case. He then derived a partial differential equation 

satisfied by this conditional density function. This equation is of great 

usefulness in dealing with many communications and control problems. 

Bucy36 approaches the problem more rigorously than do Stratonovich 

and Kushner, but his approach is restricted to Gaussian distributions 

and the measurement noise which are statistically independent of each 

other. 

Wonham 40 has used the theory of stochastic differential equations 

24 
and a representation theorem from Doob to obtain a stochastic 

differential equation for the conditional probability function when the 

system state is a scalar generalized Poisson process with a known 

transition probability. His measurement vector is linear in the state 

variable and contains additive white noise. 

Fisher and Stear 41 presented a new approach to the formation of 

the multidimensional optimal nonlinear filtering problem. They unified 

and generalized the results of the previous authors through use of 

characteristic functions and theory of independent increment processes. 
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In Part II of this paper, the Gaussian independent increment noise 

restriction is relaxed and therefore a more general equation for the 

density function is found. 

Since most signal and noise processes appearing in practice 

and in the literature are represented as solutions to stochastic 

differential equations with a white noise forcing function ( the 

questions of uniqueness and existence of solutions to these equations 

have been examined by several authors. A rigorous mathematical 

theory of these equations was given by Ito 38 • Certain seemingly 

undesirable properties of the Ito formulation have caused Stratonovich 35 

to define a symmetric stochastic integral and to derive nonlinear filters 

using this interpretation of the state and observation equation. Although 

the form of the filters appear different depending on which interpretation 

is made of the state equation, Stratonovich showed that both results are 

equivalent under a suitable transformation. 

Lee and Komo43 formed an optimal nonlinear sequential estimator 

for the case of square on-off anti-correlated pulses. The estimator 

structure is a function of jitter dynamics, coding statistics and signal

to-noise ratio. The development of this research in the nonlinear 

filtering approach is closely related to their work. 
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III. MAXIMUM LIKELIHOOD SYNCHRONIZER 

The basic problem in obtaining self synchronization is that 

of finding the epoch of each symbol. In this chapter u the maximum 

likelihood parameter estimation technique for deriving the structure 

of the optimum synchronizer is considered. The signal at the receiver 

is the overlapped version of the PCM/NRZ signal sequences. The 

case where the signal is not overlapped has been investigated by 

Wintz and Luecke 516 
0 

A. Basic Assumptions 

The basic symbol has a duration one time unit (here 1 for 

convenience, one second is assumed in the sequel). It is assumed 

that m seconds are observed at the input of the synchronizer o The 

binary NRZ symbols and the binary overlapping symbols are shown 

in Fig 0 3 o 1 (a) and 3 0 1 (b) 1 respectively 0 It can be seen that the symbols 

at the transition instants are overlapped which causes various problems 

when estimating the epoch of the received symbols. The analytical 

expression for the overlapping symbol is 

s (t) = 
p 

l/2 + t/2o( I 

l, 
1/2 + (1-t)/2cX I 

0, 

It I~ o£. 
ltl~ l-ol. 
11-t I~ c!-. 
otherwise 

(3. l) 

where c/... is defined as the overlapping parameter and is in the range 



I 

s (t) -s (t) 
l I 

t 
0 J. 0 

(a) 

-1 
s (t) p 

-s (t) 
l p 

t 
+ l 

{b) 

Fig. 3 .l (a) Binary NRZ symbols 
(b) Binary overlapping symbols 

s(t-e ,A), A= ( l, -1, 1, 1, -1, ••• ) 

l;~-e ___ _ 
I 

0 

y(t) 

3+8 

Fig. 3. 2(a) Received signal without noise 
(b) Received signal with noise 

12 

t 
l 

l 
t 

t 
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from -O. 5 to +o. 5. The received signal waveforms are indicated by 

Fig. 3. 2(a) for the noiseless case, and by Fig. 3. 2(b) for the noisy 

case. The dotted line in the figure shows the individual overlapping 

symbol and the solid line is the actual received waveform. 

The received signal is perturbed by an additive noise, n(t), which 

is assumed to be a sample function from a Gaussian random process 

with zero mean and known variance. The input to the synchronizer is 

of the following form: 

y(t} = S(t;e ,A) + n(t), O~t<m (3. 2) 

aj = + 1 or -1 with equal probability, and 

e = epoch to be estimated which is assumed uniformly 

distributed between -l/2 and +l/2. 

B. Derivation of Optimum Synchronizer 

In order to find the maximum likelihood (ML) solution, the 

conditional probability function P(Yje) is required. Owing to the 

presence of the random variable A, the following expression is 

consideredo 

P(YI e) = J P(YI e ,A) P (A) ctA 

A 

(3 0 3) 
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We now find the conditional probability density function by using 

the sampling method. That is first take N samples in each interval. 

Then let the samples become dense and obtain an integral form of 

P(Y I e ,A). For each sample i, y(i) = S(i;e ,A) + n{i) I i=l, 2, •.. ,mN., 

where n(i) is Gaussian distributed with zero mean and variance B0 N. 

The conditional joint pdf 1 P(Y e ,A) for mN samples is written as: 

P(Y I e ,A)~ J! ~) exp {-(l/2B0 N) [y(i) - S(i;B ,A)] 
2

} (3. 4) 

When N becomes very large, (3. 4) can be written as an integral as 

follows: 

P(Y I e,A) ~ K1 exp f(l/2B0 ) ~ [ y(t) - S(t; e ,A) J 2 
dt} (3. 5) 

where K1 is a constant. Because of the overlapping situation, the set 

of random variables a. , j==l, 2, ••• , m, are correlated with each 
J 

other. Thus P(Y I e ,A) cannot be expressed as the product of the 

conditional pdf of individual symbols, namely, P (Y I e, a.) , j = l, 2 I ••• I m. 
J 

In order to proceed I we group the signal sequences as follows: 

m-1 

s(t;e ,A) = I 
j=l 

and integrate each interval from (j- 1/2) to {j+ l/2), so that (3. 5) 

can be further simplified as follows: 

(3. 6) 



j+l/2 

J [y(t} - aiSp(t-j;8} 

j-l/2 
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There are six terms to be considered if we expand out the above 

expression. However, three of them/ involving the integration of 

squared terms, are actually constants. Hence their product can be 

combined with K1 to form another constant K2• Since K2 is not a 

function of 8, it will not enter into the maximizing process. We 

simply ignore this quantity for awhile. Note that if 8 is also assumed 

to be stationary, we can write S(t;8) = S(t-8), for -1/2 ~ 8 ~ 1/2. 

Therefore, (3. 7) is reduced to 

P(YI8,A},; lil exp {a.B.(8) + a. C.(8) - a a D} 
. J J J + 1 J j j +l 
J=l 

where B (8) = (l/B ) 
j 0 

c.(8) 
J 

= (l/B0 ) 

j+l/2 

1 y(t) s p (t-8-j) dt 

j-1/2 

j+l/2 

f 
j-1/2 

y(t) s (t-8-j-1) dt 
p 

(3. 8) 

(3. 9) 

(3.10) 
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j+1/2 

= {l/B ) 
0 f s (t-e-j) s (t-e-j-1) dt 

p p 
{ 3. 11) 

j-1/2 

D can be calculated immediately to be o</3 and is not a function of 

eo The calculation of Bj (e) and C /e) proceeds as follows. When 

there is no transition in the interval (j- 1/2, j+ 1/2), 

B.(e) =((a+a )/2B) (1/2) 
J j j+l 0 

(3.12) 

c. (e) = B (e). 
J j 

(3 .13) 

When there is a transition in the interval (j- l/2, j+ l/2), the 

situation is described by Fig. 3. 3 for the case a. = 1, and a. 1 =-1. 
J J+ 

After integration, the values for B. (9) and C. (e) can be found as 
J J 

follows. 
1/2 

B . (e) = ( (a . -a . ) I 2 B ) J y ( t) s ( t-e) d t 
J J J+1 0 

-I/2 

= t. · { 1/2- (2o</3) - (e2/2o() + (e3/I2olh), for e~o 
J (3. 1 4) 

c. (e) = t. · (-1/2 - {2 o(/3) -r (e 2 ;zoe.~ - ( &3 /12~2)), 
J J 

for e~o (3 .15) 

where t. = (a. -a. 1)/2B0 • 
J J J+ 
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For the case e~o 1 it can be found that the values for B. (e) and C. (e) 
J J 

are the same as those indicated by (3.14) and (3.15) but with a 

different sign. Fig. 3.4 shows the case for finding B.(e) and C.{e) 
J J 

when e ~0. In summary, B. (e) and C (8) can be tabulated in Table 
J j 

3. l : 

Table 3.1 B.(8) and C.(8) for various 8's 
J J 

without transition with transition 

8 > o B. (e) (aj+aj+l)/ 480 ((a.-a )/2B ) x 
J J j+l 0 

c. (-e) 
J 

(a.+a.+1)/ 4B 
J J 0 

((aj -aj+l)/2B0 ) (-x) 

e < o B. (8) 
J 

(a.+a.+1)/ 4B 
J J 0 

((aj-aj+l)/280 ) y 

cj (8} (aj+aj+l)/ 4B0 ((a.-a.+1)/2B ) (-y) 
J J 0 

where X = 1/2 - (2 ol/3) - 8 2 /2ol. + 8 3 /lzoi- 2 
I 

y =l/2 - (2ol/3) - e 2/zo( - 8 3 /12()(2 . 

The next problem is to maximize /P(Y I e ,A) P(A) dA to obtain 

the optimum estimate. Owing to the overlapping situation, the 

exponential term in (3. 8) consists of both the symbol a. and the 
J 



y{t) 

s (t-9) 
p 

- t 
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(b) 

(c) 

Fig. 3. 3 On finding Bj (6) and Cj (9) when 9 ~ 0 

y(t) 

sP (t+9) 

s (t+e-1) 
p 

~ _ ___...._....__-r:J..'-"_ ..... e~J/:.--&..-o<.:::.-1-e----------· t (b) 

~~ 
----------~~'-~-£~~~~~~-----~t (c) 

Fig.3.4 On finding B.(e) and c.(9) when e~o 
J J 
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following symbol aj+l" The averaging process is therefore of a 

recursive nature. Further, the random variable a. is equally likely 
J 

to be +1 or -1 so that four different cases should included. For 

convenience, let 

Q(8 ,a. ,a.+l) = exp( a.B.(8) +a. 1c (8) - a1.a1.+1D), 
J J J J J+ j 

(3.16) 

and let 

Q (8, aj=1, aj+l =1) be represented by simply Q(l,l). If we use the 

subscripts 0 and 1 to represent the symbol -1 and +1, respectively, 

the probability of (j+l)th stage can be written as a function of the jth 

stage as follows: 

P(YI8,j+l,l) = P(YI8,j,-l) Q(-1,1) + P(YI8,j,l) Q(l,l) (3.17a) 

P(YI8,j+l,-l) = P(YI8,j,-l) Q(-1,-1) + P(YI8,j,l) Q(l,-1) 

(3.17b) 

Or, if we write the above expressions in matrix form, 

Q(-1,-1) Q (l 1 -1) 

= (3 .18) 
Q(-1,1) Q (1,1) 

The next step is to compute the average of P 0 (j+1) and Pl (j+1) 

by following equation: 
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( 
1 1 ) (Q ( -1. -l) 

= (1/2) 
1 l Q (-1,1) 

To write (3.19) in a matrix form, we have 

P{j+l) = Hj (e) P(j) (3. 20) 

where Hj (e) is a two by two matrix having the following elements; 

hu (e) = -C. e J cosh(D+Bj) 
C· 

+ e J cosh(Bj-D) 

-C· C· 
hlz (e) =- e J sinh(D+Bj} + e J sinh(D-Bj) 

C· -c. (3. 21} 

hzl (e) = e J cosh(D+Bj) e J cosh(D-Bj) 

C· +C· 
hzz<e} = -e J sinh(D+Bj) - e J sinh(D-Bj) 

The associated synchronizer structure is shown in the next section. 

The Monte Carlo simulation program 1 written in FORTRAN language 1 

will be presented in Section 3. D. 

C. The Synchronizer Structure 

The maximum likelihood estimate eML is the value of e that 

maximizes the likelihood function, P(Y!e). Mathematically I the 

ML estimate corresponds to the limiting case of a MAP estimate in 

which a priori knowledge of e approaches zero 1 or the variance of 
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e approaches infinity. In this study I the maximum likelihood 

estimation is regarded as the optimum approach. 

The synchronizer structure by using the analysis of Section B 

consists of matched filters 1 a transition device 1 a weighting function 

and a feedback circuit. It is shown in Fig. 3. 5. The transition 

detector is a device which examines aj and aj+l in the presence of 

noise 1 and records an output t. according to the following rules: 
J 

If a. = a t = (a. + a.+1)/2. 
J j +1 j J J 

(3. 2 2) 

If aj 1- ~+1 I 
t. = (aj - aj+l)/2. 
J 

The weighting function is used to compute the Q-function defined by 

(3 .16) after receiving messages from the matched filters and the 

transition detector. The feedback circuitry is used here to generate 

the conditional probability density function recursively. 

The intepretation of the ML synchronizer proceeds as follows. To 

obtain the maximum value of the density function for a given received 

y{t), y{t) is first correlated with ·the the overlapping symbol S (t) and 
p 

S (t-1} separately in the time interval ( 1/2 I 3/2 ) . At the same time 
p 

y(t) is passed through a transition detector to record output t.. The 
J 

output of the matched filters and the transition detector are then passed 

to a weighting function which computes the four Q -functions. Then 

the conditional probability density function for each stage is calculated 

and stored. This is continued until the mth time interval is processed. 
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At the end of the mth symbol, the output statistics in each stage 

are compared, and the largest statistic is announced as the estimate 

of the correct synchronization position. 



y(t) 

tJt-j) 

/dt 

lspt-j -1) 

-
/dt 

T 0 

LL 

~ 

Fig. 3. 5 ML synchronizer 

~ 
+l -Is L I -

SL : select largest 

DEL : one unit delay 

TD : transition :..1(3tector 

VVF : vveighting function 

N 
w 
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D. Monte Carlo Simulation Program and Results 

In order to find the exact value of the conditional probability 

density function P (YIEB, we again examine (3. 7): 

m-1 i+ l/2 

P(YI6 ,A) 
,._ 

{ -(l/280) I [ y(t) -== II K1 exp a.s (t-i-6) 
1 p 

i=l i- 1/2 

- ai+1Sp(t-1-1-e)J 
2 

dt} 

m-l -- K1 exp {K5 - aiai+1D} . == II + aiBi(6) + ai+lci(6) (3. 23) 

i=l 

where K 
1 =1~ (3. 24) 

K 5 can be written as the sum of three terms: 

(3.25) 

where 

= - (3 - 4 ot.) /6B0 , if there is a transition 
(3. 2 6) 

- (l/2B0 ), if there is no transition 

i+ 1/2 

I 2 
sP (t-6-i) dt 

i- 1/2 



1/2 

K3 (8) = - (1/280) I s 2 (t-8) dt 

-1/2 

~ -(1/ZB0 ) {- d/3 + 1/2 + e} 
1/2 

K4 (8) = -(1/280 ) J s2(t-8-l) dt 

-1/2 

= -(1/ZB0 ) {- d-/3 + 1/2 - e} 
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(3. 27) 

(3. 28) 

At first glance 1 K3 (8) and K4 (8) are functions of 8 so that they 

ought to be included in Section 3. B. However 1 their sum indicates 

that K5 is not a function of 8. That is 

= {- ((l- 2o<)/B0 ) I 

- ((3 -d.)/3B ) I 
0 

if there is a transition 

if there is no transition 
(3. 29) 

The flow chart of the ML synchronizer simulation program is shown 

in Fig. 3. 7. The program is listed in Table 3. 2. The input bit stream 

for the simulation program is generated by a uniform random number 

generator. The description of this subroutine is given in Appendix A. 

The signal-to-noise ratio {SNR) in the program is the power ratio 

indicated by numbers. 8 in the simulation program is the true value. 
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For 40 bits as the input data to the ML synchronizer, the probability 

density function versus different 8 are plotted in Fig. 3. 7, using SNR 

as a parameter. The graphs appear to be nearly Gaussianly distributed 

with center around e- = 0. At high SNR, the curve tends to peak up at 

the origin and to flatten out rapidly as the SNR decreases. 



START 

READ 

ALFA 

COMPUTE 
D I Kl, K3 I 

CTN I CTD 

CALL RAND, 

GENERATE 
BIT(I) 

CALL GAUSS 
GENERATE 

NOISE(I) 

INCREMENT 
THETA 

COMPU 

TE X,Y 

COMPU
TE K2, 

COMPUTE 

PO (2), Pl (2) 

P2(2),P3(2) 

.---
I 
I 
I 
I COMPUTE 
I p 2 (I) I p 3 (I) 
I 
I 
I 
1---

SELECT 

COMPU 
MAX(P2 (I)) 

TE X,Y 

Fig. 3. 6 Flow chart of ML synchronizer simulation program 
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Table 3. 2 ML synchronizer simulation program 

C MLSYNC SIMULATION PROGRAM 

c 

c 

c 

c 

REAL BIT(41) ,8(40) ,C(40) ,K1,K2(40) ,K3,K5(40) 
REAL P0(2) ,P1(2) ,P2(40) ,P3(40) I NOISE(40) ,LARGE 
SNR =So 
IX= 213711 
S = SQRT(l./SNR) 
ALFA = 0.1 
D = ALFA/3. *SNR 
CTN = SQRT(2.*(1.-2o*ALFA) + Z.*ALFA/3.) 
CTD = 2.*(1.-2.*ALFA) + 2.*ALFA/3. 
Kl = SQRT (SNR/{2. * 3 .1416* 40.)) 

DO 1 I=1,41 
CALL RAND (IX I IY I YFL) 

1 BIT(I) = SIGN(1. I YFL-. 5) 

DO 2 I=l,40 
2 NOISE(I) = CTN*GAUSS(S) 

THETA= 0. 0 
23 K3 = (ALFA/3. -. S)*SNR 

IF(THETA • LT. 0. 0) GO TO 13 
X= • 5-ALFA/1. 5-THETA**Z/(2. *ALFA)+THETA**3/(12. * 

l ALFA** 2) 
Y = -x 
GO TO 10 

13 X= • 5-ALFA/1. 5-THETA**2/(2. *ALFA)-THETA**3/(12. * 
2 ALFA**2) 
y =-X 

10 DO 3 J=l,40 
IF(BIT (J) -BIT(J +1)) 4 I 5 I 4 

5 K2(J) = -(1. +NOISE(J)}*. S*SNR 
KS {J} = K2 (J) + K3 
B(J) = ({BIT(J)+BIT(J+l))*. 5*. S+NOISE(J))*SNR 
C(J) = B(J) 
GO TO 3 

4 K2(J) = -((3.-4.*ALFA)/3.+NOISE(J))*.S*SNR 
KS (J) = KZ {J)+K3 

(continued on the next page) 
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c 

c 

c 

c 

4 K2 (J) = - ( (3. -4. * ALFA)/3. +NOISE(J) )*. S*SNR 
K5 (J} = K2 (J)+K3 
B(J) = ((BIT{J}-BIT(J+l))*. 5*X+NOISE(J))*SNR 
C(J) = ({BIT(J}-BIT(J+l))*. S*Y+NOISE(J)}*SNR 

3 CONTINUE 

PO (l) = 0. 5 
P1 (1) = 0. 5 
p 2 (l) = 0. 0 
P3 (1) = 0. 0 

29 

PO (2) = EXP (-C(1))* (PO (1) *EXP (-B{l) -D) +P1 (1) *EXP(B {1) +D))* 
1 EXP(KS (2))*Kl 

P1(2) = EXP( C(1))*(PO(l)*EXP(D-B(1))+Pl(l)*EXP(B(l)-D))* 
2 EXP (KS (2)) *Kl 

P2(2) = 0. S*P0(2)+0. 5*Pl(2) 
P3(2) = 0. 5*P0(2)-0. 5*Pl(2) 

DO 6 I=3 I 40 
J = I-1 
T :::: EXP(-C(J))*COSH(D+B(J))+EXP(C(J))*COSH(B{J)-D) 
U :::: -EXP(-C(J))*SINH(D+B(J))+EXP(C(J))*SINH(D-B (J)) 
V :::: EXP (-C{J)) *COSH(D+B(J))-EXP(C (J))*COSH (D-B {J)) 
W = -EXP(-C(J))*SINH(D+B(J))-EXP(C(J))*SINH(D-B{J)) 
P 3 (I) = (P 2 (J) *V+P 3 (J) *W) * EXP (KS (I)) *K1 
P2 (I) = (P2 (J)*T+P 3 (J)*U)*EXP (KS (I) )*Kl 

6 CONTINUE 
WRITE(3,107) (P2(I), I==1,40) 

107 FORMAT(/ /5X, 'THE PROBABILITY P2 IS'/(10X(5El4. 7))) 

LARGE = P 2 (1) 
J ;:: 1 
DO 15 I===2 I 40 
IF(P2(1) .LE. LARGE) GO TO 15 
LARGE = P 2 (I) 
J =I 

15 CONTINUE 
WRITE(3,ll0) J ,LARGE, THETA 

llO FORMAT(/ /5X, 'N=' ,12 I sx, 'P='Fl6. 7 I 5X, 'THETA='F7. 3) 

IF(THETA . LT. 0. 0) GO TO 14 
THETA= THETA+O. 02 
IF(THETA • LE. ALFA) GO TO 23 

(continued on the next page) 
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c 
THETA= 0. 0 

14 THETA= THETA-0. 0 2 
IF(THETA • GE. -ALFA) GO TO 23 

999 STOP 
END 
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Fig. 3. 7 (a) Results of the 
ML synchronization 
program 
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IV. DECISION-DIRECTED DETECTOR 

A. Introduction 

The optimum synchronizer for the overlapping signals considered 

in Chapter III is difficult to implement without the aid of a special 

purpose digital computer. This chapter presents a practical approach 

called the decision-directed (DD) technique. By Monte Carlo simula

tion on a digital computer 1 the probability of error, PE' versus signal

to-noise ratio (SNR) for the DD detector can be evaluated. 

Basically, two steps are involved in this approach. First, the 

symbol most likely received is determined as a primary decision. 

Then, this decision is used to direct the detection process to obtain 

a better estimate of the symbol which will yield less probability of 

error. For overlapping signals 1 the DD technique can be roughly 

summarized in Fig. 4 .1. The post-bit detector consists of an ordinary 

matched filter and a sampler. The input signals are processed serially, 

one after the other, and the output is the primary detected value, ~P. 

The function of the block "SHAPE" is to maintain a constant level until 

the next sampling instant. The output is then used to subtract the 

overlapping tail resulting from the next bit. With the subtraction of 

the overlapping head from the preceding bit 1 a present-bit detector is 

followed to find the final decision. The overlapping head and tail are 
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illustrated by Fig. 4. 2. 

y 

POST-BIT rV 

roo-
' ap DETECTOR 

SHAPE 

+~A-(t) 
'S 

1 UNIT + PRESENT-BIT 
+ +.I DELAY - DETECTOR 

1 UNIT 
1.- 14- SHAPE ~ 

DELAY 

Fig. 4.1 Decision-directed detector for overlapping signals 
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sP (t-2) 

r- t 
I 

I 
I 

I 

--~~------~-=~-------------------~------------------t 0 

Fig. 4. 2 Received signal and the overlapping symbol 
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Since both detectors in Fig. 4 .l perform the same function, they 

can be placed in the front as a detector. The modified structure for 

the DD detector is shown in Fig. 4. 3. Here the decision devices are 

replaced by two hard limiters. The constants K2 and K3 will be 

introduced in the following section. 

M. F. and 

SAMPLER 

SGN 

DELAY 

Fig. 4. 3 Modified decision-directed detector 

B. Mathematical Derivation 

SGN 

DELAY 

The binary communication system under consideration consists 

of two symbols 1 SP (t) and -SP (t) 1 defined in Chapter III. The received 

signal is m 

y(t) = k~l ak sp (t-k) + n(t) (4 .1) 
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The matched filter has an impulse response 

Thus the output of the matched filter is 

z (t) = y(t) * h(t) 

m 

= ak SP (t-k) * Sp (1-t) + n (t) * SP (1-t) (4. 2) 

k=l 

At the sampling instant t = i, 

m 

z(i) = (4. 3) 

k=l 

Due to the overlapping situation 1 z (i) can be further written as 

(4. 4) 

where K2 and K3 are the areas when dealing with overlap of the ith 

bit with the (i -l)th bit and with the (i +l)th bit I respectively. K1 is 

the area when the ith bit convolves with itself. K4 is the noise 

coefficient to be defined later. These constants are functions of e, 

and are required in the simulation program. The calculation of K1, 

Kz, and K3 proceeds as follows. 
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k+l+o{ 

K2 = f s (t-k) s (t-k+l) dt p p 

k -o< 
l+o( 

= f ( 1/2 + t/ 2 d. ) ( l/2 - t/Zo() dt = d./3. 

-cJ.. 
(4. 5) 

l+o{ 

K = f s 2 (t) dt = ol/3 + (l - 2 oO + d./3 
1 p 

-d 

= l - 2d/3, and (4. 6) 

(4. 7) 

To find K , we consider the root mean square of the correlator 
4 

output when the signal is correlated with noise. That is 

1+ o( 

E { [ J s p (t) n (t) dt r} 
-c). 

l+o( 

= J J SP(t1) s (t 2) E {n(t1) n(t 2} dt1 dt2 
p 

-d.. 

l+oi. 

= B I s 2 (t) 
p 

dt = B(l - 2 o(/3) (4. 8) 

-()( 
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Where B is taken as the reciprocal of the input signal-to-noise ratio 

in the simulation program. The noise coefficient K4 is then 

C. Simulation Program 

In general, the desired output is a graph of P versus SNR 
E 

with the overlapping parameter o< as a parameter. In order to 

examine how much improvement can be achieved by the DD technique, 

two error probabilities are tabulated in parallel. That is, for each 

bit, a primary decision by non-decision-directed measurement is 

made. At the end of m bits I the probability of error of the primary 

decision is computed. Then the final decision on each bit using the 

DD measurement is found. P E in this program is approximated by 

the ratio of the total number of erroneous bits to the total number of 

input bits. 

The final detail to be considered is the DD algorithm. First, 

the primary decision stream from the matched filter is called 

ADETP (i), i=l, 2 1 ••• , m. The next step is to combine ADETP (i + 1) 

with the last final estimate, ADET(i-1) 1 to form the present final 

estimate 1 ADET(i). Note that the first final estimate should be set 

to zero in order to start the feedback relationship. 
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A flow chart of the above procedure and the associated variable 

names used in this program are shown in Fig. 4. 4 1 and Table 4.1 1 

respectively. The FORTRAN simulation program is shown in Table 

4. 2. 

D. Results 

In the program shown in the last section, 500 bits are generated 

by the subroutine RAND as the input to the DD detector. The resulting 

error counts are shown in Fig. 4. 5 for various ol.' s. It can be seen 

that when SNR is greater than five, this system will give a better 

performance. When the overlapping parameter o< is large, or the 

overlapping situation becomes worse, the system tends to correct 

more errors • 
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Table 4 .l Variable names used in DD detector simulation program 

SNR 
ALFA 
IX 

RAND 

BIT 
MFSIG 
s 
GAUSS 

ADETP 
ADET 
Pl 
P2 

Signal-to-Noise power Ratio 
the overlapping parameter, ranged from 0. 1 to 0. 5 
starting value of the subroutine RAND I an odd integer 
(213711 is used in this program) 
uniform random number generator subroutine which 
generates random numbers uniformly distributed from 0 
to 1 
random bit stream 1 input data words 
matched filter output sampled at the end of the bit 
variance value of the subroutine GAUSS (S) 
Gaussian random number generator subroutine with S 
as the desirable standard deviation 
primary detected value of the bit stream 
final detected value of the bit stream 
primary probability of bit error 
final probability of bit error 



INITIALIZE 

VARIABLES 

CALL RAND 

GENERATE 

BIT(I) 

CALL GAUSS 

COMPUTE 

MFSIG(I) 

COMPUTE 

ADETP(I) 

I = I + 1 

I=I+1 

no 

SUMP= 
SUMP+ 1 

STOP 

X(I) = MFSIG(I) 

-K3*ADETP(I+l) 

-K2*ADET(I-l) 

I= I - 1 

no 

SUM= 

SUM+ 1 

ADET(I)= 

SIGN(X(I)) 

Fig. 4. 4 Flow chart of DD detector simulation program 

41 



42 

Table 4. 2 DD detector simulation program 

c 

c 

c 

c 

c 

c 

REAL MFSIG(S03) ,Kl 1 K2 1 K3,K4,BIT(S03) 1 ADETP(S03) 1 ADET( 
1 503) 

IX= 213 711 
10 READ(! I 99 I END=999) SNRIALFA 
99 FORMAT(2FS. 2) 

Kl = 1. -2. *ALFA/3. 
K2 = ALFA/3. 
K3 = K2 
K4 = SQRT(l. -ALFA/1. 5) 
S = SQRT(l./SNR) 

BIT(l) == 0. 
DO 1 I== 2,503 
CALL RAND (IX I IY I YFL) 

1 BIT(!) = SIGN(l. I YFL-. 5) 

MFSIG(l) = 0. 
DO 2 !=2,502 

2 MFSIG(I) =KZ*BIT (I -1)+Kl*BIT(I) +K3*BIT(I+1) +K4*GAUSS(S) 

ADETP (1) = 0. 
ADET(l) = 0. 
ADETP(502) =SIGN(!. 1 MFSIG(502)) 
DO 3 1=2 1 502 

3 ADETP(I) = SIGN(l., MFSIG(I)) 

DO 4 I=2 I 501 
4 ADET(I) = SIGN(l., MFSIG(I)-K3*ADETP(I+l)-K2*ADET(I-l)) 

SUMP== 0. 
SUM= 0. 
DO 5 !=2,501 
IF (BIT (I) • EQ. AD ETP (I)) GO TO 6 
SUMP == SUMP+l 

6 IF(BIT(I) • EQ. ADET(I)) GO TO 5 
SUM= SUM+l. 

5 CONTINUE 
Pl == SUMP /500. 
PZ == SUM/500. 
WRITE(3 ,106) SNR,ALFA, Pl, P2 

106 FORMAT(/ /5XI 'SNR='F5. 2 I 5X, 'ALFA='F5. 2 I 5X, 'P1=' FlO. 5 I 
2 5X I I p 2 =IF 10 • 5) 

999 STOP 
END 
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Fig.4. S(a) Results of the DD detector 
simulation program for d. =0. 1 
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P : Probability of error of the primary detection 
1 

P 2 : Probability of error of the final detection 
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Fig. 4. 5 (b) Results of the DD detector 
simulation program for 
o( ==0. 2 

P 1 : Probability of error of the primary detection 

P : Probability of error of the final detection 
2 

3 4 5 6 7 8 9 10 
Signal-to-Noise Power Ratio 
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Fig. 4. 5 (c) Results of the DD detector 
simulation program for cJ.. =0. 3 

P 1 : Probability of error of the primary detection 

P 2 : Probability of error of the final detection 
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Fig. 4. 5 (d) Results of the DD detector 
simulation program for d. :::::Q. 4 

P 1 : Probability of error of the primary detection 

P 2 Probability of error of the final detection 

~ 

3 4 5 10 
Signal-to-Noise Power Ratio 
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E. Analytical Results 

In this section 1 calculation of P E for the DD detector is 

considered. The block diagram of a DD detector is redrawn in Fig. 

4.6. 

I t-----. a. 
1 

t = i 

y(t) 
M .F. I a-. ~------...----- 1 

Fig. 4. 6. Block diagram of the DD detector 

The output of the matched filter and sampler is 

where K1 = 1 - (2/3)o{ 

= K = (l/3)o( 1 and 
3 

~J l - (Z/3)o( . 

(4. 9) 
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Because of the overlapping situation, three symbols are 

involved in determining the probability of bit error of the primary 

detection. Let A= (a. 1 , a , a. ) ; the eight possible combinations 
1- i 1+1 

of the sequence are tabulated in Table 4. 3. The P E of the primary 

detection is 

(4.10) 

Table 4. 3 Eight possible sequences and mean values for finding the 
primary P E 

a a a E(m.) = jJ. var(m.) = cr 
i-1 i i+l 1 i 1 

Al 1 1 1 l 

Az -1 1 1 1 - (2/3) cJ.. 

A3 1 l -1 l - (2/3)()( cr ;J s (1- (Z/3)oi.) 

A4 -l l -1 1 - (4/3)o( 

As 1 -1 1 -1 + (4/3) cJ.. B = 1/SNR 

A6 -1 -1 1 -1 + (2/3)o( 

A7 1 -1 -1 -1 + (2/3)o( 

As -1 -l -1 -1 
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When we consider ai =1, there are four possible sequences, 

(A1, A2, A3 , A4), involved in finding the term P { mi<O I ai =I} • 

Thus, 
4 

P{mi<oia;=t}=(l/4) 2 
j=1 

0 

f 
-ro 

Treating the case for a.=-1 in the same 
1 

manner, we have 

"-J 

p = (1/2) {(1/4) t j 2 

1 I r;; [ _<x_-_}J....:;...zj )-] dx (7../ Zlr<r) exp -

zcr 
j=l -oo 

8 

+ (1/ 4) 2 f 
j=S 0 

4 8 

= (1/8) {~ + 2 
j=S 

a 

where IZ) (a) = J (lr ) . exp ( - X 2 I 2 ) dx 

-ro 

Substituting mean values, (4 .11) can be simplified as follows. 

(4 .11) 

(4 .12) 



so 

rv 

p = (1/4) {¢( -1/<r) + 2 ¢( -(l- zol/3)/cr) + ¢( -(!- 3ol/~/o-} 
(4.13) 

The probability of the final detection is found as follows. Since 

the final decision ~i depends on the previous final decision "d:i-l and on 

the primary decision on (i+l)th bit, ai+l 1 we have 

6a == m . 
i 1 

(4 .14) 

Hence, the probability of error is described by a recursive relation. 

Let us define 

(4 .15) 

Rewriting {4 .14) by substituting mi in the equation, we have 

If the primary decision on the symbol 

(4 .16) 

a. is correct, the final output 
l 

of the detector will be just a constant, K1, times ai. It can be seen 

from the simulated results that at high SNR the probability of error 

for the final detection decreases faster than that of the primary 

detection. 
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Table 4. 4 Possible sequences and mean values for finding the final P E 

p 

a. 
1 

l 

1 

1 

1 

-1 

-1 

-1 

-1 

i 

1\ ""' a. 1 = a. 1' 1- 1- ai+l = ai+l 

I" "" ai-l ai-l' ai+l = ai+l 

_A 
ai+ll a'i+1 a. 1 - a. 1' 1- 1-

a. 11~. 1' 1- 1- ai+1lai+1 

1\ ,.., 

ai-l= ai-1° ai+l = ai+1 

~A ,..J 

ai-l 1 ai-l' ai+l = ai+l 

1\ ..i""' 
ai-l= ai-l' ai+l 1 ai+l 

ai-l-~~i-1' ai+llai+l 

~1 = K1 

fJ 2 = 2 K 2 a i -1 + K1 

n3 = Kl + 2 K3 ai+l 

174 = 2 K2 ai-l+ Kl + 2 K3 ai+1 

~5 = -Kl 

16 = 2 K2 ai-l - K1 

~7 = -Kl + 2 K3 ai+l 

n 8 = 2 K 2 a i -1 - K1 + 2 K 3 a i + 1 

The probability of error for the final detection, P , is 
i 

= p { ~i< 0 I ai=1, ai+1=ai+1' ~i-l=ai-1} (1/2) (1- P) (1- pi-1) 

+ p{ ~ . ..::::: 0 \a.=l, a. 1=a.+1' ~. Ia. 1} (l/2) (1-P) P, 1 
1 1 1+ 1 l-1 1- 1-

+ p{ ~ . ..::::: 0 I a,=l, a. lla.+l' 'ci. 1=a. 1} (l/2) p (1- P. 1) 1 1 1+ l 1- 1- 1-

+ four terms for a. = -1. 
1 

( 4. 17) 



Setting 1- Pi_1 = Q 1 Pi-l = P, 1 -P = Q1 we have 

0 0 

pi ~ (oQ/2) J N(h1.crl ctx + (PQ/2) J N(n2 .crl ctx 

+ (PQ/2) 

+ (QQ/2) 

+ co'P/2) 

-ro -ro 

0 J N(n3 ,cr) ctx + (PP/2) 

-ro 

J 
0 

f 
0 

N(n ,cr> dx + CPo/z> 
5 

-ro 

f 
0 

ro 

N( n? ,(f) dx + (PQ/2) f 
0 

N( n ,(f) dx 
6 

N ( n I <J) dx. 
8 
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(4 .18) 

where the notation N(ni ,(J) indicates the density function of a 

Gaussian distribution having a mean value ~. I and a variance cr2 . 
1 

Now we can substitute the values for r}. I i = l1 2 I ••• I 8. and 
1 

write P. as the function of the 0-function defined by (4 .12). 
1 

Note that 0(-x) = 1- 0(x). (4.18) can be further simplified by 

using this identity. 
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Therefore, 

Pi = [ Q~ ¢(-K/<T) + (PQ/2) [<i(-(KcZKz)/(f) + 0(-(K1+2Kz)/o-~ 

+ (Qp/2) ~(-(K1 - K3)/cr) + ¢(-(K1 + K3)/<r~ 

+ (PP/2) ~(-(K1 - 2 K2 - 2K3)/a) + ¢(-(K1 + 2 K2 + 2 K3)/<r) 

+ ¢(-(Kl - 2 K2 + 2 K1/CJ) + ¢(-(K1 + 2 K2 - 2 K3)/cr~ 

(4 .19) 

The analytical results of the primary P E and the final P E can be 

evaluated by a computer program shown in Table 4. 5. The results 

are plotted with the simulation data found in the last section to see 

how closely they are related. It is seen from Fig. 4. 7 that when 

ol. ==O. 3 and 0. 4, the analytical results and the simulation results are 

in good agreement. 



Table 4 a 5 Program for evaluating the primary P E and the final P E 

c 

REAL Kl,K2,K3,P(l0) ,Q{lO) 
99 READ (1,100 I END=999) SNR,ALFA 
100 FORMAT(2FS. 2) 

Kl = 1. -2o *ALFA/3. 
K2 = ALFA/3. 
K3 = K2 
SIGMA= SQRT((l. -2o *ALFA/3.)/SNR) 
A= -1./SIGMA 
B = -Kl/SIGMA 
C = -(1. -4. *ALFA/3.)/SIGMA 

C COMPUTE THE PRIMARY PROBABILITY OR ERROR 
P1 = 0. 25*(PHI(A) + 2. *PHI(B) + PHI(C)) 
WRITE(3 ,101) SNR,ALFA,Pl 

54 

101 FORMAT(/5X'SNR='F5.2,5X,'ALFA='F5. 2,5X,'PRIMAY P(E) IS', 

c 
1 fl6o 7} 

Q1 = 1. -Pl 
p (1) = 0 0 0 
Q (1) = 1. - p (1) 
Cl = PHI(-Kl/SIGMA) 
C2 = PHI(-(K1-2. *kZ)/SIGMA) + PHI(-(Kl+2. *K2)/SIGMA) 
C3 = PHI(-(Kl-K3)/SIGMA) + PHI(-(Kl+K3)/SIGMA) 
C4 = PHI(-(Kl-2. *K2-2. *K3)/SIGMA) + PHI(-(Kl+Z. *K2+2. *K3) 

2 /SIGMA)+ PHI(-(Kl-2. *K2+2. *K3)/SIGMA)+PHI(-(Kl+2. *K2 
3 -2. *K3)/SIGMA) 

C COMPUTE THE FINAL PROBABILITY OF ERROR 
DO 2 !=2,10 
P(I) = Ql*Q(I-l)*Cl + Ql*P(I-1)*0. 5*C2 + Pl*Q(I-1)*0. 5*C3 + 

4 Ql*P(I-1)*0. 25*C4 
Q (I) == 1. - P (I) 
WRITE(3 I 10 2) I I P(I) 

102 FORMAT(/lSX,'P(' ,12,')=' ,Fl6o 7) 
2 CONTINUE 

GO TO 99 
999 STOP 

END 

(continue on the next page) 



(Table 4. 5 continued) 

FUNCTION PHI (X) 
AX== ABS(X) 
T == 1. 0/(1. O+O. 2316419*AX) 
D = 0. 3989423*EXP(-X*X/2. 0) 
P == 1. 0-D*T* ((((1. 33027 4*T-1. 8 21256)*T+l. 7814 78)*T-

l 0. 3565638)*T+O. 3193815) 
PHI == P 
IF (X) 1, 2, 2 

1 PGI == 1. 0-P 
2 RETURN 

/DATA 
/END 

END 
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Fig. 4. 7 (a) Comparison between analytical 
results and simulation results 

ALFA = O. 3 

----- Probability of Error, Analytical 
Results 

------ Probability of Error, Simulation 
Results 

P 1 : Probability of error of the primary detection 

P 2 : Probability of error of the final detection 

,, 
\\ 
\\ 
\ '---\ .............. 

\ ....... 
\ 

' ' ' ' ............ ........ --- ....................... -
3 4 5 6 7 8 9 10 

SNR 



.00 

1 2 3 

57 

Fig. 4. 7 (b) Comparison between analytical 
results and simulation results 

ALFA = 0.4 

----- Probability of Error I Analytical 
Results 

----- Probability of Error 1 Simulation 
Results 

P 1 : Probability of error of the primary detection 

P : Probability of error of the final detection 
2 

4 5 6 7 8 9 10 
SNR 
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V. ABSOLUTE VALUE BIT SYNCHRONIZER 

A. Introduction 

The purpose of this chapter is to present the steady-state 

phase-noise performance of an Absolute Value Bit Synchronizer 

(AVBS) for overlapping signals. A functional block diagram of 

AVBS is given by Fig.S.l, which includes following portions: 

(1) a Matched Derivative Filter {MDF), which is a filter matched to 

the derivative of the received signaL, (2) a Transition Detector (TD) 

as defined in Chapter III, and (3) an Averager (A) which computes 

the average of the output samples of the multiplier. 

m. (e) 
l 

MDF 

zi (e)~ y(t) z(e) 

A 

T 0 
t (e) 
i 

Fig. 5.1 AVBS sturcture 
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The proposed circuitry is based on the fact that the derivative 

of the overlapping signals can be used to estimate the phase of the 

received signal. An error signal z. (e) is generated by the product 
l 

of the MDF output, mi (e), and the TD output, \(e). Ideally 1 in 

the absence of noise, the operation of this system is as follows. 

For a given phase offset e, (1) the MDF output is ± mi (e) 1 a function 

of the phase offset e .. when there is a transition; the output is :!:2 c;l.. , 

when there is no transition. (2) the TD output is 1 1 or -1 if there is 

a transition and the TD output is zero when there is no transition. 

The sign of the above expressions depend on whether the transition 

is trom a positive pulse to a negative or vice versa. Fig. 5. 3 (a) 1 (b), 

and (c) show the results of the system when different 8' s are assumed c. 

at the input. 

After averaging the error signals over many bit intervals, the 

output of the Averager is sent to a voltage-controlled oscillator (VCO). 

The output of the VCO is an estimate of the phase e.. An equivalent 

phase-locked loop (PLL) for AVBS on overlapping signals can be found 

as shown in Fig. 5. 2 • ... 

In the following section calculation of the MDF output as a 

function of & is presented. Monte Carlo simulations of the AVBS 

system is investigated in Section C. 



/1. 
h(t-e) 

Jdt 
y(t) 

T D 

1\ 
h(t - e) 

1\ e 

e 
clock 

Fig. 5. 2 Equivalent PLL structure 
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Fig. 5. 3 (a) AVBS output when e = 0 
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Fig 5. 3(b) AVBS output when e> 0 
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Fig. 5. 3(c) AVBS output when e< 0 
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B. Mathematical Derivation 

This section presents an expression of the output of the MDF 

for a given e. The output of the MDF is considered in one of the 

two following cases: 

1. When e = 0 and in the absence of noise, 

m (e) = 
i 

• 5+i 

J S(t-8) h(t) dt 

-. 5 +i 

• 5+i 

J SP(t-i) h(t) dt + 

-. 5+i 

• 5 

a 
i-1 

J (. 5 + t/2()() dt + ai-l 

-.5 

= (a. + a ) o(. 
1 i-1 

2. When e =I= 0 and in the absence of noise I 

m (e) = (a - a ) ( e2 - 4 o(e)/2o(. 
i i i-1 

• 5+i 

j sP (t-i+l) h(t) dt 

-. 5+i 

• 5 

I (-. 5 + t/2o0 dt 

-.5 

(5 .1) 

(5. 2) 

There are four different cases to compute for (5. 2) since e can be 

either positive or negative and the transition can be either from a 

positive pulse to a negative pulse or vice versa. However, the 
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resulting expressions are the same. 

To find the noise coefficient, the integration limits are taken 

from -cl.. to of. • The noise coefficient for the MDF output is 

c == 
MN 

(5. 3) 

For the TD portion, the output is followed by the following 

rule: 

t = Sgn [ (a - a.) C + n1. J 
i i-1 l TD 

where 
c 

TD 
== 

1- 2cX 

J a s {t-i+l-e)dt + 
i-1 p 

-1+2 eX 

= 2 (1 - 2ol.) + 2ot/3 

and the noise coefficient for the TD is 

C ~J 2(1- Zo() + Zo(,/3 
TN 

C. Simulation Program and Results 

(5. 4) 

1- zo< 

J a S (t-i-8) dt 
i p 

-l+2c:J-

(5. 5) 

(5. 6) 

The expressions derived in the last section are used in the 

simulation program to be presented in this section. A flow chart of 

the AVBS system is given in Fig. 5. 4 and the simulation program is 

shown in Table 5 .1 • 



GENERATE 

TD(I) 

CALL RAND 

CALL GAUSS 

Z(I)= 

MDF(I)*TD(I 

COMPUTE 

AVERAGE 

STOP 

GENERATE 

MDF(I) 

Fig. 5. 4 Flow chart of AVBS simulation program 
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Table 5. L AVBS simulation program 

c 

c 

c 

c 

c 

REAL BIT(lOl) I MDF(lOO) I TD (100) I THEHAT{lOO) 
IX= 213711 

99 READ(lllOO I END==999) SNRIALFA 
100 FORMAT (2F5. 2) 

THETA== 0. 
S = SQRT{l./SNR) 
CTN == SQRT(2. *(1. -2. *ALFA) + 2. *ALFA/3.) 
CMN = SQRT(2. *ALFA) 
CTD = 2. *(1. -2. *ALFA) + 2. *ALFA/3. 

9 CMDF == (4. *ALFA*THETA- THETA**Z)/(2. *ALFA) 

DO 1 1=1 1 101 
CALL RAND(IX,IY I YFL) 

1 BIT(I) :::: SIGN (1. I YFL-. 5) 

G = 0. 
DO 2 1=1,100 
MDF(I) = (BIT(I)-BIT(I+l))*CMDF + CMN*GAUSS(S) 
TD(I) = SIGN(l. I ((BIT(I)-BIT(I+l))*CTD+CTN*GAUSS(S))) 

IF(BIT(I)-BIT(I+l)) 8 1 2 1 8 
8 G = G+l 
2 THEHAT(I) = MDF(I)*TD(I) 

SUM =0. 
DO 3 1=1,100 

3 SUM= SUM+THEHAT(I) 
SUM= SUM/G 
WRITE(3,101) SNR,ALFA, THETA ,SUM 

101 FORMAT(/ I /SX,'SNR='FS. 2,5XI 'ALFA='F5. 2,5XI 'THETA=' 

1 FlO. 5, sx, 'AVBS OUTPUT=' I F16. 7) 

IF(THETA • LE. 0.) GO TO 11 
THETA= THETA+O. 02 
IF(THETA • LE. ALFA) GO TO 9 
THETA= 0. 

ll THETA= THETA - 0. 02 
IF(THETA • GE. -ALFA) GO TO 9 
GO TOC99 

999 STOP 
END 
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Fig. 5. 5 (a) AVBS simulation results 



69 

zce> 
.,36-

SNR == 5. .32- ·-· 
ALFA = • 20 • 28_ I 
100 bits .24 . __ / - ;· 

• 20_ 
./· 

.16-

I .12-

.08_ ./ 

.04_ I .... 
-.116 -.f2 -.p8 - 04 e Gl -· ./ ~r 

' I I 

./1 
.04 .08 .12 .16 

~---. 04 

~---. 08 

.,/ .... -.12 

;· 1- -. 16 

~ -. 20 

./· 
~ -. 24 

I -o28 
t-

/. -.32 .... . 
1- -.36 

Fig. 5. S(b) AVBS simulation results 
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SNR = lO 

ALFA = o lO 

500 bits 

. ..-----· 

./ 
.~ 

Fig. 5. 5 (c) AVBS simulation results 
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VI. SYNCHRONIZER USING BANDLIMITED OVERLAPPING SIGNALS 

A. Introduction 

In this chapter, we combine the techniques developed in Chapter 

VI and Chapter V along with the bandlimited version of the overlapping 

signals to obtain a suboptimum bit synchronizero Suppose we receive 

following signals: 

co 

y{t) = 2 
-m 

a S (t-e-n) + n (t) n ( 6. 1) 

and pass it through an ideal lowpass filter having transfer function 

H(f) I 

1 -B~f~B 

H(f) = 
0 elsewhere 

and let the output be y* (t), where 

(X) 

y*(t) = 2 b 0 (t) + n1 {t) 

-co 

( 6. 2) 

(6. 3) 

The conditional probability density function of y* (t) given synchroni-

zation errore, and the signal sequence A is expressed as follows. 
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P(y*{y)je,A) 

N N 

= K1 exp { -(l/2B0 ) I [ y* (n) - I "k SP (n-k-e)J 
2

} (6• 4) 

n=l k=l 

We now use the fact that the overlapping signals with synchroni-

zation error e 1 can be approximated by the following linear relation-

ship: 

S(t- e) = S(t)- e S'(t) (6. 5) 

The associated waveforms are shown in Fig. 6.1. For small e, the 

difference between the two curves is small enough to be neglectedo 

Using this approximation in the conditional probability density 

function, 

P(y*(t)je,A) 

N N 

= K1 exp { -(l/2BJ I [ (y*(n)-I 
k=l n=l 

(6. 6) 

To find the optimum estimate of e 1 we set 

a ln P(y*(t)je,A) 
=0 
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Fig. 6. 1 Linear approximation of the overlapping signal 
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Thus, 

N N N 

L [ y* {n) - L a s (n-k) + e L akSP(n-k) J . k p 

n=l k=l k=l 

N 

L akS~(n-k) = 0. ( 6. 7) 

k=l 
~ 

e = eML 

Solving for e, we find the following result: 

---------------------------------- (6.8) 
N N 

L: 
k=l 

2: 
j=l 

ak a, s• (n-k) s I (n-j) 
J p p 

N N 

[ y*(n)- L ak S P (n-k~ [ L ak S~ (n-k)J 

n=l k=l k=l 

(6. 9) 

The above derivation leads to a synchronizer which is roughly 

sketched in Fig. 6. 2. 



s (t) d(t) 
FORM FORM 

DET SIGNAL DERIV. 

+ t=i 
y{t) 

1 
e-

AVG ML 

H(f) 
y*(t) 

Fig. 6. 2 Block diagram of the suboptimum synchronizer 

The received signal is first passed through a detector to form the 

original overlapping signal and then the derivative of the signal. 

Meanwhile, it is bandlimited by passing through a lowpass filter with 

bandwidth 2Bo After forming the signal, we subtract the two waveforms, 

and the difference is further multiplied by the derivative of the origin-

al signal, d (t). The final block is an accumulator. The operation of 

the synchronizer is shown in Fig.6o3(a) and 6.3(b). With the input 

signal having different delays, the estimated values of e• s are shown 

as functions of &' s. 

Furthermore, the detector portion is replaced by the DD detector 

investigated in Chapter VI. The overall block diagram is given in 

Fig o 6 o 4. In order to simulate this system, we need to have the 

theoretical expression of the bandlimited signal by Fourier analysis 

and the bandlimited noise by autocorrelation analysis. This will be 

considered in the next sectiono 
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s (t) 

t 

2 

d(t) 

t 
I 

0 1 2 3 

J0 /'\.. I I ~-t Vi 2 V3 
y*(t,e) 

1 2 t 

~e) 
'V 

I ""7-t 2 

y*(t,e) 

t 
0 1 2 3 

z (t, e) 

Fig. 6. 3 (a) Output waveforms of the suboptimum synchronizer 
for e-;::: 0 
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S(t) 

y*(t) 

2 

d(t) 

• I . _., . t 

0 l 2 3 J z (t) = (¥* (t) -s (t)) *d (t) 

~ 
~ (' -v(' ~ Jllot 

y* (t, e) 

0 

£6) 
~ ~ Q .. t 

0 l 

y* (tIe) 

0 2 3 

z (tIe) 

Fig. 6. 3(b) Output waveforms of the suboptimum synchronizer for 
e~o 

t 

t 
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B. Bandlimi ting and Sampling of the Overlapping Signals 

To find the output of the filter, we shall first find the Fourier 

transform of the overlapping symbol. It is clear that if the symbol 

is differentiated with respect to time twice, a sequence of impulses 

can be obtained. The transform of the impulses is readily found. 

Let the symbol be centered at the origin and be called f(t). It is 

evident from Fig. 6. 5 (c) that 

d 2£ I dt2 = (1/2ol.) [ ~(t+l/2 +o(.) - ~{t+ 1/2 -cJ..) - b(t- 1/2 +o() 

+ b(t- 1/2 -ol.)] (6. 10) 

Using the Fourier time shift theorem, we have 

(jw) 2F (w) ~ (l/2ol) [ exp [jw(l/2 +ol) J - exp [jw(l/2 -ol)] 

- exp [-jw(l/2 -o0] + exp [jw(l/2 +ot)J J 
Thus, 

F(w) = (l/o<w 2) [cos (l/2 - oOw - cos (l/2 + oOw J (6.11) 

The time shift theorem is used again to obtain SP (w), the Fourier 

transform of the overlapping symbol, sp (t). 

SP(w) = (l/otw 2) [cos(l/2 -r:l..)w- cos(l/2 +o()w J exp(-jw(l/2)) 



-.S-o( -. s+o< 0 

2o< 

f(t) ~ F(w) 

• 5-0{ 
t 

• S+o( 

df(t) 

dt 
~ jwF(w) 

~~----~------~------~------~-t 
0 

20.. 

d 2f(t) 2 ~ (jw} F(w) 
dt2 

1/21)( 
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(a) 

(b) 

-...----....... ----+------.---_.__...-.. t (c) 
0 

Fig. 6. 5 Fourier transform of a trapezoidal function f{t) 



SP(w) == (1/o<w2) 2 sin (w/2) sin(oZw) · exp(-jw/2) 

== Sa(w/2) Sa(o<w) · exp(-jw/2), 

where Sa(x) = sin x / x. 

Let the output of the filter be 

N 

y*(t) == I bn (t) + n1 (t). 

n=1 

Then the Fourier transform of the nth bit is 

{
an Sa(trf) Sa(21T<:Xf) · exp (-j1Tf(l+2n)) 

B (f) = 
n 0 , 

The time response b (t) is 
n 

B 

b n (t) ~ J Bn (f) • exp (j 21Tft) df 

-B 

B 

elsewhere 

= J a Sa(1(f) Sa(211o(f) · exp(-fn-f(l+2n-2t)) df n 

-B 

Substituting nf = X I we have 

1l'B 

bn (t) ~ an (2/1T) J Sa(x) Sa(2fto(x) cos(I+2n-2t)x dx 

0 
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(6 .12) 

(6.13) 

(6.14) 

(6 .15) 



The response of the sample due to an infinite bit train can be 

expressed as 

CD 

y*(t) ~ L bn(t) + n1 (t) 

n=-oo 

lrB 

~ a 0 (2/1!) f Sa(x) Sa(2o(x) cos(l-2t)x dx 

0 

CD 1TB 
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+ L an (2/1!) J Sa(x) Sa(2cix) cos(l+2n-2t)x dx 

n =-co 

nl-0 

+ n (t) 
1 

0 

(6 .16) 

The first term is the desired signal and is peaked at t = 1/2 I for 

B ~ 1. The second term is the intersymbol interference due to band-

limiting the signals. Thus, sampled at t = 1/2 1 the response can be 

simplified to give 

CD 

y*(t~ l/2) ~ a 0 8(8,0) + L an S(B,n) + n1(t) (6.17) 

n=-oo 

where s (B I 0) = (2/11) tB Sa (x) Sa (2ol.x) dx 
0 

S(B ,n) = (2/'Jl') 
J1TB Sa(x) Sa(2o<x) cos(2nx) dx 

0 
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The filtered noise has the following variance: 

B 

I 2 
H(f) df 

-B 

In the following section, the bandlimited overlapping symbol is 

evaluated by numerical integration. Here we assume the bandwidth 

is properly chosen so that the effect of intersymbol interference is 

very small. 

C. Simulation Program and Results 

The bandlimited signal as the output of the ideal lowpass filter 

is 1TB 

Y~ (t) = (2/ir) J Sa(x) Sa (2t<x) cos (l - 2t)x dx 

0 

(6 .19) 

where Sa (x} = sin x I x 1 and the subscript "s" indicates that only 

the signal portion without intersymbol interference is considered. We 

shall first numerically integrate the function in (6 .19) and store the 

result for the main simulation program. By Simpson's rule on integration 

the function y~ (t) is indicated in Fig. 6. 6. Here are some prior 

statistics to the computer program: 

Sample per bit = 8 1 
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ALFA = 0. 25, 

Total sample calculated (due to overlap) for one bit = 13, 

SNR == S. 0, and 

Number of bits as the input stream = 12., 

The subroutine BANDO{Y ,L,BW) in the simulation program 

generates the required function y* 't) o s 
The results are shown in 

Fig o 6 o 6. The flow chart of the simulation program is drawn in Fig. 6. 7 

and the program is listed in Appendix B. The results are plotted in 



y* (t) 
s 

t 

-.250 
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.000 

.125 
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.500 

.625 

.750 

.875 

l. 000 
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.75 l 1.25 

y* (t) 
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-.3306 

-. 0001 

.3333 

• 6667 

.9972 

l. 0000 

.9999 

l. 0000 
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.3333 

-. 0001 

-.3306 

-.25 

s (t) 
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s (t) 
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.500 
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1.000 

1. 000 

l. 000 

1 • 000 
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.500 

. 250 
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.75 l 1.25 

Fig. 6. 6 Bandlimited signal y* (t) and the overlapping symbol S (t) s p 



CALL RAND, 
CALL BANDO 
GENERATE X 

I 

GENERATE 

S (I) & DV(I) 

START 

* 
INITIALIZA

TION AND 
INCREMENT 6 

Z=(X'-S)* 
DV 

, 
COMPUTE 

SUM I 

AVERAGE 

• I WRITE ~·I 
/AVERAGE I 

STOP 

CALL GAUSS 
GENERATE 

NOISE(I) 

X' = 

X+NOISE 

Fig .6. 7 Flow chart of the suboptimum synchronizer simulation 
program 
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z(e) 

ALFA = .125 
SNR == 5. 0 5 
10 bits 

4 

3 

2 

1 

-.500 

-3 

-5 

Fig. 6. 8 Results of the suboptimum synchronizer simulation 
program 
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Do Synchronizer for Overlapping Split-Phase Signals 

1. Bandlimiting and sampling 

Using the same technique in Section B, the Fourier transform of 

the overlapping split phase (S~ symbol g{t) as shown in Fig. 6o 9 is 

written as 

d2 

~ = (l/2o() [ b<t + l/2 +o() - ,\(t + l/2 - o() + ~(t - l/2 +o() 

dt2 

- J (t - l/2 - o() J + (!/ oO [- J(t+ o/.} + ,\(t-o/.) J (6. 20) 

Thus, using the transform pairs, we have 

(jw} 2 G(w) = (l/2 o() [ exp (jw{ l/2 +ol.)) - exp (+jw( l/2 - o( )) 

+ exp(-jw{ l/2 - oO) - exp (-jw( l/2 +o())J 

+ (I/o() [- exp(jwo<.) + exp {-jwoO J 
= (j/ o1) [sin( 1/2 + o()w - sin( l/2 - o()w] - {2j/o() • 

sin( d. w). 

= (2j/o0 [cos(w/2) sin(o(w) - sin(o(w~. ( 6. 21) 

Thus, G(w) = 2j Gin(o(w)/o(w2J • [1- cos(w/2~ ( 6. 2 2) 
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g{t) ~ G(w) 

{a) 

• dg/dt....,.. jw G(w) 

-d. Oot. 

-.S-o( 
• 5-d. 

-. S+d. 
• s+ol. 

t (b) 

1/cX 

l/2cX 1/Zol 

____ _. __ ~--~~~--~--~-- t (c) 
0 

-l/2o/. -1/20( 

1/o.. 

Fig. 6 o 9 Fourier transform of a overlapping split-phase symbol 
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Then the Fourier transform of the overlapping S¢ symboL S¢'(t), is 

S¢'(w) == G(w) exp(-jw/2) 

Let w = 2'TJ'f ~ 2x, 

S¢'(f) = (j/x) (sin(2 o<x)/ 2 o<x) (1 - cos x) exp{-jx) 

= j Sa(2 d. x) ~ 1 - cos x)/x] exp(-jx) 

If the output of the LPF is 

co 

Y¢-(t) = L b n (t) + n1 (t). 

n=-co 

The Fourier transform of bn (t} can be written as 

Bn (f) = an j Sa (2 o{ x) ~1 - cos x )/~ exp(-jx(l+2n)). 

B (f) exp (j 2 1l' ft) df 
n 

{6o24) 

(6 0 25) 

Sa(2 ol.x) ~1 - cos x)/~ exp{-jx(l+2n-2t) dx 

-TrB 
TrB 

= an (2/1)') J Sa(2 o(x) ~1-cos x)/~ sin(l+2n-2t)x dx 

0 



The signal portion is found as follows 1 

11'B 

y~(t) = (2/11') J Sa(2o(x) ~l-eas x)/~ sin(l-2t)x dx 

0 
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( 6. 2 7) 

Using simpson's rule for integration 1 the function y* {t) is evaluated 
s 

by the subroutine BANDO(Y,L,BW) and is shown in Fig. 6.10. 

2, Simulation program and results 

The simulation program for the overlapping split phase signals 

is more complicated than that of the NRZ case for two reasons: 

1) twice as many samples as before should be taken in a bit intervaL and 

2) on the average, the number of transitions is increased by a factor of 

3. In the program we have following prior statistics: 

Samples per bit = 16, 

ALFA = 0.125 

Total samples calculated (due to overlap) for one bit = 21 

SNR=S.O 

Number of bits as the input stream = 12 

The program is listed in Appendix C. The results are plotted in Fig. 

/'. 

6.12. It is seen that the maximum value for the estimate, e,occured 

at e- = 0. 37 5. From then on 1 the estimated values go down quite 

rapidly. Graphically 1 this situation is shown in Fig. 6.11, where for 
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illustration purposes, the bandlimited output is replaced by the 

signal itself. At 6 == 0. 375, the synchronizer output z(t) decreases 

and it is very small at e = 0. 5. The above results indicate that 

the values fore are restricted in the region (-0. 375 1 0. 375). In 

the overlapping NRZ case we have assumed that e is in the range 

(-0.5, 0.5). 



S¢(t) I t y*(t) S¢'(t) 
s 

-.1250 .336035 .0000 
-.0625 • 499868 .2500 

.0000 .666537 • 5000 
t I .0625 .833284 .7500 

.1250 .997285 1. 0000 
0 . 5\ 1 " I .1875 1.000225 l. 0000 

.2500 1. 000338 l. 0000 
• 3125 1. 000336 l. 0000 
• 3750 • 991879 l. 0000 

y* (t) \. . . . _, I .4375 • 50014 7 .5000 . s 
• 5000 .000000 .0000 
.5625 -.500147 -.5000 
• 6250 -. 991879 -l. 0000 
.6875 -1.000336 -l. 0000 

t I .7500 -1.000338 -1.0000 
• 8125 -l. 000225 -1.0000 

0 1;\2 1 ' .8750 -.997285 -1.0000 
• 9375 -.833284 -.7500 

1.0000 -.666537 -.5000 
1. 0625 -.499868 -.2500 
1.1250 -.336035 .oooo 

w 
w 

Fig. 6.10 Bandlimited symbol y; (t) and the overlapping split-phase symbol S Jt) 
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Fig. 6.11 Output waveform of the split-phase suboptimum synchronizer 
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Fig. 6.12 Phase estimation from the split-phase bit synchronizer simulation program c..o 
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VII. NONLINEAR BIT SYNCHRONIZER 

A. Introduction 

The general nonlinear filtering problem formulated for the 

time continuous case by Kushner34 and formulated for the time 

discrete case by Stratonovich 35 applies to various types of 
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communication problems. In this chapter, the nonlinear filtering 

technique is used to solve the bit synchronization and detection 

problems when dealing with overlapping signals. The message and 

observation models in this study are described by the following pair 

of stochastic differential equations. 

dx == i,Q0 dt + dw (7 .1) 

dy == hQ0 dt + dy (7. 2) 

where~ represents the state and dy is the observation. Y:f... and v 

are independent Wiener processes. 

The general nonlinear filtering problem is the determination of 

P {x(t) I dy(t), 0.;:: t.;T} , which is the probability density function 

of ~(t) conditioned upon the observations dy on the interval (0, T). 

Similar results are available for the case where the observation 

is called y and the model is 

y = h{29 + n(t) (7. 3) 
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where n(t) represents the white noise. Thus the equivalent problem 

for the observation equation (7. 3) is the determination of 

P { x (t) I y (t), 0,; t ,; T} . This approach is used by Stratonovich. 

The time continuous case is analyzed by solving the following 

filtering equation for the conditional probability density function P: 

dP = L + {p} dt + P { dy- E h(W dt r <l {h{W - E h{W} (7. 4) 

where p = p {~(t) I dy(t)' o.;;t.;;T} ' 

Eh(x) = J:·J h{W P{x(t) I dy, o.;;us;1 d~>.(t) (7.5) 

+ 
and L , Kolmogorov' s diffusion operator, is defined as 

m 

i = l i=l 

(7. 6) 

The filter equation for the discrete case is similar and can be 

found from the results of Stratonovich, 

dP. == 
1 

m 

L 
j=l 



where P1 ~ P { x(t) ~ s1 (t) I dy(t), o<;;;; t~T} , 

m 

Eh(x) ~ L 
i = l 

h(s. (t)) · P. 
1 1 

and the corresponding L + can be described by a matrix whose 

elements are the transition probabilities: 

a .. = 
ll 

- lim 
~t + 0 

B. An Example 
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(7. 8) 

(7. 9) 

(7.10) 

(7 .11) 

Suppose we have received a sequence of binary NRZ signals 

with synchronization error e and noisy observations. Find the 

filtering equation for the probability density function and the non-

linear bit synchronizer structure. 

For the noiseless case, the observed symbol in the interval 

[(n-1) + e, n+e J , n = l, 2, "o. , N 
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s(t), e = o, <X=o 

I 

0 1 2 3 
t 

s(t-eL e = .125 --ie j---

e==o 

----A----~d-==~·~2~5----~------------~-----------------t 

s (t-e) 

e = .125 
d..==. 25 

Fig. 7. 1 (a) NRZ signal 
(b) Overlapping signal 

3 
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is (7 .11) 

A typical received signal waveform is indicated in Fig. 7 .l(a). To 

formulate the filtering equation 1 let us first define the following 1 

i, for n<t~n + e 

n s .. = 
lJ 

j I forn+e<t~n+l 

and the probabilities 1 

p?. (t,e) 
lJ 

i,j:::: -1,1. (7 .12) 

~ Pr { sn(t)=i, for (n-l)"'t~(n-1+8) ; sn(t)~j, for (n-l+e),;;t,;;n} • 

(7 .13) 
where i,j = -1, l n=l,2, •• o,No 

Let y = sn{t) + dv / dt (7 .14) 

be the observation on the interval (n-1, n) and E(dv 2) = B dt where 
0 

B0 is the equivalent spectral density of a white noise. 

Using the result of Kushner14 , the probability P~. (t, e) must 
lJ 

satisfy the following filtering equation: 

•n +{ n } Pij(t,e) = L Pij {t,e) + pn {t,e) {y- m8 (t)) (srJ. - m!l(t))/B0 ij cr 

(7 .15) 



where 

+ 
P~. (t,e) L = 

lJ 

and 

n 

a L n 
f. (x) P (t, e) 

l ij ax 
i = 1 i 

n n 

n 
+(1/Z) L L 

axpx. 
J 

P .. (t, e) 
1J 

i=1 j=l 

1 1 co 

L L f s~. (t, e) P~. (t, e) dt 
1J 1) 

i = -1 j = -1 -ro 
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(7 .16) 

(7 .17) 

If e is assumed to be constant at least for several bit periods, the 

term L + P~. (t,e) is zero and the equation reduces to 
1) 

P~.(t,e) = P~.(t,e) {y- me(t)) (s~.- me(t)} /B 
~ ~ ~ 0 

If the symbols are independent and equally probable, the 

following relations can be found. 

n 
P 1, _1 (n , e) = 

n 
P (n ,e) 

1,1 
= (1/2) Pn-1 (n,e) 

-1,1 
n-1 

+ (1/2) P (n,e) 
1,1 

(7 .18) 

(7 .19) 

n n n-1 n-1 
P_1, 1(n,e) == P_1,_1(n,e) == (1/2) P1,_1(n,e) + (1/2) P_1,_1(n,e) 

(7. 20) 



n 
P .. (n+l) = 

l] 

e 

n 
P .. Cn+l,e) 

lJ 

where the summation is over all possible values of e. 
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(7. 21) 

Althought both bits an and an+l could be estimated in each 

interval, it is clear that only part of the second bit has been observed 

and thus a better estimation can be made in the next interval. Hence 

the optimum estimate of the first bit in the interval n < t < n+l is 

determined by checking whether or not the following inequality holds. 

(7. 2 2) 

We decide a = 1 was sent if the above inequality does hold; if not, 
n 

we decide an = -1. The nonlinear bit synchronizer is shown in Fig. 

7. 2. It is obtained by solving the filtering equation, (7 .18), and by 

using the relation described by (7. 22). Thus it represents a combined 

synchronizing and estimation scheme which is optimum in the sense 

that it makes bit by bit decisions conditioned upon all observations 

up to that time. This technique can be implemented with analog 

computers since the only nonlinear elements required are multipliers. 
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ij 

Fig. 7. 2 Nonlinear bit synchronizer for NRZ signals 
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C. Nonlinear Bit Synchronizer for Overlapping Signals 

For the overlapping signal case as shown in Fig. 7 .l(b) 1 the 

message and observation models are modified in order to set up 

a filtering equation. Let the observed symbol in the interval 

be 

tn-1) -o( + e, n + o( +j , n = 1, 2, ••• , N 

sn(t) = a S (t). 
n P 

where SP (t) is the overlapping symbol defined in Chapter III. 

(7. 2 3) 

Using the same approach as Eq. (3. 6) I we again consider the 

following set of intervals, 

[ n - (1/2), n + (l/2~ , n = 1, 2, ••• , N. 

and define the following functions: 

sn(t,6) 
ij 

{
a S (t-6-n) 

n p 

a S (t - 1-6-n) 
n+l P 

for (n - • s)< t ~ (n + 6 + o() 

for (n+6- oO< t~(n + • s) 

where i # an 1 j ~ an+ll n = l1 21 ••• 1 N. 

(7. 24) 

The related waveform for an = l and an+l = -1 is indicated by Fig. 7. 3 

in the interval (n - l/2) 1 (n + 1/2) . We also need to define the 

following probabilities: 
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t 

Fig. 7. 3 sn and the signal waveform in the interval ( n-. 5, n+. S) 
ij 

n 
P. (t,e} == Pr 

lj 

sn(t)=a S (t-e-n) for (n-. 5) ~ t ~ (n+e+o{) n P , 

sn(t)=a + S (t-e-n-1) for (n+e- ol.) < t ~ (n+. 5) 
n 1 P ' 

where a ~ ~ i, a + ~ ;> j, i, j = 1, -1. 
n n 1 

(7. 25) 

Then the observation model on the interval (n-. 5, n+. 5) can be 

written as follow. 

B dt. 
0 

+ dv / dt , 

Substituting (7. 24) into (7. 26), we have 

y(t) = { a S {t-e-n) + a S (t-e-n-1)} + dv I dt n p n+l p 

(7. 26) 
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The filtering equation can be found as follows. 

•n + 
Pn (t, e) 

n . 
!> (tIe) == L + p (t, e) ( y- me(t) ) (s~. (t,e) - me (t))/B0 ij ij ij lJ 

(7. 27) 
where 

1 1 ' (X) 

m (t) L L J n n = s (tIe) P .. (tIe) dt (7. 28) 
e ij 1) 

i = -1 i = -1 -ro 

The bit synchronizer structure by solving (7. 27) is shown in 

Fig. 7. 4. The received signal is passed through a transition detector 

to form the function sn (tIe). The rest of the structure is similar to 
ij 

the synchronizer developed in Section B of this chapter. 
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VIII. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY 

Self Bit synchroni~ation techniques for overlapping signals 

are proposed in this study. The major significance lies in the 

different approaches used in estimation of the epoch when 

receiving jittered signals with additive Gaussian white noise. 

Previous work has concentrated on finding bit synchronizers 

for anti -correlated signals for which the symbol in one time 

interval does not overlap with the others. 
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With the concept of maximum likelihood principle I the ML 

synchronizer for estimating epoch was derived in a recursive 

manner. For practical purposes 1 the Decision-Directed (DD) 

feedback technique and the matched derivative filter (MDF) 

technique are proposed particularly for overlapping signals. The 

DD technique is applicable for large overlapping parameter, cf.., 

and at high SNR. It is shown that the analytical and simulational 

performance of the DD detector are in good agreement. The 

matched derivative filter technique and the transition detector 

technique are very useful when the received signal has a large 

cJ.. 

All the techniques developed in this study can be easily 

modified to apply to PCM/Split-phase signals. For split-phase 
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signals, one can expect three times as many transition instants ,on 

the average I than the NRZ case. Thus 1 if a long sequence of 

logical zero or logical ones is received, the transition detector for 

the split-phase case can provide more knowledge to the synchronizer. 

The overlapping parameter, d.., is assumed smaller than half 

of the bit interval so that one symbol will only be overlapped with 

the two adjacent bits. If this restriction on the parameter d. is 

relaxed, one symbol can overlap with four other symbols. For 

the optimum synchronizer, a large cl.. can lead into a much more 

complicated mechanization. Hence, the suboptimum approaches are 

preferred in this case. For the DD detector portion, the technique 

should be modified to subtract the overlapping head from the two 

preceding bits and the overlapping tail from the two following bits. 

Further work in this area is suggested. 
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APPENDIX A 

Random Number Generator Program 
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Normal random numbers can be generated by a digital computer. 

There is a large amount of literature on the generation of random 

numbers 12 1 27 148 • In general 1 a uniform distribution on the interval 

(0 1 1) is first generated, and it is invaluable in the generation of 

other distributions. The FORTRAN subroutine RAND (IX,IY, YEL) is 

used in this study to generate a new random number from the previous 

one. An initial value is required to start the recurrence relation. 

The next number is randomly drawn from the finite population of the 

integers that the computer can produce. At some point a number that 

has already occurred will be produced thus forming a closed-loop 

sequence, which continuously cycles from that point on. The length 

of this sequence is called the period of the generator. It is of the 

order of the total integer population of the machine. 

The subroutine GAUSS(S) in the simulation program uses the result 

of the subroutine RAND to generate a normal distribution with zero mean 

and a desired variance "S". The two subroutine are listed in Table 

A.l. 



Table A.l Subroutine RAND and subroutine GAUSS 

SUBROUTINE RAND(IX,IY, YFL) 
IY=IX*655 39 
IF (IY) l, 2 I 2 

l IY=IY+214 7 48 364 7 +1 
2 YFL=IY 

YFL=YFL*.4656613E-9 
IX=IY 
RETURN 
END 

FUNCTION GAUSS (S) 
INTEGER IX/213711/ 
A=-.6 
DO 1 I=1,12 
IF (IY) 5 I 5 I 6 

5 IY=IY+2147483647+l 
6 X=IY 

RANDU=X*. 4656613E-9 
A=A+RANDU 

l IX=IY 
GAUSS=A*S 
RETURN 
END 
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Suboptimum Synchronizer Simulation Program 

for Overlapping NRZ Signals 
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C SUBOPTIMUM SYNCHRONIZER SIMULATION PROGRAM, NRZ CASE 
COMMON C 1 ALFA, T 

c 

c 

c 

REALX(93), S(93), 2(93) 1 SUM(ll), DV(93) 
REAL Y(l3) I BIT(l2) I NOISE(9 3) 
IX= 213711 
SNR = 5. 
BW = 50. 
BLVAR = SQRT(1./(SNR*BW*2.)) 
ALFA = 0. 25 
SPB=lO. 
L = 13 
G = 0.0 

DO 1 I=1 112 
CALL RAND (IX I IY I YFL) 

l BIT(I) = SIGN(l. I YFL-.5) 
WRITE(3 I 100) (BIT(I) I I=1112) 

100 FORMAT(/SX,'INPUT DATA=' I l2F5. 0) 

DO 20 1=1,11 
IF(BIT(I)-BIT(I+l)) 20 121,20 

21 G = G+l. 
20 CONTINUE 

WRITE(3 I 99) G 
99 FORMAT(/SX 1'NUMBER OF TRANSITIONS IS', F3.0) 

CALL BANDO (Y I L I BW) 
WRITE(3,102) (Y(I) I I=l,l3) 

102 FORMAT(/SX,'OUTPUT SAMPLES OF THE FILTER'/(lOX,5(5X,El4. 7))) 
1-' 

N 
0 



c 

c 

c 

c 

DO 3 1=1,93 
3 NOISE(I) = GAUSS(BLVAR) 

S (1) = BIT (l) 
8(90) = BIT(l2) 
8(91) = BIT(l2)*. 5 
S(92) = BIT(l2)*. 25 
8(93) = o. 

DO 30 1=2,12 
L = (I-2)*8+2 
K = 1+7 
DO 30 J = L,K 
IF(BIT(I)-BIT(I-1)) 32 I 33,32 

32 IF(J • GT. L+l) GO TO 34 
S(J) = BIT(I-1) 
GO TO 30 

34 IF(J • GT. 1+4) GO TO 35 
S(J) =(BIT(I-1)-BIT(I))* o 5*((1+3)-J)*. 5 
GO TO 30 

35 S(J}=BIT(I) 
GO TO 30 

3 3 S (J) = BIT (I -1) 
30 CONTINUE 

WRITE(3,1000) (S(J} I J=l,93) 
1000 FORMAT(/5X, 'SIGNAL SAMPLES='/(lOX,lO(FlO. 5))) 

DV(1) = 0. 
DV(90) = BIT(l2) 
DV(9l) = BIT(l2) 

..... 
N ..... 



c 

DV(92) = BIT(12) 
DV(93) = BIT(l2) 
D060 1=2,12 
L = (I-2) * 8 + 2 
K=L+7 
DO 60 J=L,K 
IF(J.LT.L+l .OR. J.GE.K-1) GO TO 61 
DV(J) =(BIT(I)-BIT(I-1))*. 5 
GO TO 60 

61 DV(J) = 0. 
60 CONTINUE 

WRITE(3 ,999) (DV(I) I I=l. 93) 
999 FORMAT(/5X, 1DERIV. OUTPUT=•/(10X,20(F4.1))) 

42 

44 

X(l) = Y(7) *BIT (1) 
X(90) = BIT(l2)*Y(l0) 
X(9l) = BIT(l2)*Y(ll) 
X(92) = BIT(l2)*Y{l2) 
X(9 3) = Y(l3) 
DO 40 1=2,12 
K = (I -1) * 8 + 1 
L = (I-2)*8+2 
M = 3 
DO 40 J=L,K 
IF(BIT(I) -BIT{I-1)) 42,43,42 
IF (J • GT. L) GO TO 44 
X(J} = BIT(I-l)*Y(8) 
GO TO 40 
IF(J • GT. K-2) GO TO 45 
X(J) = BIT(I)*Y(M-2) + BIT(I-l)*Y{M+6) 
M = M+l 

........ 
N 
N 



c 

c 

c 

GO TO 40 
45 X(J) = BIT(I)*Y(M-2) 

M = M+l 
GO TO 40 

43 X(J) = BIT{I) 
40 CONTINUE 

WRITE(3,1001) (X(J}, J=l,93} 
1001 FORMATVSX,'BANDLIMITED SIGNAL SAMPLES='/(lOX, S(ElS. 7))) 

THETA= 0. 
Z(l) = 0. 
Z(2) = 0. 
Z(3) = 0. 
Z(4) = 0. 
DO 51 J=l,S 

DO SO 1=5,89 
K = J-1 

50 Z(I) = (S(I)-(X(I-K)+NOISE(I-K)))*DV(I) 
WRITE(3,1002) (Z(I) I I=S ,89) 

1002 FORMAT(/5X,'OUTPUT SAMPLES OF THE SYNCHRONIZER='/(lOX,S(ElS. 7))) 

DO 52 II=2,ll 
M = (II-2)*8+3 
N = M+4 
SUM (II) = 0. 
DO 53 JJ=M,N 

53 SUM (II) = SUM (II} + Z (JJ) 
52 CONTINUE 

WRITE(3,1003) (SUM(II), II=2,ll) 
1003 FORMAT(/SX,'SUM OF OUTPUT SAMPLES IN EACH INTERVAL='/(lOX, S(ElSo 7))) 

...... 
N 
w 



c 

c 

EST = 0. 
DO 54 II=3,ll 

54 EST = EST +SUM (II) 
EST = EST/(G-1.) 
WRITE(3,l004) THETA,EST 

1004 FORMAT(/5X,'THETA=' ,FlO. 5,5X,'ESTIMATED VALUE OF THETA IS' El4. 7} 

THETA = THETA +O o 12 5 
51 CONTINUE 

STOP 
END 

FUNCTION F(X) 
COMMON C,ALFA,T 
F = C* (SIN(X)/X)* (SIN(2. *ALFA*X)/{2. *ALFA*X))*COS (X* (1. -2. *T)) 
RETURN 
END 

SUBROUTINE BANDO(Y ,L,BW) 
COMMON C,ALFA,T 
REAL Y(l3) 
T = 0. 
N2 = 100 
A= 0. 
B = 3 o 1416*BW 
c = 2./3.1416 
N = NZ/2 
H = (B-A)/FLOAT(N2) 
M = L-2 
DO 2 J=l,M 
S = C+4 o *F(A+H) 

1-' 
N 
~ 



Nl = N-1 
DO 3 I=1,N1 

3 S = 2. *F(A+H*FLOAT(2*I)) + 4. *F(A+H*FLOAT(2*I+1)) + S 
S = H*(F(B)+S)/3.0 
K = J+2 
Y(K) =S 
T = T+O .125 

2 CONTINUE 
Y(1) = Y(l3) 
Y(2) = Y(l2) 
RETURN 
END 

FUNCTION GAUSS(S) 
INTEGER IX/213711/ 
A= -6. 
DO 1 I=l,12 
IY = IX*65539 
IF (IY) 5 I 5 I 6 

5 IY = IY+214 7 48 364 7+1 
6 X= IY 

RANDU =X*. 4656613E-9 
A= A+RANDU 

1 IX= IY 
GAUSS = A*S 
RETURN 
END 

SUBROUTINE RAND(IX,IY, YFL) 
IY =IX* 655 39 
IF (IY) 11 2 I 2 

""""' N 
Ul 



1 IY = I¥+2147483647+1 
2 YFL = IY 

/DATA 
/END 

YFL = YFL*. 4656613£-9 
IX= IY 
RETURN 
END 

I-' 

N 
O"l 
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C SUBOPTIMUM SYNCHRONIZER SIMULATION PROGRAM ,SPLIT-PHASE CASE 
REAL BIT(l2) I Y(2l) I 8(177) IDV(l77) ,X(l77) ,Z(l77) ,NOISE(l90) 
COMMON C 1 ALFA,T 

c 

c 

c 

IX= 213711 
ALFA = 0,125 
SNR = 5. 
BW =50. 
BLVAR = SQRT (1. /(SNR*BW* 2. )) 
L = 21 
s (1) = 0. 
G = 0. 

DO 1 I=1,12 
CALL RAND (IX u IY 1 YFL) 

1 BIT(I) = SIGN (1. I YFL-. 5) 
WRITE(3 1 100) (BIT(I), 1=1 1 12) 

100 FORMAT('1' I 'INPUT SEQUENCE=' ,12F8. 0) 

DO 20 I=Z,ll 
IF (BIT (I) -BIT (I +1)) 21 I 2 2 I 21 

21 G = G+l. 
GO TO 20 

22 G = G+Zo 
20 CONTINUE 

WRITE(3 ,99) G 
99 FORMAT(/SX 1 'NUMBER OF TRANSITIONS IS'5X,F4.0) 

DO 2 I=1 1 190 
2 NOISE(I) = GAUSS(BLVAR) 

c 
CALL BANDO(Y 1 L 1 BW) 
WRITE(3,102) (Y(I) 1 I=1 1 21) 

102 FORMAT(//SX,'BANDLIMITED SYMBOL SAMPLES'/(10X,5(5X,E14. 7))) 

I-' 
N 
(X) 



c 

c 

DO 30 I=2,12 
1 = (I-2)*16+2 
K = 1+15 
DO 30 J=1,K 
IF(BIT(I)-BIT(I-1)) 32 1 33,32 

32 NN = J-1+1 
GO TO (34 I 35, 35, 35,35135135,35,35,35,35,35, 35, 35,34,36) INN 

34 S(J) = -BIT(I-1)*. 5 
GO TO 30 

35 S(J) = -BIT(I-1) 
GO TO 30 

36 s (J) = 0. 
GO 1'0 30 

33 MM = J-1+1 
GO TO (4, 5 I 5 I 5 I 5 I 5 I 4 I 6 I 7 I 8 I 818 I 8,8 I 7 I 6) I MM 

4 S (J) = -BIT (I)* • 5 
GO TO 30 

5 S (J) = -BIT (I) 
GO TO 30 

6 S(J)=O. 
GO TO 30 

7 S(J) = BIT(I)*. 5 
GO TO 30 

8 S (J) = BIT(I) 
30 CONTINUE 

WRITE(3,1000) (S(J) I J=l,l77) 
1000 FORMAT(/5X 1 'SIGNA1 SAMP1ES='/(lOX,lO(FlO" 2))) 

DV(1) = -BIT(l) 
DO 60 I=2 1 12 
1 = (I-2)*16+2 

....... 
N 
<.o 



c 

K = L+lS 
DO 60 J=L,K 
IF(J • GT, L+1) GO TO 61 
DV(J) == -BIT(I-1) 
GO TO 60 

61 IF(J .LT. L+S .OR. J .GT. L+9) GO TO 62 
DV(J) =(BIT(I)+BIT(I-1))*. 5 
GO TO 60 

62 IF (I • LT. L+13) GO TO 63 
DV(J) == -BIT(I) 
GO TO 60 

63 DV(J) = 0. 
60 CONTINUE 

WRITE(3,999) (DV{I) I !=1,177) 
999 FORMAT(/SX,'DERIVATIVE OUTPUT=' ,/(lOX,lO(FlO. 2))) 

41 

42 

43 

40 

X(l) = Y(ll) 
DO 40 !=2,12 
L = (I-2)*16+2 
K = L+l5 
M == 1 
DO 40 J=L,K 
MM = J-L+l 
GO TO (41,41,41,41,41,42,42,42,42,42,43,43,43,43,43,43) ,MM 
X(J) = Y(MM+ll)* (-BIT(I-1)) 
GO TO 40 
X(J) = -BIT(I-l)*Y(MM+ll) + BIT(I)*Y(M) 
M == M+l 
GO TO 40 
X(J) == Y(M)*BIT(I) 
M == M+l 
CONTINUE 

1-' 
w 
0 



WRITE(3,1004) (X(I), !=1,177) 
1004 FORMAT(/SX,'OUTPUT SAMPLES OF THE FILTER'/(10X,5(5X,El4. 7))) 

c 

c 

50 

1005 
c 

70 

1006 
c 

51 

THETA= 0. 
DO 51 J=l,lO 

DO 50 I=lO ,177 
K = J-1 
Z(I) = (S(I)-(X(I-K)+NOISE(I-K)))*DV(I) 
WRITE(3,1005) (Z(I), 1=10,177) 
FORMAT('l' ,SX,'DETECTED SAMPLE='/(10X,5(5X,El4. 7))) 

SUM= 0. 
DO 70 JJ=l0,177 
SUM = SUM+Z(JJ) 
SUM= SUM/G 
WRITE(3,1006) THETA, SUM 
FORMAT(// /SX,'THETA=' ,FlO. S,SX,'ESTIMATE OF THETA=' ,ElS. 7) 

THETA= THETA+O. 0625 
STOP 
END 

SUBROUTINE RAND (IX,IY, YFL) 
IY = IX*65539 
IF (IY) 1, 2 I 2 

1 IY = IY+2147483647+l 
2 YFL = IY 

YFL = YFL*. 4656613E-9 
IX= IY 
RETURN 
END 

........ 
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........ 



SUBROUTINE BANDO(Y ,L ,BW) 
COMMON c ,ALFA IT 
REAL Y(2l} 
L = 21 
ALFA = 0.125 
BW =50 
T = 0. 
N2 = 100 
A= 0. 
B = 3 .14l6*BW 
C=2./3.1416 
N = N2/2 
H = (B-A)/FLOAT(N2) 
M = L-2 
DO 2 J=1,M 
FO = 0. 
S = FO + 4. *F(A+H) 
Nl = N-1 
DO 3 I=1,N1 

3 S = 2. *F(A+H*FLOAT(2*I))+4. *F(A+H*FLOAT(2*I+l)) + S 
S = H*(F(B)+S)/3.0 
K = J+2 
Y(K) = S 
T = T+O. 0625 

2 CONTINUE 
Y(l) = -Y(21) 
Y(2) = -Y(20) 
RETURN 
END 

1-' 
w 
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FUNCTION F(X) 
COMMON C ,ALFA, T 
F = C* (SIN(2. *ALFA*X)/(2. *ALFA*X))* ((1. -COS (X))/X)*SIN(X* (1. -2. *T)) 
RETURN 
END 

FUNCTION GAUSS (S) 
INTEGER IX/213711/ 
A= -6. 
DO 1 I=l,12 
IY = IX*65539 
IF (IY) 5 I 5 I 6 

5 IY = IY + 2147483647+1 
6 X= IY 

RANDU =X* o 4656613E-9 
A= A+ RANDU 

1 IX=IY 

/DATA 
/END 

GAUSS= A*S 
RETURN 
END 

1-' 
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