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TRANSIENT HYDRAULIC SIMULATION: BREACHED EARTH DAMS 

1 
By Danny L. Fread , M. ASCE 

KEY WORDS: breach; computer; earth dams; hydraulics; method of charac­
teristics; numerical model; reservoirs; simulation; St. Venant equations; 
transient open-channel flow. 

Abstract: A conceptual method to alleviate flood damages due to over­
topping failures of small earthfill dams is the incorporation of a 
relatively thin erosion retarding layer within the dam. This paper 
investigates the reduction in the reservoir release due to the hypothet­
ical erosion retarding layer. In addition, the paper provides a method 
for the determination of an optimal location of the layer so as to 
minimize the maximum possible reservoir release due to a gradually 
breached earth dam. The transient reservoir flow is simulated by a 
numerical model, based upon the solution of the one-dimensional St. 
Venant unsteady open-channel flow equations. These equations are 
solved by the method of characteristics, with appropriate boundary 
conditions incorporated into the solution procedure. The numerical 
simulation model is used to determine the reduction in reservoir re­
lease due to a single retarding layer and its optimal location for a 
wide range of pertinent geometric, hydraulic and dynamic parameters. 
The sensitivity of the results to variations in the above parameters 
is discussed. 

1Research Assistant, Civil Engineering Department, University of 
Missouri-Rolla, Rolla, Missouri 65401. 
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INTRODUCTION 

Numerous small homogeneous earthfill dams, up to approximately 

100 ft. in height, have failed or are subject to possible failure 

from over-topping because of inadequate spillways (20, 31). 2 Such 

failures may cause considerable property damage and even the loss of 

life. Inadequate spillways prevalent on many dams are generally due 

1 

to the lack of engineering consultation during design and construction; 

however, even with engineering advice, incomplete or unavailable 

hydrologic data may result in the spillway being designed for less 

than the critical storm, resulting in the eventual failure or breach 

of the structure. 

A conceptual method of alleviating downstream damages from 

breached earth dams is to provide a relatively thin erosion retarding 

layer at an optimal elevation within the dam. Thus, in the event of 

an over-topping of the dam, the resulting breach would not develop con-

tinuously but rather be delayed by the hypothetical erosion retarding 

layer. Such a controlled breach would produce two distinct flood waves 

of a reduced amplitude compared to the single flood wave produced by 

a breach of an earth dam without a retarding layer. Consequently, a 

reduction in downstream damages would be obtained. 

In this paper, the hydraulic characteristics of transient reser-

voir flow resulting from gradually breached earthfill dams are investi­

gated in order to ascertain the reduction of the flood wave peak due 

2 Numerals in parentheses refer to correspondin~ items in Appendix I. -
References 
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to a retarding layer. This reduced flood wave peak discharge is shown 

to be directly attributable to the retarding layer's effect in reducing 

the reservoir outflow. 

Basic assumptions concerning the geometric and dynamic aspects of 

the phenomenon are made in order to develop a generalized numerical 

simulation model of the transient reservoir flow due to a breached dam. 

An experimental model is used to verify the numerical model. The numer-

ical model is used to determine the expected reduction in outflow due 

to a single retarding layer for several pertinent geometric, dynamic, 

and hydraulic parameters. Also, the elevation of the retarding layer 

is optimized such that the maximum possible outflow from a gradually 

breached dam is minimized. 

THEORY 

S~. Venant V~66~entiai Equ~ono. - The basis for formulating a 

numerical simulation model of the transient reservoir flow due to a 

gradually breached dam is the premise that such a phenomenon is well-

approximated by the one-dimensional differential equations of gradually 

varied, unsteady channel flow. These equations are attributed to 

A.J.C. Barre' de Saint-Venant and are known as the "St. Venant equations". 

They are derived in several references (5,11,15,25,27) and are simply 

stated herein as 

1.Y. + D av + ~ 
at ax v ax 

0 ••••••••••••••••••••••••••••••••• ( 1) 

av + v av + g ~ + g(Sf-So) 
at ax ax 

0 •••••.•..••••••••..•.• ( 2) 
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in which y = the depth of flow in the channel, v = the average velocity 

across a section of channel, D = the hydraulic mean depth which is equiva-

lent to A/T, T = the width of the free water surface, A= the cross-

sectional area, g = the acceleration due to gravity, x = the distance 

along the channel, and t = the time. In this paper, the channel (reser-

voir) is prismatic, and S 
0 

the slope of the reservoir bottom which 

is small and is approximated by sin e, where e is the angle of inclina-

tion of the reservoir bottom with a horizontal datum line. Hydrostatic 

conditions exist throughout the flowing fluid, and the resistance to 

flow due to the shear force at the wetted perimeter P is accounted for 

by use of Manning's equation for steady uniform flow. Thus, the fric-

tion slope Sf, which is the slope of the energy grade line, can be 

approximated by 

..•.•••.•••..•..•••.••..•••••..•••••.•.•. ( 3) 

in which n the Manning coefficient, and the hydraulic radius R = A/P. 

Hence, the St. Venant equations, which are quasi-linear hyperbolic 

partial differential equations, describe the transient flow within the 

element of water that is bounded by two vertical cross sections shown 

in Fig. 1. Eq. 1 is known as the "equation of continuity" and mathemat-

ically expresses the Law of Conservation of Mass of the incompressible 

fluid within the element. Eq. 2, which is derived from Newton's Second 

Law of Motion, is known as the "equation of motion" and expresses the 

Law of Conservation of Momentum of the fluid within the element. 

The initial condition of the flow within the reservoir, i.e. the 

depths and velocities, must be known in order that solutions to the 
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FIGURE 1. ELEMENTARY CHANNEL REACH 
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St. Venant equations may be obtained. The initial condition of the 

flow may be steady gradually varied, unsteady gradually varied, or 

steady uniform flow, etc. 

Boundary conditions at the upstream and downstream extremities 

of the reservoir are essential to the solution of the St. Venant equa-

tions. A boundary condition is a known relationship between any two 

of the variables v, y, t and the flow rate Q throughout the time that 

solutions to the equations are desired. The upstream boundary condition, 

used in this paper, is a known relationship between Q and t, i.e. 
u 

Q = Q (t). The ·downstream boundary is provided by a stage-discharge 
u u 

relationship, i.e. Qd = Qd(y). The downstream boundary is located 

a short distance upstream of the breached dam at a section where the flow 

is well-approximated as one-dimensional and the surface drawdown due 

to the outflow through the spillway and breach is negligible. 

Re6~VO~ Geometny. - The reservoir cross section is assumed trape-

zoidal with side slopes of l:vertical to z:horizontal, as shown in 

Fig. 2. Only the prismatic portion of the idealized reservoir shown 

in Fig. 3 is considered to contribute to the outflow released by a 

breached dam. The storage in the upper reaches of the reservoir pro-

vides little contribution to the outflow since accumulated sediment 

deposits soon reduce this storage to a negligible quantity. Thus, the 

upstream boundary is located at the upper end of the prismatic reser-

voir, a distance L from the downstream boundary. 

The reservoir bottom slope, S , is constant and defined as 
0 

s 0 = r· ............................................. < 4) 
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FIGURE 2. RESERVOIR CROSS SECTION WITH EARTHFILL DAM 
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FIGURE 3. IDEALIZED RESERVOIR 
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where n is the height of the dam and L' is the distance from the down-

stream boundary to the intersection with the reservoir bottom of a 

horizontal line drawn from the top of the dam, as shown in Fig. 3. 

In this investigation, L is defined as 

L ' = K1 L •••••••••••••••••••••••••••••••••••••••••••• ( 5) 

where K1 is a constant. 

B~~aeh G~om~y and Vynamic&. -The breach is assumed to commence 

forming at the instant the maximum capacity Q of the emergency and/or 
0 

principal spillway is exceeded and the dam is over-topped. Referring 

to Fig. 2, the spillway is located at an elevation n , and the breach 
sp 

is assumed to form as a "V" where the acute central angle <P of the 

"V-breach" remains constant throughout its formation. This breach 

geometry is assumed to approximate that caused by the over-topping of 

a homogeneous earthfill dam (31). 

The breach forms at a rate denoted by A, which has dimensions of 

fps, and is defined as the vertical distance traversed by the bottom-

most point of the V-breach during an increment of time. Two basic 

types of failure rates, A, are investigated herein. The first type is 

A=A •••••••••••••••••••••••••••••••••••••••••••••• (6) 
c 

where A is constant for a particular interval of time during the fail­
c 

ure or for a particular span of vertical distance within the dam; A 

may be expressed as a step-function of either time or elevation. For the 

other type of failure rate, A is assumed to be an exponential function of 

the head on the V-breach, where the head is defined as (yd- ~). 

Thus, 



where 

A= exp [K (yd-n )] - 1 •...............•...•••..••.•. (7) 
e v 

K 
e 

ln(l+A ) 
m 

•••.•••.••••••...•.••.••••.•.••••••..•. ( 8) 

and yd is the transient reservoir depth at the downstream boundary, 

nvis the elevation of the bottom of the V-breach, and Am and ydm are 

respectively the maximum failure rate and reservoir depth at the 

12 

downstream boundary when n = 0. When the bottom point of the V-breach 
v 

is in contact with the erosion retarding layer, the failure rate is 

significantly reduced to a value of A/KA., where KA is a constant 

greater than unity. The top of the erosion retarding layer is denoted 

as nlt' the bottom as nlb' and the thickness as nld" 

NUMERICAL SIMULATION MODEL 

Vhne.YL6-i.onctf and Ge.ometJUc..ctf Co1'1A-i.de.!ta.t-i.OYL6. - The St. Venant 

equations are nondimensionalized herein by defining the following 

dimensionless variables 

in which 

* y 

* D 

* R 

= 

y 
n 

D 
D n 

R 
R 

L 
"[ 

n 

t v 
* v * X = T ................ (9) 

* * *2 c 1 (c1y -2c2y +c2y ) 

* (c1-c2 )(c1 -2c2+2c2y) 

zn., and c = 3 

••.••••••••••••••••.. ( 10) 

••••.••••••••••• (12) 

and T is the ratio of the reservoir top width T to the reservoir length 

L. The n subscript indicates that the subscripted variable is evaluated 



at the downstream boundary when t = 0, n = n. The 
v 

* superscript 

is used henceforth to denote a variable as being dimensionless. 

13 

Substitution of Eq. 3 along with the above dimensionless variables 

into Eqs. 1 and 2, taking care to properly express the partial derivatives, 

yields the following dimensionless form of the St. Venant equations 

where 

* * ~+ * av 
* v * at ax 

(cl-c2) 

2 
-= gn L 

2. 21n 413 

= 0 ......................... (13) 

0 •••••••••• (14) 

....•••.......••...•....•............... ( 15) 

................................... ( 16) 

(c1- 2c2+c3) 4/3 
[ ( ) ] ••••••.•••••••••••••••• (17) 

cl-c2 

................................. ( 18) 

The following dimensionless variables are defined in order that 

the boundary conditions may be expressed in dimensionless form 

* nsp 
n = sp n 

* nld 
n = ld n 

* n v * n lt n 

Qd 
•••••.••••••••• ( 19) 

Qo 

* n lb 

.......................................... ( 20) 
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The u and d subscripts refer to the upstream and downstream boundaries, 

respectively. 

* * The above normalizing procedure allows y and n v to take on values 

* * from unity to zero and v and Q to assume values relative to an initial 

condition of unity. Also, this procedure allows the initial flow Q 
0 

* to be expressed in terms of the dimensionless failure rate A • This 

normalizing procedure is utilized for convenience in the presentation 

of results. 

Initial Conditio~. -Immediately prior to the initiation of the 

breach, the depths and velocities along the reservoir are those of a 

steady, gradually varied flow having a flowrate of Q . The flow pro­
o 

file is either Ml or Sl backwater curve depending upon S being either 
0 

mild (See Fig. 3) or steep, for the steady flow rate Q . In either 
0 

case, the flow is subcritical in the portion of the reservoir with 

storage that contributes to the outflow when the dam is breached. 

Referring to Fig. 1, depth and velocities at ox intervals of 

length along the reservoir may be computed from the steady, gradually 

varied flow equation (5, 15) which expressed in difference form, is 

o(y+v2 /2g) 
ox =so-sf ................................. (21) 

where Sf is defined as the average friction slope along the ox reach, 

i.e. 

2 
• ••••••.•••••••••••.••••••••••••.•••• ( 22) 

Substitution of the previously defined dimensionless variables and 

Eq. 22 into Eq. 21 and rearranging, yields the following dimensionless 



equation 

in which 

-G ( -2 + * )4/3_0 2 cl c2 c3y I - •..•..••...•.•.•....••••.•.••.. (23) 

S L 
0 = ---Nn 

* y II - * * * (ely II-2c2y II+c2y 

* 4/3 
Gz(cl-2c2+c3y II) 

..................... ( 24) 

........................................... ( 2 5) 

4.42Nn1313 
..................................... ( 26) 

and N is the number of ox reaches along the reservoir, i.e. 

L 
N = ox· ............................. • ................ (27) 

* . * If y II is known, Eq. 23, has only one unknown variable, y I' which 

may be determined by Newton's Iteration Technique (10, 11). 

15 

The Newton Technique is an iterative method for solving a nonlinear 

equation of the form, f(x~) = 0, by generating a sequence of successive 

approximations which, if a proper initial value of x~ is used, converges 

to a desired root of the equation. The recurrence formula is 

... 
= X k 

f(x ... k) 

f~ (x ... k) . ............................ ( 2 8) 

df th 
in which f ... (x ... k) = dx ... k and the k and k+l subscripts indicate the k 



and (k+l)th approximate values of the desired root (6). 

* 

16 

The first ox reach, for which y I is sought, is located immediate-

* ly upstream of the downstream boundary, hence y II 

* * 
1. The first 

* approximation for y I is simply taken as y II' After y I has been com-

* puted to within a prescribed error tolerance, v I is computed from the 

following 

* v I = •••••••••••••••••••••••• ( 2 9) 

Proceeding upstream from the downstream boundary, depths and 

velocities are computed for sections located at ox intervals along the 

* reservoir, by replacing the value of y II in Eq. 23 with the recently 

* computed y I and repeating the above procedure. This process is re-

* * peated until all desired values of y and v are determined. These 

become the initial conditions which are necessary to start the proce-

dure for solving the St. Venant equations. 

S~eadlf S~~e Panam~e~. - The following steady state dimensionless 

parameters are used to 'monitor the type of flow regime at the upstream 

boundary 

* y c ..•.••.••..•.•••.•.•. ( 30) 

where y is the normal depth, y the critical depth, and y the 
n c s 

sequent depth of the normal depth y , all for a steady flow of Q . n o 

* The normal depth y is obtained by applying Manning's equation to 
n 

the flow at a section. Thus, 

••••••••••••••••••••••••••••..•.•..••••...•••••••••••• ( 31) 
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* which is solved for y n by Newton's technique where the first approxi-

* mation for y is determined by tacitly assuming the reservoir is a n 

wide channel. Thus, 

Q n 
0 3/5 l /n .................... (32) 

Upon applying the principle of minimum energy (5) to a flow cross 

section, the following equation is developed 

...................................................... ( 33) 

* where Eq. 33 is solved for y c by Newton's technique with the first 

* approximation for y taken as 
c 

2/3 l /n ......................... < 34) 

S is mild and the initial backwater curve is the Ml type if 
0 

* * y n > y c • .................. • . • ... • .. • ... • • ......... ( 35) 

S is steep and the backwater curve is the Sl type if 
0 

* * y n < Y c ....................... • ................... ( 36) 

When the latter condition prevails, the upstream boundary is reposition-

* * ed downstream such that the depth y exceeds the sequent depth, y .. 
u s 

In this way, the flow in the portion of the reservoir, for which the 

St. Venant equations and boundary conditions are applied, is subcritical. 

This procedure introduces negligible error into the simulation model, 
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numerical techniques such as the explicit method (3,7,11,13,14,16,18, 

21,22,26,27), the implicit method (1,3,7,18) and the method of charac-

teristics with a characteristic network (2,3,7,9,11,17,19,28,31) and a 

rectangular network (4,8,19,23,28,32). Each of the techniques offer 

particular advantages and disadvantages (11,18). The method of charac-

teristics with a characteristic network is used herein because of its 

inherent numerical stability and the ease with which boundary conditions 

may be introduced into the solution procedure. Also, the prismatic geo-

metry of the idealized reservoir and the desirability of obtaining 

solutions at only the upstream and downstream boundaries lend to the 

selection of the method of characteristics. 

Ch~act~~e Equation6. - In the method of characteristics, the 

two St. Venant partial differential equations are converted into four 

ordinary differential equations, called "characteristic equations", 

which may be numerically integrated subject to specified boundary 

conditions. The conversion is accomplished by forming a linear com-

bination of Eqs. 13 and 14 through the use of a multiplier, ~ (4,11, 

19,24,27,28). 

* 2L 
* at 

Thus, 

* * * * * 
+ KID* av + v * ~ + ~ ( av * + v * 2..Y_ + K ~ + 

ax* ax at ax* 2 ax* 

* * K3 !v lv 
*4 / 3 - K4 ) = 0 • o ••••••••••••••••• o •••••••• o ••••• (41) 

R 

* * Upon rearranging Eq. 41 such that partial derivatives of y and v 

are grouped separately, i.e. 



* 
av* + * Kl D av * ~ + * ~ 

¢ [ * (v + ---¢-) * ] + [ * (v + ¢K2) * ] + ¢ 
at ax at ax 

0 •••.•....•••......••.•••.••••••. (42) 

* dv The bracketed quantities may be made total derivatives, i.e. ---* and 
dy* dt 

• dt 

if 

and 

* * K1D 
v +-¢-

* dx = --
* dt 

* 

..••••.....••.•...•.•••.•...•.••.•. ( 4 3) 

* dx v + K2¢ = -* ...................................... (44) 
dt 

The simultaneous solution of Eqs. 43 and 44 yields ¢. Thus, 

V> .±ff ........................................ (45) 
2 

Substitution of Eq. 45 into Eqs. 42-44 and rearranging, yields 

* dv 
* dt 

* dx 
* dt 

* dv + 
* dt 

* dx -- .. 
* dt 

= 

* * 

I~ * K3 jv lv 
~ + * * *4/3 K1D dt R 

* vk1K2D* v 

= 0}~~····· .(46) 
••••••••••• ( 4 7) 

* * ~ K 3 jv lv 
* + *4/3 

dt R 
- K = 

4 
0 ••••....•..•.•. (48) 

} C+ 

•••......•.•..• ( 49) 
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Eqs. 46 and 47 are associated with the C- characteristic curves 

* * 
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in the x -t solution plane, shown in Fig. 4; Eqs. 48 and 49 are assoc-

iated with the C+ characteristic curves. It is noted that Eqs. 46 and 48 

contain no partial derivatives; however, the additional Eqs. 47 and 49 

are required since Eqs. 46 and 48 are valid only along the curves defin­

* * ed by the dx /dt expressions. All four equations are valid at inter-

* * section points, such as p, in the x -t plane. Thus, if the values of 

* * * * x ,t ,y and v are known at points, 1 and r, a numerical integration of 

* * * * the equations will produce the values of x ,t ,y , and v at point p. 

In this way, the values associated with all intersection points in the 

* * x -t plane are determined sequentially from left to right while pro-

* gressing upward in the t -direction. 

The numerical integration of Eqs. 46-49 may be accomplished by 

various finite-difference approximations with different orders of 

accuracy (2,3,11,19,29). It was found that a simple first-order approx-

imation of the form 

f 
* X 

* X 

r 

p * * f(x )dx * * * f(x )(x -x ) ...•....•........ (50) 
r p r 

* * * provided sufficient accuracy since the variation of v and y with x 

* and t is relatively small for a flow produced by a gradual breach. 

Upon applying Eq. 50 to Eqs. 46-49 and rearranging, four equations, 

which are linear with respect to the variables at location p, are ob-

tained as follows 
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* * FIGURE 4. x -t PLANE WITH CHARACTERISTIC NETWORK 
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* * * * * v -v -F2 (y* -y )+F (t -t )-O (51) 
p r p r 3 p r - ·}· • • ~~ • • • • • • • • • • • • • · 

* * * * 
x p-x r=Fl(t p-t r) . ······· ......•..... (52) 

* * * * * * 
v p-v 1+F5 (y p-y 1)+F6 (t -t )-O (53) p 1 - } . ~~ ............. . 

. . . . • . . . . . . . . . . . . . . . (54) 

* 
hlK2D*r where F =v 

1 r ................................... (55) 

F2 = I K2 

* 
KlD r 

.•.....••....•...••...•.....•....... (56) 

* * K3v [v [ 
F3 

r r = 
* 4/3 

R 
- K4 ......•.....••.............•.... (57) 

r 

F4 v* l + vk1K2n* l ................................ (58) 

I .•••...•...••.....•..••..•..•...•...•. (59) 

* * K3v llv 11 
* 4 I 3 - K 4 •••••••••••••••••••••••••••••••• ( 60) 

R 1 

* * Substitution of y 1 and y r for y in Eq. 10 and 11, provides the values 

* * * * 
of D l' D r' R l' R r 

Up¢~eam Bound~y. - The V-breach is assumed to occur during a 

short duration of time relative to the time base of the reservoir in-

flow hydrograph. The inflow occurs only at the upper reach of the 

idealized reservoir such that the reservoir is not subjected to any 

lateral inflow. Hence, the inflow to the reservoir may be considered 



relatively constant throughout the formation of the breach, and the 

upstream boundary condition is expressed as a constant inflow, i.e. 

Q = Q (t) = Q ••••••••••••••••••••••••••••••••••••• (61) u u 0 

and in dimensionless form, 

* Q u 1 ...................•......•..•.......... (62) 

Thus, from continuity considerations 

* 
* Q u(cl-c2) 

v 
u 

* 

..•••...•.••••...•.••.••. ( 6 3) 
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The value of x is known since it represents the location of the up-
u 

* stream boundary; hence, t may be computed from the C- Eq. 52, 
u 

* t 
u 

* t 
r 

* -x ) 
+ _ ___:u=---=-r-

Fl 

* (x 
•.......•••...•..•.•.....••.•.. ( 64) 

Substitution of Eq. 63 into the C- Eq. 51 yields 

where F 
u u 

* 

* -t 
r 

) .•••....•..........•.••... (66) 

Eq. 65 may be solved for y u by Newton's technique with 

* = y uo ••••••••••••••••••••••••••••.•••••••••••• ( 6 7) 

where the uo subscript is associated with the previously computed up-

* stream boundary point shown in Fig. 4. The value for v is computed 
u 

from Eq. 63. 
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Int~o~ Po~nt6. -The unknown values of x*,t*,y* and v* at any 

interior point designated by a p subscript may be easily obtained from 

the simultaneous solution of the four linear Eqs. 51-54. 

Thus, 

* t 
p ••••••••••••••••••••••••• ( 6 8) 

* * * * 
X p = X 1 +F 4 ( t p -t 1) ••••••••••••••••••••••••••••••• ( 69) 

* y p 
* -t )] 

p 1 .. (70) 

Vown6~eam Bound~y. - The location of the downstream boundary is 

known; hence, 

* X d = 1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ( 7 2) 

* and t d may be computed from the C+ Eq. 54, i.e. 

* * (x d-x 1) 

F • •••• • • •• • • • ••• • •• •• ••••••••••• (73) 
4 

* * t = t 1 + d 

The downstream boundary condition is given by stage-discharge 

relationships for the spillway and the V-breach. The elevation of the 

* spillway crest n 
sp 

is constant, however, the elevation of the bottom 

* of the V-breach n is a * * function of td' n lt' n lb' and * ).. . The 
v 

following step-functions * express this variation of n . v 

If 

then 

* * n vo ?':: n lt 

* * nv-nvo-

••••••••••••••••••••••••••••••••••••••••• ( 7 4) 

* * * ).. (t d-t do) ••••••••••.••••••.••.••••••• (75) 



* * however if n v < n lt •............•..•...•.........•....•..••. (76) 

then 

If 

then 

* * n v = n lt KA •••••••••••••••••••• (77) 

* * n 1 b :S n vo < n 1 t • • · · · • · · · • · · · • · · · · • • • • • · · • • • · · · • · · C 7 8) 

* n v 
* n vo 

* * 

;.._* * * 
KA (t d-t do) .............•............ (79) 

however if n v < n lb ...............•...•.•..•...•.......•...• (80) 

then 

If 

then 

* * * * * * n v n lb [A. t d-KA.(n vo-n lb)] ........•...•..... (81) 

* o < n 

* n v = 

* 

vo 

* n 

* < n lb ••••••.•.....•••.••..•••••...••.••.• ( 82) 

vo 
* * * A (t d-t do) •.....••....•...•.....•.•.. (83) 

however if n v < 0 ......................•....................• (84) 

* then n v = o ............................................. ( 85) 
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The second subscript, o, indicates that the subscripted variable is the 

previously computed boundary point as shown in Fig. 4. 

The velocity at the downstream boundary is expressed in terms of 

the discharges of the spillway and the V-breach, and the reservoir cross-

section, i.e. 

where 

* v d 

K' = 1 ••••••••••••••••••••.•.••••.•••••••.•••••••.•• (87) 



if 

and 

if 

and 

where 

* * y d > n sp •••••••••••••••••..••••••••.••••••.••••••• ( 88) 

K' 0 .............................................. ( 89) 

* * y d < n sp •••••••..••••••••••.•••.••..•••.•••••..••• ( 90) 

c nS/2/Q 
v 0 

•••••••••••••••••••••••••••••••••••••• ( 91) 

K6 Cspn3/2 /Qo .•..•...•.••.......•..•.••.•••••...•• (92) 

Cv = 4. 28 cvtan 1 ................................... (93) 

c 
sp 5.36 c L 

sp sp Q /[n(l-n* )1 312 ......•....•... (94) o sp 

Substitution of Eq. 86 into the C+ Eq. 53 yields 

..................................................... ( 9 5) 

* Eq. 95 may be solved for y d by Newton's technique with 

* * 
Y d = Y do · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · C 9 7) 

1 

* 
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Then, v d is computed from Eq. 86 and the reservoir release discharge 

* Q d is computed from the following 

* * * * 2 
v d(cly d-2c2y d+c2y d ) 

( ) ..••.........•........ (98) 
cl-c2 

* Q d = 
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Optimization o6 Reta4ding Lay~ Location. - When a dam does not 

have an erosion retarding layer, the maximum possible reservoir release 

* * Q d due to a breached dam occurs at n which may be at any eleva-mp vmp 

tion within the dam; this elevation depends upon the magnitude of the 

reservoir surface area, bottom slope, the failure rate A and C • 
v 

* When Q d occurs, the two factors controlling the rate of discharge mp 

* * through the breach, namely the head (y d-n v) on the breach and the flow 

area of the breach must assume their maximum simultaneous values. 

* Thereafter and until practically all of the storage above y is releas-
n 

ed, the reservoir surface level yd decreases since the reservoir out­

* flow Q d exceeds the reservoir inflow Qu. 

* The optimum elevation n ltOp of the retarding layer is defined 

herein as that elevation which minimizes the maximum reservoir outflow 

* Q dm' Thus, by optimally positioning the retarding layer, a maximum 

* reduction in Q d is achieved. Such a reduction, denoted as QR, is 
mp 

defined as a percentage reduction, i.e. 

* * (Q d -Q d ) 100 mp m 
QR = 

* 
....................... · ......... ( 9 9) 

Q dmp 

* An iterative procedure is utilized to determine n ltOp within an 

* acceptable accuracy. Initially, the breach is simulated with n lt 

* equal to zero, i.e. the dam does not have a retarding layer; and Q dmp 

is determined. Then, the breach is simulated with the retarding layer 

* positioned at n which is defined as 
ltk+l 

* n 
ltk+l 

* * = n ltk + on lt ............................. ( 100) 
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where the k subscript denotes the number of iterations using an 

* * * incremental increase of on lt' and n = n • 
ltl vmp 

The simulation of 

* the breach, with the retarding layer positioned at n lt , is continued 

* * * k+l 
until n < n since all subsequent Q d must be less than that v vmp 

* * occurring when n has reached n • When the dam has a retarding 
v vmp 

* * * layer that is positioned above the n at which Q d occurred, Q d 
v mp m 

* will be less than Q d since the retarding layer allows the water mp 

level in the reservoir to recede while the area of the breach remains 

* * relatively constant. Thus, Q dm will occur at some n v which is greater 

* than n vmp· 

* The reduction in Q dmp' denoted as QR, is a funciton of the posi-

* tion n lt of the retarding layer. A typical relationship between QR and 

* n lt is shown in Fig. 5. * The function, QR = QR(n lt), was investigated 

for a variety of reservoirs parameters (L, n, Q , A, etc.) and was 
0 

found to contain only one maximum value. Thus, the difficulties en-

countered when a function contains more than one maximum (peak) is 

* avoided in the iterative search for n ltOp· 

* Using an incremental increase on lt' Q~ is computed for each 

nlt position of the retarding layer until Q~+l is greater than Q~. 
k 

When this occurs, as noted in Fig. 5,' QR and the corresponding 
max 

* * * n ltOp exists for a value of n lt less than n ltk+l. Then Q~+Z and 

Q~+J are computed, and the final location of QRmax is easily obtained 

graphically by extending smooth curves through all the computed points 

* (QR, n lt ) . 
k 

Modi&icatio~ zo Model. - Modifications may readily be made to the 

above numerical simulation model to accommodate reservoir geometries, 
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FIGURE 5. TYPICAL VARIATION OF THE PERCENT REDUCTION (QR) IN 

THE MAXIMUM POSSIBLE RESERVOIR RELEASE WITH THE 

* . LOCATION (n lt) OF THE EROSION RETARDING LAYER 
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bottom slopes, breach geometries, upstream and downstream boundary 

conditions, and breach dynamics which differ from those treated herein. 

Rectangular or triangular reservoir cross sections may be simulated 

by letting z=O or z•L/(2Tn), respectively. Other cross-sectional 

geometries may be handled by properly defining A, D, and R. The 

reservoir bottom slope S may be defined other than by Eq. 4 and thus 
0 

be independent of n and L. Breach geometries, other than a V-shape 

may be simulated by defining the cross-sectional area of the breach as 

* a function of n . v 

A principal spillway and/or a different type of emergency spill-

way may be incorporated into the downstream boundary condition by 

defining their respective stage-discharge relationships and elevations. 

The discharge coefficients C and C of the spillway and V-breach may 
sp v 

be expressed as functions of yd' n , and or n rather than assumed sp v 

to be constants. 

The upstream boundary condition may be changed to a stage or dis-

charge hydrograph by specifying the relationship between the upstream 

stage or discharge with time. 

The initiation of the breach may be defined so as to occur when 

* * the depth y d at the downstream boundary exceeds n by a specified 

amount. The failure rate A may be described by various mathematical 

functions other than Eqs. 5 and 6. 

EXPERIMENTAL SIMULATION MODEL 

An experimental simulation model was developed to check the accur-

acy of the numerical model. A vertical dam, consisting of two adjacent, 
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metal plates, was installed near the midpoint of a 40 ft. long by 

2 ft. wide Plexiglas flume. The thin metal plates were shaped such 

that a V-opening was formed at the centerline of the dam when the plates 

were moved in opposite horizontal directions parallel to the flume 

cross section. The ¢ angle of the V-opening (breach) remained constant 

throughout its formation and gradual enlargement. A magnetic clutch 

provided an instantaneous application of a variable speed drive-unit 

to a cable-pulley system which pulled the metal plates apart. This 

system permitted the V-breach to be formed at any desired rate A from 

0. 0 - 0. 15 fp s . 

The simulated reservoir formed by the two-dimensional metal dam 

was of rectangular cross section having a depth yd of 1.704 ft. at the 

dam. A steady inflow Q was introduced at the upstream end of the re­
o 

servoir and the same quantity was released from the reservoir through 

a small V-opening at the top of the dam. This outflow simulated the 

steady spillway discharge assumed to occur prior to an over~topping 

failure. The V-opening was enlarged at a known rate A; this simulated 

the formation of a gradual V-shaped breach. A timed-pause in the forma-

tion of the V-breach simulated the effect of an erosion retarding layer. 

The discharge coefficient C of the V-breach was determined for 
v 

numerous steady flows at various settings of the metal plates ·SO as to 

provide steady state discharge coefficients which spanned the entire 

range of possible V-openings Cnv) and heads (yd-nv) on the V-breach. 

The discharge coefficient was found to vary with both nv and yd. This 

variation was expressed in the form 

Y .... n 
C = K ( d v) -Kc2 • •••••••.•.•••••••••.••••••.•••• (101) 

v cl n, 



where Kcl varied from 1.580 to 1.634 and Kc2 varied from 0.001 to 

0.098; both are functions of (yd-n ) and n . 
v v 
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Timers and staff gauges, positioned at stations 1.00 and 10.00 ft. 

upstream from the dam, were continuously monitored via movie cameras. 

This provided stage hydrographs at the selected stations. Total out-

flow Qt from the reservoir was determined for a specified duration of 

time tf after the time t 0 at which movement of the metal plates was 

initiated. Thus, 

- y d ) .••••••••••.••••.••••••••• (102) 
tf 

NUMERICAL RESULTS 

Compa!U..6on WUh ExpeMlYie.n-ta.£. Re-6u.tt6. - The numerical simulation 

model provides results which are in satisfactory agreement with the 

experimental model. A typical stage hydrograph for station 1.00 is 

shown in Fig. 6 along with the stage as computed by the numerical model. 

The percent standard deviation cryd between the experimental and numeri-

The cal yd is 1.17%, and for all experimental runs, cryd is 0.83%. 

computed outlet discharge hydrograph associated with the stage hydro-

graph is also shown in Fig. 6. Total outflow, as computed by the 

numerical model, is determined by numerically integrating the dis-

charge hydrograph. The percent standard deviation crQt between the ex­

perimental and numerical total outflows is 5.1% for all experimental 

runs. Additional experimental-numerical stage and discharge hydrographs 

for this study are·preseated in reference (12). 
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FIGURE 6. STAGE AND DISCHARGE HYDROGRAPHS OF EXPERIMENTAL 

RUN NO. 5 
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ReX.Md.{_ng LayVt: Opti.ma..t LoCJLt{_on and Reduc;t{.on .in Ou.tn.tow. - Upon 

applying the numerical simulation model to a range of reservoir sizes, 

dam heights, initial flowrates, and dam failure rates, prediction curves 

* are obtained for the dimensionless optimal elevation n 0 of the 
ltp 

erosion retarding layer and the extent of its reduction QR in the max 

reservoir outflow. The results are functions of the parameters used 

herein to describe the transient hydraulics associated with the gradual 

V-breach of aa earthfill dam. These parameters consist of the follow-

ing: geometric parameters (L, K1 , T, n, nsp' and n1d); hydraulic para­

meters (Q , n, C); and dynamic parameters (A. and K,). 
0 v II. 

* The values of n 1 0 and QR are expressed as functions of the 
t p max 

* dimensionless failure rate A. , as defined by Eq. 19, and for specific 

* values of L, T, A.c' n, and KA.. The 

QR are applicable for the "fixed 
max 

prediction curves for n ltOp and 

* parameters", K1=1.2, z=2, n =0.95, 
sp 

* n ld=0.02, n=0.03 and Cv=2.2. The sensitivity of the prediction curves 

to variations in these fixed parameters is examined in a following 

section. 

* Prediction curves for n ltOp and QRmax are shown in Figures 7-12 

for specific values of L, T, KA. and A.c. The following example illus-

trates the use of the prediction curves: 

When Q =2,000 cfs, L=lO,OOO ft, T=lO, n=lOO ft, 
0 

* * A.c=O.Ol fps, KA.=lOO, K1=1.20, z=2., n sp=0.95, n ld=0.02, 

* n=0.03, and Cv=2.2, the optimum elevation n ltOp of an erosion 

retarding layer and the corresponding reduction QR in the max 

maximum possible reservoir release may be obtained from Fig. 8. 

* i \ * = (10000) (. 01) 
First, A is computed from Eq. 19, .e. 11. 2000 

[10000 _ 2(100)] = 40. Then a line is extended vertically from 
10 
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* FIGURE 7. RELATIONSHIP BETWEEN QRmax AND n ltOp FOR VARIOUS 

* VALUES OF A AND L=lO~OOO ft., T=lO, A =0.1 fps 
c 
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* FIGURE 8. RELATIONSHIP BETWEEN QR AND n FOR VARIOUS 
max !tOp 

* VALUES OF A AND L=lO,OOO ft., T=lO, A =0.01 fps 
c 
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* FIGURE 9. RELATIONSHIP BETWEEN QR AND n FOR VARIOUS max ltOp 

* VALUES OF A AND L=lO,OOO ft., L=lO, A =0.005 fps 
c 
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* FIGURE 10. RELATIONSHIP BETWEEN QRmax AND n ltOp 

* VALUES OF A AND L=2,000 ft., -r=4, A =0.1 
c 

FOR VARIOUS 

fps 
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7c 
FIGURE 11. RELATIONSHIP BETWEEN QRmax AND n ltOp 

* VALUES OF A AND L=2,000 ft., T=4, A =0.01 
c 

FOR VARIOUS 

fps 
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* FIGURE 12. RELATIONSHIP BETWEEN QRmax AND n ltOp 

* VALUES OF A AND L=2,000 ft., T=4, A =0.005 
c 

FOR VARIOUS 

fps 
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* the abscissa at A =40 to intersect the curves pertaining to 

KA=lOO and n=lOO ft. as shown in Fig. 8. Finally, the values 

* 
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of n ltOp and QRmax are obtained by extending lines horizontally 

* until they intersect the appropriate ordinate axis, and n !tOp 

and QRmax are read as 0.463 and 45.8%, respectively. 

Upon examining Figs. 7-12, it is evident that * n ltOp significantly 

A • 
c 

Also, in varies directly with n and KA and inversely with L and 

* * all except Fig. 7, n ltOp varies directly with A • 

If the failure rate A is very small and/or L is small, say L= 
c 

2000 ft., the reservoir depth as determined by the numerical model 

recedes at an increasing rate as the V-breach forms. Under this condi­

* tion, the maximum possible reservoir release Q d occurs when the rate 
mp 

* at which the depth is receding exceeds the failure rate Ac' i.e. Q dmp 

occurs considerably before the breach achieves its maximum size. Hence, 

* n ltOp may assume values in the range of 0.60 to 0.75. Under this same 

condition of small values of A and/or L, the elevation of the erosion 
c 

retarding layer is critical since it is possible for the layer, if in-

* * * correctly positioned above n vmp' to cause Q dm to exceed Q dmp· 

In Figs. 7-12, QR assumes values in the range of 10 to 65%. 
max 

This indicates that significant reductions in the maximum reservoir 

release from gradually breached dams may be achieved by the presence of 

an erosion retarding layer which is optimally located. The extent of 

the reduction QR is primarily related directly to the resistance of 
max 

* the layer to erosion, i.e. KA, and to A • 

* Prediction curves for n !tOp and QRmax are shown in Figs. 13 and 

14 for specific values of L, T, n, KA, Am' and ydm" In these, A is 
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* FIGURE 13. RELATIONSHIP BETWEEN QR AND n 1 O max t p 

* FOR VARIOUS VALUES OF A AND L=10,000 ft., T=10, 

A =0.1 fps, yd =0.97 (n=SO ft.), yd =0.91 m m m 

(n=100 ft.) AND A IS AN EXPONENTIAL FUNCTION 
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* FIGURE 14. RELATIONSHIP BETWEEN Q~ax AND n ltOp 

* FOR VARIOUS VALUES OF A AND L=lO,OOO ft., T=lO, 

Arn=O.Ol fps, ydrn=0.90 (n=SO ft.), ydrn=0.58 

(n=lOO ft.) AND A IS AN EXPONENTIAL FUNCTION 
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assumed to be an exponential failure rate as described by Eq. 7. The 

prediction curves in Figs. 13 and 14 are similar to those in Figs. 7 and 

8, respectively. The exponential failure rate produces values of 

* n ltOp and QRmax which are approximately 10% greater than those 

computed for a constant failure rate. In Figs. 13 and 14, QRmax assumes 

values in the range of 10 to 75%. 

Se.YI-6-i.:U..vliy ~o Va!U.ctti..oYI-6 ..Ln. F..Lxe.d Pa.JLame:t.VL6. - The sensitivity 

* of the n ltOp and QRmax values, as presented in Fig. 8, to variations 

in the values of the "fixed parameters" is shown in Table 1. The 

variations in the values of the fixed parameters span the practical 

range of each. The sensitivity is determined as an average percentage 

* change in the values of n ltOp and QRmax as determined with the fixed 

parameters having the values designated in the preceding section. 

* Variations in K1 , n , z and n result in changes of about 
sp 

* 10% or less in n ltOp and QRmax· Variations in T and Cv produce 

* more significant changes inn ltOp of approximately 12 to 30%. Also, 

as noted in Table 1, variations in T and Cv produce changes in QRmax 

* of approximately 15 to 38%. Variations in n ld result in significant 

changes in n*ltOp and QRmax when KA = 100 and n =50 ft; however, 

the changes are not significant when KA = 500 and n = 50 or 100 ft. 

Computation. Time.. - The maximum computation time Ct in seconds, 

which is required for the numerical model to determine the transient 

hydraulics for a particular set of geometric, hydraulic and dynamic 

parameters, may be approximated by the following 



57 

* TABLE 1. SENSITIVITY OF n AND QR TO VARIATIONS IN ltOp max 

* * K1 , n ld' n sp' z, T, Cv AND n FOR L=lO,OOO ft .• , 

T=lO, A =0.01 fps 
c 

-
Fixed Value KA Avg. Percentage Avg. Percentage 

* Variable Variation in n ltOp Variation in QR max 
n-so ft. n- 100 ft. n=50 ft. n=lOO ft. 

(1) (2) (3) (4) (S) (6) (7) 

1.1 100 -12.4 + 9.1 +14.0 + 8.5 

Kl 
1.3 100 + 1.3 + 0.2 - 2.1 + 8.3 
1.1 500 + 1.9 +12.9 +10.0 + 2.5 
1.3 500 + 5.3 - 7.5 - 2.6 + 2.3 

0.01 100 -28.8 - 1.9 -10.7 - 4.2 

* 0.05 100 +18.5 + 8.0 +17 .3 +17.3 
n ld 0.01 500 - 6.7 - 1.5 + 1.8 + 5.0 

0.05 500 + 2.6 + 0.9 + 6.0 +15.6 

0.900 100 - 6.5 + 0.5 + 1.5 + 4.2 

* 0.975 100 -14.0 + 3.6 +14.5 + 6.3 
n sp 0.900 500 +18.0 -10.5 +11.5 + 3.4 

0.975 500 + 2.7 +18.2 + 2. 9 + 3.5 

0.0 100 -11.5 - 5.4 - 5.8 +13.6 
4~0 100 - 5.8 +18.0 + 1.6 + 6.2 

z 0.0 500 - 1.2 - 2.8 - 7.2 + 9.8 

4.0 500 + 4.6 + 0.5 +13.3 - 2.6 

0. 02 100 - 7.3 + 1.8 + 3.4 + 6.1 

0.06 100 - 5.7 + 1.9 +18.0 + 2.4 
n 0.02 500 + 1.0 + 1.1 + 4.1 + 5.0 

o. 06 500 + 1.4 + 4.0 +11.9 + 5.3 

5.0 100 -20.0 -16.6 -17.0 +37 .6 
T 5.0 500 +17.2 - 7.0 -14.4 +38.1 

c 1.0 100 -25.5 -24.0 -37.3 +21. 7 
v 1.0 500 5.5 -36.3 -12.2 +13.3 



where 

Ct~ Cp + KopcktT ...•..••..............•....••..•.••.• (l03) 

N 
T = 2LA. 

c 

Qo + / gn (cl-c2) 
n(c1-c2 ) cl ][n + n 1d(KA.-1)] .. (104) 
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and Cp is the constant compile time, K is a multiplier which reflects 
op 

the additional computation time required when the retarding layer 

optimization procedure is utilized, and Ckt is a constant. When the 

computations are performed on an IBM/360 computer, C =94 seconds and 
p 

Ckt=0.020 seconds. If the retarding layer elevation is not optimized, 

K =1; otherwise, K varies from 4 to 10 depending upon the magnitude op op 

* * of (n 1 0 - n ). 
t p vmp 

SUMMARY AND CONCLUSIONS 

A conceptual method to reduce flood wave peaks due to over-topptng 

failures of small homogeneous earthfill dams has been introduced. A 

numerical simulation model based upon a characteristic numerical solu-

tion of the St. Venant unsteady flow equations is presented for pre-

dieting the transient reservoir flow produced by the gradual breach 

of an earthfill dam. 

The extent of reduction in the reservoir outflow from a breached 

dam due to the presence of a hypothetical erosion retarding layer is 

presented, along with the optimal elevation of the retarding layer, for 

a wide range of pertinent geometric, hydraulic, and dynamic parameters. 

The extent of reduction QR in the maximum outflow is primarily 
max 

related directly to the ratio of the failure rate of the earthfill dam 

to the failure rate of the erosion retarding layer, i.e. K~ and to the 

dimensionless failure rate A* which is defined by Eq. 19. This 
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reduction can be as significant as 75%. The dimensionless optimal 

* elevation n !tOp' which minimizes the maximum reservoir outflow due 

to the breach, is related directly to the height n of the dam, KA, 

and ~* d A an inversely to the length L of the prismatic reservoir and to 

the failure rate A. The exponential failure rate produces values of 

* n !tOp and QRmax which are approximately 10% greater than those computed 

when the failure rate is constant. 

Some sensitivity tests of the numerical model indicate that varia-

tions in the ratio of the width to the length of the prismatic reservoir, 

i.e. T, and the coefficient of discharge C of the V-breach significant­
v 

ly effect the extent of reduction in outflow achieved by a retarding 

layer, as well as, its optimal elevation. Variations in the dimension­

* less thickness n ld of the retarding layer produce some significant 

* changes in n !tOp and QRmax as n and KA assume smaller values. However, 

variations in the ratio of the total length L' of the reservoir to the 

length L of the prismatic portion of the reservoir, i.e. K1 , the di-

. * mensionless elevation n of the spillway crest, the side slope z of 
sp 

the trapezoidal reservoir cross section, and the Manning roughness 

* coefficient n produce relatively small changes in n ltOp and QRmax· 

When the prismatic reservoir length is small, say L=2000 ft., the 

reservoir storage is depleted at a significantly increasing rate as 

the breach forms. Hence, for failure rates of 0.01 fps and smaller, the 

reservoir water surface may eventually recede at a rate which is faster 

than that at which the breach forms. Thus, the elevation of the tip of 

the V-breach may be in the vicinity of n/2 when the maximum outflow is 

attained. The optimal elevation of the retarding layer is located 
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above this; and its location is critical since an incorrect position­

ing can cause the outflow to exceed the maximum that would occur when 

no erosion retarding layer is present. When this condition exists 

and n=lOO ft., the reduction in the maximum outflow is relatively small 

as compared to that achieved by a retarding layer in an earthfill dam of 

a reservoir with a larger surface area. 

The numerical model, as presented herein, may be used in its 

present form or modified, as required, to investigate the transient 

hydraulics of prismatic reservoirs subjected to unsteady flow intro-

duced at either or both extremities of the reservoir. 
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APPENDIX II. - NOTATION 

The following symbols are used in this paper: 

A 

c c sp' v 

C+,C-

Area of channel (reservoir) cross section 

= Constants used in evaluating computation time, Ct, 
in Eq. 103 

= Constants defined by Eqs. 94, and 93, respectively 

• Po$itive and Negative characteristics, respectively 
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c ,c -sp v Discharge coefficients for broad crested rectangu­
lar and V-shaped weirs, respectively 

cl,c2,c3 Constants defined by Eq. 12 

D = Hydraulic mean depth 

d,do,k,l,p,u,uo Subscripts denoting intersection points * * in the X -t 
plane 

Fd,F ,F = g u Constants defined by Eqs. 96, 24 and 66, respectively 

Fl,F2,F3,F4,F5,F6 = Constants defined by Eqs. 55-60, respectively 

Gl,G2 Constants defined by Eqs. 25 and 26, respectively 

g = Acceleration due to gravity 

I,II 

K 
op 

L 

K 
A. 

L 

L' 

sp 

N 

n 

p 

= Subscripts denoting location along an elementary 
channel 

= 

= 

= 

== 

Experimental constants 

Constants defined by Eqs. 8, 5 and 38 respectively 

Constant used in evaluating Ct 

Ratio of the failure rate of earthfill dam to the 
failure rate of the erosion retarding layer 

Constants defined by Eqs. 15-18, 91 and 92, respective­
ly 

Length of prismatic section of reservoir 

Length for determining s 
o' and defined by Eq. 5 

Length of emergency spillway crest 

Number of stations along reservoir 

Manning's roughness coefficient 

Wetter perimeter of flow cross section 

Initial steady flowrate in reservoir 

== Flowrate at downstream boundary (reservoir outflow) 

= Maximum flowrate at downstream boundary 

= Maximum possible flowrate at downstream boundary 
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QR 

QR 
max 

Percentage reduction in Qdmp and defined by Eq. 99 

Maximum value of QR 

Total outflow from experimental reservoir from time 
t 0 to tf, and defined by Eq. 102 

R = Hydraulic radius 

s 
0 

T 

t 

v 

v 
n 
X 

Friction slope (slope of energy gradient) defined 
by Eq. 3 

Bottom slope of reservoir and defined by Eq. 4 

Top width of free surface of channel (reservoir) 

Time 

Starting and ending times, respectively for experi­
mental runs 

Average velocity in channel (reservoir) 

Average velocity at downstream boundary when t = 0 

Distance along channel (reservoir) 

x; = Unknown variable in Newton Iteration Technique 

y = Depth of flow in channel (reservoir) 

= Critical depth for steady flowrate Q 
0 

Depth of flow at downstream boundary 

= Normal depth for steady flowrate Q 
0 

= Sequent depth of yn 

z = Side slope of reservoir cross section 

cS 

OX 

* on lt 

n 

Very small increment 

Increment of channel (reservoir) length 

* = Incremental increase in n lt 

Elevation of top of dam, with datum line at bottom 
of dam 

= Elevation of bottom of erosion retarding layer 

= Thickness of erosion retarding layer 



e 

Elevation of top of erosion retarding layer 

= Optimal elevation of top of erosion retarding 
layer 

= Elevation of emergency spillway crest 

Elevation of bottom of V-breach when t=t 
d 

Elevation of bottom of V-breach when t=t 
do 

Angle of inclination of channel bottom with the 
horizontal 

A Failure rate of dam (rate of formation of the 
V-breach) 

A = Constant failure rate during a specified period of 
c time or interval of elevation, nv 

A Estimated maximum failure rate when nv=nvmp m 

cryd = Percentage standard deviation of yd 

crQt = Percentage standard deviation of Qt 

T = Parameter used in evaluating ct and defined by Eq. 

T = Ratio of initial top width T to reservoir length L 

¢ Acute central angle of V-breach 

~ = Linear multiplier 

* = Superscript denoting a dimensionless variable 
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