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ABSTRACT 

While strategies for emergency response to large-scale disasters have been 

extensively studied, little has been done to map medium- to long-term strategies capable 

of restoring supply chain infrastructure systems and reconnecting such systems from a 

local urban area to  national supply chain systems. This is, in part, because no 

comprehensive, data-driven model of supply chain networks exists.  Without such models 

communities cannot re-establish the level of connectivity required for timely restoration 

of goods and services. This dissertation builds a model of supply chain interdependent 

critical infrastructure (SCICI) as a complex adaptive systems problem. It defines model 

elements, data needs/element, the interdependency of critical infrastructures, and suggests 

metrics for evaluating success.  Previous studies do not consider the problem from a 

systematic view and therefore their solutions are piecemeal, rather than integrated with 

respect to both the model elements and geospatial data components. This dissertation 

details a methodology to understand the complexities of SCICI within a real urban 

framework (St. Louis, MO). Interdependencies between the infrastructures are mapped to 

evaluate resiliency and a framework for quantifying interdependence is proposed. In 

addition, this work details the identification, extraction and integration of the data 

necessary to model infrastructure systems 
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INTRODUCTION 

1.1. BACKGROUND 

In modern society, the basis of livelihood is determined by the availability and 

reliability of a nationally critical infrastructure. This infrastructure should include 

transportation networks, electrical networks, a water system, communication networks, 

banking and finance sectors, emergency services and so forth. (Rinaldi et al., 2001; Little, 

2003). These infrastructures form an over-arching net that covers the normal, everyday 

activities of a society. Each individual infrastructure includes numerous interaction points 

and disturbances that can cascade very quickly bringing the entire system to a standstill. 

The multiple layers of an infrastructures system are interweaved, this restoration must 

incorporate the interdependent nature of infrastructures; it cannot be looked at as a stand-

alone problem. Table 1 lists the types of disturbances that can affect an infrastructure. 

 

 

Table 1 Disturbances within an infrastructure system 

Disturbances Factor 

Natural Hazard 

Earthquakes, floods, tornadoes, hurricanes, volcanic 

activities (McEntire, 2004) 

Man-Made Hazard Terrorism, war, mismanagement (Hollman et al., 2007) 

Technical Failures 

Design faults, maintenance issues, unskilled workers 

(Wen et al., 2009) 

Weather Related Extreme winds, snow, ice, sleet (Helbing et al. 2006) 
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The vulnerability and the importance of these infrastructures has long been 

recognized. In the Executive order 13010, July 15, 1996, [Clinton, 1996] stated:  

Certain national infrastructures are so vital that their incapacity or destruction 

would have a debilitating impact on the defense or economic security of the 

United States. These critical infrastructures include telecommunications, electrical 

power systems, gas and oil storage and transportation, banking and finance, 

transportation, water supply systems, emergency services (including medical, 

police, fire, and rescue), and continuity of government. These are the foundations 

of our prosperity, enablers of our defense, and the vanguard of our future. They 

empower every element of our society. There is not more urgent priority that 

assuring the security, continuity, and availability of our critical infrastructures...    

To protect critical infrastructure against disruptions, a better understanding of the 

behavior of each component within a critical infrastructure is necessary. Once, the 

behavior of each component is understood the internal interaction mechanisms among the 

different components of critical infrastructure needs to be understood. Since, the related 

historic data is incomplete and not freely available, and real-world physical experiments 

are expensive there is a need to analyze the critical infrastructure and its 

interdependencies by using computer modeling and simulation. 

Modeling restoration of a critical infrastructure presents several challenge. There 

is a need to incorporate ideas and tools from a wide spectrum of research areas, including 

simulation-based optimization, structural engineering, human behavior modeling, 

geographic information systems (GIS), and supply chain management. A number of 

studies have been conducted in the past on either disaster management or facility 
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locations following natural or man-made disasters. Little has been done, however that 

considers medium or long-term restoration strategies that are capable of reconnecting 

urban areas with national supply chain infrastructure systems. Without a comprehensive, 

data-driven model of a strategic supply chain infrastructure, communities cannot re-

establish the level of vibrant connectivity required for the timely restoration of goods and 

services.  

A systematic approach to identifying the interdependency between a critical 

infrastructure and the restoration after a perturbation has not been undertaken (OHS, 

2002). Fragility increases as a systems complexity increases. The system will also have 

more sub-systems associated with it. These sub-systems will most likely be inter-

dependent on each other for their functioning and, thus, they will have an unpredictable 

behavior. In today’s increasingly interconnected infrastructure networks, the probability 

that a perturbation in one network will affect the functioning of other systems is quite 

high (McEntire, 2004; Lecomte, 1998; Mills, 2005). The challenges related to 

identifying, understanding, and analyzing the interdependent nature of critical 

infrastructure is magnified by the wide breadth and complexity of the infrastructure’s 

system and related factors. These factors include social, societal, political, technical, 

economic, legal, and security concerns.  

This research proposes a framework for restoration of critical infrastructure in the 

aftermath of a perturbation. A methodology was developed for understanding the 

complexities of the system and was validated against a real-world scenario. Next, an 

evaluation of all the data the publically available was performed to understand and find 

out the data required for this research. Finally, with the use of the publically available 
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data interdependencies between the different infrastructures was mapped to understand 

the complexity of the real-world system. The framework that will thus be developed will 

be scalable across regions and extreme event and will be a plug-and-play model. 

 

1.2. LITERATURE REVIEW 

The literature review reveals that the bulk of the research conducted in the field of 

disaster management or restoration after an extreme event deals with either models 

focused on facility location, inventory management, resource distribution strategies, or on 

estimation of short-term resource requirements after an extreme event. The literature that 

is available is infrastructure-specific and only looks at the problem of protecting a 

complex and interdependent infrastructure system from a single infrastructure stand-

point. A number of organizations, institutions, and universities have focused their 

research on the critical infrastructure protection like the Department of Homeland 

Security [DHS], Department of Energy [DOE], and Sandia National Laboratories.  

Many researchers have looked at a single infrastructure only and studied the 

reliability and vulnerability (Adachi, and Ellingwood, 2008; Liu et al., 2005; Davidson et 

al., 2003). Little sufficient data is available when examining critical infrastructures. A 

probabilistic method is used to estimate how the infrastructure will react (Lewis et al., 

1979; Apostolakis, 2004; Pate-Cornell, 2001). Liu et al. (2005) used statistical regression 

models combined with historical data to analyze the damage of an earthquake on the 

power supply. The problem with this type of work is that it does not take into account the 

multiple network topology and the models thus created have a lot of assumptions 

associated with it. Koutsourelakis (2010), and Ellingwood and Kinali (2009) look at the 

vulnerability of built environment when subjected to an earthquake. Distributed 



5 

 

Engineering Workstation (DEW, 2006) is being used to analyze and identify 

interdependencies from an electrical power systems standpoint and uses graph theory to 

create the model.  

Several notable studies have been conducted by Holguín-Veras et al. (2012), who 

examined the allocation of resources after hurricane Katrina. Akkihal (2006) developed 

an algorithm that was focused on the location of distribution centers for non-perishable 

supplies. Duran et al. (2011), Balcik and Beamon (2008), Ozbay and Ozguven (2007), 

and Jaller et al. (2007) created techniques that can be used to review levels of disaster 

relief supplies by considering either a stochastic approach (looking at resource 

requirement patterns), or used mathematical models to do the same. An operations 

research (OR)  perspective is provided by a number of papers including Altay and Green 

(2006) where they considered disaster operations management, Rawls and Turnquist 

(2010) developed an OR tool for pre-positioning emergency supplies before an extreme 

event, Mete and Zabinsky (2010) created an optimization technique for medical supply 

location and distribution, a study by Simpson and Hancock (2009) focused on an OR 

based research that has been done in this field in the last fifty years. The disaster 

problem’s attributes must be understood before theories and algorithms can be applied to 

disaster operations. The comprehensive model developed during this research can be used 

to examine preparedness, planning, response, and recovery activities.  

 Another problem while focusing on infrastructure rebuilding after an extreme 

event is related to the involvement of multiple organizations including both private and 

public entities working together. This leads to managerial confusions and ambiguity as to 

who is in-charge, and what are the responsibilities (Altay & Green, 2006). Public entities 
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have problems within themselves such as ill-defined goals, being authoritative, and have 

strong political connections (Gass, 1994). Most of the literature that is available does not 

examine this problem; it ignores it. The handoffs between public and private entities 

needs to be dealt with seamlessly for optimizing the recovery process. In the literature 

that is available only a few papers come close to addressing these issues. Gass (1994) 

presents a decision making methodology advocating for the decision power to be vested 

in the hands of a select group of people based on an algorithm.  

  Several of the most advanced critical infrastructure modeling techniques use agent 

based modeling. Agent-based Infrastructure Modelling and Simulation (AIMS, 2007) 

was developed at the University of New Brunswick It is used to simulate and model the 

survivability of a critical infrastructure in Canada. This model did take interdependencies 

into consideration, little real-data, however was used in this research. The Critical 

Infrastructure Modelling System (CIMS, 2006) was developed by Idaho National 

Laboratories (INL), uses geospatial information and performs ‘what-if’ analysis. The 

primary problem with this model is that it does not consider the interdependency that 

exists between critical infrastructures. 

1.3. RESEARCH OBJECTIVES 

This work was focused on the medium- or long-term restoration strategies that are 

capable of reconnecting urban areas with national supply chain infrastructure systems. 

Without a comprehensive, data-driven model of supply chain networks, communities 

cannot explore strategies to re-establish the level of vibrant connectivity required for a 

timely restoration of goods and services. This project approached modeling Supply Chain 

Interdependent Critical Infrastructure (SCICI) in the wake of a large-scale disaster and 

defines model elements, data needs per element, metrics for success, system modeling, 
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and interdependency mapping.  By focusing on SCICI this research can directly map the 

impact of perturbations on the infrastructure identified as critical by the United States by 

the Department of Homeland Security (Department of Homeland Security, 2009) as well 

as related infrastructure elements required for socioeconomic growth and livable 

communities.  The goal is to better acquire, understand, analyze, and simulate SCICI in 

the context various disasters and develop decision making tools, which can help policy 

makers and infrastructure service providers to get back to normalcy and to minimize the 

down time. Table 2 summarizes the objectives of this research and also lists the 

techniques involved in conducting this research. 

 

 

Table 2 Objectives and Techniques used to conduct this Research 

Objective Techniques/Requirements 

Use publically available data for 

creating a graph model of SCICI 

Use graph theory to combine 

Geospatial data 

Map Interdependency 

Agent Based Modeling & 

Simulation, GIS analysis 

Propose a methodology for 

understanding SCICI 

Utilize acquired data to analyze and 

find data trends 

Optimize restoration Use ABMS optimization techniques 
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PAPER 

I. Framework for Modeling Urban Restoration Resilience Time in the 

Aftermath of an Extreme Event 

 

V. Ramachandran1, S.K. Long2, T. Shoberg3, S. Corns4, H.J. Carlo5 

 

1. Abstract 

The impacts of extreme events continue long after the emergency response has terminated. 

Effective reconstruction of supply chain strategic infrastructure (SCSI) elements is 

essential for post-event recovery and the re-connectivity of a region with the outside. This 

study uses an interdisciplinary approach to develop a comprehensive framework to model 

resilience time. The framework is tested by comparing resilience time results for a 

simulated EF-5 tornado with ground truth data from the tornado that devastated Joplin, 

Missouri on May 22, 2011. Data for the simulated tornado was derived from The National 

Map of the U.S. Geological Survey for Overland Park, Johnson County, Kansas, in the 

Greater Kansas City area. Given the simulated tornado, a combinatorial graph considering 

the damages in terms of interconnectivity between different SCSI elements is derived. 

Reconstruction in the aftermath of the simulated tornado is optimized using the proposed 

framework to promote a rapid recovery of the SCSI. This research shows promising results 

when compared with the independent quantifiable data obtained from Joplin, returning a 

resilience time of 22 days compared with 25 days reported by city and state officials.  

CE Database Subject Headings: Extreme Events, GIS, Infrastructure, Supply Chain, 

Resilience time, Damage, Graph Theory, Tornado 

Author Keywords: Resilience time, Tornado, GIS, Supply Chain, Restoration 
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2. Introduction 

Large-scale disasters impact a region, community, city, or a country in a myriad of ways. 

The aftermath invokes short-term emergency procedures (search, rescue, and recovery) 

followed by moderate- to long-term restoration efforts, the latter lasting from months to 

years. Existing decision–making methodologies of federal, state, and local government 

agencies focus primarily on emergency response functions (Veras and Jaller, 2011; Hale 

and Moberg, 2005; Horner and Widener, 2011). Longer-term problems associated with 

recovery are less well studied. To achieve substantive recovery, the restoration of an urban 
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mailto:cornss@mst.edu
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center’s infrastructure and that center’s reintegration into the national supply chain is 

necessary. The ability to restore operational performance and continuity between supply 

chain infrastructure elements damaged by a large-scale disaster needs to be studied in 

greater detail (Tamvakis and Xenidis, 2013). The complexity and interdependence of 

infrastructure subsystems coupled with chaotic damage from extreme events makes such 

restoration planning and preparation difficult.  

The two main elements of this research are the supply chain strategic infrastructure and 

an extreme event that damaged that infrastructure. Supply chain strategic infrastructure 

(SCSI) in this research is defined as water, wastewater, power, transportation, and 

communication systems required for the normal functioning of an urban environment. The 

infrastructure required for proper functioning of the supply chain provides key linkages of 

a community to regional and national supply chain networks (Chopra and Meindl, 2007). 

An extreme event is defined as a celestial, geologic, meteorologic, hydrologic, or 

anthropogenic phenomenon that exceeds the ability of a community to cope with that event 

and has both short and long-term implications (Lindell and Prater, 2003). The destruction 

caused by such events leads to the need for immediate decisions based on overwhelming, 

yet inadequate, data (Rosenthal et al., 1989). The restoration of SCSI in the aftermath of 

an extreme event can be modeled as part of disaster-planning scenarios to guide this 

decision-making process.  

Modeling is the initial step in planning the restoration of the SCSI, and would be done 

based on publically available data. To adequately assess the models to determine the 

efficacy of the processes it is also necessary to quantify restoration using a well-defined 

metric. The metric considered in this paper is resilience time. Resiliency is, admittedly, a 
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loaded term and has numerous definitions within different fields of research (Horne and 

Orr, 1998; Comfort et al, 2001; Hollnagel et al., 2006; Cook and Nemeth, 2006; Dekker et 

al., 2008; Reed et al., 2009; Boin et al., 2010). In this study, we follow Reed et al. (2009) 

and define resilience time as the time required to restore the movement of goods and 

services throughout the SCSI to a particular level. Performances of SCSI elements change 

drastically in the wake of a large-scale disaster. The resulting damage requires that limited 

resources must be allocated efficiently to a complex, interdependent system to restore 

normal operations. Ouyang et al. (2012) proposed a three-stage resilience framework that 

quantifies a system’s resiliency and other characteristics for electrical systems, but this 

tends to be infrastructure or network specific. Pant et al. (2013) and Ulieru (2007) look at 

specific infrastructure systems. Although these studies consider system preparedness, 

capacity, and recovery from hazards, the main drawback is that they do not consider 

resiliency across multiple interdependent systems. Other papers focus on either a particular 

phase in restoration or on the type of disaster that had occurred or look at particular 

problems like facility location or emergency management. For example, Altay and Green 

(2006) consider  the problem from an operations research perspective, Feng and Weng 

(2005) and Kondaveti and Ganz (2009) consider post-disaster management, but only 

address the management strategies immediately after an extreme event and do not consider 

at the middle-to-long-term strategies of restoration. The problem of establishing medium 

and long-term re-connectivity of a city after a man-made or natural disaster has not been 

extensively investigated. The metrics introduced in these works are insufficient because 

the problem of restoration of SCSI elements has not been studied by using a unified 

approach. The framework for restoration should be able to scale across different extreme 
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events and different regions with minimal modifications. This paper looks at the type of 

data required for making such framework, and how to integrate the complex data so that 

the resiliency time is reduced and also there is a set decision making plan. 

Some previous research efforts have viewed supply chain strategic infrastructures as 

lifeline systems (O'Rourke, 2007; Hernandez-Fajardo and Dueñas-Osorio, 2011) that 

physically tie together metropolitan areas, communities, and neighborhoods to facilitate 

growth of local, regional, and national economies. Cagnan and Davidson (2003) described 

three approaches for lifeline system restoration. The first method uses restoration curves 

developed from a statistical analysis of historical data to directly estimate the restoration 

time. The second method (Ballantyne et al., 1990) uses a resource constraint approach 

where restoration time is a function of available resources with respect to level of damage. 

The third method, called evolutionary restoration (Zhang, 1992), involves modeling SCSI 

elements as a Markov chain in which future states of restoration depend on the current state 

and a set of known or assumed probabilities. While this lifeline view is an accurate 

representation to show the system level function of the SCSI, none of these methods 

individually provides a robust method that can be used to create a framework for planning 

restoration efforts. However, elements of each of these three methods combined provide 

us with a starting point for a larger holistic framework. 

The goal of this research is to propose a framework that facilitates re-connectivity of a 

city after a disaster by: (1) understanding the type of data needed to model SCSI restoration, 

(2) showing the feasibility of restoration models, and (3) evaluating the restoration of SCSI 

elements as parameterized by the resilience time metric in the aftermath of a simulated 

extreme event. The research first looks at different available data related to SCSI to make 
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a comprehensive SCSI model, and then calculates resilience time by taking into 

consideration restoration time and priorities for reconstruction of all the different elements.  

3. Data Description and Assumptions 

The proposed framework starts by acquiring geospatially located SCSI data with supply 

chain network parameters, restoration resource data, and hazard damage data, to construct 

a model of an urban center. Figure 1a shows a flow chart of the proposed framework. The 

urban center infrastructure is modelled as a graph by integrating the SCSI geospatial data 

and the SCSI element data. The destruction of the urban center is based on the Hazard 

damage data and is reflected in the created graph. A priority matrix is created which is used 

to determine the order of restoration after the damage to the different elements of the SCSI. 

A nearest-neighbor heuristic is used to prioritize the order of restoration of the urban 

infrastructure. Critical path method (CPM) and a Program evaluation and review technique 

(PERT) analysis utilize this heuristic along with the priority metric to calculate resilience 

time. A workflow depicting the same is shown in Figure 1b. The rest of the paper is 

organized in the same way. This section gives details about the different types of data 

required, the methodology section explains data integration and model building strategies 

and the final section describes the resilience time calculation techniques.  
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Figure 1. Outline of the Restoration Framework 

 

 

 

A case study will be used throughout the paper in order to help describe and validate 

the proposed framework. The area chosen for this case study is within the city of Overland 

Park, located in Johnson County in northeastern Kansas. Johnson County, with a 

population of 542,737 (CENSUS, 2010), is adjacent to Kansas City, Missouri and is the 

most populous county in Kansas. This region was selected because it is an industrial and 

transportation-logistics hub with national connectivity, it has a considerable amount of 

publically accessible SCSI data, and it experiences tornadic activity at a rate that is 4.1 

times the national average (Johnson County Government, 2010). Finally, a case study is 

presented in order to help validate the proposed framework 
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Populating the model space on which simulations are to be executed is essentially a 

problem of data integration. For this study there are four general categories of data that 

need to be integrated: geospatially-located SCSI element data that includes location of 

infrastructure elements basic geospatial data upon which the SCSI data will be located, 

hazard damage data, and restoration data. These categories prove necessary for creating a 

resilience time framework. 

The SCSI elements, sometimes called lifeline system elements, chosen are shown in 

Figure 2. Lifeline system elements are interdependent due to the operational interaction 

between all the elements. These interdependencies are such that damage to one 

infrastructural component can rapidly cascade into damage to surrounding components, 

with system-wide consequences. Figure 2 shows the interdependent nature of a subset of 

SCSI. Circles represent basic utilities required by the supply chain. Squares represent 

different modes of transportation used by the supply chain. Color-coded lines connect each 

utility usage to the transportation mode that requires it. In this case, the light blue lines 

connects these water utility water and air transportation, green lines connect the power 

utility to the road, rail and air transportation system, likewise, black lines for fuel, and 

purple for communications. The red line with the double arrows shows inter-modal 

transportation capability, and the triangle represents holding facilities such as ports, docks, 

warehouses, etc.  
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Figure 2 Modified Standard Supply Chain Model where different modes of transportation 

are represented by squares and utilities are represented by circles. Light blue line 

represents dependency of the water utility, green lines are used for power utility, black 

lines for fuel, and purple lines for communication, and the red lines with arrows shows 

inter-modal transportation for transportation of goods, e.g. rail-road, road-air, rail-water, 

water-road-air etc. 

 

 

 

a. Geospatially-Located Infrastructure Elements 

Geospatial data form the base upon which all other data elements are positioned. These 

data were largely collected from two public sector databases, The National Map of the U. 

S. Geological Survey (Sugarbaker and Carswell, 2011) and the Kansas Department of 

Transportation (KDOT, 2012). The U. S. Geological Survey (USGS) data included 522 
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tiles of 0.3 m resolution orthoimagery, the roads, bridges (road and rail), hydrography 

(streams, lakes and dams) shown in Figure 3. The orthoimagery were available in raster 

format, whereas transportation, hydrography and structure data were supplied as vector 

data. The high-resolution orthoimagery allowed electric grid data to be extracted. The 

process for electric grid extraction involved the digitization of electric poles (picked where 

pole shadows connected with the pole base) and electric substation locations. At this 

resolution the electric lines running between individual poles are also commonly visible, 

but visible or not the electric lines are assumed to be strung from pole to pole along a 

straight line. These data were further divided into lines carrying high-, moderate- and low-

voltage electricity based upon pole design. These estimates were checked against KDOT 

schematics for high- and moderate-voltage lines in the northeast Kansas area and the 

agreement was excellent. While this method of data extraction has the virtue of being 

completely within the public domain, it is hampered by the time-consuming nature of 

acquisition and the inability to sample underground systems. However, underground 

systems remain largely undamaged by tornadic activity. 

The KDOT data include communication lines (mainly cell phone towers and above 

ground land lines), water and sewer lines and additional structures information. The cell 

phone tower data were spot checked for quality control based upon select Federal 

Communication Commission (FCC) datasets and the USGS orthoimagery, again with 

excellent agreement. In general, these various data sets were easily integrated, but where 

there was a discrepancy, data that best fit the orthoimagery were preferred. 
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Figure 3 Orthoimagery from The National Map overlain by key SCSI geospatial elements 

(symbols defined in legend). This particular tile shows 1.5 km2 of Johnson County, KS 

near the intersection of W 111th Street (running E-W near the southern boundary of the 

tile) and Woodland Ave (running N-S along the western boundary of the tile). The scale 

on this image is 1:3700. 

 

 

 

 

b. Hazard Simulation (Damage Data) 

The main objective of a hazard simulation is to generate the extent of damage within a 

given area.  In an actual disaster, the level of damage to the SCSI would be direct input 

data.  For the purpose of testing the model, however, it is necessary to produce the damage 

data through a hazard simulation of some sort.  For this study, a hazard simulation is chosen 

that invokes an EF-5 tornado. Hazard data were acquired from the National Climatic Data 

Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA, 2004). 
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In this research the tornado path was chosen to cause the maximum amount of damage. 

The width of a tornado’s path varies with intensity, and can range from 100 to 4000 meters 

wide and it is generally no more than 19.3 kilometers long (Rind, 1994, for example, 

reports that the May 31st, 2013, El Reno, OK tornado was 4-kilometer wide and lasted 26 

kilometers on the ground). Tornadoes generally travel from the southwest to northeast with 

an average speed of 48 km/hr, and wind speeds associated with an EF-5 tornado range from 

347 to 420 km/hr (Bluestein, 2006) and cause large-scale damage along and adjacent to 

their paths. These winds are powerful enough to lift frame houses off their foundations, 

toss automobile-sized missiles through the air, uproot trees, and badly damage steel re-

enforced concrete structures (Grazulis, 2001). EF-4 and EF-5 tornadoes account for less 

than one percent of all occurrences, but are responsible for 80 percent of all tornado 

destruction within the United States (Bluestein, 2006).  

 

 

c. Restoration Data & Supply Chain Strategic Infrastructure 

Elements 

Restoration data includes levels of skilled workers needed, collaboration between agencies 

at the local state and federal level, raw material availabilities, and transportation modes for 

essential goods. For large scale disasters, utility and other skilled laborers are brought in 

from neighboring states. Collaboration entails recognition of the interdependent actions of 

state and local organizations and other stakeholders for plan implementation (Berke et al., 

2012) and which directly affects resilience time. Restoration data for this research were 

acquired through the after-action reports and interviews with subject matter experts from 

the aftermath of tornadoes in Alabama (Gordon et al., 2011) and Maryland (Gailey, 2002).  
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SCSI element data identify critical elements of the infrastructure and also replacement 

rates necessary to keep the network viable. The National Infrastructure Protection Plan 

contains seventeen sectors that comprise the critical infrastructure of the United States 

(DHS, 2006). In this pilot study a subset was chosen for compatibility based on the eleven-

system interdependent infrastructure as postulated by McDaniels et al. (2007). Table 1 

shows the SCSI elements that were considered, the type of damage inflicted upon each 

element, and also the data source for each. 

 

 

Table 1 SCSI Elements considered in the Model and damage estimates to each of the 

elements 

Category Supply Chain 

Element 

Type of damage Geospatial Location 

source 

Transportation 

 

Roads 

 

Debris 

 

The National Map 

(2011) 

 

Transportation 

 

 Bridges 

 

Minor structural 

damage, debris 

 

The National Map 

(2011) 

 

Transportation 

 

Rail 

 

Debris 

 

The National Map 

(2011) 

 

Electric 

 

Lines, power 

poles, and 

substations 

 

Lines down, 

structural damage 

to poles and 

substations 

 

The National Map 

(2011) 
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Table 1 SCSI Elements considered in the Model and damage estimates to each of the 

elements (cont.) 

 

 

 

 

 

4. Methodology 

 

a. Combinatorial Graph 

The data described above provide a basis for building a framework of the SCSI elements 

for a given region. One modeling method is by utilizing combinatorial graph theory. Graph 

theory is a means of showing connectivity of elements in a model (West, 2000). The 

different elements of SCSI can be modeled into a graph by representing them as vertices 

or edges. The different interconnections and interfacing between the elements can be 

explicitly shown on a graph. A combinatorial graph or Graph (G) is an ordered pair G = 

(V,E) comprising of a set V, of vertices or nodes together with a set E of edges or lines 

which are 2-element subsets of V (i.e., an edge is related with two vertices, and the relation 

is represented as an unordered pair of the vertices with respect to the particular edge (West, 

2000). For example, let graph, G1 represent a road transportation network (Figure 4). All 

bridge and road intersections are represented as vertices (circles in Figure 4) and the roads 

Communications Cell towers and 

Land lines 

Lines down, 

structural damage 

to towers 

MARC (2010) 

Water 

 

Pipeline and 

Pumping stations 

 

Debris impact to 

pumping stations 

 

 

MARC (2010) 
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connecting them as edges (lines connecting the circles). A path is a sequence of edges 

connecting a series of vertices. A graph is said to be connected if one or more paths exists 

between every pair of vertices. For this research each utility is represented by its own graph 

and prior to an extreme event each graph is connected. Note that the graph is considered 

connected because a pathway exists such that it is possible to go from any vertex to any 

other vertex.  

 

 

 

 

Figure 4 Graph representation for G1 

 

 

The SCSI elements identified in Table 1 were divided into edges and vertices that form 

the combinatorial graph (Table 2).  
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Table 2 vertices and edges for Graph 

 

 

 

 

 

 

Figure 5 shows a graph of the SCSI elements idealized as edges and vertices overlain 

on orthoimagery for a subset of the study area. A majority of the SCSI elements that are 

being considered in this research are shown in Figure 5 (some are not because they are not 

present in this area). Even though this figure is overlain on orthoimagery a connected graph 

can be seen with vertices and edges representing the SCSI elements. This graph is a 

representation of the entire infrastructure that is necessary for normal functioning of the 

city; it shows the connectivity between the different elements and also interconnections of 

the network.  

 

 

 

 

Vertices Edges 

Bridges & Intersections Roads 

Electric Poles and Substations Electric Lines 

Communication Towers Communication Lines 

Pumping stations Water pipelines 
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Figure 5 Subgraph within Johnson County, Kansas. Combinatorial graph shows the 

relevant SCSI elements, composed of electric grid, communication lines, state road 

transportation lines and water pumping station 

 

 

 

b. Tornado Simulation 

An EF-5 tornado is simulated within the model. The simulation path through Overland 

Park is 12 kilometers (7.5 miles) in length and 2.5 kilometers (1.5 miles) wide heading due 
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north. The simulation invokes a zone of maximum damage, 100% of all edges and 90% of 

vertices are damaged or unusable, within the tornado’s path. A zone of reduced damage 

extends outward radially an additional 700 m from the edge of the previous zone. Within 

this 700 m swath, edges connected to vertices inside of the maximum damage zone were 

destroyed. 

 

c. Construction of the Priority Matrix 

A hierarchy of the order of restoration for SCSI elements was constructed. This hierarchy 

is represented as a priority matrix of weights and priorities (see Table 3). Priorities define 

the preferred order of restoration and are assigned numbers ranging from two to five, two 

being lowest priority. Weights are also assigned across each priority element signifying the 

importance of any particular vertex. The first step in restoration deals with clearing the 

large amount of debris on roads, so that the restoration and damage assessment crews can 

reach the area and decide on the course of action. The SCSI element with highest priority 

and largest weight establishes the initiation of restoration. This priority matrix is 

constructed in consultation with subject matter experts. Transportation is given the highest 

priority due to the fact that crews need access to the damaged areas before any other repair 

work can start. Electricity is the next utility to be restored, followed by communications 

and then water. Table 3 shows the order of restoration which was employed for this study.  
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Table 3 Priority matrix 

 Weights 

Priorities 5 3 1 

5 (Transportation) Federal Highways,  

Federal Bridges 

State Highways, 

State Bridges, Rail 

Local Roads 

4 (Electricity) 

 

Substations & 

High voltage lines 

Intermediate 

voltage lines 

Low voltage 

lines 

3 (Communication) Communication 

Towers 

Communication 

Lines 

 

2 (Water) Water pumps Water pipelines 

(Note: Clean and 

Waste Water are 

separate) 

 

 

 

d. Nearest-neighbor Algorithm 

A nearest neighbor algorithm is used to restore SCSI elements. In a nearest-neighbor 

method, each vertex controls an area corresponding to a fraction of the distance to its 

neighbor in any given direction (Bondy and Murty, 1976). Increasing the weight increases 

the area controlled by a given vertex.  Figure 6 gives an example of how the nearest 

neighbor algorithm would operate. Element 1 and element 8 must be reconnected, while 

elements two through seven are available infrastructure elements between them. The 

dashed lines represent possible connections that are not part of the solution, while the solid 

lines represent the path found by the algorithm. The priority matrix identifies the initial 

SCSI element that needs to be restored (represented by vertex 1 in Figure 6). The nearest 

neighbor algorithm finds the closest vertex (in this case, vertex 2) and joins the two by an 

edge.  This edge represents restoration of functionality of the elements represented by these 

two vertices. In the next iteration, the algorithm finds the nearest unvisited vertex (vertex 



30 

 

7) and joins them by an edge, again representing functionality.  This is repeated until a path 

exists that connects vertex 1 to vertex 8. For the simulation we define the restoration time 

as the time until 80% of the pre-event system functionality is restored. Hence, in our 

simulation these iterations continue until 80% of SCSI connectivity is restored.  

 

 

 

 

Figure 6 Nearest-neighbor Algorithm. Solid lines show shortest path to neighboring 

vertex, dashed lines show unused (longer) paths. Note that connectivity is established in 

the vertex sequence 1, 2, 7, 4, 5, 6, 8 and vertex 3 is no longer part of the grid system 

after restoration. 

 

 

 

e. Critical Paths 

The Critical Path Method (CPM) is one of the several algorithms for scheduling a set of 

project activities. It is made for projects that are have a number of smaller individual 

“activities” and it determines the longest path of planned activities to the end of the project 
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(Kelley, 1963). If some of the activities require other activities to finish before they can 

start, then that leads to the project becoming complex. The main advantage of using CPM 

is that it calculates the optimal sequence of planned activities for any project and it can 

help figure out how much time the whole project will take to complete. It may also have 

activities that are critical meaning that they have to be completed within the specified time 

or the project will get delayed. In this research the total resilience time is not a matter of 

simply adding all reconstruction times since some of the activities require other activities 

to either partially or completely finish before they can start and hence are on the critical 

path of restoration.  

 

5. Results 

 

a. Calculation of Resilience Time 

Resilience time calculation is based on the time dependence of infrastructure’s repair 

function. The infrastructure repair function includes: number of utility workers, raw 

material availability, and collaboration of the different federal, state, and local groups. The 

restoration data (Table 4) is mainly derived from reports by various agencies and also 

personal communication with engineers and workers who have worked on different 

tornadoes in the past. The rate of restoration varies from case to case but a mean value was 

used in this case. 
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Table 4 Restoration data 

SCSI Element Rate of Restoration Data Source 

 

Highways/Bridges 

 

30 tons/truck/day 

(Miller, 2007, p. 8-12); 

(Felknor, 1992);  

(Jackson, 2012) 

 

Electric Lines 

 

5 meters 

repaired/day/worker 

(Personal Communication, 

Ameren UE); 

(Gordon et al. 2011, p. 38-

39); 

Communication Lines 

10 meters 

repaired/day/worker 

(FEMA, 2012 p. iv, 8-2); 

(Gordon et al. 2011, p. 65-

66) 

 

Water 

 

6 workers repair 1 

pump/day 

(Personal Communication, 

St. Louis Sewer District); 

(FEMA, 2012 p. iii, 8-3); 

 

 

 

Figure 7 shows pre-destruction, post-destruction, and post-restoration schematics. The 

image on the left shows the pre-destruction representation where all the vertices are 

connected. The image in the middle is the post-destruction representation wherein 90% of 

all the vertices and 100% of all the edges have been destroyed. In this simulation, 

infrastructure within the affected area has collapsed and all elements of the SCSI are 

impacted. Electric lines are down, highways are clogged with debris, water and sewage 

lines are non-functional, and communications are sporadic. The resilience time depends on 



33 

 

how quickly network connectivity can be restored. The image on the right is post-

restoration representation with 80% restoration by using the proposed framework.  

 

 

Figure 7 Pre-destruction, Post-destruction, and Post-restoration schematics 
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In this simulation there were 80,000 tons of debris on the road, 20,000 meters of 

destroyed electric lines, 12,500 meters of communication lines down, and 625 water pumps 

off-line. Resilience time for each independent SCSI element was calculated as shown in 

Table 5. 

 

  

Table 5 Resilience Time per Element 

SCSI Element Total 

Damage 

80% of 

total 

damage 

Time-

dependence 

factors 

Time to 

Repair 

Highways & 

Bridges 

80,000 

tons of 

debris 

64,000 tons 5000 tons 

cleared in a 

day 

12.8 days 

Electric Lines 20,000 

meters to 

be 

replaced 

16,000 

meters 

160 workers 20 days 

Communication 

Lines 

12,500 

meters to 

be 

replaced 

10,000 

meters 

100 workers 10 days 

Water Pumping 

Stations 

625 water 

pumps 

damaged 

500 water 

pumps 

60 pumps 

repaired in a 

day 

8.4 days 

 

 

 

 

Figure 8a shows a Gantt chart of the timeline for restoration. The restoration work on 

select SCSI element depends on the prior restoration of other elements as reflected in 
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assigned priorities. Since the repair work is interdependent, all four of the model elements 

are on the critical path. For example, the debris on the road network must be cleared to a 

certain extent before utility workers can reach damaged structures. Electric lines and 

junction repair starts after some of the major roads have been at least partially cleared of 

debris. Communication and water are dependent on the initial restoration of both roadway 

and electric lines.  The time required for 80% restoration of the supply chain elements is 

equal to the completion time of the last activity on the critical path. The total time taken to 

reach 80% restoration of the supply chain elements is 22 days as calculated using the CPM 

method. 

An alternative method for depicting critical path information and connectivity between 

tasks or elements can be illustrated by an Activity-on-Node (AON) diagram (Figure 8b). 

In an AON diagram, an activity is represented by a node (box) and the dependencies among 

the activities are depicted using the arrows between nodes. The relationship between the 

different activities and the order in which the activities are performed is represented by 

arrows. Even though both figures in essence have the same attributes and show total 

resilience time, the AON diagram shows the interdependent nature of the different 

activities along with the activities on the critical path. 
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Figure 8. (a) Gantt chart for resilience time, shows when the work will start and finish on 

the different SCSI elements according to the priority matrix and amount of work 

completed. (b) Activity-on-Node Network shows total days to complete the restoration 

work 

 

 

 

b. Joplin Tornado 

On 22 May, 2011 an EF-5 tornado struck Joplin, Missouri, traveled 5 miles through the 

city center, and caused massive destruction. Approximately two hours after the tornado left 

the area restoration efforts began. Transportation priority was given to the reopening the 

Interstate 44 (I-44) corridor which runs along the southern boundary of Joplin. According 

to Missouri Department of Transportation (MoDOT) and City of Joplin officials, the 

roadways and bridges were assessed for damage by structural engineers over the span of 



37 

 

several days, but within five days most major roads were passable with the roadways 

restored to 80% pre-event capacity by the tenth day. Power utility workers removed live 

power cables as roads became passable. Communication was initially spotty and sporadic. 

Water and sewage flows were also impaired. Communication and water were restored to 

80% pre-event capacity in 10 days. By the end of one week approximately 50% of electric 

service was restored and by the eighteenth day electricity distribution systems reached 80% 

of pre-disaster capacity (Gregg and Lofton, 2011). 

The model results have been compared with the events in Joplin to validate the 

described framework and not as a direct comparison of results. The restoration efforts in 

Joplin are representative of post-disaster recovery processes. The Joplin data has not been 

used in the creation of this framework, and the data to create this framework comes from 

reports and publication on other tornadic events. 

The resilience time calculations from the model were consistent with data from Joplin, 

Missouri tornado (Table 6). The model yielded a resilience time of 22 days compared with 

24 to 25 days for Joplin. According to the model, communication lines were re-established 

within 10 days, water pipelines 8-9 days. The later finished relatively quickly even though 

water restoration was given a lower priority, which implies minimal damage. Major roads 

and bridges became operational within 5 to 6 days, while the electricity took 18 days to be 

restored to 80% capacity. The difference between the model and the ground truth can be 

attributed to any number of factors, including simplicity of the model. These results are 

encouraging and imply that integrating different elements of the SCSI with geospatial data 

into a single model is practicable. This model does not reflect the real-world system, but if 
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the data that has been identified in the paper is available then it is possible to create a 

framework for restoration which can mimic the real world scenarios.  

 

 

 

Table 6 Model comparison against Joplin Restoration 

Critical Infrastructure Model Joplin Difference 

between Model 

and Joplin 

Local Transportation 

Network (Major Roads) 

6 days 5 days 

 

1 day 

Electricity 20 days 18 days 

 

2 days 

Communication Lines 10 days 10 days 

 

0 days 

Water Pipelines 8.4 days 10 days 

 

1.6 days 

Resilience Time 22 days 24 to 25 days 2 to 3 days 

 

 

 

6. Discussion and Conclusion 

Disaster restoration of SCSI is a complex system and as such, it is essential that system 

elements, connectivity, and sources of complexity be addressed in any decision framework 

designed to reconnect an urban environment to the larger economic infrastructure. A 

decision framework is best developed through the use of a systems approach. This 
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approach identifies interface points between infrastructures. The components consist of 

lifeline systems including, but not limited to: transportation, power, communication, and 

water. The interactions between these SCSI lifeline systems provide value-added detail 

within a decision framework. These interactions must be considered as part of an extreme-

event restoration plan.   

Public access to SCSI data is a major challenge to restoration modeling. These data are 

often proprietary or restricted, however, results show that adequate data can be identified 

or derived from publically available data sets. The integration of these data is challenging 

due to their complexity and variety. These data provide a good snapshot of what resources 

would be required to restore the SCSI in an optimized timeframe and they include 

geospatial and technical information used to populate the model framework. Combinatorial 

graph theory was used to determine the efficacy of this approach and as a proof-of-concept 

to evaluate whether the data integration tasks can be completed at a sufficiently robust level 

to provide meaningful results. Despite the simplicity of the approach, results are promising.  

The model simulation calculated a resilience time of 22 days which compares favorably 

with 24 to 25 days reported by city and state officials for the initial recovery from the EF-

5 tornado that devastated Joplin, Missouri, in 2011. In the model simulation, 

communication lines were re-established to within 80% of pre-existing capacity in 10 days, 

water pipelines in 8-9 days, provided that roads and electrical infrastructure were first 

sufficiently repaired for access and functionality. Major roads and bridges became 

operational in 5-6 days, and the electric junctions took 18 days to be restored to 80% 

capacity. Variance of the model with the Joplin ground truth data can be attributed to any 

number of reasons such as: the level of collaboration between the local, state and federal 
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agencies, the availability of raw materials for restoring such items as electric poles or 

communication towers, the number of utility workers that can be called into the area, the 

time taken to assess the extent of damage, the accessibility of the area in the aftermath of 

the disaster, and the simplicity of the model. Even though the demographics of Johnson 

County and Joplin have differences, the validation results imply that integrating different 

elements of the SCSI together with geospatial data into a single model can aid in 

determining extreme-event management decision frameworks. 

7. Future Work 

Future work will increase the quantity and complexity of real-world SCSI data.  Further, 

more sophisticated modelling techniques such as agent-based modeling and complex 

adaptive system approaches will create a more realistic and robust analysis. Such 

techniques will confirm that the methods developed in this research scale across regions 

and hazard type. Ultimately, a straightforward user-interface will be developed that can 

input local data for community planners to develop restoration strategies. The ability to 

manage data from either public or private sources is also a challenge when attempting to 

collect the necessary data to create such a framework. Most of these databases are 

proprietary or private and not available in open source. Some of the data that does exist is 

static and outdated.  This makes determining which database is best suited for certain 

analysis a strategic step in constructing this framework. 

The priority matrix also requires increased sophistication in its design. Currently there 

is no prioritization among the SCSI elements. For example, any set of electric poles can 

be connected to any other set of electric poles regardless of whether they serve the same 

function (low, moderate, or high voltage) and this should be addressed in the model. 
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Delphi Studies are also planned in order to better understand the prioritization necessary 

for different supply chain elements (Hasson et al., 2000). This is an iterative process, 

where experts answer questionnaires in two or more rounds. After each round, a 

facilitator provides a summary of the experts’ answers from the previous round as well as 

the reasons for their answers. The questions are asked again and the experts are 

encouraged to revise their earlier answers. 
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1. Abstract 

In the wake of a large-scale disaster, strategies for emergency search and rescue, short-

term recovery, and medium- to long-term restoration are needed.  While considerable 

effort is geared to developing strategies for the former two options, little comprehensive 

guidance exists on the latter.  However, medium- to long-term restoration has a 

significant effect on local, regional and national economies and is essential to community 

vitality.  In part, the deficit of robust strategies can be linked to the complexity in the data 

acquisition and limited methodologies to understand the interconnectedness of the 

relevant systems elements.  This research utilizes geospatial data for Supply Chain 

Interdependent Critical Infrastructure (SCICI) such as transportation, energy, 

communications, or water, obtained or derived through publically available sources (such 

as The National Map of the U.S. Geological Survey) to identify, understand, and map the 

interdependencies between these system elements to enable restoration planning. 

Specifically, internal geographical relationships (herein called the ‘geographical 

interdependency’) of SCICI are mapped. These interdependencies highlight the stress 

points on the larger SCICI where failures occur and are not included in current built 

environment models. The mapping of these interdependencies is a key step forward in 

attempts to optimally restore an urban center’s supply chain in the wake of an extreme 

event. 
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2. Introduction 

The U.S. socioeconomic structure is heavily dependent on its network of critical 

infrastructures. These infrastructures are complex, interdependent and include numerous 

interface points; a disturbance in one can quickly cause cascading failure in the others. 

These infrastructures and their importance are defined as (DHS, 1996): 

Certain national infrastructures are so vital that their incapacity or destruction would 

have a debilitating impact on the defense or economic security of the United States. These 

critical infrastructures include telecommunications, electrical power systems, gas and oil 

storage and transportation, banking and finance, transportation, water supply systems, 

emergency services (including medical, police, fire, and rescue), and continuity of 

government… 

The restoration of supply chain networks following a natural or man-made disaster is a 

pervasive challenge for decision makers responsible for the reintegration of regional or 

national supply networks after emergency response phases have ended. Although most 

disaster response models include cursory socioeconomic recovery plans, there is no 

comprehensive model capable of using data and decision variables in real time 

(Ramachandran, et al, 2014). This research models critical infrastructures in terms of their 

connectivity to the U.S. supply chain system and identifies geographic interdependencies 

associated with this system. The term supply chain interdependent critical infrastructure 

(SCICI) is used to define interdependent supply chain components. These include 

transportation, power, communications, and water (Figure 1). Understanding 

interdependency is a data-intensive process ranging from data acquisition and integration 

to data simulation.  
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Figure 1. Supply Chain Interdependent Critical Infrastructure 

 

 

Events over the past decade highlight the vulnerability of critical infrastructures and 

also showcase interdependency among elements. During the East coast blackout (August 

14, 2003) the initial problem impacted the electrical generation and distribution network, 

but cascade effects on other systems from water to transportation disrupted the daily lives 

of fifty million people across North Eastern United States and parts of Canada (Talukdar, 

2003). Similarly for both Hurricane Katrina (August, 2005) and Super Storm Sandy 

(October, 2012), 4.8 million people were impacted. Following Super Storm Sandy, people 

were without power in 15 states, there was shortage of petroleum in many cities due to 

supply chain disruption, and the cost of repair in New Jersey alone was $36.8 billion dollars 

(Blake et al., 2013).   

Figure 2 represents the number of global natural disasters reported between 2000 and 

2011 (EM-DAT). The sheer volume of these occurrences is further evidence of the need 
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for an effective restoration process for damaged SCICI. This restoration sequence must be 

based on an understanding of the interdependence of SCICI to be effective.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Natural Hazards Reported between 2000 and 2011 (EM-DAT) 

 

This research creates a model that identifies the interdependency between SCICI and 

develops a restoration sequence based on data inputs. Presented in this manuscript are: the 

steps required for the integration of the data, the methodology for determining the 

interdependencies among the SCICI with a numerical example, and a preliminary 

restoration model using geographic interdependency inputs. 
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3. Literature Review 

A number of approaches demonstrating the importance of disaster restoration are evident 

in the literature. Existing models are highly idealized and inadequate to encompass the 

complexities of an actual urban environment. Moreover, current models do not consider 

the problem from a systems view and solutions are incremental rather than inclusive of 

required model elements and data components. In short, existing models lack complexity, 

do not identify model elements from a systems perspective, and do not have a robust data 

identification process (Veras and Jaller, 2012; Hale and Moberg, 2005; Horner and 

Widener, 2011; Ramachandran, et al., 2014) Currently, there is no method which looks at 

the problem from a holistic view, and every approach is based on different simplifications 

of a mathematical model (Moteff, and Parfomak, 2004). A sampling of current methods 

and their limitations for restoring SCICI is below. 

Qualitative models based on stochastic processes (Patton, Gray, and Schoelles, 2003; 

Baldick et al., 2008; North and Macal, 2007) provide useful means to identify and analyze 

dependencies at a higher level, but qualitative approaches cannot scale across community 

size or system complexity. Input-output models (Leontief, 1987) have been used to predict 

economic losses due to non-availability of critical infrastructure (Rigole, and Deconinck, 

2006), but do not account for interdependence. System dynamics models use a top-down 

approach and are generally used to study the behavior of systems (Simonsen, 2007, 

Sterman, 2002), but they are cumbersome and lack the fine detail required for robust 

solutions. Continuous and discrete modeling techniques are based on mathematical designs 

(Liu, 1999). These models can be used to develop restoration strategies for individual 

damaged infrastructures, but quickly prove ineffective with complex systems. Topological 

and complex network models identify system structures, but fail to identify system 
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characteristics in a useable manner (Schläpfer, Kessler, and Kroger, 2008). Simulation 

models are often used when analytical solutions are not possible, but simulation cannot 

identify all possible states (Pederson et al., 2006).  

The vast majority of research after an extreme event focuses on facility location, 

inventory management, resource distribution strategies, or on estimation of short-term 

resource requirements for emergency response (see, for example, Veras and Jaller (2011); 

Akkihal (2006); Duran et al. (2011); Balcik and Beamon (2008); Ozbay and Ozguven 

(2007);  Jaller et al. (2007); Altay and Green (2006); Rawls and Turnquist (2010); Mete 

and Zabinsky (2010); Simpson and Hancock (2009)).  

Geospatial data is used in many hazard studies to detail changes between pre- and post-

disaster imagery. Tornado damage assessment studies include Wagner, Myint, and 

Cerveny, 2012; Yuan, Dickens-Micozzi, Magsig, 2002; Myint, Yuan, and Cerveny, 2008; 

Jedlovec, Nair, and Haines, 2006. Post-disaster damage assessments resulting from 

wildfires, hurricanes, tsunami include Splinter, Strauss, and Thomlinson, 2011; Rodgers 

III, Kessler, and Kroger, 2012; Barnes, Fritz, and Yoo, 2007. Disaster impacts using a 

normalized difference vegetation index include Bentley, Mote, and Thebepanya, 2002; 

Wilkinson, and Crosby, 2010. 

Virtually all the data used in previous studies are static and out-of-date in terms of 

future disasters, or synthetic. Yet, accurate, real-time data are essential for creating the 

level of complexity and interdependencies maps that are necessary to construct the models.  

Local, regional and national planners would have access to their own restricted data sets, 

but lack tools that can ingest these data and then provide restoration strategies.  This 

research discusses the creation of models for SCICI restoration that can ingest real-time, 
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publically available data, and then presents a methodology for identifying and analyzing 

the interdependency between SCICI. Specifically, internal geographical relationships 

(herein called the ‘geographical interdependency’) of SCICI are mapped. These 

interdependencies highlight the stress points on the larger SCICI where failures occur and 

are not included in current built environment models. The mapping of these 

interdependencies is a key step forward in attempts to optimally restore an urban center’s 

supply chain in the wake of an extreme event. 

 

4. Data Requirements 

Previous critical infrastructure modeling falls into one of three categories: the modeling of 

a single infrastructure system, such as transportation, electricity, communications or water 

(Gillette et al., 2002; NISAC, 2011; Shih et al., 2009); the assumption that all necessary 

data are hypothetically available at the time needed (Lee et al., 2005; Tolone et al., 2004); 

or the generation of synthetic data on which a model is built (Adachi and Ellingwood, 2008; 

Lewis et al., 1979).  While each of these approaches have strengths and avoid the difficult 

task of large-scale data integration of SCICI component data, they each have significant 

limitations.  The single system approach may have a complete real-world data set of its 

own system, but it does not properly define this system’s interaction with other systems. 

Whereas models that assume either all data is available at the time required or that generate 

synthetic data have also implicitly assumed knowledge of all interactive properties that 

exist between systems.  Necessarily, they do not have the ability to evolve or adapt to 

changing circumstances, and therefore lack an understanding of the complex and 

interconnected nature of the SCICI. 
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The complex and interconnected nature of SCICI are coined as the ‘interdependencies’ 

within the SCICI.  Figure 3 shows a cartoon representation of some supply chain network 

elements and their interdependencies.  An illustrative example of such interdependencies 

and a cascading failure might involve: a failure in a communication relay leads to the 

overheating and failure of a water pump providing coolant to a power plant that destroys a 

boiler, shutting down the plant, and overtaxing the electrical grid. This could lead to a 

widespread blackout, communications shutdowns, transportation strictures, financial 

distress and civil unrest.  While the initial failure here is on a micro-scale, the illustrative 

point of the importance of understanding the interconnectivity of the various SCICI is 

made.   

Rinaldi et al. (2001) categorize interdependencies among infrastructure systems into 

one of four types: Physical interdependency, physical reliance on material flow from one 

infrastructure to another, Cyber interdependency, the existence of information transfer 

between infrastructures, Logical interdependency, any other type in interdependency that 

exists between infrastructures that do not fall in one of the other categories, and Geographic 

interdependency, infrastructures that are located in close proximity with each other. In this 

study, SCICI data are used to map the latter interdependency between SCICI into a viable 

Supply Chain Network (SCN) model. 

In order to create a SCICI model with sophistication sufficient to illuminate the various 

interdependencies across systems, a large amount of real-world data needs to be acquired, 

integrated and analyzed.   

 



56 

 

An example of some of the types of data needed is shown for the transportation SCICI in 

Table 1. The components of this table are extensively discussed by Ramachandran et al. 

(2015).  A satisfactory model of SCICI would require data such as these. 

 

 

 

Figure 3. Cartoon illustrating the interdependent nature of critical infrastructure elements 

 

 

 

Geographical interdependency is driven by proximity and approachability. It does not 

constitute a physical connection (as does physical interdependency), but does require that 

one element be geographically near another and that this element can be approached from 

the other by reasonable means. The obvious platform for the integration and analyses of 

these data prior to model building is geospatial.  In this study, The National Map of the 

U.S. Geological Survey is chosen as the geospatial platform, and all other data elements 
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are integrated onto the orthoimagery from this source. The integration is done in a 

Geographic Information System (GIS) environment, but it should be pointed out that both 

the platform and the integration environment are chosen for convenience and other systems 

with the same capability could perform the same service. 

5. Example 

The study area is represented by 29 USGS 7.5-minute quadrangles for the greater St. Louis 

region of Missouri and Illinois (Rogers, 2009) covering an area of 4,432 km2 (Figure 4), 

and was chosen due to its proximity to the New Madrid Seismic Zone (NMSZ), in the 

Mississippi Embayment. This fault zone is about 240 km long and occurs from five to 

twenty-four kilometers beneath the earth’s surface (Newman et al., 1999). The area is a 

source of considerable small-scale seismic activity today. Although the most recent large 

earthquake (estimated magnitude about 7.5) occurred in 1811 – 1812, the potential 

destruction due to a major earthquake in this region remains high (Tuttle et al, 2002). The 

area is also subject to tornadoes, particularly during the late spring through early fall 

months and, due to its proximity to the confluence of the Missouri and Mississippi Rivers, 

flooding.  Indeed, should a disaster claim all the major bridges in this area, the city itself 

would become a virtual island in terms of transportation issues. 
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Table 1. Transportation data requirements for modeling SCICI in an urban environment 

like St. Louis, Missouri (modified from Ramachandran et al., 2015). 
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Figure 4. The study area, the greater St Louis, metropolitan area with USGS 7.5’ 

topographic quadrangle coverage (Rogers, 2009). 

 

 

6. Data Acquisition and Preprocessing 

SCICI geospatial data required for the construction of public SCN models that will identify 

and catalog geographical interdependencies must necessarily come from several open 

sources.  One such source is The National Map of U.S. Geological Survey which distributes 

fully integrated layers of orthoimagery, elevation, hydrology, transportation, place names, 

and land cover (Sugarbaker, and Carswell, 2011).  The orthoimagery is a particularly rich 

data source as it consists of aerial photographs that have been mathematically corrected to 

remove camera distortions and flight path variations (‘orthorectified’), thereby producing 

images of uniform scale that allow accurate determination of coordinates, distances, areas, 

shapes, directions, and land usages from these images (Mauck et al., 2009).  In this study 

area 2268 orthoimagery tiles from The National Map were downloaded for total coverage. 

These images have resolutions ranging from 0.15 m up to 0.6 m cell-lengths. From these 

images it is possible to extract infrastructure elements such as bridges, culverts, docks, 
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dams, electric poles, electric substations, fire hydrants, power plants, storm drains, water 

reclamation plants and more by heads up digitization. A third source of public SCICI data 

include the state departments of transportation, whose road and rail data best integrate with 

the road and rail depictions on the orthoimagery.  An example of the SCICI geospatial data 

compiled for a section of the St. Louis metroplex is shown in Figure 5.    

 Elevation data is used in this study to calculate the ‘approachability’ of SCICI, and 

consists of the National Elevation Dataset (NED) digital elevation models (DEM) for this 

region (Figure 6).  These are interpolated elevation grids have been based largely on 

topographic map contour data.  The highest resolution DEMs were chosen which consisted 

mostly of 1/9 arc-second data (3 m cells) for the greater St. Louis county area, and 1/3 arc-

second data (10 m cells) for the rest of the area.  

 

 

 

Figure 5. Orthoimagery and selected SCICI infrastructure for St. Louis, Missouri region 

(Ramachandran et al., 2015).  
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Figure 6. Elevation DEM integrated with road networks for the central United States. 

 

 

While other data sources are necessary for the modeling of physical, cyber and logical 

interdependencies, the sources described here allow for the development and 

implementation of algorithms that can map geographical interdependency among SCICI.  

 

7. Algorithm for Mapping Geographic Interdependency 

Infrastructures are said to be geographically interdependent if they are within a close 

proximity and are able to establish a connection between each other. The elevation data 

can be used as a feasibility criterion to test for physical connectivity between infrastructure 

elements. A large-scale disaster would most likely cause a change of state to all the 

infrastructure elements that are close to each other. For this research, geographic 

interdependency is studied in two parts: calculating the nearest neighbor and calculating 

infrastructure element approachability. Figure 7 illustrates the procedure adopted for 

mapping the geographic interdependency between elements of the SCICI that are within a 

given threshold distance of each other using a nearest neighbor algorithm.  
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 The process for applying the nearest neighbor algorithm is made up of three stages:  

Infrastructure Data Loading (IDL), Infrastructure Data Cleaning (IDC), and Geographic 

Interdependency Mapping Proximity (GIMP).  The IDL stage (Line 1 of Figure 7) 

establishes connection to a SQL® database1. SQL, or Structured Query Language, is a 

special purpose programming language designed for managing and processing data. The 

advantage of using the SQL database is that a geospatial data add-on is available that 

supports geography data types and can store spatial data in tables (in the form of points, 

lines and polygons). Queries can then be written to analyze and manipulate the data stored 

within the tables. The IDC (Line 3 of Figure 7) stage is a data integration phase where all 

the geospatial data that are required to map the interdependencies are converted into a 

format that is readable by the SQL database. For this, GDAL (an open-source translator 

library) is used to convert the raster and vector geospatial data. Using this translator, a 

query is written to convert the existing spatial metadata into database readable format so 

that the data can be analyzed when needed. This is an important step because when the data 

gets transferred to a database all the attributes of the data are converted into columns and 

can be queried as individual items. The GIMP (Line 11 of Figure 7) specifies rules for 

mapping the proximity interdependency. The GIMP stage determines if the infrastructure 

table exists, and if not, creates it. From this table a hash map and spatial index are compiled 

which reduces subsequent computing time. 

 

 

                                                           
1Reference to any specific commercial product, process, or service by trade name, trademark, 

manufacture, or otherwise does not constitute an endorsement, a recommendation, or a favoring by 

the U.S. government or the U.S. Geological Survey 
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1: Load all the necessary shapefiles and the descriptor                  ≥IDL Stage 

2: Using Gdal ogr2ogr convert the shapefile into database format 

3: Cleanse the data (EPSG 4269)                                                   ≥IDC Stage 

4: Create a new table with required fields and correct data types 

5: Start a new stored procedure 

6: while table exists 

7: Alter and update table 

8: Set 

9: Inner Join using geometry location 

10: Create hash table and spatial index for each table for faster join 

11: Select column from <tablename> and specify join rules     ≥ GIMP Stage 

12: Insert stored procedure for Nearest Neighbour algorithm 

13: Compute distance for each infrastructure element 

14: Compute  nearest infrastructure within threshold and store results 

15: End set 

16: Continues till all elements of SCICI are traversed 

17: End while 

18: Update table 

 Do the same for other infrastructure and create spatial results 

Figure 7. Steps for systemic geographic interdependency mapping for finding nearest 

neighbors 

 

 

 

A spatial index is a type of extended index containing data of a single spatial type (such as 

geometry or geography). In this implementation the spatial index is built using R-trees. R-

trees span a 2-dimensional space, which in this case decompose the data into a four-level 
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grid hierarchy, thereby creating the spatial index. Hence, all the data are stored in an 

overlapping grid hierarchy making it easier to query or retrieve. In this manner, a spatial 

index for each infrastructure element can be created to speed the recovery of 

interdependency information.  

A nearest neighbor algorithm is then implemented to find the nearest infrastructure 

elements to every element in the database. For example, consider bridges, the nearest 

neighbor algorithm calculates the distance from a particular bridge element to the nearest 

communication tower, electricity substation, electric grid line, dock and so forth for all 

infrastructure elements using geographic locations.  A threshold radius within which to 

perform the search is chosen based on the type of infrastructure element queried for the 

area. For example, a one kilometer radius would be reasonable for selecting the nearest 

road, electric grid line or water main, whereas ten kilometers would be more reasonable 

for electric substations, water pumping stations, docks, and so forth. With this threshold 

each infrastructure element is traversed and if an element is found it is updated in the 

corresponding table. This process of identification of elements continues until all elements 

have been traversed. 

Table 2 shows an example of the output after implementing the algorithm in Figure 7. 

The location entries give the geographic position of every bridge within the search area. 

The remaining columns identify the nearest infrastructure element (it this case, electric 

substations, docks, and communication towers) to each bridge. 
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The procedure used to map geographic interdependencies using elevation data is 

described in Figure 8. This method modifies the nearest neighbor method shown in Figure 

7 to include elevation data to determine the feasibility of a road connecting two 

infrastructure elements. 

 

Table 2. Results of finding nearest neighbor 

Location 
Nearest Electric 

Substation 
Nearest Dock 

Nearest Cell 

Tower 

0xAD1000000114E2B Substation_023 Dock_011 Cell_012 

0xAD10000001140EE Substation_023 Dock_011 Cell_023 

0xAD1000000114B48 Substation_102 Dock_023 Cell_024 

0xAD10000001142D Substation_024 Dock_023 Cell_025 

0xAD100000011497 Substation_024 Dock_023 Cell_026 

0xAD100000010404 Substation_024 Dock_056 Cell_045 

0xAD1000000114F4 Substation_051 Dock_057 Cell_028 

0xAD1000000114AC Substation_051 NULL Cell_029 

0xAD100000011404 Substation_051 Dock_052 Cell_032 

 

 

The new algorithm, referred to as an ‘approachability function’, is defined as a 

maximum slope beyond which one SCICI element cannot be reached from the other SCICI 

element in its vicinity. In essence this criterion gives insight into whether a SCICI element 

can be connected to or repaired from another.  
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1: Overlay the SCICI data from TNM and also the extracted from TNM over 

the DEM data 

2: Find elevation of each point using a 3D profile and extract the metadata                  

                                                                                                                ≥IED Stage 

3: Load all the necessary shapefiles and the descriptors                            ≥IDL Stage 

4: Using Gdal ogr2ogr convert the shapefile into database format 

5: Cleanse the data by georefrencing it, and making them into the same geometry (EPSG 

4269) 

6: Create a new table with required fields and correct data types              ≥IDC Stage 

7: Start a new stored procedure 

8: while table exists 

9: Alter and update table 

10: Set 

11: Inner Join using geometry location 

12: Create hash table and spatial index for each table for faster join 

13: Insert Stored Procedure: Algorithm 1 find nearest neighbor 

14: If neighbor found, Then check slope value 

15: If slope<300m/km checkbox YES 

16: Else Checkbox NO 

17: Else                                                                                                     ≥GIMA Stage 

18: End set 

19: Continues till all elements of SCICI are traversed 

20: End while 

21: Update table 

 Do the same for other infrastructure and create spatial results 

Figure 8. Steps for systemic geographic interdependency mapping for finding an 

approachability function 
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One straightforward illustration of this connection is whether utilities crews who need 

to reach an electric grid line for repair can access the line from a particular road segment 

after a disaster. Infrastructure elements may be in the same vicinity (proximity), but this 

does not mean that they are approachable (approachability). 

The approachability determination algorithm has four steps:  Infrastructure Elevation 

Data (IED), Infrastructure Data Loading (IDL), Infrastructure Data Cleaning (IDC), and 

Geographic Interdependency Mapping Accessibility (GIMA). Two of these, IDL (Line 3 

of Figure 8) and IDC (Line 6 of Figure 8) are similar to the method described in Figure 7. 

The IED (Line 2 of Figure 8) step is a geospatial data integration stage, where elevation 

data (derived from the NED) is overlain on SCICI location data from TNM and projected 

into the same Universal Transverse Mercator projection as the TNM orthoimagery. The 

next step is to find the elevation for each feature representing a SCICI element. A profile 

is then created by adding surface information to find the elevation change (Z-value), and 

the slopes associated with each. Once, these values are obtained, a connection is established 

in the database. The GIMA (Line 17 of Figure 8) step calculates ‘approachability function’. 

The data are loaded into the database and nearest neighbors are found to each SCICI 

element. For each neighbor that is found, its slope and elevation values are checked to 

determine if it is above a given threshold.  

Table 3 shows an example of the elevation and the slope information for a sample of 

the roads in the area under consideration. The slope is found by splitting the lines at vertices 

(starting and ending) and determining its length in kilometers (km) and creating a surface 

profile to find the Z-value (elevation change in meters, m). The slope then will be recorded 

in m/km.    
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Table 4 gives example results of the method when the approachability function is 

implemented showing how the interdependencies can be mapped. In this table, the 

Approachable column is a binary which shows ‘Yes’ if the element of infrastructure is 

approachable from that particular road, which means it satisfies that criteria for the slope 

threshold, and it shows ‘No’ if the element does not satisfy the slope threshold criteria. The 

maximum slope threshold for an interstate road in the United States should not exceed 8% 

grade (about 80m/km, Aashto, 2001) irrespective of the speed limit. Since, this research 

looks at all the different types of roads (interstates, US highway, State Routes) the slope 

threshold value is set higher at 30% grade (about 300 m/km) which is closer to the 

maximum slope of a known road in the United States (370m/km, Aashto, 2001). To 

calculate the ‘approachability function’ the horizontal distance from the nearest road to a 

particular SCICI element is found. Then, the  value (elevation change) is used to calculate 

the slope from the road to the SCICI element, and if this slope is less than 300m/km 

(threshold value), then the SCICI elements is deemed approachable from that road. The 

‘location’ column in the table gives the location of the roads in the area under 

consideration. The nearest electric substation (‘Nearest_ESub’), nearest Dock 

(‘Nearest_Dock’), and the nearest communication tower (‘Nearest_CellT’) are calculated 

for each road and a snippet is shown Table 4. 

The methods developed and proposed here are robust and flexible. This is an important 

result because different terrains, features and modes of disaster will require different types 

of interdependency modeling.  
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Table 3. Elevation and Slope data for Road infrastructure of SCICI 

Road Type Length 

(km) 

Z Value 

(m) 

Slope 

(m/km) 

US ROUTE_32 3.65 195.57 53.6 

STATE 

ROUTE_21 

36.00 210.07 5.8 

INTERSTATE_23 0.70 212.28 303.3 

STATE 

ROUTE_038 

0.58 234.04 403.5 

INTERSTATE_23 2.43 641.73 263.9 

STATE 

ROUTE_12 

3.78 175.31 46.4 

 

 

 

Table 4. Example Results of applying ‘approachability function’ 

Location 

Nearest 

Substati

on 

Approac

h-able 

Nearest 

Dock 

Approacha

ble 

Cell 

Tower 

Approacha

ble 

114E2BC

FE8B8F5 
Sub_023 Yes Dock_011 Yes 

Cell_01

2 
Yes 

1140EED

38156C5 
Sub_023 Yes Dock_011 Yes 

Cell_02

3 
Yes 

114B484

20F0E75 
Sub_102 Yes Dock_023 Yes 

Cell_02

4 
Yes 
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Table 4. Example Results of applying ‘approachability function’ (cont.) 

1142D5E

7836965 
Sub_024 Yes Dock_023 Yes 

Cell_02

5 
Yes 

114973E

5D282E5 
Sub_024 Yes Dock_023 Yes 

Cell_02

6 
No 

10404000

000ECC 
Sub_024 Yes Dock_056 Yes 

Cell_04

5 
No 

114F44D

E0F2805 
Sub_051 Yes Dock_057 Yes 

Cell_02

8 
No 

114ACB

E1D6096

5 

Sub_051 Yes NULL No 
Cell_02

9 
No 

1140484

A684995 
Sub_051 Yes Dock_052 No 

Cell_03

2 
No 

1149C98

112BC85 
NULL Yes Dock_006 No 

Cell_03

1 
Yes 

 

 

 

8. Conclusion and Future Works 

There are two major findings of this research. This work shows that there is sufficient data 

publically available to create a near real-world modeling scenario for infrastructure 

elements. Some limitations exist, such as the static nature of the geospatial data and the 

amount of estimation required while interpreting transportation data. Understanding these 

bounds, the results of this research show that there is sufficient data available in public 
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domain to create a model with sufficient complexity to assist with decision making with 

periodic updates as infrastructure changes. 

 The second finding of this research is the demonstration of methods for 

interdependency mapping. This research focuses on geographic interdependency, but 

similar types of algorithm can be implemented to determine other types of interdependency 

(physical, cyber, and logical). Integrating geospatial data with freight flow and 

infrastructure, and combining these with restoration and hazard data is a complex task. This 

complexity arises mainly due to the interdependent nature of infrastructure systems. Most 

of the modeling techniques previously studied have either ignored the interdependent 

nature of critical infrastructure and have looked at only one infrastructure, or have assumed 

that the use of synthetic data can mimic real-world scenarios sufficiently, which is not the 

case.  

The modeling technique presented here utilizes data provided by The National Map 

(orthoimagery, elevation etc.) to identify the location of the SCICI, find the proximity 

between them, and also develop an approachability function. The spatial information is 

used to identify relationships that exist between the elements of SCICI; this paves the way 

to understand the complex nature of these systems. Mapping and understanding geographic 

interdependency is essential when trying to model real-world scenarios. 

 This research is an important step in understanding the restoration of critical 

infrastructure after damage due to natural or man-made disaster. Protecting critical 

infrastructures remains a difficult and an open problem, made more complex as there is not 

a clear understanding of the interdependencies that exists among the infrastructures. Better 

understanding of these interdependencies will lead to a heuristic for the restoration process.  
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 The advantage of this methodology is that it is scalable, and flexible, i.e. the same 

model can be used for different regions and different infrastructure elements if the data are 

available. The methodology proposed in this work contributes to the literature by its 

explicit combination of modeling infrastructure elements using real data and mapping 

interdependencies between them. Previous research considers a synthetic area, only looks 

at a particular infrastructure, or does not provide a comprehensive framework to model and 

map the interdependencies. 

 The next step in this research will address limitations of the research with respect to 

the data. Future work will increase the level of detail and robustness of the data. LiDAR 

and elevation data can be used to better approximate real-world scenarios. The use of GPS 

data alone can create problems when looking at something that is not at the same height. 

Moreover, the use of semantic ontology should aid with the integration of data. The current 

data are from different sources in different formats. Semantics will greatly help with 

understanding the data and finding trends within the data. Because of the size and variety 

of the data, future work will also consider reducing the computing time. The 29 size block 

area that was considered for this research required more than 7 Tb of data to describe it 

properly. Big-data analytics and parallel processing techniques will likely prove useful in 

the development of required datasets and usable restoration tools. 
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III. Post Disaster Supply Chain Interdependent Critical Infrastructure System 

Restoration Modeling: A Review of the Necessary Data 

 

 

1. Abstract 

The majority of restoration strategies in the wake of large-scale disasters have focused on 

short-term emergency response solutions. Few consider medium- to long-term restoration 

strategies to reconnect urban areas to national supply chain interdependent critical 

infrastructure systems (SCICI). These SCICI promote the effective flow of goods, 

services, and information vital to the economic vitality of an urban environment. To re-

establish the connectivity between the different SCICI, relationships between these 

systems must be identified, formulated, and added to a common framework to form a 

system-level restoration plan. The aim of this paper is to review the data required for 

model construction, its accessibility, and integration. A review of publically available 

data reveals a paramount need for real-time data and information to assist urban planners 

with recovery following an extreme event. A particular SCICI (transportation) is used to 

highlight the interdependencies and challenges of creating models capable of describing 

the complexity of an urban environment. Integrating geospatial data derived from public 

domain sources such as The National Map of the U.S. Geological Survey (USGS) with 

supply chain data allows for the creation of more accurate models of urban center 

transportation networks. This review indicates that geospatial infrastructure data are the 

most abundant of these data. While much of it can be acquired through public sources, an 

effort is required to gather, develop, and integrate data from multiple sources to build a 

complete model. Therefore, continued availability of high quality, public information is 

essential. 
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Critical infrastructure are the assets, systems, and networks, whether physical or 

virtual, so vital to the United States that their incapacitation or destruction would 

have a  debilitating effect on security, national economic security, national public 

health or safety, or any combination thereof  (DHS, 2014).  

A supply chain interdependent critical infrastructure system (SCICI) is composed of many 

systems, including but not limited to: transportation, power, communications, and water, 

which are interdisciplinary in nature. In addition, these SCICI exhibit complex 

interdependencies that must be captured to create models that are representative of the true 

system conditions.  

Effective modeling of critical infrastructure restoration must incorporate ideas and 

tools from a wide spectrum of research areas including: simulation-based optimization, 

structural engineering, human behavior modeling, geographic information systems (GIS), 

and supply chain management. In general, recent disaster management studies use either a 

qualitative (Carlson & Doyle, 1999; Haimes 2005; Amin & Wollenberg, 2005) or 

quantitative methodology (MacKenzie et al., 2014; Adams & Stewart, 2014). These efforts 

fail to capture full system complexity by not combining qualitative and quantitative 

methodologies and ignoring the interdependencies that lead to emergent behaviors. In 

addition, the majority of restoration strategies in the wake of large-scale disasters have 

focused on short-term emergency rescue and recovery methodologies (Holguín -Veras and 

Jaller, 2011; Hale and Moberg, 2005; Widener and Horner, 2011). Few consider medium- 

to long-term restoration strategies that reconnect urban areas to the national SCICI. The 

medium- to long-term restoration of these systems requires longer time lines and larger 
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financial investments than short-term emergency response, and so a methodology specific 

for these phases is necessary.  

A survey paper by Altay and Green (2006) found that of 110 articles relating to 

disaster operations management research, 43.6% relate to the mitigation phase, 21.8% 

focus on preparedness, 23.6% relate to response, and only 10.9% are related to recovery 

(12 articles). Further, most previous studies focus only on a single aspect of one system 

within the SCICI (Shinozuka et al., 2007; Ouyang and Dueñas-Osorio, 2011; Rosato et al., 

2008), or on emergency response processes (Bruneau et al., 2006; Vugrin et al., 2010; Reed 

et al., 2010).  A review of disaster recovery studies categorized by disaster management 

lifecycle do not build a comprehensive framework that identifies the data required to build 

such a model but assume that the data is available (Altay and Green, 2006; Kondaveti and 

Ganz, 2009; Feng and Weng, 2005; Miller-Hooks et al., 2012). Operations research-style 

quantitative research typically focuses on game theory or inventory/sourcing models 

(MacKenzie, et al., 2014). 

To map restoration strategies of the SCICI in the aftermath of a disaster one must 

first build a comprehensive framework that realistically models the SCICI in a normal 

environment. This requires a large amount of data be integrated across many disciplines. 

One tool that is useful for this research is geographic information systems (GIS) 

technology.  GIS can be used to examine the interdependency among critical infrastructure 

systems (Sinton, 1992) or depict geographic correlations within critical infrastructure 

elements (Burrough, 1990; Goodchild and Haining 2004; Greene, 2002). But a multi-

dimensional approach to this modeling has yet to be considered (Mitchell, 2005; Zeiler, 

2010; Openshaw, 1994). 
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 Models required for planning the restoration of SCICI systems must capture real-

world complexities and use real-time data to be useful to decision-makers. Geospatial data 

plays a key role in SCICI restoration; thus, there exists the need to understand accessibility 

issues and inherent uncertainties associated with such data. While Federal, state, and local 

entities routinely use GIS technology with subsets of SCICI data in disaster planning 

activities, using these data to map infrastructure elements, their interdependencies, and 

their restoration in the aftermath of an extreme event has seldom been done (Fletcher, 

2002). As an important first step, this article documents the use of publically available data 

for the creation of complex SCICI models. 

3. Method 

The emphasis in modeling critical infrastructure systems has been on developing 

methodologies and algorithms, rather than on incorporating real-world data. Most studies 

have taken a one-dimensional approach wherein it is either assumed that the required data 

is hypothetically complete and available, or synthetic data is generated for analyses when 

needed. It is difficult to understand all the complex interactions that exist between 

infrastructure elements and systems based on such approaches. In this study, the 

transportation infrastructure system within SCICI is used as an example to illustrate its 

complex interactions with other SCICI systems and categorize, integrate, and analyze the 

data required to properly model this system. The transportation (logistics) infrastructure 

system presented here includes the transport mode (road, rail, air, and water) infrastructure, 

the freight that is moved through these modes, and the storage of that freight. 

 As with any system that forms a component of the larger SCICI system, a model of 

this component system must be created with the understanding that it be integrated into a 
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larger SCICI modeling framework. The construction of a restoration model of any element 

of SCICI damaged due to a large-scale disaster can be divided into five work-flow phases: 

acquisition and integration of data, SCICI system modeling, SCICI interdependency 

determinations, hazard damage simulation, and restoration modeling. A work-flow 

diagram for the transportation infrastructure system is shown in Figure 1. Each phase 

requires different types of input data, typically in diverse formats (including non-digital 

formats) and stored in different databases on different computers.  While this presents a 

challenge to the modeling effort, the identification and integration of these data are 

essential for creating realistic SCICI system models. 

The acquisition and integration of data phase incorporates all data necessary to 

make a realistic model of the pre-disaster SCICI system for the region under consideration.  

For the transportation infrastructure system this would consist of: (1) freight data - 

storage/distribution facilities data, modes of transport and their capacity, and flow data, 

and (2) infrastructure data - with respect to the capacity the infrastructure can sustain and 

the location of each infrastructure element. Typically these data are not readily available 

in digital databases, may be proprietary, and/or come from multiple sources, making its 

integration daunting. 

The SCICI system modeling phase combines the data from the previous phase to 

construct a model of the SCICI system and how it operates to perform the tasks necessary 

to accomplish the overall SCICI goals. The transportation infrastructure system model 

incorporates the freight data, system capacities, and the available transportation network 

from the acquisition and how it works together to move goods throughout the region being 

considered. 
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.

 

Figure 1. Schematic work flow pattern for transportation infrastructure system restoration 

modeling. 

 

 

 

In the SCICI interdependency determinations phase, the interdependencies are 

mapped between SCICI systems both internally and to the external regional, national, and 

global supply chain elements.  This is crucial to any restoration efforts.  Through these 

interdependencies it becomes possible to detect critical points of failure that can cause a 

cascade effect damaging many elements upon the failure of a single element. 

The hazard damage simulation phase gathers information related to the critical 

points and determines how potential hazards might affect these weak points in the SCICI. 

This allows for the testing of restoration modeling before the onset of a large-scale disaster.  

In the event of a disaster, the actual damage itself would be the input data for the restoration 

optimization model rather than simulated damage. 
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Finally in the restoration modeling phase scheduling and work flows are created to 

return the SCICI system back to the pre-event capabilities. Optimization techniques are 

applied here to develop plans that allows for the reassembly of the transportation system 

in a relatively efficient manner. In the case of the transportation system at hand, this would 

involve both reconnecting the transportation modes and restoring the capacity of those 

connections to pre-event levels. 

After identifying the data required to model the SCICI systems it is necessary to 

acquire these data. Given the amount of data that must be collected there are several 

challenges. Table 1 shows data requirements for mapping the transportation system of 

SCICI and also identifies several difficulties in acquiring these data. Transportation is 

restricted to the transportation of physical goods (as opposed to information, services, 

electricity, or the like).  This is accomplished through one or more modes of transportation 

(air, rail, pipeline, water, or road). Hence, the data required for these different 

transportation modes include, but is not limited to: capacity, location, and freight 

forwarding capabilities. Further, much of the data required to model the transportation of 

goods is owned by private companies who are generally unwilling to share such 

information. As a result, acquiring the necessary datasets or resources can be time-

consuming and introduce many uncertainties. To account for this, no proprietary data is 

represented in the following discussion of the different data types. 
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Table 1. Data Requirements for Transportation Sector (modified from Long et al., 2013) 

Category Data Description 
Data 

Type 

Ownershi

p 
Data Challenges 

Freight Data 

Commodity 

Freight 
Food, Paper, Wine, etc. Tons Public 

Static data; 

Generalized 

data; 

Proprietary data 

Manufacture

d Goods 

Electronics, Machinery, 

Textiles, etc. 
Tons 

Private/ 

Public 

Raw 

Materials 

Coal, Iron Ore, Bauxite, 

etc. 
Tons 

Private/ 

Public 

Freight Flow Data 

Road 

Transport 

Goods transported over 

roads 
Tons 

Private/ 

Public 

Inconsistency 

Estimation 

required 

Public/Private 

ownership 

Rail 

Transport 
Goods transported on rail Tons Private 

Air 

Transport 
Goods transported by air Tons Private 

Water 

Transport 

Goods transported by 

water 
Tons 

Private/ 

Public 

Pipeline 

Transport 

Goods transported through 

pipeline 
Tons 

Private/ 

Public 

Infrastructure Capacity Data 

Road-Hub 
Bulk, General Cargo, 

Containers, etc. 
Tons Private Varied amount 

of data needed 

Different 

capabilities of 

hubs 

Interdependency 

of data 

Rail-Hub 
Bulk, Intermodal, 

Shunting, etc. 
Tons Private 

Water-Hub 
Rail Car Storage, Dry 

Storage, Liquid Storage 

Tons/ 

Bushels 
Private 

Infrastructure Location Data (Geospatial Data) 
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Table 1. Data Requirements for Transportation Sector (modified from Long et al., 2013) 

(cont.) 

Hub Location Number of hubs in the area Number Private 

Ever changing 

data; 

Use of Software; 

Static data 

Utility 

Location 

Location of all utilities that 

aid freight flow 
Number 

Private/ 

Public 

Road/ Bridge 

Location 

Location of all roads and 

bridges 
Number Public 

Airport 

Location 
Location of air infrastructure Number Private 

Pipeline 

Location 

Location of pipelines and 

pumping stations 
Number Private 

River 

Location 

Location of docks and 

storage areas 
Number Private 

Rail Location 
Location of all rail 

infrastructure 
Number Private 

Restoration Data 

Number of 

People 

Number of people need and 

available 
Number 

Private/ 

Public 

Different temporal 

factors 

Vast amount of 

data 

Scalability 

Ownership of data 

Travel Time 
Time required for teams to 

arrive in area 

Hours/ 

Days 

Private/ 

Public 

Skill Set 
Skills necessary for each 

repair job 

Qualitativ

e 

Private/ 

Public 

Mode 

Substitution 

Mode substitutions 

facilitating freight flow 
Mode 

Private/ 

Public 

Task 

Management 

Assignment and management 

of repair tasks 

Qualitativ

e 

Private/ 

Public 

Equipment 

Necessary 

Materials  require for 

restoration 

Tons/ 

Pieces 

Private/ 

Public 

Hazard Risk and Vulnerability Data 
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Table 1. Data Requirements for Transportation Sector (modified from Long et al., 2013) 

(cont.) 

Historic Data Previous hazards that have 

caused damage 

Text Private/ 

Public 
Inconsistency 

Generalized data 

Proprietary data 

Fragility Data Vulnerability of element to 

hazard 

Percentag

e 

Public 

Damage 

Estimation 

Severity and extent of 

damage from simulation 

Percentag

e 

Public 

 

 

a. Fright/Freight Flow Data 

Freight data include information about commodities shipped, their weight, manufactured 

goods versus raw materials, and the value of materials that are transported. In addition, the 

mode of transportation (rail, road, air, water, or pipeline) used to ship the goods and the 

holding capacities of each mode for a given area are included in this data. Freight flow data 

are typically measured in tons of goods transported and recorded as tons/commodity/mode 

by the National Transportation Atlas (NTAD, 2010). The primary source for freight data 

is the Commodity Flow Survey (CFS) of 2013 (U.S. Census Bureau, 2013). It is a public 

database that contains information on domestic interstate freight. Data are fed into this 

database through a variety of sources, but the primary problem with these data is their 

resolution and completeness (LeBeau, 2006). Data gaps can, in part, be removed by 

estimating values for a commodity using a gravity model of spatial interactions, which can 

be used as a method for determining facility locations (Holguin-Veras and Jaller, 2011; 

Nan Liu and Vilain, 2004). Origins, destinations, and modes also require estimation due to 

the gaps in freight data. In general, these data provide enough information to form estimates 

for missing data (Transportation Research Board, 2003). More accurate data likely exists, 
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but it is proprietary in nature.  Since most freight transportation companies are privately 

owned; the modes used, commodities shipped, routing (including transshipment facilities), 

and tonnage are either under-reported or the data is not available to the public. In these 

cases it is necessary to estimate the missing data based on the publically available data. 

The data regarding commodities passing through a state are generally available, and from 

this information the flow of commodities through a particular area can be estimated. The 

tonnage transported can be a major factor in assigning priorities within restoration models 

(e.g. the greater the tonnage transported, the higher the priority that mode of transport has 

during the restoration process).  

 

b. Transportation Infrastructure Capacity Data 

Infrastructure capacity data incorporates holding capacities of infrastructure facilities that 

aid freight flow such as cargo hubs. When considering hubs that store goods and 

commodities, the multimodal nature of modern cargo transportation systems is important. 

Goods may arrive by river or sea, be stored in a water-hub, be picked up by a truck and 

subsequently stored in a road-hub. There are four main types of hubs considered here: 

Water-hubs, Rail-hubs, Road-hubs, and Air-hubs. 1) Water-Hubs form the largest and most 

diversified hubs in the transportation system. They facilitate transportation services for 

many types of products via barge or ship.  They are also multimodal hubs that act as transfer 

points for many types of products from water modes to other modes such as rail, pipeline, 

air, or truck. An inherent problem with the data associated with water-hubs is that a variety 

of information unique to that hub is needed.  2) Rail-Hubs are most commonly rail freight 

yards.  These hubs require a great deal of space for multiple tracks and are therefore most 

likely to be located on greenfield sites within or near major industrial zones. Rail-hubs 
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generally have very large holding capacities and also act a multimodal hub.  3) Road-Hubs 

usually store freight which is very diverse and bulky. They also act as multimodal hubs, 

shipping and receiving goods from road, rail, air, and water. Road-hubs are generally 

located just off major interstates to reduce transportation time. 4) Air-Hubs are typically 

located at airports connected to major road networks which allows for the rapid flow of 

people or cargo.  These constitute the smallest hub connection due to the relatively high 

costs involved with air transport. 

The data required for these hubs include freight handling data (what equipment is 

required for loading), information about the facilities required to accommodate ships, 

trucks and trains (berths, loading bays and freight yards respectively), total capacity data 

according to type of goods they can store (cold storage, hot storage, hazardous material 

etc.), and freight flow. Most of the transportation data for road and rail is obtained from 

National Transportation Atlas Database (NTAD, 2010) or the CFS of the U.S. Census 

Bureau (2013) which is a public resource.  

 

c. Geospatial Data 

Geospatial datasets contains the location information associated with various types of data 

and as such forms the base into which other data are integrated. The geospatial data include 

the locations of hubs, warehouses, utilities, infrastructure, and all other objects or materials 

that could be damaged and in need of repair or replacement from the impact of a large-

scale disaster. Most of these data are available or can be derived from geospatial-centered 

websites like The National Map (TNM) of the U.S. Geological Survey. A shortfall of these 

data is their static nature. Most geospatial data are updated yearly or over the course of 

several years, so as new warehouses and hubs are built, the geospatial data will not convey 
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these new sites until the next update cycle. Also, the extraction of these data from such 

geospatially located sources as orthoimagery can be quite time consuming and require 

specialized personnel for the process. The advantage of these data is their free availability, 

large area coverage, and accurate overview of ground features. Figure 2 illustrates some 

SCICI element examples for the St. Louis, Missouri region. 

 

 

 

Figure 2 Orthoimagery, hydrography (National Hydrography Dataset, NHD) and rail data 

for St. Louis, Missouri region from The National Map of the U.S. Geological Survey. 

Road data is from the Missouri Department of Transportation. Data from the U.S. 

Geological Survey and the Missouri Department of Transportation are in the public 

domain and freely available for download. Other elements (communications, electric 

power) are derived from the public domain orthoimagery. 
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d. Restoration Data 

Restoration data are records containing information on rebuilding or recovery activity 

rates. These data include the number of skilled workers available for restoration activities, 

raw material stockpiles, necessary equipment accessibility, the time required for teams to 

assemble within a given area, and collaborations between invested agencies: federal, state, 

and local. These data come, in part, from personal interviews with people experienced in 

disaster reconstruction and from published agency reports on restoration activities. 

Typically these data are not available in electronic format and, for the most part, integrating 

these can be time consuming. Much of these data are specific to the type of disaster 

experienced. Nevertheless, elements are often generalizable and can be used in developing 

restoration estimates for most damage estimates.  

 

e. Hazard Data 

The damage experienced by the transportation sector will, of course, depend on such 

variables as the type of disaster, its severity, duration, the vulnerability of the infrastructure, 

and the like.  The actual damage experienced must ultimately be input data into any 

reconstruction optimization model, nevertheless, for the purpose of testing such a model a 

damage estimate can be simulated.  Such a simulation requires hazard risk evaluation data 

as well as SCICI survivability estimates.  Much progress with such simulations has already 

been made by FEMA (2003) and can be accessed in the HAZUS-MH software which 

provides simulations of some network vulnerabilities to different hazards 

 

f. Role of GIS in Data Acquisition and Integration 

GIS offers tools that make the acquisition and integration of SCICI system data more 

tractable.  Data layers from The National Map of the U.S. Geological Survey include 
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orthoimagery, elevation, hydrography, transportation, place names, and land cover, and 

can be downloaded directly into a GIS database (Sugarbaker and Carswell, 2011).  The 

orthoimagery serves as an excellent, if rather memory-extensive, base map from which to 

hang existing data sets and to extract further SCICI data.  The orthoimagery projection is 

used as the default coordinate system into which all other data will be projected.  Anything 

that is visible in the orthoimagery can be extracted by digitization as new SCICI data 

features (e.g., the locations of culverts, cell towers, electric power lines, bridges, pumping 

stations, etc.).  Further analyses of the orthoimagery also provide the ability to estimate 

capacity of these infrastructure elements as well (e.g., number of road lanes, number of rail 

tracks, dock lengths, electric line voltages, etc.). In addition, many local and regional 

government agencies (state departments of transportation, state departments of commerce, 

city utility districts, etc.) have data that can be integrated into a GIS database.  To create 

the transportation system network, GIS is used to represent real-world features that are 

populated by discrete identifiable objects to build network analysis models based on graph 

theory representing transportation elements as vertices and edges. 

g. SCICI Interdependencies 

One of the main characteristics of SCICI elements is the multiplicity of interdependencies 

between them.  For example, a water pumping station, in order to function, requires 

electricity to run the pumps, communication to control how much water needs moved, 

water lines through which the water will move, and roads to access the station.  In any 

attempt to return functionality to a pumping station after a large-scale disaster, it is 

necessary to know the local interdependencies such as which electrical lines ran into the 

power station, what roads access it, what cell tower communicates with it, and through 

which lines water moves into and out of the station. Less obvious, but equally important, 
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it is necessary to understand that these connected elements are interdependent on far field 

elements such as which power station feeds electricity to the sector of the pumping station, 

which substations transform the power into usable voltages, what communication path 

moves from the controller to the pumping station, what bridges are available to move 

material and manpower to the pumping station for repair, where are there any damaged 

water lines between this pumping station and those before and after it.  The main 

contribution in the acquisition of all these data and their integration into a GIS is the 

ultimate ability to map out these interdependencies through the SCICI model. 

 

4. Results 

The modeling techniques presented here make use of the high resolution imagery provided 

by The National Map to identify both the location of system elements and their proximity 

to one another.  This spatial information identifies the interfaces between the systems and 

captures the interrelationships that give rise to complex responses. The interrelationships 

are driven by the system specific information, in the case of the transportation 

infrastructure system this is the freight and infrastructure data. 

In order to test the efficacy of the integration of these data into the proposed 

modeling techniques, the St. Louis, Missouri metropolitan region was chosen as a test area.  

This area is covered by 2268 orthoimagery tiles from The National Map with cell-lengths 

ranging from 0.15 m to 0.6 m.  These tiles constitute the base map onto which other data 

layers are projected.   
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Considerable transportation data (particularly roads and rail lines) are available from state 

(in this case, Missouri and Illinois) departments of transportation.   Much of the rest of the 

data is extracted from orthoimagery by heads-up digitization or other sources as shown in 

Table 2. 

 

 

Table 2. Data acquired and integrated for SCICI modeling for St. Louis metro area. 

Title Description Source Restrictions 
Data 

Processing 

Geospatial Data 

Several layers of TNM 

data serve as the base to 

all data integration 

processes: 

orthoimagery, elevation, 

hydrograph, place-

names and land use 

The National Map 

of the U.S. 

Geological 

Survey 

Open 

access/public 

data 

None 

Infrastructure 

Data 

Infrastructure data such 

as airports, electric grid, 

bridges, overpasses, 

tunnels, culverts, dams, 

docks, pumping 

stations… 

Extrapolate from 

The National Map 

Open 

access/public 

data 

Digitization 

Transportation 

Data 
Road and rail lines 

State departments 

of transportation 

Varies from 

state to state 

Re-projection 

to desired 

coordinates 

Communication 

Data 
Cell Towers 

Federal 

Communications 

Commission 

Open 

access/public 

data 

Re-projection 

to desired 

coordinates 
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Table 2. Data acquired and integrated for SCICI modeling for St. Louis metro area (cont.) 

Supply Chain 

Data 

Rates of flow of 

commodities 

U.S. Department 

of Commerce and 

Private Industry 

sources 

Public/Private 

Integration 

with 

geospatial 

data 

Restoration Data 

Rate and manner in 

which supply chain 

elements are repaired 

after a large-scale 

disaster 

Federal, State and 

Local 

Governments 

Open 

access/public 

data 

Integration 

with 

geospatial 

data 

Hazard Data 

The nature of 

destruction of specific 

supply chain elements by 

any large-scale disaster 

Federal, State and 

Local 

Governments 

Open 

access/public 

data 

Integration 

with 

geospatial 

data 

 

 

 

 

Many of the features that need to be digitized have a three-dimensional structure 

(e.g. cell tower, electric poles, etc.). To reduce the effects of parallax, features extracted 

from the orthoimagery are preferentially digitized at their base (for example, where a pole 

and its shadow meet). It should be noted, however, that since these data are extracted from 

the orthoimagery, only elements that are visible from the air can be digitized.  Some 

elements (such as sewer lines and water mains) can be interpolated based on surface 

features in high-resolution orthoimagery (man-hole covers or fire hydrants), whereas 
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others (buried telephone lines, electric lines and fiber optic cable, and gas mains) are best 

obtained from other sources which are often more difficult to obtain. In addition, where 

high resolution imagery is not available (typically outside of urban settings) the level of 

detail would correspondingly decrease. 

In spite of the being relatively few SCICI databases available to the general public 

that can be used for realistic models of disaster restoration, a considerable amount of 

infrastructure data can be gleaned from public sources, as shown in Figure 3 for South St. 

Louis, Missouri. This indicates that a large amount of data applicable to SCICI systems is 

available from public datasets alone.  To date, 640 Gigabytes of data have been acquired 

for review. While this is rather large for real-time processing and model manipulation, the 

size of the data needed to describe actual infrastructure elements such as bridges, culverts, 

road networks, electric grid, communication networks, dams, locks, rail networks, water 

facilities and docks for the St. Louis metroplex is less than 100 Megabytes. This presents 

a complicated tangle of infrastructure elements, but with preprocessing it can now be fit 

into a model that will begin to piece together the interdependencies of the SCICI which is 

crucial to their restoration in the wake of a large scale disaster. 

However, even with this rich source of SCICI data, severe limitations still remain.  

One of these is that orthoimagery data must, by its very nature, be considered a static data 

source.  It is a picture of the SCICI environment at the time of the flyovers, and these are 

not updated until the next flight cycle occurs which is generally between 3 to 5 years.  

Changes made to SCICI between data cycles cannot be incorporated into the model by this 

method.   
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Figure 3 SCICI elements for a section of southern St. Louis, Missouri.  Upper left map 

shows infrastructure in the St. Louis metropolitan area, inset black box shows the 

expanded area in the larger low right box. 

 

 

 

Also, at least in regards to the SCICI data derived from orthoimagery, only what 

can be seen from the air can be acquired.  As discussed earlier very little information is 

available from orthoimagery on pipelines, buried electrical wiring, water mains (although 

these can be tracked by fire hydrants), fiber optic cable or gas lines.  These must be acquired 

from other sources not all of which lies in the public domain.  Further, the labor intensive 

digitization on such a massive scale introduces many human errors into the data including 

features that are missed, erroneously added, misinterpreted, or digitized inaccurately.  

While this is potentially serious in individual cases, the sheer quantity of the data should 
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permit the proper interdependencies to emerge; which is the ultimate objective.  Again like 

the damage assessment simulation, the input of the infrastructure, once the techniques for 

mapping of the interdependencies is complete, will be input by individual communities.  

As electrical grids, water distribution systems, gas lines, etc., become more ‘smart’, (Amin 

and Wollenberg, 2005; Gao et al., 2012; Gungor et al., 2011) data can be fed directly into 

the model from sensors, giving a dynamic, real-time dimension to the analysis. 

 

5. Conclusion and Future Work 

Integrating hazard, human intervention, restoration, geospatial, freight flow, and 

infrastructure data for each SCICI element helps create a complex model of SCICI. This 

complexity arises not from the data itself, but in the interaction of SCICI processes which 

these data map (for example, an electric pole is not complex, but what happens to a water 

pumping station, a warehouse refrigeration unit, and several traffic lights if that pole were 

to be destroyed can lead to complexity). While separately these processes are complicated, 

in essence it is their interaction and interdependence that generates nonlinear behavior 

(complexity). However, all SCICI elements have a common property: they all have 

complex components which interact with each other. The larger the scale of the SCICI, the 

more complex its systems, and the more it starts to display unexpected and nonlinear 

behavior.  It is this behavior that can lead to cascading failures throughout many of the 

SCICI elements when a single unit fails.  A major goal for modeling and optimization 

techniques is to see such failures in the system and rapidly repair and even improve 

complex infrastructure. 
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This research addresses a gap that exists in literature associated with the acquisition 

and integration of the different types of data which must be brought together in order to 

build complex and robust models of supply chain systems. Geospatial infrastructure data 

is the most abundant of these data, and while much of it is acquirable through public 

sources, a serious effort is required to gather, develop and integrate these data.  Continued 

availability of public geospatial data is of paramount importance because no single utility 

or private firm has access to the various sources of data necessary to model supply chains 

that feed their own function.  Further, much of the modeling is done in academic 

communities outside government circles which preclude access to restricted or classified 

data. 

The bulk of the freight flow transportation data are proprietary, this requires that 

reasonable assumptions be made regarding data that are not accessible. Nevertheless, this 

research suggests that there is sufficient data available in public domain to create a realistic 

model of the transportation system, and that this model is scalable to the other elements of 

SCICI. 

Future work will increase the quantity and diversity of real-world data to expand 

through the other SCICI elements.  Mapping the interdependency between SCICI elements 

is essential to the construction of Supply Chain modelling. These interdependencies are 

important due to the complexity of the systems.   Further, sophisticated modelling and 

optimization techniques need to be created to explore the efficiency of restoration schema.   

 The next step in this research is to increase the level of detail and robustness of 

the data used in this research so far. LiDAR, and elevation data can be used to get further 

close to real-world. Only using GPS data can create problems when looking at something 
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which is not on the same height. Or, the extrapolating and identifying underground pipes 

is extremely difficult with the data that is available right now. Making use of semantics 

and ontology is another step forward as this will help with the integration of data. Since, 

the data right now comes from different sources and is not available in the same format 

semantics can play a huge role in understanding the data and finding trends within the 

data, which will be beneficial when looking at mapping interdependencies. Since, this 

research involves working with large, and varied amount of data, there is also a need to 

look at reducing the computing time. The 29 size block area that was considered in this 

research needed more than 7 Tb of data, and this will only increase as the research 

becomes more robust, hence there is a need to look at big-data analytics and parallel 

processing techniques. 
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SECTION 

2. CONCLUSION AND FUTURE WORKS 

This research discussed a systems based methodology for modeling supply chain 

interdependent critical infrastructure systems and mapping the interdependencies that 

exists among the infrastructure. The process considers the different types of data required 

to model the SCICI elements (transportation, water, power, communication) and uses 

publically available data to create the model as close to real-time as possible. The 

research identifies problems with the data, but proves that with the data that is available 

publically it is possible to model the infrastructure. To map the interdependencies 

between infrastructures an agent based model is used where agents interact with each 

other first haphazardly and from this emergent behaviors emerge that help in mapping 

interdependency. A test case is developed for the St. Louis metro region, where data is 

obtained, and analyzed to model the infrastructure of that area. Then, all of this data 

integrated and geographic and physical interdependencies is mapped.  

 The advantage of this methodology is that it is scalable, and flexible i.e. the same 

model can be used for different regions and different infrastructure elements if the data is 

available. It can work as a plug-and-play model where the end-user plugs in data and the 

interdependencies are mapped, and this can be used when dealing with restoration after 

damage to infrastructure due to natural or man-made events. The methodology proposed 

in this work contributes to the literature by its explicit combination of modeling 

infrastructure elements using real data and mapping interdependencies between them.  

The disruption of SCICI on a metropolitan scale drastically impacts economic 

stability on a regional, national, and international scale. Without a comprehensive, data-
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driven model of SCICI, communities cannot re-establish the level of vibrant connectivity 

required for a timely restoration of goods and services. Results from this work will 

establish a decision framework capable of optimizing disaster restoration. The research 

presented here evaluates several key components in the complex and complicated 

problem of supply chain network restoration in the aftermath of large-scale disasters. 

There were three main areas of research when looking to develop a methodology that can 

be utilized to look at restoration after an extreme event. The first is to develop a 

framework that can be used to model critical infrastructure.  This was achieved using an 

interdisciplinary approach to develop a comprehensive framework for resiliency 

modeling. The approach includes: graph theory, geospatial data, supply chain assessment, 

and hazards risk analysis, as well as the integration of these diverse data sets. The second 

area of focus was to understand and acquire the data required for this research. A review 

of publically available data revealed a paramount need for real-time data and information 

to assist urban planners with recovery following an extreme event. The third area of focus 

was the integration and system interdependency mapping of dozens of diverse, 

complicated and heterogeneous data sets. The simulation-optimization models will be of 

a general-purpose nature and the main paradigms that will result from this research will 

be useful for modeling any post-disaster environment. These models have key broader 

impacts in terms of the influence on society and public policy.  

The other important contribution of this research is the interdependency mapping. 

This is extremely essential when looking at cascading failure or damage, and also when 

looking at restoration after damage. Modeling this can be done at different levels of 

abstraction from high level to detailed level as well as on a physical, logical, or cyber 
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level. Depending on the type of results this will vary. Most of the research currently 

available does not consider multiple infrastructures, and this is an extremely important 

aspect when looking at restoring an urban environment. 

 This research is another step towards looking at restoration of critical 

infrastructure after damage due to natural or man-made disaster. Protecting critical 

infrastructures remains a difficult and an open problem, especially due to there not being 

a clear understanding of the complex interdependencies that exists among the 

infrastructures. Once, that has been studied a heuristic can be developed to look at the 

restoration process, and putting the urban area back on the grid or getting the economy 

back on track. Most of the methods that are present do not address the problem with a 

comprehensive method but look at only parts of the problem, but this research can act as 

basis of making a data-driven model that evaluates methods and priorities for doing the 

restoration process. The broader impacts and how this research can be taken forward is 

given below: 

  A computer-based model is created to simulate and analyze the data which uses 

ABMS for mapping the interdependencies. Since the number of natural hazards 

and calamities is increasing, there is a need to look at the economic aspect of 

restoration. This will include cost of restoration along with the cost of rebuilding. 

This research looks to implement the Leontief input/output model to calculate the 

damage and also considers interdependency between infrastructures. Going 

forward, this can be expanded to look at feasibility of changing the infrastructure, 

and how cost-effective that would be. Either, building sustainably or building it 

better rather than just rebuilding. 
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  This research also considers efforts to reduce public risk after an extreme event. 

This is done by removing the uncertainties as to how the restoration is to be done, 

or by looking at limiting the damage by pre-planning. Though modeling human 

behavior is a complex task, optimizing the restoration means that they whole 

process should run seamlessly with all the components working in tandem with 

each other. This includes public-private handoffs. This work provides a platform 

for future research to be done in this area. Improvements need to be made to look 

at the data sharing capabilities, responsibilities, authorization etc.  

  One of the main areas of concern is the dearth of publically available data and 

the problems associated with this data. There needs to be an improvement in this 

area, in regards to what data is available, what data is necessary for such a 

research, and the inherent problems (static, private, inconsistent, proprietary data 

etc.). There is not a lot of literature available which deals with only the data 

aspect, as they generally ‘make-up’ this data. This research builds a database that 

can be built upon, to include more data which is required for this research. 

  Coupling GIS and modeling system has not been very beneficial in the past amd 

the best way forward is to integrate the required functionality of either the GIS or 

simulation into the other. In this research GIS software works as a part of the 

modeling software and is integrated using a middleware. Since the tool is open-

source, additions to this can be made easily. One of the aims of this research is to 

give this framework to decision-makers who can then make decisions regarding 

restoration based on real-world like scenario. But, this tool can also be used for 

pre-event preparedness, so that the city planners and the city itself can be ready. 
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Since, all the infrastructure of the city is mapped in this tool, the vulnerabilities of 

the city can be found out and it also allows planners and private companies to 

preview how their buildings would react to an extreme event. This research can 

further be extended to include more facilities and become more detailed so as to 

improve the efficiency of the results. Using ABMS provides advantages like 

reduced computational times and increase in efficiency of computation due to the 

fact the system can be divided be divided into sub-systems, and also it helps 

when the size of the problem is large.  Integrating GIS data for ABM is a difficult 

process and many considerations are needed such as what data to use, how the 

data has to manipulated, or how the agents should react. But, this does lead to 

increased research in this area, like this work. 
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APPENDIX 

AGENT BASED MODELING CODE 

/*©vrnq5 

 *  

 *  

 *  

 *  

 * */ 

 

package scsi.agent; 

 

import java.util.Iterator; 

import java.util.logging.Logger; 

 

import com.vividsolutions.jts.geom.Geometry; 

 

import repast.simphony.context.Context; 

import scsi.environment.Airport; 

import scsi.environment.GISFunctions; 

import scsi.environment.SpatialIndexManager; 

import scsi.exceptions.AgentCreationException; 

import scsi.main.ContextManager; 

import scsi.main.GlobalVars; 

 

/** 

 * Create agents. There are three methods that can be used to create agents: randomly 

create a number of agents, create 
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 * agents from a point shapefile or create a certain number of agents per neighborhood 

specified in an area shapefile. 

 *  

 * <P> 

 * The method to use is specified by the 'agent_definition' parameter in 

<code>parameters.xml</code>. The parameter 

 * takes the following form: 

 * </P> 

 *  

 * <pre> 

 * {@code 

 * <method>:<definition> 

 * } 

 * </pre> 

 *  

 * <P> 

 * where method and can be one of the following: 

 * </P> 

 *  

 * <ul> 

 * <li> 

 *  

 * <pre> 

 * {@code random:<num_agents>} 

 * </pre> 

 *  
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 * Create 'num_agents' agents in randomly chosen houses. The agents are of type 

<code>DefaultAgent</code>. For example, 

 * this will create 10 agents in randomly chosen houses: '<code>random:1</code>'. See 

the 

 * <code>createRandomAgents</code> function for implementation details.</li> 

 *  

 * <li> 

 *  

 * <pre> 

 * {@code point:<filename>%<agent_class>} 

 * </pre> 

 *  

 * Create agents from the given point shapefile (one agent per point). If a point in the 

agent shapefile is within a 

 * building object then the agent's home will be set to that building. The type of the 

agent can be given in two ways: 

 * <ol> 

 * <li>The 'agent_class' parameter can be used - this is the fully qualified (e.g. including 

package) name of a class 

 * that will be used to create all the agents. For example the following will create 

instances of <code>MyAgent</code> 

 * at each point in the shapefile 

'<code>point:data/my_shapefile.shp$my_package.agents.MyAgent</code>'.</li> 

 * <li>A String column in the input shapefile called 'agent_type' provides the class of the 

agents. IIn this manner 

 * agents of different types can be created from the same input. For example, the 

following will read the shapefile and 

 * look at the values in the 'agent_type' column to create agents: 

'<code>point:data/my_shapefile.shp</code>' (note that 
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 * unlike the previous method there is no '$').</li> 

 * </ol> 

 *  

 * See the <code>createPointAgents</code> function for implementation details. 

 *  

 * <li> 

 *  

 * <pre> 

 * {@code area:<filename>$BglrC1%<agent_class1>$ .. $BglrC5%<agent_class5>} 

 * </pre> 

 *  

 * Create agents from the given areas shapefile. Up to five different types of agents can 

be created. Columns in the 

 * shapefile specify how many agents of each type to create per area and the agents 

created are randomly assigned to 

 * houses withing their area. The columns names must follow the format 'BglrCX' where 

1 <= X <= 5. For example the 

 * following string:<br> 

 *  

 * <pre> 

 * {@code area:area.shp$BglrC1%BurglarAgent$BglrC2%EmployedAgent} 

 * </pre> 

 *  

 * will read the <code>area.shp</code> and, for each area, create a number of 

<code>BurglarAgent</code> and 

 * <code>EmployedAgent</code> agents in each area, the number being specied by 

columns called <code>BglrC1</code> and 
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 * <code>BglrC2</code> respectively. See the <code>createAreaAgents</code> function 

for implementation details.</li> 

 * </ul> 

 *  

 * @author vrnq5 

 * @see DefaultAgent 

 */ 

public class AgentFactory { 

 

 private static Logger LOGGER = Logger.getLogger(AgentFactory.class.getName()); 

 

 /** The method to use when creating agents (determined in constructor). */ 

 private AGENT_FACTORY_METHODS methodToUse; 

 

 /** The definition of the agents - specific to the method being used */ 

 private String definition; 

 

 /** 

  * Create a new agent factory from the given definition. 

  *  

  * @param agentDefinition 

  */ 

 public AgentFactory(String agentDefinition) throws AgentCreationException { 

 

  // First try to parse the definition 

  String[] split = agentDefinition.split(":"); 
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  if (split.length != 2) { 

   throw new AgentCreationException("Problem parsin the 

definition string '" + agentDefinition 

     + "': it split into " + split.length + " parts but should 

split into 2."); 

  } 

  String method = split[0]; // The method to create agents 

  String defn = split[1]; // Information about the agents themselves 

 

  if (method.equals(AGENT_FACTORY_METHODS.RANDOM.toString())) { 

   this.methodToUse = AGENT_FACTORY_METHODS.RANDOM; 

 

  } else if 

(method.equals(AGENT_FACTORY_METHODS.POINT_FILE.toString())) { 

   this.methodToUse = AGENT_FACTORY_METHODS.POINT_FILE; 

  } 

 

  else if 

(method.equals(AGENT_FACTORY_METHODS.AREA_FILE.toString())) { 

   this.methodToUse = AGENT_FACTORY_METHODS.AREA_FILE; 

  } 

 

  else { 

   throw new AgentCreationException("Unrecognised method of 

creating agents: '" + method 

     + "'. Method must be one of " + 

AGENT_FACTORY_METHODS.RANDOM.toString() + ", " 
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     + 

AGENT_FACTORY_METHODS.POINT_FILE.toString() + " or " + 

AGENT_FACTORY_METHODS.AREA_FILE.toString()); 

  } 

 

  this.definition = defn; // Method is OK, save the definition for creating 

agents later. 

 

  // Check the rest of the definition is also correct (passing false means 

don't create agents) 

  // An exception will be thrown if it doesn't work. 

  this.methodToUse.createAgMeth().createagents(false, this); 

 } 

 

 public void createAgents(Context<? extends IAgent> context) throws 

AgentCreationException { 

  this.methodToUse.createAgMeth().createagents(true, this); 

 } 

 

 /** 

  * Create a number of in randomly chosen houses. If there are more agents than 

houses then some houses will have 

  * more than one agent in them. 

  *  

  * @param dummy 

  *            Whether or not to actually create agents. If this is false then just check 

that the definition can be 

  *            parsed. 
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  * @throws AgentCreationException 

  */ 

 private void createRandomAgents(boolean dummy) throws 

AgentCreationException { 

  // Check the definition is as expected, in this case it should be a number 

  int numAgents = -1; 

  try { 

   numAgents = Integer.parseInt(this.definition); 

  } catch (NumberFormatException ex) { 

   throw new AgentCreationException("Using " + this.methodToUse 

+ " method to create " 

     + "agents but cannot convert " + this.definition + " 

into an integer."); 

  } 

  // The definition has been parsed OK, no can either stop or create the 

agents 

  if (dummy) { 

   return; 

  } 

 

  // Create agents in randomly chosen houses. Use two while loops in case 

there are more agents 

  // than houses, so that houses have to be looped over twice. 

  LOGGER.info("Creating " + numAgents + " agents using " + 

this.methodToUse + " method."); 

  int agentsCreated = 0; 

  while (agentsCreated < numAgents) { 
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   Iterator<Airport> i = 

ContextManager.AirportContext.getRandomObjects(Airport.class, numAgents) 

     .iterator(); 

   while (i.hasNext() && agentsCreated < numAgents) { 

    Airport b = i.next(); // Find a building 

    IAgent a = new DefaultAgent(); // Create a new agent 

    a.setHome(b); // Tell the agent where it lives 

    b.addAgent(a); // Tell the building that the agent lives 

there 

    ContextManager.addAgentToContext(a); // Add the agent 

to the context 

    // Finally move the agent to the place where it lives. 

    ContextManager.moveAgent(a, 

ContextManager.AirportProjection.getGeometry(b).getCentroid()); 

    agentsCreated++; 

   } 

  } 

 } 

 

 /** 

  * Read a shapefile and create an agent at each location. If there is a column 

called 

  *  

  * @param dummy 

  *            Whether or not to actually create agents. If this is false then just check 

that the definition can be 

  *            parsed. 

  * @throws AgentCreationException 
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  */ 

 @SuppressWarnings("unchecked") 

 private void createPointAgents(boolean dummy) throws AgentCreationException 

{ 

 

  // See if there is a single type of agent to create or should read a colum in 

shapefile 

  boolean singleType = this.definition.contains("$"); 

 

  String fileName; 

  String className; 

  Class<IAgent> clazz; 

  if (singleType) { 

   // Agent class provided, can use the Simphony Shapefile loader to 

load agents of the given class 

 

   // Work out the file and class names from the agent definition 

   String[] split = this.definition.split("\\$"); 

   if (split.length != 2) { 

    throw new AgentCreationException("There is a problem 

with the agent definition, I should be " 

      + "able to split the definition into two parts 

on '$', but only split it into " + split.length 

      + ". The definition is: '" + this.definition + 

"'"); 

   } 

    // (Need to append root data directory to the filename). 
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   fileName = 

ContextManager.getProperty(GlobalVars.GISDataDirectory)+split[0]; 

   className = split[1]; 

   // Try to create a class from the given name. 

   try { 

    clazz = (Class<IAgent>) Class.forName(className); 

    GISFunctions.readAgentShapefile(clazz, fileName, 

ContextManager.getAgentGeography(), ContextManager 

      .getAgentContext()); 

   } catch (Exception e) { 

    throw new AgentCreationException(e); 

   } 

  } else { 

   // TODO Implement agent creation from shapefile value; 

   throw new AgentCreationException("Have not implemented the 

method of reading agent classes from a " 

     + "shapefile yet."); 

  } 

 

  // Assign agents to houses 

  int numAgents = 0; 

  for (IAgent a : ContextManager.getAllAgents()) { 

   numAgents++; 

   Geometry g = ContextManager.getAgentGeometry(a); 

   for (Airport b : 

SpatialIndexManager.search(ContextManager.AirportProjection, g)) { 

    if 

(ContextManager.AirportProjection.getGeometry(b).contains(g)) { 
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     b.addAgent(a); 

     a.setHome(b); 

    } 

   } 

  } 

 

  if (singleType) { 

   LOGGER.info("Have created " + numAgents + " of type " + 

clazz.getName().toString() + " from file " 

     + fileName); 

  } else { 

   // (NOTE: at the moment this will never happen because not 

implemented yet.) 

   LOGGER.info("Have created " + numAgents + " of different types 

from file " + fileName); 

  } 

 

 } 

 

 private void createAreaAgents(boolean dummy) throws AgentCreationException 

{ 

  throw new AgentCreationException("Have not implemented the 

createAreaAgents method yet."); 

 } 

 

 /** 

  * The methods that can be used to create agents. The CreateAgentMethod stuff 

is just a long-winded way of 
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  * hard-coding the specific method to use for creating agents into the enum 

(much simpler in python). 

  *  

  * @author Nick Malleson 

  */ 

 private enum AGENT_FACTORY_METHODS { 

  /** Default: create a number of agents randomly assigned to buildings */ 

  RANDOM("random", new CreateAgentMethod() { 

   @Override 

   public void createagents(boolean b, AgentFactory af) throws 

AgentCreationException { 

    af.createRandomAgents(b); 

   } 

  }), 

  /** Specify an agent shapefile, one agent will be created per point */ 

  POINT_FILE("point", new CreateAgentMethod() { 

   @Override 

   public void createagents(boolean b, AgentFactory af) throws 

AgentCreationException { 

    af.createPointAgents(b); 

   } 

  }), 

  /** 

   * Specify the number of agents per area as a shaefile. Agents will be 

randomly assigned to houses within the 

   * area. 

   */ 
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  AREA_FILE("area", new CreateAgentMethod() { 

   @Override 

   public void createagents(boolean b, AgentFactory af) throws 

AgentCreationException { 

    af.createAreaAgents(b); 

   } 

  }); 

 

  String stringVal; 

  CreateAgentMethod meth; 

 

  /** 

   * @param val 

   *            The string representation of the enum which must match the 

method given in the 'agent_definition' 

   *            parameter in parameters.xml. 

   * @param f 

   */ 

  AGENT_FACTORY_METHODS(String val, CreateAgentMethod f) { 

   this.stringVal = val; 

   this.meth = f; 

  } 

 

  public String toString() { 

   return this.stringVal; 

  } 
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  public CreateAgentMethod createAgMeth() { 

   return this.meth; 

  } 

 

  interface CreateAgentMethod { 

   void createagents(boolean dummy, AgentFactory af) throws 

AgentCreationException; 

  } 

 } 

 

} 

/* 

©vrnq5 

 

*/ 

 

package scsi.environment; 

 

import java.io.File; 

import java.io.FileInputStream; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.io.ObjectInputStream; 

import java.io.ObjectOutputStream; 

import java.io.Serializable; 

import java.util.ArrayList; 
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import java.util.Date; 

import java.util.HashMap; 

import java.util.Hashtable; 

import java.util.List; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

import java.util.Map; 

import java.util.Vector; 

 

import org.apache.commons.lang3.ArrayUtils; 

//import java.util.; 

import org.geotools.referencing.GeodeticCalculator; 

 

import cern.colt.Arrays; 

 

import com.vividsolutions.jts.geom.Coordinate; 

import com.vividsolutions.jts.geom.Envelope; 

import com.vividsolutions.jts.geom.Geometry; 

import com.vividsolutions.jts.geom.GeometryFactory; 

import com.vividsolutions.jts.geom.LineString; 

import com.vividsolutions.jts.geom.Point; 

import com.vividsolutions.jts.operation.distance.DistanceOp; 

 

import repast.simphony.space.gis.Geography; 

import repast.simphony.space.graph.RepastEdge; 

import repast.simphony.space.graph.ShortestPath; 
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import scsi.environment.Junction; 

import scsi.environment.NetworkEdge; 

import scsi.agent.IAgent; 

import scsi.exceptions.RoutingException; 

import scsi.main.ContextManager; 

import scsi.main.GlobalVars; 

 

/** 

 * Create routes around a GIS road network. The <code>setRoute</code> function 

actually finds the route and can be 

 * overridden by subclasses to create different types of Route. See the method 

documentation for details of how routes 

 * are calculated. 

 *  

 */ 

public class Route implements Cacheable { 

 

 private static Logger LOGGER = Logger.getLogger(Route.class.getName()); 

 

 static { 

  // Route.routeCache = new Hashtable<CachedRoute, CachedRoute>(); 

 } 

 

 private IAgent agent; 

 private Coordinate destination; 

 private Airport destinationAirport; 
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 /* 

  * The route consists of a list of coordinates which describe how to get to the 

destination. Each coordinate might 

  * have an attached 'speed' which acts as a multiplier and is used to indicate 

whether or not the agent is 

  * traveling along a transport route (i.e. if a coordinate has an attached speed of 

'2' the agent will be able to 

  * get to the next coordinate twice as fast as they would do if they were walking). 

The current position indicate 

  * where in the lists of coords the agent is up to. Other attribute information 

about the route can be included as 

  * separate arrays with indices that match those of the 'route' array below. 

  */ 

 private int currentPosition; 

 private List<Coordinate> routeX; 

 //private List<Double> routeSpeedsX; 

 /* 

  * This maps route coordinates to their containing Road, used so that when 

traveling we know which road/community 

  * the agent is on. private 

  */ 

 private List<Road> roadsX; 

 

 // Record which function has added each coord, useful for debugging 

 private List<String> routeDescriptionX; 

 

 /* 
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  * Cache every coordinate which forms a road so that Route.onRoad() is quicker. 

Also save the Road(s) they are part 

  * of, useful for the agent's awareness space (see getRoadFromCoordCache()). 

  */ 

 private static volatile Map<Coordinate, List<Road>> coordCache; 

 /* 

  * Cache the nearest road Coordinate to every building for efficiency (agents 

usually/always need to get from the 

  * centroids of houses to/from the nearest road). 

  */ 

 private static volatile NearestRoadCoordCache nearestRoadCoordCache; 

 /* 

  * Store which road every building is closest to. This is used to efficiently add 

buildings to the agent's awareness 

  * space 

  */ 

 private static volatile AirportOnRoadCache airportOnRoadCache; 

 // To stop threads competing for the cache: 

 private static Object airportOnRoadCacheLock = new Object(); 

 

 /* 

  * Store a route once it has been created, might be used later (note that the 

same object acts as key and value). 

  */ 

 // TODO Re-think route caching, would be better to cache the whole Route 

object 

 // private static volatile Map<CachedRoute, CachedRoute> routeCache; 

 // /** Store a route distance once it has been created */ 
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 // private static volatile Map<CachedRouteDistance, Double> 

routeDistanceCache; 

 

 /* 

  * Keep a record of the last community and road passed so that the same 

buildings/communities aren't added to the 

  * cognitive map multiple times (the agent could spend a number of iterations on 

the same road or community). 

  */ 

 private Road previousRoad; 

 private Area previousArea; 

 

 /** 

  * Creates a new Route object. 

  *  

  * @param destination 

  *            The agent's destination. 

  *  

  * @param destinationBuilding 

  *            The (optional) building they're heading to. 

  *  

  * @param type 

  *            The (optional) type of route, used by burglars who want to search. 

  */ 

 public Route(IAgent agent, Coordinate destination, Airport destinationAirport) { 

  this.destination = destination; 

  this.agent = agent; 
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  this.destinationAirport = destinationAirport; 

 } 

 

 /** 

  * Find a route from the origin to the destination. A route is a list of Coordinates 

which describe the route to a 

  * destination restricted to a road network. The algorithm consists of three major 

parts: 

  * <ol> 

  * <li>Find out if the agent is on a road already, if not then move to the nearest 

road segment</li> 

  * <li>Get from the current location (probably mid-point on a road) to the 

nearest junction</li> 

  * <li>Travel to the junction which is closest to our destination (using Dijkstra's 

shortest path)</li> 

  * <li>Get from the final junction to the road which is nearest to the destination 

  * <li> 

  * <li>Move from the road to the destination</li> 

  * </ol> 

  *  

  * @throws Exception 

  */ 

 protected void setRoute() throws Exception { 

  long time = System.nanoTime(); 

  // this.routeX = new ArrayList<Coordinate>(); 

  // this.roadsX = new ArrayList<Road>(); 

  // this.routeDescriptionX = new ArrayList<String>(); 

  // this.routeSpeedsX = new ArrayList<Double>(); 
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  this.routeX = new Vector<Coordinate>(); 

  this.roadsX = new Vector<Road>(); 

  this.routeDescriptionX = new Vector<String>(); 

  //this.routeSpeedsX = new Vector<Double>(); 

 

  LOGGER.log(Level.FINER, "Planning route for: " 

    + this.agent.toString() 

    + " to: " 

    + this.destinationAirport.toString()); 

    //+ ((this.agent.getTransportAvailable() == null) ? "" : 

"using transport: " 

    //  + 

this.agent.getTransportAvailable().toString())); 

  if (atDestination()) { 

   LOGGER.log(Level.WARNING, "Already at destination, cannot 

create a route for " + this.agent.toString()); 

   return; 

  } 

 

  Coordinate currentCoord = 

ContextManager.getAgentGeometry(this.agent).getCoordinate(); 

  Coordinate destCoord = this.destination; 

 

  // See if a route has already been cached. 

  // CachedRoute cachedRoute = new CachedRoute(currentCoord, 

destCoord, this.agent.getTransportAvailable()); 

  // synchronized (Route.routeCache) { 

  // if (Route.routeCache.containsKey(cachedRoute)) { 
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  // TempLogger.out("Route.setRoute, found a cached route from " + 

currentCoord + " to " + destCoord 

  // + " using available transport " + this.agent.getTransportAvailable() + ", 

returning it."); 

  // // Return a clone of the route that is stored in the cache 

  // // TODO do we need clones here? I don't think so... 

  // CachedRoute cr = Route.routeCache.get(cachedRoute); 

  // // this.routeX = Cloning.copy(cr.getRoute()); 

  // // this.roadsX = new ArrayList<Road>(cr.getRoads()); 

  // // this.routeSpeedsX = new ArrayList<Double>(cr.getRouteSpeeds()); 

  // // this.routeDescriptionX = new ArrayList<String>(cr.getDescriptions()); 

  // this.routeX = new Vector<Coordinate>(cr.getRoute()); 

  // this.roadsX = new Vector<Road>(cr.getRoads()); 

  // this.routeSpeedsX = new Vector<Double>(cr.getRouteSpeeds()); 

  // this.routeDescriptionX = new Vector<String>(cr.getDescriptions()); 

  // 

  // return; 

  // } 

  // } // synchronized 

 

  // No route cached, have to create a new one (and cache it at the end). 

  try { 

   /* 

    * See if the current position and the destination are on road 

segments. If the destination is not on a road 

    * segment we have to move to the closest road segment, then 

onto the destination. 
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    */ 

   boolean destinationOnRoad = true; 

   Coordinate finalDestination = null; 

   if (!coordOnRoad(currentCoord)) { 

    /* 

     * Not on a road so the first coordinate to add to the route 

is the point on the closest road segment. 

     */ 

    currentCoord = getNearestRoadCoord(currentCoord); 

    addToRoute(currentCoord, Road.nullRoad, "setRoute() 

initial"); 

   } 

   if (!coordOnRoad(destCoord)) { 

    /* 

     * Not on a road, so need to set the destination to be the 

closest point on a road, and set the 

     * destinationOnRoad boolean to false so we know to add 

the final dest coord at the end of the route 

     */ 

    destinationOnRoad = false; 

    finalDestination = destCoord; // Added to route at end of 

alg. 

    destCoord = getNearestRoadCoord(destCoord); 

   } 

 

   /* 

    * Find the nearest junctions to our current position (road 

endpoints) 
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    */ 

 

   // Start by Finding the road that this coordinate is on 

   /* 

    * TODO EFFICIENCY: often the agent will be creating a new route 

from a building so will always find the 

    * same road, could use a cache. Even better, could implement a 

cache in FindNearestObject() method! 

    */ 

   Road currentRoad = Route.findNearestObject(currentCoord, 

ContextManager.roadProjection, null, 

    

 GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.LARGE); 

   // Find which Junction is closest to us on the road. 

   List<Junction> currentJunctions = currentRoad.getJunctions(); 

 

   /* Find the nearest Junctions to our destination (road endpoints) 

*/ 

 

   // Find the road that this coordinate is on 

   Road destRoad = Route.findNearestObject(destCoord, 

ContextManager.roadProjection, null, 

    

 GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.SMALL); 

   // Find which Junction connected to the edge is closest to the 

coordinate. 

   List<Junction> destJunctions = destRoad.getJunctions(); 

   /* 
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    * Now have four possible routes (2 origin junctions, 2 destination 

junctions) need to pick which junctions 

    * form shortest route 

    */ 

   Junction[] routeEndpoints = new Junction[2]; 

   List<RepastEdge<Junction>> shortestPath = 

getShortestRoute(currentJunctions, destJunctions, routeEndpoints); 

   // NetworkEdge<Junction> temp = (NetworkEdge<Junction>) 

   // shortestPath.get(0); 

   Junction currentJunction = routeEndpoints[0]; 

   Junction destJunction = routeEndpoints[1]; 

 

   /* Add the coordinates describing how to get to the nearest 

junction */ 

   List<Coordinate> tempCoordList = new Vector<Coordinate>(); 

   this.getCoordsAlongRoad(currentCoord, 

currentJunction.getCoords(), currentRoad, true, tempCoordList); 

   addToRoute(tempCoordList, currentRoad, 1, 

"getCoordsAlongRoad (toJunction)"); 

 

   /* 

    * Add the coordinates and speeds etc which describe how to 

move along the chosen path 

    */ 

   this.getRouteBetweenJunctions(shortestPath, currentJunction); 

 

   /* 
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    * Add the coordinates describing how to get from the final 

junction to the destination. 

    */ 

 

   tempCoordList.clear(); 

  

 this.getCoordsAlongRoad(ContextManager.junctionGeography.getGeometry(des

tJunction).getCoordinate(), 

     destCoord, destRoad, false, tempCoordList); 

   addToRoute(tempCoordList, destRoad, 1, "getCoordsAlongRoad 

(fromJunction)"); 

 

   if (!destinationOnRoad) { 

    addToRoute(finalDestination, Road.nullRoad, "setRoute 

final"); 

   } 

 

   // Check that a route has actually been created 

   checkListSizes(); 

 

   // If the algorithm was better no coordinates would have been 

duplicated 

   // removePairs(); 

 

   // Check lists are still the same size. 

   checkListSizes(); 

 

  } catch (RoutingException e) { 
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   LOGGER.log(Level.SEVERE, "Route.setRoute(): Problem creating 

route for " + this.agent.toString() 

     + " going from " + currentCoord.toString() + " to " + 

this.destination.toString() + "(" 

     + (this.destinationAirport == null ? "" : 

this.destinationAirport.toString()) 

     + ") See earlier messages error messages for more 

info."); 

   throw e; 

  } 

  // Cache the route and route speeds 

  // List<Coordinate> routeClone = Cloning.copy(theRoute); 

  // LinkedHashMap<Coordinate, Double> routeSpeedsClone = 

Cloning.copy(this.routeSpeeds); 

  // cachedRoute.setRoute(routeClone); 

  // cachedRoute.setRouteSpeeds(routeSpeedsClone); 

 

  // cachedRoute.setRoute(this.routeX, this.roadsX, this.routeSpeedsX, 

this.routeDescriptionX); 

  // synchronized (Route.routeCache) { 

  // // Same cached route is both value and key 

  // Route.routeCache.put(cachedRoute, cachedRoute); 

  // } 

  // TempLogger.out("...Route cacheing new route with unique id " + 

cachedRoute.hashCode()); 

 

  LOGGER.log(Level.FINER, "Route Finished planning route for " + 

this.agent.toString() + "with " 
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    + this.routeX.size() + " coords in " + (0.000001 * 

(System.nanoTime() - time)) + "ms."); 

 

  // Finished, just check that the route arrays are all in sync 

  assert this.roadsX.size() == this.routeX.size()  

    //&& this.routeDescriptionX.size() == 

this.routeSpeedsX.size() 

    && this.roadsX.size() == this.routeDescriptionX.size(); 

 } 

 

 private void checkListSizes() { 

  assert this.roadsX.size() > 0 && this.roadsX.size() == this.routeX.size() 

    //&& this.routeDescriptionX.size() == 

this.routeSpeedsX.size() 

    && this.roadsX.size() == this.routeDescriptionX.size() : 

this.routeX.size() + "," + this.roadsX.size() 

    + "," + this.routeDescriptionX.size();// + "," + 

this.routeSpeedsX.size(); 

 

 } 

 

 /** 

  * Convenience function that can be used to add details to the route. This should 

be used rather than updating 

  * individual lists because it makes sure that all lists stay in sync 

  *  

  * @param coord 

  *            The coordinate to add to the route 
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  * @param road 

  *            The road that the coordinate is part of 

  * @param speed 

  *            The speed that the road can be travelled along 

  * @param description 

  *            A description of why the coordinate has been added 

  */ 

 private void addToRoute(Coordinate coord, Road road, String description) { 

  this.routeX.add(coord); 

  this.roadsX.add(road); 

  //this.routeSpeedsX.add(speed); 

  this.routeDescriptionX.add(description); 

 } 

 

 /** 

  * A convenience for adding to the route that will add a number of coordinates 

with the same description, road and 

  * speed. 

  *  

  * @param coord 

  *            A list of coordinates to add to the route 

  * @param road 

  *            The road that the coordinates are part of 

  * @param speed 

  *            The speed that the road can be travelled along 

  * @param description 
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  *            A description of why the coordinates have been added 

  */ 

 private void addToRoute(List<Coordinate> coords, Road road, double speed, 

String description) { 

  for (Coordinate c : coords) { 

   this.routeX.add(c); 

   this.roadsX.add(road); 

   //this.routeSpeedsX.add(speed); 

   this.routeDescriptionX.add(description); 

  } 

 } 

 

 /** 

  * Travel towards our destination, as far as we can go this turn. 

  * <p> 

  * Also adds houses to the agent's cognitive environment. This is done by saving 

each coordinate the person passes, 

  * creating a polygon with a radius given by the "cognitive_map_search_radius" 

and adding all houses which touch the 

  * polygon. 

  * <p> 

  *  

  * @param housesPassed 

  *            If not null then the buildings which the agent passed during their travels 

this iteration will be 

  *            calculated and stored in this array. This can be useful if a agent needs to 

know which houses it has 
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  *            just passed and, therefore, which are possible victims. This isn't done by 

default because it's quite 

  *            an expensive operation (lots of geographic tests which must be carried 

out in each iteration). If the 

  *            array is null then the houses passed are not calculated. 

  * @return null or the buildings passed during this iteration if housesPassed 

boolean is true 

  * @throws Exception 

  */ 

 public void travel() throws Exception { 

  // Check that the route has been created 

  if (this.routeX == null) { 

   this.setRoute(); 

  } 

  try { 

   if (this.atDestination()) { 

    return; 

   } 

   double time = System.nanoTime(); 

 

   // Store the roads the agent walks along (used to populate the 

awareness space) 

   // List<Road> roadsPassed = new ArrayList<Road>(); 

   double distTravelled = 0; // The distance travelled so far 

   Coordinate currentCoord = null; // Current location 

   Coordinate target = null; // Target coordinate we're heading for 

(in route list) 
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   boolean travelledMaxDist = false; // True when travelled 

maximum distance this iteration 

   //double speed; // The speed to travel to next coord 

   GeometryFactory geomFac = new GeometryFactory(); 

   currentCoord = 

ContextManager.getAgentGeometry(this.agent).getCoordinate(); 

 

   while (!travelledMaxDist && !this.atDestination()) { 

    target = this.routeX.get(this.currentPosition); 

    //speed = this.routeSpeedsX.get(this.currentPosition); 

    /* 

     * TODO Remember which roads have been passed, used 

to work out what should be added to cognitive map. 

     * Only add roads once the agent has moved all the way 

down them 

     */ 

    // 

roadsPassed.add(this.roads.get(this.previousRouteCoord())); 

    // Work out the distance and angle to the next coordinate 

    double[] distAndAngle = new double[2]; 

    Route.distance(currentCoord, target, distAndAngle); 

    // divide by speed because distance might effectively be 

shorter 

 

    double distToTarget = distAndAngle[0];// / speed; 

    // If we can get all the way to the next coords on the route 

then just go there 

    if (distTravelled + distToTarget < 

GlobalVars.GEOGRAPHY_PARAMS.TRAVEL_PER_TURN) { 
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     distTravelled += distToTarget; 

     currentCoord = target; 

 

     // See if agent has reached the end of the route. 

     if (this.currentPosition == (this.routeX.size() - 1)) { 

      ContextManager.moveAgent(this.agent, 

geomFac.createPoint(currentCoord)); 

      // 

ContextManager.agentGeography.move(this.agent, 

geomFac.createPoint(currentCoord)); 

      break; // Break out of while loop, have 

reached end of route. 

     } 

     // Haven't reached end of route, increment the 

counter 

     this.currentPosition++; 

    } // if can get all way to next coord 

 

    // Check if dist to next coordinate is exactly same as 

maximum 

    // distance allowed to travel (unlikely but possible) 

    else if (distTravelled + distToTarget == 

GlobalVars.GEOGRAPHY_PARAMS.TRAVEL_PER_TURN) { 

     travelledMaxDist = true; 

     ContextManager.moveAgent(agent, 

geomFac.createPoint(target)); 

     // ContextManager.agentGeography.move(agent, 

geomFac.createPoint(target)); 
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     this.currentPosition++; 

     LOGGER.log(Level.WARNING, "Travel(): UNUSUAL 

CONDITION HAS OCCURED!"); 

    } else { 

     // Otherwise move as far as we can towards the 

target along the road we're on. 

     // Move along the vector the maximum distance 

we're allowed this turn (take into account relative 

     // speed) 

     double distToTravel = 

(GlobalVars.GEOGRAPHY_PARAMS.TRAVEL_PER_TURN - distTravelled); 

     // Move the agent, first move them to the current 

coord (the first part of the while loop doesn't do 

     // this for efficiency) 

     // 

ContextManager.agentGeography.move(this.agent, 

geomFac.createPoint(currentCoord)); 

     ContextManager.moveAgent(this.agent, 

geomFac.createPoint(currentCoord)); 

     // Now move by vector towards target (calculated 

angle earlier). 

     ContextManager.moveAgentByVector(this.agent, 

distToTravel, distAndAngle[1]); 

     // 

ContextManager.agentGeography.moveByVector(this.agent, distToTravel, 

distAndAngle[1]); 

 

     travelledMaxDist = true; 

    } // else 

   } // while 



149 

 

 

//   this.printRoute(); 

 

   /* 

    * TODO Agent has finished moving, now just add all the buildings 

and communities passed to their awareness 

    * space (unless they're on a transport route). Note also that if on 

a transport route without an associated 

    * road no roads are added to the 'roads' map so even if the check 

wasn't made here no buildings would be 

    * added anyway. 

    */ 

   // Community c = null; 

   // if (!this.onTransportRoute) { 

   // String outputString = "Route.travel() adding following to 

awareness space for '" 

   // + this.agent.toString() + "':"; 

   // // roadsPassed will have duplicates, this is used to ignore them 

   // Road current = roadsPassed.get(0); 

   // // TODO The next stuff is a mess when it comes to adding 

communities to the memory. Need to go 

   // // through and make sure communities aren't added too many 

times (i.e. more than once for each journey) 

   // // and that they are always added when they should be. 

   // 

   // for (Road r : roadsPassed) { // last road in list is the one the 

   // // agent finishes iteration on 
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   // if (r != null && roadsPassed.get(0) != null && !current.equals(r)) 

{ 

   // // Check road isn't null () and that buildings on road haven't 

already been added 

   // // (road can be null when coords that aren't part of a road are 

added to the route) 

   // current = r; 

   // if (r.equals(this.previousRoad)) { 

   // // The agent has just passed over this road, don't add the 

buildings or communities again 

   // } else { 

   // outputString += "\n\t" + r.toString() + ": "; 

   // List<Building> passedBuildings = getBuildingsOnRoad(r); 

   // List<Community> passedCommunities = new 

ArrayList<Community>(); 

   // if (passedBuildings != null) { // There might not be any buildings 

close to the road (unlikely) 

   // outputString += passedBuildings.toString(); 

   // this.passedObjects(passedBuildings, Building.class); 

   // // For efficiency just find one of the building's communities and 

hope no other 

   // // communities were passed through - NO! I'VE CHANGED THIS 

BELOW! 

   // c = passedBuildings.get(0).getCommunity(); 

   // // Check all buildings to make sure that if the agent has passed 

more than one community 

   // // then they are all added. 

   // for (Building b : passedBuildings) { 

   // if (!passedCommunities.contains(b.getCommunity())) { 
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   // passedCommunities.add(b.getCommunity()); 

   // } 

   // } 

   // for (Community com : passedCommunities) { 

   // if (com != null) { 

   // this.passedObject(com, Community.class); 

   // } 

   // } 

   // 

   // } else { // Community won't have been added because no 

buildings passed, use slow method 

   // c = 

GlobalVars.COMMUNITY_ENVIRONMENT.getObjectAt(Community.class, currentCoord); 

   // if (c != null) { 

   // this.passedObject(c, Community.class); 

   // } 

   // // TODO I think the following line is wrong, if the agent has 

made 

   // // a long move they might have passed right through a 

community that doesn't 

   // // have any buildings, perhaps this should check *all* the 

communities that touch 

   // // the road, not just the community the agent finished the 

move in (i.e. currentCoord) 

   // 

passedCommunities.add(GlobalVars.COMMUNITY_ENVIRONMENT.getObjectAt(Commu

nity.class, 

   // currentCoord)); 

   // } 



152 

 

   // } 

   // } 

   // } // for roadsPassed 

   // TempLogger.out(outputString + "\n"); 

   // } // if !onTransportRoute 

   // else { 

   // TempLogger.out("Route.travel() not adding to burglar '" + 

this.agent.toString() 

   // + "' awareness space beecause on transport route: "); 

   // } 

   // 

   // // Finally set the previousRoad and previousCommunity so that 

if these haven't changed in the next 

   // iteration they're not added to 

   // // the cognitive map again. 

   // this.previousRoad = roadsPassed.get(roadsPassed.size() - 1); 

   // // this.previousCommunity = c; // This was the most recent 

community passed over 

   // 

   // TempLogger.out("...Finished Travelling(" + (0.000001 * 

(System.nanoTime() - time)) + "ms)"); 

   // // } // synchronized 

GlobalVars.TRANSPORT_PARAMS.currentBurglar 

  } catch (Exception e) { 

   LOGGER.log(Level.SEVERE, "Route.trave(): Caught error travelling 

for " + this.agent.toString() 

     + " going to " + "destination " 
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     + (this.destinationAirport == null ? "" : 

this.destinationAirport.toString() + ")")); 

   throw e; 

  } // catch exception 

 } 

 

 /** 

  * Get the distance (on a network) between the origin and destination. Take into 

account the Burglar because they 

  * might be able to speed up the route by using different transport methods. 

Actually calculates the distance 

  * between the nearest Junctions between the source and destination. Note that 

the GRID environment doesn't have any 

  * transport routes in it so all distances will always be the same regardless of the 

agent. 

  *  

  * @param agent 

  * @param destination 

  * @return 

  */ 

 public double getDistance(Coordinate origin, Coordinate destination) { 

 

  // // See if this distance has already been calculated 

  // if (Route.routeDistanceCache == null) { 

  // Route.routeDistanceCache = new Hashtable<CachedRouteDistance, 

Double>(); 

  // } 
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  // CachedRouteDistance crd = new CachedRouteDistance(origin, 

destination, theBurglar.getTransportAvailable()); 

  // 

  // synchronized (Route.routeDistanceCache) { 

  // Double dist = Route.routeDistanceCache.get(crd); 

  // if (dist != null) { 

  // TempLogger.out("Route.ggetDistance, found a cached route distance 

from " + origin + " to " 

  // + destination + " using available transport " + 

theBurglar.getTransportAvailable() 

  // + ", returning it."); 

  // return dist; 

  // } 

  // } 

  // No distance in the cache, calculate it 

  

 // synchronized (GlobalVars.TRANSPORT_PARAMS.currentBurglarLock) { 

 //  GlobalVars.TRANSPORT_PARAMS.currentAgent = theBurglar; 

   // Find the closest Junctions to the origin and destination 

   double minOriginDist = Double.MAX_VALUE; 

   double minDestDist = Double.MAX_VALUE; 

   double dist; 

   Junction closestOriginJunc = null; 

   Junction closestDestJunc = null; 

   DistanceOp distOp = null; 

   GeometryFactory geomFac = new GeometryFactory(); 
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   // TODO EFFICIENCY: here could iterate over near junctions 

instead of all? 

   for (Junction j : 

ContextManager.junctionContext.getObjects(Junction.class)) { 

//    // Check that the agent can actually get to the junction (if 

might be part of a transport route 

//    // that the agent doesn't have access to) 

//    boolean accessibleJunction = false; 

//    accessibleJunc: for (RepastEdge<Junction> e : 

ContextManager.roadNetwork.getEdges(j)) { 

//     NetworkEdge<Junction> edge = 

(NetworkEdge<Junction>) e; 

//     for (String s : edge.getTypes()) { 

//      if 

(theBurglar.getTransportAvailable().contains(s)) { 

//       accessibleJunction = true; 

//       break accessibleJunc; 

//      } 

//     } // for types 

//    }// for edges 

//    if (!accessibleJunction) { // Agent can't get to the junction, 

ignore it 

//     continue; 

//    } 

    Point juncPoint = geomFac.createPoint(j.getCoords()); 

 

    distOp = new DistanceOp(juncPoint, 

geomFac.createPoint(origin)); 

    dist = distOp.distance(); 
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    if (dist < minOriginDist) { 

     minOriginDist = dist; 

     closestOriginJunc = j; 

    } 

    // Destination 

    distOp = new DistanceOp(juncPoint, 

geomFac.createPoint(destination)); 

    dist = distOp.distance(); 

    if (dist < minDestDist) { 

     minDestDist = dist; 

     closestDestJunc = j; 

    } 

   } // for Junctions 

    // Return the shortest path plus the distance from the 

origin/destination to their junctions 

    // TODO NOTE: Bug in ShortestPath so have to make 

finalize is called, otherwise following lines are 

    // neater 

    // - MAYBE THIS HAS BEEN FIXED BY REPAST NOW. 

    // return (new 

ShortestPath<Junction>(EnvironmentFactory.getRoadNetwork(), 

    // closestOriginJunc)).getPathLength(closestDestJunc)+ 

minOriginDist + minDestDist ; 

    // TODO : using non-deprecated methods don't work on 

NGS, probably need to update repast libraries 

   ShortestPath<Junction> p = new 

ShortestPath<Junction>(ContextManager.roadNetwork, closestOriginJunc); 

   double theDist = p.getPathLength(closestDestJunc); 
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   // ShortestPath<Junction> p = new 

   // 

ShortestPath<Junction>(EnvironmentFactory.getRoadNetwork()); 

   // double theDist = 

p.getPathLength(closestOriginJunc,closestDestJunc); 

   p.finalize(); 

   p = null; 

   double finalDist = theDist + minOriginDist + minDestDist; 

   // // Cache this distance 

   // synchronized (Route.routeDistanceCache) { 

   // Route.routeDistanceCache.put(crd, finalDist); 

   // } 

   return finalDist; 

  //} // synchronized 

 

 } 

 

 /** 

  * Find the nearest coordinate which is part of a Road. Returns the coordinate 

which is actually the closest to the 

  * given coord, not just the corner of the segment which is closest. Uses the 

DistanceOp class which finds the 

  * closest points between two geometries. 

  * <p> 

  * When first called, the function will populate the 'nearestRoadCoordCache' 

which calculates where the closest road 

  * coordinate is to each building. The agents will commonly start journeys from 

within buildings so this will 
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  * improve efficiency. 

  * </p> 

  *  

  * @param inCoord 

  *            The coordinate from which to find the nearest road coordinate 

  * @return the nearest road coordinate 

  * @throws Exception 

  */ 

 private synchronized Coordinate getNearestRoadCoord(Coordinate inCoord) 

throws Exception { 

  // double time = System.nanoTime(); 

 

  synchronized (airportOnRoadCacheLock) { 

   if (nearestRoadCoordCache == null) { 

    LOGGER.log(Level.FINE, "Route.getNearestRoadCoord 

called for first time, " 

      + "creating cache of all roads and the 

buildings which are on them ..."); 

    // Create a new cache object, this will be read from disk if 

    // possible (which is why the getInstance() method is used 

    // instead of the constructor. 

    String gisDir = 

ContextManager.getProperty(GlobalVars.GISDataDirectory); 

    File airportFile = new File(gisDir + 

ContextManager.getProperty(GlobalVars.AirportShapefile)); 

    File roadsFile = new File(gisDir + 

ContextManager.getProperty(GlobalVars.RoadShapefile)); 
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    File serialisedLoc = new File(gisDir + 

ContextManager.getProperty(GlobalVars.AirportRoadsCoordsCache)); 

 

    nearestRoadCoordCache = 

NearestRoadCoordCache.getInstance(ContextManager.AirportProjection, 

      airportFile, 

ContextManager.roadProjection, roadsFile, serialisedLoc, new GeometryFactory()); 

   } // if not cached 

  } // synchronized 

  return nearestRoadCoordCache.get(inCoord); 

 } 

 

 /** 

  * Finds the shortest route between multiple origin and destination junctions. 

Will return the shortest path and 

  * also, via two parameters, can return the origin and destination junctions which 

make up the shortest route. 

  *  

  * @param currentJunctions 

  *            An array of origin junctions 

  * @param destJunctions 

  *            An array of destination junctions 

  * @param routeEndpoints 

  *            An array of size 2 which can be used to store the origin (index 0) and 

destination (index 1) Junctions 

  *            which form the endpoints of the shortest route. 

  * @return the shortest route between the origin and destination junctions 

  * @throws Exception 
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  */ 

 private List<RepastEdge<Junction>> getShortestRoute(List<Junction> 

currentJunctions, List<Junction> destJunctions, 

   Junction[] routeEndpoints) throws Exception { 

  double time = System.nanoTime(); 

 // synchronized (GlobalVars.TRANSPORT_PARAMS.currentBurglarLock) { 

   // This must be set so that NetworkEdge.getWeight() can adjust 

the weight depending on how this 

   // particular agent is getting around the city 

  // GlobalVars.TRANSPORT_PARAMS.currentAgent = this.agent; 

   double shortestPathLength = Double.MAX_VALUE; 

   double pathLength = 0; 

   ShortestPath<Junction> p; 

   List<RepastEdge<Junction>> shortestPath = null; 

   for (Junction o : currentJunctions) { 

    for (Junction d : destJunctions) { 

     if (o == null || d == null) { 

      LOGGER.log(Level.WARNING, 

"Route.getShortestRoute() error: either the destination or origin " 

        + "junction is null. This can 

be caused by disconnected roads. It's probably OK" 

        + "to ignore this as a route 

should still be created anyway."); 

     } else { 

      p = new 

ShortestPath<Junction>(ContextManager.roadNetwork); 

      pathLength = p.getPathLength(o,d); 

      if (pathLength < shortestPathLength) { 
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       shortestPathLength = pathLength; 

       shortestPath = p.getPath(o,d); 

//       ShortestPath<Junction> p2 = new 

ShortestPath<Junction>(ContextManager.roadNetwork); 

//       shortestPath = p2.getPath(o, d); 

//       p2.finalize(); 

//       p2 = null; 

       // shortestPath = p1.getPath(o, d); 

       // p1.finalize(); p1 = null; 

       routeEndpoints[0] = o; 

       routeEndpoints[1] = d; 

      } 

      // TODO See if the shortestpath bug has 

been fixed, would make this unnecessary 

      p.finalize(); 

      p = null; 

     } // if junc null 

    } // for dest junctions 

   } // for origin junctions 

   if (shortestPath == null) { 

    String debugString = "Route.getShortestRoute() could not 

find a route. Looking for the shortest route between :\n"; 

    for (Junction j : currentJunctions) 

     debugString += "\t" + j.toString() + ", roads: " + 

j.getRoads().toString() + "\n"; 

    for (Junction j : destJunctions) 

     debugString += "\t" + j.toString() + ", roads: " + 

j.getRoads().toString() + "\n"; 
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    throw new RoutingException(debugString); 

   } 

   LOGGER.log(Level.FINER, "Route.getShortestRoute (" + (0.000001 

* (System.nanoTime() - time)) 

     + "ms) found shortest path " + "(length: " + 

shortestPathLength + ") from " 

     + routeEndpoints[0].toString() + " to " + 

routeEndpoints[1].toString()); 

   return shortestPath; 

  //} // synchronized 

 } 

 

 /** 

  * Calculates the coordinates required to move an agent from their current 

position to the destination along a given 

  * road. The algorithm to do this is as follows: 

  * <ol> 

  * <li>Starting from the destination coordinate, record each vertex and check 

inside the boundary of each line 

  * segment until the destination point is found.</li> 

  * <li>Return all but the last vertex, this is the route to the destination.</li> 

  * </ol> 

  * A boolean allows for two cases: heading towards a junction (the endpoint of 

the line) or heading away from the 

  * endpoint of the line (this function can't be used to go to two midpoints on a 

line) 

  *  

  * @param currentCoord 
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  * @param destinationCoord 

  * @param road 

  * @param toJunction 

  *            whether or not we're traveling towards or away from a Junction 

  * @param coordList 

  *            A list which will be populated with the coordinates that the agent should 

follow to move along the 

  *            road. 

  * @param roadList 

  *            A list of roads associated with each coordinate. 

  * @throws Exception 

  */ 

 private void getCoordsAlongRoad(Coordinate currentCoord, Coordinate 

destinationCoord, Road road, 

   boolean toJunction, List<Coordinate> coordList) throws 

RoutingException { 

 

  Route.checkNotNull(currentCoord, destinationCoord, road, coordList); 

 

  double time = System.nanoTime(); 

  Coordinate[] roadCoords = 

ContextManager.roadProjection.getGeometry(road).getCoordinates(); 

 

  // Check that the either the destination or current coordinate are actually 

part of the road 

  boolean currentCorrect = false, destinationCorrect = false; 

  for (int i = 0; i < roadCoords.length; i++) { 

   if (toJunction && destinationCoord.equals(roadCoords[i])) { 
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    destinationCorrect = true; 

    break; 

   } else if (!toJunction && currentCoord.equals(roadCoords[i])) { 

    currentCorrect = true; 

    break; 

   } 

  } // for 

 

  if (!(destinationCorrect || currentCorrect)) { 

   String roadCoordsString = ""; 

   for (Coordinate c : roadCoords) 

    roadCoordsString += c.toString() + " - "; 

   throw new RoutingException("Neigher the origin or destination 

nor the current" 

     + "coordinate are part of the road '" + 

road.toString() + "' (person '" + this.agent.toString() 

     + "').\n" + "Road coords: " + roadCoordsString + 

"\n" + "\tOrigin: " + currentCoord.toString() 

     + "\n" + "\tDestination: " + 

destinationCoord.toString() + " ( " 

     + this.destinationAirport.toString() + " )\n " + 

"Heading " + (toJunction ? "to" : "away from") 

     + " a junction, so " + (toJunction ? "destination" : 

"origin") 

     + " should be part of a road segment"); 

  } 

 

  // Might need to reverse the order of the road coordinates 
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  if (toJunction && 

!destinationCoord.equals(roadCoords[roadCoords.length - 1])) { 

   // If heading towards a junction, destination coordinate must be 

at end of road segment 

   ArrayUtils.reverse(roadCoords); 

  } else if (!toJunction && !currentCoord.equals(roadCoords[0])) { 

   // If heading away form junction current coord must be at 

beginning of road segment 

   ArrayUtils.reverse(roadCoords); 

  } 

  GeometryFactory geomFac = new GeometryFactory(); 

  Point destinationPointGeom = geomFac.createPoint(destinationCoord); 

  Point currentPointGeom = geomFac.createPoint(currentCoord); 

  // If still false at end then algorithm hasn't worked 

  boolean foundAllCoords = false; 

  search: for (int i = 0; i < roadCoords.length - 1; i++) { 

   Coordinate[] segmentCoords = new Coordinate[] { roadCoords[i], 

roadCoords[i + 1] }; 

   // Draw a small buffer around the line segment and look for the 

coordinate within the buffer 

   Geometry buffer = 

geomFac.createLineString(segmentCoords).buffer(GlobalVars.GEOGRAPHY_PARAMS.BU

FFER_DISTANCE.SMALL.dist); 

   if (!toJunction) { 

    /* If heading away from a junction, keep adding road 

coords until we find the destination */ 

    coordList.add(roadCoords[i]); 

    if (destinationPointGeom.within(buffer)) { 

     coordList.add(destinationCoord); 
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     foundAllCoords = true; 

     break search; 

    } 

   } else if (toJunction) { 

    /* 

     * If heading towards a junction: find the curent coord, add 

it to the route, then add all the remaining 

     * coords which make up the road segment 

     */ 

    if (currentPointGeom.within(buffer)) { 

     for (int j = i + 1; j < roadCoords.length; j++) { 

      coordList.add(roadCoords[j]); 

     } 

     coordList.add(destinationCoord); 

     foundAllCoords = true; 

     break search; 

    } 

   } 

  } // for 

  if (foundAllCoords) { 

   LOGGER.log(Level.FINER, "getCoordsAlongRoad (" + (0.000001 * 

(System.nanoTime() - time)) + "ms)"); 

   return; 

  } else { // If we get here then the route hasn't been created 

   // A load of debugging info 

   String error = "Route: getCoordsAlongRoad: could not find 

destination coordinates " 
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     + "along the road.\n\tHeading *" + (toJunction ? 

"towards" : "away from") 

     + "* a junction.\n\t Person: " + this.agent.toString() 

+ ")\n\tDestination building: " 

     + destinationAirport.toString() + "\n\tRoad causing 

problems: " + road.toString() 

     + "\n\tRoad vertex coordinates: " + 

Arrays.toString(roadCoords); 

   throw new RoutingException(error); 

   /* 

    * Hack: ignore the error, printing a message and just returning 

the origin destination and coordinates. 

    * This means agent will jump to/from the junction but I can't 

figure out why the fuck it occasionally 

    * doesn't work!! It's so rare that hopefully this isn't a problem. 

    */ 

   // TempLogger.err("Route: getCoordsAlongRoad: error... (not 

debugging)."); 

   // List<Coord> coords = new ArrayList<Coord>(); 

   // coords.add(currentCoord); 

   // coords.add(destinationCoord); 

   // for (Coord c : coords) 

   // this.roads.put(c, road); // Remember the roads each coord is 

   // // part of 

   // return coords; 

 

  } 

 } 
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 private static void checkNotNull(Object... args) throws RoutingException { 

  for (Object o : args) { 

   if (o == null) { 

    throw new RoutingException("An input argument is null"); 

   } 

  } 

  return; 

 } 

 

 /** 

  * Returns all the coordinates that describe how to travel along a path, restricted 

to road coordinates. In some 

  * cases the route wont have an associated road, this occurs if the route is part of 

a transport network. In this 

  * case just the origin and destination coordinates are added to the route. 

  *  

  * @param shortestPath 

  * @param startingJunction 

  *            The junction the path starts from, this is required so that the algorithm 

knows which road coordinate 

  *            to add first (could be first or last depending on the order that the road 

coordinates are stored 

  *            internally). 

  * @return the coordinates as a mapping between the coord and its associated 

speed (i.e. how fast the agent can 

  *         travel to the next coord) which is dependent on the type of edge and the 

agent (e.g. 
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  *         driving/walking/bus). LinkedHashMap is used to guarantee the insertion 

order of the coords is maintained. 

  * @throws RoutingException 

  */ 

 private void getRouteBetweenJunctions(List<RepastEdge<Junction>> 

shortestPath, Junction startingJunction) 

   throws RoutingException { 

  double time = System.nanoTime(); 

  if (shortestPath.size() < 1) { 

   // This could happen if the agent's destination is on the same road 

   // as the origin 

   return; 

  } 

  // Lock the currentAgent so that NetworkEdge objects know what speed 

to use (depends on transport available to 

  // the specific agent). 

 // synchronized (GlobalVars.TRANSPORT_PARAMS.currentBurglarLock) { 

 //  GlobalVars.TRANSPORT_PARAMS.currentAgent = this.agent; 

 

   // Iterate over all edges in the route adding coords and weights as 

appropriate 

   NetworkEdge<Junction> e; 

   Road r; 

   // Use sourceFirst to represent whether or not the edge's source 

does actually represent the start of the 

   // edge (agent could be going 'forwards' or 'backwards' over edge 

   boolean sourceFirst; 

   for (int i = 0; i < shortestPath.size(); i++) { 
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    e = (NetworkEdge<Junction>) shortestPath.get(i); 

    if (i == 0) { 

     // No coords in route yet, compare the source to 

the starting junction 

     sourceFirst = 

(e.getSource().equals(startingJunction)) ? true : false; 

    } else { 

     // Otherwise compare the source to the last coord 

added to the list 

     sourceFirst = 

(e.getSource().getCoords().equals(this.routeX.get(this.routeX.size() - 1))) ? true 

       : false; 

    } 

    /* 

     * Now add the coordinates describing how to move along 

the road. If there is no road associated with 

     * the edge (i.e. it is a transport route) then just add the 

source/dest coords. Note that the shared 

     * coordinates between two edges will be added twice, 

these must be removed later 

     */ 

    r = e.getRoad(); 

    /* 

     * Get the speed that the agent will be able to travel along 

this edge (depends on the transport 

     * available to the agent and the edge). Some speeds will 

be < 1 if the agent shouldn't be using this 

     * edge but doesn't have any other way of getting to the 

destination. in these cases set speed to 1 
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     * (equivalent to walking). 

     */ 

//    double speed = e.getSpeed(); 

//    if (speed < 1) 

//     speed = 1; 

 

    if (r == null) { // No road associated with this edge (it is a 

         // transport link) so 

just add source 

     if (sourceFirst) { 

      this.addToRoute(e.getSource().getCoords(), 

r, "getRouteBetweenJunctions - no road"); 

     // this.addToRoute(e.getTarget().getCoords(), 

r, "getRouteBetweenJunctions - no road"); 

      // (Note speed = -1 used because we don't 

know the weight to the next 

      // coordinate - this can be removed later) 

     } else { 

      this.addToRoute(e.getTarget().getCoords(), 

r, "getRouteBetweenJunctions - no road"); 

     // this.addToRoute(e.getSource().getCoords(), 

r, "getRouteBetweenJunctions - no road"); 

     } 

    } else { 

     // This edge is a road, add all the coords which 

make up its geometry 

     Coordinate[] roadCoords = 

ContextManager.roadProjection.getGeometry(r).getCoordinates(); 

     if (roadCoords.length < 2) 
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      throw new 

RoutingException("Route.getRouteBetweenJunctions: for some reason road " + "'" 

        + r.toString() + "' doesn't 

have at least two coords as part of its geometry (" 

        + roadCoords.length + ")"); 

     // Make sure the coordinates of the road are added 

in the correct order 

     if (!sourceFirst) { 

      ArrayUtils.reverse(roadCoords); 

     } 

     // Add all the road geometry's coords 

     for (int j = 0; j < roadCoords.length; j++) { 

      this.addToRoute(roadCoords[j], r, 

"getRouteBetweenJuctions - on road"); 

      // (Note that last coord will have wrong 

weight) 

     } // for roadCoords.length 

    } // if road!=null 

   } 

   // Check all lists are still the same size. 

   assert this.roadsX.size() == this.routeX.size() 

     //&& this.routeDescriptionX.size() == 

this.routeSpeedsX.size() 

     && this.roadsX.size() == 

this.routeDescriptionX.size(); 

 

   // Check all lists are still the same size. 

   assert this.roadsX.size() == this.routeX.size() 
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     //&& this.routeDescriptionX.size() == 

this.routeSpeedsX.size() 

     && this.roadsX.size() == 

this.routeDescriptionX.size(); 

 

   // Finished! 

   LOGGER.log(Level.FINER, "getRouteBetweenJunctions (" + 

(0.000001 * (System.nanoTime() - time)) + "ms"); 

   return; 

 // } // synchronized 

 } // getRouteBetweenJunctions 

 

 /** 

  * Determine whether or not the person associated with this Route is at their 

destination. Compares their current 

  * coordinates to the destination coordinates (must be an exact match). 

  *  

  * @return True if the person is at their destination 

  */ 

 public boolean atDestination() { 

  return 

ContextManager.getAgentGeometry(this.agent).getCoordinate().equals(this.destination

); 

 } 

 

 // /** 

 // * Removes any duplicate coordinates from the curent route (coordinates 

which 
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 // * are the same *and* next to each other in the list). 

 // * <p> 

 // * If my route-generating algorithm was better this would't be necessary. 

 // */ 

 // @Deprecated 

 // private void removePairs() throws RoutingException { 

 // if (this.routeX.size() < 1) { 

 // // No coords to iterate over, probably something has gone wrong 

 // throw new RoutingException("Route.removeDuplicateCoordinates(): 

WARNING an empty list has been " 

 // + "passed to this function, something has probably gone wrong"); 

 // } 

 // TempLogger.out("ROUTE BEFORE REMOVING PAIRS"); 

 // this.printRoute(); 

 // 

 // // (setRoute() has already checked that lists are same size) 

 // 

 // // Iterate over the list, removing coordinates that are the same as their 

neighbours. 

 // // (and associated objects in other lists) 

 // Iterator<Road> roadIt = this.roadsX.iterator(); 

 // Iterator<Coordinate> routeIt = this.routeX.iterator(); 

 // Iterator<Double> routeSpeedIt = this.routeSpeedsX.iterator(); 

 // Iterator<String> routeDescIt = this.routeDescriptionX.iterator(); 

 // Coordinate c1, c2; 

 // Road currentRoad = roadIt.next(); 

 // Road nextRoad = null; 



175 

 

 // routeIt.next(); routeSpeedIt.next(); routeDescIt.next(); 

 // while ( roadIt.hasNext() ) { 

 // nextRoad = roadIt.next(); 

 // routeIt.next(); 

 // routeSpeedIt.next(); 

 // routeDescIt.next(); 

 // 

 // c1 = currentRoad.getCoords(); 

 // c2 = nextRoad.getCoords(); 

 // 

 // if (c1.equals(c2)) { 

 // // Remove objects from the lists 

 // roadIt.remove(); 

 // routeIt.remove(); 

 // routeSpeedIt.remove(); 

 // routeDescIt.remove(); 

 // } 

 // else { 

 // currentRoad = nextRoad; 

 // } 

 // } 

 // 

 // TempLogger.out("ROUTE AFTER REMOVING PAIRS"); 

 // this.printRoute(); 

 // } 
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 private void printRoute() { 

  StringBuilder out = new StringBuilder(); 

  out.append("Printing route (" + this.agent.toString() + "). Current position 

in list is " 

    + this.currentPosition + " ('" + 

this.routeDescriptionX.get(this.currentPosition) + "')"); 

  for (int i = 0; i < this.routeX.size(); i++) { 

   out.append("\t(" + this.agent.toString() + ") " + 

this.routeX.get(i).toString() + "\t" 

     //+ this.routeSpeedsX.get(i).toString() + 

     + "\t" + this.roadsX.get(i) + "\t" 

     + this.routeDescriptionX.get(i)); 

  } 

  LOGGER.info(out.toString()); 

 } 

 

  

 /** 

  * Find the nearest object in the given geography to the coordinate. 

  *  

  * @param <T> 

  * @param x 

  *            The coordinate to search from 

  * @param geography 

  *            The given geography to look through 

  * @param closestPoints 
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  *            An optional List that will be populated with the closest points to x (i.e. 

the results of 

  *            <code>distanceOp.closestPoints()</code>. 

  * @param searchDist 

  *            The maximum distance to search for objects in. Small distances are 

more efficient but larger ones are 

  *            less likely to find no objects. 

  * @return The nearest object. 

  * @throws RoutingException 

  *             If an object cannot be found. 

  */ 

 public static synchronized <T> T findNearestObject(Coordinate x, Geography<T> 

geography, 

   List<Coordinate> closestPoints, 

GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE searchDist) 

   throws RoutingException { 

  if (x == null) { 

   throw new RoutingException("The input coordinate is null, cannot 

find the nearest object"); 

  } 

 

  T nearestObject = SpatialIndexManager.findNearestObject(geography, x, 

closestPoints, searchDist); 

 

  // Old way without using spatial index: 

  // 

  // GeometryFactory geomFac = new GeometryFactory(); 

  // Point point = geomFac.createPoint(x); 
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  // // TODO Use an expanding buffer that starts small but gets bigger if no 

object is found. 

  // 

  // Geometry buffer = point.buffer(searchDist.dist); 

  // double minDist = Double.MAX_VALUE; 

  // T nearestObject = null; 

  // for (T t : geography.getObjectsWithin(buffer.getEnvelopeInternal())) { 

  // DistanceOp distOp = new DistanceOp(point, 

geography.getGeometry(t)); 

  // double thisDist = distOp.distance(); 

  // if (thisDist < minDist) { 

  // minDist = thisDist; 

  // nearestObject = t; 

  // // Optionally record the closest points 

  // if (closestPoints != null) { 

  // closestPoints.clear(); 

  // // TODO clean conversion of array to List (don't have access 

  // // to internet!) 

  // Coordinate[] crds = distOp.closestPoints(); 

  // List<Coordinate> temp = new ArrayList(crds.length); 

  // for (Coordinate c : crds) 

  // temp.add(c); 

  // closestPoints.addAll(temp); 

  // } 

  // } // if thisDist < minDist 

  // } // for nearRoads 

  if (nearestObject == null) { 
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   throw new RoutingException("Couldn't find an object close to 

these coordinates:\n\t" + x.toString()); 

  } else { 

   return nearestObject; 

  } 

 } 

 

 /** 

  * Returns the angle of the vector from p0 to p1 relative to the x axis 

  * <p> 

  * The angle will be between -Pi and Pi. I got this directly from the JUMP program 

source. 

  *  

  * @return the angle (in radians) that p0p1 makes with the positive x-axis. 

  */ 

 public static synchronized double angle(Coordinate p0, Coordinate p1) { 

  double dx = p1.x - p0.x; 

  double dy = p1.y - p0.y; 

 

  return Math.atan2(dy, dx); 

 } 

 

 /** 

  * The building which this Route is targeting 

  * IMPORTANT ADD MORE HERE 

MOSTLY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

  *  
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  *  

  *  

  *  

  *  

  * @return the destinationHouse 

  */ 

 public Airport getDestinationAirport() { 

  if (this.destinationAirport == null) { 

   LOGGER.log(Level.WARNING, "Route: getDestinationAirport(), 

warning, no airportbuilding has " 

     + "been set. This might be ok, the agent might be 

supposed to be heading to a coordinate " 

     + "not a particular airport(?)"); 

   return null; 

  } 

  return destinationAirport; 

 } 

 

 /** 

  * The coordinate the route is targeting 

  *  

  * @return the destination 

  */ 

 public Coordinate getDestination() { 

  return this.destination; 

 } 
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 /** 

  * Maintain a cache of all coordinates which are part of a road segment. Store 

the coords and all the road(s) they 

  * are part of. 

  *  

  * @param coord 

  *            The coordinate which should be part of a road geometry 

  * @return The road(s) which the coordinate is part of or null if the coordinate is 

not part of any road 

  */ 

 private List<Road> getRoadFromCoordCache(Coordinate coord) { 

 

  populateCoordCache(); // Check the cache has been populated 

  return coordCache.get(coord); 

 } 

 

 /** 

  * Test if a coordinate is part of a road segment. 

  *  

  * @param coord 

  *            The coordinate which we want to test 

  * @return True if the coordinate is part of a road segment 

  */ 

 private boolean coordOnRoad(Coordinate coord) { 

  populateCoordCache(); // check the cache has been populated 

  return coordCache.containsKey(coord); 

 } 
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 private synchronized static void populateCoordCache() { 

 

  double time = System.nanoTime(); 

  if (coordCache == null) { // Fist check cache has been created 

   coordCache = new HashMap<Coordinate, List<Road>>(); 

   LOGGER.log(Level.FINER, 

     "Route.populateCoordCache called for first time, 

creating new cache of all Road coordinates."); 

  } 

  if (coordCache.size() == 0) { // Now popualte it if it hasn't already 

          // been 

populated 

   LOGGER.log(Level.FINER, "Route.populateCoordCache: is empty, 

creating new cache of all Road coordinates."); 

 

   for (Road r : 

ContextManager.roadContext.getObjects(Road.class)) { 

    for (Coordinate c : 

ContextManager.roadProjection.getGeometry(r).getCoordinates()) { 

     if (coordCache.containsKey(c)) { 

      coordCache.get(c).add(r); 

     } else { 

      List<Road> l = new ArrayList<Road>(); 

      l.add(r); 

      // TODO Need to put *new* coordinate 

here? Not use 

      // existing one in memory? 
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      coordCache.put(new Coordinate(c), l); 

     } 

    } 

   } 

 

   LOGGER.log(Level.FINER, "... finished caching all road coordinates 

(in " + 0.000001 

     * (System.nanoTime() - time) + "ms)"); 

  } 

 } 

 

 /** 

  * Find the buildings which can be accessed from the given road (the given road 

is the closest to the buildings). 

  * Uses a separate cache object which can be serialised so that the cache doesn't 

need to be rebuilt every time. 

  * THE OTHER BUILDINGS WILL GO HERE!!! 

  *  

  * !! 

  * ! 

  * ! 

  * ! 

  * ! 

  * ! 

  *  

  * @param road 

  * @return 
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  * @throws Exception 

  */ 

 private List<Airport> getAirportOnRoad(Road road) throws Exception { 

  if (airportOnRoadCache == null) { 

   LOGGER.log(Level.FINER, "Route.getAirportOnRoad called for first 

time, " 

     + "creating cache of all roads and the buildings 

which are on them ..."); 

   // Create a new cache object, this will be read from disk if possible 

(which is why the 

   // getInstance() method is used instead of the constructor. 

   String gisDir = GlobalVars.GISDataDirectory; 

   File airportFile = new File(gisDir + GlobalVars.AirportShapefile); 

   File roadsFile = new File(gisDir + GlobalVars.RoadShapefile); 

   File serialLoc = new File(gisDir + 

ContextManager.getProperty(GlobalVars.AirportRoadsCache)); 

   airportOnRoadCache = 

AirportOnRoadCache.getInstance(ContextManager.AirportProjection, airportFile, 

     ContextManager.roadProjection, roadsFile, 

serialLoc, new GeometryFactory()); 

  } // if not cached 

  return airportOnRoadCache.get(road); 

 } 

 

 /** 

  * Calculate the distance (in meters) between two Coordinates, using the 

coordinate reference system that the 

  * roadGeography is using. For efficiency it can return the angle as well (in the 

range -0 to 2PI) if returnVals 
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  * passed in as a double[2] (the distance is stored in index 0 and angle stored in 

index 1). 

  *  

  * @param c1 

  * @param c2 

  * @param returnVals 

  *            Used to return both the distance and the angle between the two 

Coordinates. If null then the distance 

  *            is just returned, otherwise this array is populated with the distance at 

index 0 and the angle at 

  *            index 1. 

  * @return The distance between Coordinates c1 and c2. 

  */ 

 public static synchronized double distance(Coordinate c1, Coordinate c2, 

double[] returnVals) { 

  // TODO check this now, might be different way of getting distance in 

new Simphony 

  GeodeticCalculator calculator = new 

GeodeticCalculator(ContextManager.roadProjection.getCRS()); 

  calculator.setStartingGeographicPoint(c1.x, c1.y); 

  calculator.setDestinationGeographicPoint(c2.x, c2.y); 

  double distance = calculator.getOrthodromicDistance(); 

  if (returnVals != null && returnVals.length == 2) { 

   returnVals[0] = distance; 

   double angle = Math.toRadians(calculator.getAzimuth()); // Angle 

in range -PI to PI 

   // Need to transform azimuth (in range -180 -> 180 and where 0 

points north) 

   // to standard mathematical (range 0 -> 360 and 90 points north) 
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   if (angle > 0 && angle < 0.5 * Math.PI) { // NE Quadrant 

    angle = 0.5 * Math.PI - angle; 

   } else if (angle >= 0.5 * Math.PI) { // SE Quadrant 

    angle = (-angle) + 2.5 * Math.PI; 

   } else if (angle < 0 && angle > -0.5 * Math.PI) { // NW Quadrant 

    angle = (-1 * angle) + 0.5 * Math.PI; 

   } else { // SW Quadrant 

    angle = -angle + 0.5 * Math.PI; 

   } 

   returnVals[1] = angle; 

  } 

  return distance; 

 } 

 

 /** 

  * Converts a distance lat/long distance (e.g. returned by DistanceOp) to meters. 

The calculation isn't very 

  * accurate because (probably) it assumes that the distance is between two 

points that lie exactly on a line of 

  * longitude (i.e. one is exactly due north of the other). For this reason the value 

shouldn't be used in any 

  * calculations which is why it's returned as a String. 

  *  

  * @param dist 

  *            The distance (as returned by DistanceOp) to convert to meters 

  * @return The approximate distance in meters as a String (to discourage using 

this approximate value in 
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  *         calculations). 

  * @throws Exception 

  * @see com.vividsolutions.jts.operation.distance.DistanceOp 

  */ 

 public static synchronized String distanceToMeters(double dist) throws 

Exception { 

  // Works by creating two coords (close to a randomly chosen object) 

which are a certain distance apart 

  // then using similar method as other distance() function 

  GeodeticCalculator calculator = new 

GeodeticCalculator(ContextManager.roadProjection.getCRS()); 

  Coordinate c1 = 

ContextManager.AirportContext.getRandomObject().getCoords(); 

  calculator.setStartingGeographicPoint(c1.x, c1.y); 

  calculator.setDestinationGeographicPoint(c1.x, c1.y + dist); 

  return String.valueOf(calculator.getOrthodromicDistance()); 

 } 

 

 public void clearCaches() { 

  if (coordCache != null) 

   coordCache.clear(); 

  if (nearestRoadCoordCache != null) { 

   nearestRoadCoordCache.clear(); 

   nearestRoadCoordCache = null; 

  } 

   

  if (airportOnRoadCache != null) { 
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   airportOnRoadCache.clear(); 

   airportOnRoadCache = null; 

  } 

  // if (routeCache != null) { 

  // routeCache.clear(); 

  // routeCache = null; 

  // } 

  // if (routeDistanceCache != null) { 

  // routeDistanceCache.clear(); 

  // routeDistanceCache = null; 

  // } 

 } 

 

 // /** 

 // * Will add the given buildings to the awareness space of the Burglar who is 

 // * being controlled by this Route. Also tells the burglar which buildings 

 // * have been passed if appropriate, this is needed for agents who are 

 // * currently looking for a burglary target. 

 // * 

 // * @param buildings 

 // * A list of buildings 

 // */ 

 // @SuppressWarnings("unchecked") 

 // protected <T> void passedObjects(List<T> objects, Class<T> clazz) { 

 // this.agent.addToMemory(objects, clazz); 

 // if (clazz.isAssignableFrom(Building.class)) { 
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 // // System.out.println("Route.passedObjects(): "+objects.toString()); 

 // this.agent.buildingsPassed((List<Building>) objects); 

 // } 

 // } 

 

 /** 

  * Will add the given buildings to the awareness space of the Burglar who is 

being controlled by this Route. 

  *  

  * @param buildings 

  *            A list of buildings 

  */ 

 protected <T> void passedObject(T object, Class<T> clazz) { 

  List<T> list = new ArrayList<T>(1); 

  list.add(object); 

  this.agent.addToMemory(list, clazz); 

 } 

 

} 

 

/* 

************************************************************************ 

*/ 

 

/** 

 * Class can be used to store a cache of all roads and the buildings which can be 

accessed by them (a map of 
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 * Road<->List<Building>. Buildings are 'accessed' by traveling to the road which is 

nearest to them. 

 * <p> 

 * This class can be serialized so that if the GIS data doesn't change it doesn't have to be 

re-calculated each time. 

 * However, the Roads and Buildings themselves cannot be serialised because if they are 

there will be two sets of Roads 

 * and BUildings, the serialised ones and those that were created when the model was 

initialised. To get round this, an 

 * array which contains the road and building ids is serialised and the cache is re-built 

using these caches ids after 

 * reading the serialised cache. This means that the id's given to Buildings and Roads 

must not change (i.e. 

 * auto-increment numbers are no good because if a simulation is restarted the static 

auto-increment variables will not 

 * be reset to 0). 

 *  

 *  

 */ 

class AirportOnRoadCache implements Serializable { 

 

 private static Logger LOGGER = 

Logger.getLogger(AirportOnRoadCache.class.getName()); 

 

 private static final long serialVersionUID = 1L; 

 // The actual cache, this isn't serialised 

 private static transient Hashtable<Road, ArrayList<Airport>> theCache; 

 // The 'reference' cache, stores the building and road ids and can be 

 // serialised 
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 private Hashtable<String, ArrayList<String>> referenceCache; 

 

 // Check that the road/building data hasn't been changed since the cache was 

 // last created 

 private File airportFile; 

 private File roadsFile; 

 // The location that the serialised object might be found. 

 private File serialisedLoc; 

 // The time that this cache was created, can be used to check data hasn't 

 // changed since 

 private long createdTime; 

 

 // Private constructor because getInstance() should be used 

 private AirportOnRoadCache(Geography<Airport> airportEnvironment, File 

airportFile, 

   Geography<Road> roadEnvironment, File roadsFile, File 

serialisedLoc, GeometryFactory geomFac) 

   throws Exception { 

  // this.buildingEnvironment = buildingEnvironment; 

  // this.roadEnvironment = roadEnvironment; 

  this.airportFile = airportFile; 

  this.roadsFile = roadsFile; 

  this.serialisedLoc = serialisedLoc; 

  theCache = new Hashtable<Road, ArrayList<Airport>>(); 

  this.referenceCache = new Hashtable<String, ArrayList<String>>(); 
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  LOGGER.log(Level.FINE, "airportOnRoadCache() creating new cache with 

data (and modification date):\n\t" 

    + this.airportFile.getAbsolutePath() + " (" + new 

Date(this.airportFile.lastModified()) + ")\n\t" 

    + this.roadsFile.getAbsolutePath() + " (" + new 

Date(this.roadsFile.lastModified()) + ")\n\t" 

    + this.serialisedLoc.getAbsolutePath()); 

 

  populateCache(airportEnvironment, roadEnvironment, geomFac); 

  this.createdTime = new Date().getTime(); 

  serialise(); 

 } 

 

 public void clear() { 

  theCache.clear(); 

  this.referenceCache.clear(); 

 

 } 

 

 private void populateCache(Geography<Airport> airportEnvironment, 

Geography<Road> roadEnvironment, 

   GeometryFactory geomFac) throws Exception { 

  double time = System.nanoTime(); 

  for (Airport b : airportEnvironment.getAllObjects()) { 

   // Find the closest road to this building 

   Geometry airportPoint = geomFac.createPoint(b.getCoords()); 

   double minDistance = Double.MAX_VALUE; 
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   Road closestRoad = null; 

   double distance; 

   Envelope e = 

airportPoint.buffer(GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.LARGE.dist) 

     .getEnvelopeInternal(); 

   for (Road r : roadEnvironment.getObjectsWithin(e)) { 

    distance = DistanceOp.distance(airportPoint, 

ContextManager.roadProjection.getGeometry(r)); 

    if (distance < minDistance) { 

     minDistance = distance; 

     closestRoad = r; 

    } 

   } // for roads 

    // Found the closest road, add the information to the 

cache 

   if (theCache.containsKey(closestRoad)) { 

    theCache.get(closestRoad).add(b); 

   

 this.referenceCache.get(closestRoad.getIdentifier()).add(b.getIdentifier()); 

   } else { 

    ArrayList<Airport> l = new ArrayList<Airport>(); 

    l.add(b); 

    theCache.put(closestRoad, l); 

    ArrayList<String> l2 = new ArrayList<String>(); 

    l2.add(b.getIdentifier()); 

    this.referenceCache.put(closestRoad.getIdentifier(), l2); 

   } 
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  } // for buildings 

  int numRoads = theCache.keySet().size(); 

  int numBuildings = 0; 

  for (List<Airport> l : theCache.values()) 

   numBuildings += l.size(); 

  LOGGER.log(Level.FINER, "Finished caching roads and buildings. Cached " 

+ numRoads + " roads and " 

    + numBuildings + " buildings in " + 0.000001 * 

(System.nanoTime() - time) + "ms"); 

 } 

 

 public List<Airport> get(Road r) { 

  return theCache.get(r); 

 } 

 

 private void serialise() throws IOException { 

  double time = System.nanoTime(); 

  FileOutputStream fos = null; 

  ObjectOutputStream out = null; 

  try { 

   if (!this.serialisedLoc.exists()) 

    this.serialisedLoc.createNewFile(); 

   fos = new FileOutputStream(this.serialisedLoc); 

   out = new ObjectOutputStream(fos); 

   out.writeObject(this); 

   out.close(); 

  } catch (IOException ex) { 
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   if (serialisedLoc.exists()) 

    serialisedLoc.delete(); // delete to stop problems loading 

incomplete file next time 

   throw ex; 

  } 

  LOGGER.log(Level.FINER, "Serialised AirportOnRoadCache to " + 

this.serialisedLoc.getAbsolutePath() + " in (" 

    + 0.000001 * (System.nanoTime() - time) + "ms)"); 

 } 

 

 /** 

  * Used to create a new BuildingsOnRoadCache object. This function is used 

instead of the constructor directly so 

  * that the class can check if there is a serialised version on disk already. If not 

then a new one is created and 

  * returned. 

  *  

  * @param buildingEnv 

  * @param buildingsFile 

  * @param roadEnv 

  * @param roadsFile 

  * @param serialisedLoc 

  * @param geomFac 

  * @return 

  * @throws Exception 

  */ 

 public synchronized static AirportOnRoadCache 

getInstance(Geography<Airport> airportEnv, File airportFile, 
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   Geography<Road> roadEnv, File roadsFile, File serialisedLoc, 

GeometryFactory geomFac) throws Exception { 

  double time = System.nanoTime(); 

  // See if there is a cache object on disk. 

  if (serialisedLoc.exists()) { 

   FileInputStream fis = null; 

   ObjectInputStream in = null; 

   AirportOnRoadCache bc = null; 

   try { 

    fis = new FileInputStream(serialisedLoc); 

    in = new ObjectInputStream(fis); 

    bc = (AirportOnRoadCache) in.readObject(); 

    in.close(); 

 

    // Check that the cache is representing the correct data 

and the 

    // modification dates are ok 

    // (WARNING, if this class is re-compiled the serialised 

object 

    // will still be read in). 

    if 

(!airportFile.getAbsolutePath().equals(bc.airportFile.getAbsolutePath()) 

      || 

!roadsFile.getAbsolutePath().equals(bc.roadsFile.getAbsolutePath()) 

      || airportFile.lastModified() > 

bc.createdTime || roadsFile.lastModified() > bc.createdTime) { 

     LOGGER.log(Level.FINER, "BuildingsOnRoadCache, 

found serialised object but it doesn't match the " 
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       + "data (or could have different 

modification dates), will create a new cache."); 

    } else { 

     // Have found a useable serialised cache. Now use 

the cached 

     // list of id's to construct a 

     // new cache of buildings and roads. 

     // First need to buld list of existing roads and 

buildings 

     Hashtable<String, Road> allRoads = new 

Hashtable<String, Road>(); 

     for (Road r : roadEnv.getAllObjects()) 

      allRoads.put(r.getIdentifier(), r); 

     Hashtable<String, Airport> allAirport = new 

Hashtable<String, Airport>(); 

     for (Airport b : airportEnv.getAllObjects()) 

      allAirport.put(b.getIdentifier(), b); 

 

     // Now create the new cache 

     theCache = new Hashtable<Road, 

ArrayList<Airport>>(); 

 

     for (String roadId : bc.referenceCache.keySet()) { 

      ArrayList<Airport> buildings = new 

ArrayList<Airport>(); 

      for (String airportId : 

bc.referenceCache.get(roadId)) { 

      

 buildings.add(allAirport.get(airportId)); 
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      } 

      theCache.put(allRoads.get(roadId), 

buildings); 

     } 

     LOGGER.log(Level.FINER, "BuildingsOnRoadCache, 

found serialised cache, returning it (in " 

       + 0.000001 * (System.nanoTime() - 

time) + "ms)"); 

     return bc; 

    } 

   } catch (IOException ex) { 

    if (serialisedLoc.exists()) 

     serialisedLoc.delete(); // delete to stop problems 

loading incomplete file next tinme 

    throw ex; 

   } catch (ClassNotFoundException ex) { 

    if (serialisedLoc.exists()) 

     serialisedLoc.delete(); 

    throw ex; 

   } 

 

  } 

 

  // No serialised object, or got an error when opening it, just create a 

  // new one 

  return new AirportOnRoadCache(airportEnv, airportFile, roadEnv, 

roadsFile, serialisedLoc, geomFac); 

 } 
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} 

 

/* 

************************************************************************ 

*/ 

 

/** 

 * Caches the nearest road Coordinate to every building for efficiency (agents 

usually/always need to get from the 

 * centroids of houses to/from the nearest road). 

 * <p> 

 * This class can be serialised so that if the GIS data doesn't change it doesn't have to be 

re-calculated each time. 

 *  

 * 

 */ 

class NearestRoadCoordCache implements Serializable { 

 

 private static Logger LOGGER = 

Logger.getLogger(NearestRoadCoordCache.class.getName()); 

 

 private static final long serialVersionUID = 1L; 

 private Hashtable<Coordinate, Coordinate> theCache; // The actual cache 

 // Check that the road/building data hasn't been changed since the cache was 

 // last created 

 private File airportFile; 

 private File roadsFile; 

 // The location that the serialised object might be found. 
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 private File serialisedLoc; 

 // The time that this cache was created, can be used to check data hasn't 

 // changed since 

 private long createdTime; 

 

 private GeometryFactory geomFac; 

 

 private NearestRoadCoordCache(Geography<Airport> airportEnvironment, File 

airportFile, 

   Geography<Road> roadEnvironment, File roadsFile, File 

serialisedLoc, GeometryFactory geomFac) 

   throws Exception { 

 

  this.airportFile = airportFile; 

  this.roadsFile = roadsFile; 

  this.serialisedLoc = serialisedLoc; 

  this.theCache = new Hashtable<Coordinate, Coordinate>(); 

  this.geomFac = geomFac; 

 

  LOGGER.log(Level.FINE, "NearestRoadCoordCache() creating new cache 

with data (and modification date):\n\t" 

    + this.airportFile.getAbsolutePath() + " (" + new 

Date(this.airportFile.lastModified()) + ") \n\t" 

    + this.roadsFile.getAbsolutePath() + " (" + new 

Date(this.roadsFile.lastModified()) + "):\n\t" 

    + this.serialisedLoc.getAbsolutePath()); 

 

  populateCache(airportEnvironment, roadEnvironment); 
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  this.createdTime = new Date().getTime(); 

  serialise(); 

 } 

 

 public void clear() { 

  this.theCache.clear(); 

 } 

 

 private void populateCache(Geography<Airport> airportEnvironment, 

Geography<Road> roadEnvironment) 

   throws Exception { 

  double time = System.nanoTime(); 

  theCache = new Hashtable<Coordinate, Coordinate>(); 

  // Iterate over every building and find the nearest road point 

  for (Airport b : airportEnvironment.getAllObjects()) { 

   List<Coordinate> nearestCoords = new ArrayList<Coordinate>(); 

   Route.findNearestObject(b.getCoords(), roadEnvironment, 

nearestCoords, 

    

 GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.LARGE); 

   // Two coordinates returned by closestPoints(), need to find the 

one 

   // which isn't the building coord 

   Coordinate nearestPoint = null; 

   for (Coordinate c : nearestCoords) { 

    if (!c.equals(b.getCoords())) { 

     nearestPoint = c; 
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     break; 

    } 

   } // for nearestCoords 

   if (nearestPoint == null) { 

    throw new Exception("Route.getNearestRoadCoord() 

error: couldn't find a road coordinate which " 

      + "is close to building " + b.toString()); 

   } 

   theCache.put(b.getCoords(), nearestPoint); 

  }// for Buildings 

  LOGGER.log(Level.FINER, "Finished caching nearest roads (" + (0.000001 * 

(System.nanoTime() - time)) + "ms)"); 

 } // if nearestRoadCoordCache = null; 

 

 /** 

  *  

  * @param c 

  * @return 

  * @throws Exception 

  */ 

 public Coordinate get(Coordinate c) throws Exception { 

  if (c == null) { 

   throw new Exception("Route.NearestRoadCoordCache.get() 

error: the given coordinate is null."); 

  } 

  double time = System.nanoTime(); 

  Coordinate nearestCoord = this.theCache.get(c); 
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  if (nearestCoord != null) { 

   LOGGER.log(Level.FINER, "NearestRoadCoordCache.get() (using 

cache) - (" 

     + (0.000001 * (System.nanoTime() - time)) + "ms)"); 

   return nearestCoord; 

  } 

  // If get here then the coord is not in the cache, agent not starting their 

journey from a house, search for 

  // it manually. Search all roads in the vicinity, looking for the point which 

is nearest the person 

  double minDist = Double.MAX_VALUE; 

  Coordinate nearestPoint = null; 

  Point coordGeom = this.geomFac.createPoint(c); 

 

  // Note: could use an expanding envelope that starts small and gets 

bigger 

  double bufferDist = 

GlobalVars.GEOGRAPHY_PARAMS.BUFFER_DISTANCE.LARGE.dist; 

  double bufferMultiplier = 1.0; 

  Envelope searchEnvelope = coordGeom.buffer(bufferDist * 

bufferMultiplier).getEnvelopeInternal(); 

  StringBuilder debug = new StringBuilder(); // incase the operation fails 

 

  for (Road r : 

ContextManager.roadProjection.getObjectsWithin(searchEnvelope)) { 

 

   DistanceOp distOp = new DistanceOp(coordGeom, 

ContextManager.roadProjection.getGeometry(r)); 

   double thisDist = distOp.distance(); 
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   // BUG?: if an agent is on a really long road, the long road will not 

be found by getObjectsWithin because 

   // it is not within the buffer 

   debug.append("\troad ").append(r.toString()).append(" is 

").append(thisDist).append( 

     " distance away (at closest point). "); 

 

   if (thisDist < minDist) { 

    minDist = thisDist; 

    Coordinate[] closestPoints = distOp.closestPoints(); 

    // Two coordinates returned by closestPoints(), need to 

find the 

    // one which isn''t the coord parameter 

    debug.append("Closest points 

(").append(closestPoints.length).append(") are: ").append( 

      Arrays.toString(closestPoints)); 

    nearestPoint = (c.equals(closestPoints[0])) ? 

closestPoints[1] : closestPoints[0]; 

    debug.append("Nearest point is 

").append(nearestPoint.toString()); 

    nearestPoint = (c.equals(closestPoints[0])) ? 

closestPoints[1] : closestPoints[0]; 

   } // if thisDist < minDist 

   debug.append("\n"); 

 

  } // for nearRoads 

 

  if (nearestPoint != null) { 
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   LOGGER.log(Level.FINER, "NearestRoadCoordCache.get() (not 

using cache) - (" 

     + (0.000001 * (System.nanoTime() - time)) + "ms)"); 

   return nearestPoint; 

  } 

  /* IF HERE THEN ERROR, PRINT DEBUGGING INFO */ 

  StringBuilder debugIntro = new StringBuilder(); // Some extra info for 

debugging 

  debugIntro.append("Route.NearestRoadCoordCache.get() error: couldn't 

find a coordinate to return.\n"); 

  Iterable<Road> roads = 

ContextManager.roadProjection.getObjectsWithin(searchEnvelope); 

  debugIntro.append("Looking for nearest road coordinate around 

").append(c.toString()).append(".\n"); 

  debugIntro.append("RoadEnvironment.getObjectsWithin() returned 

").append( 

    ContextManager.sizeOfIterable(roads) + " roads, printing 

debugging info:\n"); 

  debugIntro.append(debug); 

  throw new Exception(debugIntro.toString()); 

 

 } 

 

 private void serialise() throws IOException { 

  double time = System.nanoTime(); 

  FileOutputStream fos = null; 

  ObjectOutputStream out = null; 

  try { 



206 

 

   if (!this.serialisedLoc.exists()) 

    this.serialisedLoc.createNewFile(); 

   fos = new FileOutputStream(this.serialisedLoc); 

   out = new ObjectOutputStream(fos); 

   out.writeObject(this); 

   out.close(); 

  } catch (IOException ex) { 

   if (serialisedLoc.exists()) { 

    // delete to stop problems loading incomplete file next 

time 

    serialisedLoc.delete(); 

   } 

   throw ex; 

  } 

  LOGGER.log(Level.FINE, "... serialised NearestRoadCoordCache to " + 

this.serialisedLoc.getAbsolutePath() 

    + " in (" + 0.000001 * (System.nanoTime() - time) + "ms)"); 

 } 

 

 /** 

  * Used to create a new AirportsOnRoadCache object. This function is used 

instead of the constructor directly so 

  * that the class can check if there is a serialised version on disk already. If not 

then a new one is created and 

  * returned. 

  *  

  * @param buildingEnv 
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  * @param buildingsFile 

  * @param roadEnv 

  * @param roadsFile 

  * @param serialisedLoc 

  * @param geomFac 

  * @return 

  * @throws Exception 

  */ 

 public synchronized static NearestRoadCoordCache 

getInstance(Geography<Airport> airportEnv, File airportFile, 

   Geography<Road> roadEnv, File roadsFile, File serialisedLoc, 

GeometryFactory geomFac) throws Exception { 

  double time = System.nanoTime(); 

  // See if there is a cache object on disk. 

  if (serialisedLoc.exists()) { 

   FileInputStream fis = null; 

   ObjectInputStream in = null; 

   NearestRoadCoordCache ncc = null; 

   try { 

 

    fis = new FileInputStream(serialisedLoc); 

    in = new ObjectInputStream(fis); 

    ncc = (NearestRoadCoordCache) in.readObject(); 

    in.close(); 

 

    // Check that the cache is representing the correct data 

and the 
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    // modification dates are ok 

    if 

(!airportFile.getAbsolutePath().equals(ncc.airportFile.getAbsolutePath()) 

      || 

!roadsFile.getAbsolutePath().equals(ncc.roadsFile.getAbsolutePath()) 

      || airportFile.lastModified() > 

ncc.createdTime || roadsFile.lastModified() > ncc.createdTime) { 

     LOGGER.log(Level.FINE, "BuildingsOnRoadCache, 

found serialised object but it doesn't match the " 

       + "data (or could have different 

modification dates), will create a new cache."); 

    } else { 

     LOGGER.log(Level.FINER, 

"NearestRoadCoordCache, found serialised cache, returning it (in " 

       + 0.000001 * (System.nanoTime() - 

time) + "ms)"); 

     return ncc; 

    } 

   } catch (IOException ex) { 

    if (serialisedLoc.exists()) 

     serialisedLoc.delete(); // delete to stop problems 

loading incomplete file next tinme 

    throw ex; 

   } catch (ClassNotFoundException ex) { 

    if (serialisedLoc.exists()) 

     serialisedLoc.delete(); 

    throw ex; 

   } 
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  } 

 

  // No serialised object, or got an error when opening it, just create a new 

one 

  return new NearestRoadCoordCache(airportEnv, airportFile, roadEnv, 

roadsFile, serialisedLoc, geomFac); 

 } 

 

} 

 

/** 

 * Used to cache routes. Saves the origin and destination coords and the transport 

available to the agent (if transport 

 * changes then the agent might have to create a new route. 

 *  

 *  

 */ 

class CachedRoute { 

 private List<Coordinate> theRoute; 

 private List<Double> routeSpeeds; 

 private List<String> routeDescriptions; 

 private List<Road> roads; 

 private Coordinate origin; 

 private Coordinate destination; 

 private List<String> transportAvailable; 

 // Used to generate hash codes (each route must have unique ID) 

 private static int uniqueRouteCacheID; 
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 private int uniqueID; 

 

 public CachedRoute(Coordinate origin, Coordinate destination, List<String> 

transportAvailable) { 

  this.origin = origin; 

  this.destination = destination; 

  this.transportAvailable = transportAvailable; 

  this.uniqueID = CachedRoute.uniqueRouteCacheID++; 

 } 

 

 public void setRoute(List<Coordinate> theRoute, List<Road> roads, List<Double> 

routeSpeeds, 

   List<String> routeDescriptions) { 

  this.theRoute = theRoute; 

  this.roads = roads; 

  this.routeSpeeds = routeSpeeds; 

  this.routeDescriptions = routeDescriptions; 

 } 

 

 public List<Coordinate> getRoute() { 

  return this.theRoute; 

 } 

 

 public List<Double> getRouteSpeeds() { 

  return this.routeSpeeds; 

 } 
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 public List<Road> getRoads() { 

  return this.roads; 

 } 

 

 public List<String> getDescriptions() { 

  return this.routeDescriptions; 

 } 

 

 @Override 

 public String toString() { 

  return "CachedRoute " + this.uniqueID; 

 } 

 

 /** 

  * Returns true if input object is a CachedRoute and the the origin, destination 

and transport available are the 

  * same as this CachedRoute 

  */ 

 @Override 

 public boolean equals(Object obj) { 

  if (obj instanceof CachedRoute) { 

   CachedRoute r = (CachedRoute) obj; 

   return (r.origin.equals(this.origin)) && 

(r.destination.equals(this.destination)) 

     && 

(r.transportAvailable.equals(this.transportAvailable)); 

  } else { 
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   return false; 

  } 

 } 

 

 /** 

  * Returns: 

<code>Float.floatToIntBits((float)(this.origin.getX()+this.origin.getY()))</code> 

  */ 

 @Override 

 public int hashCode() { 

  return Float.floatToIntBits((float) (this.origin.x + this.origin.y)); 

 } 

} 

 

/** 

 * Used to cache route distances. Saves the origin and destination coords and the 

transport available to the agent (if 

 * transport changes then the agent might have to create a new route). 

 *  

 * @author Nick Malleson 

 */ 

class CachedRouteDistance { 

 private Coordinate origin; 

 private Coordinate destination; 

 private List<String> transportAvailable; 

 private static int uniqueRouteCacheID; // Used to generate hash codes (each 
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           // 

route must have unique ID) 

 private int uniqueID; 

 

 // private List<Coord> theRoute; // The actual route (a list of coords) 

 

 public CachedRouteDistance(Coordinate origin, Coordinate destination, 

List<String> transportAvailable) { 

  this.origin = origin; 

  this.destination = destination; 

  this.transportAvailable = transportAvailable; 

  this.uniqueID = CachedRouteDistance.uniqueRouteCacheID++; 

 } 

 

 @Override 

 public String toString() { 

  return "CachedRouteDistance " + this.uniqueID; 

 } 

 

 /** 

  * Returns true if input object is a CachedRoute and the the origin, destination 

and transport available are the 

  * same as this CachedRoute. Because routes are non-directional the origins and 

destinations are interchangeable. 

  */ 

 @Override 

 public boolean equals(Object obj) { 
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  if (obj instanceof CachedRouteDistance) { 

   CachedRouteDistance r = (CachedRouteDistance) obj; 

   return ((r.origin.equals(this.origin) && 

r.destination.equals(this.destination)) || (r.origin 

     .equals(this.destination) && 

r.destination.equals(this.origin))) 

     && 

r.transportAvailable.equals(this.transportAvailable); 

  } else { 

   return false; 

  } 

 } 

 

 /** 

  * Returns: 

<code>Float.floatToIntBits((float)(this.origin.getX()+this.origin.getY()))</code> 

  */ 

 @Override 

 public int hashCode() { 

  return Float.floatToIntBits((float) (this.origin.x + this.origin.y)); 

 } 

} 

 

/** 

 * Convenience class for creating deep copies of lists/maps (copies the values stored as 

well). Haven't made this 

 * generic because need access to constructors to create new objects (e.g. new 

Coord(c)) 
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 */ 

final class Cloning { 

 

 public static List<Coordinate> copy(List<Coordinate> in) { 

 

  List<Coordinate> out = new ArrayList<Coordinate>(in.size()); 

  for (Coordinate c : in) { 

   // TODO Check this Coordinate constructor does what I expect it 

to 

   out.add(new Coordinate(c)); 

  } 

  return out; 

 } 

 

 // Not used now that route speeds are a list, not a map 

 // public static LinkedHashMap<Coordinate, Double> 

 // copy(LinkedHashMap<Coordinate, Double> in) { 

 // 

 // LinkedHashMap<Coordinate, Double> out = new LinkedHashMap<Coordinate, 

 // Double>(in.size()); 

 // for (Coordinate c : in.keySet()) { 

 // out.put(c, in.get(c)); 

 // } 

 // return out; 

 // } 
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// private List<Coord> theRoute; // The actual route (a list of coords) 

 

 public CachedRouteDistance(Coordinate origin, Coordinate destination, 

List<String> transportAvailable) { 

  this.origin = origin; 

  this.destination = destination; 

  this.transportAvailable = transportAvailable; 

  this.uniqueID = CachedRouteDistance.uniqueRouteCacheID++; 

 } 
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