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PUBLICATION THESIS OPTION 

The paper presented within the body of this thesis has 

been prepared in the style utilized by the American Society 

of Mechanical Engineers. Pages 1 - 53 will be submitted to 

the A.S.M.E. · Journal of Lubrication Technology for publication. 

Appendices have been added for purposes normal to thesis 

writing. 
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PREFACE 

Lubrication in one sense is as old in civilization as 

the wheel and axle. When a tomb was opened in Egypt some 

years ago, one of the chariots still had some of the original 

lubricant on the axle. This was analyzed and found to be 

"sticky and slightly greasy" 1 . 

The new science of lubrication, however, was not recog-

nized as such until 1883 when hydrodynamic theory was orig-

inated by Reynolds. But, it was 1920 before dynamically 

loaded bearings were first studied. Still, the problem is 

not completely solved. 

The large volume of literature devoted to predicting 

the motion of dynamically loaded journal bearings contain 

surprisingly little information of direct use to the designer. 

This thesis responds to that need by finding the response of 

a journal bearing to unidirectional dynamic loading; both 

analytically and experimentally. This type of load exists in 

many industrial problems, for example, railroad car bearings 

where there is a large static load with a superimposed 

dynamic load in the same direction. Also it is shown here 

that a journal bearing at different eccentricity ratios has 

different dynamic response, effecting the degree of importance 

of dynamic analysis. It is believed that this dynamic analysis 

will be useful to the designer. 

Appendices of this thesis were prepared to give detailed 

information and derivations. 

1.· Parish, W.F., "Lubricants", Encyclopedia Britannica, 14th 
ed., vol. 14, 1929, pp. 451-453 
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= damping ratio of system 
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= side leakage factor due to acceleration 
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= characteristic value from Equation (7) 

= characteristic value of Equation (D-8) 

= viscosity of lubricant 

= lubricant mass density 

= time constant of system 

= coordinate measured from line of centers 

= attitude angle (Figure 1) 

= attitude angle at t = 0 

d~ 
=·dt 

= non-dimensional form of inertia coefficients 
M 

Q = r3Lpn /c 
a 

= journal angular velocity 

= dynamic load frequency 

= natural frequency 
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A STUDY OF THE DYNAMIC LOADING OF HYDRODYNAMICALLY 

LUBRICATED JOURNAL BEARINGS 

ABSTRACT 

by 

Nader Khorzad 

and 

Dr. C.L. Edwards 

and 

Dr. T.R. Faucett 

1 

The analytical and experimental investigation presented 

here examined the response of a full journal bearing to a 

unidirectional dynamic load. Frequency response of the 

bearing at different eccentricity ratios was investigated. 

It was concluded that the response of the bearing varies with 

eccentricity. 

The experimental data obtained was compared to an analy

tical model which considered inertial, damping, and elastic 

characteristics of the lubricant film. 

An investigation of film pressure revealed that the 

pressure due to journal center acceleration is smaller than 

the hydrodynamic and squee.ze-film pressures. 
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INTRODUCTION 

Most previous work involving the dynamic analysis of 

journal bearings predicts the motion of the journal center, 

due to a constant magnitude rotating-load vector, (1), (2), 

(3). Transverse flow, or side-leakage is generally ignored. 

Shawki (4), for example, presents a basic theoretical inves

tigation into the performance of a complete journal bearing 

of infinite length under variable load, excluding negative 

pressures. However, Burwell [5] applied a side-leakage 

factor, obtained by Waters [6], to Swift's [2] equations. 

Booker [7] has introduced the Mobility method which predicts 

the motion of a journal bearing center under arbitrary 

loading. 

Hahn [8] used a finite difference method to calculate 

the pressure distribution of a finite 360° journal bearing 

with dynamic loading. Hays [9,10] solved Reynolds' equation 

by variational methods and applied this general solution to 

a finite 360° non-rotating journal bearing under dynamic 

loading. 

An important paper by Warner [11] has a solution of 

Reynolds' equation using separation of variables; reducing 

Reynolds' equation to two ordinary differential equations. 

The solutions of the two equations are combined into one 

series solution. He, then, approximated the pressure series 

to the first term of the series and used it as a side-leakage 

factor. 

Smith [12] introduced a technique for calculating the 
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inertia effect of a hydrodynamic film in journal bearings. 

Huggins [13], by experimenting with a 24 inch diameter 

journal, indicated that even at low speeds journal bearing 

variables have a pronounced dependence on the mass density 

of lubricant. 

Buske and Rolli [14] in 1937 carried out pressure 

measurements in the oil film of a full journal bearing under 

alternating loads applied at the same frequency as that of 

the rotation of the journal. Recorded diagrams give evidence 

that film pressures at any cross-section vanish along a por

tion of the journal periphery, thus confirming -that negative 

pressures (below vapor pressure of lubricant) _ do not exist 

in a bearing. 

Dayton and Simons [15], by an experimental investigation 

of shaft center location and displacement for various ratios 

of rotating load to journal speed, showed that the shaft 

reaches an equilibrium point despite Swift's theoretical 

work which indicates that the shaft will not be static 

under no load or a constant load. 

The investigation presented here examined response of 

a full journal bearing subjected to a unidirectional load 

whose magnitude was time dependent. This type of dynamic 

loading was chosen, because it exists in many industrial 

problems. For example, railroad car bearings, where there 

is a large static load with a superimposed dynamic load in 

the same direction. Also, frequency response of the 

bearing at different eccentricity ratios was investigated. 
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The experimental data obtained was compared ·to an analytical 

model which considered inertial, damping, and elastic 

characteristics of the lubricant film. It was assumed that 

the principle of superposition applies to this case. Thus, 

the separate effects of the above characteristics were 

determined to obtain the general differential equation. 

I. ANALYTICAL WORK 

It i~ assumed that the film thickness everywhere around 

the bearing is small compared to the journal dimensions, 

and that the journal axis is parallel to the bearing axis. 

Oil viscosity and density are uniform throughout the film. 

It can be shown that a general form of Reynolds' 

differential equation for journal bearings is: 

+ 
a h 3 ap 
az [6ll az 1 = 

ah a 
(Ul - uo·) ax + hax (ul + D o) 

·;+ 2Vo - ·2Vl (1) 

By assuming that the bearing is stationary i.e., U0 = V 0 = 0, 

anQ also transforming Equation (1) to cylindrical coordinates: 
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6 a 
r acp (U 1h) - 12V 1 (2) 

The right-hand side of Equation (2) is a function of ¢ 

alone, and Equation (2) can be written as (see Figure 1): 

a h 3 ap a h 3 aP de: d'¥ 
acp [~ acpl + az[~ azl = 12c dt cos¢-6(~- 2dt)ce: sin cp (3) 

As can be seen, Equation (3) is a nonhomogeneous second 

order partial differential equation, and the exact solution 

for it is quite complicated, if not impossible, in explicit 

form. Warner [1~ presented an approximate analytical solu-

tion using separation of variables to reduce Equation (3) to 

two ordinary differential equations: 

d h 3 dF • • 
d¢ (ll d¢) = r 2 

[ 12Ce: Cos¢ - 6 (W -'-2'¥) Ce: sin¢] 

and 

l.l d (h 
3 ~) 

h3r2 <:r<p l.l d¢ 
g 

+ 
~ 
dZ2 

q = 0 

Where F and g are functions of ¢ and q is a function of Z 

only. Equation (5) could be written as: 

d 2 a _ 
=---.:il.. A. 2 q = 0 dZ2 

and 

L (h3 ~) + (A.r)2 h3 g 
d¢ l.l d¢ l.l 

= 0 

(4) 

(5) 

(6) 

(7) 

Where A is an e·igenvalue, which can be determined from Equation 

(7). Therefore, the solution to Equation (3) is: 

P (cp,- Z) = [1 - qi (Z) ] F (cp) 
q ~. ,(L/2) 

1 

(8) 

Equation (8) is an approximate solution because the 

coefficient of F(<t>) is the leading term of an infinite 
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z 

L/2 
y 

~-------------------~----------------~---~ 

L/2 

Fig. 1. Full Journal Bearing Coordinate Systems. 
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series. Therefore, assuming the journal and bearing to be 

circular and streamlined flow to exist, from Figure (1): 

h = C ( 1 + ECOS cp) ( 9) 

Considering the boundary conditions due to film continu-

ity i.e., P(O,Z) = P(2n,Z) = 0, the pressure equation becomes: 

P(¢,z) Cosh (AZ) 
= [ 1 - Cosh(AL/2)] (10) 

where 

= 12 (r) 2 11 E: [ F ( ¢) + C F ( ¢) + C ] 
c 1 1 2 2 

(11) 

and 

F b ( ¢ ) = 6J.L ( ~ ) 2 
( w- 2 '¥) [F (¢) + C F (¢) + C ] 

3 3 2 4 
(12) 

The C's are integral constants, and F , F , ..• etc. are given 
r 2 

in Table 1. 

By evaluating the above functions for a full journal 

bearing, the pressure equations becomes: 

Cosh(AZ) r 2 • 1 1 
P(¢,Z) = [l- Cosh(AL/2)][G(c) l.l] {s[ s(l+ECos )2- s(l+s 2 ) 2 ] 

+ (w- 2 ~) [ E sin¢ (2+sCos ¢) ] } + Po 
(2+s 2 ) (l+E Cos¢) 2 (13) 

P is the pressure at ¢ = 0, which during the derivation of 
0 

Equation (13) was assumed to be zero gauge for simplicity~ 

The pressure as given by Equation (13) attains positive as 

well as negative values, and will give the pressure of the 

lubricating film at any point along the width of the bearing 

(Z directions). 

Pressure Forces: 

For now it is assumed that all the load carried by the 

bearing, identified as Wp, may be determined from the 



8 

pressure distribution P(~,Z). Later, other load terms will 

be added due to dynamic effects. 

From Figure (2): 

w = - ;L/2 1 2rr P(cp,Z) r Coscf> dcf>dZ, px 
-L/2 0 

w = !L/2 !2'IT P(cp,Z) r sincJ> dcJ>dZ py -L/2 0 

Thus, substituting the value of P(¢,Z) and integrating: 

w px 

[FG (cf>) + CgFs (cf>) + C4 sincp]} 

and 

WPY = 6rL(~) 2 ~n {2~[F7(cf>) + C1Fa(cf>) - C2Coscp] + (w-2~) 

[Fg (¢) + CgFe (cp) - C4Coscj>]} 

wheren, is an oil side-leakage factor for load, 

n = [l _ tanh(~) 
AL/2 

Dynamic Forces: 

(i) Forces due to displacement of journal center. 

(14) 

(15) 

(16) 

( 17) 

( 18) 

In Figure (3), point A represents the location of the 

journal center at steady-state with s 0 ,~o as eccentricity 

ratio and attitude angle respectively. The coordinate 

system (x,y), where the ~ axis is along the line of centers, 

has its orgin on point A. Point B is the new position of the 

journal center slightly displaced from point A. Coordinate 

system (ui ,vj) has its origin fixed on the bearing center. 

Considering forces due to small motion from equilibrium 

position A to B with respect to coordinate system (x,y) : 



Fig. 2. Pressure Forces. 

v. 
J 
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Pq,·COScfl 

Pq,· sine#> 

~------------------Ui 

Fig. 3. Displacement Due to Dynamic Forces. 
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F = w Cos('l'o-'1') + w sin ('l'o-'1') 
X px py (19) 

F = w sin('¥ 0 -'1') + w Cos ('l'o-'1') y px py ( 20) 

Note from Figure (3) that, 

'1' = 'l'o + y_ and E: = E:o + X 
e c (21) 

Also, assuming a small displacement from point A to B, it 

may be assumed that: 

sin ( '¥ 
0 

- '¥ ) = 0 , cos ·' ( '¥ 0 - '1' ) = 1 ( 22) 

Expanding Equation (19) and Equation (20) by Taylor's series 

about (€: 0 '¥ 0 ): 

Fx(£,'1') = Fx(E:o,'l'o) + K X + K y 
XX xy ( 23) 

and 

Fy (E:' '!') = Fy(£o ,'l'o) + K X - K y xy yy ( 24) 

where: 

K = 1 3W:ex awEx - Wpyl ~2 XX c dE: . [()'!' ( 2 5) 

Kxy = 1 [awpx Wpyl CE: d '¥<· 
( 2 6) 

Kyx 
1 awpy - [3Wpy + Wpyl 

y_ 
= c e2 3E: () ·'¥ 

( 27) 

Kyy = 1 [Wpx + 3Wpy ] 
CE: 3'1' 

( 2 8) 

By neglecting higher-order terms, the elastic coefficients 

will be: 

Kxx = -6L nv(~) 3 w I~~ 6 + (29) 

Kxy = -6L nll(r)3 w I:F ac3+ ac sin<t> -Fg '""'C3Fe + Cl+Cos<t>J ;n-(30) ~l+ 
c E: s a ·'l' ()'!' 

· _. r 3 ·dF ·de ·dF ·de 
]~'IT Kyx = 6Lnu <c> I 

_g + -3 Fe + c3 
_a _lf Cos<t> (31) dE: dE: dE: dE: 0 



(ii) Forces due to velocity of the journal center. 

By taking the time derivative of equations (21) and 

assuming small motions: 

. 
E: = x 

c , t 
• 

= X. 
e 

11 

( 33) 

The velocity vector of the journal center, caused by 

moving the journal center from A to B in Figure (3), generates 

forces in the oil film. These forces are thus proportional 

to the components of velocity x and y and not the shaft 

angular velocity w. Equation (33) is substituted into equa-

tions (19) and (20) using the approximation of Equation (22): 

Fx = 

Fy = 

where 

. • 
Bx X + Bxy y 

x . 

B • . 
X + B y 

yx yy 

the damping coefficients are: 

12L nl-l (r) 3 [Fg + C3Fa - C4 Cos<f>] ~IT c 

(iii) Forces due to acceleration of journal center. 

( 34) 

( 35) 

(36) 

( 3 7) 

( 3 8) 

( 39) 

Evaluation of the acceleration terms will necessitate 

taking the inertia of the lubricant into account. The inertia 

of the journal was considered and found to be small relative 

to the effect of the lubricant inertia. 

Acceleration applied on the running journal will produce 
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a sudden change in the pressure of the film. The lubricant 

in the film is accelerated circumferentially and axially in 

making way for the journal. There is also radial accel-

eration of the film, but since it is of smaller order compared 

to the axial and circumferential components, it is neglected. 

Figure (4) illustrates a film element of angle d¢ and 

axial length dz. 

In Figure (4b), a. is the radial acceleration of the 
J 

journal, ac the circumferential acceleration, and a
2 

the ax-

ial acceleration of lubricant at angle ¢. Considering the 

flow across faces of this element, it is obvious that by 

virtue of the continuity equation, the summation of volumetric 

flow for the element must be zero. Thus, differentiating the 

continuity equation with respect to time, and dividing by 

rd¢dz gives: 

a. 
J 

a a 
= 1 ~(a h) + h---z 

r a¢ c az (40) 

The general form of Navier-Stokes equation (16) consists 

of an inertia term, pressure gradient terms, and shear terms. 

In the derivation of Reynolds' equation inertia is neglected. 

Therefore, neglecting the shear term and considering the 

inertia: terms, the Navier-Stokes equations reduce to: 

1 aP . a 
r a¢ 

( 41) 

( 42) 

where P is the pressure in the film due to acceleration only. 
a 



w 

(a ) 

Fig. 4. Film Element. 
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(b) 
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Substituting Equations (41),(42) and (9) into Equation 

(40), and writing a. in terms of its components of the (x,y) 
J 

coordinate system: 

where a and a are components of a. in the x andy direc-x y J 

tions respectively. 

Due to the similarity of form between Equation (43) and 

Equation (3), the same procedure for solution will be employed 

here. Thus, the pressure distribution due to acceleration 

will be: 

Cosh(AaZ) nr 2 
{ l (l+s ) 

Pa(¢,Z) = [Cosh(AaL/2)] ~ ax oge l+Cos¢ + ay[( 2 n-¢) + 

1 s+Cosp } 
Cos (l+·ECos¢)] ( 44) 

Where A· is the eigenvalue calculated from the ·solution of a 

Equation ( 43) 

Forces due to Pa(¢,z) can be given as: 

w = ax 

w ay = 

where 

M = XX 

Ivfx.x 

Myx 

in 

X + Mxy y 

.. 
X + Myy y 

general form: 

(45) 

(46) 

(47) 



r 3 Lpn = ____ a 
c 

[F2(¢I+S) 
[F2 (¢)] :~+S 

[F 1 ( <P) ] : ~ + S 

:J:"~Lpn 
M = ~ '· .a 

yy c 

For a full journal bearing, <P1=0, S=2rr and, 

n = a [1-
tanh(AaL) 

2 
A L/2 a 

F's are given in Table (2). 

General Equation: 

lS 

( 48) 

( 49) 

(50) 

(51) 

Assuming that the principle of superposition applies to 

a full journal bearing subjected to a unidirectional load 

with time-varying magnitude, the equation of motion can be 

written by adding equations (23) ,(24), (34), (35) ,(45) and 

(46) : 



External 
Load 

Steady State 
Force 

Dynamic - Forces 

For an external load shown in F~gure (1): 

Wx = W Cos 'l' o · Wy = W sin'l'o 

Also 

Fx(~o , 'l'o) = WoCos'l'o, 

16 

(52) 

Equation (52) can be solved by the Runge-Kutta forth-

order numerical method employing a digital computer. 
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Fig. 5 General view of apparatus 
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A - Proximity sensors H - Oscillator 

B - Journal I - Strain gage 

c - Bearing J - Magnetic sensor 

D - Scanning valve K Timing gear 

E - Pressure transducer L - Recorders 

F - Feed-back pressure transducer M - Scanning valve control 
panel 

G - Servo-valve 
N - Amplifier 

Fig. 6. · Schematic of Apparatus. 
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II~ EXPERIMENTAL WORK 

Experimentation was necessary in order to assess the 

validity of simplifications in the analytical model. Speci

fically, the experiment examined the soundness of the assump

tions governing the form and extent of the pressure distri

bution in the oil film. 

A test rig was designed to investigate the performance 

of a full journal bearing under a unidirectional cyclic load, 

W = Wo+W1.sin(wdt). 

Description of the Apparatus: 

The complete test rig is shown in Figure (5), and the 

schematic arrangement of the apparatus is shown in Figure 

(6). The method of loading and the apparatus for measuring 

the bearing displacement and pressure in the clearance space 

are shown in Figure (6) . 

The 127.0mm. (S.Oin) diameter steel shaft was carried 

in two tapered roller bearings, which were pre-loaded to 

absorb any play of the journal. The journal was driven by 

a ~ hp. D.C. motor, thru a V belt variable-speed drive. 

The recess shoulder of the bearing, Figure (6), was 

aligned with the step on the journal. Proximity devices 

mounted in the bearing shoulder were employed to measure 

the relative displacement of the bearing and journal. 

Twenty-three equally-spaced holes one millimeter in 

diameter were drilled radial_ly into the bearing to measure 

the pressure distribution. The effect of the one millimeter 
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diameter holes on the film pressure was considered negligible ~ 

Oil was supplied to the bearing thru one of the holes which 

was enlarged and connected to a pre~surized oil tank~ 

The load was applied to the loading block beneath the 

journal bearing through a hydraulic cylinder and tie rod. 

The tie rod was connected at both ends to spherical bearings 

in order to eliminate force components along the journal

bearing length. 

Instrumentation: 

The relative displacement between journal and bearing 

in both the horizontal and vertical directions was measured 

with photonic proximity sensors (A), (Figure 6), whose out

puts were recorded. These sensors were calibrated to com

pensate for the finish of the journal step surface. 

A magnetic sensor was installed on the frame in prox

imity to an irregular spline on the journal to serve as an 

accurate means of measuring journal rotational speed, and as 

a reference for the rotational position of various data. 

Pressure measurements in the oil film were taken with 

a scanning valve allowing the measurement of pressure from 

twelve ports with a single pressure transducer. 

A servo-valve feedback control system, Figure (7) enabled 

dynamic loading of the hydraulic cylinder. A potentiometer 

type pressure transducer was used to feed back cylinder 

pressure to the summing amplifier Figure (6). This prevented 

drifting of the load~ 

For load measurement, a strain gage was mounted on the 



SUMMING 

AMPLIFIER 

SERVO

VALVE 
DITHER 

-15V 
POT 

~ 
OSC POT 

G = sl 

Gs2 = 

G s3 = 

G s4 = 

G sS = 

FEEDBACK 
PRESSURE 
TRANSDUCER 

Serv,o-valve constant 

Hydraulic cylinder constant 

Feedback pressure transducer 

Elastic constant of the 
system 

Resistance of the system 
to hydraulic cylinder 

Fig. 7.. Control Diagram. 

HYDRAULIC 

CYLINDER 

POT - Potentiameter 

osc = Oscillator 

e = Voltage 

q = Flow 

X = Displacement 
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F = Force to bearing 
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tie rod. Temperature of the outlet oil was measured by a 

thermocouplet 

The output of the two-channel and four-channel recorders 

was time synchronized by the use of an external circuit. 

Test proCedure: 

The bearing was pressure-fed with oil, and an oil film 

was allowed to surround the journal before the motor was 

started under zero external load. Next, some small amount of 

load was placed on the bearing, and allowed to run until the 

outlet oil temperature and all apparatus reached steady state. 

The desired static load was reached by adjusting paten-

tiometer 2. Then, a complete set of data was taken, which 

included, journal center loci, film pressure, journal speed, 

outlet oil temperature, and the feedback pressure t~ansducer 

output. 

Since steady-state and transient data were to be taken 

for the case of dynamic loading, potentiometer 1 [Figure (7)] 

was adjusted to a pre-determined position before the oscil~ 

later was actuated. Hence, transient data was obtained 

instantly after the oscillator was switched into the system. 

A complete set of observations was taken under this 

dynamic load. This included, recording of journal center 

loci, film pressure, load, rotational speed of journal, out

put of feed back pressure transducer, and oil temperature .. 

Also recorded were frequency of the oscillator, recorder 

speeds, den·sity and viscosity of oil for proper temperatures. 



23 

Results: 

Experimental and analytical bearing film pressure 

distribution for various loads is shown in Figure (8). In 

all tests the same oil inlet position was used. Oil entered 

the bearing through a partial circumferential groove. It is 

apparent from Figure (8) that a shift exists between the 

experimental and analytical curves. Carl [17] has shown that 

if viscosity is assumed to be a ·function of both temperature 

and pressure, the shift can be minimized. Although the 

pressure equation used by Carl is not exactly the same as the 

one used here, it is assumed that his procedure could be used 

to correct for the shift. 

Figure (9) is a polar plot of typical experimental and 

analytical pressure distribution. The analytical curve de

monstrates that pressure increases gradually from the inlet 

pressure of 29 psi at~= 337.5°, to a maximum value. The 

peak pressure is followed by a sharp decline which falls 

rapidly to a negative pressure over a certain arc of the 

bearing. The length of the arc of negative pressure depends 

on the lubricant inlet location. Radzimovsky [18] points out 

that, oil cannot withstand tension or negative pressurer 

therefore, the oil film breaks soon after the pressure 

becomes less than atmospheric. Hence, the actual pressure 

in the region becomes atmospheric. This is confirmed by the 

experimental ~ curve. Note that the same shift exists here as 

in Figure (8). 

Figure (10) shows the hydrodynamic pressure P(¢,z), of 
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Equation (13), around the dynamically loaded bearing, and 

Pa(¢,a) of Equation (44), the pressure due to journal center 

acceleration. The plots show the value of P (¢,z) to be much a 

smaller than the hydrodynamic pressure P(¢,a). The maximum, 

intermediate, and minimum pressures for P(¢,z) and P (¢,z) a 

have been plotted for a given dynamic load. The time varia-

tion of P (¢,z) is more pronounced than the variation of a 

P(¢,z). As far as pressure magnitude is concerned, the effect 

of lubricant inertial is small. 

Figure (11) illustrates the experimental and analytical 

time variation of journal center displacement under a dynamic 

load. The amplitudes of the two curves correspond closely, 

but there is a phase lag between the experimental and anal-

ytical results. In an attempt to correlate the phase lag to 

physical phenomena a load was . placed on the bearing in the 

form of a step function. The experimental response was 

assumed to be that of a first order system. This approach 

Wo -1 gives the bearing load as Wo + sin[wdt-tan (Twd)], 
ll+(Twd) 2 

where, T, is the time constant of the system. Calculation 

of u. and v. for this load gives much closer correlation 
1 J 

between experimental and analytical results as shown in 

Figure (12). 

Figure (13) shows the pressure fluctuation for the 

point of maximum pressure under dynamic load at ¢ = 11.0°. 

The same phase lag is present. Thus, by using the same 

time constant Figure (14) is obtained. Note that the 

amplitude of the analytical results is smaller than the 
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experimental .. 

Further investigation indicated that the system respons e 

depends on eccentricity ratio. 

The experimental and analytical loci of the journal 

center is shown in Figure (15). It can be seen that the ex-

perimental data follows approximately a semi-circular path. 

Due to the limitation of the D.C. Motor, which drove the 

journal, higher eccentricities could not be obtained. 

Figures (16) and (17) show the analytical results of the 

time variation of the attitude angle, ~, and eccentricity 

ratio, s, respectively. There is a small transient time 

before reaching steady-state sinosouidal values for both,t, 

and s. 

Figure (18), the plot of, ~' is also the angular veloc-

ity of the line of centers versus time. It shows how the 

line of centers oscillates for the dynamic loading. The same . 
is true for, t, [Figure (19)] which is proportional to the 

velocity of the journal center along the x axis. 

The curve is Figure (20) represents the relationship 

between the eccentricity ratio,s , and the Sommerfeld num-

ber s. 

Figure (21) shows the inertia ' terms of Equation (52) in 

non-dimensional for vs. the Sommerfeld number. The values 

of terms Mxy and Myx are zero. Myy is larger than Mxx for 

all the Sommerfeld numbers larger than S = .125. This com-

plies :with the fact that there is more mass of oil located 

along an arc normal to the y axis because of larger clearance. 



The curves in Figure (22) represent the variation of 

damping coefficients with respect to Sommerfeld number 
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(Bxy = Byx = _0). Damping coefficients increase very rapidly 

for high eccentricity ratios (low S). 

The non-dimensional K terms in Figures (23) ,(24) and 

(25) approach large values for high eccentricity ratios. 

In Figure (26), the calculated side leakage factor for 

the load is compared to two previous works. The value of n, 

agrees rather closely to the analytical results of Pinkus 

[19], but the factor that is given by Fuller [20] is some-

what larger. However, the trend of all three curves are 

similar. Fuller obtained these values for full journal 

bearing by interpolating and extrapolating from the original 

work done by Kingsbury and Needs [21], which was for the 120-

degree centerally loaded partial journal bearings. It is 

necessary to point out that for calculating, n, the function 

g(~) =Fa(~) + Fb(~) in Equation (7) was used. 
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Conclusions and ;R,econunendations; 

Examination of results obtained show that there is a 

reasonable correlation between the experimental and analytical 

results. 

As was mentioned in the previous section in studying the 

dynamic response of the bearing, an experimental frequency 

response was performed. Concurrent to this, the characteris

tic equations were determined for x, and y. They are fourth

order polynominals, having negative, real and/or imaginary 

roots. The analytical values of natural frequencies, wn, 

and damping ratios, s, for the various eccentricity ratios 

were examined. 

easier. 

Because Bxy = Byx = 0, the analysis became 

After studying these values and also examining the 

result of the experimental frequency response, it was con

cluded that the response of the bearing is different at 

different eccentricity ratios. In other words, at low 

eccentricity ratios, the bearing acts as a second order 

lightly damped system, and at high eccentricity ratios, it 

would act as a second order heavily-damped system. This, of 

course, is quite important for the designer to know, since it 

enables him, for a given operating load, to choose the kind 

of system he desires. Hence, if he obtains a system which 

has its natural frequencies much -lower than the dynamic load 

frequency, wd, the effect of dynamic load would be quite 

small. He . then could design the bearing considering only 

static load and obtain a very good approximate solution. 
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However, if the break-points are relatively close to wd, he 

should then proceed to choose an operating range of eccen

tricity ratio Eo• Knowing journal diameter, static load, 

dynamic load and frequency, angular speed of the journal, and 

parameters like clearance ratio, viscosity of lubricant and 

others, he could determine dynamic displacements (ui,vj). 

Minimum film thickness can be found, which should be within 

the recommended range for a particular bearing surface finish. 

The relative error for the analytical results was found 

to be less than 7.0 percent. But, in calculating the loci 

of journal center, it was noticed that the results are sen-

sitive to the variation of radial clearance. Therefore, care 

should be exercised in obtaining the value of radial clear-

ance. 
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TABLE 1 

A = 1 + sCos<t> = s+Cos<t> 
1+sCos<t> 

B = l-s 2 

o = 1sin¢>0 
=-1sin¢<0 

F s (¢) 

F s (¢) 

Fa ( <f>) 

1 = 2 A · 

= !Ad 3 !_ [-ssin¢ 
2B A2 

= f 1 sin¢ o -1 F 1Cos¢d¢ = 2B[sA - B1h Cosy ] 

= !F2(<f>}Cos<t>d<t> = !_[B+3sACos + (o-1) :+Bs
2 

loge A+ 
2B s.A.B c.. 

= !F1(cp) sin<t>d<t>= ~s 2A 
= !F 1 ( <t>) sin<t>d<t>= !_ [ 2+s 

2
+3sCos<t>) sin<t> + ·o [ 2B-A (2+s 

2
)] 

2B A.B sB3/2 
-1 

Cosy 

d¢ - 0 - 1 

F1 0 (cp)= fx-- BV2 Cosy 

1sin 2<t> d¢ 
1 

= A3 E:2 [-BF2 (¢) + 2F3 (<f>} -F1 o (<f>)] 

1sin = 1 
A2 sA 
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TABLE 2 

A = l + Cos¢ y = s+ Cos¢ B = l-s 2 

l+sCos¢ o = l if sin¢>0 
=-1 sin¢<0 

Fl' (¢) =! dcp = 
A 

0 
B1j2 Cos 

-1 
y 

F-'"(cp) =f 
3 

F~(cp) =f 

F~(cp) =f 

F-'"( <I>) 
7 =! 

sinpdp = _1 
A E loge A 

Coscpdcp = 1 
A E [-F; (cp) +¢] 

0 0 -1 ·· <S - 1 <P 
F 1 ( cp) s1.n¢d¢=B 1; 2 -[ CoscpCos y- s Cosy + EB l,h . 

... 
F1 (¢) Coscpd¢ 

F~(<l>) sin<Pd<P 

= -sin<t> log ·· A + 
s e 

B 1 I 2 -1 ~ . 
-......:,_~cos · y 

E:2 ' 

F;(<t>) sin<Pd<P = 
1 ... 
£[-F4(cp) +sin¢- ¢.Cos¢] 

Ficos<Pd<P = 1 [-Fs(<l>) + <Psin<P +Cos¢ 1 
E 
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Data For Fig·.. 8 

Curve ' w (1b.) (reyns) {R,.P .M. (PSI) (in.) 
No. ' ll . . ... N . p{) c 

3 1550 • 2.42x1o- 6 533 29 0.00255 

:5 2750 2.44x1o-6 490 28 " 

6 4250 2.43x1o-6 474 26 " 

7 650 . 2.46x1o-6 510 27 " 



W=2855·78 lb. 
-6 

JL=2.42 x 10 reyns. 

N= 495 RPM· 

ANALYTICAL 

---- EXPERIMENTAL 

400 psi 

Fig. 9. Experimental and Analytical Pressure Distribution 
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APPENDIX A 

Literature Review 

Journal bearings were developed for centuries by 

empirical methods before engineers came to understand the 

physical action of a hydrodynamic lubricating film. Empir

ical methods still retain an important place in journal

bearing development. 

In 1883 Beauchamp Tower [1] carried out an investiga

tion to determine suitable methods of lubricating railway 

axle bearings. His tests were performed on partial bearings 

in which the rotating shaft picked up lubricant from an oil 

bath. He soon made the unexpected discovery that under 

loaded conditions, the peak pressure was several times the 

mean pressure on the projected area. Three years later, 

Osborne Reynolds [2] demonstrated that the build-up of 

pressure was due to viscous action in a convergent film. 

The physical understanding thus obtained assisted designers 

in choosing the position of oil-supply and drain grooves in 

journal bearings. The first analytical investigation of 

power loss in a hydrodynamic journal bearing was published 

in Russia, by Petroff, in 1883 [3]. 

Much analytical work on bearing lubrication was sub

sequently published, but for many years, engineers found this 

analysis of little revelance to journal-bearing design. Appli

cation of Reynold · : ~ theory led to a revolutionary advance in 

thrust-bearing design with the invention of the tilting-pad 

thrust bearing by Kingsbury [4]. 
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By 1950, the theory was giving results in reasonable 

accord with the observed steady-running of many bearings. 

There were, however, some anomalous results, particularly 

on large high-speed bearings [5]. Most of these anomalies 

have been explained by considering the occurrence o f non

laminar flow in the bearings. 

In the operation of turbomachinery, it has long been 

known that journal bearings greatly influence machine vib

ration, both in response to disturbance (such as out-of

balance) and in stability of running. The problem was 

attacked analytically and experimentally, but engineers were 

perplexed by discordant theories of the dynamic phenomena in 

the bearings, and by difficulty in distinguishing the dynamic 

effects of the bearings from the dynamic effects of the 

bearing supports [6]. Acceptance of a conventional theory 

relating to dynamic characteristics of journal bearings 

became widespread about 1960. although an understanding of 

dynamic characteristics of journal bearings is still far from 

complete. 

The solution of Reynold's equation as applied to dynam

ically loaded journal bearings was developed by W. J. Harrison 

[7] who, in part, examined the case of constant load, with 

the shaft slightly displaced from the equilibrium position. 

H.W. Swift [8] examined the paths followed by journal centers 

assuming no transverse flow of oil in the bearing while the 

load rotates with constant angular velocity. As such, it is 

accurate only for bearings which have a large width compared 
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to their diameter( and in this respect( is analogous to the 

familiar Sonunerfeld solution for constant-load bearings f9J~ 

Michell [10] and Muskat, Morgan and Meres [11] eliminated 

the need for side flow factors fro the case of plain slider 

bearings by solving the fundamental equation for slider pads 

of finite length-to-width ratios. But, unfortunately, the 

case of the finite journal bearing can not be dealt with in 

the same manner because of the more complicated film shape. 

In 1949, Cameron and Wood [12] published data for 360 

degree finite bearings for eccentricity ratios up to 0.8 

which they obtained by relaxation methods. Raimondi and 

Boyd [13] have published extensive design data and various 

information in the form of charts and graphs for bearings 

of length-to-width of 0.25, 0.5, 1 and m · with bearing arcs 

of 360, 180 and 60 degrees. Data on finite partial bearings 

with 100 and 75 degree arcs has been presented by Pinkus ~4]. 

The complete case including side leakage in journal 

bearings subjected to dynamic loading has not been solved 

exactly, and it appears to be quite complicated. However, 

some approximate methods have been found by Burwell [15], who 

resolved Swift's equations into more simple forms, and applied 

a side-leakage factor obtained by Water's [16]. To actual 

bearings, however, this implies that the side leakage factor 

will be the same at the same eccentricity ratio for both 

statically and dynamically loaded bearings. 

Also, Heinz W. Hahn rl7] used a finite difference 

me thod to calculate the pressure distribution of finite 360 
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degree journal beari.n~sf and it~ relation to time, for 

dynamic loading~ Donald F~ Hays {18,19] solved the ~eynold~s 

equation by variational methods and applied this general 

solution to finite 360 degree journal bearings under dynamic 

loading, but without journal rotation, i.e., "squeeze film" 

lubrication. Another important paper is by Paul c. Warner 

[20] who solved Reynold's equation by using the technique 

of separation of variables reducing the Reynold's equation 

to two ordinary differential equations. He, then, approx

imated the pressure series to the first term of the series 

as a side leakage factor. J.F. Booker [21] has introduced 

the Mobility method which predicts the motion of a journal 

bearing center under arbitrary loading, and states that 

since the equations of motion are in explicit form, iteration 

calculations are avoided. The method is much faster than 

usual numerical solutions, but is limited to full journal 

bearings with circumferential symmetry. 

Furthermore, C.S.A. Shawki [22] presented a basic 

theoretical investigation into the performance of a complete 

journal bearing of infinite width under variable load, 

excluding the existance of negative pressures. J.Dick [23] 

presented the case where the locus of the jou~nal center is 

an ellipse. The journal center is assumed --- to move round the 

ellipse in such a way that the dydrodynarnic load along one 

axis of the ellipse in zero. He compared the hydrodynamic 

load along the other axis to a sinusoidal load. D.M. Smith 

[24] introduced a technique for calculating the inertia 
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effect of a hydrodynamic film in journal bearings. 

On the experimental side Buske and Rolli [25] in 1937 

carried out pressure measurements in the oil film of a full 

journal bearing under alternating loads applied at the same 

fr~quency as that of the rotation of the journal. Recorded 

diagrams give evidence that film pressures at any cross

section vanish along a portion of the journal periphery, thus, 

confirming that negative pressures (below vapor pressure of 

lubricant) do not exist in a bearing. Theodor E. Carl [26] 

made simultaneous measurements of film pressure and journal 

displacement of a full journal bearing both under constant 

load and rotating load. He notices the modification of the 

oil film profile due to bending of the journal which resulted 

in shifting the maximum film pressure closer to the positon 

of the minimum film thickness. N.J. Huggins [27) by exper

imenting with a 24 inch diameter journal indicated that even 

at low speeds there is a dependence on the Reynold's number. 

He suggests that the inertia of the oil film has a pronounced 

influence on the journal bearing variables. 

R.W. Dayton and E.M. Simons [28] by an experimental 

investigation of shaft center location and displacement for 

various ratios of rotating load to journal speed showed that 

the shaft reaches an equilibrium point despite Swift's 

theoretical work which indicates that the shaft will not be 

static under no load or a constant load. 
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AJ?PENDIX B 

Derivat~on of General Reynolds' Equation 

In Figure (B-la,.b) coordinate systems and an element 

are shown in the hydrodynamic film of journal bearing under 

load W, which could be constant or variable. 

The following assumptions are made: 

(i) the height of film y is very small compared to the 

other dimensions of the bearing (in x and z direction), 

(ii) no variation of pressure across the fluid film i.e., 

pressure is function of x,z only, P = P(x,z), 

(iii) the flow is laminar in the film, 

( · ) d 1 · d · t au d aw 11 th 1v compare to ve oc1ty gra 1an s dY an ay a o er 

velocity gradiants are considered negligible, 

(v) the lubricant is a Newtonian fluid. 

By summing the forces in the x direction, from the 

stresses shown in Figure (B-lc): 

dTyx dTZX dZ 
(Tyx + ()y ] dxdz - Tyxdxdy + (Tzx + --az ~] dxdy -

dz ap dx aP 
2 .1 axdy + IP - ax '"2J dydz - IP + crx d~]dZdy = 0 

Canceling like terms and simplifying, 

dT 
+ zx ·· az (B-1) 

Since it is assumed that the lubricant is a Newtonian fluid, 

the she·ar stress is proportional to the rate of shear, i.e· , 



Tyx 

a nd 

Tzx = Jl ~ 

Substituting Equation (B-2) and (B-3) in Equation (B-1): 

But now by using assumption (iv) Equation (B-4) becomes, 

= 1 
ll 

aP 
ax 

By integrating Equation (B-5) twice and using Boundary 

conditions, 

u = U at y = 0 

u = U at y = h 

U 1 ap ( h) + U1h- Uo y + Uo == ·211 ax y y.-. 

Summation of forces in z direction: 

LFz == 0 

a-rvz aT xy dx]-dydz -
[Tyz · -+ ~ ~~ dy] dxdz- Tyzdxdz + (Txz + ax 2 
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(B-2) 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

pTxz dx aP dZ .aP dZ]d d a ~]dydz + [P - az ~]dxdy - [P + az 2 x y = o 

again, canceling like terms and simplifying: 

+ (B-7) 

Referring to assumption (v): 

(B-8) 

Therefore by placing Equation (B-8) in Equation (B-7): 

(B-9) 
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By integrating Equa,t.i,on (_B-.9} twice with respect to y and 

using boundary conditions, 

w - 0 at y = 0 

w = 0 at y = h 

= 1 ·ap 

(B-10) 

w ·2· 11 ·~.x- Y (y-h) 
t-- a (B-11) 

Since the lubricant is considered incompressible, the 

continuity equation becomes: 

a (pu) :a (pv) ·a (Pw) 
ax + ay + az = o 

or 

= au -
ax (B-12) 

where P, mass density is considered to be constant. Now by 

integrating Equation (B-12) between y = 0 and y = h: 
/ 

h h a h a 
!( ~.dV= -f 0 dx (u) dy - J 0 az (w) dy (B-13) 

Consider the Leibnitz integral (24), i.e., 

'¥(X) 

r ~f(x,y)dy = 
a ax 

a '!'(x) 
ax faf(x,y)dy- f[x,'!'(x)]'!'~(x) -f[x,a]a~(B-14) 

In the upper limit of Equation (B-13), his a function of 

coordinates (x,z), i.e~, h = h (x,z). Applying Equation 

(B-14) to each term on the right hand size of Equation (B-13): 

h 
a 

! 0 rx (u)dy = 

and 

. . h ·a 
r o rz <w> dy = 

h 
·a ah 
·axf 0 udy + u 1 ax (B-15) 

(B-16) 

Therefore, by using -Equation (B-15) and (B-16), and perform

ing the integration before differentiation, Equation (B-13) 
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becomes, 

and therefore 

which is the general Reynolds' equation. If the bearing is 

stationary, i.e., U = V = 0 
0 0 

where: 

ah 
6 U 1 ax represents the action of the journal rotating with a 

velocity U , over a wedge-shaped fluid film given by h(x). 

In order for this term to generate positive pressures, 

it must be negative since a wedge-shaped film implies that 

ah au 
ax < 0. 6hax 1 represents a variation of tangential velocity 

along the bearing surface, and in order that this term 

contributes to positive pressures aul must be negative, 
ax 

i.e., the velocity must decrease along the fluid film. 

12 V is the expression for the velocity of the shaft center 
l 

and is responsible for squeeze film action. 

Since v = dh, it can be seen that, when V acts in the 
J dt 

same direction as the applied load, the film decreases and 

the velocity will contribute to the load capacity. By 

writing Reynolds' equation (B-17) in terms of cylinderical 

coordinate~ (i,~,Z): 
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(B-18) 

The right hand side of Equation (B-18) is in terms of the 

bearing variables, i.e., r,c,E,f, etc. By referring to 

Figure (B-la), it can be seen that, 

. dE . TI d' 
U1 = rw + C dt Cos(<P--z) + c dt Cos(u-<P) 

and 

Or: 

u 
1 

v 
1 

= dE rw + C dt sin 
d'¥ 

-CE dt Cos<P 

C dE C ~ C d'!' . ~ = - dt os~- Edt Sln~ 

(B-19) 

(B~2o > 

(B-21) 

(B-22) 

Placing Equation (B-21) and Equation (B-22) in the right side 

of Equation (B-18): 

1 a u h do/ c c 2 
12[r a<P<--2-)-Vl] = 12C dt[2~sin<P + rE Cos<Psin<P + Esin<P] + 

12C dE[~os<P- ~ sin 2 <P + Cos<P] - 6C' Esin<P 
dt 2r 2r 

(B-23) 

By examining the value of ~r for most journal bearings, we 

find that ~r << 1, therefore, it could be neglected as com-

pared to 1, so Equation (B-23) becomes, 

12 f 1 L ( u 1 h) - v 1 J = 12 I .- ( w --2 d '¥ ) · c £ sin~ + cd'¥ ~ J r a <P 2 · dt 2 ~ dt Cos~ (B-24) 

Therefore, it can be easily seen that Equation (B-24) i.e., 

the right-hand side of Reynolds' equation [Equation (B-18)] 

is not a function of z, and as shown is a function of <P only. 
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Thus, Equation (B-18) becomes: 



w 

(a) 

[ 
8Tyz 

Tyz + 8Y dY 

[ 
8"l)cy dX 

Txv-ax--2 

~-8P ~J r ax 2 

[~ _8Txz dXJ 
XZ 8X 2 

z (c) 

w 

1--L-~ 
8Tvx ,l 

Tyx + 8Y dYj 

[ 8Tzx diJ fzx+ sz 2J 
[ 

+ 8Tzy ~1 
Tzy 8Z 2 j 
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(b) 

Fig. B-1. Components of Normal and Shear Stresses on Element. 
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APPENDIX C 

An Approximate Solution to Reynold's Equation 

In Appendix B Reynold's equation for stationary bear

ings was found Equation (B-25) as: 

1 a h 3 aP a h 3 aP • 
r2 3¢(~ a¢) + az(~ az) = 12CE Cos ¢-6(W-2~)CE sin¢ 

But considering dynamic loading, it can be seen that 

pressure is a function of ¢, Z and time. Therefore, at any 

instant of time, P = P(¢,Z). 

Warner [9] assumed a solution for Reynold's equation 

(B-25) in the following form: 

P = F(¢) + g(¢)q(Z) (C-1) 

where F(¢), g(¢), q(Z) are functions that are to be deter-

mined. By substitution Equation (C-1) in Reynold's equation, 

and using the principle of superposition: 

(C-2) 

and 

l.1 d h
3 ~) ~ 

hJr2- d¢(11 d¢ + dZ2 = 0 (C-3) 
g q 

where Equation (C-3) could be written as: 

(C-4) and (C-5) 

where A is an eigenvalue from Equation (C-4), and also (Ar) 

is the characteristic value for Equation (C-5). 

By examining Equation (C-2) it can be determined that 

F(¢) is the solution of Reynold's equation for a bearing 

with infinite width (side flow neglected). 
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Considering the boundary conditions for a finite journal 

bearing: 

(i) P(¢,Z) = P(¢+S,Z) = P0 

(ii) P(¢,±L/2) = 0 

It is obvious that (i) can be satisfied by F(¢) and that 

(ii) cannot be satisfied by F(¢) in Equation (C-2). 

In order to satisfy boundary condition (ii), it is nee-

essary .to expand F(¢) in a series of functions gN( ¢ ). Where 

( ~) d th th h t . t' 1 f ' gN ~ correspon s to e N c arac er1s 1c va ue o AN. 

This still satisfies condition (i). 

By applying boundary condition (ii) to pressure P in 

Equation (C-1) : 

P(¢,L/2) = F(¢) + g(¢)q(L/2) = 0 

and (C-6) 

P(¢,-L/2) = F(¢) + g(¢)q(-L/2) = 0 

But by considering the geometry of the journal bearing, 

it can be assumed that 

q(Z) = q(-Z) 

Therefore, from Equation (C-6): 

F(¢) = q(L/2)g(¢) (C-7) 

Expanding Equation (C-1) in series, 

but from Equation (C-7) : 

By using the boundary condition (ii) in the series: 



or 

therefore 

b = n 
a 

n 

So finally, 

oo qn(Z) 
P(¢,Z) =n~langn(¢) [l- qn(L/2)] 
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(C-9) 

It is obvious now, that Equation (C-9) can satisfy 

both boundary conditions. Therefore, it is a solution of 

Reynold's equation. However, the exact solution of the 

series seems quite complicated. 

Since this series converges rapidly (9), and due to the 

physical conditions, much of the solution is included within 

the leading series term. The series could be approximated 

as: 

(C-10) 

or 

Therefore 

q ( Z) 
p ( ¢' z) = [ 1 - q 1 (L/2) ] F ( ¢) 

1 

(C-11) 

The first and the most important term in Equation (C-11) 
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is computed exactly. The second and higher terms are approx

imate, but because of rapid convergence of the series, higher 

order terms rapidly decrease in importance. 

q (Z) 
The. term [1- q 1 (L/2 )1 in Equation (C-11) could be 

1 

called a correction factor for side leakage. This factor 

can be determined by solution of Equation (C-4), i.e.: 

But as was assumed above, the side leakage from both 

sides of the bearing are the same, i.e. q(Z) is an even 

function. Therefore, 

q(Z) =Cosh (~Z). (C-12) 



AJ?l?ENDIX D 

Determination of Eigenvalues 

Solution of Equation (7) is nede~sary so th~t side

leakage factors may b~ found~ 

Since it- was assumed that viscosity is not a function 

of ¢, Equation (7) can be written as: 

The functional for equation (D-1) in the general form is: 
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J[g] = [F(¢,g,g¢)d¢, (D-2) 

where the Euler-Lagrange differential equation for the above 

functional is: <25 > 

F 
d 

- d¢ [Fg¢] = 0 

where 

grf- = ~ 
'¥ 3¢ 

(D-3) 

In order for Functional (D-2) to satisfy Equation (D-1) : 

Comparing terms, 

Integrating with respect to g: 

(a) 

and also 



By integraUng; l" ;=; ~~- h3(g~)2+ S1(<j>,g) 

Therefore, from (a) and (b); 

therefore, 

. 1 . d 
J[g] = 2 !:Yc>.r)2 h3g2~ h3(~)2J d¢ 

By setting the variation oJ = 0: 

(:X.r) 2 = 

In order to determine ).., 

g ( <I> ) = F ( <I> ) = Fa ( <I> ) + Fb ( <I> ) 
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(b) 

(D-4) 

(D-5) 

(D-6) 

By referring to Equations (11) and (12) for Fa and Fb, 

the numerator of Equation (D-6) becomes: 

• 2TI 
fF1 o+ C3F2 + 2C3F3] + 4£ (w-2'¥) [F12 + C3F1+C1F3+C1C3F2] }

0 
(D-7) 

The denominator of Equation (D-6) is quite difficult to 

integrate, and thus, numerical integration, namely Simpson's 

Rule was employed. Therefore, ).. and in turn n [see Equation 

(18)] can be calculated. 

n is determ,i.ned as above but for s 

Determining )..a; 

' E = \}' = O~ 

Equation (G-3) as given in Appendix-G is: 

Thtis, du~ to similarity to Equation (D-1) it is apparent 
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that by the same procedure; 

(D-8) 

where numerical integration techn~ques were used for both 

numerator and denominator. 

Finally by determining \a' the leakage factor na can be 

determined by Equation (51). 



APPENDIX E 

Integration Constants for Pressure 
and Load Equations 

Considering the boundary conditions due to film 

continuity assuming no film rupture; 

P(¢1,Z) = P(¢1 + 2n,Z) = 0, 

or in case of full journal bearing: 

P(O,Z) = P(2n,Z) = 0. 

From Eq.(8) pressure was given as: 

Cosh ( A.Z) 
p ( ¢ ' Z ) = [ 1 - Cosh ( A. L/2 ) ] F ( ¢ ) . 
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(E-1) 

Th~refore, the boundary conditions (E-1) can be written as: 

F ( ¢ 1 ) = F ( ¢ 1 + B ) = 0 ( E- 2 ) 

But, 

wllere, 

F ( ¢) 
a 

and 
r 2 = 6 (-) ll ( w- 211J) [ F 3 ( ¢) + C 3·F 2 ( ¢) + C 4 1 • 
c 

By applying the boundary conditions (E-2) to 

Eq. (E-3) : 

¢I+f3 
[FI (¢) ]¢ 1 C 2 = -Fz(¢1) - C1F2 (¢I) 

cp I+ (3 

[F2 (¢) 1q,
1 

(E-3) 

(E-4) 
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(E-4) 

For the full journal bearing i.e. ¢ 1 =0·, B=2n, 

c1 0, c2 
1 = = 

2 
2E(l+E) 

(E-5) 

2 

Cg = 2 (1-E : ) , c4 = 0 
2 

(2+E ) 



75 

Ela~t~c Coetf~cient~ 

Equations (19) and (20) give 

Fx = Wpx Cos ('¥ 0 -'¥) + Wpy sin ('¥ 0 -'¥) 1 

Fy = -wpx sin ('¥ '¥) + w c (u1 m) o- py OS ro-r • 

Consider Taylor's series of th~ form: 

F(~+hly+K) = f(xly) + . {h aF(XIy) + K aF(XIy) 
ax ay + .••• (F-1) 

From Equation (21) 1 

'¥ = '¥ + y and S = S + X o e o c (F-2) 

Now expanding Fx and Fy by (F-1): 

Fx ( s I'¥> = Fx (so I'¥ o > + [:aF x ll + aF x a 6: l-x+ r aF x a'¥ aF x as aw- ax --as ax aw- ay + as ay1y 

(F-3) 

aF ~m aF ~ aF am aF = F ( E '¥ ) + [ .::.:_y a r + ~ ~] x+ [ .:.:::_y _r + .:.:::_y a E ] 
Y 0 1 0 a'¥ ax as ax a'¥ ay as ay y 

(F-4) 

Now by taking derivatives, 

aFY 
= - a.wEx sin ('¥ o-'¥) + 

oWpx Cos ('l'o-'¥) 
as as ~ 

oFY _a.wEx aw 
= sin ('Yo-'¥) + Wpx Cos (\l'o-'1') + ~ Cos 

a'¥ '0·'¥ a'¥ 

Assuming th~ ·approximation of Equati·on (22), i.e., 

sin ('¥ 0 -'¥) = 0, Cos · ('¥ 0 -'¥) = 1, 

('l'o-'¥) 



therefore, 

dFX .... 8Wpx 
d '¥ - a'¥ .... Wpy 

dF . dW _y= py 
dE dE 

By noting from Equation (F-2} that: 

1 
=-c 

and 

dE = Q 
ay 

d'¥ = 1 
dY CE 
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(F-6) 

(F-7) 

(F-8) 

(F-9) 

Thus, by using Equations (F-5) thru (F-8) and Equation 

(F-9) the elastic coefficients as given by Equations (25), (26), 

(27) and (28) are determined. 



Al?PENDIX G 

Inertia Coefficierits 

Equation (43) is th~ differential equation found for 

the acceleration effect. By assuming the solution of the 

form: 
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Pa (¢, z) = F~ {¢) + g"' (¢) q~ (z) (G-1) 

and using the same procedure as was applied for the solution 

of Reynolds' equation to Equation (43): 

d dF"" 
d¢ (ha- ) = ~r[ax Cos¢ + ay sin¢] (G-2) 

and 

(G-3) 

also 

d 2 n"" 
~- "-2aq"" = 0 (G-4) 

Due to symmetry of the bearing along its length, the 

solution of (G-4) is: 

q""(z) = Cosh(A.az) (G-5 

Therefore, the approximate solution for Equation (43) is: 

p (¢ Z) = [l-Cosh (A.aZ) ]F"" (¢) 
a ' Cosh C"-aL/2) · 

Integrating Equation (G-2) twice with respect to ¢: 

F~ (¢) = ~r 2 

fax F~ (cf>) - ay F; (cf>) + Ci'Fl (cf>) + c; l (G-7) 

By using th~ boundary -conditions: Pa{<f>,Z} = Pa(¢ 1 +B,Z)=O 

Ci ·and Ci :will be: · 



c,... ::::; 
1 q>.l+f3 

F; {<f>) ] <P.l 
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(G-8) 

where for a full journal bearing, 

c,... ~ 
. 1/2 

= [ (1-s~) -1] 1 
E: 

(G-9) 

C"" 
ax 

loge (l+s) 
.!.:n:. 

= ..,..__ 
ay 2 £ E: 

Equation (44) was obtained from the above. 

Forces due to pressure in (x,y) coordinate system 

can be obtained from Equation (44). 

wax = -

w = ay 

JL/2 
-L/2 

L/2 
1-L/2 

~:~+Spa(~,Z) CoS~·rd~dZ 

<P1+s 
fcp

1 
Pa(<P,Z) sincp.rd<PdZ 

(G-10) 

.. (G-11) 

where after integration becomes: 

wax = 
r ~, Lpn 
. - . ;a . 

c 
<P1+S 

[ax F7 (cp)-ayF9(<P) + c;Fs(<P) + C~sincp]<P 1 (G-12) 

<P 1+ s 
[ax Fs(<P) + ay Fe(<f>) + c;F4(<1>) - C~Cos<P] 

<Pl 

(G-13) 
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AJ;>PENDlX H 

Numerical Solut;lons o;e the General and Eigenvalue Equations 

i-Runge-Kutta Methods~ 

A Runge ..... Kutta method is one which employs a recurrence 

formula of the form, 

(H-l) 

to calculate successive values of the dependent variable y 

of the differential equation 

d 2 v 
~ = y~ = f(t,y) (H-2) 

where: 

Kn = (~t)f(t1. + P . ~t,y. + q . , . K- + qn- · , K + .••.• + 
n- i 1 n- 1 1 "I 1- 2 2 

(H-3) 

The a's, p's and q's must assume values such that 

Equation (H-1) accurately yields successive values of y. 

These values are determined by making Equation (H-l) equiv-

alent to a certain specified number of terms of a Taylor-

series expansion of y about ti. 

Runge-Kutta methods are self-starting and it is thea-

retically poss.ible to develop one having any desired degree 

of accuracy. As with any method, they possess certain 

advantages and disadvantages which must be considered. The 

principal advantage of the Runge-Kutta methods is their self-

starting feature and resulting ease of programming. One 

disadvantage is the requirement that the function f(t,y) 

usually results in a less efficient method, with ·respect to 
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computing time, than do othe;r methods o.:e comparable accuracy~ 

Fourth-order Runge~Kutta Method; 

A well-known fourth order -Runge-Kutta method results 

with ·n=4 in Equation (:H-1) • The a's are determined equating 

terms of expanded Taylor series including those of (~t) 4 • 

Selecting a particular set of two ordinary parameter value 

yields (24): 

1 + 2K2 +2K3 + K4) yi+l= .Yi + -(Kl 
6 

(H-4) 

where 

Kl = ~t.f(ti,yi) 

~t K 1' ) 
K2 = ~t,f(ti+2' Yi +---

2 

K3 
. ~t 

!5..2..) = ~t.f(ti+2, Yi + 2 

(H-5) 

K4 = ~ t~ f(ti+~t,yi+K3) 

In this method the pre-step error is of order (~t) 5. 

The above method could be applied to Equation (52) : 

x . 
Mxx X + Mxy y + Bxx + Bxy y + Kxx X + Kxy y = Wx (a) 

. 
Myx X + Myy y + Byx X + Byy y - Kyx: X + Kyy -w (b) y = y 

Multiplying Equation (a) by Myx' and Equation (b) by 

Mxx' and eliminating the X terms in the process, results in: 

•• • 
y + A

2
X + A1 y + A 4 X + A 3y = A5 

where 

1\::1 .-

= Mxy 
Myy 

Mxx1 
Myx 

(H-6) 



Kzx ~Ky_x 
M . . :M 

:XX yx 
ldl . , .J\ 5 

Introducing a new variable u for simplicity such that: 
. • ., 
y = Ul x = u 2 y = u3 x = u"' 

Equation (H~6) becomes: 

81 

(H-7) 

Using the same procedure only this time eliminating the 

y terms, yields: 
. . . 
U2 + B2X + B1Y + B4X + B3y = Bs (H-8) 

Where B's are to be determined in the same manner as A's. 

Therefore, in this manner Equation~ (a) and (b) are 

reduced to four first order differential equations which are: 

Equation (H-8) in form of: 

u 2 - · B - B u - B u - B u - B u = F 2 ( t, u ·
1 

, u 2 , u 3 , u 4 ) 5 1 1 2 2 3 3 4 4 

. 
u3 = ul 

u = u 
4 2 

= FIt ( t , u 1 ·, u 2 , u 3 , u 4 ) 

where F's ar~ functions. 

{H-9) 

(H-10) 

Now by applying Equations (.H-5) and remembering trhat 

K's are double ·subscripted as Kij where: · 

K. = ~t.F.(t,u1,u2,u3,u4), 
]1 . J 
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K· ::::::: ~t .. F. (t + At 
u.l 

K 1 .l K21 K31 K ]2 .·- J """2' +r u2+~-, u3 +-2-( u .. +~) 2 2 

K. = 6t.Fj{t + -~t K12 K2 2 K33 K ~t-2 -·--- ul +~, U · +.-2-J 3 2' . 2 , u3 +-2-, u .. +-2- ) {H-11) 

K. = ~t .. F. {t + -~t, u + K u + K u + K + K ~t-3 ) J If. . J 1 .1 3 , 2 3, 3 3 , u 2 3 If. 

In each equation j = 1,2,3,4. 

Equation {H-4) becomes: 

u. = + 1 u. 6[K. + 2K. + 2K. + K. ] (H-12) J J J 1 J2 J 3 ]If. 
(new) (old) 

Equa t ion {H-11) and Equation {H-12) have been programmed 

as subroutine "SOLVE". 

ii-Integration by Simpson's Rule: 

Simpson's rule gives a more accurate approximation than 

the trapezoidal rule, since it consist of connecting groups 

of three points on the curve by second-degree parabolas and 

summing the areas under the parabolas to obtain the appro-

ximate area under the curve. 

If it is desired to integrate the function y = F(x) 

by Simpson's rule: 

Xn+1 i=n i=n- .~ 
f F(x)dx = 

Xi=O 
~~{Yl +4Eyi + 2EYi + Yn+i) 

i=2,1f.,6 i=3,5,7 

where n is even. 

{H-13) 

Equation (H-13) is called Simpson's one-third rule for 

obtaining the approximate area under a curve. This rule 

was used in integ~ating the functions f or determinang eigen

values A and A in Equations (D-6) and (D-8 ) r espectively. . a 



'FUNCT' 

cal l DYLEAK 
call ACREAK 
call INERTIA 
call SPRING 
call DAMP 
solving Equation 
(H-11) 

'INERTIA' 

call ACLEAK 
calculating M,s 
Equations(47)to(50) 

'ACLEAK' 

by Simpson's Rule 
(Appendix H) 
calculating na for 

every s(Equation 
(D-8) 

'MAIN' 

re~d: r,L,C,e,~,N, 
W , W ,Wd 

0 1 

call steady 
call solve 

'SOLVE' 

1-at t~O,s=spand' ='o 
2-calculating wlx'wly 

call FUNCT 
3-solving Equation (52) 

by Runge-Kutta method 
(Appendix H) · 

4-print: t,ui,vj,x,y,x, . . . 
y,s,,,s;v;s,w,n,na· 

·!DAMP' 

call ACLEAK 
call SPRING 
calculating B,s 
Equations(36)to(39) 

'DYLEAK' 

by Simpson's Rule 
(Appendix H) 
calculating n for 
every s(Equation 
(51) 
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'STEADY' 

call SLEAK 
finding:s 0 ,V 0 , 

eo, for the 
static load. 

'SPRING' 

calculating F,s 
call DYLEAK 
calculating K's 
Equations(29)to 
(32) 

'SLEAK ' 

by Simpson's Rule 
(Appendi s H) 
calculating n for 
every s(Equation 
(51) 

'ACPRES' 'PRESS' 

1-call SOLVE 
2-calculating 

Pa(<t>,z), 
Equation (44) 

1-call SOLVE 
2-calculating 

P(¢,z) 
Equation (13) 
3-Pt=P(<f>,z}+Pa 



APPENDIX I 

A Method for Identifying Journal Center Loci 

In Figure (I-1) the placement of proximity sensors 

with respect to the journal and the bearing is shown. Due 

to the geometry involved the sensor readings are not true 

values, so a procedure will be given here to d e termine the 

true values of the journal center loci. 

From triangle Acoj
1 

of Figure (I-1), and noting that 

Ac = r-u+~q: 

'8.4 

(I-1) 

Similarly from triangle HDoj
1

: 

v~ + u~ + (~e) 2 - 2rv.~e + 2r~e = 0 
. J 1 J 

(I-2) 

where ~e and ~q are sensor readings. ui and Vj are true 

coordinates of the journal center position. Thus, by solving 

two Equation (I-1) and (I-2) the journal center for every set 

of sensor's reading could be determined. However, Equations 

(I-1) and (I-2) are non-linear, and, therefore, a numerical 

technique was employed. 

Newton's Method: <27 > 

In the general case, the system to be solved is of the 

form: 

f(x) = 0 
(I-3) 

where f .(x) = [f 
1 

(x) , f 
2 

(x) , •.• , fn (x)] T is an n-component 

column vector. such a system can be written in a variety 

of ways. We examine here the choice 

g(x) = x - A(x)f(x) 
(I-4) 
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where A{x) is an nth order non-singular square matrix with 

components aij {x). The simplest choice for A{x) is: 

A {X) = A, (I-5) 

a constant non-singular matrix. The matrix 

afn (x) 
J (x) = < ax. > ( I-6) 

J 

is introduced whose determinant is the Jacobian of the 

function fn (x) • 

The iteration is accomplished by using 

X(iH) = X (i) - A F (X) (i) (I-7) 

In this method Equation (I-5) is replaced by the 

choice · 
_l 

A (x) - J (x) (I-8) 

with the assumption . that det I J (x) I= a· for X in II x-xr I< ex 

Note that by using Equation (I-8) in Equation (I-7): 

(I-9) 

In order to apply this to solve Equation (I-1) and (I-2), 

they could be written 

F1 (ui,Vj) = u~ + ai+ 
1 

F 2 (ui,Vj) = v~ + u~ + 
J 1 

where 

/(~e)2 + 2r~e 

as: 

a2u. + v~ 
1 J 

b~+ b 2V. 
J 

= 0 

= 0 

a 2 = -2 (r+~q) 

b2 = -2 (r+.Lle) 

therefore, for a system of two equations, 

(I-10) 

(I-12) 
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aF1 
where as e.g. F 1 u = au- , and so on. 

From Equation (I-12) we could determine: 

(I-13) 

Therefore, from Equation (I-9): 

(I-14) 

(I-15) 

Equations (I-14) and (I-15) were programmed in double 

precision. Starting values were ui = ~q and vj = ~e. 

Convergence was usually better than fou r iterations. 
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Fig. I-1. Displacement of Journal Center. 
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APPENDIX J 

Effect of Journal Mass 

In determining the effect of the acceleration terms, 

the mass of the journal was not accounted for. Here, an 

attempt is made to find the significance of this simplifi-

cation. 

The forces due to acceleration in direction x and y 

are defined by Equations (45) and (46). If now from 

Equation (45) the first term be considered only, i.e., 

W = M ax xx (J-1) 

where M is given by Equation (47), and may be written as: XX 

r 3 Lp 
Mxx = ( c na)~xx (J-2) 

where 

~ could be determined from Equation (47). XX 

-r 3 Lp 
wax= ( c na>~xx {J-3) 

Therefore, lubricant has an effective mass in x-direction 

as: 

w ax 
a 

X 

= ~ 
XX 

pLr 3 

--n c a (J-4) 

But the mass of journal within the bearing is mj = np jr 3 L, 

where p. is the density of journal material. Therefore: 
J 

pLr 3 na~xx 
effective mass of lubricant film in x direction= c (J- 5 ) 
mass of journal within the bearing npjr 2 L 

II 



Where same form of relation could be found for y 

direction. 

Now for typical Sommerfeld No., i.e., 

s = -275 na = 0.30 nxx = 3.5 (from 

P·oil = 0.0310 lb 
Psteel = 0.289 lb r = in 3 in 3 -

c 

Therefore: 

Effective mass of lubricant film in x-direction = 
mass o£ the journal within the bearing 

Figure 

980 

35.0 

Thus, it can be seen that the effective mass of the 

89 

21) 

lubricant is much larger than mass of the journal within the 

bearing. 



APPENDIX K. 

Integrals and Differentation 

(i) Integrals: 

I = f d~ -1 (l+sCos~) -

2'IT 
[I 1] 

0 
21+ 

= (l-£2)1/2 

o Cos-1(£+ Cos~ o = 1 
(1-£ 2 ) l+sCos~)o =-1 

I2 = floge(l+£Cos~)sin~ d~ 

(l+sCos~) + Cos~ 

I 3 = Jloge(l+sCos~)Cos~d~ 

Cos _I (s+Cos~ ) + ! - sin~ 
l+sCos~ £ 

sin¢>0 
sin¢< o 

90 

- 1 (s+Coscp ) + o ( l-s2) 11 2 
= sin¢ Cos l+sCosP £ 

loge (l+sCos~) 

I =f Cos-
1

(£+ Cos~) sin~d~ 5 l+sCos~ 

-
1 (s+Cosm ) + o(l-s 2)l/2 ~ 
l+sCos~ s 

(ii) Differentiation: 

= 
2:n: 

(3C3 = -[2£F1(¢)]a ·" 

a~1 [F2(p)]~'IT 

1 z'IT 
+ [ F 3 ( ¢ ) ]. ~- 'IT . · ~ t l + t:. Cos <t> ) ~ ] 0 

7f 2 
{[F2(¢)]:} 

2'Tf 
[F 3 ( ~) ] o 

- 2 F1(0)+ 21f + 
(l+sCos¢) 3 [F 

2 
(¢)] 0 

2'IT 
F 2 ( 0 ) [ 2 £F 1 ( ~) ] o 

[F 2 ( ~) ] ~'IT 

2'1f [ 1 . 
F 2 ( 0) • [ F 3 ( ¢) ] o (I+ Cos 

2 7f 2 
· {[F2(¢)]o} 

27f 

! 
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APPENDIX L 

Dynamic Response of Bearing 

i-Experimental: 

In order to examine the response of the bearing a 

square-wave load was placed on the bearing. The maximum 

pressure and journal center displacement were observed. By 

plotting the ratio of amplitudes of, e.g., pressure over the 

load versus time, it was noticed that the system has a 

decaying response. A frequency response was also performed. 

The result is shown in Figure (L-1), which indicates the 

system has two break points in the range of this test. The 

break slope is not exactly that of a first order system 

(1 unit/db). 

ii-Analytical: 

From Appendix H Equation (52) could be written .in form 

of: .. 

{;} [B2 B1] rJ [B4 B3] t} {::} (L-1) + + = 
A2 A1 Y A4 A3 y 

where, A's and B'x can be determined from Appendix H. 

Now if for a typical eccentricity ratio e.g.E = .2064 

the A's and B's calculated, i.e., 

B1 = o.o B2 = 151 B3 = 329 B4 = 26,720 

A1 = 7.8 A2 = o.o Ag = 238 A4 = 230 

and for,e: = 0.53 

B1 = o.o B2 = 214 Bg = 2600 B4 = 15,000 

A1 =2~.6 A2 = o.o Ag = 372 A4 = 945 
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for s = 0.750 

B1 = 0.0 B3 = 3120 B4 = 26,220 

A1 = 41.0 A3 = 131 A4 = 4906 

Equation (L-1) could be written as: 

x . 
+ B2 X + B4X = Bs B3y 

y + A1 y + A3y = As - A4x, 
(L-2) 

or: 

(D2 + B2D + E4 )x = Bs - B3y 

(D2 + A1D + A3 )y = As - A4X 
(L-2) 

Note that Bs and As are load terms. Solving the Equations 

(L-2) for X and y: 

x = Bs(D 2 + A1D + A3) - B3As 
D4 + (A1+B2)D 3 + (A1B2+B4+A3)D 2 + (AlB4+A3B2)D+A3Bl+ ... B3A4 (L- 3 ) 

and 

As(D 2+B2D + B4) - A4Bs 
y = D4 + (A1+B2)D 3 + (A1B2+B4+A3)D 2 + (A1B4+A3B2)+ (A3B4-B3A4) (L- 4 ) 

As can be seen from Equation (L-3) and (L-4), x and y have 

four negative roots, either real or imaginary. But in order 

to find these roots exactly additional work is required. In 

order to estimate the effect of the system, the coupling terms 

of Equation (L-2) are neglected. Thus, approximate values 

for the natural frequencies, wn' and damping ratios ~' can be 

found as: 

B2 = 2~1W B4 = w2 
nl nl (L-5) 

A1 = 2~2W A3 = w2 
n2 n2 

Thus, calcula·ting wn and ~ : 



(i) 

wn1 = 

wn2 = 

(ii) 

wn1 = 

wn2 = 

(iii) 

w = n1 

w n2 = 

For s= .206 

163.46 rad/sec. 

15.43 rad/sec. 

For s= • 53 

122.47 rad/sec. 

19.28 rad/sec. 

For s= .750 

161.92 rad/sec. 

11.44 rad/sec 

~1 = 0.4663 

~2 = 0.253 

~1 = 0.874 

~ 2 = . 59 

~1 = 1.26 

~2 = 1.79 

By comparing the natural frequencies and damping ratios, 

it can be concluded that the bearing at low eccentricity 

ratios acts as a second order lightly-damped system, and at 

high eccentricity ratios, it acts as a second order heavily 

damped system. 

The results of Figure (L-1) would seem to indicate that 

the bearing at that eccentricity (s = .4)~ is acting as an 

over-damped second order system, in othe words, two coupled 

first order systems. The breaks in frequency response 

occurring at w1= 3.2 rad/sec. and w2= 7.8 rad/sec. 

The analytical results seem to indicate that there a~e 

higher natural frequencies beyond the range of the experi

mentation. 
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Fig. L-1. Frequency Response of the Bearing. 
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