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Abstract—Adaptive beamforming algorithm is a signal 

processing technique used by smart antenna system to steer the 

main beam toward the desired signal direction and cancel the 

interfering signals of other directions. This paper proposes a 

hybrid non-blind beamforming algorithm that combines the 

Normalized Least Mean Square (NLMS) algorithm and the 

Recursive Least Square (RLS) algorithm to exploit the 

advantages of both algorithms and avoid their drawbacks. The 

hybrid NLMS/RLS algorithm solves many problems of the other 

non-blind algorithms. A comparative study between the 

proposed algorithm and other non-blind beamforming 

algorithms is introduced to illustrate the points of strength of the 

proposed algorithm. The hybrid NLMS/RLS algorithm is 

applied to different types of patch array antenna with resonance 

frequency 10GHz to demonstrate the performance of the 

proposed algorithm to each array antenna type. 

 

Index Terms—Adaptive Beamforming; Hybrid Algorithm; 

Normalized Least Mean Square; Recursive Least Square; 

Smart Antenna. 

 

I. INTRODUCTION 

 

A smart antenna system is an integration between array 

antenna and digital signal processing techniques. The signal 

processing methods are divided into two processes; a 

direction of arrival (DOA) process and an adaptive 

beamforming process. The DOA algorithm computes the 

directions of arrival of the incoming signals. Then, the 

adaptive beamforming algorithm is used to choose the 

convenient weights of each array element to extract the 

desired source signal from the acquired data of antenna array 

while canceling interference and noise [1], [2]. The adaptive 

beamforming algorithms can be classified into blind and non-

blind algorithms [3], [4]. In this paper, we use non-blind 

algorithms which need training phase before to be put in the 

testing phase. 

The most popular non-blind algorithms used for 

beamforming the radiation pattern of smart antenna are the 

Least Mean Square (LMS) [5-10], Normalized Least Mean 

Square (NLMS) [11-15], Sample Matrix Inversion (SMI) [5-

7, 16-18], Recursive Least Squares (RLS) [9], [10], [19], [20] 

and hybrid Least Mean Square Algorithm / Sample Matrix 

Inversion (LMS/SMI) [4], [17], [21]. Each of these 

algorithms has strengths and weaknesses as demonstrated in 

previous work [22], [23]. This paper introduces a new hybrid 

algorithm that solves many problems of the previous 

algorithms such as achieving lower side-lobe level, deeper 

nulls and minimum MSE of the output signal. The proposed 

algorithm combines Normalized Least Mean Square and 

Recursive Least Square in cascade and it is called 

(NLMS/RLS). 

The performance of the hybrid NLMS/RLS algorithm will 

be demonstrated and compared to the other non-blind 

beamforming algorithms under varying the number of 

radiating elements and different noise levels. The 

performance of each algorithm is measured in terms of Half-

Power Beam Width (HPBW), maximum Side-Lobe Level 

(SLL), nulls depth, convergence rate, beamforming stability 

and Mean Square Error (MSE) of the output signal. Also, the 

hybrid NLMS/RLS is applied on different types of patch 

array antenna with resonance frequency 10GHz to 

demonstrate the performance of the proposed algorithm with 

these antenna types. The 10 GHz frequency band locates in 

X-band that is used in modern radar applications especially 

the military requirements, where the shorter wavelengths of 

the X-band allow high-resolution imaging radars for target 

identification and classification. 

 

II. SMART ANTENNA MODELLING 

 

The array factor of spherical angle AF(θ) for a linear array 

of N radiating elements and d is the displacement between 

elements as shown in Figure 1 is given by the following 

equation [22]: 

 

 (1) 

 

where: 

wn : Weight of nth radiating element 

k : Wave number (2π/λ) 

λ : Wavelength of the incident wave 

 

Assuming number of incident wave signals M that are 

incident on the linear array from different directions 

(θ0,θ1,…,θM-1) [3], [23]. The incident signals on nth antenna 

radiating element are given by the following equation: 

 

 (2) 

 

where: 

S0(t) : Desired signal 

S1→(M-1)  : Interfering (unwanted) signals 

nn(t) : Additive noise signal at nth element 
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The array output can be given as follows [24]: 

 

 (3) 

 

where: 

w̅ : Array weights vector 

x̅ (k) : Vectors of inputs to the array 
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Figure 1: The adaptive beamforming array antenna block diagram [25] 

 

III. ADAPTIVE BEAMFORMING ALGORITHMS 

 

Adaptive beamforming techniques are digital signal 

processing approaches used to shape the radiation beam in 

order to steer the main beam toward the wanted signal and 

reject the interfering and noise signals. The weights are 

calculated by reducing the error difference between the 

desired signal and the array output until the weights achieve 

their optimum values. In this section, the NLMS, RLS and 

proposed hybrid NLMS/RLS are discussed. 

 

A. Normalized Least Mean Square (NLMS)  

The NLMS algorithm is an alternative of the LMS 

algorithm that solves one of its significant disadvantages, that 

are, the sensitivity to the inputs scaling. This sensitivity 

makes a learning rate value selection a difficult task. The 

stability of the LMS convergence depends on the learning rate 

value. These drawbacks of the LMS algorithm have been 

solved by the NLMS algorithm by normalizing the power of 

the input [11-15], where it updates the connection weights as 

follows [26]: 

 

 (4) 

 

 (5) 

 

where: 

e(k) : Error signal 

μopt  : Optimal learning rate for the NLMS algorithm that 

is equal to 1 and it is independent of the inputs 

γ  : Small positive value [11] 

 

B. Recursive Least Square (RLS) 

The SMI algorithm is a block-adaptive strategy that gives 

a faster convergence rate. Although the SMI algorithm has 

faster convergence rate than the LMS algorithm, many 

problems can exist due to the potential singularities and 

computational complexity that is related with computing 

correlation matrix inversion [16-18]. This problem grows up 

with increasing the acquisition block size K of incoming 

signals [9], [10]. Therefore, we can recursively calculate the 

required correlation matrix and the required correlation 

vector by using the RLS algorithm as in [19], [20], [24]. The 

RLS algorithm saves computational complexity with fast 

conversion rate by computing the correlation matrix inverse 

iteratively instead of the directly computing. The weights of 

RLS algorithm are updated as follows [27]: 

 

 (6) 

 

where: 

α : Forgetting factor and it is a positive constant value 

in range 0 > α ≥ 1 

g̅ (k) : Gain vector and it is defined as: 

 

 (7) 

 

where correlation matrix inverse can be computed iteratively 

as: 

 

 (8) 

 

The hybrid LMS/SMI algorithm is a combination of the 

LMS and SMI algorithms together that is another way to 

avoid their defects. The weights of LMS algorithm are 

initialized arbitrarily, hence it takes a large time to reach the 

optimum weights. Instead of random weights initialization, 

the weights of LMS algorithms are initialized by SMI 

algorithm of small (K) block length calculation in [4], [17], 

[21]. 

 

C. Proposed Hybrid (NLMS/RLS) Algorithm 

The Hybrid NLMS/RLS is a proposed non-blind adaptive 

beamforming algorithm that solves many problems of the 

previous non-blind algorithms. It is a combination of the 

NLMS and the RLS algorithms together to exploit the merits 

of both algorithms and avoids their defects. The most 

considerable of these problems are SLL, nulls depth, and 

MSE of the output signal. Figure 2 shows the flow chart of 

the NLMS/RLS algorithm procedures. 

In the NLMS/RLS algorithm, the adapting of the weights 

values divide into two intervals. Firstly, the weights are 

initialized and updated by the NLMS algorithm until the 

absolute of error value e (k) in Equation (5) reach the error 

threshold limit eth as illustrated in Figure 3. The error 

threshold limit eth is depending on the noise value on the 

received signal, mutual coupling between elements and also 

the errors on the system that cause another noise [2], [23], 

[18]. The error threshold limit eth should be increased at low 

SNR values. Secondly, the RLS algorithm handles the 

weights updating from the error threshold limit eth to the 

convergence limit as illustrated in Figure 3. In the RLS 

algorithm interval, the weights should be initialized by the 

last weights values of the NLMS algorithm interval as in 

Equation (9). 

 

 (9) 
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Figure 2: The flow chart of the proposed NLMS/RLS algorithm procedures 
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Figure 3: The convergence sections of the proposed NLMS/RLS algorithm 

 

IV. SIMULATION RESULTS AND DISCUSSION 

 

In this simulation, assuming the signal-of-interest is 

coming from the direction of 30° and two random interfering 

signals are coming from the direction of 0° and -60°. Figures 

4 to 9 show the simulation results of the normalized array 

factor for linear array using the LMS, NLMS, SMI, RLS, 

LMS/SMI, and NLMS/RLS algorithms respectively using 8, 

16, 24, 32, and 51 antenna radiating elements, while the 

displacement between radiating d elements is fixed at λ/2 and 

30 dB SNR of interfering noise on each radiating element.  

Figures 10 to 13 indicate the performance of each algorithm 

(HPBW, Max. SLL, and nulls depth), where each result 

represents the average of 100 simulation results at different 

cases for each algorithm. Each case has different conditions, 

where the characteristics of each interfering signals are 

changed by making them random signals in addition to the 

random noise. Figures 4 to 9 show only one case from these 

cases. 

The radiation HPBW of the antenna narrows by rising the 

number of radiating elements N as illustrated in Figures 4 to 

10. The SMI, RLS, and LMS/SMI algorithms introduce high 

side-lobe levels, while the LMS, NLMS, and NLMS/RLS 

give low SLLs. Moreover, The SMI algorithm has the highest 

SLLs on the other side, the NLMS/RLS algorithm has the 

lowest SLLs as illustrated in Figure 11. The SMI, RLS, and 

NLMS/RLS algorithms have deeper nulls compared to the 

LMS, NLMS, and LMS/SMI algorithms as shown in Figures 

12 and 13. The deepest nulls are given by the SMI algorithm 

followed by the NLMS/RLS algorithm, then the RLS 

algorithm, while the LMS and NLMS have the lowest nulls 

depth. As presented in Figures 4 to 9, the LMS, NLMS, and 

NLMS/RLS algorithms have more beamforming stability 

than the SMI, RLS, and LMS/SMI algorithms. The 

beamforming of the adaptive algorithm is called stable when 

the beamforming is independent on the received signals 

values but upon their directions. In another word, the 

algorithm has stable beamforming when it is only sensitive to 

the incident signals directions. 

 

 
 

Figure 4:  Normalized array factor of linear array under different radiating 
elements number using the LMS algorithm at d = λ/2 and SNR=30 dB 

 

 
 

Figure 5:  Normalized array factor of linear array under different radiating 

elements number using the NLMS algorithm at d = λ/2 and SNR=30 dB 

 

 
 

Figure 6:  Normalized array factor of linear array under different radiating 
elements number using the SMI algorithm at d = λ/2 and SNR=30 dB 
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Figure 7:  Normalized array factor of linear array under different radiating 

elements number using the RLS algorithm at d = λ/2 and SNR=30 dB 

 

 
 

Figure 8:  Normalized array factor of linear array under different radiating 
elements number using the LMS/SMI algorithm at d = λ/2 and SNR=30 dB 

 

 
 

Figure 9: Normalized array factor of linear array under different radiating 

elements number using the NLMS/RLS algorithm at d = λ/2 and SNR=30 

dB 

 

 
 

Figure 10: The average HPBW of 100 simulations result under a different 
number of antenna elements 

 

 
 

Figure 11: The average max. SLL of 100 simulations results under a 
different number of antenna elements 

 

 
 

Figure 12: The average nulls depth at 0° of 100 simulations result under a 

different number of antenna elements 

 

 
 

Figure 13: The average nulls depth at 60° of 100 simulations result under a 

different number of antenna elements 

 

Figures 14 to 18 illustrate the simulation results of the MSE 

versus number of iterations for the linear array using the 

LMS, NLMS, RLS, LMS/SMI, and NLMS/RLS algorithms 

respectively using 8, 16, 24, 32, and 51 antenna radiating 

elements at d = λ/2 and SNR = 30 dB. The convergence rate 

of the LMS algorithm speeds up by rising the number of 

radiating elements N. At N = 8, LMS converges after 45 

iterations, while at N = 51, it converges after 7 iterations as 

illustrated in Figure 14. On the other hand, the convergence 

rate of the NLMS algorithm is insensitive to N because of the 

normalized power of the inputs. It converges after 6 iterations 

for each value of N as illustrated in Figure 15. In the RLS 

algorithm, the convergence occurs after 3 iterations and the 

convergence rate is insensitive to N as illustrated in Figure 

16. The hybrid LMS/SMI algorithm has sped convergence 

because of the weights initialization by the SMI algorithm 

where weights values are near to the optimum solution. The 

error decreases by raising the number of antenna elements, 

where the maximum MSE at N = 8 is 4.2× 10-4 and at N = 51 

reaches 0.45× 10-4 as depicted in Figure 17. In the 

NLMS/RLS algorithm, the convergence occurs after 7 

iterations for all values of N as illustrated in Figure 18. The 
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convergence rate of the NLMS/RLS algorithm is independent 

on the number of antenna elements N since this algorithm is 

a combination of the NLMS and RLS algorithms which their 

convergence rates are independent on the number of antenna 

radiating elements N. 

Figure 19 presents the average of MSE difference between 

the reference signal and the output of tested signal at different 

noise levels (SNR value of the received signal on each 

radiating element is changed among 30, 20, 15, 10 and 5 dB) 

using the different algorithms at N = 16 and d = λ/2. 

 

 
 

Figure 14:  Mean square error of the LMS algorithm for linear array under 

different radiating elements number at d = λ/2 and SNR=30 dB 

 

 
 

Figure 15: Mean square error of the NLMS algorithm for linear array under 
different radiating elements number at d = λ/2 and SNR=30 dB 

 

 
 

Figure 16: Mean square error of the RLS algorithm for linear array under 
different radiating elements number at d = λ/2 and SNR=30 dB 

 

 
 

Figure 17: Mean square error of the LMS/SMI algorithm for linear array 
under different radiating elements number at d = λ/2 and SNR=30 dB 

 

 
 

Figure 18: Mean square error of the NLMS/RLS algorithm for linear array 

under different radiating elements number at d = λ/2 and SNR=30 dB 

 

The MSE values rise by increasing the noise level in all 

algorithms. Furthermore, the error difference at 5 dB SNR is 

very large compared to the other higher SNR values in all 

previous algorithms. Therefore, the smart antenna 

performance drops in an unacceptable manner. From Figure 

19, it is clear that the SMI algorithm has the lowest MSE 

value at different noise levels, followed by the NLMS/RLS 

algorithm, the RLS algorithm, LMS/SMI algorithm, the LMS 

algorithm, and the NLMS algorithm, respectively. The noise 

influence on each algorithm is determined according to how 

deep the nulls can be given by the beamforming algorithm in 

the direction of interfering signals. In other words, the MSE 

value is inversely proportional to the nulls depth. Therefore, 

the NLMS algorithm has high MSE value because it 

introduces the lowest nulls depth compared to the other 

algorithms at different noise levels. For the NLMS/RLS 

algorithm, the threshold limit eth is 0.1 at 30, 20 and 15 dB 

SNR. At 10 dB SNR, eth is 0.3 and at 5 dB SNR, eth is 0.5 to 

achieve satisfied performance. 

 

 
 

Figure 19: The average of MSE difference between the reference signal and 

the tested signal using different algorithms at N=16 and d=λ/2 
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In this section, the hybrid NLMS/RLS algorithm will be 

applied to an array of planar patch dipole, rectangular 

microstrip (probe fed – inset fed) and quasi-Yagi antennas to 

investigate the performance of the proposed algorithm at real 

radiating elements. The planar dipole, probe-fed microstrip, 

inset-fed microstrip antennas with the dimension 

considerations as shown in Figures 20 to 22 respectively have 

the narrow bandwidth at 10 GHz resonance frequency [25]. 

The quasi-Yagi antenna with the dimension as shown in 

Figure 23 covers the wide frequency band from 7.74 to 12 

GHz at 10 GHz resonance frequency [28]. 

Figures 24 and 25 show the simulation results of the 

normalized gain and MSE respectively for the linear array 

using different types of the radiating antenna at N equals to 

16, the SNR is 20 dB which represents interfering noise, 

mutual coupling between elements and the other physical 

errors on the smart antenna system that cause another noise. 

The spacing between elements is 0.6 λ. where the best 

performance of the smart antenna system is achieved at d = 

0.6 λ and it is better than the performance at d = λ/2 for each 

algorithm [22] according to beamwidth and the most cases of 

the nulls depth as shown in Table 1. 

 

hsub=1.575 mm

εr = 2.2

 
 

Figure 20: The dimension considerations of a planar dipole antenna for 10 
GHz resonance frequency 
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Figure 21: The dimension considerations of probe-fed microstrip antenna 

for 10 GHz resonance frequency 
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Figure 22: The dimension considerations of inset-fed microstrip antenna for 

10 GHz resonance frequency 
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Figure 23: The dimension considerations of the quasi-Yagi antenna for 10 

GHz resonance frequency 

 

The results of the isotropic source antenna array introduce 

the best performance (SLL, nulls depth and convergence rate) 

which represents the ideal case as shown in Figures 24 to 25, 

and Table 2. The results of planar patch dipole, rectangular 

microstrip (probe fed – inset fed) and quasi-Yagi antennas 

array are compared with the isotropic source antenna array to 

illustrate the performance of the algorithms when applied on 

signals received by real elements and taking into interfering 

noise, mutual coupling between the real elements and the 

other physical errors on the smart antenna system that cause 

another noise. 

 
Table 1 

The Beamforming Average Results of a Linear Array at d = 0.6 λ, N = 16 

and SNR = 30 dB [22] 
 

 HPBW 

(Deg.) 

Max. SLL 

(dB) 

Null Depth 

at 0°(dB) 

Null Depth at 

-60°(dB) 

LMS 6.12° -13.16 -49.74 -49.62 
NLMS 6.12° -13.18 -47.54 -47.07 

SMI 6.14° -11.95 -59.59 -59.42 

RLS 6.11° -12.49 -59.42 -58.54 
LMS/SMI 6.13° -12.82 -53.27 -52.86 

NLMS/RLS 6.1° -13.18 -59.39 -59.18 
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Figure 24: Normalized gain at different types of antenna using NLMS/RLS 

algorithm at N = 16, d = 0.6 λ and SNR = 20 dB 

 

 
 

Figure 25: The MSE at different types of antenna using NLMS/RLS 
algorithm at N = 16, d = 0.6 λ and SNR = 20 dB 

 

As presented Figure 24 and Table 2, the HPBW is 

insensitive to radiating elements type. The deepest nulls and 

lowest SLL are given by the isotropic antenna followed by 

the inset-fed microstrip, quasi-Yagi, planar dipole and probe-

fed microstrip array antenna. The inset-fed microstrip and 

quasi-Yagi antennas converge faster than the planar dipole 

and probe-fed microstrip antennas as shown in Figure 25 and 

Table 2. 

 
Table 2 

Beamforming Results for the NLMS/RLS Algorithm at N = 16, d = 0.6 λ 

and SNR = 20 dB 
 

 HPBW 
(Deg.) 

Max. 

SLL 
(dB) 

Null 

Depth at 
0°(dB) 

Null 

Depth at 
-60°(dB) 

Convergence 

Isotropic 6.1° -13.03 -53.11 -54.18 7 iterations 

Planar Dipole 6.1° -12.27 -47.55 -47.61 18 iterations 

Probe Fed 6.1° -12.19 -46.92 -46.29 18 iterations 
Inset Fed 6.1° -13.03 -48.76 -48.69 13 iterations 

Quasi Yagi 6.1° -12.99 -48.58 -48.33 13 iterations 

 

V. CONCLUSION 

 

Through simulation experiments and comparison among 

different algorithms, it is found that the hybrid NLMS/RLS 

algorithm has the best performance (fast convergence, stable 

pattern beamforming, low side-lobe level, deep nulls and low 

MSE values). The hybrid NLMS/RLS algorithm gives the 

lowest SLLs in most cases of the different conditions. The 

convergence of the SMI, RLS, and LMS/SMI algorithms is 

improved at the expense of high side-lobe level and instability 

of array factor beamforming. The SMI algorithm has the 

minimum MSE values and the deepest nulls at the directions 

of interfering signals, followed by the NLMS/RLS algorithm, 

the RLS algorithm, the LMS/SMI algorithm, the LMS 

algorithm and the NLMS algorithm, respectively.  

The performance of different types of patch array antenna 

using the hybrid NLMS/RLS algorithm is demonstrated. The 

inset-fed microstrip array antenna has the best performance 

followed by quasi-Yagi, planar dipole and probe-fed 

microstrip array antenna, respectively. 
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