
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2015

Modeling supply chain interdependent critical infrastructure Modeling supply chain interdependent critical infrastructure

systems systems

Varun Ramachandran

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Systems Engineering Commons

Department: Engineering Management and Systems Engineering Department: Engineering Management and Systems Engineering

Recommended Citation Recommended Citation
Ramachandran, Varun, "Modeling supply chain interdependent critical infrastructure systems" (2015).
Doctoral Dissertations. 2392.
https://scholarsmine.mst.edu/doctoral_dissertations/2392

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2392&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2392?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2392&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

i

 MODELING SUPPLY CHAIN INTERDEPENDENT CRITICAL

INFRASTRUCTURE SYSTEMS

by

VARUN RAMACHANDRAN

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

ENGINEERING MANAGEMENT

2015

Approved

Suzanna Long, Advisor

Steven Corns

Ruwen Qin

Brian Smith

Curt Elmore

ii

 2015

Varun Ramachandran

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation has been prepared in the form of three papers for publication.

The first paper was submitted to The Natural Hazards Review Journal and starts on page

11 through to page 47. The second paper was submitted to The International Journal of

Geospatial and Environmental Research and starts on page 48 through to page 78. The

third paper was submitted to The Computer Environment and Urban Systems Journal and

starts on page 79 through to page 108.

iv

ABSTRACT

While strategies for emergency response to large-scale disasters have been

extensively studied, little has been done to map medium- to long-term strategies capable

of restoring supply chain infrastructure systems and reconnecting such systems from a

local urban area to national supply chain systems. This is, in part, because no

comprehensive, data-driven model of supply chain networks exists. Without such models

communities cannot re-establish the level of connectivity required for timely restoration

of goods and services. This dissertation builds a model of supply chain interdependent

critical infrastructure (SCICI) as a complex adaptive systems problem. It defines model

elements, data needs/element, the interdependency of critical infrastructures, and suggests

metrics for evaluating success. Previous studies do not consider the problem from a

systematic view and therefore their solutions are piecemeal, rather than integrated with

respect to both the model elements and geospatial data components. This dissertation

details a methodology to understand the complexities of SCICI within a real urban

framework (St. Louis, MO). Interdependencies between the infrastructures are mapped to

evaluate resiliency and a framework for quantifying interdependence is proposed. In

addition, this work details the identification, extraction and integration of the data

necessary to model infrastructure systems

v

ACKNOWLEDGMENTS

First and foremost, I want to thank my advisor, Dr. Suzanna Long for giving me

the opportunity to work on this project and allowing me to pursue my dream. Her caring

nature, guidance, patience and above all knowledge helped me conduct and complete this

research. Next, I would like to thank Dr. Tom Shoberg for his continuous effort in

making me excel. Dr. Shoberg also provided me with different ideas that moved the

research forward. I would also like to thank him for making me a better technical writer.

Finally, he created the datasets for this work and in doing so, allowed me to complete my

research in a timely fashion. I would like to thank Dr. Steven Corns for teaching me the

nuances of research and various modeling techniques that helped make this research

possible. I grateful for my committee members Dr. Ruwen Qin, Dr. Brian Smith, and Dr.

Curt Elmore for taking time to review the dissertation and giving me valuable inputs

during the process of this research. I must express my gratitude to the United States

Geological Survey (USGS) for funding this research.

I would like to thank both faculty and staff within Missouri S&T and Department

of Engineering Management and Systems Engineering for their support. I am deeply

indebted to Tisha for always being there for me and helping me through the tough times.

I would like to thank my research colleagues Liz, Sean, and Cory. They were always

there when I needed them. I would also like to thank my friends both here in Rolla and at

home for supporting me throughout my studies.

Finally, I would like to thank my mother and father for all of their support and

love. I could not have asked for anything more from them, and would like to dedicate this

dissertation to them and hopefully I have made them proud.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION .. iii

ABSTRACT .. iv

ACKNOWLEDGMENTS ... v

LIST OF ILLUSTRATIONS .. viii

LIST OF TABLES .. x

SECTION

1. INTRODUCTION ... 1

1.1. BACKGROUND .. 1

1.2. LITERATURE REVIEW ... 4

1.3. RESEARCH OBJECTIVES .. 6

REFERENCES .. 8

PAPER

I. Framework for Modeling Urban Restoration Resilience Time in the Aftermath of

 an Extreme Event .. 11

1. Abstract ... 11

2. Introduction ... 12

3. Data Description and Assumptions ... 16

a. Geospatially-Located Infrastructure Elements ... 19

b. Hazard Simulation (Damage Data) .. 21

c. Restoration Data & Supply Chain Strategic Infrastructure Elements 22

4. Methodology ... 24

a. Combinatorial Graph .. 24

b. Tornado Simulation .. 27

c. Construction of the Priority Matrix ... 28

d. Nearest-neighbor Algorithm .. 29

e. Critical Paths ... 30

 5. Results .. 31

a. Calculation of Resilience Time ... 31

b. Joplin Tornado .. 36

 6. Discussion and Conclusion .. 38

 7. Future Work .. 40

vii

 8. Acknowledgments ... 41

 9. References ... 42

II. Identifying Geographical Interdependency in Critical Infrastructure Systems Using

 Publically Available Geospatial Data in Order to Model Restoration Strategies in

 the Aftermath of a Large-Scale Disaster .. 48

 1. Abstract .. 48

 2. Introduction ... 49

 3. Literature Review .. 52

 4. Data Requirements .. 54

 5. Example ... 57

 6. Data Acquisition and Preprocessing .. 59

 7. Algorithm for Mapping Geographic Interdependency ... 61

 8. Conclusion and Future Works ... 70

 9. References ... 73

III. Post Disaster Supply Chain Interdependent Critical Infrastructure System

 Restoration Modeling: A Review of the Necessary Data .. 79

 1. Abstract .. 79

 2. Introduction ... 81

 3. Method ... 84

a. Fright/Freight Flow Data .. 90

b. Transportation Infrastructure Capacity Data .. 91

c. Geospatial Data ... 92

d. Restoration Data.. 94

e. Hazard Data ... 94

f. Role of GIS in Data Acquisition and Integration ... 94

g. SCICI Interdependencies .. 95

 4. Results .. 96

 5. Conclusion and Future Work .. 101

 6. References ... 104

SECTION

2. CONCLUSION AND FUTURE WORKS ... 109

APPENDIX .. 114

VITA ... 217

viii

LIST OF ILLUSTRATIONS

PAPER I Page

Figure 1 Outline of the Restoration Framework..17

Figure 2 Modified Standard Supply Chain Model where different modes of transportation

are represented by squares and utilities are represented by circles.....................19

Figure 3 Orthoimagery from The National Map overlain by key SCSI geospatial elements

(symbols defined in legend..21

Figure 4 Graph representation for G1..25

Figure 5 Subgraph within Johnson County, Kansas..27

Figure 6 Nearest-neighbor Algorithm. Solid lines show shortest path to neighboring

vertex, dashed lines show unused (longer) paths..30

Figure 7 Pre-destruction, Post-destruction, and Post-restoration schematics....................33

Figure 8 (a) Gantt chart for resilience time, shows when the work will start and finish on

the different SCSI elements according to the priority matrix and amount of work

completed. (b) Activity-on-Node Network shows total days to complete the

restoration work...36

PAPER II

Figure 1 Supply Chain Interdependent Critical Infrastructure..50

Figure 2 Natural Hazards Reported between 2000 and 2011 (EM-DAT).........................51

Figure 3 Cartoon illustrating the interdependent nature of critical infrastructure

elements...56

Figure 4 The study area, the greater St Louis, metropolitan area with USGS 7.5’

topographic quadrangle coverage (Rogers, 2009)...59

Figure 5 Orthoimagery and selected SCICI infrastructure for St. Louis, Missouri region

(Ramachandran et al., 2015)..60

Figure 6 Elevation DEM integrated with road networks for the central United

States..61

ix

Figure 7 Steps for systemic geographic interdependency mapping for finding nearest

neighbors...63

Figure 8 Steps for systemic geographic interdependency mapping for finding an

approachability Function...66

PAPER III

Figure 1 Schematic work flow pattern for transportation infrastructure system restoration

modeling..86

Figure 2 Orthoimagery, hydrography (National Hydrography Dataset, NHD) and rail data

for St. Louis, Missouri region from The National Map of the U.S. Geological

Survey..93

Figure 3 SCICI elements for a section of southern St. Louis, Missouri. Upper left map

shows infrastructure in the St. Louis metropolitan area, inset black box shows

the expanded area in the larger low right box...100

x

LIST OF TABLES

SECTION Page

Table 1 Disturbances within an infrastructure system .. 1

Table 2 Objectives and Techniques used to conduct this Research 7

PAPER I

Table 1 SCSI Elements considered in the Model and damage estimates to each of the

elements ... 23

Table 2 vertices and edges for Graph ... 26

Table 3 Priority matrix .. 29

Table 4 Restoration data ... 32

Table 5 Resilience Time per Element ... 34

Table 6 Model comparison against Joplin Restoration ... 38

PAPER II

Table 1. Transportation data requirements for modeling SCICI in an urban environment

like St. Louis, Missouri (modified from Ramachandran et al., 2015). 58

Table 2. Results of finding nearest neighbor .. 65

Table 3. Elevation and Slope data for Road infrastructure of SCICI 69

Table 4. Example Results of applying ‘approachability function’ 69

PAPER III

Table 1 Data Requirements for Transportation Sector (modified from Long et al., 2013)

 ... 88

Table 2 Data acquired and integrated for SCICI modeling for St. Louis metro area. 97

1

INTRODUCTION

1.1. BACKGROUND

In modern society, the basis of livelihood is determined by the availability and

reliability of a nationally critical infrastructure. This infrastructure should include

transportation networks, electrical networks, a water system, communication networks,

banking and finance sectors, emergency services and so forth. (Rinaldi et al., 2001; Little,

2003). These infrastructures form an over-arching net that covers the normal, everyday

activities of a society. Each individual infrastructure includes numerous interaction points

and disturbances that can cascade very quickly bringing the entire system to a standstill.

The multiple layers of an infrastructures system are interweaved, this restoration must

incorporate the interdependent nature of infrastructures; it cannot be looked at as a stand-

alone problem. Table 1 lists the types of disturbances that can affect an infrastructure.

Table 1 Disturbances within an infrastructure system

Disturbances Factor

Natural Hazard

Earthquakes, floods, tornadoes, hurricanes, volcanic

activities (McEntire, 2004)

Man-Made Hazard Terrorism, war, mismanagement (Hollman et al., 2007)

Technical Failures

Design faults, maintenance issues, unskilled workers

(Wen et al., 2009)

Weather Related Extreme winds, snow, ice, sleet (Helbing et al. 2006)

2

The vulnerability and the importance of these infrastructures has long been

recognized. In the Executive order 13010, July 15, 1996, [Clinton, 1996] stated:

Certain national infrastructures are so vital that their incapacity or destruction

would have a debilitating impact on the defense or economic security of the

United States. These critical infrastructures include telecommunications, electrical

power systems, gas and oil storage and transportation, banking and finance,

transportation, water supply systems, emergency services (including medical,

police, fire, and rescue), and continuity of government. These are the foundations

of our prosperity, enablers of our defense, and the vanguard of our future. They

empower every element of our society. There is not more urgent priority that

assuring the security, continuity, and availability of our critical infrastructures...

To protect critical infrastructure against disruptions, a better understanding of the

behavior of each component within a critical infrastructure is necessary. Once, the

behavior of each component is understood the internal interaction mechanisms among the

different components of critical infrastructure needs to be understood. Since, the related

historic data is incomplete and not freely available, and real-world physical experiments

are expensive there is a need to analyze the critical infrastructure and its

interdependencies by using computer modeling and simulation.

Modeling restoration of a critical infrastructure presents several challenge. There

is a need to incorporate ideas and tools from a wide spectrum of research areas, including

simulation-based optimization, structural engineering, human behavior modeling,

geographic information systems (GIS), and supply chain management. A number of

studies have been conducted in the past on either disaster management or facility

3

locations following natural or man-made disasters. Little has been done, however that

considers medium or long-term restoration strategies that are capable of reconnecting

urban areas with national supply chain infrastructure systems. Without a comprehensive,

data-driven model of a strategic supply chain infrastructure, communities cannot re-

establish the level of vibrant connectivity required for the timely restoration of goods and

services.

A systematic approach to identifying the interdependency between a critical

infrastructure and the restoration after a perturbation has not been undertaken (OHS,

2002). Fragility increases as a systems complexity increases. The system will also have

more sub-systems associated with it. These sub-systems will most likely be inter-

dependent on each other for their functioning and, thus, they will have an unpredictable

behavior. In today’s increasingly interconnected infrastructure networks, the probability

that a perturbation in one network will affect the functioning of other systems is quite

high (McEntire, 2004; Lecomte, 1998; Mills, 2005). The challenges related to

identifying, understanding, and analyzing the interdependent nature of critical

infrastructure is magnified by the wide breadth and complexity of the infrastructure’s

system and related factors. These factors include social, societal, political, technical,

economic, legal, and security concerns.

This research proposes a framework for restoration of critical infrastructure in the

aftermath of a perturbation. A methodology was developed for understanding the

complexities of the system and was validated against a real-world scenario. Next, an

evaluation of all the data the publically available was performed to understand and find

out the data required for this research. Finally, with the use of the publically available

4

data interdependencies between the different infrastructures was mapped to understand

the complexity of the real-world system. The framework that will thus be developed will

be scalable across regions and extreme event and will be a plug-and-play model.

1.2. LITERATURE REVIEW

The literature review reveals that the bulk of the research conducted in the field of

disaster management or restoration after an extreme event deals with either models

focused on facility location, inventory management, resource distribution strategies, or on

estimation of short-term resource requirements after an extreme event. The literature that

is available is infrastructure-specific and only looks at the problem of protecting a

complex and interdependent infrastructure system from a single infrastructure stand-

point. A number of organizations, institutions, and universities have focused their

research on the critical infrastructure protection like the Department of Homeland

Security [DHS], Department of Energy [DOE], and Sandia National Laboratories.

Many researchers have looked at a single infrastructure only and studied the

reliability and vulnerability (Adachi, and Ellingwood, 2008; Liu et al., 2005; Davidson et

al., 2003). Little sufficient data is available when examining critical infrastructures. A

probabilistic method is used to estimate how the infrastructure will react (Lewis et al.,

1979; Apostolakis, 2004; Pate-Cornell, 2001). Liu et al. (2005) used statistical regression

models combined with historical data to analyze the damage of an earthquake on the

power supply. The problem with this type of work is that it does not take into account the

multiple network topology and the models thus created have a lot of assumptions

associated with it. Koutsourelakis (2010), and Ellingwood and Kinali (2009) look at the

vulnerability of built environment when subjected to an earthquake. Distributed

5

Engineering Workstation (DEW, 2006) is being used to analyze and identify

interdependencies from an electrical power systems standpoint and uses graph theory to

create the model.

Several notable studies have been conducted by Holguín-Veras et al. (2012), who

examined the allocation of resources after hurricane Katrina. Akkihal (2006) developed

an algorithm that was focused on the location of distribution centers for non-perishable

supplies. Duran et al. (2011), Balcik and Beamon (2008), Ozbay and Ozguven (2007),

and Jaller et al. (2007) created techniques that can be used to review levels of disaster

relief supplies by considering either a stochastic approach (looking at resource

requirement patterns), or used mathematical models to do the same. An operations

research (OR) perspective is provided by a number of papers including Altay and Green

(2006) where they considered disaster operations management, Rawls and Turnquist

(2010) developed an OR tool for pre-positioning emergency supplies before an extreme

event, Mete and Zabinsky (2010) created an optimization technique for medical supply

location and distribution, a study by Simpson and Hancock (2009) focused on an OR

based research that has been done in this field in the last fifty years. The disaster

problem’s attributes must be understood before theories and algorithms can be applied to

disaster operations. The comprehensive model developed during this research can be used

to examine preparedness, planning, response, and recovery activities.

 Another problem while focusing on infrastructure rebuilding after an extreme

event is related to the involvement of multiple organizations including both private and

public entities working together. This leads to managerial confusions and ambiguity as to

who is in-charge, and what are the responsibilities (Altay & Green, 2006). Public entities

6

have problems within themselves such as ill-defined goals, being authoritative, and have

strong political connections (Gass, 1994). Most of the literature that is available does not

examine this problem; it ignores it. The handoffs between public and private entities

needs to be dealt with seamlessly for optimizing the recovery process. In the literature

that is available only a few papers come close to addressing these issues. Gass (1994)

presents a decision making methodology advocating for the decision power to be vested

in the hands of a select group of people based on an algorithm.

 Several of the most advanced critical infrastructure modeling techniques use agent

based modeling. Agent-based Infrastructure Modelling and Simulation (AIMS, 2007)

was developed at the University of New Brunswick It is used to simulate and model the

survivability of a critical infrastructure in Canada. This model did take interdependencies

into consideration, little real-data, however was used in this research. The Critical

Infrastructure Modelling System (CIMS, 2006) was developed by Idaho National

Laboratories (INL), uses geospatial information and performs ‘what-if’ analysis. The

primary problem with this model is that it does not consider the interdependency that

exists between critical infrastructures.

1.3. RESEARCH OBJECTIVES

This work was focused on the medium- or long-term restoration strategies that are

capable of reconnecting urban areas with national supply chain infrastructure systems.

Without a comprehensive, data-driven model of supply chain networks, communities

cannot explore strategies to re-establish the level of vibrant connectivity required for a

timely restoration of goods and services. This project approached modeling Supply Chain

Interdependent Critical Infrastructure (SCICI) in the wake of a large-scale disaster and

defines model elements, data needs per element, metrics for success, system modeling,

7

and interdependency mapping. By focusing on SCICI this research can directly map the

impact of perturbations on the infrastructure identified as critical by the United States by

the Department of Homeland Security (Department of Homeland Security, 2009) as well

as related infrastructure elements required for socioeconomic growth and livable

communities. The goal is to better acquire, understand, analyze, and simulate SCICI in

the context various disasters and develop decision making tools, which can help policy

makers and infrastructure service providers to get back to normalcy and to minimize the

down time. Table 2 summarizes the objectives of this research and also lists the

techniques involved in conducting this research.

Table 2 Objectives and Techniques used to conduct this Research

Objective Techniques/Requirements

Use publically available data for

creating a graph model of SCICI

Use graph theory to combine

Geospatial data

Map Interdependency

Agent Based Modeling &

Simulation, GIS analysis

Propose a methodology for

understanding SCICI

Utilize acquired data to analyze and

find data trends

Optimize restoration Use ABMS optimization techniques

8

REFERENCES

AIMS: Ulieru, M. (2007). Design for resilience of networked critical infrastructures.

In Digital EcoSystems and Technologies Conference, 2007. DEST'07.

Inaugural IEEE-IES (pp. 540-545). IEEE.

Adachi, T., Ellingwood, B., (2008). Serviceability of earthquake-damaged systems:

effects of electrical power availability and back-up systems on system

vulnerability. Reliab Eng Syst Safety, 93(1):78–88.

Akkihal, A. R. (2006). Inventory pre-positioning for humanitarian operations,

Engineering Systems Division, Massachusetts Institute of Technology,

Cambridge, MA

Altay, N., & Green III, W. G. (2006). OR/MS research in disaster operations

management. European Journal of Operational Research, 175(1), 475-493.

Apostolakis, G.E., (2004). How useful is quantitative risk assessment? Risk Analysis

24:515–20.

Balcik, B., Beamon, B. M. (2008). Facility location in humanitarian relief. International

Journal of Logistics, 11(2), 101-121.

CIMS: Dudenhoeffer, D. D., Permann, M. R., & Manic, M. (2006). CIMS: A framework

for infrastructure interdependency modeling and analysis. InProceedings of

the 38th conference on winter simulation (pp. 478-485). Winter Simulation

Conference.

Davidson, R. A., Liu, H., Sarpong, I., Sparks, P., and Rosowsky, D. V., (2003). Electric

power distribution system performance in Carolina hurricanes. Nat. Hazards

Rev. 4(1):36–45.

Duran, S., Gutierrez, M. A., and Keskinocak, P. (2011). Pre-positioning of emergency

items worldwide for CARE International. Interfaces, 41(3), 223–237.

Ellingwood, B. R., & Kinali, K. (2009). Quantifying and communicating uncertainty in

seismic risk assessment. Structural Safety, 31(2), 179-187.

Gass, S.I., (1994). Public sector analysis and operations research/ management science.

In: Pollock, S.M., Rothkopf, M.H., Barnett, A. (Eds.), Handbooks in OR &

MS: Operations Research and the Public Sector. Elsevier Science Publishers,

Amsterdam, pp. 23–46.

Helbing, D., Ammoser, H., & Kühnert, C. (2006). Disasters as extreme events and the

importance of network interactions for disaster response management.

In Extreme events in nature and society (pp. 319-348). Springer Berlin

Heidelberg.

9

Holguín-Veras, J., Jaller, M., Van Wassenhove, L. N., Pérez, N., & Wachtendorf, T.

(2012). On the unique features of post-disaster humanitarian logistics. Journal

of Operations Management, 30(7), 494-506.

Hollman, J. A., Marti, J. R., Jatskevich, J., & Srivastava, K. D. (2007). Dynamic

islanding of critical infrastructures: a suitable strategy to survive and mitigate

extreme events. International Journal of Emergency Management, 4(1), 45-

58.

Jaller, M., Ukkusuri, S., and Holguín-Veras, J. (2007). A stochastic humanitarian

inventory model for fixed lifetime goods for disaster planning. INFORMS

Annual Meeting, Hanover, MD.

Koutsourelakis, P. S. (2010). Assessing structural vulnerability against earthquakes using

multi-dimensional fragility surfaces: a Bayesian framework. Probabilistic

Engineering Mechanics, 25(1), 49-60.

Lecomte, E. L., Pang, A. W., & Russell, J. W. (1998). Ice storm'98 (p. 99). Ottawa,,

Canada: Institute for Catastrophic Loss Reduction.

Lewis H.W., Budnitz R.J., Rowe W.D., Kouts H.J.C., von Hippel F., Loewenstien W.B.,

(1979) Risk assessment review group report to the US Nuclear Regulatory

Commission. IEEE Transactions Nuclear Science 1979;NS-26:4686–90.

Little, R. G. (2003). Toward more robust infrastructure: observations on improving the

resilience and reliability of critical systems. In System Sciences, 2003.

Proceedings of the 36th Annual Hawaii International Conference on (pp. 9-

pp). IEEE.

Liu, H., Davidson, R.A., Rosowsky, D.V., Stedinger, J.R., (2005). Negative binomial

regression of electric power outages in hurricanes. J Infrastructure Systems,

114: 258–267 DEW:

Michaud, D., Apostolakis, G. E. (2006). Methodology for ranking the elements of water-

supply networks. Journal of infrastructure systems, 12(4), 230-242.

McEntire, D. A. (2004). The status of emergency management theory: Issues, barriers,

and recommendations for improved scholarship. University of North Texas.

Department of Public Administration. Emergency Administration and

Planning.

Mete, H. O., & Zabinsky, Z. B. (2010). Stochastic optimization of medical supply

location and distribution in disaster management. International Journal of

Production Economics, 126(1), 76-84.

Mills, E. (2005). Insurance in a climate of change. Science, 309(5737), 1040-1044. OHS,

2002. Office of Homeland Security, National Strategy for Homeland

Security, U.S.

10

Executive Order of the President, Office of Homeland Security, Washington, DC.

Ozbay, K., and Ozguven, E. (2007). Stochastic humanitarian inventory control model for

disaster planning. Transportation Research Record No. 2022, Transportation

Research Board, Washington, DC, 63–75.

Pate-Cornell, M.E., Dillon, R., (2001). Probabilistic risk analysis for the NASA space

shuttle: a brief history and current work. Reliable Engineering System Safety

74: 345–52

Rawls, C. G., & Turnquist, M. A. (2010). Pre-positioning of emergency supplies for

disaster response. Transportation research part B: Methodological, 44(4),

521-534.

Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding, and

analyzing critical infrastructure interdependencies. Control Systems,

IEEE, 21(6), 11-25.

Simpson, N. C., & Hancock, P. G. (2009). Fifty years of operational research and

emergency response. Journal of the Operational Research Society, S126-

S139.

Wen, M., Yang, S., Kumar, A., & Zhang, P. (2009). An analysis of the large-scale

climate anomalies associated with the snowstorms affecting China in January

2008. Monthly weather review, 137(3), 1111-1131.

William J. Clinton: "Executive Order 13010 - Critical Infrastructure Protection," July 15,

1996. Online by Gerhard Peters and John T. Woolley. The American

Presidency Project. http://www.presidency.ucsb.edu/ws/?pid=53066.

11

PAPER

I. Framework for Modeling Urban Restoration Resilience Time in the

Aftermath of an Extreme Event

V. Ramachandran1, S.K. Long2, T. Shoberg3, S. Corns4, H.J. Carlo5

1. Abstract

The impacts of extreme events continue long after the emergency response has terminated.

Effective reconstruction of supply chain strategic infrastructure (SCSI) elements is

essential for post-event recovery and the re-connectivity of a region with the outside. This

study uses an interdisciplinary approach to develop a comprehensive framework to model

resilience time. The framework is tested by comparing resilience time results for a

simulated EF-5 tornado with ground truth data from the tornado that devastated Joplin,

Missouri on May 22, 2011. Data for the simulated tornado was derived from The National

Map of the U.S. Geological Survey for Overland Park, Johnson County, Kansas, in the

Greater Kansas City area. Given the simulated tornado, a combinatorial graph considering

the damages in terms of interconnectivity between different SCSI elements is derived.

Reconstruction in the aftermath of the simulated tornado is optimized using the proposed

framework to promote a rapid recovery of the SCSI. This research shows promising results

when compared with the independent quantifiable data obtained from Joplin, returning a

resilience time of 22 days compared with 25 days reported by city and state officials.

CE Database Subject Headings: Extreme Events, GIS, Infrastructure, Supply Chain,

Resilience time, Damage, Graph Theory, Tornado

Author Keywords: Resilience time, Tornado, GIS, Supply Chain, Restoration

12

1 PhD Candidate, Department of Engineering Management and Systems Engineering,

Missouri University of Science and Technology, Rolla, Missouri, United States. E-mail:

vrnq5@mail.mst.edu Tel # (281) 468-6769

2 Associate Professor, Department of Engineering Management and Systems

Engineering, Missouri University of Science and Technology, Rolla, Missouri, United

States. E-mail: longsuz@mst.edu . Tel # (573) 341-7621

3 CEGIS, U.S. Geological Survey, Rolla, Missouri, United States. E-mail:

tshoberg@usgs.gov Tel # 572-308-3582

4 Associate Professor, Department of Engineering Management and Systems

Engineering, Missouri University of Science and Technology, Rolla, Missouri, United

States. E-mail: cornss@mst.edu Tel # (573) 341-6367.

5 Associate Professor, Department of Industrial Engineering, University of Puerto Rico at

Mayagüez Call Box 9000 Mayagüez, PR 00681 Email: hector.carlo@upr.edu Tel # (787)

832-4040 x-3105

2. Introduction

Large-scale disasters impact a region, community, city, or a country in a myriad of ways.

The aftermath invokes short-term emergency procedures (search, rescue, and recovery)

followed by moderate- to long-term restoration efforts, the latter lasting from months to

years. Existing decision–making methodologies of federal, state, and local government

agencies focus primarily on emergency response functions (Veras and Jaller, 2011; Hale

and Moberg, 2005; Horner and Widener, 2011). Longer-term problems associated with

recovery are less well studied. To achieve substantive recovery, the restoration of an urban

mailto:vrnq5@mail.mst.edu
mailto:longsuz@mst.edu
mailto:tshoberg@usgs.gov
mailto:cornss@mst.edu
mailto:hector.carlo@upr.edu

13

center’s infrastructure and that center’s reintegration into the national supply chain is

necessary. The ability to restore operational performance and continuity between supply

chain infrastructure elements damaged by a large-scale disaster needs to be studied in

greater detail (Tamvakis and Xenidis, 2013). The complexity and interdependence of

infrastructure subsystems coupled with chaotic damage from extreme events makes such

restoration planning and preparation difficult.

The two main elements of this research are the supply chain strategic infrastructure and

an extreme event that damaged that infrastructure. Supply chain strategic infrastructure

(SCSI) in this research is defined as water, wastewater, power, transportation, and

communication systems required for the normal functioning of an urban environment. The

infrastructure required for proper functioning of the supply chain provides key linkages of

a community to regional and national supply chain networks (Chopra and Meindl, 2007).

An extreme event is defined as a celestial, geologic, meteorologic, hydrologic, or

anthropogenic phenomenon that exceeds the ability of a community to cope with that event

and has both short and long-term implications (Lindell and Prater, 2003). The destruction

caused by such events leads to the need for immediate decisions based on overwhelming,

yet inadequate, data (Rosenthal et al., 1989). The restoration of SCSI in the aftermath of

an extreme event can be modeled as part of disaster-planning scenarios to guide this

decision-making process.

Modeling is the initial step in planning the restoration of the SCSI, and would be done

based on publically available data. To adequately assess the models to determine the

efficacy of the processes it is also necessary to quantify restoration using a well-defined

metric. The metric considered in this paper is resilience time. Resiliency is, admittedly, a

14

loaded term and has numerous definitions within different fields of research (Horne and

Orr, 1998; Comfort et al, 2001; Hollnagel et al., 2006; Cook and Nemeth, 2006; Dekker et

al., 2008; Reed et al., 2009; Boin et al., 2010). In this study, we follow Reed et al. (2009)

and define resilience time as the time required to restore the movement of goods and

services throughout the SCSI to a particular level. Performances of SCSI elements change

drastically in the wake of a large-scale disaster. The resulting damage requires that limited

resources must be allocated efficiently to a complex, interdependent system to restore

normal operations. Ouyang et al. (2012) proposed a three-stage resilience framework that

quantifies a system’s resiliency and other characteristics for electrical systems, but this

tends to be infrastructure or network specific. Pant et al. (2013) and Ulieru (2007) look at

specific infrastructure systems. Although these studies consider system preparedness,

capacity, and recovery from hazards, the main drawback is that they do not consider

resiliency across multiple interdependent systems. Other papers focus on either a particular

phase in restoration or on the type of disaster that had occurred or look at particular

problems like facility location or emergency management. For example, Altay and Green

(2006) consider the problem from an operations research perspective, Feng and Weng

(2005) and Kondaveti and Ganz (2009) consider post-disaster management, but only

address the management strategies immediately after an extreme event and do not consider

at the middle-to-long-term strategies of restoration. The problem of establishing medium

and long-term re-connectivity of a city after a man-made or natural disaster has not been

extensively investigated. The metrics introduced in these works are insufficient because

the problem of restoration of SCSI elements has not been studied by using a unified

approach. The framework for restoration should be able to scale across different extreme

15

events and different regions with minimal modifications. This paper looks at the type of

data required for making such framework, and how to integrate the complex data so that

the resiliency time is reduced and also there is a set decision making plan.

Some previous research efforts have viewed supply chain strategic infrastructures as

lifeline systems (O'Rourke, 2007; Hernandez-Fajardo and Dueñas-Osorio, 2011) that

physically tie together metropolitan areas, communities, and neighborhoods to facilitate

growth of local, regional, and national economies. Cagnan and Davidson (2003) described

three approaches for lifeline system restoration. The first method uses restoration curves

developed from a statistical analysis of historical data to directly estimate the restoration

time. The second method (Ballantyne et al., 1990) uses a resource constraint approach

where restoration time is a function of available resources with respect to level of damage.

The third method, called evolutionary restoration (Zhang, 1992), involves modeling SCSI

elements as a Markov chain in which future states of restoration depend on the current state

and a set of known or assumed probabilities. While this lifeline view is an accurate

representation to show the system level function of the SCSI, none of these methods

individually provides a robust method that can be used to create a framework for planning

restoration efforts. However, elements of each of these three methods combined provide

us with a starting point for a larger holistic framework.

The goal of this research is to propose a framework that facilitates re-connectivity of a

city after a disaster by: (1) understanding the type of data needed to model SCSI restoration,

(2) showing the feasibility of restoration models, and (3) evaluating the restoration of SCSI

elements as parameterized by the resilience time metric in the aftermath of a simulated

extreme event. The research first looks at different available data related to SCSI to make

16

a comprehensive SCSI model, and then calculates resilience time by taking into

consideration restoration time and priorities for reconstruction of all the different elements.

3. Data Description and Assumptions

The proposed framework starts by acquiring geospatially located SCSI data with supply

chain network parameters, restoration resource data, and hazard damage data, to construct

a model of an urban center. Figure 1a shows a flow chart of the proposed framework. The

urban center infrastructure is modelled as a graph by integrating the SCSI geospatial data

and the SCSI element data. The destruction of the urban center is based on the Hazard

damage data and is reflected in the created graph. A priority matrix is created which is used

to determine the order of restoration after the damage to the different elements of the SCSI.

A nearest-neighbor heuristic is used to prioritize the order of restoration of the urban

infrastructure. Critical path method (CPM) and a Program evaluation and review technique

(PERT) analysis utilize this heuristic along with the priority metric to calculate resilience

time. A workflow depicting the same is shown in Figure 1b. The rest of the paper is

organized in the same way. This section gives details about the different types of data

required, the methodology section explains data integration and model building strategies

and the final section describes the resilience time calculation techniques.

17

Figure 1. Outline of the Restoration Framework

A case study will be used throughout the paper in order to help describe and validate

the proposed framework. The area chosen for this case study is within the city of Overland

Park, located in Johnson County in northeastern Kansas. Johnson County, with a

population of 542,737 (CENSUS, 2010), is adjacent to Kansas City, Missouri and is the

most populous county in Kansas. This region was selected because it is an industrial and

transportation-logistics hub with national connectivity, it has a considerable amount of

publically accessible SCSI data, and it experiences tornadic activity at a rate that is 4.1

times the national average (Johnson County Government, 2010). Finally, a case study is

presented in order to help validate the proposed framework

18

Populating the model space on which simulations are to be executed is essentially a

problem of data integration. For this study there are four general categories of data that

need to be integrated: geospatially-located SCSI element data that includes location of

infrastructure elements basic geospatial data upon which the SCSI data will be located,

hazard damage data, and restoration data. These categories prove necessary for creating a

resilience time framework.

The SCSI elements, sometimes called lifeline system elements, chosen are shown in

Figure 2. Lifeline system elements are interdependent due to the operational interaction

between all the elements. These interdependencies are such that damage to one

infrastructural component can rapidly cascade into damage to surrounding components,

with system-wide consequences. Figure 2 shows the interdependent nature of a subset of

SCSI. Circles represent basic utilities required by the supply chain. Squares represent

different modes of transportation used by the supply chain. Color-coded lines connect each

utility usage to the transportation mode that requires it. In this case, the light blue lines

connects these water utility water and air transportation, green lines connect the power

utility to the road, rail and air transportation system, likewise, black lines for fuel, and

purple for communications. The red line with the double arrows shows inter-modal

transportation capability, and the triangle represents holding facilities such as ports, docks,

warehouses, etc.

19

Figure 2 Modified Standard Supply Chain Model where different modes of transportation

are represented by squares and utilities are represented by circles. Light blue line

represents dependency of the water utility, green lines are used for power utility, black

lines for fuel, and purple lines for communication, and the red lines with arrows shows

inter-modal transportation for transportation of goods, e.g. rail-road, road-air, rail-water,

water-road-air etc.

a. Geospatially-Located Infrastructure Elements

Geospatial data form the base upon which all other data elements are positioned. These

data were largely collected from two public sector databases, The National Map of the U.

S. Geological Survey (Sugarbaker and Carswell, 2011) and the Kansas Department of

Transportation (KDOT, 2012). The U. S. Geological Survey (USGS) data included 522

20

tiles of 0.3 m resolution orthoimagery, the roads, bridges (road and rail), hydrography

(streams, lakes and dams) shown in Figure 3. The orthoimagery were available in raster

format, whereas transportation, hydrography and structure data were supplied as vector

data. The high-resolution orthoimagery allowed electric grid data to be extracted. The

process for electric grid extraction involved the digitization of electric poles (picked where

pole shadows connected with the pole base) and electric substation locations. At this

resolution the electric lines running between individual poles are also commonly visible,

but visible or not the electric lines are assumed to be strung from pole to pole along a

straight line. These data were further divided into lines carrying high-, moderate- and low-

voltage electricity based upon pole design. These estimates were checked against KDOT

schematics for high- and moderate-voltage lines in the northeast Kansas area and the

agreement was excellent. While this method of data extraction has the virtue of being

completely within the public domain, it is hampered by the time-consuming nature of

acquisition and the inability to sample underground systems. However, underground

systems remain largely undamaged by tornadic activity.

The KDOT data include communication lines (mainly cell phone towers and above

ground land lines), water and sewer lines and additional structures information. The cell

phone tower data were spot checked for quality control based upon select Federal

Communication Commission (FCC) datasets and the USGS orthoimagery, again with

excellent agreement. In general, these various data sets were easily integrated, but where

there was a discrepancy, data that best fit the orthoimagery were preferred.

21

Figure 3 Orthoimagery from The National Map overlain by key SCSI geospatial elements

(symbols defined in legend). This particular tile shows 1.5 km2 of Johnson County, KS

near the intersection of W 111th Street (running E-W near the southern boundary of the

tile) and Woodland Ave (running N-S along the western boundary of the tile). The scale

on this image is 1:3700.

b. Hazard Simulation (Damage Data)

The main objective of a hazard simulation is to generate the extent of damage within a

given area. In an actual disaster, the level of damage to the SCSI would be direct input

data. For the purpose of testing the model, however, it is necessary to produce the damage

data through a hazard simulation of some sort. For this study, a hazard simulation is chosen

that invokes an EF-5 tornado. Hazard data were acquired from the National Climatic Data

Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA, 2004).

22

In this research the tornado path was chosen to cause the maximum amount of damage.

The width of a tornado’s path varies with intensity, and can range from 100 to 4000 meters

wide and it is generally no more than 19.3 kilometers long (Rind, 1994, for example,

reports that the May 31st, 2013, El Reno, OK tornado was 4-kilometer wide and lasted 26

kilometers on the ground). Tornadoes generally travel from the southwest to northeast with

an average speed of 48 km/hr, and wind speeds associated with an EF-5 tornado range from

347 to 420 km/hr (Bluestein, 2006) and cause large-scale damage along and adjacent to

their paths. These winds are powerful enough to lift frame houses off their foundations,

toss automobile-sized missiles through the air, uproot trees, and badly damage steel re-

enforced concrete structures (Grazulis, 2001). EF-4 and EF-5 tornadoes account for less

than one percent of all occurrences, but are responsible for 80 percent of all tornado

destruction within the United States (Bluestein, 2006).

c. Restoration Data & Supply Chain Strategic Infrastructure

Elements

Restoration data includes levels of skilled workers needed, collaboration between agencies

at the local state and federal level, raw material availabilities, and transportation modes for

essential goods. For large scale disasters, utility and other skilled laborers are brought in

from neighboring states. Collaboration entails recognition of the interdependent actions of

state and local organizations and other stakeholders for plan implementation (Berke et al.,

2012) and which directly affects resilience time. Restoration data for this research were

acquired through the after-action reports and interviews with subject matter experts from

the aftermath of tornadoes in Alabama (Gordon et al., 2011) and Maryland (Gailey, 2002).

23

SCSI element data identify critical elements of the infrastructure and also replacement

rates necessary to keep the network viable. The National Infrastructure Protection Plan

contains seventeen sectors that comprise the critical infrastructure of the United States

(DHS, 2006). In this pilot study a subset was chosen for compatibility based on the eleven-

system interdependent infrastructure as postulated by McDaniels et al. (2007). Table 1

shows the SCSI elements that were considered, the type of damage inflicted upon each

element, and also the data source for each.

Table 1 SCSI Elements considered in the Model and damage estimates to each of the

elements

Category Supply Chain

Element

Type of damage Geospatial Location

source

Transportation

Roads

Debris

The National Map

(2011)

Transportation

 Bridges

Minor structural

damage, debris

The National Map

(2011)

Transportation

Rail

Debris

The National Map

(2011)

Electric

Lines, power

poles, and

substations

Lines down,

structural damage

to poles and

substations

The National Map

(2011)

24

Table 1 SCSI Elements considered in the Model and damage estimates to each of the

elements (cont.)

4. Methodology

a. Combinatorial Graph

The data described above provide a basis for building a framework of the SCSI elements

for a given region. One modeling method is by utilizing combinatorial graph theory. Graph

theory is a means of showing connectivity of elements in a model (West, 2000). The

different elements of SCSI can be modeled into a graph by representing them as vertices

or edges. The different interconnections and interfacing between the elements can be

explicitly shown on a graph. A combinatorial graph or Graph (G) is an ordered pair G =

(V,E) comprising of a set V, of vertices or nodes together with a set E of edges or lines

which are 2-element subsets of V (i.e., an edge is related with two vertices, and the relation

is represented as an unordered pair of the vertices with respect to the particular edge (West,

2000). For example, let graph, G1 represent a road transportation network (Figure 4). All

bridge and road intersections are represented as vertices (circles in Figure 4) and the roads

Communications Cell towers and

Land lines

Lines down,

structural damage

to towers

MARC (2010)

Water

Pipeline and

Pumping stations

Debris impact to

pumping stations

MARC (2010)

25

connecting them as edges (lines connecting the circles). A path is a sequence of edges

connecting a series of vertices. A graph is said to be connected if one or more paths exists

between every pair of vertices. For this research each utility is represented by its own graph

and prior to an extreme event each graph is connected. Note that the graph is considered

connected because a pathway exists such that it is possible to go from any vertex to any

other vertex.

Figure 4 Graph representation for G1

The SCSI elements identified in Table 1 were divided into edges and vertices that form

the combinatorial graph (Table 2).

26

Table 2 vertices and edges for Graph

Figure 5 shows a graph of the SCSI elements idealized as edges and vertices overlain

on orthoimagery for a subset of the study area. A majority of the SCSI elements that are

being considered in this research are shown in Figure 5 (some are not because they are not

present in this area). Even though this figure is overlain on orthoimagery a connected graph

can be seen with vertices and edges representing the SCSI elements. This graph is a

representation of the entire infrastructure that is necessary for normal functioning of the

city; it shows the connectivity between the different elements and also interconnections of

the network.

Vertices Edges

Bridges & Intersections Roads

Electric Poles and Substations Electric Lines

Communication Towers Communication Lines

Pumping stations Water pipelines

27

Figure 5 Subgraph within Johnson County, Kansas. Combinatorial graph shows the

relevant SCSI elements, composed of electric grid, communication lines, state road

transportation lines and water pumping station

b. Tornado Simulation

An EF-5 tornado is simulated within the model. The simulation path through Overland

Park is 12 kilometers (7.5 miles) in length and 2.5 kilometers (1.5 miles) wide heading due

28

north. The simulation invokes a zone of maximum damage, 100% of all edges and 90% of

vertices are damaged or unusable, within the tornado’s path. A zone of reduced damage

extends outward radially an additional 700 m from the edge of the previous zone. Within

this 700 m swath, edges connected to vertices inside of the maximum damage zone were

destroyed.

c. Construction of the Priority Matrix

A hierarchy of the order of restoration for SCSI elements was constructed. This hierarchy

is represented as a priority matrix of weights and priorities (see Table 3). Priorities define

the preferred order of restoration and are assigned numbers ranging from two to five, two

being lowest priority. Weights are also assigned across each priority element signifying the

importance of any particular vertex. The first step in restoration deals with clearing the

large amount of debris on roads, so that the restoration and damage assessment crews can

reach the area and decide on the course of action. The SCSI element with highest priority

and largest weight establishes the initiation of restoration. This priority matrix is

constructed in consultation with subject matter experts. Transportation is given the highest

priority due to the fact that crews need access to the damaged areas before any other repair

work can start. Electricity is the next utility to be restored, followed by communications

and then water. Table 3 shows the order of restoration which was employed for this study.

29

Table 3 Priority matrix

 Weights

Priorities 5 3 1

5 (Transportation) Federal Highways,

Federal Bridges

State Highways,

State Bridges, Rail

Local Roads

4 (Electricity)

Substations &

High voltage lines

Intermediate

voltage lines

Low voltage

lines

3 (Communication) Communication

Towers

Communication

Lines

2 (Water) Water pumps Water pipelines

(Note: Clean and

Waste Water are

separate)

d. Nearest-neighbor Algorithm

A nearest neighbor algorithm is used to restore SCSI elements. In a nearest-neighbor

method, each vertex controls an area corresponding to a fraction of the distance to its

neighbor in any given direction (Bondy and Murty, 1976). Increasing the weight increases

the area controlled by a given vertex. Figure 6 gives an example of how the nearest

neighbor algorithm would operate. Element 1 and element 8 must be reconnected, while

elements two through seven are available infrastructure elements between them. The

dashed lines represent possible connections that are not part of the solution, while the solid

lines represent the path found by the algorithm. The priority matrix identifies the initial

SCSI element that needs to be restored (represented by vertex 1 in Figure 6). The nearest

neighbor algorithm finds the closest vertex (in this case, vertex 2) and joins the two by an

edge. This edge represents restoration of functionality of the elements represented by these

two vertices. In the next iteration, the algorithm finds the nearest unvisited vertex (vertex

30

7) and joins them by an edge, again representing functionality. This is repeated until a path

exists that connects vertex 1 to vertex 8. For the simulation we define the restoration time

as the time until 80% of the pre-event system functionality is restored. Hence, in our

simulation these iterations continue until 80% of SCSI connectivity is restored.

Figure 6 Nearest-neighbor Algorithm. Solid lines show shortest path to neighboring

vertex, dashed lines show unused (longer) paths. Note that connectivity is established in

the vertex sequence 1, 2, 7, 4, 5, 6, 8 and vertex 3 is no longer part of the grid system

after restoration.

e. Critical Paths

The Critical Path Method (CPM) is one of the several algorithms for scheduling a set of

project activities. It is made for projects that are have a number of smaller individual

“activities” and it determines the longest path of planned activities to the end of the project

31

(Kelley, 1963). If some of the activities require other activities to finish before they can

start, then that leads to the project becoming complex. The main advantage of using CPM

is that it calculates the optimal sequence of planned activities for any project and it can

help figure out how much time the whole project will take to complete. It may also have

activities that are critical meaning that they have to be completed within the specified time

or the project will get delayed. In this research the total resilience time is not a matter of

simply adding all reconstruction times since some of the activities require other activities

to either partially or completely finish before they can start and hence are on the critical

path of restoration.

5. Results

a. Calculation of Resilience Time

Resilience time calculation is based on the time dependence of infrastructure’s repair

function. The infrastructure repair function includes: number of utility workers, raw

material availability, and collaboration of the different federal, state, and local groups. The

restoration data (Table 4) is mainly derived from reports by various agencies and also

personal communication with engineers and workers who have worked on different

tornadoes in the past. The rate of restoration varies from case to case but a mean value was

used in this case.

32

Table 4 Restoration data

SCSI Element Rate of Restoration Data Source

Highways/Bridges

30 tons/truck/day

(Miller, 2007, p. 8-12);

(Felknor, 1992);

(Jackson, 2012)

Electric Lines

5 meters

repaired/day/worker

(Personal Communication,

Ameren UE);

(Gordon et al. 2011, p. 38-

39);

Communication Lines

10 meters

repaired/day/worker

(FEMA, 2012 p. iv, 8-2);

(Gordon et al. 2011, p. 65-

66)

Water

6 workers repair 1

pump/day

(Personal Communication,

St. Louis Sewer District);

(FEMA, 2012 p. iii, 8-3);

Figure 7 shows pre-destruction, post-destruction, and post-restoration schematics. The

image on the left shows the pre-destruction representation where all the vertices are

connected. The image in the middle is the post-destruction representation wherein 90% of

all the vertices and 100% of all the edges have been destroyed. In this simulation,

infrastructure within the affected area has collapsed and all elements of the SCSI are

impacted. Electric lines are down, highways are clogged with debris, water and sewage

lines are non-functional, and communications are sporadic. The resilience time depends on

33

how quickly network connectivity can be restored. The image on the right is post-

restoration representation with 80% restoration by using the proposed framework.

Figure 7 Pre-destruction, Post-destruction, and Post-restoration schematics

34

In this simulation there were 80,000 tons of debris on the road, 20,000 meters of

destroyed electric lines, 12,500 meters of communication lines down, and 625 water pumps

off-line. Resilience time for each independent SCSI element was calculated as shown in

Table 5.

Table 5 Resilience Time per Element

SCSI Element Total

Damage

80% of

total

damage

Time-

dependence

factors

Time to

Repair

Highways &

Bridges

80,000

tons of

debris

64,000 tons 5000 tons

cleared in a

day

12.8 days

Electric Lines 20,000

meters to

be

replaced

16,000

meters

160 workers 20 days

Communication

Lines

12,500

meters to

be

replaced

10,000

meters

100 workers 10 days

Water Pumping

Stations

625 water

pumps

damaged

500 water

pumps

60 pumps

repaired in a

day

8.4 days

Figure 8a shows a Gantt chart of the timeline for restoration. The restoration work on

select SCSI element depends on the prior restoration of other elements as reflected in

35

assigned priorities. Since the repair work is interdependent, all four of the model elements

are on the critical path. For example, the debris on the road network must be cleared to a

certain extent before utility workers can reach damaged structures. Electric lines and

junction repair starts after some of the major roads have been at least partially cleared of

debris. Communication and water are dependent on the initial restoration of both roadway

and electric lines. The time required for 80% restoration of the supply chain elements is

equal to the completion time of the last activity on the critical path. The total time taken to

reach 80% restoration of the supply chain elements is 22 days as calculated using the CPM

method.

An alternative method for depicting critical path information and connectivity between

tasks or elements can be illustrated by an Activity-on-Node (AON) diagram (Figure 8b).

In an AON diagram, an activity is represented by a node (box) and the dependencies among

the activities are depicted using the arrows between nodes. The relationship between the

different activities and the order in which the activities are performed is represented by

arrows. Even though both figures in essence have the same attributes and show total

resilience time, the AON diagram shows the interdependent nature of the different

activities along with the activities on the critical path.

36

Figure 8. (a) Gantt chart for resilience time, shows when the work will start and finish on

the different SCSI elements according to the priority matrix and amount of work

completed. (b) Activity-on-Node Network shows total days to complete the restoration

work

b. Joplin Tornado

On 22 May, 2011 an EF-5 tornado struck Joplin, Missouri, traveled 5 miles through the

city center, and caused massive destruction. Approximately two hours after the tornado left

the area restoration efforts began. Transportation priority was given to the reopening the

Interstate 44 (I-44) corridor which runs along the southern boundary of Joplin. According

to Missouri Department of Transportation (MoDOT) and City of Joplin officials, the

roadways and bridges were assessed for damage by structural engineers over the span of

37

several days, but within five days most major roads were passable with the roadways

restored to 80% pre-event capacity by the tenth day. Power utility workers removed live

power cables as roads became passable. Communication was initially spotty and sporadic.

Water and sewage flows were also impaired. Communication and water were restored to

80% pre-event capacity in 10 days. By the end of one week approximately 50% of electric

service was restored and by the eighteenth day electricity distribution systems reached 80%

of pre-disaster capacity (Gregg and Lofton, 2011).

The model results have been compared with the events in Joplin to validate the

described framework and not as a direct comparison of results. The restoration efforts in

Joplin are representative of post-disaster recovery processes. The Joplin data has not been

used in the creation of this framework, and the data to create this framework comes from

reports and publication on other tornadic events.

The resilience time calculations from the model were consistent with data from Joplin,

Missouri tornado (Table 6). The model yielded a resilience time of 22 days compared with

24 to 25 days for Joplin. According to the model, communication lines were re-established

within 10 days, water pipelines 8-9 days. The later finished relatively quickly even though

water restoration was given a lower priority, which implies minimal damage. Major roads

and bridges became operational within 5 to 6 days, while the electricity took 18 days to be

restored to 80% capacity. The difference between the model and the ground truth can be

attributed to any number of factors, including simplicity of the model. These results are

encouraging and imply that integrating different elements of the SCSI with geospatial data

into a single model is practicable. This model does not reflect the real-world system, but if

38

the data that has been identified in the paper is available then it is possible to create a

framework for restoration which can mimic the real world scenarios.

Table 6 Model comparison against Joplin Restoration

Critical Infrastructure Model Joplin Difference

between Model

and Joplin

Local Transportation

Network (Major Roads)

6 days 5 days

1 day

Electricity 20 days 18 days

2 days

Communication Lines 10 days 10 days

0 days

Water Pipelines 8.4 days 10 days

1.6 days

Resilience Time 22 days 24 to 25 days 2 to 3 days

6. Discussion and Conclusion

Disaster restoration of SCSI is a complex system and as such, it is essential that system

elements, connectivity, and sources of complexity be addressed in any decision framework

designed to reconnect an urban environment to the larger economic infrastructure. A

decision framework is best developed through the use of a systems approach. This

39

approach identifies interface points between infrastructures. The components consist of

lifeline systems including, but not limited to: transportation, power, communication, and

water. The interactions between these SCSI lifeline systems provide value-added detail

within a decision framework. These interactions must be considered as part of an extreme-

event restoration plan.

Public access to SCSI data is a major challenge to restoration modeling. These data are

often proprietary or restricted, however, results show that adequate data can be identified

or derived from publically available data sets. The integration of these data is challenging

due to their complexity and variety. These data provide a good snapshot of what resources

would be required to restore the SCSI in an optimized timeframe and they include

geospatial and technical information used to populate the model framework. Combinatorial

graph theory was used to determine the efficacy of this approach and as a proof-of-concept

to evaluate whether the data integration tasks can be completed at a sufficiently robust level

to provide meaningful results. Despite the simplicity of the approach, results are promising.

The model simulation calculated a resilience time of 22 days which compares favorably

with 24 to 25 days reported by city and state officials for the initial recovery from the EF-

5 tornado that devastated Joplin, Missouri, in 2011. In the model simulation,

communication lines were re-established to within 80% of pre-existing capacity in 10 days,

water pipelines in 8-9 days, provided that roads and electrical infrastructure were first

sufficiently repaired for access and functionality. Major roads and bridges became

operational in 5-6 days, and the electric junctions took 18 days to be restored to 80%

capacity. Variance of the model with the Joplin ground truth data can be attributed to any

number of reasons such as: the level of collaboration between the local, state and federal

40

agencies, the availability of raw materials for restoring such items as electric poles or

communication towers, the number of utility workers that can be called into the area, the

time taken to assess the extent of damage, the accessibility of the area in the aftermath of

the disaster, and the simplicity of the model. Even though the demographics of Johnson

County and Joplin have differences, the validation results imply that integrating different

elements of the SCSI together with geospatial data into a single model can aid in

determining extreme-event management decision frameworks.

7. Future Work

Future work will increase the quantity and complexity of real-world SCSI data. Further,

more sophisticated modelling techniques such as agent-based modeling and complex

adaptive system approaches will create a more realistic and robust analysis. Such

techniques will confirm that the methods developed in this research scale across regions

and hazard type. Ultimately, a straightforward user-interface will be developed that can

input local data for community planners to develop restoration strategies. The ability to

manage data from either public or private sources is also a challenge when attempting to

collect the necessary data to create such a framework. Most of these databases are

proprietary or private and not available in open source. Some of the data that does exist is

static and outdated. This makes determining which database is best suited for certain

analysis a strategic step in constructing this framework.

The priority matrix also requires increased sophistication in its design. Currently there

is no prioritization among the SCSI elements. For example, any set of electric poles can

be connected to any other set of electric poles regardless of whether they serve the same

function (low, moderate, or high voltage) and this should be addressed in the model.

41

Delphi Studies are also planned in order to better understand the prioritization necessary

for different supply chain elements (Hasson et al., 2000). This is an iterative process,

where experts answer questionnaires in two or more rounds. After each round, a

facilitator provides a summary of the experts’ answers from the previous round as well as

the reasons for their answers. The questions are asked again and the experts are

encouraged to revise their earlier answers.

8. Acknowledgments

Partial funding for this research is provided through US Geological Survey award number

G13AC00028. We thank Mr. George Mues, Ameren UE and Mr. Tom Broaders,

Metropolitan St. Louis Sewer District, for providing important information on the

prioritization of SCSI elements and the repair rate of damaged elements. We also wish to

thank Mr. Mike Middleton, Missouri Department of Transportation (MoDOT), and Mr.

Jack Shaller, former Assistant public works director of the city of Joplin, Missouri, for the

reconstruction statistics for Joplin, Missouri. Finally, we thank Mr. Michael Finn and Dr.

E. Lynn Usery, U.S. Geological Survey, and Dr. Ruwen Qin, Missouri University of

Science and Technology, for their reviews of the manuscript.

42

9. References

Altay, N., and Green III, W. G. (2006). “OR/MS research in disaster operations

management”. European Journal of Operational Research, 175(1), 475-493.

Ballantyne, D. B., Berg, E., Kennedy, J., Reneau, R., and Wu, D. (1990). “Earthquake loss

estimation modeling of the Seattle water system.”Tech. Rep.,

Kennedy/Jenks/Chilton, Federal Way, Wash.

Berke, P., Smith, G., and Lyles, W. (2012). “Planning for Resiliency: Evaluation of State

Hazard Mitigation Plans under the Disaster Mitigation Act”. Nat. Hazards Rev.,

13(2), pp. 139–149.

Bluestein, H. B. (2006). “Tornado alley: Monster storms of the Great Plains.” New York:

Oxford University Press

Boin, A., Kelle, P., and Whybark, C. (2010). “Resilient supply chains for extreme

situations: Outlining a new field of study”. International Journal of Production

Economics, 126(1), pp. 1-6, 2010.

Bondy, J. A., and Murty, U. S. R. (1976). Graph theory with applications (Vol. 290).

London: Macmillan.

Cagnan, Z. and Davidson, R. (2003). “Post-earthquake lifeline service restoration

modeling”. Sixth U.S. conference and workshop on Lifeline earthquake

engineering, August 10-13. Ed. J. E. Beavers. Long Beach, California: American

Society of Civil Engineers, pp. 255-264.

Chopra, S. and Meindl, P. (2007). “Supply chain management: strategy, planning, and

operation”. Pearson Prentice Hall, New Jersey, 2007.

43

Comfort, L. K., Sungu, Y., Johnson, D., and Dunn, M. (2001). “Complex systems in crisis:

anticipation and resilience in dynamic environments”. Journal of Contingencies and

Crisis Management, 9(3), pp.144-158.

Cook, R. I., and Nemeth, C. (2006). “Taking things in one’s stride: Cognitive features of

two resilient performances”. In E. Hollnagel, D.D. Woods, and N. Leveson, (Eds.),

Resilience engineering: Concepts and precepts (pp. 205). England: Ashgate

Publishing Limited.

Dekker, S., Hollnagel, E., Woods. D., and Cook, R. (2008). “Resilience engineering: New

directions for

measuring and maintaining safety in complex systems”, Final report, Sweden: Lund

University, School of Aviation, pp. 10.

Department of Homeland Security, (DHS), (2006). “National Infrastructure Protection

Plan”. Web: www.dhs.gov/nipp.

Federal Emergency Management Agency (FEMA). (2012). “Mitigation Assessment Team

Report. Spring 2011 Tornadoes: April 25-28 and May 22, Building Performance

Observations, Recommendations, and Technical Guidance”. pp. 908 Washington,

D.C.: Federal Emergency Management Agency.

Felknor, P. S., 1992: “The Tri-State Tornado: The Story of America’s Greatest Tornado

Disaster”. Iowa State University Press, pp. 131

Feng, C., and Weng, C., (2005). “A bi-level programming model for allocating private and

emergency vehicle flows in seismic disaster areas”. In Proceedings of the Eastern

Asia Society for Transportation Studies (Vol. 5, pp. 1408-1423).

44

Gailey D., (2002), “Tornado Damage Assessment Report, forest Service – Southern Region

Department of Natural Reserves”. Annapolis, Maryland. Website:

http://www.dnr.state.md.us/forests

Grazulis, T.P., (2001). “The Tornado: Nature's Ultimate Windstorm”, University of

Oklahoma Press, Oklahoma, pp. 324.

Gregg C., and Lofton L., (2011). “The Response to the 2011 Joplin, Missouri, Tornado

Lesson Learned. Study Federal Emergency and Management Agency (FEMA)”,

Kansas City, Kansas, USA.

Gordon T., Parks D., Rada J., and Weaver K., (2011), “Cultivating a State of Readiness.

Tornado Recovery and Action Council”. Alabama, USA.

Hasson F., Keeney, S., and McKenna, H. (2000), “Research guidelines for the Delphi

survey technique”. Journal of Advanced Nursing 32, pp. 1008–1015

Hale, T., and Moberg., C.R., (2005), “Improving Supply Chain Disaster Preparedness: A

Decision Process for Secure Site Location”. International Journal of Physical

Distribution & Logistics Management, 35.3, pp. 195-207.

Hernandez-Fajardo, I., & Dueñas-Osorio, L. (2011). “Sequential propagation of seismic

fragility across interdependent lifeline systems”. Earthquake Spectra,27(1), pp. 23-

43.

Hollnagel, E., Woods, D.D. and Leveson, N. (2006). “Resilience engineering: concepts and

precepts”.

England: Ashgate Publishing Limited.

45

Horne, J. F., III, and Orr, J. E., (1998). “Assessing behaviors that create resilient

organizations”.

Employment Relations Today 24 (4), pp. 29–39.

Horner, M. W., and Widener. M.J., (2011). “The Effects of Transportation Network Failure

on People's Accessibility to Hurricane Disaster Relief Goods: A Modeling

Approach and Application to a Florida Case Study”, Natural Hazards Review, 59,

pp. 1619-634.

Jackson T. (2012) “Emergency Relief Program, Missouri Department of Transportation.

Branson, MO.

Johnson County Government (2010). Government of Johnson County, Kansas Website,

Web: http://jocogov.org/, last visited (Nov 2012)

Kansas Department of Transportation, (KDOT). (2012). Kansas Department of

Transportation. Web: http://www.ksdot.org

Kelley, J. E. (1963). “The critical-path method: Resources planning and scheduling”.

Industrial scheduling, 347-365.

Kondaveti, R., and Ganz, A. (2009). “Decision support system for resource allocation in

disaster management”. In Engineering in Medicine and Biology Society, 2009.

EMBC 2009. Annual International Conference of the IEEE (pp. 3425-3428). IEEE.

Lindell, M. K., and Prater, C. S., (2003). “Accessing Community Impact of Natural

Disasters”, Natural Hazards Review 4.4 pp. 176-85

McDaniels, T., Chang, S., Peterson, K., Mikawoz, J., and Reed, D. (2007). “Empirical

framework for characterizing infrastructure failure interdependencies”. Journal of

Infrastructure Systems, 13(3), pp. 175-184.

http://jocogov.org/
http://www.ksdot.org/

46

Mid-American Regional Council (MARC). (2010). GIS Data Center. Web:

http://marc.org/gis/gisdata.htm last visited (Nov 2012)

Miller, D. (2007). “KDOT Response to Tornado Heroic”, p. 8-12. Translines.

Website http://www.ksdot.org/bureaus/offTransInfo/TRANSLIN/June/June07.pdf

last visited (Nov 2012)

National Oceanic and Atmospheric Administration (NOAA). (2004). “General circulation

model output data set for Paleoclimatology Data Contribution Series #1994-012”.

Website: http://www.ncdc.noaa.gov/oa/climate/severeweather/tornadoes.html

(Feb. 2012)

O'Rourke, T. D. (2007). “Critical infrastructure, interdependencies, and

resilience”. Bridge, Washington-National Academy of Engineering, 37(1), pp. 22.

Ouyang, M., Dueñas-Osorio, L., and Min, X. (2012). “A three-stage resilience analysis

framework for urban infrastructure systems.” Structural safety, 36, pp. 23-31.

Pant, R., Barker, K., and Zobel, C. W. (2013). “Static and dynamic metrics of economic

resilience for interdependent infrastructure and industry sectors”. Reliability

Engineering & System Safety.

Reed, D., Kapur, K.C., and Christie, R.D., 2009. Methodology for assessing the resilience

of network infrastructure, IEEE Systems Journal, 3, 174-180.

Rind, D. (1994), “General Circulation Model Output Data Set”. IGBP PAGES/World Data

Center for Paleoclimatology Data Contribution Series #1994-012. NOAA/NCDC

Paleoclimatology Program, Boulder, Colorado, USA.

Rosenthal, U., Charles, M.T., and Hart, P. (1989). “Coping with Crises: The Management

of Disasters, Riots and Terrorism.” Charles C. Thomas Publishers, Springfield, IL.

http://marc.org/gis/gisdata.htm
http://www.ksdot.org/bureaus/offTransInfo/TRANSLIN/June/June07.pdf
http://www.ncdc.noaa.gov/oa/climate/severeweather/tornadoes.html

47

Sugarbaker, L. J., and Carswell, Jr., W. J. (2011). “The National Map.” U.S. Geological

Survey Fact Sheet, pp. 2011–3042.

Tamvakis, P., and Xenidis, Y. (2013). “Comparative Evaluation of Resilience

Quantification Methods for Infrastructure Systems”. Procedia-Social and

Behavioral Sciences, 74, pp. 261-270.

Ulieru, M. (2007). “Design for resilience of networked critical infrastructures. In Digital

EcoSystems and Technologies Conference”. Inaugural IEEE-IES, pp. 540-545.

United States Census Bureau. (CENSUS) (2010). 2010 Census. Web. Accessed on 25

January 2013.

Veras, J. H., and Jaller, M. (2011). “Immediate Resource Requirements after Hurricane

Katrina”. Natural Hazards Review, 13.2, pp. 117-31.

West, D. B., (2000). “Introduction to Graph Theory”, 2nd ed. pper Saddle River,

NJ:Prentice Hall.

Zhang, R.H., 1992. Lifeline interaction in post-earthquake urban system reconstruction,

Earthquake Engineering, 10th World Conference, Balkema Press, Rotterdam,

5475-5480.

48

II. Identifying Geographical Interdependency in Critical Infrastructure Systems

Using Publically Available Geospatial Data in Order to Model Restoration

Strategies in the Aftermath of a Large-Scale Disaster

Varun Ramachandran, Tom Shoberg, Suzanna Long, Steven M. Corns, and

Hector Carlo

1. Abstract

In the wake of a large-scale disaster, strategies for emergency search and rescue, short-

term recovery, and medium- to long-term restoration are needed. While considerable

effort is geared to developing strategies for the former two options, little comprehensive

guidance exists on the latter. However, medium- to long-term restoration has a

significant effect on local, regional and national economies and is essential to community

vitality. In part, the deficit of robust strategies can be linked to the complexity in the data

acquisition and limited methodologies to understand the interconnectedness of the

relevant systems elements. This research utilizes geospatial data for Supply Chain

Interdependent Critical Infrastructure (SCICI) such as transportation, energy,

communications, or water, obtained or derived through publically available sources (such

as The National Map of the U.S. Geological Survey) to identify, understand, and map the

interdependencies between these system elements to enable restoration planning.

Specifically, internal geographical relationships (herein called the ‘geographical

interdependency’) of SCICI are mapped. These interdependencies highlight the stress

points on the larger SCICI where failures occur and are not included in current built

environment models. The mapping of these interdependencies is a key step forward in

attempts to optimally restore an urban center’s supply chain in the wake of an extreme

event.

49

2. Introduction

The U.S. socioeconomic structure is heavily dependent on its network of critical

infrastructures. These infrastructures are complex, interdependent and include numerous

interface points; a disturbance in one can quickly cause cascading failure in the others.

These infrastructures and their importance are defined as (DHS, 1996):

Certain national infrastructures are so vital that their incapacity or destruction would

have a debilitating impact on the defense or economic security of the United States. These

critical infrastructures include telecommunications, electrical power systems, gas and oil

storage and transportation, banking and finance, transportation, water supply systems,

emergency services (including medical, police, fire, and rescue), and continuity of

government…

The restoration of supply chain networks following a natural or man-made disaster is a

pervasive challenge for decision makers responsible for the reintegration of regional or

national supply networks after emergency response phases have ended. Although most

disaster response models include cursory socioeconomic recovery plans, there is no

comprehensive model capable of using data and decision variables in real time

(Ramachandran, et al, 2014). This research models critical infrastructures in terms of their

connectivity to the U.S. supply chain system and identifies geographic interdependencies

associated with this system. The term supply chain interdependent critical infrastructure

(SCICI) is used to define interdependent supply chain components. These include

transportation, power, communications, and water (Figure 1). Understanding

interdependency is a data-intensive process ranging from data acquisition and integration

to data simulation.

50

Oil and Gas Communic-
ation

Electric
Power

Transporta-
tion

Water Structures

Supply Chain Interdependent Critical Infrastructure

Aim:
Data integration, modeling, simulation, and analysis of critical infrastructures,

their interdependencies, system complexities, disruption consequences

Figure 1. Supply Chain Interdependent Critical Infrastructure

Events over the past decade highlight the vulnerability of critical infrastructures and

also showcase interdependency among elements. During the East coast blackout (August

14, 2003) the initial problem impacted the electrical generation and distribution network,

but cascade effects on other systems from water to transportation disrupted the daily lives

of fifty million people across North Eastern United States and parts of Canada (Talukdar,

2003). Similarly for both Hurricane Katrina (August, 2005) and Super Storm Sandy

(October, 2012), 4.8 million people were impacted. Following Super Storm Sandy, people

were without power in 15 states, there was shortage of petroleum in many cities due to

supply chain disruption, and the cost of repair in New Jersey alone was $36.8 billion dollars

(Blake et al., 2013).

Figure 2 represents the number of global natural disasters reported between 2000 and

2011 (EM-DAT). The sheer volume of these occurrences is further evidence of the need

51

for an effective restoration process for damaged SCICI. This restoration sequence must be

based on an understanding of the interdependence of SCICI to be effective.

Figure 2. Natural Hazards Reported between 2000 and 2011 (EM-DAT)

This research creates a model that identifies the interdependency between SCICI and

develops a restoration sequence based on data inputs. Presented in this manuscript are: the

steps required for the integration of the data, the methodology for determining the

interdependencies among the SCICI with a numerical example, and a preliminary

restoration model using geographic interdependency inputs.

300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600

2000 2002 2004 2006 2008 2010

N
u

m
b

er
 o

f
d

is
as

te
rs

Year

Number of Disasters Reported 2000 -
2011

52

3. Literature Review

A number of approaches demonstrating the importance of disaster restoration are evident

in the literature. Existing models are highly idealized and inadequate to encompass the

complexities of an actual urban environment. Moreover, current models do not consider

the problem from a systems view and solutions are incremental rather than inclusive of

required model elements and data components. In short, existing models lack complexity,

do not identify model elements from a systems perspective, and do not have a robust data

identification process (Veras and Jaller, 2012; Hale and Moberg, 2005; Horner and

Widener, 2011; Ramachandran, et al., 2014) Currently, there is no method which looks at

the problem from a holistic view, and every approach is based on different simplifications

of a mathematical model (Moteff, and Parfomak, 2004). A sampling of current methods

and their limitations for restoring SCICI is below.

Qualitative models based on stochastic processes (Patton, Gray, and Schoelles, 2003;

Baldick et al., 2008; North and Macal, 2007) provide useful means to identify and analyze

dependencies at a higher level, but qualitative approaches cannot scale across community

size or system complexity. Input-output models (Leontief, 1987) have been used to predict

economic losses due to non-availability of critical infrastructure (Rigole, and Deconinck,

2006), but do not account for interdependence. System dynamics models use a top-down

approach and are generally used to study the behavior of systems (Simonsen, 2007,

Sterman, 2002), but they are cumbersome and lack the fine detail required for robust

solutions. Continuous and discrete modeling techniques are based on mathematical designs

(Liu, 1999). These models can be used to develop restoration strategies for individual

damaged infrastructures, but quickly prove ineffective with complex systems. Topological

and complex network models identify system structures, but fail to identify system

53

characteristics in a useable manner (Schläpfer, Kessler, and Kroger, 2008). Simulation

models are often used when analytical solutions are not possible, but simulation cannot

identify all possible states (Pederson et al., 2006).

The vast majority of research after an extreme event focuses on facility location,

inventory management, resource distribution strategies, or on estimation of short-term

resource requirements for emergency response (see, for example, Veras and Jaller (2011);

Akkihal (2006); Duran et al. (2011); Balcik and Beamon (2008); Ozbay and Ozguven

(2007); Jaller et al. (2007); Altay and Green (2006); Rawls and Turnquist (2010); Mete

and Zabinsky (2010); Simpson and Hancock (2009)).

Geospatial data is used in many hazard studies to detail changes between pre- and post-

disaster imagery. Tornado damage assessment studies include Wagner, Myint, and

Cerveny, 2012; Yuan, Dickens-Micozzi, Magsig, 2002; Myint, Yuan, and Cerveny, 2008;

Jedlovec, Nair, and Haines, 2006. Post-disaster damage assessments resulting from

wildfires, hurricanes, tsunami include Splinter, Strauss, and Thomlinson, 2011; Rodgers

III, Kessler, and Kroger, 2012; Barnes, Fritz, and Yoo, 2007. Disaster impacts using a

normalized difference vegetation index include Bentley, Mote, and Thebepanya, 2002;

Wilkinson, and Crosby, 2010.

Virtually all the data used in previous studies are static and out-of-date in terms of

future disasters, or synthetic. Yet, accurate, real-time data are essential for creating the

level of complexity and interdependencies maps that are necessary to construct the models.

Local, regional and national planners would have access to their own restricted data sets,

but lack tools that can ingest these data and then provide restoration strategies. This

research discusses the creation of models for SCICI restoration that can ingest real-time,

54

publically available data, and then presents a methodology for identifying and analyzing

the interdependency between SCICI. Specifically, internal geographical relationships

(herein called the ‘geographical interdependency’) of SCICI are mapped. These

interdependencies highlight the stress points on the larger SCICI where failures occur and

are not included in current built environment models. The mapping of these

interdependencies is a key step forward in attempts to optimally restore an urban center’s

supply chain in the wake of an extreme event.

4. Data Requirements

Previous critical infrastructure modeling falls into one of three categories: the modeling of

a single infrastructure system, such as transportation, electricity, communications or water

(Gillette et al., 2002; NISAC, 2011; Shih et al., 2009); the assumption that all necessary

data are hypothetically available at the time needed (Lee et al., 2005; Tolone et al., 2004);

or the generation of synthetic data on which a model is built (Adachi and Ellingwood, 2008;

Lewis et al., 1979). While each of these approaches have strengths and avoid the difficult

task of large-scale data integration of SCICI component data, they each have significant

limitations. The single system approach may have a complete real-world data set of its

own system, but it does not properly define this system’s interaction with other systems.

Whereas models that assume either all data is available at the time required or that generate

synthetic data have also implicitly assumed knowledge of all interactive properties that

exist between systems. Necessarily, they do not have the ability to evolve or adapt to

changing circumstances, and therefore lack an understanding of the complex and

interconnected nature of the SCICI.

55

The complex and interconnected nature of SCICI are coined as the ‘interdependencies’

within the SCICI. Figure 3 shows a cartoon representation of some supply chain network

elements and their interdependencies. An illustrative example of such interdependencies

and a cascading failure might involve: a failure in a communication relay leads to the

overheating and failure of a water pump providing coolant to a power plant that destroys a

boiler, shutting down the plant, and overtaxing the electrical grid. This could lead to a

widespread blackout, communications shutdowns, transportation strictures, financial

distress and civil unrest. While the initial failure here is on a micro-scale, the illustrative

point of the importance of understanding the interconnectivity of the various SCICI is

made.

Rinaldi et al. (2001) categorize interdependencies among infrastructure systems into

one of four types: Physical interdependency, physical reliance on material flow from one

infrastructure to another, Cyber interdependency, the existence of information transfer

between infrastructures, Logical interdependency, any other type in interdependency that

exists between infrastructures that do not fall in one of the other categories, and Geographic

interdependency, infrastructures that are located in close proximity with each other. In this

study, SCICI data are used to map the latter interdependency between SCICI into a viable

Supply Chain Network (SCN) model.

In order to create a SCICI model with sophistication sufficient to illuminate the various

interdependencies across systems, a large amount of real-world data needs to be acquired,

integrated and analyzed.

56

An example of some of the types of data needed is shown for the transportation SCICI in

Table 1. The components of this table are extensively discussed by Ramachandran et al.

(2015). A satisfactory model of SCICI would require data such as these.

Figure 3. Cartoon illustrating the interdependent nature of critical infrastructure elements

Geographical interdependency is driven by proximity and approachability. It does not

constitute a physical connection (as does physical interdependency), but does require that

one element be geographically near another and that this element can be approached from

the other by reasonable means. The obvious platform for the integration and analyses of

these data prior to model building is geospatial. In this study, The National Map of the

U.S. Geological Survey is chosen as the geospatial platform, and all other data elements

57

are integrated onto the orthoimagery from this source. The integration is done in a

Geographic Information System (GIS) environment, but it should be pointed out that both

the platform and the integration environment are chosen for convenience and other systems

with the same capability could perform the same service.

5. Example

The study area is represented by 29 USGS 7.5-minute quadrangles for the greater St. Louis

region of Missouri and Illinois (Rogers, 2009) covering an area of 4,432 km2 (Figure 4),

and was chosen due to its proximity to the New Madrid Seismic Zone (NMSZ), in the

Mississippi Embayment. This fault zone is about 240 km long and occurs from five to

twenty-four kilometers beneath the earth’s surface (Newman et al., 1999). The area is a

source of considerable small-scale seismic activity today. Although the most recent large

earthquake (estimated magnitude about 7.5) occurred in 1811 – 1812, the potential

destruction due to a major earthquake in this region remains high (Tuttle et al, 2002). The

area is also subject to tornadoes, particularly during the late spring through early fall

months and, due to its proximity to the confluence of the Missouri and Mississippi Rivers,

flooding. Indeed, should a disaster claim all the major bridges in this area, the city itself

would become a virtual island in terms of transportation issues.

58

Table 1. Transportation data requirements for modeling SCICI in an urban environment

like St. Louis, Missouri (modified from Ramachandran et al., 2015).

59

Figure 4. The study area, the greater St Louis, metropolitan area with USGS 7.5’

topographic quadrangle coverage (Rogers, 2009).

6. Data Acquisition and Preprocessing

SCICI geospatial data required for the construction of public SCN models that will identify

and catalog geographical interdependencies must necessarily come from several open

sources. One such source is The National Map of U.S. Geological Survey which distributes

fully integrated layers of orthoimagery, elevation, hydrology, transportation, place names,

and land cover (Sugarbaker, and Carswell, 2011). The orthoimagery is a particularly rich

data source as it consists of aerial photographs that have been mathematically corrected to

remove camera distortions and flight path variations (‘orthorectified’), thereby producing

images of uniform scale that allow accurate determination of coordinates, distances, areas,

shapes, directions, and land usages from these images (Mauck et al., 2009). In this study

area 2268 orthoimagery tiles from The National Map were downloaded for total coverage.

These images have resolutions ranging from 0.15 m up to 0.6 m cell-lengths. From these

images it is possible to extract infrastructure elements such as bridges, culverts, docks,

60

dams, electric poles, electric substations, fire hydrants, power plants, storm drains, water

reclamation plants and more by heads up digitization. A third source of public SCICI data

include the state departments of transportation, whose road and rail data best integrate with

the road and rail depictions on the orthoimagery. An example of the SCICI geospatial data

compiled for a section of the St. Louis metroplex is shown in Figure 5.

 Elevation data is used in this study to calculate the ‘approachability’ of SCICI, and

consists of the National Elevation Dataset (NED) digital elevation models (DEM) for this

region (Figure 6). These are interpolated elevation grids have been based largely on

topographic map contour data. The highest resolution DEMs were chosen which consisted

mostly of 1/9 arc-second data (3 m cells) for the greater St. Louis county area, and 1/3 arc-

second data (10 m cells) for the rest of the area.

Figure 5. Orthoimagery and selected SCICI infrastructure for St. Louis, Missouri region

(Ramachandran et al., 2015).

61

Figure 6. Elevation DEM integrated with road networks for the central United States.

While other data sources are necessary for the modeling of physical, cyber and logical

interdependencies, the sources described here allow for the development and

implementation of algorithms that can map geographical interdependency among SCICI.

7. Algorithm for Mapping Geographic Interdependency

Infrastructures are said to be geographically interdependent if they are within a close

proximity and are able to establish a connection between each other. The elevation data

can be used as a feasibility criterion to test for physical connectivity between infrastructure

elements. A large-scale disaster would most likely cause a change of state to all the

infrastructure elements that are close to each other. For this research, geographic

interdependency is studied in two parts: calculating the nearest neighbor and calculating

infrastructure element approachability. Figure 7 illustrates the procedure adopted for

mapping the geographic interdependency between elements of the SCICI that are within a

given threshold distance of each other using a nearest neighbor algorithm.

62

 The process for applying the nearest neighbor algorithm is made up of three stages:

Infrastructure Data Loading (IDL), Infrastructure Data Cleaning (IDC), and Geographic

Interdependency Mapping Proximity (GIMP). The IDL stage (Line 1 of Figure 7)

establishes connection to a SQL® database1. SQL, or Structured Query Language, is a

special purpose programming language designed for managing and processing data. The

advantage of using the SQL database is that a geospatial data add-on is available that

supports geography data types and can store spatial data in tables (in the form of points,

lines and polygons). Queries can then be written to analyze and manipulate the data stored

within the tables. The IDC (Line 3 of Figure 7) stage is a data integration phase where all

the geospatial data that are required to map the interdependencies are converted into a

format that is readable by the SQL database. For this, GDAL (an open-source translator

library) is used to convert the raster and vector geospatial data. Using this translator, a

query is written to convert the existing spatial metadata into database readable format so

that the data can be analyzed when needed. This is an important step because when the data

gets transferred to a database all the attributes of the data are converted into columns and

can be queried as individual items. The GIMP (Line 11 of Figure 7) specifies rules for

mapping the proximity interdependency. The GIMP stage determines if the infrastructure

table exists, and if not, creates it. From this table a hash map and spatial index are compiled

which reduces subsequent computing time.

1Reference to any specific commercial product, process, or service by trade name, trademark,

manufacture, or otherwise does not constitute an endorsement, a recommendation, or a favoring by

the U.S. government or the U.S. Geological Survey

63

1: Load all the necessary shapefiles and the descriptor ≥IDL Stage

2: Using Gdal ogr2ogr convert the shapefile into database format

3: Cleanse the data (EPSG 4269) ≥IDC Stage

4: Create a new table with required fields and correct data types

5: Start a new stored procedure

6: while table exists

7: Alter and update table

8: Set

9: Inner Join using geometry location

10: Create hash table and spatial index for each table for faster join

11: Select column from <tablename> and specify join rules ≥ GIMP Stage

12: Insert stored procedure for Nearest Neighbour algorithm

13: Compute distance for each infrastructure element

14: Compute nearest infrastructure within threshold and store results

15: End set

16: Continues till all elements of SCICI are traversed

17: End while

18: Update table

 Do the same for other infrastructure and create spatial results

Figure 7. Steps for systemic geographic interdependency mapping for finding nearest

neighbors

A spatial index is a type of extended index containing data of a single spatial type (such as

geometry or geography). In this implementation the spatial index is built using R-trees. R-

trees span a 2-dimensional space, which in this case decompose the data into a four-level

64

grid hierarchy, thereby creating the spatial index. Hence, all the data are stored in an

overlapping grid hierarchy making it easier to query or retrieve. In this manner, a spatial

index for each infrastructure element can be created to speed the recovery of

interdependency information.

A nearest neighbor algorithm is then implemented to find the nearest infrastructure

elements to every element in the database. For example, consider bridges, the nearest

neighbor algorithm calculates the distance from a particular bridge element to the nearest

communication tower, electricity substation, electric grid line, dock and so forth for all

infrastructure elements using geographic locations. A threshold radius within which to

perform the search is chosen based on the type of infrastructure element queried for the

area. For example, a one kilometer radius would be reasonable for selecting the nearest

road, electric grid line or water main, whereas ten kilometers would be more reasonable

for electric substations, water pumping stations, docks, and so forth. With this threshold

each infrastructure element is traversed and if an element is found it is updated in the

corresponding table. This process of identification of elements continues until all elements

have been traversed.

Table 2 shows an example of the output after implementing the algorithm in Figure 7.

The location entries give the geographic position of every bridge within the search area.

The remaining columns identify the nearest infrastructure element (it this case, electric

substations, docks, and communication towers) to each bridge.

65

The procedure used to map geographic interdependencies using elevation data is

described in Figure 8. This method modifies the nearest neighbor method shown in Figure

7 to include elevation data to determine the feasibility of a road connecting two

infrastructure elements.

Table 2. Results of finding nearest neighbor

Location
Nearest Electric

Substation
Nearest Dock

Nearest Cell

Tower

0xAD1000000114E2B Substation_023 Dock_011 Cell_012

0xAD10000001140EE Substation_023 Dock_011 Cell_023

0xAD1000000114B48 Substation_102 Dock_023 Cell_024

0xAD10000001142D Substation_024 Dock_023 Cell_025

0xAD100000011497 Substation_024 Dock_023 Cell_026

0xAD100000010404 Substation_024 Dock_056 Cell_045

0xAD1000000114F4 Substation_051 Dock_057 Cell_028

0xAD1000000114AC Substation_051 NULL Cell_029

0xAD100000011404 Substation_051 Dock_052 Cell_032

The new algorithm, referred to as an ‘approachability function’, is defined as a

maximum slope beyond which one SCICI element cannot be reached from the other SCICI

element in its vicinity. In essence this criterion gives insight into whether a SCICI element

can be connected to or repaired from another.

66

1: Overlay the SCICI data from TNM and also the extracted from TNM over

the DEM data

2: Find elevation of each point using a 3D profile and extract the metadata

 ≥IED Stage

3: Load all the necessary shapefiles and the descriptors ≥IDL Stage

4: Using Gdal ogr2ogr convert the shapefile into database format

5: Cleanse the data by georefrencing it, and making them into the same geometry (EPSG

4269)

6: Create a new table with required fields and correct data types ≥IDC Stage

7: Start a new stored procedure

8: while table exists

9: Alter and update table

10: Set

11: Inner Join using geometry location

12: Create hash table and spatial index for each table for faster join

13: Insert Stored Procedure: Algorithm 1 find nearest neighbor

14: If neighbor found, Then check slope value

15: If slope<300m/km checkbox YES

16: Else Checkbox NO

17: Else ≥GIMA Stage

18: End set

19: Continues till all elements of SCICI are traversed

20: End while

21: Update table

 Do the same for other infrastructure and create spatial results

Figure 8. Steps for systemic geographic interdependency mapping for finding an

approachability function

67

One straightforward illustration of this connection is whether utilities crews who need

to reach an electric grid line for repair can access the line from a particular road segment

after a disaster. Infrastructure elements may be in the same vicinity (proximity), but this

does not mean that they are approachable (approachability).

The approachability determination algorithm has four steps: Infrastructure Elevation

Data (IED), Infrastructure Data Loading (IDL), Infrastructure Data Cleaning (IDC), and

Geographic Interdependency Mapping Accessibility (GIMA). Two of these, IDL (Line 3

of Figure 8) and IDC (Line 6 of Figure 8) are similar to the method described in Figure 7.

The IED (Line 2 of Figure 8) step is a geospatial data integration stage, where elevation

data (derived from the NED) is overlain on SCICI location data from TNM and projected

into the same Universal Transverse Mercator projection as the TNM orthoimagery. The

next step is to find the elevation for each feature representing a SCICI element. A profile

is then created by adding surface information to find the elevation change (Z-value), and

the slopes associated with each. Once, these values are obtained, a connection is established

in the database. The GIMA (Line 17 of Figure 8) step calculates ‘approachability function’.

The data are loaded into the database and nearest neighbors are found to each SCICI

element. For each neighbor that is found, its slope and elevation values are checked to

determine if it is above a given threshold.

Table 3 shows an example of the elevation and the slope information for a sample of

the roads in the area under consideration. The slope is found by splitting the lines at vertices

(starting and ending) and determining its length in kilometers (km) and creating a surface

profile to find the Z-value (elevation change in meters, m). The slope then will be recorded

in m/km.

68

Table 4 gives example results of the method when the approachability function is

implemented showing how the interdependencies can be mapped. In this table, the

Approachable column is a binary which shows ‘Yes’ if the element of infrastructure is

approachable from that particular road, which means it satisfies that criteria for the slope

threshold, and it shows ‘No’ if the element does not satisfy the slope threshold criteria. The

maximum slope threshold for an interstate road in the United States should not exceed 8%

grade (about 80m/km, Aashto, 2001) irrespective of the speed limit. Since, this research

looks at all the different types of roads (interstates, US highway, State Routes) the slope

threshold value is set higher at 30% grade (about 300 m/km) which is closer to the

maximum slope of a known road in the United States (370m/km, Aashto, 2001). To

calculate the ‘approachability function’ the horizontal distance from the nearest road to a

particular SCICI element is found. Then, the value (elevation change) is used to calculate

the slope from the road to the SCICI element, and if this slope is less than 300m/km

(threshold value), then the SCICI elements is deemed approachable from that road. The

‘location’ column in the table gives the location of the roads in the area under

consideration. The nearest electric substation (‘Nearest_ESub’), nearest Dock

(‘Nearest_Dock’), and the nearest communication tower (‘Nearest_CellT’) are calculated

for each road and a snippet is shown Table 4.

The methods developed and proposed here are robust and flexible. This is an important

result because different terrains, features and modes of disaster will require different types

of interdependency modeling.

69

Table 3. Elevation and Slope data for Road infrastructure of SCICI

Road Type Length

(km)

Z Value

(m)

Slope

(m/km)

US ROUTE_32 3.65 195.57 53.6

STATE

ROUTE_21

36.00 210.07 5.8

INTERSTATE_23 0.70 212.28 303.3

STATE

ROUTE_038

0.58 234.04 403.5

INTERSTATE_23 2.43 641.73 263.9

STATE

ROUTE_12

3.78 175.31 46.4

Table 4. Example Results of applying ‘approachability function’

Location

Nearest

Substati

on

Approac

h-able

Nearest

Dock

Approacha

ble

Cell

Tower

Approacha

ble

114E2BC

FE8B8F5
Sub_023 Yes Dock_011 Yes

Cell_01

2
Yes

1140EED

38156C5
Sub_023 Yes Dock_011 Yes

Cell_02

3
Yes

114B484

20F0E75
Sub_102 Yes Dock_023 Yes

Cell_02

4
Yes

70

Table 4. Example Results of applying ‘approachability function’ (cont.)

1142D5E

7836965
Sub_024 Yes Dock_023 Yes

Cell_02

5
Yes

114973E

5D282E5
Sub_024 Yes Dock_023 Yes

Cell_02

6
No

10404000

000ECC
Sub_024 Yes Dock_056 Yes

Cell_04

5
No

114F44D

E0F2805
Sub_051 Yes Dock_057 Yes

Cell_02

8
No

114ACB

E1D6096

5

Sub_051 Yes NULL No
Cell_02

9
No

1140484

A684995
Sub_051 Yes Dock_052 No

Cell_03

2
No

1149C98

112BC85
NULL Yes Dock_006 No

Cell_03

1
Yes

8. Conclusion and Future Works

There are two major findings of this research. This work shows that there is sufficient data

publically available to create a near real-world modeling scenario for infrastructure

elements. Some limitations exist, such as the static nature of the geospatial data and the

amount of estimation required while interpreting transportation data. Understanding these

bounds, the results of this research show that there is sufficient data available in public

71

domain to create a model with sufficient complexity to assist with decision making with

periodic updates as infrastructure changes.

 The second finding of this research is the demonstration of methods for

interdependency mapping. This research focuses on geographic interdependency, but

similar types of algorithm can be implemented to determine other types of interdependency

(physical, cyber, and logical). Integrating geospatial data with freight flow and

infrastructure, and combining these with restoration and hazard data is a complex task. This

complexity arises mainly due to the interdependent nature of infrastructure systems. Most

of the modeling techniques previously studied have either ignored the interdependent

nature of critical infrastructure and have looked at only one infrastructure, or have assumed

that the use of synthetic data can mimic real-world scenarios sufficiently, which is not the

case.

The modeling technique presented here utilizes data provided by The National Map

(orthoimagery, elevation etc.) to identify the location of the SCICI, find the proximity

between them, and also develop an approachability function. The spatial information is

used to identify relationships that exist between the elements of SCICI; this paves the way

to understand the complex nature of these systems. Mapping and understanding geographic

interdependency is essential when trying to model real-world scenarios.

 This research is an important step in understanding the restoration of critical

infrastructure after damage due to natural or man-made disaster. Protecting critical

infrastructures remains a difficult and an open problem, made more complex as there is not

a clear understanding of the interdependencies that exists among the infrastructures. Better

understanding of these interdependencies will lead to a heuristic for the restoration process.

72

 The advantage of this methodology is that it is scalable, and flexible, i.e. the same

model can be used for different regions and different infrastructure elements if the data are

available. The methodology proposed in this work contributes to the literature by its

explicit combination of modeling infrastructure elements using real data and mapping

interdependencies between them. Previous research considers a synthetic area, only looks

at a particular infrastructure, or does not provide a comprehensive framework to model and

map the interdependencies.

 The next step in this research will address limitations of the research with respect to

the data. Future work will increase the level of detail and robustness of the data. LiDAR

and elevation data can be used to better approximate real-world scenarios. The use of GPS

data alone can create problems when looking at something that is not at the same height.

Moreover, the use of semantic ontology should aid with the integration of data. The current

data are from different sources in different formats. Semantics will greatly help with

understanding the data and finding trends within the data. Because of the size and variety

of the data, future work will also consider reducing the computing time. The 29 size block

area that was considered for this research required more than 7 Tb of data to describe it

properly. Big-data analytics and parallel processing techniques will likely prove useful in

the development of required datasets and usable restoration tools.

73

9. References

Adachi, T., B. Ellingwood. (2008). “Serviceability of earthquake-damaged systems:

effects of electrical power availability and back-up systems on system

vulnerability”. Reliability Engineering System Safety. 93(1), 78–88.

Akkihal, A. R. (2006). “Inventory pre-positioning for humanitarian operations”,

Engineering Systems Division, Massachusetts Institute of Technology,

Cambridge, MA.

Altay, N., W. G. Green III. (2006). “OR/MS research in disaster operations

management”. European Journal of Operational Research, 175(1), 475-493.

Balcik, B., B. M. Beamon. (2008). Facility location in humanitarian relief. International

Journal of Logistics, 11(2), 101-121.

Baldick, R., B. Chowdhury, I. Dobson, Z. Dong, B. Gou, D. Hawkins, and Zhang, X.

(2008). “Initial review of methods for cascading failure analysis in electric power

transmission systems IEEE PES CAMS task force on understanding, prediction,

mitigation and restoration of cascading failures”. Power and Energy Society

General Meeting-Conversion and Delivery of Electrical Energy in the 21st

Century, 2008 IEEE (pp. 1-8). IEEE.

Barnes, C. F., H. Fritz, and J. Yoo. (2007). “Hurricane disaster assessments with image-

driven data mining in high resolution satellite imagery,” IEEE Transaction on

Geoscience and Remote Sensing, vol. 45, no. 6, pp. 1631–1640.

Bentley, M. L., T. L. Mote, and P. Thebepanya. (2002). “Using Landsat to identify

thunderstorm damage in agricultural regions,” Bulletin of American

Meteorological Society, vol. 83, no. 3, pp. 363–376.

Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II. (2013).

“Tropical Cyclone Report: Hurricane Sandy”. National Hurricane Center, 12.

74

Department of Homeland Security (DHS). (1996). The White House, United States

Government.1996. Executive Order EO 13010. Critical Infrastructure Protection

Retrieved from: http://fas.org/irp/offdocs/eo13010.htm. Last accessed on

12/2/2014.

Duran, S., M. A. Gutierrez, and P. Keskinocak. (2011). “Pre-positioning of emergency

items worldwide for CARE International”. Interfaces, 41(3), 223–237.

EM-DAT: The OFDA/CRED International Disaster Database. Université Catholique de

Louvain. Brussels, Belgium. Available at: http://www.cred.be/emdat.

Gillette, J., R. Fisher, J. Peerenboom, R. Whitfield. (2002). “Analyzing

Water/Wastewater Infrastructure Interdependencies”. 6th International

Conference on Probabilistic Safety Assessment and Management, San Juan (PR),

June 23-28. Available on-line: http://www.dis.anl.gov/pubs/42598.pdf.

Holguín-Veras, J., and M. Jaller. (2011). “Immediate resource requirements after

hurricane Katrina”. Natural Hazards Review, 13(2), 117-131. DOI

10.1061/(ASCE)NH.1527-6996.0000068.

Jaller, M., S. Ukkusuri, J. Holguín-Veras. (2007). “A stochastic humanitarian inventory

model for fixed lifetime goods for disaster planning. INFORMS Annual Meeting,

Hanover, MD.

Jedlovec, G. J., U. Nair, and S. L. Haines. (2006). “Detection of storm damage tracks

with EOS data,” Weather Forecasting, vol. 21, no. 3, pp. 249–267.

Lee, E., A. Wallace, J.E. Mitchell and D. Mendonça. (2005). “Decision technologies for

protection of critical infrastructures”. In Proceedings of Working Together: R&D

Partnerships in Homeland Security, Boston. Available via:

http://www.rpi.edu/~mitchj/papers/decisiontechnologies.html.

Leontief, W. (1987). “Input-output analysis”. The new palgrave. A dictionary of

economics, 2, 860-64.

http://fas.org/irp/offdocs/eo13010.htm.%20Last%20accessed%20on%2012/2/2014
http://fas.org/irp/offdocs/eo13010.htm.%20Last%20accessed%20on%2012/2/2014
http://www.cred.be/emdat

75

Lewis, H.W., R. J. Budnitz, W. D. Rowe, H. J. C. Kouts, F. von Hippel, W. B.

Loewenstien. (1979). “Risk assessment review group report to the US Nuclear

Regulatory Commission”. IEEE Transactions Nuclear Science 1979. NS-26:

4686–90.

Liu, J., X. Liu, T. K. J. Koo, B. Sinopoli, S. Sastry, and E. A. Lee. (1999). “A

hierarchical hybrid system model and its simulation”. In Decision and Control,

1999. Proceedings of the 38th IEEE Conference on (Vol. 4, pp. 3508-3513).

IEEE.

Long, S., T. Shoberg, V. Ramachandran, S.M. Corns, and H.J. Carlo. (2013). “Integrating

complexity into data-driven multi-hazard supply chain network

strategies”. Proceedings of the ASPRS\CaGIS 2013 Specialty Conference, San

Antonio,TX, Available

at: http://info.asprs.org/publications/proceedings/SanAntonio2013/index.htm.

Mauck, J., K. Brown, W. J. Carswell Jr. (2009). The National Map—Orthoimagery: U.S.

Geological Survey Fact Sheet 2009-3055, 4 p.

Mete, H. O., and Z. B. Zabinsky. (2010). “Stochastic optimization of medical supply

location and distribution in disaster management”. International Journal of

Production Economics, 126(1), 76-84.

Moteff, J., and P. Parfomak. (2004). Critical infrastructure and key assets: definition and

identification. Technical report, CRS, Report for Congress.

Myint, S., M. Yuan, R. Cerveny, and C. Giri. (2008). “Comparison of remote sensing

image processing techniques to identify tornado damage areas from Landsat TM

data,” Sensors, vol. 8, no. 2, pp. 1128–1156.

National Infrastructure Simulation & Analysis Center. Available via:

http://www.sandia.gov/nisac/. Accessed on April 29, 2014

Network Optimization Models. National Infrastructure Simulation & Analysis Center.

Available via: http://www.sandia.gov/nisac/net_op.html [accessed November 14,

2014].

http://info.asprs.org/publications/proceedings/SanAntonio2013/index.htm
http://www.sandia.gov/nisac/

76

Newman, A., S. Stein, J. Weber, J. Engeln, A. Mao, A.and T. Dixon. (1999). “Slow

deformation and lower seismic hazard at the New Madrid seismic zone”. Science,

284(5414), 619-621.

North, M. J., and C. M. Macal, (2007). “Managing business complexity: discovering

strategic solutions with agent-based modeling and simulation”. Oxford University

Press. New York, NY, USA, 39.

Ozbay, K., and E. Ozguven. (2007). “Stochastic humanitarian inventory control model

for disaster planning”. Transportation Research Record No. 2022, Transportation

Research Board, Washington, DC, 63–75.

Patton, E. W., W. D. Gray, and M. J. Schoelles. (2009). “SANLab-CM–The Stochastic

Activity Network Laboratory for Cognitive Modeling”. Schläpfer (Vol. 53, No.

21, pp. 1654-1658). SAGE Publications.

Pederson, P., D. Dudenhoeffer, S. Hartley, and M. Permann. (2006). "Critical

infrastructure interdependency modeling: a survey of US and international

research". Idaho National Laboratory, 1-20.

Ramachandran, Varun, Long, Suzanna, Shoberg, Tom, Corns, Steven M. and Carlo,

Hector J. (2015) “Post-disaster Supply Chain Interdependent Critical

Infrastructure System Restoration Modeling: A Review of Necessary Data”

Computers, Environment and Urban Systems, Submitted February 2015.

Rawls, C. G., and M. A. Turnquist. (2010). “Pre-positioning of emergency supplies for

disaster response”. Transportation research part B: Methodological, 44(4), 521-

534.

Rigole, T., and G. Deconinck. (2006). “A survey on modeling and simulation of

interdependent critical infrastructures”. In Proceedings of 3rd IEEE Benelux

Young Researchers Symposium in Electrical Power Engineering (p. 9).

Rinaldi, S. M., J. P. Peerenboom, and T. K. Kelly. (2001). “Identifying, understanding,

and analyzing critical infrastructure interdependencies”. Control Systems,

IEEE, 21(6), 11-25.

77

Rodgers III, J. C., A. W. Murrah, and W. H. Cooke. (2009). “The impact of Hurricane

Katrina on the coastal vegetation of the Weeks Bay Reserve, Alabama from

NDVI data,” Estuaries Coasts, vol. 32, no. 3, pp. 496–507.

Rogers, J. D. (2009). “Overview of Likely Consequences of a Magnitude 6.5+

Earthquake in the Central United States: New Madrid Seismic Zone Conference:

Preparing for a Significant Central U.S. Earthquake – August 2008”. U.S.

Geological Survey Open File Report 2009-Xxxx

Schläpfer, M., T. Kessler, and W. Kröger. (2012). “Reliability analysis of electric power

systems using an object-oriented hybrid modeling approach”. In 16th Power

Systems Computation Conference, Glasgow. arXiv preprint arXiv:1201.0552.

Shih, C.Y., C.D. Scown, L. Soibelman, H.S. Matthews, J.H. Garrett Jr., K. Dodrill, and S.

McSurdy. (2009). “Data Management for Geospatial Vulnerability Assessment of

Interdependencies in U.S. Power Generation”. Journal of Infrastructure Systems,

Vol. 15, No. 3, September. 179–189.

Simonsen, I., L. Buzna, K. Peters, S. Bornholdt, S., and D. Helbing. (2007). “Dynamic

Effects Increasing Network Vulnerability to Cascading Failures”. Physics Review

Letters, 100, 17-21.

Simpson, N. C., and P. G. Hancock. (2009). “Fifty years of operational research and

emergency response”. Journal of the Operational Research Society, S126-S139.

Splinter, K. D., D. R. Strauss, and R. B. Thomlinson. (2011). “Assessment of post-storm

recovery of beaches using video imaging techniques: A case study at Gold Coast

Australia,” IEEE Transaction Geoscience Remote Sensing, vol. 49, no. 12, pp.

4704–4716.

Sterman, J. D. (2002). “Systems dynamics modeling: tools for learning in a complex

world”. Engineering Management Review, IEEE, 30(1), 42.

Sugarbaker, L., and W. J. Carswell. (2011). “The National Map®”. US Department of the

Interior, US Geological Survey.

78

Talukdar, S. N., J. Apt, M. Ilic, L. B. Lave, and M. G. Morgan. (2003). “Cascading

failures: survival versus prevention”. The Electricity Journal, 16(9), 25-31.

doi:10.1016/j.tej.2003.09.003.

Tolone, W. J., D. Wilson, A. Raja, W. N. Xiang, H. Hao, S. Phelps, E. W. Johnson.

(2004). “Critical infrastructure integration modeling and simulation”. In

Intelligence and Security Informatics (pp. 214-225). Springer Berlin Heidelberg.

Tuttle, M. P., E. S. Schweig, J. D. Sims, R. H. Lafferty, L. W. Wolf, and M. L. Haynes.

(2002). “The earthquake potential of the New Madrid seismic zone”. Bulletin of

the Seismological Society of America, 92(6), 2080-2089.

U.S. Census Bureau & Bureau of Transportation Statistics. (2013). Commodity Freight

Survey (CFS). Available at

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity_flo

w_survey/index.html. Last accessed on 6/19/2014.

U.S. Bureau of Transportation Statistics. (2010). National Transportation Atlas Database

(NTAD). Research and Innovative Technology Administration., U.S. Bureau. of

Transportation Statistics, U.S. Department of Transportation., Washington,

D.C. Available at

http://www.bts.gov/publications/national_transportation_atlas_database/2010.

Last accessed on 8/23/2014.

Wagner, M. A., S. W. Myint, and R. S. Cerveny, R. S. (2012). “Geospatial Assessment of

Recovery Rates Following a Tornado Disaster”. Geoscience and Remote Sensing,

IEEE Transactions on, 50(11), 4313-4322.

Wilkinson, D. W., and M. K. Crosby. (2010). “Rapid assessment of forest damage from

tornadoes in Mississippi,” Photogrammetry Engineering and Remote Sensing,

vol. 76, no. 12, pp. 1298–1301.

Yuan, M., M. Dickens-Micozzi, and M. A. Magsig. (2002). “Analysis of tornado damage

tracks from the 3 May tornado outbreak using multispectral satellite imagery,”

Weather Forecasting, vol. 17, no. 3, pp. 382–398.

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity_flow_survey/index.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity_flow_survey/index.html
http://www.bts.gov/publications/national_transportation_atlas_database/2010.%20Last%20accessed%20on%208/23/2014
http://www.bts.gov/publications/national_transportation_atlas_database/2010.%20Last%20accessed%20on%208/23/2014

79

III. Post Disaster Supply Chain Interdependent Critical Infrastructure System

Restoration Modeling: A Review of the Necessary Data

1. Abstract

The majority of restoration strategies in the wake of large-scale disasters have focused on

short-term emergency response solutions. Few consider medium- to long-term restoration

strategies to reconnect urban areas to national supply chain interdependent critical

infrastructure systems (SCICI). These SCICI promote the effective flow of goods,

services, and information vital to the economic vitality of an urban environment. To re-

establish the connectivity between the different SCICI, relationships between these

systems must be identified, formulated, and added to a common framework to form a

system-level restoration plan. The aim of this paper is to review the data required for

model construction, its accessibility, and integration. A review of publically available

data reveals a paramount need for real-time data and information to assist urban planners

with recovery following an extreme event. A particular SCICI (transportation) is used to

highlight the interdependencies and challenges of creating models capable of describing

the complexity of an urban environment. Integrating geospatial data derived from public

domain sources such as The National Map of the U.S. Geological Survey (USGS) with

supply chain data allows for the creation of more accurate models of urban center

transportation networks. This review indicates that geospatial infrastructure data are the

most abundant of these data. While much of it can be acquired through public sources, an

effort is required to gather, develop, and integrate data from multiple sources to build a

complete model. Therefore, continued availability of high quality, public information is

essential.

80

Keywords: GIS, Extreme Events, Critical Infrastructure, Supply Chain, Logistics

Network

Authors:

Varun Ramachandran

PhD Student, Department of Engineering Management & Systems Engineering, Missouri

University of Science and Technology, 600 W, 14th Street, Rolla MO 65409, USA

Email address: vrnq5@mst.edu, Phone # 281/468-6769, Address: 112, East 16th Street,

Rolla, MO 65401

Dr. Suzanna Long*

Associate Professor, Department of Engineering Management & Systems Engineering,

Missouri University of Science and Technology, 600 W, 14th Street, Rolla MO 65409,

USA

Email address: longsuz@mst.edu, Phone # 573/341-7621, Address: 230, Engineering

Management Building, Missouri University of Science and Technology, Rolla, MO

65409

Dr. Tom Shoberg

CEGIS, U.S. Geological Survey, Rolla MO 65401, USA

Email address: tshoberg@usgs.gov , Phone # 572/308-3582, Address: 1400,

Independence Drive, Rolla, MO 65401

mailto:vrnq5@mst.edu
mailto:longsuz@mst.edu
mailto:tshoberg@usgs.gov

81

Dr. Steven Corns

Associate Professor, Department of Engineering Management & Systems Engineering,

Missouri University of Science and Technology, 600 W, 14th Street, Rolla MO 65409,

USA

Email address: cornss@mst.edu, Phone # 573/341-6367, Address: 213, Engineering

Management Building, Missouri University of Science and Technology, Rolla, MO

65409

Dr. Héctor J. Carlo

Associate Professor, Department of Industrial Engineering, University of Puerto Rico at

Mayaguez, Call Box 9000 Mayaguez, PR 00681

Email address: hector.carlo@upr.edu, Phone # 787/832-404 x-3105, Address: University

of Puerto Rico at Mayaguez, Call Box 9000 Mayaguez, PR 00681

Acknowledgments

This work was supported by the US Geological Survey under Grant G13AC00028.

2. Introduction

Critical infrastructure systems provide the backbone for socioeconomic vitality and

security of urban areas. These systems are defined by the US Department of Homeland

Security (DHS) as follows:

mailto:cornss@mst.edu
mailto:hector.carlo@upr.edu

82

Critical infrastructure are the assets, systems, and networks, whether physical or

virtual, so vital to the United States that their incapacitation or destruction would

have a debilitating effect on security, national economic security, national public

health or safety, or any combination thereof (DHS, 2014).

A supply chain interdependent critical infrastructure system (SCICI) is composed of many

systems, including but not limited to: transportation, power, communications, and water,

which are interdisciplinary in nature. In addition, these SCICI exhibit complex

interdependencies that must be captured to create models that are representative of the true

system conditions.

Effective modeling of critical infrastructure restoration must incorporate ideas and

tools from a wide spectrum of research areas including: simulation-based optimization,

structural engineering, human behavior modeling, geographic information systems (GIS),

and supply chain management. In general, recent disaster management studies use either a

qualitative (Carlson & Doyle, 1999; Haimes 2005; Amin & Wollenberg, 2005) or

quantitative methodology (MacKenzie et al., 2014; Adams & Stewart, 2014). These efforts

fail to capture full system complexity by not combining qualitative and quantitative

methodologies and ignoring the interdependencies that lead to emergent behaviors. In

addition, the majority of restoration strategies in the wake of large-scale disasters have

focused on short-term emergency rescue and recovery methodologies (Holguín -Veras and

Jaller, 2011; Hale and Moberg, 2005; Widener and Horner, 2011). Few consider medium-

to long-term restoration strategies that reconnect urban areas to the national SCICI. The

medium- to long-term restoration of these systems requires longer time lines and larger

83

financial investments than short-term emergency response, and so a methodology specific

for these phases is necessary.

A survey paper by Altay and Green (2006) found that of 110 articles relating to

disaster operations management research, 43.6% relate to the mitigation phase, 21.8%

focus on preparedness, 23.6% relate to response, and only 10.9% are related to recovery

(12 articles). Further, most previous studies focus only on a single aspect of one system

within the SCICI (Shinozuka et al., 2007; Ouyang and Dueñas-Osorio, 2011; Rosato et al.,

2008), or on emergency response processes (Bruneau et al., 2006; Vugrin et al., 2010; Reed

et al., 2010). A review of disaster recovery studies categorized by disaster management

lifecycle do not build a comprehensive framework that identifies the data required to build

such a model but assume that the data is available (Altay and Green, 2006; Kondaveti and

Ganz, 2009; Feng and Weng, 2005; Miller-Hooks et al., 2012). Operations research-style

quantitative research typically focuses on game theory or inventory/sourcing models

(MacKenzie, et al., 2014).

To map restoration strategies of the SCICI in the aftermath of a disaster one must

first build a comprehensive framework that realistically models the SCICI in a normal

environment. This requires a large amount of data be integrated across many disciplines.

One tool that is useful for this research is geographic information systems (GIS)

technology. GIS can be used to examine the interdependency among critical infrastructure

systems (Sinton, 1992) or depict geographic correlations within critical infrastructure

elements (Burrough, 1990; Goodchild and Haining 2004; Greene, 2002). But a multi-

dimensional approach to this modeling has yet to be considered (Mitchell, 2005; Zeiler,

2010; Openshaw, 1994).

84

 Models required for planning the restoration of SCICI systems must capture real-

world complexities and use real-time data to be useful to decision-makers. Geospatial data

plays a key role in SCICI restoration; thus, there exists the need to understand accessibility

issues and inherent uncertainties associated with such data. While Federal, state, and local

entities routinely use GIS technology with subsets of SCICI data in disaster planning

activities, using these data to map infrastructure elements, their interdependencies, and

their restoration in the aftermath of an extreme event has seldom been done (Fletcher,

2002). As an important first step, this article documents the use of publically available data

for the creation of complex SCICI models.

3. Method

The emphasis in modeling critical infrastructure systems has been on developing

methodologies and algorithms, rather than on incorporating real-world data. Most studies

have taken a one-dimensional approach wherein it is either assumed that the required data

is hypothetically complete and available, or synthetic data is generated for analyses when

needed. It is difficult to understand all the complex interactions that exist between

infrastructure elements and systems based on such approaches. In this study, the

transportation infrastructure system within SCICI is used as an example to illustrate its

complex interactions with other SCICI systems and categorize, integrate, and analyze the

data required to properly model this system. The transportation (logistics) infrastructure

system presented here includes the transport mode (road, rail, air, and water) infrastructure,

the freight that is moved through these modes, and the storage of that freight.

 As with any system that forms a component of the larger SCICI system, a model of

this component system must be created with the understanding that it be integrated into a

85

larger SCICI modeling framework. The construction of a restoration model of any element

of SCICI damaged due to a large-scale disaster can be divided into five work-flow phases:

acquisition and integration of data, SCICI system modeling, SCICI interdependency

determinations, hazard damage simulation, and restoration modeling. A work-flow

diagram for the transportation infrastructure system is shown in Figure 1. Each phase

requires different types of input data, typically in diverse formats (including non-digital

formats) and stored in different databases on different computers. While this presents a

challenge to the modeling effort, the identification and integration of these data are

essential for creating realistic SCICI system models.

The acquisition and integration of data phase incorporates all data necessary to

make a realistic model of the pre-disaster SCICI system for the region under consideration.

For the transportation infrastructure system this would consist of: (1) freight data -

storage/distribution facilities data, modes of transport and their capacity, and flow data,

and (2) infrastructure data - with respect to the capacity the infrastructure can sustain and

the location of each infrastructure element. Typically these data are not readily available

in digital databases, may be proprietary, and/or come from multiple sources, making its

integration daunting.

The SCICI system modeling phase combines the data from the previous phase to

construct a model of the SCICI system and how it operates to perform the tasks necessary

to accomplish the overall SCICI goals. The transportation infrastructure system model

incorporates the freight data, system capacities, and the available transportation network

from the acquisition and how it works together to move goods throughout the region being

considered.

86

.

Figure 1. Schematic work flow pattern for transportation infrastructure system restoration

modeling.

In the SCICI interdependency determinations phase, the interdependencies are

mapped between SCICI systems both internally and to the external regional, national, and

global supply chain elements. This is crucial to any restoration efforts. Through these

interdependencies it becomes possible to detect critical points of failure that can cause a

cascade effect damaging many elements upon the failure of a single element.

The hazard damage simulation phase gathers information related to the critical

points and determines how potential hazards might affect these weak points in the SCICI.

This allows for the testing of restoration modeling before the onset of a large-scale disaster.

In the event of a disaster, the actual damage itself would be the input data for the restoration

optimization model rather than simulated damage.

87

Finally in the restoration modeling phase scheduling and work flows are created to

return the SCICI system back to the pre-event capabilities. Optimization techniques are

applied here to develop plans that allows for the reassembly of the transportation system

in a relatively efficient manner. In the case of the transportation system at hand, this would

involve both reconnecting the transportation modes and restoring the capacity of those

connections to pre-event levels.

After identifying the data required to model the SCICI systems it is necessary to

acquire these data. Given the amount of data that must be collected there are several

challenges. Table 1 shows data requirements for mapping the transportation system of

SCICI and also identifies several difficulties in acquiring these data. Transportation is

restricted to the transportation of physical goods (as opposed to information, services,

electricity, or the like). This is accomplished through one or more modes of transportation

(air, rail, pipeline, water, or road). Hence, the data required for these different

transportation modes include, but is not limited to: capacity, location, and freight

forwarding capabilities. Further, much of the data required to model the transportation of

goods is owned by private companies who are generally unwilling to share such

information. As a result, acquiring the necessary datasets or resources can be time-

consuming and introduce many uncertainties. To account for this, no proprietary data is

represented in the following discussion of the different data types.

88

Table 1. Data Requirements for Transportation Sector (modified from Long et al., 2013)

Category Data Description
Data

Type

Ownershi

p
Data Challenges

Freight Data

Commodity

Freight
Food, Paper, Wine, etc. Tons Public

Static data;

Generalized

data;

Proprietary data

Manufacture

d Goods

Electronics, Machinery,

Textiles, etc.
Tons

Private/

Public

Raw

Materials

Coal, Iron Ore, Bauxite,

etc.
Tons

Private/

Public

Freight Flow Data

Road

Transport

Goods transported over

roads
Tons

Private/

Public

Inconsistency

Estimation

required

Public/Private

ownership

Rail

Transport
Goods transported on rail Tons Private

Air

Transport
Goods transported by air Tons Private

Water

Transport

Goods transported by

water
Tons

Private/

Public

Pipeline

Transport

Goods transported through

pipeline
Tons

Private/

Public

Infrastructure Capacity Data

Road-Hub
Bulk, General Cargo,

Containers, etc.
Tons Private Varied amount

of data needed

Different

capabilities of

hubs

Interdependency

of data

Rail-Hub
Bulk, Intermodal,

Shunting, etc.
Tons Private

Water-Hub
Rail Car Storage, Dry

Storage, Liquid Storage

Tons/

Bushels
Private

Infrastructure Location Data (Geospatial Data)

89

Table 1. Data Requirements for Transportation Sector (modified from Long et al., 2013)

(cont.)

Hub Location Number of hubs in the area Number Private

Ever changing

data;

Use of Software;

Static data

Utility

Location

Location of all utilities that

aid freight flow
Number

Private/

Public

Road/ Bridge

Location

Location of all roads and

bridges
Number Public

Airport

Location
Location of air infrastructure Number Private

Pipeline

Location

Location of pipelines and

pumping stations
Number Private

River

Location

Location of docks and

storage areas
Number Private

Rail Location
Location of all rail

infrastructure
Number Private

Restoration Data

Number of

People

Number of people need and

available
Number

Private/

Public

Different temporal

factors

Vast amount of

data

Scalability

Ownership of data

Travel Time
Time required for teams to

arrive in area

Hours/

Days

Private/

Public

Skill Set
Skills necessary for each

repair job

Qualitativ

e

Private/

Public

Mode

Substitution

Mode substitutions

facilitating freight flow
Mode

Private/

Public

Task

Management

Assignment and management

of repair tasks

Qualitativ

e

Private/

Public

Equipment

Necessary

Materials require for

restoration

Tons/

Pieces

Private/

Public

Hazard Risk and Vulnerability Data

90

Table 1. Data Requirements for Transportation Sector (modified from Long et al., 2013)

(cont.)

Historic Data Previous hazards that have

caused damage

Text Private/

Public
Inconsistency

Generalized data

Proprietary data

Fragility Data Vulnerability of element to

hazard

Percentag

e

Public

Damage

Estimation

Severity and extent of

damage from simulation

Percentag

e

Public

a. Fright/Freight Flow Data

Freight data include information about commodities shipped, their weight, manufactured

goods versus raw materials, and the value of materials that are transported. In addition, the

mode of transportation (rail, road, air, water, or pipeline) used to ship the goods and the

holding capacities of each mode for a given area are included in this data. Freight flow data

are typically measured in tons of goods transported and recorded as tons/commodity/mode

by the National Transportation Atlas (NTAD, 2010). The primary source for freight data

is the Commodity Flow Survey (CFS) of 2013 (U.S. Census Bureau, 2013). It is a public

database that contains information on domestic interstate freight. Data are fed into this

database through a variety of sources, but the primary problem with these data is their

resolution and completeness (LeBeau, 2006). Data gaps can, in part, be removed by

estimating values for a commodity using a gravity model of spatial interactions, which can

be used as a method for determining facility locations (Holguin-Veras and Jaller, 2011;

Nan Liu and Vilain, 2004). Origins, destinations, and modes also require estimation due to

the gaps in freight data. In general, these data provide enough information to form estimates

for missing data (Transportation Research Board, 2003). More accurate data likely exists,

91

but it is proprietary in nature. Since most freight transportation companies are privately

owned; the modes used, commodities shipped, routing (including transshipment facilities),

and tonnage are either under-reported or the data is not available to the public. In these

cases it is necessary to estimate the missing data based on the publically available data.

The data regarding commodities passing through a state are generally available, and from

this information the flow of commodities through a particular area can be estimated. The

tonnage transported can be a major factor in assigning priorities within restoration models

(e.g. the greater the tonnage transported, the higher the priority that mode of transport has

during the restoration process).

b. Transportation Infrastructure Capacity Data

Infrastructure capacity data incorporates holding capacities of infrastructure facilities that

aid freight flow such as cargo hubs. When considering hubs that store goods and

commodities, the multimodal nature of modern cargo transportation systems is important.

Goods may arrive by river or sea, be stored in a water-hub, be picked up by a truck and

subsequently stored in a road-hub. There are four main types of hubs considered here:

Water-hubs, Rail-hubs, Road-hubs, and Air-hubs. 1) Water-Hubs form the largest and most

diversified hubs in the transportation system. They facilitate transportation services for

many types of products via barge or ship. They are also multimodal hubs that act as transfer

points for many types of products from water modes to other modes such as rail, pipeline,

air, or truck. An inherent problem with the data associated with water-hubs is that a variety

of information unique to that hub is needed. 2) Rail-Hubs are most commonly rail freight

yards. These hubs require a great deal of space for multiple tracks and are therefore most

likely to be located on greenfield sites within or near major industrial zones. Rail-hubs

92

generally have very large holding capacities and also act a multimodal hub. 3) Road-Hubs

usually store freight which is very diverse and bulky. They also act as multimodal hubs,

shipping and receiving goods from road, rail, air, and water. Road-hubs are generally

located just off major interstates to reduce transportation time. 4) Air-Hubs are typically

located at airports connected to major road networks which allows for the rapid flow of

people or cargo. These constitute the smallest hub connection due to the relatively high

costs involved with air transport.

The data required for these hubs include freight handling data (what equipment is

required for loading), information about the facilities required to accommodate ships,

trucks and trains (berths, loading bays and freight yards respectively), total capacity data

according to type of goods they can store (cold storage, hot storage, hazardous material

etc.), and freight flow. Most of the transportation data for road and rail is obtained from

National Transportation Atlas Database (NTAD, 2010) or the CFS of the U.S. Census

Bureau (2013) which is a public resource.

c. Geospatial Data

Geospatial datasets contains the location information associated with various types of data

and as such forms the base into which other data are integrated. The geospatial data include

the locations of hubs, warehouses, utilities, infrastructure, and all other objects or materials

that could be damaged and in need of repair or replacement from the impact of a large-

scale disaster. Most of these data are available or can be derived from geospatial-centered

websites like The National Map (TNM) of the U.S. Geological Survey. A shortfall of these

data is their static nature. Most geospatial data are updated yearly or over the course of

several years, so as new warehouses and hubs are built, the geospatial data will not convey

93

these new sites until the next update cycle. Also, the extraction of these data from such

geospatially located sources as orthoimagery can be quite time consuming and require

specialized personnel for the process. The advantage of these data is their free availability,

large area coverage, and accurate overview of ground features. Figure 2 illustrates some

SCICI element examples for the St. Louis, Missouri region.

Figure 2 Orthoimagery, hydrography (National Hydrography Dataset, NHD) and rail data

for St. Louis, Missouri region from The National Map of the U.S. Geological Survey.

Road data is from the Missouri Department of Transportation. Data from the U.S.

Geological Survey and the Missouri Department of Transportation are in the public

domain and freely available for download. Other elements (communications, electric

power) are derived from the public domain orthoimagery.

94

d. Restoration Data

Restoration data are records containing information on rebuilding or recovery activity

rates. These data include the number of skilled workers available for restoration activities,

raw material stockpiles, necessary equipment accessibility, the time required for teams to

assemble within a given area, and collaborations between invested agencies: federal, state,

and local. These data come, in part, from personal interviews with people experienced in

disaster reconstruction and from published agency reports on restoration activities.

Typically these data are not available in electronic format and, for the most part, integrating

these can be time consuming. Much of these data are specific to the type of disaster

experienced. Nevertheless, elements are often generalizable and can be used in developing

restoration estimates for most damage estimates.

e. Hazard Data

The damage experienced by the transportation sector will, of course, depend on such

variables as the type of disaster, its severity, duration, the vulnerability of the infrastructure,

and the like. The actual damage experienced must ultimately be input data into any

reconstruction optimization model, nevertheless, for the purpose of testing such a model a

damage estimate can be simulated. Such a simulation requires hazard risk evaluation data

as well as SCICI survivability estimates. Much progress with such simulations has already

been made by FEMA (2003) and can be accessed in the HAZUS-MH software which

provides simulations of some network vulnerabilities to different hazards

f. Role of GIS in Data Acquisition and Integration

GIS offers tools that make the acquisition and integration of SCICI system data more

tractable. Data layers from The National Map of the U.S. Geological Survey include

95

orthoimagery, elevation, hydrography, transportation, place names, and land cover, and

can be downloaded directly into a GIS database (Sugarbaker and Carswell, 2011). The

orthoimagery serves as an excellent, if rather memory-extensive, base map from which to

hang existing data sets and to extract further SCICI data. The orthoimagery projection is

used as the default coordinate system into which all other data will be projected. Anything

that is visible in the orthoimagery can be extracted by digitization as new SCICI data

features (e.g., the locations of culverts, cell towers, electric power lines, bridges, pumping

stations, etc.). Further analyses of the orthoimagery also provide the ability to estimate

capacity of these infrastructure elements as well (e.g., number of road lanes, number of rail

tracks, dock lengths, electric line voltages, etc.). In addition, many local and regional

government agencies (state departments of transportation, state departments of commerce,

city utility districts, etc.) have data that can be integrated into a GIS database. To create

the transportation system network, GIS is used to represent real-world features that are

populated by discrete identifiable objects to build network analysis models based on graph

theory representing transportation elements as vertices and edges.

g. SCICI Interdependencies

One of the main characteristics of SCICI elements is the multiplicity of interdependencies

between them. For example, a water pumping station, in order to function, requires

electricity to run the pumps, communication to control how much water needs moved,

water lines through which the water will move, and roads to access the station. In any

attempt to return functionality to a pumping station after a large-scale disaster, it is

necessary to know the local interdependencies such as which electrical lines ran into the

power station, what roads access it, what cell tower communicates with it, and through

which lines water moves into and out of the station. Less obvious, but equally important,

96

it is necessary to understand that these connected elements are interdependent on far field

elements such as which power station feeds electricity to the sector of the pumping station,

which substations transform the power into usable voltages, what communication path

moves from the controller to the pumping station, what bridges are available to move

material and manpower to the pumping station for repair, where are there any damaged

water lines between this pumping station and those before and after it. The main

contribution in the acquisition of all these data and their integration into a GIS is the

ultimate ability to map out these interdependencies through the SCICI model.

4. Results

The modeling techniques presented here make use of the high resolution imagery provided

by The National Map to identify both the location of system elements and their proximity

to one another. This spatial information identifies the interfaces between the systems and

captures the interrelationships that give rise to complex responses. The interrelationships

are driven by the system specific information, in the case of the transportation

infrastructure system this is the freight and infrastructure data.

In order to test the efficacy of the integration of these data into the proposed

modeling techniques, the St. Louis, Missouri metropolitan region was chosen as a test area.

This area is covered by 2268 orthoimagery tiles from The National Map with cell-lengths

ranging from 0.15 m to 0.6 m. These tiles constitute the base map onto which other data

layers are projected.

97

Considerable transportation data (particularly roads and rail lines) are available from state

(in this case, Missouri and Illinois) departments of transportation. Much of the rest of the

data is extracted from orthoimagery by heads-up digitization or other sources as shown in

Table 2.

Table 2. Data acquired and integrated for SCICI modeling for St. Louis metro area.

Title Description Source Restrictions
Data

Processing

Geospatial Data

Several layers of TNM

data serve as the base to

all data integration

processes:

orthoimagery, elevation,

hydrograph, place-

names and land use

The National Map

of the U.S.

Geological

Survey

Open

access/public

data

None

Infrastructure

Data

Infrastructure data such

as airports, electric grid,

bridges, overpasses,

tunnels, culverts, dams,

docks, pumping

stations…

Extrapolate from

The National Map

Open

access/public

data

Digitization

Transportation

Data
Road and rail lines

State departments

of transportation

Varies from

state to state

Re-projection

to desired

coordinates

Communication

Data
Cell Towers

Federal

Communications

Commission

Open

access/public

data

Re-projection

to desired

coordinates

98

Table 2. Data acquired and integrated for SCICI modeling for St. Louis metro area (cont.)

Supply Chain

Data

Rates of flow of

commodities

U.S. Department

of Commerce and

Private Industry

sources

Public/Private

Integration

with

geospatial

data

Restoration Data

Rate and manner in

which supply chain

elements are repaired

after a large-scale

disaster

Federal, State and

Local

Governments

Open

access/public

data

Integration

with

geospatial

data

Hazard Data

The nature of

destruction of specific

supply chain elements by

any large-scale disaster

Federal, State and

Local

Governments

Open

access/public

data

Integration

with

geospatial

data

Many of the features that need to be digitized have a three-dimensional structure

(e.g. cell tower, electric poles, etc.). To reduce the effects of parallax, features extracted

from the orthoimagery are preferentially digitized at their base (for example, where a pole

and its shadow meet). It should be noted, however, that since these data are extracted from

the orthoimagery, only elements that are visible from the air can be digitized. Some

elements (such as sewer lines and water mains) can be interpolated based on surface

features in high-resolution orthoimagery (man-hole covers or fire hydrants), whereas

99

others (buried telephone lines, electric lines and fiber optic cable, and gas mains) are best

obtained from other sources which are often more difficult to obtain. In addition, where

high resolution imagery is not available (typically outside of urban settings) the level of

detail would correspondingly decrease.

In spite of the being relatively few SCICI databases available to the general public

that can be used for realistic models of disaster restoration, a considerable amount of

infrastructure data can be gleaned from public sources, as shown in Figure 3 for South St.

Louis, Missouri. This indicates that a large amount of data applicable to SCICI systems is

available from public datasets alone. To date, 640 Gigabytes of data have been acquired

for review. While this is rather large for real-time processing and model manipulation, the

size of the data needed to describe actual infrastructure elements such as bridges, culverts,

road networks, electric grid, communication networks, dams, locks, rail networks, water

facilities and docks for the St. Louis metroplex is less than 100 Megabytes. This presents

a complicated tangle of infrastructure elements, but with preprocessing it can now be fit

into a model that will begin to piece together the interdependencies of the SCICI which is

crucial to their restoration in the wake of a large scale disaster.

However, even with this rich source of SCICI data, severe limitations still remain.

One of these is that orthoimagery data must, by its very nature, be considered a static data

source. It is a picture of the SCICI environment at the time of the flyovers, and these are

not updated until the next flight cycle occurs which is generally between 3 to 5 years.

Changes made to SCICI between data cycles cannot be incorporated into the model by this

method.

100

Figure 3 SCICI elements for a section of southern St. Louis, Missouri. Upper left map

shows infrastructure in the St. Louis metropolitan area, inset black box shows the

expanded area in the larger low right box.

Also, at least in regards to the SCICI data derived from orthoimagery, only what

can be seen from the air can be acquired. As discussed earlier very little information is

available from orthoimagery on pipelines, buried electrical wiring, water mains (although

these can be tracked by fire hydrants), fiber optic cable or gas lines. These must be acquired

from other sources not all of which lies in the public domain. Further, the labor intensive

digitization on such a massive scale introduces many human errors into the data including

features that are missed, erroneously added, misinterpreted, or digitized inaccurately.

While this is potentially serious in individual cases, the sheer quantity of the data should

101

permit the proper interdependencies to emerge; which is the ultimate objective. Again like

the damage assessment simulation, the input of the infrastructure, once the techniques for

mapping of the interdependencies is complete, will be input by individual communities.

As electrical grids, water distribution systems, gas lines, etc., become more ‘smart’, (Amin

and Wollenberg, 2005; Gao et al., 2012; Gungor et al., 2011) data can be fed directly into

the model from sensors, giving a dynamic, real-time dimension to the analysis.

5. Conclusion and Future Work

Integrating hazard, human intervention, restoration, geospatial, freight flow, and

infrastructure data for each SCICI element helps create a complex model of SCICI. This

complexity arises not from the data itself, but in the interaction of SCICI processes which

these data map (for example, an electric pole is not complex, but what happens to a water

pumping station, a warehouse refrigeration unit, and several traffic lights if that pole were

to be destroyed can lead to complexity). While separately these processes are complicated,

in essence it is their interaction and interdependence that generates nonlinear behavior

(complexity). However, all SCICI elements have a common property: they all have

complex components which interact with each other. The larger the scale of the SCICI, the

more complex its systems, and the more it starts to display unexpected and nonlinear

behavior. It is this behavior that can lead to cascading failures throughout many of the

SCICI elements when a single unit fails. A major goal for modeling and optimization

techniques is to see such failures in the system and rapidly repair and even improve

complex infrastructure.

102

This research addresses a gap that exists in literature associated with the acquisition

and integration of the different types of data which must be brought together in order to

build complex and robust models of supply chain systems. Geospatial infrastructure data

is the most abundant of these data, and while much of it is acquirable through public

sources, a serious effort is required to gather, develop and integrate these data. Continued

availability of public geospatial data is of paramount importance because no single utility

or private firm has access to the various sources of data necessary to model supply chains

that feed their own function. Further, much of the modeling is done in academic

communities outside government circles which preclude access to restricted or classified

data.

The bulk of the freight flow transportation data are proprietary, this requires that

reasonable assumptions be made regarding data that are not accessible. Nevertheless, this

research suggests that there is sufficient data available in public domain to create a realistic

model of the transportation system, and that this model is scalable to the other elements of

SCICI.

Future work will increase the quantity and diversity of real-world data to expand

through the other SCICI elements. Mapping the interdependency between SCICI elements

is essential to the construction of Supply Chain modelling. These interdependencies are

important due to the complexity of the systems. Further, sophisticated modelling and

optimization techniques need to be created to explore the efficiency of restoration schema.

 The next step in this research is to increase the level of detail and robustness of

the data used in this research so far. LiDAR, and elevation data can be used to get further

close to real-world. Only using GPS data can create problems when looking at something

103

which is not on the same height. Or, the extrapolating and identifying underground pipes

is extremely difficult with the data that is available right now. Making use of semantics

and ontology is another step forward as this will help with the integration of data. Since,

the data right now comes from different sources and is not available in the same format

semantics can play a huge role in understanding the data and finding trends within the

data, which will be beneficial when looking at mapping interdependencies. Since, this

research involves working with large, and varied amount of data, there is also a need to

look at reducing the computing time. The 29 size block area that was considered in this

research needed more than 7 Tb of data, and this will only increase as the research

becomes more robust, hence there is a need to look at big-data analytics and parallel

processing techniques.

104

6. References

Adams, T. M., and L. D. Stewart, 2014. “Chaos theory and organizational crisis: A

theoretical analysis of the challenges faced by the New Orleans Police

Department during Hurricane Katrina”. Public Organization Review, 14(4): DOI

10.1007/s11115-014-0284-9.

Altay, N., and W. G. Green, 2006. “OR/MS research in disaster operations management”.

European Journal of Operational Research, 175(1):475–93: DOI

10.1016/j.ejor.2005.05.016

Amin, S. M., and B. F. Wollenberg. 2005. “Toward a smart grid: power delivery for the

21st century”. Power and Energy Magazine, IEEE, 3(5), 34-41. DOI

10.1109/MPAE.2005.1507024

Bruneau, M., S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke, A. M. Reinhorn, M.

Shinozuka, K. Tierney, W. A. Wallace and D. von Winterfeldt. 2003. “A

framework to quantitatively assess and enhance the seismic resilience of

communities”. Earthquake Spectra, 19 (4):737–8.

DOI http://dx.doi.org/10.1193/1.1623497

Burrough, P. A. 1990. “Methods of spatial analysis in GIS”. International Journal of

Geographical Information Systems, 4(3), 221-223.

Carlson, J. M., and J. Doyle. 1999. “Highly optimized tolerance: A mechanism for power

laws in designed systems”. Physical Review E, 60(2), 1412. DOI

http://dx.doi.org/10.1103/PhysRevE.60.1412

Department of Homeland Security (DHS). 2014 The White House, United States

Government. 2014. Presidential Proclamation - Critical Infrastructure Security

and Resilience Month. Retrieved from: http://www.whitehouse.gov/the-press-

office/2014/10/31/presidential-proclamation-critical-infrastructure-security-and-

resilienc. Last accessed on 6/19/2014.

http://www.whitehouse.gov/the-press-office/2014/10/31/presidential-proclamation-critical-infrastructure-security-and-resilienc
http://www.whitehouse.gov/the-press-office/2014/10/31/presidential-proclamation-critical-infrastructure-security-and-resilienc
http://www.whitehouse.gov/the-press-office/2014/10/31/presidential-proclamation-critical-infrastructure-security-and-resilienc

105

Federal Emergency Management Agency (FEMA). 2003. HAZUS-MH MR4 technical

manual. Washington, DC.

Feng, C., and C. Weng. 2005. “A bi-level programming model for allocating private and

emergency vehicle flows in seismic disaster areas”. Proceedings of the Eastern

Asia Society for Transportation Studies 2005:1408–23.

Fletcher, D. R. 2002. “The Role of Geospatial Technology in Critical Transportation

Infrastructure Protection: A Research Agenda”. National Consortium on Remote

Sensing in Transportation-Infrastructure Management.

Gao, J., Y. Xiao, J. Liu, W. Liang, and C. L. Chen. 2012. “A survey of

communication/networking in Smart Grids”. Future Generation Computer

Systems, 28(2), 391-404. DOI 10.1016/j.future.2011.04.014

Godschalk, D.R., 1991. “Disaster mitigation and hazard management E.D. Thomas, G.J.

Hoetmer (Eds.), Emergency Management: Principles and Practice for Local

Government”. International City Management Association, Washington, DC

(1991), pp. 131–160

Goodchild, M. F., and R. P. Haining. 2004. “GIS and spatial data analysis: Converging

perspectives”. Papers in Regional Science, 83(1), 363-385. DOI 10.1007/s10110-

003-0190-y

Greene, R. W. 2002. “Confronting catastrophe: A GIS handbook”. Redlands: page 140.

ESRI press.

Gungor, V. C., D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke.

2011. “Smart grid technologies: communication technologies and

standards”. Industrial Informatics, IEEE Transactions on, 7(4), 529-539. DOI

10.1109/TII.2011.2166794

106

Hale, T., and C. R. Moberg. 2005. “Improving supply chain disaster preparedness: a

decision process for secure site location”. International Journal of Physical

Distribution & Logistics Management, 35(3), 195-207. DOI

http://dx.doi.org/10.1108/09600030510594576

Haimes, Y. Y. 2005. “Infrastructure interdependencies and homeland security”. Journal

of Infrastructure Systems, 11(2), 65-66. DOI 10.1061/(ASCE)1076-

0342(2005)11:2(65)

Holguín-Veras, J., and M. Jaller. 2011. “Immediate resource requirements after hurricane

Katrina”. Natural Hazards Review, 13(2), 117-131. DOI

10.1061/(ASCE)NH.1527-6996.0000068

Kondaveti, R, and R. Ganz. 2009. “Decision support system for resource allocation in

disaster management”. In: Proceedings of the 31st annual international

conference of the IEEE EMBS, Minneapolis, Minnesota; pp. 3425–8. DOI

10.1109/IEMBS.2009.5332498

LeBeau, J. 2006. “A Critical Review and Integration of GIS-Based Spatial Databases for

Multi Commodity and Multi-Mode Freight Movement Modeling and Security

Analysis in USA”, Paper presented at GIS for Transportation Symposium, Des

Moines, Iowa. April 19-22, 2007.

Long, S., T. Shoberg, V. Ramachandran, S.M. Corns, and H.J. Carlo. 2013. “Integrating

complexity into data-driven multi-hazard supply chain network

strategies”. Proceedings of the ASPRS\CaGIS 2013 Specialty Conference, San

Antonio,TX,

URL: http://info.asprs.org/publications/proceedings/SanAntonio2013/index.htm,

MacKenzie, C.A., K. Barker, and J. R. Santos. 2014. “Modeling a severe supply chain

disruption and post-disaster decision making with application the the Japanese

earthquake and tsunami”. IIE Transactions, 46(12): 1243-1260. DOI

10.1080/0740817X.2013.876241

http://info.asprs.org/publications/proceedings/SanAntonio2013/index.htm

107

Miller-Hooks, E., X. Zhang, and R. Faturechi. 2012. “Measuring and maximizing

resilience of freight transportation networks”. Computers & Operations

Research, 39(7): 1633-1643. DOI 10.1016/j.cor.2011.09.017

Mitchell, A. 2005. “The ESRI Guide to GIS Analysis: Spatial Measurements and

Statistics. Vol 2”. Redlands. ESRI Guide to GIS analysis.

Nan Liu. L., and P. Vilain. 2004. “Estimating Commodity Inflows to a Substate Region

Using Input-Output Data: Commodity Flow Survey Accuracy Tests”. Journal of

Transportation and Statistics. 7: 1-8.

Openshaw, S., 1994. “Two exploratory space-time-attribute pattern analysers relevant to

GIS”. Spatial Analysis and GIS, 83-104.

Ouyang, M., and L. Dueñas-Osorio. 2011. “Efficient Approach to Compute Generalized

Interdependent Effects between Infrastructure Systems”. Journal of Computing in

Civil Engineering, 25(5), 394-406. DOI 10.1061/(ASCE)CP.1943-5487.0000103

Reed D. A., K. C. Kapur, and R. D. Christie. 2007. “Methodology for assessing the

resilience of networked infrastructure”. IEEE Systems Journal, 3(2):174–80. DOI

10.1109/JSYST.2009.2017396

Rosato V., L. Issacharoff, F. Tiriticco, and S. Meloni. 2008. “Modeling interdependent

infrastructures using interacting dynamical models”. International Journal of

Critical Infrastructure, 4(1–2):63–79. DOI 10.1504/IJCIS.2008.016092

Sinton, D. F. (1992). “Reflections on 25 years of GIS”. GIS World, 5(2), 1-8.

Shinozuka, M., X. Dong, T. C. Chen, and X. Jin. 2007. “Seismic performance of electric

transmission network under components failures”. Earthquake Engineering

Structural Dynamics., 36:224–7. DOI: 10.1002/eqe.627

Sugarbaker, L., and W. J. Carswell. 2011. “The National Map®”. US Department of the

Interior, US Geological Survey.

108

Transportation Research Board (TRB). 2003. A Concept for a National Freight Data

Program. Special Report 276. Transportation Research Board: Washington, D.C.

U.S. Bureau of Transportation Statistics, 2010. National Transportation Atlas Database

(NTAD). Research and Innovative Technology Administration., U.S. Bureau. of

Transportation Statistics, U.S. Department of Transportation., Washington,

D.C. Available at

http://www.bts.gov/publications/national_transportation_atlas_database/2010.

Last accessed on 8/23/2014.

U.S. Census Bureau & Bureau of Transportation Statistics. 2013. Commodity Freight

Survey (CFS). Available at

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity_flo

w_survey/index.html. Last accessed on 6/19/2014.

Vugrin, E. D., D. E. Warren, M. A. Ehlen, and R. C. Camphouse. (2010). “A framework

for assessing the resilience of infrastructure and economic systems”.

In Sustainable and Resilient Critical Infrastructure Systems (pp. 77-116).

Springer Berlin Heidelberg. DOI 10.1007/978-3-642-11405-2_3

Widener, M. J., and M. W. Horner. 2011. “A hierarchical approach to modeling hurricane

disaster relief goods distribution”. Journal of Transport Geography, 19(4), 821-

828. DOI 10.1016/j.jtrangeo.2010.10.006

Zeiler, M. 2010. “Modeling Our World: The ESRI Guide to Geodatabase Concepts”.

ESRI press. ISBN: 9781589482784

http://www.bts.gov/publications/national_transportation_atlas_database/2010
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity_flow_survey/index.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity_flow_survey/index.html

109

SECTION

2. CONCLUSION AND FUTURE WORKS

This research discussed a systems based methodology for modeling supply chain

interdependent critical infrastructure systems and mapping the interdependencies that

exists among the infrastructure. The process considers the different types of data required

to model the SCICI elements (transportation, water, power, communication) and uses

publically available data to create the model as close to real-time as possible. The

research identifies problems with the data, but proves that with the data that is available

publically it is possible to model the infrastructure. To map the interdependencies

between infrastructures an agent based model is used where agents interact with each

other first haphazardly and from this emergent behaviors emerge that help in mapping

interdependency. A test case is developed for the St. Louis metro region, where data is

obtained, and analyzed to model the infrastructure of that area. Then, all of this data

integrated and geographic and physical interdependencies is mapped.

 The advantage of this methodology is that it is scalable, and flexible i.e. the same

model can be used for different regions and different infrastructure elements if the data is

available. It can work as a plug-and-play model where the end-user plugs in data and the

interdependencies are mapped, and this can be used when dealing with restoration after

damage to infrastructure due to natural or man-made events. The methodology proposed

in this work contributes to the literature by its explicit combination of modeling

infrastructure elements using real data and mapping interdependencies between them.

The disruption of SCICI on a metropolitan scale drastically impacts economic

stability on a regional, national, and international scale. Without a comprehensive, data-

110

driven model of SCICI, communities cannot re-establish the level of vibrant connectivity

required for a timely restoration of goods and services. Results from this work will

establish a decision framework capable of optimizing disaster restoration. The research

presented here evaluates several key components in the complex and complicated

problem of supply chain network restoration in the aftermath of large-scale disasters.

There were three main areas of research when looking to develop a methodology that can

be utilized to look at restoration after an extreme event. The first is to develop a

framework that can be used to model critical infrastructure. This was achieved using an

interdisciplinary approach to develop a comprehensive framework for resiliency

modeling. The approach includes: graph theory, geospatial data, supply chain assessment,

and hazards risk analysis, as well as the integration of these diverse data sets. The second

area of focus was to understand and acquire the data required for this research. A review

of publically available data revealed a paramount need for real-time data and information

to assist urban planners with recovery following an extreme event. The third area of focus

was the integration and system interdependency mapping of dozens of diverse,

complicated and heterogeneous data sets. The simulation-optimization models will be of

a general-purpose nature and the main paradigms that will result from this research will

be useful for modeling any post-disaster environment. These models have key broader

impacts in terms of the influence on society and public policy.

The other important contribution of this research is the interdependency mapping.

This is extremely essential when looking at cascading failure or damage, and also when

looking at restoration after damage. Modeling this can be done at different levels of

abstraction from high level to detailed level as well as on a physical, logical, or cyber

111

level. Depending on the type of results this will vary. Most of the research currently

available does not consider multiple infrastructures, and this is an extremely important

aspect when looking at restoring an urban environment.

 This research is another step towards looking at restoration of critical

infrastructure after damage due to natural or man-made disaster. Protecting critical

infrastructures remains a difficult and an open problem, especially due to there not being

a clear understanding of the complex interdependencies that exists among the

infrastructures. Once, that has been studied a heuristic can be developed to look at the

restoration process, and putting the urban area back on the grid or getting the economy

back on track. Most of the methods that are present do not address the problem with a

comprehensive method but look at only parts of the problem, but this research can act as

basis of making a data-driven model that evaluates methods and priorities for doing the

restoration process. The broader impacts and how this research can be taken forward is

given below:

 A computer-based model is created to simulate and analyze the data which uses

ABMS for mapping the interdependencies. Since the number of natural hazards

and calamities is increasing, there is a need to look at the economic aspect of

restoration. This will include cost of restoration along with the cost of rebuilding.

This research looks to implement the Leontief input/output model to calculate the

damage and also considers interdependency between infrastructures. Going

forward, this can be expanded to look at feasibility of changing the infrastructure,

and how cost-effective that would be. Either, building sustainably or building it

better rather than just rebuilding.

112

 This research also considers efforts to reduce public risk after an extreme event.

This is done by removing the uncertainties as to how the restoration is to be done,

or by looking at limiting the damage by pre-planning. Though modeling human

behavior is a complex task, optimizing the restoration means that they whole

process should run seamlessly with all the components working in tandem with

each other. This includes public-private handoffs. This work provides a platform

for future research to be done in this area. Improvements need to be made to look

at the data sharing capabilities, responsibilities, authorization etc.

 One of the main areas of concern is the dearth of publically available data and

the problems associated with this data. There needs to be an improvement in this

area, in regards to what data is available, what data is necessary for such a

research, and the inherent problems (static, private, inconsistent, proprietary data

etc.). There is not a lot of literature available which deals with only the data

aspect, as they generally ‘make-up’ this data. This research builds a database that

can be built upon, to include more data which is required for this research.

 Coupling GIS and modeling system has not been very beneficial in the past amd

the best way forward is to integrate the required functionality of either the GIS or

simulation into the other. In this research GIS software works as a part of the

modeling software and is integrated using a middleware. Since the tool is open-

source, additions to this can be made easily. One of the aims of this research is to

give this framework to decision-makers who can then make decisions regarding

restoration based on real-world like scenario. But, this tool can also be used for

pre-event preparedness, so that the city planners and the city itself can be ready.

113

Since, all the infrastructure of the city is mapped in this tool, the vulnerabilities of

the city can be found out and it also allows planners and private companies to

preview how their buildings would react to an extreme event. This research can

further be extended to include more facilities and become more detailed so as to

improve the efficiency of the results. Using ABMS provides advantages like

reduced computational times and increase in efficiency of computation due to the

fact the system can be divided be divided into sub-systems, and also it helps

when the size of the problem is large. Integrating GIS data for ABM is a difficult

process and many considerations are needed such as what data to use, how the

data has to manipulated, or how the agents should react. But, this does lead to

increased research in this area, like this work.

114

APPENDIX

AGENT BASED MODELING CODE

/*©vrnq5

 *

 *

 *

 *

 * */

package scsi.agent;

import java.util.Iterator;

import java.util.logging.Logger;

import com.vividsolutions.jts.geom.Geometry;

import repast.simphony.context.Context;

import scsi.environment.Airport;

import scsi.environment.GISFunctions;

import scsi.environment.SpatialIndexManager;

import scsi.exceptions.AgentCreationException;

import scsi.main.ContextManager;

import scsi.main.GlobalVars;

/**

 * Create agents. There are three methods that can be used to create agents: randomly

create a number of agents, create

115

 * agents from a point shapefile or create a certain number of agents per neighborhood

specified in an area shapefile.

 *

 * <P>

 * The method to use is specified by the 'agent_definition' parameter in

<code>parameters.xml</code>. The parameter

 * takes the following form:

 * </P>

 *

 * <pre>

 * {@code

 * <method>:<definition>

 * }

 * </pre>

 *

 * <P>

 * where method and can be one of the following:

 * </P>

 *

 *

 *

 *

 * <pre>

 * {@code random:<num_agents>}

 * </pre>

 *

116

 * Create 'num_agents' agents in randomly chosen houses. The agents are of type

<code>DefaultAgent</code>. For example,

 * this will create 10 agents in randomly chosen houses: '<code>random:1</code>'. See

the

 * <code>createRandomAgents</code> function for implementation details.

 *

 *

 *

 * <pre>

 * {@code point:<filename>%<agent_class>}

 * </pre>

 *

 * Create agents from the given point shapefile (one agent per point). If a point in the

agent shapefile is within a

 * building object then the agent's home will be set to that building. The type of the

agent can be given in two ways:

 *

 * The 'agent_class' parameter can be used - this is the fully qualified (e.g. including

package) name of a class

 * that will be used to create all the agents. For example the following will create

instances of <code>MyAgent</code>

 * at each point in the shapefile

'<code>point:data/my_shapefile.shp$my_package.agents.MyAgent</code>'.

 * A String column in the input shapefile called 'agent_type' provides the class of the

agents. IIn this manner

 * agents of different types can be created from the same input. For example, the

following will read the shapefile and

 * look at the values in the 'agent_type' column to create agents:

'<code>point:data/my_shapefile.shp</code>' (note that

117

 * unlike the previous method there is no '$').

 *

 *

 * See the <code>createPointAgents</code> function for implementation details.

 *

 *

 *

 * <pre>

 * {@code area:<filename>$BglrC1%<agent_class1>$.. $BglrC5%<agent_class5>}

 * </pre>

 *

 * Create agents from the given areas shapefile. Up to five different types of agents can

be created. Columns in the

 * shapefile specify how many agents of each type to create per area and the agents

created are randomly assigned to

 * houses withing their area. The columns names must follow the format 'BglrCX' where

1 <= X <= 5. For example the

 * following string:

 *

 * <pre>

 * {@code area:area.shp$BglrC1%BurglarAgent$BglrC2%EmployedAgent}

 * </pre>

 *

 * will read the <code>area.shp</code> and, for each area, create a number of

<code>BurglarAgent</code> and

 * <code>EmployedAgent</code> agents in each area, the number being specied by

columns called <code>BglrC1</code> and

118

 * <code>BglrC2</code> respectively. See the <code>createAreaAgents</code> function

for implementation details.

 *

 *

 * @author vrnq5

 * @see DefaultAgent

 */

public class AgentFactory {

 private static Logger LOGGER = Logger.getLogger(AgentFactory.class.getName());

 /** The method to use when creating agents (determined in constructor). */

 private AGENT_FACTORY_METHODS methodToUse;

 /** The definition of the agents - specific to the method being used */

 private String definition;

 /**

 * Create a new agent factory from the given definition.

 *

 * @param agentDefinition

 */

 public AgentFactory(String agentDefinition) throws AgentCreationException {

 // First try to parse the definition

 String[] split = agentDefinition.split(":");

119

 if (split.length != 2) {

 throw new AgentCreationException("Problem parsin the

definition string '" + agentDefinition

 + "': it split into " + split.length + " parts but should

split into 2.");

 }

 String method = split[0]; // The method to create agents

 String defn = split[1]; // Information about the agents themselves

 if (method.equals(AGENT_FACTORY_METHODS.RANDOM.toString())) {

 this.methodToUse = AGENT_FACTORY_METHODS.RANDOM;

 } else if

(method.equals(AGENT_FACTORY_METHODS.POINT_FILE.toString())) {

 this.methodToUse = AGENT_FACTORY_METHODS.POINT_FILE;

 }

 else if

(method.equals(AGENT_FACTORY_METHODS.AREA_FILE.toString())) {

 this.methodToUse = AGENT_FACTORY_METHODS.AREA_FILE;

 }

 else {

 throw new AgentCreationException("Unrecognised method of

creating agents: '" + method

 + "'. Method must be one of " +

AGENT_FACTORY_METHODS.RANDOM.toString() + ", "

120

 +

AGENT_FACTORY_METHODS.POINT_FILE.toString() + " or " +

AGENT_FACTORY_METHODS.AREA_FILE.toString());

 }

 this.definition = defn; // Method is OK, save the definition for creating

agents later.

 // Check the rest of the definition is also correct (passing false means

don't create agents)

 // An exception will be thrown if it doesn't work.

 this.methodToUse.createAgMeth().createagents(false, this);

 }

 public void createAgents(Context<? extends IAgent> context) throws

AgentCreationException {

 this.methodToUse.createAgMeth().createagents(true, this);

 }

 /**

 * Create a number of in randomly chosen houses. If there are more agents than

houses then some houses will have

 * more than one agent in them.

 *

 * @param dummy

 * Whether or not to actually create agents. If this is false then just check

that the definition can be

 * parsed.

121

 * @throws AgentCreationException

 */

 private void createRandomAgents(boolean dummy) throws

AgentCreationException {

 // Check the definition is as expected, in this case it should be a number

 int numAgents = -1;

 try {

 numAgents = Integer.parseInt(this.definition);

 } catch (NumberFormatException ex) {

 throw new AgentCreationException("Using " + this.methodToUse

+ " method to create "

 + "agents but cannot convert " + this.definition + "

into an integer.");

 }

 // The definition has been parsed OK, no can either stop or create the

agents

 if (dummy) {

 return;

 }

 // Create agents in randomly chosen houses. Use two while loops in case

there are more agents

 // than houses, so that houses have to be looped over twice.

 LOGGER.info("Creating " + numAgents + " agents using " +

this.methodToUse + " method.");

 int agentsCreated = 0;

 while (agentsCreated < numAgents) {

122

 Iterator<Airport> i =

ContextManager.AirportContext.getRandomObjects(Airport.class, numAgents)

 .iterator();

 while (i.hasNext() && agentsCreated < numAgents) {

 Airport b = i.next(); // Find a building

 IAgent a = new DefaultAgent(); // Create a new agent

 a.setHome(b); // Tell the agent where it lives

 b.addAgent(a); // Tell the building that the agent lives

there

 ContextManager.addAgentToContext(a); // Add the agent

to the context

 // Finally move the agent to the place where it lives.

 ContextManager.moveAgent(a,

ContextManager.AirportProjection.getGeometry(b).getCentroid());

 agentsCreated++;

 }

 }

 }

 /**

 * Read a shapefile and create an agent at each location. If there is a column

called

 *

 * @param dummy

 * Whether or not to actually create agents. If this is false then just check

that the definition can be

 * parsed.

 * @throws AgentCreationException

123

 */

 @SuppressWarnings("unchecked")

 private void createPointAgents(boolean dummy) throws AgentCreationException

{

 // See if there is a single type of agent to create or should read a colum in

shapefile

 boolean singleType = this.definition.contains("$");

 String fileName;

 String className;

 Class<IAgent> clazz;

 if (singleType) {

 // Agent class provided, can use the Simphony Shapefile loader to

load agents of the given class

 // Work out the file and class names from the agent definition

 String[] split = this.definition.split("\\$");

 if (split.length != 2) {

 throw new AgentCreationException("There is a problem

with the agent definition, I should be "

 + "able to split the definition into two parts

on '$', but only split it into " + split.length

 + ". The definition is: '" + this.definition +

"'");

 }

 // (Need to append root data directory to the filename).

124

 fileName =

ContextManager.getProperty(GlobalVars.GISDataDirectory)+split[0];

 className = split[1];

 // Try to create a class from the given name.

 try {

 clazz = (Class<IAgent>) Class.forName(className);

 GISFunctions.readAgentShapefile(clazz, fileName,

ContextManager.getAgentGeography(), ContextManager

 .getAgentContext());

 } catch (Exception e) {

 throw new AgentCreationException(e);

 }

 } else {

 // TODO Implement agent creation from shapefile value;

 throw new AgentCreationException("Have not implemented the

method of reading agent classes from a "

 + "shapefile yet.");

 }

 // Assign agents to houses

 int numAgents = 0;

 for (IAgent a : ContextManager.getAllAgents()) {

 numAgents++;

 Geometry g = ContextManager.getAgentGeometry(a);

 for (Airport b :

SpatialIndexManager.search(ContextManager.AirportProjection, g)) {

 if

(ContextManager.AirportProjection.getGeometry(b).contains(g)) {

125

 b.addAgent(a);

 a.setHome(b);

 }

 }

 }

 if (singleType) {

 LOGGER.info("Have created " + numAgents + " of type " +

clazz.getName().toString() + " from file "

 + fileName);

 } else {

 // (NOTE: at the moment this will never happen because not

implemented yet.)

 LOGGER.info("Have created " + numAgents + " of different types

from file " + fileName);

 }

 }

 private void createAreaAgents(boolean dummy) throws AgentCreationException

{

 throw new AgentCreationException("Have not implemented the

createAreaAgents method yet.");

 }

 /**

 * The methods that can be used to create agents. The CreateAgentMethod stuff

is just a long-winded way of

126

 * hard-coding the specific method to use for creating agents into the enum

(much simpler in python).

 *

 * @author Nick Malleson

 */

 private enum AGENT_FACTORY_METHODS {

 /** Default: create a number of agents randomly assigned to buildings */

 RANDOM("random", new CreateAgentMethod() {

 @Override

 public void createagents(boolean b, AgentFactory af) throws

AgentCreationException {

 af.createRandomAgents(b);

 }

 }),

 /** Specify an agent shapefile, one agent will be created per point */

 POINT_FILE("point", new CreateAgentMethod() {

 @Override

 public void createagents(boolean b, AgentFactory af) throws

AgentCreationException {

 af.createPointAgents(b);

 }

 }),

 /**

 * Specify the number of agents per area as a shaefile. Agents will be

randomly assigned to houses within the

 * area.

 */

127

 AREA_FILE("area", new CreateAgentMethod() {

 @Override

 public void createagents(boolean b, AgentFactory af) throws

AgentCreationException {

 af.createAreaAgents(b);

 }

 });

 String stringVal;

 CreateAgentMethod meth;

 /**

 * @param val

 * The string representation of the enum which must match the

method given in the 'agent_definition'

 * parameter in parameters.xml.

 * @param f

 */

 AGENT_FACTORY_METHODS(String val, CreateAgentMethod f) {

 this.stringVal = val;

 this.meth = f;

 }

 public String toString() {

 return this.stringVal;

 }

128

 public CreateAgentMethod createAgMeth() {

 return this.meth;

 }

 interface CreateAgentMethod {

 void createagents(boolean dummy, AgentFactory af) throws

AgentCreationException;

 }

 }

}

/*

©vrnq5

*/

package scsi.environment;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.io.Serializable;

import java.util.ArrayList;

129

import java.util.Date;

import java.util.HashMap;

import java.util.Hashtable;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

import java.util.Map;

import java.util.Vector;

import org.apache.commons.lang3.ArrayUtils;

//import java.util.;

import org.geotools.referencing.GeodeticCalculator;

import cern.colt.Arrays;

import com.vividsolutions.jts.geom.Coordinate;

import com.vividsolutions.jts.geom.Envelope;

import com.vividsolutions.jts.geom.Geometry;

import com.vividsolutions.jts.geom.GeometryFactory;

import com.vividsolutions.jts.geom.LineString;

import com.vividsolutions.jts.geom.Point;

import com.vividsolutions.jts.operation.distance.DistanceOp;

import repast.simphony.space.gis.Geography;

import repast.simphony.space.graph.RepastEdge;

import repast.simphony.space.graph.ShortestPath;

130

import scsi.environment.Junction;

import scsi.environment.NetworkEdge;

import scsi.agent.IAgent;

import scsi.exceptions.RoutingException;

import scsi.main.ContextManager;

import scsi.main.GlobalVars;

/**

 * Create routes around a GIS road network. The <code>setRoute</code> function

actually finds the route and can be

 * overridden by subclasses to create different types of Route. See the method

documentation for details of how routes

 * are calculated.

 *

 */

public class Route implements Cacheable {

 private static Logger LOGGER = Logger.getLogger(Route.class.getName());

 static {

 // Route.routeCache = new Hashtable<CachedRoute, CachedRoute>();

 }

 private IAgent agent;

 private Coordinate destination;

 private Airport destinationAirport;

131

 /*

 * The route consists of a list of coordinates which describe how to get to the

destination. Each coordinate might

 * have an attached 'speed' which acts as a multiplier and is used to indicate

whether or not the agent is

 * traveling along a transport route (i.e. if a coordinate has an attached speed of

'2' the agent will be able to

 * get to the next coordinate twice as fast as they would do if they were walking).

The current position indicate

 * where in the lists of coords the agent is up to. Other attribute information

about the route can be included as

 * separate arrays with indices that match those of the 'route' array below.

 */

 private int currentPosition;

 private List<Coordinate> routeX;

 //private List<Double> routeSpeedsX;

 /*

 * This maps route coordinates to their containing Road, used so that when

traveling we know which road/community

 * the agent is on. private

 */

 private List<Road> roadsX;

 // Record which function has added each coord, useful for debugging

 private List<String> routeDescriptionX;

 /*

132

 * Cache every coordinate which forms a road so that Route.onRoad() is quicker.

Also save the Road(s) they are part

 * of, useful for the agent's awareness space (see getRoadFromCoordCache()).

 */

 private static volatile Map<Coordinate, List<Road>> coordCache;

 /*

 * Cache the nearest road Coordinate to every building for efficiency (agents

usually/always need to get from the

 * centroids of houses to/from the nearest road).

 */

 private static volatile NearestRoadCoordCache nearestRoadCoordCache;

 /*

 * Store which road every building is closest to. This is used to efficiently add

buildings to the agent's awareness

 * space

 */

 private static volatile AirportOnRoadCache airportOnRoadCache;

 // To stop threads competing for the cache:

 private static Object airportOnRoadCacheLock = new Object();

 /*

 * Store a route once it has been created, might be used later (note that the

same object acts as key and value).

 */

 // TODO Re-think route caching, would be better to cache the whole Route

object

 // private static volatile Map<CachedRoute, CachedRoute> routeCache;

 // /** Store a route distance once it has been created */

133

 // private static volatile Map<CachedRouteDistance, Double>

routeDistanceCache;

 /*

 * Keep a record of the last community and road passed so that the same

buildings/communities aren't added to the

 * cognitive map multiple times (the agent could spend a number of iterations on

the same road or community).

 */

 private Road previousRoad;

 private Area previousArea;

 /**

 * Creates a new Route object.

 *

 * @param destination

 * The agent's destination.

 *

 * @param destinationBuilding

 * The (optional) building they're heading to.

 *

 * @param type

 * The (optional) type of route, used by burglars who want to search.

 */

 public Route(IAgent agent, Coordinate destination, Airport destinationAirport) {

 this.destination = destination;

 this.agent = agent;

134

 this.destinationAirport = destinationAirport;

 }

 /**

 * Find a route from the origin to the destination. A route is a list of Coordinates

which describe the route to a

 * destination restricted to a road network. The algorithm consists of three major

parts:

 *

 * Find out if the agent is on a road already, if not then move to the nearest

road segment

 * Get from the current location (probably mid-point on a road) to the

nearest junction

 * Travel to the junction which is closest to our destination (using Dijkstra's

shortest path)

 * Get from the final junction to the road which is nearest to the destination

 *

 * Move from the road to the destination

 *

 *

 * @throws Exception

 */

 protected void setRoute() throws Exception {

 long time = System.nanoTime();

 // this.routeX = new ArrayList<Coordinate>();

 // this.roadsX = new ArrayList<Road>();

 // this.routeDescriptionX = new ArrayList<String>();

 // this.routeSpeedsX = new ArrayList<Double>();

135

 this.routeX = new Vector<Coordinate>();

 this.roadsX = new Vector<Road>();

 this.routeDescriptionX = new Vector<String>();

 //this.routeSpeedsX = new Vector<Double>();

 LOGGER.log(Level.FINER, "Planning route for: "

 + this.agent.toString()

 + " to: "

 + this.destinationAirport.toString());

 //+ ((this.agent.getTransportAvailable() == null) ? "" :

"using transport: "

 // +

this.agent.getTransportAvailable().toString()));

 if (atDestination()) {

 LOGGER.log(Level.WARNING, "Already at destination, cannot

create a route for " + this.agent.toString());

 return;

 }

 Coordinate currentCoord =

ContextManager.getAgentGeometry(this.agent).getCoordinate();

 Coordinate destCoord = this.destination;

 // See if a route has already been cached.

 // CachedRoute cachedRoute = new CachedRoute(currentCoord,

destCoord, this.agent.getTransportAvailable());

 // synchronized (Route.routeCache) {

 // if (Route.routeCache.containsKey(cachedRoute)) {

136

 // TempLogger.out("Route.setRoute, found a cached route from " +

currentCoord + " to " + destCoord

 // + " using available transport " + this.agent.getTransportAvailable() + ",

returning it.");

 // // Return a clone of the route that is stored in the cache

 // // TODO do we need clones here? I don't think so...

 // CachedRoute cr = Route.routeCache.get(cachedRoute);

 // // this.routeX = Cloning.copy(cr.getRoute());

 // // this.roadsX = new ArrayList<Road>(cr.getRoads());

 // // this.routeSpeedsX = new ArrayList<Double>(cr.getRouteSpeeds());

 // // this.routeDescriptionX = new ArrayList<String>(cr.getDescriptions());

 // this.routeX = new Vector<Coordinate>(cr.getRoute());

 // this.roadsX = new Vector<Road>(cr.getRoads());

 // this.routeSpeedsX = new Vector<Double>(cr.getRouteSpeeds());

 // this.routeDescriptionX = new Vector<String>(cr.getDescriptions());

 //

 // return;

 // }

 // } // synchronized

 // No route cached, have to create a new one (and cache it at the end).

 try {

 /*

 * See if the current position and the destination are on road

segments. If the destination is not on a road

 * segment we have to move to the closest road segment, then

onto the destination.

137

 */

 boolean destinationOnRoad = true;

 Coordinate finalDestination = null;

 if (!coordOnRoad(currentCoord)) {

 /*

 * Not on a road so the first coordinate to add to the route

is the point on the closest road segment.

 */

 currentCoord = getNearestRoadCoord(currentCoord);

 addToRoute(currentCoord, Road.nullRoad, "setRoute()

initial");

 }

 if (!coordOnRoad(destCoord)) {

 /*

 * Not on a road, so need to set the destination to be the

closest point on a road, and set the

 * destinationOnRoad boolean to false so we know to add

the final dest coord at the end of the route

 */

 destinationOnRoad = false;

 finalDestination = destCoord; // Added to route at end of

alg.

 destCoord = getNearestRoadCoord(destCoord);

 }

 /*

 * Find the nearest junctions to our current position (road

endpoints)

138

 */

 // Start by Finding the road that this coordinate is on

 /*

 * TODO EFFICIENCY: often the agent will be creating a new route

from a building so will always find the

 * same road, could use a cache. Even better, could implement a

cache in FindNearestObject() method!

 */

 Road currentRoad = Route.findNearestObject(currentCoord,

ContextManager.roadProjection, null,

 GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.LARGE);

 // Find which Junction is closest to us on the road.

 List<Junction> currentJunctions = currentRoad.getJunctions();

 /* Find the nearest Junctions to our destination (road endpoints)

*/

 // Find the road that this coordinate is on

 Road destRoad = Route.findNearestObject(destCoord,

ContextManager.roadProjection, null,

 GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.SMALL);

 // Find which Junction connected to the edge is closest to the

coordinate.

 List<Junction> destJunctions = destRoad.getJunctions();

 /*

139

 * Now have four possible routes (2 origin junctions, 2 destination

junctions) need to pick which junctions

 * form shortest route

 */

 Junction[] routeEndpoints = new Junction[2];

 List<RepastEdge<Junction>> shortestPath =

getShortestRoute(currentJunctions, destJunctions, routeEndpoints);

 // NetworkEdge<Junction> temp = (NetworkEdge<Junction>)

 // shortestPath.get(0);

 Junction currentJunction = routeEndpoints[0];

 Junction destJunction = routeEndpoints[1];

 /* Add the coordinates describing how to get to the nearest

junction */

 List<Coordinate> tempCoordList = new Vector<Coordinate>();

 this.getCoordsAlongRoad(currentCoord,

currentJunction.getCoords(), currentRoad, true, tempCoordList);

 addToRoute(tempCoordList, currentRoad, 1,

"getCoordsAlongRoad (toJunction)");

 /*

 * Add the coordinates and speeds etc which describe how to

move along the chosen path

 */

 this.getRouteBetweenJunctions(shortestPath, currentJunction);

 /*

140

 * Add the coordinates describing how to get from the final

junction to the destination.

 */

 tempCoordList.clear();

 this.getCoordsAlongRoad(ContextManager.junctionGeography.getGeometry(des

tJunction).getCoordinate(),

 destCoord, destRoad, false, tempCoordList);

 addToRoute(tempCoordList, destRoad, 1, "getCoordsAlongRoad

(fromJunction)");

 if (!destinationOnRoad) {

 addToRoute(finalDestination, Road.nullRoad, "setRoute

final");

 }

 // Check that a route has actually been created

 checkListSizes();

 // If the algorithm was better no coordinates would have been

duplicated

 // removePairs();

 // Check lists are still the same size.

 checkListSizes();

 } catch (RoutingException e) {

141

 LOGGER.log(Level.SEVERE, "Route.setRoute(): Problem creating

route for " + this.agent.toString()

 + " going from " + currentCoord.toString() + " to " +

this.destination.toString() + "("

 + (this.destinationAirport == null ? "" :

this.destinationAirport.toString())

 + ") See earlier messages error messages for more

info.");

 throw e;

 }

 // Cache the route and route speeds

 // List<Coordinate> routeClone = Cloning.copy(theRoute);

 // LinkedHashMap<Coordinate, Double> routeSpeedsClone =

Cloning.copy(this.routeSpeeds);

 // cachedRoute.setRoute(routeClone);

 // cachedRoute.setRouteSpeeds(routeSpeedsClone);

 // cachedRoute.setRoute(this.routeX, this.roadsX, this.routeSpeedsX,

this.routeDescriptionX);

 // synchronized (Route.routeCache) {

 // // Same cached route is both value and key

 // Route.routeCache.put(cachedRoute, cachedRoute);

 // }

 // TempLogger.out("...Route cacheing new route with unique id " +

cachedRoute.hashCode());

 LOGGER.log(Level.FINER, "Route Finished planning route for " +

this.agent.toString() + "with "

142

 + this.routeX.size() + " coords in " + (0.000001 *

(System.nanoTime() - time)) + "ms.");

 // Finished, just check that the route arrays are all in sync

 assert this.roadsX.size() == this.routeX.size()

 //&& this.routeDescriptionX.size() ==

this.routeSpeedsX.size()

 && this.roadsX.size() == this.routeDescriptionX.size();

 }

 private void checkListSizes() {

 assert this.roadsX.size() > 0 && this.roadsX.size() == this.routeX.size()

 //&& this.routeDescriptionX.size() ==

this.routeSpeedsX.size()

 && this.roadsX.size() == this.routeDescriptionX.size() :

this.routeX.size() + "," + this.roadsX.size()

 + "," + this.routeDescriptionX.size();// + "," +

this.routeSpeedsX.size();

 }

 /**

 * Convenience function that can be used to add details to the route. This should

be used rather than updating

 * individual lists because it makes sure that all lists stay in sync

 *

 * @param coord

 * The coordinate to add to the route

143

 * @param road

 * The road that the coordinate is part of

 * @param speed

 * The speed that the road can be travelled along

 * @param description

 * A description of why the coordinate has been added

 */

 private void addToRoute(Coordinate coord, Road road, String description) {

 this.routeX.add(coord);

 this.roadsX.add(road);

 //this.routeSpeedsX.add(speed);

 this.routeDescriptionX.add(description);

 }

 /**

 * A convenience for adding to the route that will add a number of coordinates

with the same description, road and

 * speed.

 *

 * @param coord

 * A list of coordinates to add to the route

 * @param road

 * The road that the coordinates are part of

 * @param speed

 * The speed that the road can be travelled along

 * @param description

144

 * A description of why the coordinates have been added

 */

 private void addToRoute(List<Coordinate> coords, Road road, double speed,

String description) {

 for (Coordinate c : coords) {

 this.routeX.add(c);

 this.roadsX.add(road);

 //this.routeSpeedsX.add(speed);

 this.routeDescriptionX.add(description);

 }

 }

 /**

 * Travel towards our destination, as far as we can go this turn.

 * <p>

 * Also adds houses to the agent's cognitive environment. This is done by saving

each coordinate the person passes,

 * creating a polygon with a radius given by the "cognitive_map_search_radius"

and adding all houses which touch the

 * polygon.

 * <p>

 *

 * @param housesPassed

 * If not null then the buildings which the agent passed during their travels

this iteration will be

 * calculated and stored in this array. This can be useful if a agent needs to

know which houses it has

145

 * just passed and, therefore, which are possible victims. This isn't done by

default because it's quite

 * an expensive operation (lots of geographic tests which must be carried

out in each iteration). If the

 * array is null then the houses passed are not calculated.

 * @return null or the buildings passed during this iteration if housesPassed

boolean is true

 * @throws Exception

 */

 public void travel() throws Exception {

 // Check that the route has been created

 if (this.routeX == null) {

 this.setRoute();

 }

 try {

 if (this.atDestination()) {

 return;

 }

 double time = System.nanoTime();

 // Store the roads the agent walks along (used to populate the

awareness space)

 // List<Road> roadsPassed = new ArrayList<Road>();

 double distTravelled = 0; // The distance travelled so far

 Coordinate currentCoord = null; // Current location

 Coordinate target = null; // Target coordinate we're heading for

(in route list)

146

 boolean travelledMaxDist = false; // True when travelled

maximum distance this iteration

 //double speed; // The speed to travel to next coord

 GeometryFactory geomFac = new GeometryFactory();

 currentCoord =

ContextManager.getAgentGeometry(this.agent).getCoordinate();

 while (!travelledMaxDist && !this.atDestination()) {

 target = this.routeX.get(this.currentPosition);

 //speed = this.routeSpeedsX.get(this.currentPosition);

 /*

 * TODO Remember which roads have been passed, used

to work out what should be added to cognitive map.

 * Only add roads once the agent has moved all the way

down them

 */

 //

roadsPassed.add(this.roads.get(this.previousRouteCoord()));

 // Work out the distance and angle to the next coordinate

 double[] distAndAngle = new double[2];

 Route.distance(currentCoord, target, distAndAngle);

 // divide by speed because distance might effectively be

shorter

 double distToTarget = distAndAngle[0];// / speed;

 // If we can get all the way to the next coords on the route

then just go there

 if (distTravelled + distToTarget <

GlobalVars.GEOGRAPHY_PARAMS.TRAVEL_PER_TURN) {

147

 distTravelled += distToTarget;

 currentCoord = target;

 // See if agent has reached the end of the route.

 if (this.currentPosition == (this.routeX.size() - 1)) {

 ContextManager.moveAgent(this.agent,

geomFac.createPoint(currentCoord));

 //

ContextManager.agentGeography.move(this.agent,

geomFac.createPoint(currentCoord));

 break; // Break out of while loop, have

reached end of route.

 }

 // Haven't reached end of route, increment the

counter

 this.currentPosition++;

 } // if can get all way to next coord

 // Check if dist to next coordinate is exactly same as

maximum

 // distance allowed to travel (unlikely but possible)

 else if (distTravelled + distToTarget ==

GlobalVars.GEOGRAPHY_PARAMS.TRAVEL_PER_TURN) {

 travelledMaxDist = true;

 ContextManager.moveAgent(agent,

geomFac.createPoint(target));

 // ContextManager.agentGeography.move(agent,

geomFac.createPoint(target));

148

 this.currentPosition++;

 LOGGER.log(Level.WARNING, "Travel(): UNUSUAL

CONDITION HAS OCCURED!");

 } else {

 // Otherwise move as far as we can towards the

target along the road we're on.

 // Move along the vector the maximum distance

we're allowed this turn (take into account relative

 // speed)

 double distToTravel =

(GlobalVars.GEOGRAPHY_PARAMS.TRAVEL_PER_TURN - distTravelled);

 // Move the agent, first move them to the current

coord (the first part of the while loop doesn't do

 // this for efficiency)

 //

ContextManager.agentGeography.move(this.agent,

geomFac.createPoint(currentCoord));

 ContextManager.moveAgent(this.agent,

geomFac.createPoint(currentCoord));

 // Now move by vector towards target (calculated

angle earlier).

 ContextManager.moveAgentByVector(this.agent,

distToTravel, distAndAngle[1]);

 //

ContextManager.agentGeography.moveByVector(this.agent, distToTravel,

distAndAngle[1]);

 travelledMaxDist = true;

 } // else

 } // while

149

// this.printRoute();

 /*

 * TODO Agent has finished moving, now just add all the buildings

and communities passed to their awareness

 * space (unless they're on a transport route). Note also that if on

a transport route without an associated

 * road no roads are added to the 'roads' map so even if the check

wasn't made here no buildings would be

 * added anyway.

 */

 // Community c = null;

 // if (!this.onTransportRoute) {

 // String outputString = "Route.travel() adding following to

awareness space for '"

 // + this.agent.toString() + "':";

 // // roadsPassed will have duplicates, this is used to ignore them

 // Road current = roadsPassed.get(0);

 // // TODO The next stuff is a mess when it comes to adding

communities to the memory. Need to go

 // // through and make sure communities aren't added too many

times (i.e. more than once for each journey)

 // // and that they are always added when they should be.

 //

 // for (Road r : roadsPassed) { // last road in list is the one the

 // // agent finishes iteration on

150

 // if (r != null && roadsPassed.get(0) != null && !current.equals(r))

{

 // // Check road isn't null () and that buildings on road haven't

already been added

 // // (road can be null when coords that aren't part of a road are

added to the route)

 // current = r;

 // if (r.equals(this.previousRoad)) {

 // // The agent has just passed over this road, don't add the

buildings or communities again

 // } else {

 // outputString += "\n\t" + r.toString() + ": ";

 // List<Building> passedBuildings = getBuildingsOnRoad(r);

 // List<Community> passedCommunities = new

ArrayList<Community>();

 // if (passedBuildings != null) { // There might not be any buildings

close to the road (unlikely)

 // outputString += passedBuildings.toString();

 // this.passedObjects(passedBuildings, Building.class);

 // // For efficiency just find one of the building's communities and

hope no other

 // // communities were passed through - NO! I'VE CHANGED THIS

BELOW!

 // c = passedBuildings.get(0).getCommunity();

 // // Check all buildings to make sure that if the agent has passed

more than one community

 // // then they are all added.

 // for (Building b : passedBuildings) {

 // if (!passedCommunities.contains(b.getCommunity())) {

151

 // passedCommunities.add(b.getCommunity());

 // }

 // }

 // for (Community com : passedCommunities) {

 // if (com != null) {

 // this.passedObject(com, Community.class);

 // }

 // }

 //

 // } else { // Community won't have been added because no

buildings passed, use slow method

 // c =

GlobalVars.COMMUNITY_ENVIRONMENT.getObjectAt(Community.class, currentCoord);

 // if (c != null) {

 // this.passedObject(c, Community.class);

 // }

 // // TODO I think the following line is wrong, if the agent has

made

 // // a long move they might have passed right through a

community that doesn't

 // // have any buildings, perhaps this should check *all* the

communities that touch

 // // the road, not just the community the agent finished the

move in (i.e. currentCoord)

 //

passedCommunities.add(GlobalVars.COMMUNITY_ENVIRONMENT.getObjectAt(Commu

nity.class,

 // currentCoord));

 // }

152

 // }

 // }

 // } // for roadsPassed

 // TempLogger.out(outputString + "\n");

 // } // if !onTransportRoute

 // else {

 // TempLogger.out("Route.travel() not adding to burglar '" +

this.agent.toString()

 // + "' awareness space beecause on transport route: ");

 // }

 //

 // // Finally set the previousRoad and previousCommunity so that

if these haven't changed in the next

 // iteration they're not added to

 // // the cognitive map again.

 // this.previousRoad = roadsPassed.get(roadsPassed.size() - 1);

 // // this.previousCommunity = c; // This was the most recent

community passed over

 //

 // TempLogger.out("...Finished Travelling(" + (0.000001 *

(System.nanoTime() - time)) + "ms)");

 // // } // synchronized

GlobalVars.TRANSPORT_PARAMS.currentBurglar

 } catch (Exception e) {

 LOGGER.log(Level.SEVERE, "Route.trave(): Caught error travelling

for " + this.agent.toString()

 + " going to " + "destination "

153

 + (this.destinationAirport == null ? "" :

this.destinationAirport.toString() + ")"));

 throw e;

 } // catch exception

 }

 /**

 * Get the distance (on a network) between the origin and destination. Take into

account the Burglar because they

 * might be able to speed up the route by using different transport methods.

Actually calculates the distance

 * between the nearest Junctions between the source and destination. Note that

the GRID environment doesn't have any

 * transport routes in it so all distances will always be the same regardless of the

agent.

 *

 * @param agent

 * @param destination

 * @return

 */

 public double getDistance(Coordinate origin, Coordinate destination) {

 // // See if this distance has already been calculated

 // if (Route.routeDistanceCache == null) {

 // Route.routeDistanceCache = new Hashtable<CachedRouteDistance,

Double>();

 // }

154

 // CachedRouteDistance crd = new CachedRouteDistance(origin,

destination, theBurglar.getTransportAvailable());

 //

 // synchronized (Route.routeDistanceCache) {

 // Double dist = Route.routeDistanceCache.get(crd);

 // if (dist != null) {

 // TempLogger.out("Route.ggetDistance, found a cached route distance

from " + origin + " to "

 // + destination + " using available transport " +

theBurglar.getTransportAvailable()

 // + ", returning it.");

 // return dist;

 // }

 // }

 // No distance in the cache, calculate it

 // synchronized (GlobalVars.TRANSPORT_PARAMS.currentBurglarLock) {

 // GlobalVars.TRANSPORT_PARAMS.currentAgent = theBurglar;

 // Find the closest Junctions to the origin and destination

 double minOriginDist = Double.MAX_VALUE;

 double minDestDist = Double.MAX_VALUE;

 double dist;

 Junction closestOriginJunc = null;

 Junction closestDestJunc = null;

 DistanceOp distOp = null;

 GeometryFactory geomFac = new GeometryFactory();

155

 // TODO EFFICIENCY: here could iterate over near junctions

instead of all?

 for (Junction j :

ContextManager.junctionContext.getObjects(Junction.class)) {

// // Check that the agent can actually get to the junction (if

might be part of a transport route

// // that the agent doesn't have access to)

// boolean accessibleJunction = false;

// accessibleJunc: for (RepastEdge<Junction> e :

ContextManager.roadNetwork.getEdges(j)) {

// NetworkEdge<Junction> edge =

(NetworkEdge<Junction>) e;

// for (String s : edge.getTypes()) {

// if

(theBurglar.getTransportAvailable().contains(s)) {

// accessibleJunction = true;

// break accessibleJunc;

// }

// } // for types

// }// for edges

// if (!accessibleJunction) { // Agent can't get to the junction,

ignore it

// continue;

// }

 Point juncPoint = geomFac.createPoint(j.getCoords());

 distOp = new DistanceOp(juncPoint,

geomFac.createPoint(origin));

 dist = distOp.distance();

156

 if (dist < minOriginDist) {

 minOriginDist = dist;

 closestOriginJunc = j;

 }

 // Destination

 distOp = new DistanceOp(juncPoint,

geomFac.createPoint(destination));

 dist = distOp.distance();

 if (dist < minDestDist) {

 minDestDist = dist;

 closestDestJunc = j;

 }

 } // for Junctions

 // Return the shortest path plus the distance from the

origin/destination to their junctions

 // TODO NOTE: Bug in ShortestPath so have to make

finalize is called, otherwise following lines are

 // neater

 // - MAYBE THIS HAS BEEN FIXED BY REPAST NOW.

 // return (new

ShortestPath<Junction>(EnvironmentFactory.getRoadNetwork(),

 // closestOriginJunc)).getPathLength(closestDestJunc)+

minOriginDist + minDestDist ;

 // TODO : using non-deprecated methods don't work on

NGS, probably need to update repast libraries

 ShortestPath<Junction> p = new

ShortestPath<Junction>(ContextManager.roadNetwork, closestOriginJunc);

 double theDist = p.getPathLength(closestDestJunc);

157

 // ShortestPath<Junction> p = new

 //

ShortestPath<Junction>(EnvironmentFactory.getRoadNetwork());

 // double theDist =

p.getPathLength(closestOriginJunc,closestDestJunc);

 p.finalize();

 p = null;

 double finalDist = theDist + minOriginDist + minDestDist;

 // // Cache this distance

 // synchronized (Route.routeDistanceCache) {

 // Route.routeDistanceCache.put(crd, finalDist);

 // }

 return finalDist;

 //} // synchronized

 }

 /**

 * Find the nearest coordinate which is part of a Road. Returns the coordinate

which is actually the closest to the

 * given coord, not just the corner of the segment which is closest. Uses the

DistanceOp class which finds the

 * closest points between two geometries.

 * <p>

 * When first called, the function will populate the 'nearestRoadCoordCache'

which calculates where the closest road

 * coordinate is to each building. The agents will commonly start journeys from

within buildings so this will

158

 * improve efficiency.

 * </p>

 *

 * @param inCoord

 * The coordinate from which to find the nearest road coordinate

 * @return the nearest road coordinate

 * @throws Exception

 */

 private synchronized Coordinate getNearestRoadCoord(Coordinate inCoord)

throws Exception {

 // double time = System.nanoTime();

 synchronized (airportOnRoadCacheLock) {

 if (nearestRoadCoordCache == null) {

 LOGGER.log(Level.FINE, "Route.getNearestRoadCoord

called for first time, "

 + "creating cache of all roads and the

buildings which are on them ...");

 // Create a new cache object, this will be read from disk if

 // possible (which is why the getInstance() method is used

 // instead of the constructor.

 String gisDir =

ContextManager.getProperty(GlobalVars.GISDataDirectory);

 File airportFile = new File(gisDir +

ContextManager.getProperty(GlobalVars.AirportShapefile));

 File roadsFile = new File(gisDir +

ContextManager.getProperty(GlobalVars.RoadShapefile));

159

 File serialisedLoc = new File(gisDir +

ContextManager.getProperty(GlobalVars.AirportRoadsCoordsCache));

 nearestRoadCoordCache =

NearestRoadCoordCache.getInstance(ContextManager.AirportProjection,

 airportFile,

ContextManager.roadProjection, roadsFile, serialisedLoc, new GeometryFactory());

 } // if not cached

 } // synchronized

 return nearestRoadCoordCache.get(inCoord);

 }

 /**

 * Finds the shortest route between multiple origin and destination junctions.

Will return the shortest path and

 * also, via two parameters, can return the origin and destination junctions which

make up the shortest route.

 *

 * @param currentJunctions

 * An array of origin junctions

 * @param destJunctions

 * An array of destination junctions

 * @param routeEndpoints

 * An array of size 2 which can be used to store the origin (index 0) and

destination (index 1) Junctions

 * which form the endpoints of the shortest route.

 * @return the shortest route between the origin and destination junctions

 * @throws Exception

160

 */

 private List<RepastEdge<Junction>> getShortestRoute(List<Junction>

currentJunctions, List<Junction> destJunctions,

 Junction[] routeEndpoints) throws Exception {

 double time = System.nanoTime();

 // synchronized (GlobalVars.TRANSPORT_PARAMS.currentBurglarLock) {

 // This must be set so that NetworkEdge.getWeight() can adjust

the weight depending on how this

 // particular agent is getting around the city

 // GlobalVars.TRANSPORT_PARAMS.currentAgent = this.agent;

 double shortestPathLength = Double.MAX_VALUE;

 double pathLength = 0;

 ShortestPath<Junction> p;

 List<RepastEdge<Junction>> shortestPath = null;

 for (Junction o : currentJunctions) {

 for (Junction d : destJunctions) {

 if (o == null || d == null) {

 LOGGER.log(Level.WARNING,

"Route.getShortestRoute() error: either the destination or origin "

 + "junction is null. This can

be caused by disconnected roads. It's probably OK"

 + "to ignore this as a route

should still be created anyway.");

 } else {

 p = new

ShortestPath<Junction>(ContextManager.roadNetwork);

 pathLength = p.getPathLength(o,d);

 if (pathLength < shortestPathLength) {

161

 shortestPathLength = pathLength;

 shortestPath = p.getPath(o,d);

// ShortestPath<Junction> p2 = new

ShortestPath<Junction>(ContextManager.roadNetwork);

// shortestPath = p2.getPath(o, d);

// p2.finalize();

// p2 = null;

 // shortestPath = p1.getPath(o, d);

 // p1.finalize(); p1 = null;

 routeEndpoints[0] = o;

 routeEndpoints[1] = d;

 }

 // TODO See if the shortestpath bug has

been fixed, would make this unnecessary

 p.finalize();

 p = null;

 } // if junc null

 } // for dest junctions

 } // for origin junctions

 if (shortestPath == null) {

 String debugString = "Route.getShortestRoute() could not

find a route. Looking for the shortest route between :\n";

 for (Junction j : currentJunctions)

 debugString += "\t" + j.toString() + ", roads: " +

j.getRoads().toString() + "\n";

 for (Junction j : destJunctions)

 debugString += "\t" + j.toString() + ", roads: " +

j.getRoads().toString() + "\n";

162

 throw new RoutingException(debugString);

 }

 LOGGER.log(Level.FINER, "Route.getShortestRoute (" + (0.000001

* (System.nanoTime() - time))

 + "ms) found shortest path " + "(length: " +

shortestPathLength + ") from "

 + routeEndpoints[0].toString() + " to " +

routeEndpoints[1].toString());

 return shortestPath;

 //} // synchronized

 }

 /**

 * Calculates the coordinates required to move an agent from their current

position to the destination along a given

 * road. The algorithm to do this is as follows:

 *

 * Starting from the destination coordinate, record each vertex and check

inside the boundary of each line

 * segment until the destination point is found.

 * Return all but the last vertex, this is the route to the destination.

 *

 * A boolean allows for two cases: heading towards a junction (the endpoint of

the line) or heading away from the

 * endpoint of the line (this function can't be used to go to two midpoints on a

line)

 *

 * @param currentCoord

163

 * @param destinationCoord

 * @param road

 * @param toJunction

 * whether or not we're traveling towards or away from a Junction

 * @param coordList

 * A list which will be populated with the coordinates that the agent should

follow to move along the

 * road.

 * @param roadList

 * A list of roads associated with each coordinate.

 * @throws Exception

 */

 private void getCoordsAlongRoad(Coordinate currentCoord, Coordinate

destinationCoord, Road road,

 boolean toJunction, List<Coordinate> coordList) throws

RoutingException {

 Route.checkNotNull(currentCoord, destinationCoord, road, coordList);

 double time = System.nanoTime();

 Coordinate[] roadCoords =

ContextManager.roadProjection.getGeometry(road).getCoordinates();

 // Check that the either the destination or current coordinate are actually

part of the road

 boolean currentCorrect = false, destinationCorrect = false;

 for (int i = 0; i < roadCoords.length; i++) {

 if (toJunction && destinationCoord.equals(roadCoords[i])) {

164

 destinationCorrect = true;

 break;

 } else if (!toJunction && currentCoord.equals(roadCoords[i])) {

 currentCorrect = true;

 break;

 }

 } // for

 if (!(destinationCorrect || currentCorrect)) {

 String roadCoordsString = "";

 for (Coordinate c : roadCoords)

 roadCoordsString += c.toString() + " - ";

 throw new RoutingException("Neigher the origin or destination

nor the current"

 + "coordinate are part of the road '" +

road.toString() + "' (person '" + this.agent.toString()

 + "').\n" + "Road coords: " + roadCoordsString +

"\n" + "\tOrigin: " + currentCoord.toString()

 + "\n" + "\tDestination: " +

destinationCoord.toString() + " ("

 + this.destinationAirport.toString() + ")\n " +

"Heading " + (toJunction ? "to" : "away from")

 + " a junction, so " + (toJunction ? "destination" :

"origin")

 + " should be part of a road segment");

 }

 // Might need to reverse the order of the road coordinates

165

 if (toJunction &&

!destinationCoord.equals(roadCoords[roadCoords.length - 1])) {

 // If heading towards a junction, destination coordinate must be

at end of road segment

 ArrayUtils.reverse(roadCoords);

 } else if (!toJunction && !currentCoord.equals(roadCoords[0])) {

 // If heading away form junction current coord must be at

beginning of road segment

 ArrayUtils.reverse(roadCoords);

 }

 GeometryFactory geomFac = new GeometryFactory();

 Point destinationPointGeom = geomFac.createPoint(destinationCoord);

 Point currentPointGeom = geomFac.createPoint(currentCoord);

 // If still false at end then algorithm hasn't worked

 boolean foundAllCoords = false;

 search: for (int i = 0; i < roadCoords.length - 1; i++) {

 Coordinate[] segmentCoords = new Coordinate[] { roadCoords[i],

roadCoords[i + 1] };

 // Draw a small buffer around the line segment and look for the

coordinate within the buffer

 Geometry buffer =

geomFac.createLineString(segmentCoords).buffer(GlobalVars.GEOGRAPHY_PARAMS.BU

FFER_DISTANCE.SMALL.dist);

 if (!toJunction) {

 /* If heading away from a junction, keep adding road

coords until we find the destination */

 coordList.add(roadCoords[i]);

 if (destinationPointGeom.within(buffer)) {

 coordList.add(destinationCoord);

166

 foundAllCoords = true;

 break search;

 }

 } else if (toJunction) {

 /*

 * If heading towards a junction: find the curent coord, add

it to the route, then add all the remaining

 * coords which make up the road segment

 */

 if (currentPointGeom.within(buffer)) {

 for (int j = i + 1; j < roadCoords.length; j++) {

 coordList.add(roadCoords[j]);

 }

 coordList.add(destinationCoord);

 foundAllCoords = true;

 break search;

 }

 }

 } // for

 if (foundAllCoords) {

 LOGGER.log(Level.FINER, "getCoordsAlongRoad (" + (0.000001 *

(System.nanoTime() - time)) + "ms)");

 return;

 } else { // If we get here then the route hasn't been created

 // A load of debugging info

 String error = "Route: getCoordsAlongRoad: could not find

destination coordinates "

167

 + "along the road.\n\tHeading *" + (toJunction ?

"towards" : "away from")

 + "* a junction.\n\t Person: " + this.agent.toString()

+ ")\n\tDestination building: "

 + destinationAirport.toString() + "\n\tRoad causing

problems: " + road.toString()

 + "\n\tRoad vertex coordinates: " +

Arrays.toString(roadCoords);

 throw new RoutingException(error);

 /*

 * Hack: ignore the error, printing a message and just returning

the origin destination and coordinates.

 * This means agent will jump to/from the junction but I can't

figure out why the fuck it occasionally

 * doesn't work!! It's so rare that hopefully this isn't a problem.

 */

 // TempLogger.err("Route: getCoordsAlongRoad: error... (not

debugging).");

 // List<Coord> coords = new ArrayList<Coord>();

 // coords.add(currentCoord);

 // coords.add(destinationCoord);

 // for (Coord c : coords)

 // this.roads.put(c, road); // Remember the roads each coord is

 // // part of

 // return coords;

 }

 }

168

 private static void checkNotNull(Object... args) throws RoutingException {

 for (Object o : args) {

 if (o == null) {

 throw new RoutingException("An input argument is null");

 }

 }

 return;

 }

 /**

 * Returns all the coordinates that describe how to travel along a path, restricted

to road coordinates. In some

 * cases the route wont have an associated road, this occurs if the route is part of

a transport network. In this

 * case just the origin and destination coordinates are added to the route.

 *

 * @param shortestPath

 * @param startingJunction

 * The junction the path starts from, this is required so that the algorithm

knows which road coordinate

 * to add first (could be first or last depending on the order that the road

coordinates are stored

 * internally).

 * @return the coordinates as a mapping between the coord and its associated

speed (i.e. how fast the agent can

 * travel to the next coord) which is dependent on the type of edge and the

agent (e.g.

169

 * driving/walking/bus). LinkedHashMap is used to guarantee the insertion

order of the coords is maintained.

 * @throws RoutingException

 */

 private void getRouteBetweenJunctions(List<RepastEdge<Junction>>

shortestPath, Junction startingJunction)

 throws RoutingException {

 double time = System.nanoTime();

 if (shortestPath.size() < 1) {

 // This could happen if the agent's destination is on the same road

 // as the origin

 return;

 }

 // Lock the currentAgent so that NetworkEdge objects know what speed

to use (depends on transport available to

 // the specific agent).

 // synchronized (GlobalVars.TRANSPORT_PARAMS.currentBurglarLock) {

 // GlobalVars.TRANSPORT_PARAMS.currentAgent = this.agent;

 // Iterate over all edges in the route adding coords and weights as

appropriate

 NetworkEdge<Junction> e;

 Road r;

 // Use sourceFirst to represent whether or not the edge's source

does actually represent the start of the

 // edge (agent could be going 'forwards' or 'backwards' over edge

 boolean sourceFirst;

 for (int i = 0; i < shortestPath.size(); i++) {

170

 e = (NetworkEdge<Junction>) shortestPath.get(i);

 if (i == 0) {

 // No coords in route yet, compare the source to

the starting junction

 sourceFirst =

(e.getSource().equals(startingJunction)) ? true : false;

 } else {

 // Otherwise compare the source to the last coord

added to the list

 sourceFirst =

(e.getSource().getCoords().equals(this.routeX.get(this.routeX.size() - 1))) ? true

 : false;

 }

 /*

 * Now add the coordinates describing how to move along

the road. If there is no road associated with

 * the edge (i.e. it is a transport route) then just add the

source/dest coords. Note that the shared

 * coordinates between two edges will be added twice,

these must be removed later

 */

 r = e.getRoad();

 /*

 * Get the speed that the agent will be able to travel along

this edge (depends on the transport

 * available to the agent and the edge). Some speeds will

be < 1 if the agent shouldn't be using this

 * edge but doesn't have any other way of getting to the

destination. in these cases set speed to 1

171

 * (equivalent to walking).

 */

// double speed = e.getSpeed();

// if (speed < 1)

// speed = 1;

 if (r == null) { // No road associated with this edge (it is a

 // transport link) so

just add source

 if (sourceFirst) {

 this.addToRoute(e.getSource().getCoords(),

r, "getRouteBetweenJunctions - no road");

 // this.addToRoute(e.getTarget().getCoords(),

r, "getRouteBetweenJunctions - no road");

 // (Note speed = -1 used because we don't

know the weight to the next

 // coordinate - this can be removed later)

 } else {

 this.addToRoute(e.getTarget().getCoords(),

r, "getRouteBetweenJunctions - no road");

 // this.addToRoute(e.getSource().getCoords(),

r, "getRouteBetweenJunctions - no road");

 }

 } else {

 // This edge is a road, add all the coords which

make up its geometry

 Coordinate[] roadCoords =

ContextManager.roadProjection.getGeometry(r).getCoordinates();

 if (roadCoords.length < 2)

172

 throw new

RoutingException("Route.getRouteBetweenJunctions: for some reason road " + "'"

 + r.toString() + "' doesn't

have at least two coords as part of its geometry ("

 + roadCoords.length + ")");

 // Make sure the coordinates of the road are added

in the correct order

 if (!sourceFirst) {

 ArrayUtils.reverse(roadCoords);

 }

 // Add all the road geometry's coords

 for (int j = 0; j < roadCoords.length; j++) {

 this.addToRoute(roadCoords[j], r,

"getRouteBetweenJuctions - on road");

 // (Note that last coord will have wrong

weight)

 } // for roadCoords.length

 } // if road!=null

 }

 // Check all lists are still the same size.

 assert this.roadsX.size() == this.routeX.size()

 //&& this.routeDescriptionX.size() ==

this.routeSpeedsX.size()

 && this.roadsX.size() ==

this.routeDescriptionX.size();

 // Check all lists are still the same size.

 assert this.roadsX.size() == this.routeX.size()

173

 //&& this.routeDescriptionX.size() ==

this.routeSpeedsX.size()

 && this.roadsX.size() ==

this.routeDescriptionX.size();

 // Finished!

 LOGGER.log(Level.FINER, "getRouteBetweenJunctions (" +

(0.000001 * (System.nanoTime() - time)) + "ms");

 return;

 // } // synchronized

 } // getRouteBetweenJunctions

 /**

 * Determine whether or not the person associated with this Route is at their

destination. Compares their current

 * coordinates to the destination coordinates (must be an exact match).

 *

 * @return True if the person is at their destination

 */

 public boolean atDestination() {

 return

ContextManager.getAgentGeometry(this.agent).getCoordinate().equals(this.destination

);

 }

 // /**

 // * Removes any duplicate coordinates from the curent route (coordinates

which

174

 // * are the same *and* next to each other in the list).

 // * <p>

 // * If my route-generating algorithm was better this would't be necessary.

 // */

 // @Deprecated

 // private void removePairs() throws RoutingException {

 // if (this.routeX.size() < 1) {

 // // No coords to iterate over, probably something has gone wrong

 // throw new RoutingException("Route.removeDuplicateCoordinates():

WARNING an empty list has been "

 // + "passed to this function, something has probably gone wrong");

 // }

 // TempLogger.out("ROUTE BEFORE REMOVING PAIRS");

 // this.printRoute();

 //

 // // (setRoute() has already checked that lists are same size)

 //

 // // Iterate over the list, removing coordinates that are the same as their

neighbours.

 // // (and associated objects in other lists)

 // Iterator<Road> roadIt = this.roadsX.iterator();

 // Iterator<Coordinate> routeIt = this.routeX.iterator();

 // Iterator<Double> routeSpeedIt = this.routeSpeedsX.iterator();

 // Iterator<String> routeDescIt = this.routeDescriptionX.iterator();

 // Coordinate c1, c2;

 // Road currentRoad = roadIt.next();

 // Road nextRoad = null;

175

 // routeIt.next(); routeSpeedIt.next(); routeDescIt.next();

 // while (roadIt.hasNext()) {

 // nextRoad = roadIt.next();

 // routeIt.next();

 // routeSpeedIt.next();

 // routeDescIt.next();

 //

 // c1 = currentRoad.getCoords();

 // c2 = nextRoad.getCoords();

 //

 // if (c1.equals(c2)) {

 // // Remove objects from the lists

 // roadIt.remove();

 // routeIt.remove();

 // routeSpeedIt.remove();

 // routeDescIt.remove();

 // }

 // else {

 // currentRoad = nextRoad;

 // }

 // }

 //

 // TempLogger.out("ROUTE AFTER REMOVING PAIRS");

 // this.printRoute();

 // }

176

 private void printRoute() {

 StringBuilder out = new StringBuilder();

 out.append("Printing route (" + this.agent.toString() + "). Current position

in list is "

 + this.currentPosition + " ('" +

this.routeDescriptionX.get(this.currentPosition) + "')");

 for (int i = 0; i < this.routeX.size(); i++) {

 out.append("\t(" + this.agent.toString() + ") " +

this.routeX.get(i).toString() + "\t"

 //+ this.routeSpeedsX.get(i).toString() +

 + "\t" + this.roadsX.get(i) + "\t"

 + this.routeDescriptionX.get(i));

 }

 LOGGER.info(out.toString());

 }

 /**

 * Find the nearest object in the given geography to the coordinate.

 *

 * @param <T>

 * @param x

 * The coordinate to search from

 * @param geography

 * The given geography to look through

 * @param closestPoints

177

 * An optional List that will be populated with the closest points to x (i.e.

the results of

 * <code>distanceOp.closestPoints()</code>.

 * @param searchDist

 * The maximum distance to search for objects in. Small distances are

more efficient but larger ones are

 * less likely to find no objects.

 * @return The nearest object.

 * @throws RoutingException

 * If an object cannot be found.

 */

 public static synchronized <T> T findNearestObject(Coordinate x, Geography<T>

geography,

 List<Coordinate> closestPoints,

GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE searchDist)

 throws RoutingException {

 if (x == null) {

 throw new RoutingException("The input coordinate is null, cannot

find the nearest object");

 }

 T nearestObject = SpatialIndexManager.findNearestObject(geography, x,

closestPoints, searchDist);

 // Old way without using spatial index:

 //

 // GeometryFactory geomFac = new GeometryFactory();

 // Point point = geomFac.createPoint(x);

178

 // // TODO Use an expanding buffer that starts small but gets bigger if no

object is found.

 //

 // Geometry buffer = point.buffer(searchDist.dist);

 // double minDist = Double.MAX_VALUE;

 // T nearestObject = null;

 // for (T t : geography.getObjectsWithin(buffer.getEnvelopeInternal())) {

 // DistanceOp distOp = new DistanceOp(point,

geography.getGeometry(t));

 // double thisDist = distOp.distance();

 // if (thisDist < minDist) {

 // minDist = thisDist;

 // nearestObject = t;

 // // Optionally record the closest points

 // if (closestPoints != null) {

 // closestPoints.clear();

 // // TODO clean conversion of array to List (don't have access

 // // to internet!)

 // Coordinate[] crds = distOp.closestPoints();

 // List<Coordinate> temp = new ArrayList(crds.length);

 // for (Coordinate c : crds)

 // temp.add(c);

 // closestPoints.addAll(temp);

 // }

 // } // if thisDist < minDist

 // } // for nearRoads

 if (nearestObject == null) {

179

 throw new RoutingException("Couldn't find an object close to

these coordinates:\n\t" + x.toString());

 } else {

 return nearestObject;

 }

 }

 /**

 * Returns the angle of the vector from p0 to p1 relative to the x axis

 * <p>

 * The angle will be between -Pi and Pi. I got this directly from the JUMP program

source.

 *

 * @return the angle (in radians) that p0p1 makes with the positive x-axis.

 */

 public static synchronized double angle(Coordinate p0, Coordinate p1) {

 double dx = p1.x - p0.x;

 double dy = p1.y - p0.y;

 return Math.atan2(dy, dx);

 }

 /**

 * The building which this Route is targeting

 * IMPORTANT ADD MORE HERE

MOSTLY!!

 *

180

 *

 *

 *

 *

 * @return the destinationHouse

 */

 public Airport getDestinationAirport() {

 if (this.destinationAirport == null) {

 LOGGER.log(Level.WARNING, "Route: getDestinationAirport(),

warning, no airportbuilding has "

 + "been set. This might be ok, the agent might be

supposed to be heading to a coordinate "

 + "not a particular airport(?)");

 return null;

 }

 return destinationAirport;

 }

 /**

 * The coordinate the route is targeting

 *

 * @return the destination

 */

 public Coordinate getDestination() {

 return this.destination;

 }

181

 /**

 * Maintain a cache of all coordinates which are part of a road segment. Store

the coords and all the road(s) they

 * are part of.

 *

 * @param coord

 * The coordinate which should be part of a road geometry

 * @return The road(s) which the coordinate is part of or null if the coordinate is

not part of any road

 */

 private List<Road> getRoadFromCoordCache(Coordinate coord) {

 populateCoordCache(); // Check the cache has been populated

 return coordCache.get(coord);

 }

 /**

 * Test if a coordinate is part of a road segment.

 *

 * @param coord

 * The coordinate which we want to test

 * @return True if the coordinate is part of a road segment

 */

 private boolean coordOnRoad(Coordinate coord) {

 populateCoordCache(); // check the cache has been populated

 return coordCache.containsKey(coord);

 }

182

 private synchronized static void populateCoordCache() {

 double time = System.nanoTime();

 if (coordCache == null) { // Fist check cache has been created

 coordCache = new HashMap<Coordinate, List<Road>>();

 LOGGER.log(Level.FINER,

 "Route.populateCoordCache called for first time,

creating new cache of all Road coordinates.");

 }

 if (coordCache.size() == 0) { // Now popualte it if it hasn't already

 // been

populated

 LOGGER.log(Level.FINER, "Route.populateCoordCache: is empty,

creating new cache of all Road coordinates.");

 for (Road r :

ContextManager.roadContext.getObjects(Road.class)) {

 for (Coordinate c :

ContextManager.roadProjection.getGeometry(r).getCoordinates()) {

 if (coordCache.containsKey(c)) {

 coordCache.get(c).add(r);

 } else {

 List<Road> l = new ArrayList<Road>();

 l.add(r);

 // TODO Need to put *new* coordinate

here? Not use

 // existing one in memory?

183

 coordCache.put(new Coordinate(c), l);

 }

 }

 }

 LOGGER.log(Level.FINER, "... finished caching all road coordinates

(in " + 0.000001

 * (System.nanoTime() - time) + "ms)");

 }

 }

 /**

 * Find the buildings which can be accessed from the given road (the given road

is the closest to the buildings).

 * Uses a separate cache object which can be serialised so that the cache doesn't

need to be rebuilt every time.

 * THE OTHER BUILDINGS WILL GO HERE!!!

 *

 * !!

 * !

 * !

 * !

 * !

 * !

 *

 * @param road

 * @return

184

 * @throws Exception

 */

 private List<Airport> getAirportOnRoad(Road road) throws Exception {

 if (airportOnRoadCache == null) {

 LOGGER.log(Level.FINER, "Route.getAirportOnRoad called for first

time, "

 + "creating cache of all roads and the buildings

which are on them ...");

 // Create a new cache object, this will be read from disk if possible

(which is why the

 // getInstance() method is used instead of the constructor.

 String gisDir = GlobalVars.GISDataDirectory;

 File airportFile = new File(gisDir + GlobalVars.AirportShapefile);

 File roadsFile = new File(gisDir + GlobalVars.RoadShapefile);

 File serialLoc = new File(gisDir +

ContextManager.getProperty(GlobalVars.AirportRoadsCache));

 airportOnRoadCache =

AirportOnRoadCache.getInstance(ContextManager.AirportProjection, airportFile,

 ContextManager.roadProjection, roadsFile,

serialLoc, new GeometryFactory());

 } // if not cached

 return airportOnRoadCache.get(road);

 }

 /**

 * Calculate the distance (in meters) between two Coordinates, using the

coordinate reference system that the

 * roadGeography is using. For efficiency it can return the angle as well (in the

range -0 to 2PI) if returnVals

185

 * passed in as a double[2] (the distance is stored in index 0 and angle stored in

index 1).

 *

 * @param c1

 * @param c2

 * @param returnVals

 * Used to return both the distance and the angle between the two

Coordinates. If null then the distance

 * is just returned, otherwise this array is populated with the distance at

index 0 and the angle at

 * index 1.

 * @return The distance between Coordinates c1 and c2.

 */

 public static synchronized double distance(Coordinate c1, Coordinate c2,

double[] returnVals) {

 // TODO check this now, might be different way of getting distance in

new Simphony

 GeodeticCalculator calculator = new

GeodeticCalculator(ContextManager.roadProjection.getCRS());

 calculator.setStartingGeographicPoint(c1.x, c1.y);

 calculator.setDestinationGeographicPoint(c2.x, c2.y);

 double distance = calculator.getOrthodromicDistance();

 if (returnVals != null && returnVals.length == 2) {

 returnVals[0] = distance;

 double angle = Math.toRadians(calculator.getAzimuth()); // Angle

in range -PI to PI

 // Need to transform azimuth (in range -180 -> 180 and where 0

points north)

 // to standard mathematical (range 0 -> 360 and 90 points north)

186

 if (angle > 0 && angle < 0.5 * Math.PI) { // NE Quadrant

 angle = 0.5 * Math.PI - angle;

 } else if (angle >= 0.5 * Math.PI) { // SE Quadrant

 angle = (-angle) + 2.5 * Math.PI;

 } else if (angle < 0 && angle > -0.5 * Math.PI) { // NW Quadrant

 angle = (-1 * angle) + 0.5 * Math.PI;

 } else { // SW Quadrant

 angle = -angle + 0.5 * Math.PI;

 }

 returnVals[1] = angle;

 }

 return distance;

 }

 /**

 * Converts a distance lat/long distance (e.g. returned by DistanceOp) to meters.

The calculation isn't very

 * accurate because (probably) it assumes that the distance is between two

points that lie exactly on a line of

 * longitude (i.e. one is exactly due north of the other). For this reason the value

shouldn't be used in any

 * calculations which is why it's returned as a String.

 *

 * @param dist

 * The distance (as returned by DistanceOp) to convert to meters

 * @return The approximate distance in meters as a String (to discourage using

this approximate value in

187

 * calculations).

 * @throws Exception

 * @see com.vividsolutions.jts.operation.distance.DistanceOp

 */

 public static synchronized String distanceToMeters(double dist) throws

Exception {

 // Works by creating two coords (close to a randomly chosen object)

which are a certain distance apart

 // then using similar method as other distance() function

 GeodeticCalculator calculator = new

GeodeticCalculator(ContextManager.roadProjection.getCRS());

 Coordinate c1 =

ContextManager.AirportContext.getRandomObject().getCoords();

 calculator.setStartingGeographicPoint(c1.x, c1.y);

 calculator.setDestinationGeographicPoint(c1.x, c1.y + dist);

 return String.valueOf(calculator.getOrthodromicDistance());

 }

 public void clearCaches() {

 if (coordCache != null)

 coordCache.clear();

 if (nearestRoadCoordCache != null) {

 nearestRoadCoordCache.clear();

 nearestRoadCoordCache = null;

 }

 if (airportOnRoadCache != null) {

188

 airportOnRoadCache.clear();

 airportOnRoadCache = null;

 }

 // if (routeCache != null) {

 // routeCache.clear();

 // routeCache = null;

 // }

 // if (routeDistanceCache != null) {

 // routeDistanceCache.clear();

 // routeDistanceCache = null;

 // }

 }

 // /**

 // * Will add the given buildings to the awareness space of the Burglar who is

 // * being controlled by this Route. Also tells the burglar which buildings

 // * have been passed if appropriate, this is needed for agents who are

 // * currently looking for a burglary target.

 // *

 // * @param buildings

 // * A list of buildings

 // */

 // @SuppressWarnings("unchecked")

 // protected <T> void passedObjects(List<T> objects, Class<T> clazz) {

 // this.agent.addToMemory(objects, clazz);

 // if (clazz.isAssignableFrom(Building.class)) {

189

 // // System.out.println("Route.passedObjects(): "+objects.toString());

 // this.agent.buildingsPassed((List<Building>) objects);

 // }

 // }

 /**

 * Will add the given buildings to the awareness space of the Burglar who is

being controlled by this Route.

 *

 * @param buildings

 * A list of buildings

 */

 protected <T> void passedObject(T object, Class<T> clazz) {

 List<T> list = new ArrayList<T>(1);

 list.add(object);

 this.agent.addToMemory(list, clazz);

 }

}

/*

**

*/

/**

 * Class can be used to store a cache of all roads and the buildings which can be

accessed by them (a map of

190

 * Road<->List<Building>. Buildings are 'accessed' by traveling to the road which is

nearest to them.

 * <p>

 * This class can be serialized so that if the GIS data doesn't change it doesn't have to be

re-calculated each time.

 * However, the Roads and Buildings themselves cannot be serialised because if they are

there will be two sets of Roads

 * and BUildings, the serialised ones and those that were created when the model was

initialised. To get round this, an

 * array which contains the road and building ids is serialised and the cache is re-built

using these caches ids after

 * reading the serialised cache. This means that the id's given to Buildings and Roads

must not change (i.e.

 * auto-increment numbers are no good because if a simulation is restarted the static

auto-increment variables will not

 * be reset to 0).

 *

 *

 */

class AirportOnRoadCache implements Serializable {

 private static Logger LOGGER =

Logger.getLogger(AirportOnRoadCache.class.getName());

 private static final long serialVersionUID = 1L;

 // The actual cache, this isn't serialised

 private static transient Hashtable<Road, ArrayList<Airport>> theCache;

 // The 'reference' cache, stores the building and road ids and can be

 // serialised

191

 private Hashtable<String, ArrayList<String>> referenceCache;

 // Check that the road/building data hasn't been changed since the cache was

 // last created

 private File airportFile;

 private File roadsFile;

 // The location that the serialised object might be found.

 private File serialisedLoc;

 // The time that this cache was created, can be used to check data hasn't

 // changed since

 private long createdTime;

 // Private constructor because getInstance() should be used

 private AirportOnRoadCache(Geography<Airport> airportEnvironment, File

airportFile,

 Geography<Road> roadEnvironment, File roadsFile, File

serialisedLoc, GeometryFactory geomFac)

 throws Exception {

 // this.buildingEnvironment = buildingEnvironment;

 // this.roadEnvironment = roadEnvironment;

 this.airportFile = airportFile;

 this.roadsFile = roadsFile;

 this.serialisedLoc = serialisedLoc;

 theCache = new Hashtable<Road, ArrayList<Airport>>();

 this.referenceCache = new Hashtable<String, ArrayList<String>>();

192

 LOGGER.log(Level.FINE, "airportOnRoadCache() creating new cache with

data (and modification date):\n\t"

 + this.airportFile.getAbsolutePath() + " (" + new

Date(this.airportFile.lastModified()) + ")\n\t"

 + this.roadsFile.getAbsolutePath() + " (" + new

Date(this.roadsFile.lastModified()) + ")\n\t"

 + this.serialisedLoc.getAbsolutePath());

 populateCache(airportEnvironment, roadEnvironment, geomFac);

 this.createdTime = new Date().getTime();

 serialise();

 }

 public void clear() {

 theCache.clear();

 this.referenceCache.clear();

 }

 private void populateCache(Geography<Airport> airportEnvironment,

Geography<Road> roadEnvironment,

 GeometryFactory geomFac) throws Exception {

 double time = System.nanoTime();

 for (Airport b : airportEnvironment.getAllObjects()) {

 // Find the closest road to this building

 Geometry airportPoint = geomFac.createPoint(b.getCoords());

 double minDistance = Double.MAX_VALUE;

193

 Road closestRoad = null;

 double distance;

 Envelope e =

airportPoint.buffer(GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.LARGE.dist)

 .getEnvelopeInternal();

 for (Road r : roadEnvironment.getObjectsWithin(e)) {

 distance = DistanceOp.distance(airportPoint,

ContextManager.roadProjection.getGeometry(r));

 if (distance < minDistance) {

 minDistance = distance;

 closestRoad = r;

 }

 } // for roads

 // Found the closest road, add the information to the

cache

 if (theCache.containsKey(closestRoad)) {

 theCache.get(closestRoad).add(b);

 this.referenceCache.get(closestRoad.getIdentifier()).add(b.getIdentifier());

 } else {

 ArrayList<Airport> l = new ArrayList<Airport>();

 l.add(b);

 theCache.put(closestRoad, l);

 ArrayList<String> l2 = new ArrayList<String>();

 l2.add(b.getIdentifier());

 this.referenceCache.put(closestRoad.getIdentifier(), l2);

 }

194

 } // for buildings

 int numRoads = theCache.keySet().size();

 int numBuildings = 0;

 for (List<Airport> l : theCache.values())

 numBuildings += l.size();

 LOGGER.log(Level.FINER, "Finished caching roads and buildings. Cached "

+ numRoads + " roads and "

 + numBuildings + " buildings in " + 0.000001 *

(System.nanoTime() - time) + "ms");

 }

 public List<Airport> get(Road r) {

 return theCache.get(r);

 }

 private void serialise() throws IOException {

 double time = System.nanoTime();

 FileOutputStream fos = null;

 ObjectOutputStream out = null;

 try {

 if (!this.serialisedLoc.exists())

 this.serialisedLoc.createNewFile();

 fos = new FileOutputStream(this.serialisedLoc);

 out = new ObjectOutputStream(fos);

 out.writeObject(this);

 out.close();

 } catch (IOException ex) {

195

 if (serialisedLoc.exists())

 serialisedLoc.delete(); // delete to stop problems loading

incomplete file next time

 throw ex;

 }

 LOGGER.log(Level.FINER, "Serialised AirportOnRoadCache to " +

this.serialisedLoc.getAbsolutePath() + " in ("

 + 0.000001 * (System.nanoTime() - time) + "ms)");

 }

 /**

 * Used to create a new BuildingsOnRoadCache object. This function is used

instead of the constructor directly so

 * that the class can check if there is a serialised version on disk already. If not

then a new one is created and

 * returned.

 *

 * @param buildingEnv

 * @param buildingsFile

 * @param roadEnv

 * @param roadsFile

 * @param serialisedLoc

 * @param geomFac

 * @return

 * @throws Exception

 */

 public synchronized static AirportOnRoadCache

getInstance(Geography<Airport> airportEnv, File airportFile,

196

 Geography<Road> roadEnv, File roadsFile, File serialisedLoc,

GeometryFactory geomFac) throws Exception {

 double time = System.nanoTime();

 // See if there is a cache object on disk.

 if (serialisedLoc.exists()) {

 FileInputStream fis = null;

 ObjectInputStream in = null;

 AirportOnRoadCache bc = null;

 try {

 fis = new FileInputStream(serialisedLoc);

 in = new ObjectInputStream(fis);

 bc = (AirportOnRoadCache) in.readObject();

 in.close();

 // Check that the cache is representing the correct data

and the

 // modification dates are ok

 // (WARNING, if this class is re-compiled the serialised

object

 // will still be read in).

 if

(!airportFile.getAbsolutePath().equals(bc.airportFile.getAbsolutePath())

 ||

!roadsFile.getAbsolutePath().equals(bc.roadsFile.getAbsolutePath())

 || airportFile.lastModified() >

bc.createdTime || roadsFile.lastModified() > bc.createdTime) {

 LOGGER.log(Level.FINER, "BuildingsOnRoadCache,

found serialised object but it doesn't match the "

197

 + "data (or could have different

modification dates), will create a new cache.");

 } else {

 // Have found a useable serialised cache. Now use

the cached

 // list of id's to construct a

 // new cache of buildings and roads.

 // First need to buld list of existing roads and

buildings

 Hashtable<String, Road> allRoads = new

Hashtable<String, Road>();

 for (Road r : roadEnv.getAllObjects())

 allRoads.put(r.getIdentifier(), r);

 Hashtable<String, Airport> allAirport = new

Hashtable<String, Airport>();

 for (Airport b : airportEnv.getAllObjects())

 allAirport.put(b.getIdentifier(), b);

 // Now create the new cache

 theCache = new Hashtable<Road,

ArrayList<Airport>>();

 for (String roadId : bc.referenceCache.keySet()) {

 ArrayList<Airport> buildings = new

ArrayList<Airport>();

 for (String airportId :

bc.referenceCache.get(roadId)) {

 buildings.add(allAirport.get(airportId));

198

 }

 theCache.put(allRoads.get(roadId),

buildings);

 }

 LOGGER.log(Level.FINER, "BuildingsOnRoadCache,

found serialised cache, returning it (in "

 + 0.000001 * (System.nanoTime() -

time) + "ms)");

 return bc;

 }

 } catch (IOException ex) {

 if (serialisedLoc.exists())

 serialisedLoc.delete(); // delete to stop problems

loading incomplete file next tinme

 throw ex;

 } catch (ClassNotFoundException ex) {

 if (serialisedLoc.exists())

 serialisedLoc.delete();

 throw ex;

 }

 }

 // No serialised object, or got an error when opening it, just create a

 // new one

 return new AirportOnRoadCache(airportEnv, airportFile, roadEnv,

roadsFile, serialisedLoc, geomFac);

 }

199

}

/*

**

*/

/**

 * Caches the nearest road Coordinate to every building for efficiency (agents

usually/always need to get from the

 * centroids of houses to/from the nearest road).

 * <p>

 * This class can be serialised so that if the GIS data doesn't change it doesn't have to be

re-calculated each time.

 *

 *

 */

class NearestRoadCoordCache implements Serializable {

 private static Logger LOGGER =

Logger.getLogger(NearestRoadCoordCache.class.getName());

 private static final long serialVersionUID = 1L;

 private Hashtable<Coordinate, Coordinate> theCache; // The actual cache

 // Check that the road/building data hasn't been changed since the cache was

 // last created

 private File airportFile;

 private File roadsFile;

 // The location that the serialised object might be found.

200

 private File serialisedLoc;

 // The time that this cache was created, can be used to check data hasn't

 // changed since

 private long createdTime;

 private GeometryFactory geomFac;

 private NearestRoadCoordCache(Geography<Airport> airportEnvironment, File

airportFile,

 Geography<Road> roadEnvironment, File roadsFile, File

serialisedLoc, GeometryFactory geomFac)

 throws Exception {

 this.airportFile = airportFile;

 this.roadsFile = roadsFile;

 this.serialisedLoc = serialisedLoc;

 this.theCache = new Hashtable<Coordinate, Coordinate>();

 this.geomFac = geomFac;

 LOGGER.log(Level.FINE, "NearestRoadCoordCache() creating new cache

with data (and modification date):\n\t"

 + this.airportFile.getAbsolutePath() + " (" + new

Date(this.airportFile.lastModified()) + ") \n\t"

 + this.roadsFile.getAbsolutePath() + " (" + new

Date(this.roadsFile.lastModified()) + "):\n\t"

 + this.serialisedLoc.getAbsolutePath());

 populateCache(airportEnvironment, roadEnvironment);

201

 this.createdTime = new Date().getTime();

 serialise();

 }

 public void clear() {

 this.theCache.clear();

 }

 private void populateCache(Geography<Airport> airportEnvironment,

Geography<Road> roadEnvironment)

 throws Exception {

 double time = System.nanoTime();

 theCache = new Hashtable<Coordinate, Coordinate>();

 // Iterate over every building and find the nearest road point

 for (Airport b : airportEnvironment.getAllObjects()) {

 List<Coordinate> nearestCoords = new ArrayList<Coordinate>();

 Route.findNearestObject(b.getCoords(), roadEnvironment,

nearestCoords,

 GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.LARGE);

 // Two coordinates returned by closestPoints(), need to find the

one

 // which isn't the building coord

 Coordinate nearestPoint = null;

 for (Coordinate c : nearestCoords) {

 if (!c.equals(b.getCoords())) {

 nearestPoint = c;

202

 break;

 }

 } // for nearestCoords

 if (nearestPoint == null) {

 throw new Exception("Route.getNearestRoadCoord()

error: couldn't find a road coordinate which "

 + "is close to building " + b.toString());

 }

 theCache.put(b.getCoords(), nearestPoint);

 }// for Buildings

 LOGGER.log(Level.FINER, "Finished caching nearest roads (" + (0.000001 *

(System.nanoTime() - time)) + "ms)");

 } // if nearestRoadCoordCache = null;

 /**

 *

 * @param c

 * @return

 * @throws Exception

 */

 public Coordinate get(Coordinate c) throws Exception {

 if (c == null) {

 throw new Exception("Route.NearestRoadCoordCache.get()

error: the given coordinate is null.");

 }

 double time = System.nanoTime();

 Coordinate nearestCoord = this.theCache.get(c);

203

 if (nearestCoord != null) {

 LOGGER.log(Level.FINER, "NearestRoadCoordCache.get() (using

cache) - ("

 + (0.000001 * (System.nanoTime() - time)) + "ms)");

 return nearestCoord;

 }

 // If get here then the coord is not in the cache, agent not starting their

journey from a house, search for

 // it manually. Search all roads in the vicinity, looking for the point which

is nearest the person

 double minDist = Double.MAX_VALUE;

 Coordinate nearestPoint = null;

 Point coordGeom = this.geomFac.createPoint(c);

 // Note: could use an expanding envelope that starts small and gets

bigger

 double bufferDist =

GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.LARGE.dist;

 double bufferMultiplier = 1.0;

 Envelope searchEnvelope = coordGeom.buffer(bufferDist *

bufferMultiplier).getEnvelopeInternal();

 StringBuilder debug = new StringBuilder(); // incase the operation fails

 for (Road r :

ContextManager.roadProjection.getObjectsWithin(searchEnvelope)) {

 DistanceOp distOp = new DistanceOp(coordGeom,

ContextManager.roadProjection.getGeometry(r));

 double thisDist = distOp.distance();

204

 // BUG?: if an agent is on a really long road, the long road will not

be found by getObjectsWithin because

 // it is not within the buffer

 debug.append("\troad ").append(r.toString()).append(" is

").append(thisDist).append(

 " distance away (at closest point). ");

 if (thisDist < minDist) {

 minDist = thisDist;

 Coordinate[] closestPoints = distOp.closestPoints();

 // Two coordinates returned by closestPoints(), need to

find the

 // one which isn''t the coord parameter

 debug.append("Closest points

(").append(closestPoints.length).append(") are: ").append(

 Arrays.toString(closestPoints));

 nearestPoint = (c.equals(closestPoints[0])) ?

closestPoints[1] : closestPoints[0];

 debug.append("Nearest point is

").append(nearestPoint.toString());

 nearestPoint = (c.equals(closestPoints[0])) ?

closestPoints[1] : closestPoints[0];

 } // if thisDist < minDist

 debug.append("\n");

 } // for nearRoads

 if (nearestPoint != null) {

205

 LOGGER.log(Level.FINER, "NearestRoadCoordCache.get() (not

using cache) - ("

 + (0.000001 * (System.nanoTime() - time)) + "ms)");

 return nearestPoint;

 }

 /* IF HERE THEN ERROR, PRINT DEBUGGING INFO */

 StringBuilder debugIntro = new StringBuilder(); // Some extra info for

debugging

 debugIntro.append("Route.NearestRoadCoordCache.get() error: couldn't

find a coordinate to return.\n");

 Iterable<Road> roads =

ContextManager.roadProjection.getObjectsWithin(searchEnvelope);

 debugIntro.append("Looking for nearest road coordinate around

").append(c.toString()).append(".\n");

 debugIntro.append("RoadEnvironment.getObjectsWithin() returned

").append(

 ContextManager.sizeOfIterable(roads) + " roads, printing

debugging info:\n");

 debugIntro.append(debug);

 throw new Exception(debugIntro.toString());

 }

 private void serialise() throws IOException {

 double time = System.nanoTime();

 FileOutputStream fos = null;

 ObjectOutputStream out = null;

 try {

206

 if (!this.serialisedLoc.exists())

 this.serialisedLoc.createNewFile();

 fos = new FileOutputStream(this.serialisedLoc);

 out = new ObjectOutputStream(fos);

 out.writeObject(this);

 out.close();

 } catch (IOException ex) {

 if (serialisedLoc.exists()) {

 // delete to stop problems loading incomplete file next

time

 serialisedLoc.delete();

 }

 throw ex;

 }

 LOGGER.log(Level.FINE, "... serialised NearestRoadCoordCache to " +

this.serialisedLoc.getAbsolutePath()

 + " in (" + 0.000001 * (System.nanoTime() - time) + "ms)");

 }

 /**

 * Used to create a new AirportsOnRoadCache object. This function is used

instead of the constructor directly so

 * that the class can check if there is a serialised version on disk already. If not

then a new one is created and

 * returned.

 *

 * @param buildingEnv

207

 * @param buildingsFile

 * @param roadEnv

 * @param roadsFile

 * @param serialisedLoc

 * @param geomFac

 * @return

 * @throws Exception

 */

 public synchronized static NearestRoadCoordCache

getInstance(Geography<Airport> airportEnv, File airportFile,

 Geography<Road> roadEnv, File roadsFile, File serialisedLoc,

GeometryFactory geomFac) throws Exception {

 double time = System.nanoTime();

 // See if there is a cache object on disk.

 if (serialisedLoc.exists()) {

 FileInputStream fis = null;

 ObjectInputStream in = null;

 NearestRoadCoordCache ncc = null;

 try {

 fis = new FileInputStream(serialisedLoc);

 in = new ObjectInputStream(fis);

 ncc = (NearestRoadCoordCache) in.readObject();

 in.close();

 // Check that the cache is representing the correct data

and the

208

 // modification dates are ok

 if

(!airportFile.getAbsolutePath().equals(ncc.airportFile.getAbsolutePath())

 ||

!roadsFile.getAbsolutePath().equals(ncc.roadsFile.getAbsolutePath())

 || airportFile.lastModified() >

ncc.createdTime || roadsFile.lastModified() > ncc.createdTime) {

 LOGGER.log(Level.FINE, "BuildingsOnRoadCache,

found serialised object but it doesn't match the "

 + "data (or could have different

modification dates), will create a new cache.");

 } else {

 LOGGER.log(Level.FINER,

"NearestRoadCoordCache, found serialised cache, returning it (in "

 + 0.000001 * (System.nanoTime() -

time) + "ms)");

 return ncc;

 }

 } catch (IOException ex) {

 if (serialisedLoc.exists())

 serialisedLoc.delete(); // delete to stop problems

loading incomplete file next tinme

 throw ex;

 } catch (ClassNotFoundException ex) {

 if (serialisedLoc.exists())

 serialisedLoc.delete();

 throw ex;

 }

209

 }

 // No serialised object, or got an error when opening it, just create a new

one

 return new NearestRoadCoordCache(airportEnv, airportFile, roadEnv,

roadsFile, serialisedLoc, geomFac);

 }

}

/**

 * Used to cache routes. Saves the origin and destination coords and the transport

available to the agent (if transport

 * changes then the agent might have to create a new route.

 *

 *

 */

class CachedRoute {

 private List<Coordinate> theRoute;

 private List<Double> routeSpeeds;

 private List<String> routeDescriptions;

 private List<Road> roads;

 private Coordinate origin;

 private Coordinate destination;

 private List<String> transportAvailable;

 // Used to generate hash codes (each route must have unique ID)

 private static int uniqueRouteCacheID;

210

 private int uniqueID;

 public CachedRoute(Coordinate origin, Coordinate destination, List<String>

transportAvailable) {

 this.origin = origin;

 this.destination = destination;

 this.transportAvailable = transportAvailable;

 this.uniqueID = CachedRoute.uniqueRouteCacheID++;

 }

 public void setRoute(List<Coordinate> theRoute, List<Road> roads, List<Double>

routeSpeeds,

 List<String> routeDescriptions) {

 this.theRoute = theRoute;

 this.roads = roads;

 this.routeSpeeds = routeSpeeds;

 this.routeDescriptions = routeDescriptions;

 }

 public List<Coordinate> getRoute() {

 return this.theRoute;

 }

 public List<Double> getRouteSpeeds() {

 return this.routeSpeeds;

 }

211

 public List<Road> getRoads() {

 return this.roads;

 }

 public List<String> getDescriptions() {

 return this.routeDescriptions;

 }

 @Override

 public String toString() {

 return "CachedRoute " + this.uniqueID;

 }

 /**

 * Returns true if input object is a CachedRoute and the the origin, destination

and transport available are the

 * same as this CachedRoute

 */

 @Override

 public boolean equals(Object obj) {

 if (obj instanceof CachedRoute) {

 CachedRoute r = (CachedRoute) obj;

 return (r.origin.equals(this.origin)) &&

(r.destination.equals(this.destination))

 &&

(r.transportAvailable.equals(this.transportAvailable));

 } else {

212

 return false;

 }

 }

 /**

 * Returns:

<code>Float.floatToIntBits((float)(this.origin.getX()+this.origin.getY()))</code>

 */

 @Override

 public int hashCode() {

 return Float.floatToIntBits((float) (this.origin.x + this.origin.y));

 }

}

/**

 * Used to cache route distances. Saves the origin and destination coords and the

transport available to the agent (if

 * transport changes then the agent might have to create a new route).

 *

 * @author Nick Malleson

 */

class CachedRouteDistance {

 private Coordinate origin;

 private Coordinate destination;

 private List<String> transportAvailable;

 private static int uniqueRouteCacheID; // Used to generate hash codes (each

213

 //

route must have unique ID)

 private int uniqueID;

 // private List<Coord> theRoute; // The actual route (a list of coords)

 public CachedRouteDistance(Coordinate origin, Coordinate destination,

List<String> transportAvailable) {

 this.origin = origin;

 this.destination = destination;

 this.transportAvailable = transportAvailable;

 this.uniqueID = CachedRouteDistance.uniqueRouteCacheID++;

 }

 @Override

 public String toString() {

 return "CachedRouteDistance " + this.uniqueID;

 }

 /**

 * Returns true if input object is a CachedRoute and the the origin, destination

and transport available are the

 * same as this CachedRoute. Because routes are non-directional the origins and

destinations are interchangeable.

 */

 @Override

 public boolean equals(Object obj) {

214

 if (obj instanceof CachedRouteDistance) {

 CachedRouteDistance r = (CachedRouteDistance) obj;

 return ((r.origin.equals(this.origin) &&

r.destination.equals(this.destination)) || (r.origin

 .equals(this.destination) &&

r.destination.equals(this.origin)))

 &&

r.transportAvailable.equals(this.transportAvailable);

 } else {

 return false;

 }

 }

 /**

 * Returns:

<code>Float.floatToIntBits((float)(this.origin.getX()+this.origin.getY()))</code>

 */

 @Override

 public int hashCode() {

 return Float.floatToIntBits((float) (this.origin.x + this.origin.y));

 }

}

/**

 * Convenience class for creating deep copies of lists/maps (copies the values stored as

well). Haven't made this

 * generic because need access to constructors to create new objects (e.g. new

Coord(c))

215

 */

final class Cloning {

 public static List<Coordinate> copy(List<Coordinate> in) {

 List<Coordinate> out = new ArrayList<Coordinate>(in.size());

 for (Coordinate c : in) {

 // TODO Check this Coordinate constructor does what I expect it

to

 out.add(new Coordinate(c));

 }

 return out;

 }

 // Not used now that route speeds are a list, not a map

 // public static LinkedHashMap<Coordinate, Double>

 // copy(LinkedHashMap<Coordinate, Double> in) {

 //

 // LinkedHashMap<Coordinate, Double> out = new LinkedHashMap<Coordinate,

 // Double>(in.size());

 // for (Coordinate c : in.keySet()) {

 // out.put(c, in.get(c));

 // }

 // return out;

 // }

216

// private List<Coord> theRoute; // The actual route (a list of coords)

 public CachedRouteDistance(Coordinate origin, Coordinate destination,

List<String> transportAvailable) {

 this.origin = origin;

 this.destination = destination;

 this.transportAvailable = transportAvailable;

 this.uniqueID = CachedRouteDistance.uniqueRouteCacheID++;

 }

217

VITA

Varun Ramachandran was born in Bombay, Maharashtra in the Western part of

India. He finished his schooling from New Delhi, India and graduated from Vellore

Institute of Technology, Vellore, India with a Bachelor’s of Science degree in

Information Technology in 2011. He started his Master’s degree in Engineering

Management at Missouri University of Science and Technology (Rolla) in August 2011

and graduated in December 2012. From January 2013 he worked towards his PhD degree

and graduated in May 2015. He has published papers in various conferences and his

dissertations in various journals. He has also given many presentations on his research at

conferences all over the world. He received the best Master’s research award at the 2012

Engineering Management and Systems Engineering symposium held at Missouri S&T.

He was a student member of ASEM, ISERC, and AAG. His primary research interests

are in Supply Chain Management, Operations Research and Project Management. Varun

also held a Graduate Research Assistantship under Dr. Suzanna Long where he worked

on Restoration of Critical Infrastructure in the Aftermath of an Extreme Event. Varun

also interned with ABB Inc., Greenville, South Carolina and held the post of Supply

Chain Manager for a three month period.

	Modeling supply chain interdependent critical infrastructure systems
	Recommended Citation

	tmp.1436286691.pdf.IDLyD

