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ABSTRACT 

A two player zero-sum linear quadratic differential game is in­

vestigated for the case in which one of the players has incomplete a 

priori knowledge of the parameters of his opponent's dynamic system. 

This incomplete system parameter information game is shown to be play­

able since the ignorant player can make limiting estimates of the 

unknown parameters from the relative controllability condition for 

the game. Performance from the ignorant player's point of view is 

subeptimal. 

It is also shown that parameter identification techniques can be 

applied by the ignorant player in order to directly identify the smart 

player's closed-loop parameters in the case in which the smart player's 

optimal control gains become time-invariant. The open-loop system 

parameters ma.y then be estimated from the identified closed-loop 

parameters. Using these estimated open-loop parameters in the optimal 

control law results in an asymptotically optimal adaptive control 

strategy for the ignorant player. 

Both continuous and discrete time parameter identification tech­

niques were applied to the incomplete system parameter information game. 

In doing so. multivariable extensions were derived for previously de­

veloped single input/output continuous time and discrete time identi­

fication techniques. A multivariable combination response error and 

equation error continuous time learning model identification technique 

was also developed. 
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I. INTRODUCTION 

Games have been played since the beginning of time. A game 

exists, of course, whenever two or more persons who can affect the 

future strive for opposite or conflicting goals. Games can also be 

played by teams, which involves teamwork between players. Naturally, 

if the goals of the players or teams are not diametrically opposed, 

play of the game can involve negotiation and cooperation between 

players and teams. 

Most games require that some form of mathematical score be kept. 

If it is strictly the magnitude of the score that is important, the 

gp.me may be termed a quantitative game. However, if the score is 

utilized only in determining a winner and a loser, the game is 

actually a qualitative game. Most qualitative games are defined in 

terms of quantitative games. 

Quite often the play of the game can be described mathematically. 

In this case, the best strategy for each player can usually be form­

ulated mathematically or, at least, statistically. 

Games whose play is governed by differential equations occur 

quite often. The intercept game is just one of many examples of this 

type of game. Differential games, as these games are usually termed, 

are of great interest in the field of control theory. This disserta­

tion examines one particular type of differential game for the case in 

which one of the players has incomplete information concerning his 

opponent's dynamic system. 

Before proceeding, it is informative to examine the research 
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related to the field of game theory and, in particular, that of differ­

ential game theory. 

John Von Neumann was probably the first to define games within 

the framework of modern mathematics [31]. Von Neumann and Morgenstern's 

book [32] on the application of game theory to the analysis of economic 

behavior is the classic work in the field. 

Von Neumann's work stimulated a vast amount of research in the 

field of game theory, as documented by references [14], [15], [7], and 

[29]. Although these references do include limited research in the area 

af games whose outcome is governed by differential equations, attention 

was not fucused on differential game theory until after the publication 

af the research performed by Rufus Isaacs [13]. 

Isaacs' work concentrated primarily on two player differential 

~mes, commonly known as pursuit-evasion games. In most cases, these 

games were zero sum, i.e., the opponent's goals were directly opposite 

such that one player's gain was the other player's loss. Isaacs fur­

ther defined these differential games to be either games of "kind" or 

~mes of "degree". In the game of kind, the player either achieves 

his goal, i.e., he wins, or he does not achieve his goal, i.e., he 

loses. In games of degree it is the margin by which the player wins 

or loses that counts. Since games of degree are much more amenable to 

mathematical analysis, most games of kind are redefined as games of 

degree. A guideline is then applied to the performance measure in order 

to determine the actual winner. 

Blaquiere, Gerard, and Leitma.nn [5] examined differential games 
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from a geometric viewpoint. In this work, games of degree and of kind 

are more properly termed quantitative and qualitative games, respec­

tively. Also, as in Isaacs' earlier work, it was assumed that all 

players had complete or perfect information concerning the game. 

Baron, Bryson, and Ho [2] were probably the first to investigate 

differential games from a control theory point of view. Their paper 

discusses the solution of a perfect information zero-sum pursuit­

evasion game. Since their original paper, nonzero-sum differential 

games have been investigated by Ho and Starr [11] and Rhodes [23]. 

Likewise, stochastic differential games, i.e., games with system per­

turbations and/or noisy measurements have been investigated by Behn and 

Ho [3], [4], Willman [34], and Rhodes and Luenberger [24], [25]. 

Although Ho [10] has discussed a generalized control theory, 

differential games in which the players have incomplete information 

about their opponent's dynamic system have not received much attention. 

It is this aspect of differential game theory toward which this dis­

sertation is oriented. 

In order to make the analysis tractable, attention is limited to 

a quantitative, zero-sum, two player differential game in which one of 

the players has incomplete a priori knowledge of the parameters of his 

opponent's dynamic system. The systems of both players and their 

state measurements are assumed to be noise free. Generalization to 

include n player games, stochastic games, and nonzero-sum games is not 

attempted in this paper. 

The perfect or complete information version of the differential 
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game being investigated is defined in Chapter II. This game, which 

assumes linear time-invariant dynamic systems and a quadratic per­

formance index is somewhat more general than that studied by Ho [2], 

[6]. Its solution, which is given without proof by Rhodes [23], is 

included and, for the sake of completeness, an original proof of this 

solution is given in Appendix A. The characteristics of the game are 

illustrated via digital simulation of an example game. The analytic 

solution to the Riccati equation utilized in this simulation is in­

cluded in Appendix B. 

The incomplete information differential game is investigated in 

Chapter III in order to determine the conditions for which the game 

is playable. Limiting estimates for the opponent's system parameters 

are obtained via an original derivation based on the relative con­

trollabiltiy requirement :for the game. The characteristics of this 

game are compared with those for the perfect information game via 

simulation using the original example game. 

During the pourse of the game, the players must respond to each 

other's motion. This response inherently contains information on the 

players • system parameters. Identification of the opponent's system 

pa.m.meters by the ignorant player during the play of the game is the 

subject of Chapter IV. 

While the sufficient conditions required for parameter identi­

fication are easily derived, the derivation does not lead to a prac­

tical identification technique. However, many other parameter identi­

fication techniques have been :formulated. The works by Spence [27] 



and by Sage and Melsa [26] include reasonably complete bibliogra­

phies on this subject. 
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As discussed in Chapter IV, both continuous time learning model 

identification techniques and discrete time recursive identification 

techniques appear applicable to the incomplete system parameter in­

formation differential games. Applicable continuous time learning 

models include the multivariable response error model developed by 

Pazdera and Pottinger [21], as improved by Spence [27], and the multi­

variable extension of the single input/output equation error model 

developed by Lion [17]. Application of various combinations and ex­

tensions of these models in also possible. The response error learn­

ing model is included in Appendix C for the sake of completeness. 

Original multivariable versions of the equation error learning model, 

the generalized equation error learning model, and the combined re­

sponse/equation error learning model are included in Appendices D, 

E, and F, respectively. An applicable discrete time identification 

technique is the multivariable extension of the single input/output 

recursive technique developed by Lee [16]. An original multivariable 

extension of this recursion technique is given in Appendix G. 

In Chapter V an asymptotically optimal adaptive control strategy 

is formulated for the incomplete information game of Chapter III. This 

control strategy is based on the recursive discrete time identification 

technique discussed in Chapter IV and the optimal feedback control 

strategies derived in Chapter II. 

Chapter VI presents a brief summary of the conclusions of the 

present research and indicates possible future areas of investigation. 
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II. ZERO SUM LINEAR QUADRATIC DIFFERENTIAL GAMES 

A. Definition of the Game 

Consider the zero sum differential game defined by the decoupled 

linear time-invariant systems 

• 
X (t) = F X (t) + G u (t) x (o) ==x (1) -p p-p p-p 1> 1>0 

• 
X (t) = F X (t) + Ge!!e(t) X (0) =x (2) 
-e e-e -e -eo 

and the quadratic time-invariant performance index 

where the state vectors .!.p and ~ are n-dimensional, the control vectors 

u and u are m-dimensional, t~ is the final time, and F , F , G , Ge' -p -e ..L pep 

Q, R , R , and S are constant matrices of appropriate dimensions. It is P e 

assumed that Q, R , R , and S are symmetric matrices and that R ani R 
p e p e 

are positive definite, while Q and S are non-negative. The decoupled 

systems (1) ani (2) are assumed to be completely state controllable, In 

addition, the states of both systems are assumed to be accessible, i.e., 

directly measuxable by both players. 

In the zero-sum differential game defined above the two players 

simultaneously try to minimize and maximize the performance index J. 

0 0 Consequently, the optimal control strategies, denoted as u and u , -p -e 

must satisfy the saddle point condition 

0 ) ( 0 0) ( 0) J(Yp•Be 5 J Y.p·~ :s J !p•!e (4) 



where J(u0 , u 0
) is known as the value of the game. 

-p -e 
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The pursuit-evasion structure of this differential game is obvious. 

Hence , the subscripts p and e are used to denote those vectors and rna-

trices associated with the Pursuer and the Evader, respectively. 

B. Linear Quad:ra tic Representation 

The previously defined differential game may be rewritten by de-

fining the augmented state and control vectors 

X= [xT 
- -p ~~JT (5) 

and 

u = [uT 
- -p 

uTJT 
-e • (6) 

The resulting linear quadratic representation is 

• 
x=F x+ Gu ~(0) =X -o (7) 

tf 

J(B.) = t I (x'IQ .1£ + u"IR .!!) dt + t xT ( tf) S .1£ ( tf) 
.o 

(8) 

where F, G', 'Q, R", and S are augmented matrices given by 

F = [:p ;J G = [:p :J (9) 

and 

Q= [; :] R = [:p _:J s = [~ ~] (10) 

Equations (7) and (8) are the familiar representation for the linear 

quadratic optimal control problem with the major exception that R is in­

definite rather than positive definite. Nevertheless, ~ is nonsingular 
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since R and R are both positive definite. Therefore, the first order 
P e 

necessary conditions for the differential game, which is a two-sided 

optimal control problem [2], may be obtained via the calculus of varia­

tions [8], [JJ] in the same fashion as for the one-sided optimal control 

problem. However, the control strategies obtained may not satisfy the 

saddle point condition given by (4). 

If the control strategies obtained for the two resulting one-sided 

optimal control problems are identical to those obtained for the two­

sided problem, the saddle point condition (4) is satisfied and the opti-

mal control strategies are deterministic or pure. 

c. Optimal Feedback Control Strategies 

The properties of the optimal solution to the previously defined 

differential game have been studied in detail for the special case in 

which Q = [ 0] by H o and others [ 2], [ 6] and by Rhodes and Luenberger 

[24], [25] who mention that the theory is easily extemed to the more 

general case in which Q f. [o]. Rhodes [23], while studying the proper-

ties of nonzero sum two player linear quadratic differential games, pro-

vided without proof the solution for a slightly more general differen-

tial game than that previously defined. The optimal solution to the 

previously defined game is presented below, while an original proof is 

included in Appendix A. 

The first order necessary conditions for optimal solution of the 

differential game are given by the optimal control 

(11) 



where ~ is the costate vector defined by 

Substituting (11) in (7) yields the state equation 

• ( ) _: ( ) - --1~ ( ) ~t =F~t -GR Gzt ~(o) =X -o 

9 

(12) 

(13) 

which, together with the costate equation (12), forms a two point 

boundary value problem (TPBVP) which may be written in matrix form as 

~(o) = x: ­
-o 

The above TPBVP may be solved by defining 

z(t) = 'P(t) 1£(t) 

which leads to the nonlinear matrix Riccati equation 

.: - - ~ - - --1~ - -c ) -P = - P F - F P + P G R G P - Q ; P tf = S 

• 

Assuming that a solution for P(t) exists, the optimal feedback 

control may be written as 

~0(t) = - R-1cTP(t) 1£(t) 

Partitioning P(t) such that 

P(t) = 

p (t) 
PP 

p (t) 
ep 

p (t) 
pe 

p (t) 
ee 

(14) 

(15) 

(16) 

(17) 

(18) 

and performing the operations indicated in (17), the pure optimal feed-

back control strategies become 
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(19) 

and 

(20) 

where P = PT since P(t) i s symmetric. Note also that if P(t) is non-ep pe 

negative, then u 0 and u 0 are respectively stabilizing and destabilizing -p -e 

feedback control strategies, as is characteristic of the pursuit-evasion 

type differential game. 

The feedback control strategies given by (19) and (20) have been 

derived from the first order necessary conditions given by (11) and (12). 

As noted previously, in order for these strategies to be deterministic 

optimal control strategies, they must satisfy the saddle point condition 

given by (4). Sufficient conditions for u 0 (t) and u 0 (t) to be deter--p --e 

ministic optimal feedback control strategies area 

(1) R and R are both positive definite (R , R > 0) 
p e p e 

and 

(2) P(t) exists for t € [o,tf] 

From the calculus of variations, condition (1) is analogous to the "con­

vexity" or "strengthened Legendre-Clebsch" condition, while condition (2) 

is the "no conjugate point" or "Jacobi" condition [2]. 

The time-varying state equation for optimal play of the game, de-

termined by substituting (17) into (?), becomes 

• 
~(t) = A"(t) ~(t) ~(o) =X 

-o (21) 
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where 

A(t) = F - G R:1cTP(t) (22) 

The value of the game, i.e., the optimal performance, is obtained 

by substituting (17) into (8) and using the relationships defined above. 

Performing the indicated steps, the value of the game is 

J(u0 ,u0
) = t xT(o) P(O) x(O) 

-p-e - - (23) 

Solution of (21) for ~(t) provides the possibility of utilizing 

(19) or (20) as open-loop rather than closed-loop feedback control strat­

egies. As noted by Rhodes [23], the optimal open-loop feedback control 

strategy is identical to the optimal closed-loop feedback control strat-

egy for the zero sum linear quadratic differential game, provided the 

opponent is also using an optimal feedback control strategy (either open­

loop or closed-loop). However, should one player deviate from the op-

timal control strategy, the opponent cannot take advantage of this de-

viation unless he is utilizing a closed-loop feedback control strategy. 

Consequently, both players are assumed to utilize closed-loop feedback 

control strategies. 

The block diagram for optimal play of the game is shown in Figure la 

using the optimal closed-loop feedback control strategies defined by (19) 

and (20). Figure lb shows the closed-loop game, where the system matrices 

are obtained by partitioning A(t) and expanding (21) such that 

(24) 

and 

• (25) 



------tR -lG T p 
e e ee 

----------------------~R-lGTP 
P P pe 

(a) Using Open-Loop Parameters and Optimal Closed-Loop Feedback 
Control Strategies 

(b) Using Optimal Closed-Loop Parameters 

Figure 1 Perfect Information Differential Game Block Diagram 

12 
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D. Matrix Riccati Equation Solution 

Consider the solution for the matrix Riccati equation (16) sug­

gested by Porter [22] in which P( t) is separated into time-invariant 

and time-varying symmetric matrices where the time-invariant matrix P 
0 

satisfies the nonlinear algebraic matrix equation 

p F + FIP - p G i-1GIP + Q = [ 0 J 
0 0 0 0 • 

The resulting solution of the matrix Riccati equation is given by 

AI'r t -t] 
P ( t) = P + e d- f CI'[ I 

0 

where 

and 

~ - -CC=S-P 
0 • 

(26) 

(27) 

(28) 

(29) 

From the above solution, the existence of P(t) fortE [o,tf] is 

equivalent to the condition that 

tf r A:Jt -t] xTrt -t] 
I+ JtC e f Cn'i-1GI'e d- f CT dt > 0 • (30) 

A sufficient condition for the existence of P(t), which results from the 

above requirement for positive definiteness, is that 
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• (31) 

As discussed by both Ho [2], [6] and Rhodes [23], [24], [25], this in-

tegral condition is associated with the relative controllability of the 

Pursuer and t he Evader, the Pursuer being required to be more controll-

able than the Evader. 

The problem of identification of an opponent's unknown system 

parameters during the early stages of the game is discussed later in 

Chapter IV. As shown there, convergence of the selected identification 

technique can be guaranteed if the opponent's closed-loop system is time-

invariant during the identification period. Consequently, it is in-

structive at this point to examine the conditions for which the state 

equation for optimal play of the game becomes time-invariant. 

Reference to (22) shows that the state equation becomes time­

invariant if, and only if, P(t) becomes time-invariant. Since the time­

invariant portion of P(t) is P , the state equation for optimal play 
0 

during this period is given by 

~(t) = A x(t) 
- o-

~(o) =X -o (32) 

Examination of (27) shows that there are two cases for vrhich P(t) 

becomes time-invariant. 

~ - - [ J that C C = S - P = 0 • 
0 

Consider first the case in which C = [o] so 

Although P(t) is time invariant for the whole 

interval [o,tf]' the requirement that S = P
0

• is extremely restrictive. 

Consider, therefore, the second case in which it is assumed that the re-

maining playing time of the game is long, i.e., [tf-t] ~oo 

ation of (27) shows that 

Examin-
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lim P(t) = P 
0 

(33) 
[ t:f-t] .... 00 

i:f A is stable. 
0 

Consequently, rather than place restrictions on S, 

only di:f:ferential games :for which A 
0 

is stable will be considered 

throughout the remainder o:f this dissertation. 

The assumption that A is stable allows an analytic solution to 
0 

the Riccati equation [1], [19], [30], avoiding the integration shown in 

(2?). Since this analytic solution was used :for simulation o:f the di:f-

:ferential game, it is described in Appendix B. 

E. Simulation 

The solution to the state equation :for optimal play o:f the game 

(21) is easily written symbolically [20] as 

~(t) ~ ~(t) ~(o) 

where the :fundamental or state transition matrixqp(t) satisfies 

• 
<D(t) = A.(t)qp(t) ¢(o) = r • (35) 

Although (35) is easily solved :forqp(t) when A(t) is time-invariant, the 

solution :forqp(t) when A(t) is time-varying can be :found analytically in 

only a :few special cases. For the general time-varying case, a computer 

solution :for the state transition matrix used in (34), or alternately, 

directly :for the game (21) must be obtained. 

Examination o:f (27) shows that even though only di:f:ferential games 

having stable A matrices are being considered, P(t), and consequently 
0 

A ( t) , are time-varying as t -+ tf except for the special case in which 

S ~ P 
0

• Since S has not been restricted, A( t) is generally time-varying, 
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thereby requiring a computed solution for the play of the game. 

Digital simulation of the game was chosen because of the com-

plexity of the required calculations. In order to maintain accuracy, 

a fourth order Runge-Kutta integration routine [9] with fixed step 

size was utilized. Note that the relative accuracy of the digital 

simulation may be determined by comparing the value of the game ob-

tained analytically from (23) with that obtained by performing the 

integration indicated by (3) or (8) during the simulation. Consequent-

ly, the adequacy of the fixed step size is easily verified. 

The general characteristics of the differential game are illus-

trated by the following example game involving players with first order 

dynamic systems. This game also provides the reference for comparison 

of the results obtained in the following chapters. 

Consider the example differential game defined by the decoupled 

linear time-invariant systema 

X = - 2 X + u X (0) = 0 
p p p p (36) 

X =- X +u x (o) = 10 
e e e e (37) 

and the quadratic time-invariant performance index 

5 
J(u ,u ) = t r [ (x - X )

2 + t u
2 

- u
2

] dt pe ~ e p p e 
(38) 

+ 2 [x (5) - x (5)]2 
e p 

The time histories of the states x and x obtained by digital P e 

simulation using a fixed 0.1 second integration step size are shown in 

Figure 2a.. Note that the Pursuer has made significant progress tololard 
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capture of the Evader during the 5 seconds play of the game, the re­

sulting terminal miss being only 0.3382 compared with the initial dis­

placement of 10. 

The value of the game obtained analytically from (23) is 26.3672, 

while that obtained at the end of the digital simulation is 26.3673, 

which is in error by less than o.oo~%, indicating that the digital 

simulation for this example game is sufficiently accurate. 

The solution to the nonlinear matrix Riccati equation (16) for the 

example game is shown in Figure 2b. Note that during the early stages of 

the game this solution is essentially time-invariant and closely approx­

imates the solution to the algebraic Riccati equation (26). As a re­

sult, the optimal feedback control gains given in (19) and (20) as well 

as the closed-loop system matrix given by (22) are also time-invariant 

during the early stages of the example game. 
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III. INCCMPLETE SYSTEM PARAMETER INFORMATION GAMES 

A. Description of the Game 

The solution of the differential game discussed in Chapter II as-

sumed that complete information about all aspects of the game was avail-

able to both players, which may not always be true. Consider, for in-

stance, the case in which one of the players does not have perfect a 

priori knowledge of his opponent's system parameters. In this case, 

optimal play of the game by the player with incomplete information is 

not possible. 

If, of course, this player has a statistical knowledge of his oppon-

ent's parameters, he may play a stochastic optimal control strategy de-

signed to optimize the expected value of the performance index given by 

(3) and ( 8). He could also simply choose to use the mean value of each 

p:~.rameter and compute in the manner illustrated in Chapter II a deter-

ministic, but perhaps suboptimal, control strategy. 

In this paper, it will be assumed that no statistical information 

about an opponent's parameters is available. In this case, the ignorant 

player must use some other criterion for selection of control strategies. 

B. Selection of Strategies 

The sufficient condition for a solution of the differential game as 

given by (31) can also be used to determine the upper or lower limits 

appropriate to an opponent's system parameters. Interpretation of (31) 

is difficult, however, when the parameter limits of both F and G or F 
p p e 

and G8 , whichever is the case, are unknown. Consider, therefore, F or 
p 

Fe limits such that F = F • Since the Pursuer's system would normally 
P e 
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be designed to respond more quickly than the Evader, the above limits are 

realistic. 

Using these limits the dimension of the differential game can be re-

duced, allo.-ring easier interpretation of the limits implied by (31). In 

order to proceed, define 

Z = X - X - --p -e 

and assume that 

F = F = F p e 

(39) 

(40) 

so that the differential game is defined by the linear time-invariant 

system 

z=Fz+Gu -Gu 
- p-p e-e z(o) = x (o) - x (o) - -p -e 

and the quadratic time-invariant performance index 
tf 

J(u ,u ) = tl (zTQ z + uTR u - uTR u ) dt 
-p -e - - -p p-p -e e-e 

0 

• 

(41) 

(42) 

Proceeding in a manner completely analogous -to that of Chapter II., 

it is easily shown the optimal control strategies for this reduced dimen-

sion game are given by 

(43) 

and 

* l!e(t) =- (44) 

where P is the solution to the matrix Riccati equation 

• T 
P • - l';. ··F - F P + P H P - Q (45) 
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and H is defined as 

• (46) 

The solution for the matrix Riccati equation (45) is easily shown to be 

where P
0 

satisfies 

and 

and 

P F + FTP - P H P + Q = [ 0] 
0 0 0 0 

A
0 

= F - H P 
0 

T c c = s - p 
0 • 

(48) 

(49) 

(50) 

The resulting sufficient condition for the existence of P(t) is 

given by 

• (51) 

Thus, the limit on G or G , whichever is the case, is given by p e 

G R-lGT = G R-lGT 
p p p e e e (52) 

which causes the equality of (51) to be satisfied. Defining 

(53) 

.and 

t (54) 



the limits implied by (52) can be restated as 

Consequently, if the Pursuer is the ignorant player, his pessimistic 

limiting estimate of the Evader ' s parameters would be 

and 

A 

F = F 
e p 

.... 
G 

e 
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(55) 

(56) 

(57) 

Likewise, if the Evader is the ignorant player, his optimistic limiting 

estimate of the Pursuer's parameters would be 

A 

F =F p e (58) 

and 

A 1 1 

G = G R-2 R2 
• p e e p (59) 

Lacking better information on which to base a control strategy, the ig-

norant player is assumed to utilize the appropriate above limiting es­

timate in computing the feedback control strategy given by (43) or (44). 

Notice that use of the limiting estimate simplifies (45) since H = 0 so 

that its solution is now given by 

(60) 

where P
0 

satisfies 

P F + FTP + Q =[0] 
0 0 

(61) 

Thus far, only the effect of incomplete system parameter informa-

tion on the selection of control strategies by the ignorant player has 

been discussed. Consider, therefore, the selection of control strategies 
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by the opposing player who is assumed to be smart, i.e., assumed to have 

complete a priori knowledge of his opponent's system parameters. If the 

smart player is also aware of both the ignorant player's predicament and 

selected control strategy, then the optimal control strategy is given by 

the solution to the resulting one-sided optimal control problem. This, 

of course, presupposes a great deal of additional knowledge. Thus, 

throughout the remainder of this dissertation the smart player assumes 

that his opponent is also smart, which results in the use of the optimal 

control strategy previously derived in Chapter II. The smart player 

does, however, use this optimal strategy in a closed-loop feedback con­

trol manner to take advantage of an opponent's ignorance. 

The block diagram for the incomplete information game, assuming the 

Evader to be the ignorant player, is shown in Figure 3. 

c. Simulation 

The digital simulation described in Chapter II was modified in 

order to allow simulation of incomplete system parameter information 

games. Using the example game defined by (36), (J?), and (38), the in­

complete information game was simulated assuming first the Evader and 

then the Pursuer to be the ignorant player. The resulting perfonnance 

indices and terminal miss distances for these incomplete information 

games as well as for the previous perfect information game are given in 

Table I. As shown, lack of complete system parameter information is 

costly. The trajectories for these incomplete information games are 

given for comparison to those of the perfect information game in Figures 

4a and 5a, respectively. The comparisons between matrix Riccati equation 

solutions are given in Figures 4b and 5b. 
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Table I. 

Incomplete Information Game Performance Comparison 

Ignorant Player Evader Neither Pursuer 

Performance Index (J) 26.1389 26.3672 27.1900 

Terminal Miss [x (5)-x (5)] e p 0.2321 0.)382 0.4.569 
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IV. PARAMETER IDENTIFICATION 

A. Differential Game Observables 

In the discussion of incomplete information games in Chapter III, 

it was implicitly assumed that the ignorant player's knowledge of the 

opponent's system parameters remained constant throughout the play of 

the game, i.e. , the a posteriori knowledge of these parameters was no 

better tha.n the a priori knowledge. Although the ignorant player's 

a priori knowledge may be incomplete, he is not, as may have been pre­

viously implied, incapable of learning. Consider, therefore, the 

possibility that the ignorant player may be able to identify the smart 

player's system parameters during the course of the game. 

While many system identification techniques can be formulated, all 

are based upon the system's outputs and the associated control inputs. 

As illustrated in Figure Ja,, each player's outputs, which in this case 

are the states, must be accessible in order for the players to apply 

a.ny form of closed-loop feedback control strategy. However, even though 

the players respond to each other's motion by virtue of their closed­

loop feedback control strategies, a player's control inputs would not 

normally be accessible to the opposing player. Consequently, even though 

it may be validly assumed that the smart player utilizes the optimal 

closed-loop feedback control strategy, the ignorant player cannot direct­

ly identify the smart player's open-loop parameters. 

Since the opponent's optimal control inputs are not available, the 

identification technique must be based upon the player's accessible 

states. As illustrated in Figure Jb, the player's states provide the 



29 

correct relationship for direct identification of the smart player's 

closed-loop system parameters. 

B. Closed-Loop System Parameter Identification 

In order to simplify discussion throughout the remainder of this 

dissertation, the Evader is assumed to be the ignorant player desiring 

to identify the Pursuer's closed-loop system parameters. The opposite 

case is easily obtained by interchanging the player's names and sub-

scripts wherever they appear and changing the sign of all terms pre-

viously containing R or R • p e 

The Pursuer's optimal closed-loop system as given by (24) is ap-

proximately time-invariant if (1) A is a stable matrix and (2) the re­o 

maining playing time, i.e., [tf-t] is long. In this case, (24) may be 

written as 

• 
X -p 

0 =A X ppo-p 

since A(t) given by (22) becomes time-invariant, i.e., A(t) __,_A
0

• 

(62) 

In order to estimate A~po and A~eo' the closed-loop system must be 

observable, controllable, as well as identifiable. The observability 

condition is satisfied by the prior assumption that the player's states 

are accessible. The controllability condition is dependent on the Pur-

suer's utilization of the optimal closed-loop feedback control strategy 

for the complete information game. The identifiability condition, how-

ever, must be examined. 



1. Identifiability Condition 

The i'th derivative of (62) is given by 

(i) 
x = A

0 

4> ppo 

(i-1) 
x + A

0 

-p peo 

(i-1) 
X 
-e 

Adjoining 2n successive derivatives like (6J), one obtains 

(2n) • • • (2n-l) • 
[ X • • • X X l = [A 

0 
A 

0 
] [ X • • • X X I -p -p -pJ ppo peo - ~ 

JO 

(6J) 

(64) 

where~ is the augmented state vector defined by (5). Therefore, an 

0 0 equation for estimation of A and A is given by ppo peo 

A A (2n) • • • (2n-l) 
[ A 

0 
A 

0 
l = [ X •. • X X l [ X ppo peo-J --p -p .:..:.p--' -

• 1 
•.• ~ .i]- (65) 

where the circumflex has been used to distinguish between estimated and 

actual parameters. 

From (65) one sees that the Pursuer's closed-loop parameters are 

(2n-l) 
identifiable if [ ~ 

• 
••• ~ ~ is nonsingular, i.e., 

(2n-l) • 
det [ ~ • • • ~ i] f 0 • (66) 

Condition (66) may be recognized [18] as the Wronskian of~' i.e., W(~). 

Therefore, the Pursuer's closed-loop system parameters are identifiable 

during any time interval for which all of the states of the augmented 

state vector ~ are linearly independent. The identification time inter­

val required is simply that needed in order to accurately construct the 

2n derivatives. Theoretically, of course, this identification time in-

terval can be made arbitrarily short for noise free measurements. 

The condition for linear independence of the states of ~ may be 

examined by considering the early stages of the incomplete information 
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differential game shown in Figure 3, whose state equation may be 

written as 

~ = ppo 
[

Ao 

- * 
peo Ao ] 
* ~ A 

~(0) =X -o • (67) 
A epo eeo 

It can be shown [20] that the states of ~ are, at least initially, 

linearly independent if (1) the eigenvectors of {67) are distinct and 

(2) the initial condition, i.e., x , has a non-zero projection on all -o 

of the eigenvectors. Thus, an alternate way o£ stating the condition 

for identifiability [16] is that the initial conditions must excite all 

modes of the system. The identification must, of course, be completed 

before any of these modal responses dies out. In fact, as any of the 

modal responses approaches zero, the matrix whose inverse is required in 

(65) becomes almost singular, thereby causing computational difficulties. -

Notice also that if the condition for identifiability holds, then 

* * all of the parameters of ( 67) may be identified. However, A am A peo eeo 

are already known by the Evader and, therefore, need not be identified. 

If the condition for identifiability is not satisfied, the Evader 

can alter the play of the game in order to make the states linearly in­

dependent by modifying his control strategy such that 

-e
u = u* + ut (68) 

-e -e 

where ut is a special test input. As a result of this modification, the 
-e 

vector equation for the imperfect information game becomes 

{69) 
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Assuming the differential game described by (69) is completely 

state controllable, introduction of the test signal ut by the Evader 
-e 

alters the states of both players as well as the Pursuer's control 

strategy, as shown by (19). The performance index (3) for the game is 

also affected since it is a function of the states and control strat-

egies of both players. Since the cost to the Evader is, in general, 

adversely affected by the introduction of such a test signal, its use 

should be avoided if possible. 

The parameter identification technique given by (65) requires 2n 

derivatives of x and 2n-l derivatives of x • Although the differen--p -e 

tiation involved can be carried out, measurement noise inherent in all 

physical systems, even though relatively minor, can cause large errors 

in computing high order derivatives and, consequently, in the parameter 

estimates obtained from (65). Therefore, even though (65) alloWs the 

sufficient conditions for identification to be stated, its actual use 

in any physical system is usually impractical. 

2. Continuous Time Learning Models 

Since the learning model technique avoids both the differentiation 

and the matrix inversion required by (65), it normally provides a more 

practical method for parameter identification. Therefore, the various 

learning models described in the literature were surveyed. 

Two learning models, which are distinguisha. ble by the error measure 

employed, appear applicable to the present identification problem. The 

first, based on response error, is the multivariable model originally 

developed by Pazdera. and Pottinger [21]. In the context of the inc om-

plete information game under consideration, its response error is given 
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qy the solution of 

• 
e = D e + AA 

0 
X + AA 0 x - ppo-p peo-e (?0) 

where D is a stable matrix and the parameter mi~li~ents are defined 

by 

AA 0 = A 0 

ppo ppo 
-"O 

-A ppo (71) 

and 

AAO = Ao ""O 
peo peo - Apeo (72) 

The development of the response error learning ~odel, including the 

Spence [27], [28] modification to provide i.tnprO'i'ed response character­

istics, is outlined in Appendix c. 

The second learning model, ba.sed on a gene:t"&lized equation error, 

is the multivariable extension o:f the single in};)ll.t/output model origi­

nally developed by Lion [17]. In the present C()J1text, its equation 

error is given by 

e = AA 0 x +AA 0 x (73) - ppo --p peo-e 

where the tilde is used to indicate filtered s~te va.:t-:Lables. An 

original development of the multivariable equatton er:t-or learning model 

is included in Appendix D. 

The two continuous learning models descri~ abmre are actually 

quite similar in t.hat both utilize the same :fonrt Of parameter adjust-

ment and also error measures which are dependent on the parameter mis-

alignments. The major differences in these mod~ls can be seen by con­

sidering their error measures. As shown the eq'l.t8-tion error (73) is a 



linear function of the parameter misalignment while the response error 

(70) has only a functional dependence on the parameter misalignment. 

On the other hand, the response error is based directly on the system 

input and output vectors while filtered state vectors are required for 

the equation error learning model. Both the functional dependence shown 

by (70) and the filtering requirements shown by (73) result from having 

the learning models avoid the use of the generally inaccessible state 

vector derivative ~· 

Parameter identification for either learning model technique is 

complete at time tid ~ if, and only if, the parameter misalignments are 

null for all t ~ tid. From consideration of the parameter adjustment 

laws used by these techniques, it is seen that the error vector must 

also be null for t ~ tid. It is easily shown (See Appendices C and D) 

that both techniques are asymptotically stable in the sense that par-

ameters will continue to be adjusted until the error vector is null. 

From the error equations for the two methods it is obvious that even 

though zero pa.:rameter misalignments implies zero error, zero error im-

plies only tba.t 

~A 0 ~A 0 
] [~] = 0 ~ ppo peo x -

-e 

(74) 

for the response error learning model and 

~A o ~A 0 J ~~] = 0 ppo pe x -
-e 

(75) 

for the equation error learning model. It follows that a sufficient 

condition for identifiability for either learning model is that the 



states of the augmented state matrix must be linearly independent 

during the identification interval [o,tid]. 
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By comparison one sees that the condition for identifiability for 

the learning technique is essentially the same as that for the compu­

tational technique given by (65). The only difference is the length 

of the time interval required. While the interval for the computa­

tional technique (65) is, at least theoretically, infinitesimally 

short, the interval for the learning model is governed by the gain 

setting of the parameter adjustment laws and the dynamic response of 

the system itself. 

The length of time required for identification is not usually an 

overiding consideration since in many cases a test input may be uti-

lized in order to generate the desired linear independence. However, 

in the present application, the identification time is extremely im-

portant since the game is of finite duration. The identification time 

is made critical by the fact that for the incomplete information games 

being considered the states are linearly independent during the early 

stages only for as long as the modal responses last since the use of 

a test input is undesirable. The short interval of linear indepen-

dence results from the fact that the closed-loop response during the 

early stages is excited only by the initial conditions of the game and 

A has been assumed to be a stable matrix. 
0 

In order to evaluate the effect of this identification time con-

straint and to determine which of the identification techniques ex-

hibits better convergence characteristics both learning models were 

simulated using a digital computer. The example incomplete information 



game with the Evader presumed to be the ignorant player was utilized. 

For this example, x , x , e, A0 
, and A0 are scalars. 

-p -e - ppo peo 

Although the fourth order Runge-Kutta integration routine was 

again used, it was discovered that an extremely short integration step 

size was required in order for digital simulation of the learning model 

techniques to be stable. The required step size was found to be in-

versely dependent on the parameter adjustment gain being utilized. The 

integration step size was determined for each value of gain by initial-

izing the parameters at their correct values and requiring the simula-

tion to run for a suitable period of time without diverging. 

It was also disc overed tha. t if only one of the two pursuer para-

meters was considered to be unknown, this parameter could be rapidly 

identified with the identification time becoming shorter as the ad-

justed gain wa.s increased. However, when both parameters were presumed 

unknown, the linear independence time interval was not sufficient to 

allow the identification to converge. Furthermore, increasing the ad-

justment gain appeared to worsen the response, possibly because of 

associated decrease in integration accuracy. The results were equally 

discouraging for both learning models. 

Lion [17] discussed the above effect resulting from increased gain 

for the single input/output equation error learning model. He showed 

that in order to be able to arbitrarily increase the adjustment gain 

and thereby decrease identification time, the number of equation error 

states must equal the number of unknown parameters. This implies that 

for the general multivariable system with n states and m ~ n inputs, 

(n + m) error vectors of n dimension must be used. This approach is 
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outlined in Appendix E for the equation error learning model. As can 

be seen, this expansion vastly complicates the mechanization of the 

learning model identification technique, particularily :for the present 

case where initial conditions must be taken into account. 

For the previous example, there are only two unknown parameters. 

Consequently only one additional error equation had to be added to the 

equation error learning model simulation in order to apply the above 

technique. Although some improvement was noted, the simulation results 

were again discouraging. Because integrators were used :for the two 

additional state variable filters required to mechanize the additional 

equation error, the second error quickly exceeded the first. Therefore, 

the parameter adjustment rate became primarily dependent on the second 

error rather than the first. Since the states of the game are linearly 

independent for only a short period of time, the adjustment gain would 

have to be extremely high, resulting in extremely rapid response of the 

learning model in order :for the method to be effective. The difference 

between these results and those obtained by Lion appears to be due 

primarily to the :fact that the natural response of the second order 

differential game is being utilized instead o:f the system response to 

a multi-frequency or a noisy test input. The integration error associ­

ated with the digital simulation when the adjustment gains are high may 

also have some affect on these results. 

It should also be noted that the response error and equation error 

models may be combined to provide an improved learning mcxiel identi­

fication technique. An original development o.f this combined response/ 

equation error learning model is outlined in Appendix F. Both the 
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response error model and the combined error model may also be extended 

in the same fashion as the equation error model in order to increase 

the dimension af the error vector. 

It is obvious from the above discussion that parameter identi­

fication via learning models is highly dependent on (1) the response 

af the unknown system to initial conditions, (2) the characteristics 

af the input, and (3) the gain setting Of the parameter adjustment 

la.Ws. Even if sui table response is obtained for one set of unknown 

:rara.meter values, a significant amount of' simulation would be required 

to ensure that the response is adequate for the expected :range of the 

unknown parameters. Consequently, a more sure method of :parameter 

identification than that afforded by the learning model technique is 

desirable for the incomplete information game. 

3. Discrete Time Identification 

The learning model parameter identification technique was origin­

ally applied in order to avoid the differentiation and matrix inversion 

required by {65). However, the matrix inversion can easily be handled 

by digital computation if a discrete time equivalent of (65) is con­

structed. Of course, computational difficulties can still arise if the 

elements of the augmented state vector are not clearly linearly inde­

pendent. Assuming that sufficient samples can be obtained before the 

modal response to initial conditions dies out, application of discrete 

time parameter identification to the incomplete information differen­

tial game merits investigation. 

Assume that the states of the differential game are sampled at 
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times t 1 and t 2 where t 2 > t 1 • Since the Pursuer's closed-loop 

system (62) is time-invariant during the early stages of the incomplete 

information game being investigated, the Pursuer's states at time t
2 

are given by 

A o L:ff 
x (t ) = e ppo x (t ) + 
-p 2 -p 1 (?6) 

where the time interval between samples is 

(??) 

If the time interval AT is sufficiently short, x ( t) may be considered -e 

a constant so that (76) may be rewritten as 

AT 

Ao ~1-Ao a. 
+ e ppo e ppo dn A~o!e(t1 ) 

0 

• (?8) 

Since the series expansion for exp [-A~p0a.] converges uniformly for 

- oo < a. < oo, the order of integration and summation may be interchanged 

and the integration indicated in (78) may be carried out tenn by term. 

As a result, !p(t
2

) may be written symbolically as 

A0 AT A
0

AT 
x (t ) = e ppo x (t ) + [e ppo -I] A0 -lAo x (t ) 
-p 2 -p 1 ppo peo-e 1 ' (?9) 

A0 
AT 

L- ppo J 0 -1 f A0 -l i i 1 since e - I Appo exists even i ppo s s ngu ar. Assuming 

that AT is also sufficiently short so that 



A0 AT 
e ppo ~ I + A 0 AT 

ppo 

equation (79) becomes 

where 

~0 I+ A
0 AT ppo = ppo 

and 

;:r...o A o AT 
~peo = peo • 
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' (80) 

(81) 

(82) 

(83) 

From (82) and (83) one sees that if<P.0 and <;P.0 can be identi-ppo peo 

fled, then the closed-loop system parameters can also be computed as 

Ao 1 r~o I] 
ppo = AT L"Vppo - (84) 

and 

• (85) 

If the states of the game are sampled at equally spaced intervals, 

the n'th sample time becomes n6T and (81) may be written as 

x (n + 1) = ~0 x (n) + ~0 x (n) -p ppo-p peo-e • (86) 

Adjoining 2n successive samples, one obtains 

[~(2n) ••• !.p(2) ~(1)] = [<l>~po cp~eo] [~(2n-l) ••• ~(1) ~(o)] (87) 

where x is the augmented state vector defined by (.5), Therefore, one 

equation for estimation of ~0 and (b.0 is given by ppo peo 
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Ao Ao -
[~ppo q)peJ = [~ (Zn) • • • ~ (2) ~ (1)] [2£(2n-l) ••• 2£(1) 2£(0)]-1 • 

(88) 

The above identification equation is the discrete time analog of 

the continuous time identification equation given by {65). The need 

to construct 2n derivative vectors has been replaced by the require-

ment for 2n equally spaced samples. The condition for identifiability 

using the above discrete time identification equation is essentially 

the same as that continuous time identification via (65~, namely, that 

the states of the augmented state vector ~ must be linearly independent 

over the time interval [0,2n6T], i.e., they must span the 2n dimensional 

space. 

The discrete time identification equation given bY (88) is not 

free of computational difficulties, however, since from (82)qp0 ~I ppo 

as AT~O. Therefore, from (84) one sees that a small error inqf ppo 

can result in a large error in A0 if AT is made very short. ppo 

Although (88) appears to avoid the noisy derivative process asso-

ciated with (65), measurement noise does have an effect on the accuracy 

of the estimates for <l>~po and <;!:>~ 0 , which in turn can seriously affect 

the accuracy of the estimates for A 0 and A 
0 given by (84) and (85). ppo peo 

Even so, the estimates obtained using (88) are optimal in the minimum 

mean square error sense. This is easily shown with the aid of the 

following definitions& 

(89) 

X (2n) = [x (2n) ••• x (2) !n(l)] p -p -p J:" 
(90) 



X(2n-l) c [~(2n-1) ••• ~(1) ~(o)] 

Since the estimate of X (2n) is given by p 

"' "'o X (2n) = ~ X(2n-1) P po • 

the error in the estimate of<D.0 is reflected by the error in the po 

estimate of XP which may be written as 

A 

E (2n) = X (2n) - X (2n) p p p 

"'o 
c q)P

0
X(2n-l) - XP(2n) 

Defining the cost function as 

"'o T "o T T 
= t .· tr( [~ X(2n-l) - X (2n)] [x (2n-l~ - X (2n)] ) , po p po p 
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(91) 

(92) 

(93) 

(~) 

A 

one sees that the minimum mean square error estimate ~0 must satisfy po 

• 

Performing the indicated operation, one obtains 

tr( [~0 X(2n-l) -X (2n)J XT(2n-1) ) = 0 
po P • 

Note that (88), which in terms of the previous definitions may be 

written as 

~0 = x (2n) x-1 (2n-1) 
po P • 

satisfies ( 96) ani is • the:ref ore • the minimum mean square error 

)F-.0 
estima. te for "*'po. 

(95) 

(96) 

(97) 



From (96) one sees that the minimum mean square error estimate 

for ~0 
may also be written as po 

"'o T 
~ = [x (2n) X (2n-l)] M(2n-l) po P 

where 

M(2n-l) - [X(2n-l) XT(2n-l)]-l 

43 

(98) 

(99) 

Although this parameter identification equation requires two more matrix 

multiplications, one also notes that it is no longer necessary that X 

be a square matrix. Therefore, (98) offers a method by which the mean 

square estimate of (!:>;
0 

can be based on an expanded number of equally 

spaced discrete time samples of x and x • -p -e 

Consider as an example the addition of one more sample occurring 

at time (2n+l~T. The discrete time estimate may then be written as 

~0 (2n+l) = [x (2n+l) Xp(2n)] [~(2n) X(2n-l)]TM(2n) po -p (100) 

where 

M(2n) = [ [~(2n) X(2n-l)] [~(2n) X(2n-l)]TJ-l (101) 

If equations of the form given by (100) and (101) are applied, 

all data must be saved and multiplication must be performed on matrices 

of ever increasing dimension. However, Lee [16] has shown that re­

cursive equations can be obtained for the single input/output system. 

An original development of the recursive equations for the multivari­

able system is given in Appendix G. The resulting recursive equation 

for the minimum mean square error estimate at time (m+l).t::\T is 
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(102) 

A 

+ [~(m+l) -qp~0(m)~(m)] [1 + ~T(m)M(m-l)~(m)J-l~T(m)M(m-1) 

where the recursive coefficient equation is given by 

M(m) = M(m-1) - M(m-l)~(m)[l + xT(m)M(m-l)~(m)J-l~T(m)M(m-1) (103) 

Note that the indicated matrix inversion is actually just division by 

a scalar so that the matrix inversion originally indicated by (101) has 

also been avoided by the recursive equations. 

The recursive discrete time identification equation (103) is quite 

similar to that given by Ho [12], one difference being that a computed 

matrix gain is utilized in place of an unspecified scalar gain. Thus 

Ho's technique [12] is a discrete time response error learning model 

which, if applied to the incomplete information differential game; would 

seem to be as susceptible to problems similar to those previously dis-

cussed for continuous time learning models. 

The recursive discrete time parameter identification equation 

given by (102) and its recursive coefficient equation given by (103) 

can be initialized in several ways as shown in Appendix G. In the pres-

ent application, it is desirable to make use af the limiting estimate 
A A 

for the :Pursuer's open-loop parameters, i.e., F and G given by (.58) p p 

and (59), respectively. Using (43) and (44) in (1) and (2), along with 

(39), the Evader's optimistic estimate of the incomplete information 

differential game becomes 

- 6 R-laTPJ 
p p p 

- G R-lGTP 
e e e 

(1~) 
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or 

[~] = ~~: :~:] [~] (105) 

Thus, the limiting estimates for the Pursuer's closed-loop parameters 

during the early stages of the incomplete information game become 

Ao A 

A = F ppo P 

and 

- G R-1GTP 
p p p 0 

• 

(lo6) 

(107) 

The limiting estimates for<l>~po and <P~0 may now be computed using (82) 

and (83), i.e., 

A 

~0 (0) = I + A0 AT ppo ppo (108) 

and 

~0 (o) = A0 
AT peo peo • (109) 

In order to initialize the recursive identification equation (102) 
A A 

at t = 0 using the limiting estimates F and G and have the identi-p p 

fication begin with the first sample, M(-1) must also be estimated. As 

shown in Appendix G, this may be accomplished in several different ways. 
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From Appendix G, the best overall choice appears to be simply let 

M(-1) = a I (110) 

where a~oo. The result is an asymptotically convergent solution for 

""o 
M and q:>po which begins with the first sample and seems to be relatively 

insensitive to measurement noise. 

c. Open-Loop System Parameter Identification 

It was shown in the previous section that the smart player's op-

timal closed-loop system parameters can be identified via a recursive 

discrete time parameter identification technique provided they are time­

invariant. As shown by ( 22) , these parameters are time-invariant when-

ever the Riccati matrix is time-invariant. The fact that during the 

early stages of the game the Riccati matrix is time-invariant if A is 
0 

stable and also satisfies the nonlinear algebraic matrix given by (26) 

can be utilized to estimate the smart player's open-loop system para­

meters from the identified closed-loop parameters. 

Equation (26) may be rewritten in terms of the estimated and known 

matrices as 

r~ppo :peo] 
lpepo eeo 

- r~ppo :peol 
lpepo eeo r 

-J!'T R G 
p p p 

0 ][

A A J [ 0 p p 0 
ppo peo 

== 

-G R-lGT P P 0 
e e e epo eeo 

(111) 
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where ~he circumflex is used to distinguish estimated or identified 

matrices from known matrices. Performing the operations indicated in 

(111) and noting that 

AO A 
A = F ppo P (112) 

and 

A0 = - G R-1GI'P 
peo p p p peo (113) 

yields the following three equationsa 

p A0 + A0 P + P G R-lGTP + pr G R-1GTP + Q =[o] (114) 
ppo ppo ppo ppo ppo p p p ppo ep e e e ep 

P A0 + FTP + P G R-1GTP - Q ={o] (115) epo ppo e epo eeo e e e epo 

P A0 + P F + FTP + P G R-lGTp + fi =[ o] 
epo peo eeo e e eeo eeo e e e eeo • (116) 

A 

Equations (115) and (116) may be solved simultaneously for Pepo• 
A ~ A 

Using the fact that P = P and assuming that Ppeo is nonsingular, peo epo 

from (113) one obtains 

G R-1CI' = - A0 P-1 
p p p peo peo 

The estimate for G may now be obtained from (117). 
p 

A 

now known, equation (114) may be solved for P • ppo 

obtains 

(117) 

Since G R-1GT is 
p p p 

Rewriting (112) one 

(118) 

Thus, estima. tes af the smart player's open-loop system parameters may be 

calculated from the identified closed-loop parameters. 
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D. Simulation 

The digital simulation for the example incomplete information game 

described in Chapter III was modified in order to include identifica-

tion of the Pursuer's open-loop and closed-loop parameters, following 

the previous assumption that the Evader is the ignorant player. The 

recursive discrete time parameter identification technique discussed 

above in Section B-3 and derived in Appendix G was utilized to estimate 

the Pursuer's closed-loop parameters. The recursive identification 

equations were initialized as discussed in Section B-3, which is the 

third initialization technique proposed in Appendix G. The Pursuer's 

open-loop parameters were calculated from the closed-loop parameters 

using the technique discussed in Section C above. 

In order to allow sampling of the state variables every 0.001 

second, the integration step size of the fourth order Runge-Kutta 

integration scheme utilized by the digital simulation was also reduced 

to 0.001 second. The effect of this change in integration step size on 

the results of the simulation was negligible. 

The simulation showed that for the example incomplete information 

game the Pursuer's closed-loop parameters can be readily identified. 

The resulting identification is almost identical to that shown in Figure 

0 G-3 of Appendix G. As shown there, the parameter A is identified at 
~0 

0 t ~ 0.001 second, while identification of the parameter A is essen-ppo 

tially complete by t = 0.050 second. 

The resulting open-loop identification is shown in Figure 6. The 

jump seen at t s 0.001 second results from the fact that A0 is 
~0 
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Figure 6. Identification of Pursuer's Open-Loop Parameters 
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Ao 
identified immediately, while the estimate A has not changed appre-wo 
ciably. The smooth response after the 0.001 second point results from 

Ao 
the smooth convergence of A • ppo 

As shown in Figure 6, the estimates for F and G remain at their p p 

respective optimistic limiting estimates, as obtained from (58) and 

(59), for only one sample period. Note also that since the closed-loop 

0 0 parameters A and A are not identified at the same rate, the es-ppo peo 

timate for F actually exceeds the optimistic limiting estimate, as 
p 

given by (58), for the first 0.010 second of the example incomplete in-

formation game. 
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V. ASYMPl'OTICALLY OPl'IMAL ADAPI'IVE GAMES 

A. Adaptive S tra. tegies 

As was shown in Chapter IV, the Pursuer's open-loop system given 

by (1) can be identified ifa (1) the Pursuer plays his optimal 

feedback control strategy, (2) the A matrix for the game given 
0 

by (28) is stable, (J) the remaining playing time, i.e., [t-tf] is 

long, and {4) the initial conditions excite all of the modes of the 

closed-loop incomplete information game. The net effect of conditions 

{1), {2), and (J) above is that the Pursuer's optimal feedback con­

trol gains and, therefore, the optimal closed-loop matrices A 
0 and pp 

A 0 are approximately time-invariant. 
pe 

A review of Chapter IV shows further, that the only effect that 

the Evader's closed-loop control gains have on the identification 

of the Pursuer's open-loop system parameters is associated with the 

response of the closed-loop game to initial conditions. Therefore, 

the Evader's feedback control gains are allowed to vary as desired as 

long as all modes of the game remain excited by the initial conditions. 

Based on the above discussion, it is obvious that the Evader's 

feedback control gains can be made adaptive by using the estimate for 

the Pursuer's open-loop system parameters to solve the matrix Riccati 

equation for the game, i.e., 
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• 
A " " A " AT A " p p p p F 0 F 0 p p pp pe pp pe p p pp pe 

=-
• • 

A A A A 
FT A A p p p p 0 F 0 p p ep ee ep ee e e ep ee 

(119) A A G R-1GT /'. /'. 
Q -Q p p 0 p p pp pe p p p pp pe 

+ 
A A -G R-lGT /'. /'. 

-Q Q p p 0 p p ep ee e e e ep ee 

The suboptimal feedback control strategy given by (44) is then replaced 

by a feedback control strategy of the form given by (20), i.e., 

u (t) = R-1GTP (t) X (t) + R-lGTP (t) X (t) 
-e e e ep -p e e ee ~ 

(120) 

A A 0 
It is obvious that P ~ P and P ~ P and, therefore, u ~ u as ep ep ee ee -e -e 

A A 

F ~F and G ~G • Thus, the proposed adaptive feedback control p p p p 

strategy is asymptotically optimal. 

B. Simulation 

The digital simulation described in Chapter IV was modified in 

order to include the asymptotically optimal adaptive feedback control 

strategy proposed above. The Evader utilized the estimates for the 
A A 

Pursuer's open-loop parameters, i.e., F and G , throughout the game. p p 

However, the estimate for F was not allowed to exceed the optimistic 
p 

limiting estimate obtained from (58). Furthermore, the Pursuer's 
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open-loop parameters were assumed to be accurately identified at 0.1 

second play of the example game. These estimates were then utilized 

by the Evader for the remaining 4.9 seconds play of the game. 

An integration step size of 0.001 second was used for the first 

0.1 second of play while parameter identification was taking place. 

Only a 0.1 second integration step size was required for the remaining 

4.9 seconds of the example adaptive game. 

The results of the adaptive game are compared with those of the 

incomplete information game and of the perfect information game in 

Table II. As shown, the use of the asymptotically optimal adaptive 

control improves, at least from the Evader's point of view, both the 

performance index and the terminal miss distance. 

The trajectories for the states of the example adaptive game are 

shown in Figure ?a. As seen by comparison to Figure 2a, the tra.jec-

tories for the adaptive game are almost identical to those for the 

complete information game. Likewise, the Evader's solution to the 
/'. A 

matrix Riccati equation, which is based on the estimates F and G , p p 

is nearly the same as that for the perfect information game after the 

initial 0.05 second adaptive transient, as can be seen by comparison 

of Figures ?b arxi 2b. 



Table II. 

Adaptive Game Performance Comparison 

Ignorant Player Evader Evader Neither 

Adaptive Control No Yes 

Performance Index (J) 26.1389 '26.3672 

Terminal Miss [x (5)-x (5)] e p 0.2321 0.3386 0.3382 
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VI. CONCLUSIONS 

A two player zero-sum differential game has been investigated for 

the case in which one of the players has incomplete a priori knowledge 

of the parameters of his opponent's dynamic system. The motion of each 

player is governed by a decoupled linear time-invariant dynamic system. 

The players, who are termed the Pursuer and the Evader, simultaneously 

try to minimize and maximize a quadratic time-invariant performance 

index by selection of deterministic feedback control strategies. 

As has been shown herein, the incomplete system parameter infor­

mation game is playable since the ignorant player can make limiting 

estimates for his opponent's system parameters from the relative con­

trollability condition for the game. While play of the incomplete 

information game is possible, the performance, at least from the 

ignorant player's point of view, is suboptimal. 

The response of the smart player to initial conditions and to the 

ignorant player's motion inherently contains information on the smart 

player's dynamic system. In this dissertation, parameter identifica­

tion has been app~ied in the particular case in which the smart player's 

optimal closed-loop feedback control gains become time-invariant during 

the early stages of the game. As has been shown, the accessibility of 

the player's states allows the ignorant player to identify the smart 

player's optimal closed-loop parameters. The smart player's open-loop 

parameters can then be estimated from the identified closed-loop para­

meters by using the algebraic matrix Riccati equation for the game. If 

the ignorant player utilizes these estimated open-loop parameters in the 
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optimal control law, the result is an asymptotically optimal adaptive 

feedback control strategy. 

All of the results described above have also been verified by 

digital simulation for an example differential g.ame. 

In attempting to identify the smart player's optimal closed-loop 

system parameters, both continuous and discrete time identification 

techniques were applied. The continuous time techniques included the 

ImJ.ltivariable response error learning model developed by Pazdera and 

others [21], [28] ; an original multivariable extension of the single 

input/output equation error learning model developed by Lion [17] ; an 

original generalization of the multivariable equation error learning 

model; and an original combination of the response and equation error 

learning mcxlels. The results o:f the application of continuous time 

identification were disappointing, at least for the example incomplete 

system parameter information game. However, all of these continuous 

time learning model identification techniques are deserving of further 

investigation, both in the present application and in more normal system 

identification problems. 

The discrete time parameter identification applied to the incom­

plete system parameter information game was an original multivariable 

extension of the single input/output identification technique developed 

by Lee [16]. This technique, which results in a minimum mean square 

error estimate, yielded good results for the example incomplete system 

parameter information game. 



While important new results have been obtained for the incomplete 

system parameter information game, these results apply to a fairly 

specific differential game, namely, one in which (1) the dynamic 

systems are dimensionally identical, (2) the states are directly 

measurable, and (J) the optimal feedback control gains are approxi­

mately constant if the remaining playing time is sufficiently long. 

Generalization of the previous results to include dynamic systems of 

arbitrary dimensions whose states are observable, but not directly 

measurable would be worthwhile as would generalization to allow identi­

fication and adaptive control while the optimal feedback control gains 

are time-varying. Investigation of the incomplete information game in 

which both players lack a priori knowledge of their opponent's system 

parameters is also of interest. 
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APPENDIX A 

SUFFICIENCY CONDITIONS FOR THE DIFFERENTIAL GAME OPTIMAL SOLUTION 

The extremal problem presented by the zero sum differential game 

defined in Chapter II is easily solved via the calculus of variations 

[8], [33]. However, since the differential game must satisfy the 

saddle point condition (4) of Chapter II, it is a minimax problem 

rather than either a maximum or a minimum problem. In order for a 

deterministic (pure) solution to exist, the minimax solution must be 

equivalent to the maximin solution, i.e., the optimal solution must 

be independent of the order of selection of control strategies. The 

minimax and maximin solutions are equivalent if the extremal problem 

is separable into one-sided minimum and maximum problems having the 

same solutions a.s obtained for the original two-sided problem. 

In the following sections, the above separability condition is 

shown to hold for the differential game defined in Chapter II. The 

necessary and sufficient conditions for the optimal solution of this 

game are also derived. 

A-1. The Two-Sided Extremal Problem 

The two-sided extremal problem for the differential game is de-

fined by the performance index 

tf 

J(!!) = i fa (2£'1Q 2£ + u'IR :!!) dt + i l<tf') S 2£ (tf') 

subject to the differential equation constraint 

3f(O) =X -o 

(A-1) 

(A-2) 



where Q, R, S, F, and G are defined by (9) and (10) of Chapter II. 

Adjoining the differential constr-aint to the performance index via 

the Lagrange undetermined multiplier vector z yields the augmented 

performance index 

Integrating by parts, (A-3) becomes 

tf 

:f(:!!) = 1 ( t !.'IQ !. + t :!!'l!i :!! + zlf:F !. + G :!!] + ;z!.) dt 
0 
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(A-J) 

+ [t ~T(tf) S - zT(tf)J ~(tf) + zT(O) ~(0) • (A-4) 

The first order necessary conditions for an extremum are obtained 

from the first variation of the augmented performance index, which is 

given by 

tf 

6J(:!!) - [ < [:!!'l!i + z'IGJ 6:!! + [!.'IQ + z'I); + .?J 6!.) dt 
0 (A-5) 

+ [xT(tf) s- zT(tf)] o~(tf) + zT(o) o~(o) • 

Note that o~(O) = Q since the initial conditions are specified. 

The first variation given by (A-5) must vanish along the extremal 

path for arbitrary values of O!!. and o~. Therefore, the first order 

necessary conditions for an extremum are given by 

(A-6) 



• - ='I' 
~=-Q~-F~ • 

and 

• 

Substituting (A-6) into (A-2) yields 

- -
~=F~-Hz 

where 

x(O) 

• 

=x -o • 

Equations (A-7), (A-8), and (A-9) form a two point boundary value 

problem (TPBVP) which may be written in state equation form as 

. 
' 

~(0) =X 
-o 

• 
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(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-ll) 

As a result of (A-ll), the Lagrange multiplier vector z is also often 

termed the costate vector. 

The above TPBVP may be solved by defining 

z{t) = P(t) ~(t) • (A;;.l2) 

Differentiating (A-12), one obtains 
• 

(A-13) 

which, after substitution of (A-7), (A-9), and (A-12); becomes 

• 
['P + Q + 'P F' + FlP - P if P] ~ = o • (A-14) 

Also from (A-8) and (A-12), one gets 

(A-15) 



Since ~(0) is arbitrary, ~(t) ~ 0 is the general case. Therefore, 

(A-14) is true for all t E [o,tf] if and only if 

• 
- - -- ='!'= ---P=-Q-PF-FP+PHP 
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(A-16) 

Equation (A-16) is the nonlinear matrix Riccati equation. Note that 

since H, Q, S are symmetric matrices, P is also symmetric. 

Substituting (A-12) into (A-6), the optimal control vector, ~0, 

for the game is given by 

(A-17) 

where P(t) is obtained by solution of the matrix Riccati equation. 

Performing the operations indicated in (A-17), the control strategies 

for the Pursuer and the Evader respectively are given by 

(A-18) 

and 

• (A-19) 

A-2. Separability Condition 

In order for (A-18) ar~ (A-19) to be deterministic optimal control 

strategies, they must also satisfy the saddle point condition 

J(u0 ,u ) < J(u0 ,u0
) < J(u ,u

0
) -p-e- -p-e- -p-e 

i.e., (A-18) and (A-19) must be both the minimax and the maximin 

(A-20) 

solutions of the two-sided extremal problem. The minimax arxi maximin 

solutions are equivalent if the two separate one-sided extremal prob­

lems have the same solutions as those obtained for the original two-
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sided problem. 

In order to show that the differential game defined in Chapter II 

is separable, consider the Pursuer's one-sided minimum problem wherein 

the Evader utilizes (A-19) as a closed-loop feedback control strategy. 

For this case, the extremal problem is defined by the performance index 

R [o e 

(A-21) 

subject to the differential equation constraint given by 

. [G 0] [ ~-iF~+ P 
o G [o 

e 
R-1~] P x] 

e e -
• (A-22) 

Adjoining this differential constraint to (A-21) via the undetermined 

multiplier vector ~ yields the augmented performance index 

0 l p ~) dt 
-H e 

G u J • po-p_ - i]) dt 
H] P X 

e -

(A-23) 



where 

H == G R GT 
e e e e ' 

Integrating by parts, (A-23) becomes 

+ £ (z'I) .!. + l tf [ 

o [o 

0 l p ~) dt 
-H e 
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(A-24) 

(A-2_5) 

The first order necessary conditions for the one-sided minimum 

problem are obtained from the first variation of {A-2_5), which is 

given by 

tf [ J [ T T G '!'-= 'I': 0 
o J (u ) = 1 ([u R + z p ] ou + [~ Q + ~ P 

p--p 0 -pp 0 -p 0 

+'I'f+Tra 
z z l[o (A-26) 

where 6~( 0) = 0 since the initial cordi tions are specified. 

The first variation given by (A-26) must vanish along the minimal 

path for arbit:re.ry values of 6~ am 6~ • Therefore, the first o:r:der 

necessary conditions for a minimum are given by 



-Ic T o] :l. u =- R G --p p p 

• -T -
:t.=-Fz-P [: :J z- Q ~ + p [: 

and 

Substituting (A-27) into (A-22) yields 

• 
x=Fx+ - - [

- [HP o] ::1.. ] 

[ 0 H~ P.! 
~(0) 

where 

• 

:J p ~· 

=X -o 
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(A-27) 

(A-28) 

(A-29) 

(A-30) 

(A-31) 

Equations (A-28), (A-29) and (A-30) form a TPBVP which may be solved 

by defining 

v(t) = P (t) x(t) 
' p -

(A-32) 

Differentiating (A-32) and substituting (A-28) and (A-30), followed 

by (A-32) yields 

P=-Q-PF-FI'P -P . ro 
p p p 0 

+ p [Hp 
p 0 

0] [0 p - p 
0 p p 0 

olp +PIO 
H p 0 

e 

:J p 

(A-33) 
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Adding the identically zero quantity 

0] [0 p - p 
He p P 0 

(A-33) may be rewritten as 

• 

o][P -P] 
H p 

e 

(A-j-4.) 
[0
0 

P=-Q-Pf-FI'P +PHP +[P -PJ p p p p p p 

where, from (A-29) and (A-32), 

• (A-35) 

As seen by comparing (A-J4) and (A-16), the only di:f:ference between the 
• • • 

equations :for P ard P p is the last term in the P p equation. However, 

since 

then 

P (t) c: 'P(t) 
p 

(A-)6) 

(A-J?) 

:for all t E [o,tf] since the last term in (A-)4) can never contribute 

toP p 

Substituting {A-32) in (A-27) yields the Pursuer's optimal control 

0 strategy, u , given by -p 

uo c: - [R-lGT 
-p p p 

o] P x p-

or, using (A-37), 

u0 
a - (R-lGT 

-p p p 
o] P x 

which is identical to (A-18). 

' 
(A-38) 

t (A-39) 
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As seen from (A-39) the solution to the Pursuer's one-sided mini-

mum problem is identical to that obtained for the two-sided differen-

tial game. From the symmetry of the game, it is obvious that the 

solution to the Evader's one-sided maximum problem is also identical 

to that obtained for the two-sided differential game. Therefore, the 

differential game is separable and the controls given by (A-18) am 

(A-19) are deterministic control strategies satisfying (A-20). 

The above proof is based on the assumption that the Evader util­

ized (A-19) as a closed-loop feedback control strategy. The Evader 

could, of course, utilize (A-19) as an open-loop feedback control 

strategy by using the solution of (A-16) together with (A-12) to obtain 

an analytic solution for (A-9). Since this results in the Evader 

following the same trajectory as for the closed-loop case, it makes 

no difference whether the Evader's control is open-loop or closed-loop. 

A-J. Sufficient Conditions 

It has previously been shown that the deterministic control strat­

egies u 0 (t) and u0 {t) as given by (A-18) and (A-19) satisfy the first 
-p -e 

order necessary conditions for the optimal solution of the differen-

tial game defined in Chapter II. The sufficient conditions for these 

control strategies to be optimal may be obtained by examining the 

neighboring field of extremals. 

Since the first variation of the augmented performance index given 

by (A-5) vanishes along the extremal path, the conditions for a neighbor­

ing extremal path are obtained from the secom variation a£ the aug­

mented performance index, which is given by 
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tf 

02 J(,!!) = t l (O_!'IQ 0_! + O,!!'!fi 0,!!) dt + t O_!(tf) S O_!(tf) (A-40) 

and the first variation of the constraint given by 

• 
0~ == F 0~ + G OJ! ox(o) = ox - -o • (A-41) 

The second variation given by (A-40) must vanish along the neighboring 

extremal path. Since (A-40) and {A-41) are identical in form to (A-1) 

and (A-2), respectively, it is obvious that the solution for the 

neighboring extremal path is given by 

(A-42) 

Where P(t) satisfies (A-16). 

In order to determine the sufficient conditions for the optimal 

solution to the differential game, consider the addition of the 

identically zero quantity, 

to (A-40). As a result, the second variation is also given by 

tf 

o3 J(,!!) = t l (O_!T[Q + P F + F'l'PJ O_!) dt 

Note that 

tf 

+ t fo (6_!Tp GI'o.!! + O,!!T(ff'p 6_! + O,!!'Ifi 6,!!) dt 

tf -J (6.!Tp oi) dt + t 6_!( tf)S 6_!( tf) 
0 

(A-43) 

• 



so that 

Substituting (A-45) in (A-4J) yields 

tf • 

6
2

J(~)- t 1 (6.l[P + Q + P F + F'1P) 62£) dt 
0 

tf 

+ t f (62£Tp G 6~ + 6~TGf'P 62£ + 6~~ 6~) dt 
0 

+ t ox(O) P(O) 6x(O) - - • 
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(A-44) 

(A-45) 

(A-46) 

Substituting (A-16) into (A-46) and using (A-10), the second variation 

may be written as 

(A-47) 
+ t o~(o) P(o) o~(o) • 

Performing the indicated matrix multiplications and assuming that the 

initial conditions are specified so that 6~(0) = 0 , (A-47) may be 

written as 



o] 'Pox+ ou 
- -p II R ) dt 

p 

" R ) dt e 

74 

(A-48) 

where 
' the generalized norm of the vector z with 

respect to R. 

From (A-48) it is evident that the solution is minimax or, equiva­

lently, maximin if R and R are both positive definite. This condition p e 

is analogous to the "convexity" or "strengthened Legendre-Clebsch" of 

the calculus of variations. 

While it has not been shown directly herein, it is also evident 

that P(t) must exist, i.e., be finite, for all t E [o,tf] in order for 

the solution to be minimax. This condition is analogous to the "no 

conjugate point• or "Jacobi" condition of the calculus of variations. 

A-4. Summary 

In summary, the necessary and sufficient conditions for the deter-

ministic optimal solution of the zero sum differential game defined in 

Chapter II ares 

--1~ 
(1) B. = - R G P 2£ 

where P(t) satisfies . 
- - -- -'!; ---P=-Q-PF-FP+PHP 

(2) R and R are both positive definite, 
P e 

(J) ~ exists for t E [ O,tf] 

(A-49) 

' (A-50) 



75 

APPENDIX B 

NONLINEAR MATRIX RICCATI EQUATION ANALYTIC SOLUTION 

The solution to the time-invariant nonlinear matrix Riccati 

equation, given by {16) as 

• 
- - ::!r- - - -1-::T:-p • -P F - F P + P G R G P - Q 

' (B-1) 

may be obtained by considering the original two point boundary value 

problem defined by {14). In order to aid discussion the TPBVP matrix 

is defined as M, i.e., 

- --1-='1.'] -G R G 

-T -F 
• (B-2) 

O'Donnell [19] has shown that the eigenvalues of M must be symmetric 

with respect to the imaginary axis of the complex plane and, if A is 
0 

stable, that there are no purely imaginary eigenvalues. Utilizing the 

symplectic similarity property of theM matrix, O'Donn.ell [19], and 

later Vaughan [30] in a slightly different form, provide a solution for 

P(t) for the case in which the eigenvalues of A
0

, and consequently M, 
are distinct. Subsequently, Anderson and Moore [1], in presenting the 

solution to the matrix Riccati equation, include the case for multiple 

eigenvalues. 

To apply the above results to the solution to the matrix Riccati 

equation for the differential game {16), assume that A
0 

is a stable 

matrix and consider the similarity transformation W with the property 

that 
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M w c w r l\ o] (B-3) l 0 -}\ 

where I\. is the 2n x 2n J o:rdan canonical form with Re (A. i) < 0, 1 -= 

1, 2, ••• ,2 n and A. i are the eigenvalues of M. By pa.rti ti oning the 

4n x 4n W matrix into 2n x 2n subrnatrices such that 

and using its symplectic characteristic, it can be shown [1] that 

where 

and 

or 

t = t - t r f • 

From (B-5) it is seen that 

P = lim P(t) = w21 w11- 1 

0 t -+-00 
r 

• 

(B-4) 

(B-5) 

(B-6) 

(B-7) 

(B-8) 

(B-9) 

The fact that w
11 

is nonsingular ard A
0 

is similar to A can be shown 

by performing the matrix operations defined by (B-3) using the par­

titioned W matrix {B-4) and examining the upper left submatrix which 
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is given by 

(B-10) 

Substituting w21 £rom (B-9), equation (B-10) may be rewritten as 

-1 
r- - - ='!':: l 1\ LF -G R G P o-Jw11 = w11 (B-11) 

From (28) of Chapter II of this dissertation, 

-1 
A =F-GR GIP 

0 (B-12) 

so that 

• (B-13) 

Thus, the Jordan canonical form J\ is similar to A and, i£ A is stable, 
0 0 

contains only eigenvalues .with negative real parts. Consequently, the 

similarity transformation w11 must .also be nonsingular so that P
0 

exists. 



APPENDIX C 

RESPONSE ERROR LEARNING MODEL IDENTIFICATION TECHNIQUE 

The identification technique discussed in this Appendix is the 

multivariable response error learning model originally developed by 

Pazdera and Pottinger [21] as mcxlified by Spence [27], [28] to pro-

vide improved response characteristics. Since these references are 
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readily available, only a brief, but descriptive, derivation is included 

in this Appendix. 

The linear time-invariant system to be identified, given by (62), 

is of the form 

~(0) = Q ' (C-1) 

where A and B are the unknown constant matrices, ~ is the state vector 

of known dimension n, and !!_ is the control vector of known dimension m. 

The states of {C-1) are assumed to be accessible, i.e., directly measur­

able, and the system (C-1) is assumed to completely state controllable. 

Consider a learning model of the form 

• • • 
~ = (A + c A A] ~ + [B + CBB] !!. - D ~ x(O) = X -o (C-2) 

"' ,... Where A and B are the estimates for A and B, respectively, CA and CB 

are constant real symmetric non-negative matrices and ~ is the response 

error defined by 

• (C-3) 

Note that (C-2) reduces to (C-1) and the identification is complete when 

• 
A A 
A -= A , A -= [o] ' 

(C-4) 



and 

A 

B=-=B 
A 

, B c: [ o] 
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' (C-5) 

(C-6) 

The response error learning model identification technique is illus-

tra.ted by the block diagram of Figure C-1. 

The response error state equation can be obtained by differen­

tiating (C-3) and substituting (C-1) and (C-2). Performing these oper-

ations, one obtains 

• 
• A A 

~ = D ~ + [~A - CAA] 2£ + {AB - CBBJ :!:!. (C-7) 

where ~A am.6B are defined as 

(C-8) 

and 

A 

~ = B- B • (C-9) 

A A 

In order to determine how to adjust A and B in order to achieve 

the desired identification, consider the Liapunov function 

tAT -1 ) (AT -~) T 
2V = tr~AKA ~A + tr,K:e ~ + ~ ~ (C-10) 

where KA and ~ are constant real symmetric positive definite matrices. 

Differentiating, one obtains 

(C-11) 

Noting from the trace identity that 

(C-12) 
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r------
1 UNKNOWN SYSTEM 

----, 
I 

I 
I 

B 

'---

r--------
I LEARNING MODEL 

----, 

I A • ,------------1 A + C A~ 

A 

• X 
---~A A 

----... B + CBB 

e 
D 

L------------------~ 

Figure C-1 Response Error Learning Model Identification Technique 
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and substituting (C-7), (C-11) may be rewritten as 

• 
V = tr0i [~ ~T - K~J.A]) + tr~ [~ ):!T - ~li]) 

• (C-13) 

The first two terms of (C-13) can be eliminated by setting 
• 

(C-14) 

and 

(C-15) 

Substituting (C-14) and (C-15) into (C-13), one obtains 

• T T -1 T T -1 T ( ) 
V = ~ D ~ - ~ CAKA ~ ~ ~ - ~ CB~ ~ !! .!! C-16 

Note from (c-4), (C-5), and (C-6) that if (C-14) and (C-15) are 

used as parameter adjustment laws, then the identification is complete 

when 

and 

~A == [o] , 

~ ==[0] ' 

e == 0 - -

(C-17) 

(C-18) 

(C-19) 

Thus, from (C-10) one sees that V is positive except when the identi-

fication is complete. 

Consider now the case discussed by Pazdera. am Pottinger [ 21] in 

which CA = CB = [o]. For this case, V and~ are given by 

• T 
V == ~ D ~ (C-20) 
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and 

(C-21) 

• 
Thus, Vis negative definite in~ if D is a stable matrix, i.e., all af 

the eigenvalues of D have negative real parts. Therefore, assuming that 

D is stable, by the second method of Liapunov ~ asymptotically approaches 

zero, i.e., ~ __. Q as t -+oo. 

The fact that ,!. -+ Q does not guarantee the identification of 

either A or B since one sees from (C-21) that ~ = Q implies only that 

(C-22) 

Identification of A and B is guaranteed, however, if the elements of 

the vector [~T ~TJT are linearly independent over the required iden­

tification interval [ 0 1 tidJ since ~ = Q then implies that ~A e [ 0] 

and~ = [o]. The requirement for linear independence of the elements 

of [~T ~TJT is the usual condition for identifiability found in the 

literature. 

All of the above conditions remain true for the case considered by 

Spence [ 27 J, [ 28 J in which C A > 0 and/ or CB > 0. However, as seen from 

(C-16), the use of positive definite or even positive semi-definite 

matrices improves the asymptotic response of~· As seen from (C-7), the 

use of these matrices also alters the error response of the learning 

model leading to an improved response in the identification of A and B 

in many cases. 

Even though identification is guaranteed for the response error 
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learning model, the identification time is highly dependent on the 

settings of C A, CB, KA, and ~, the initial condition ~( 0), the 

frequency content and amplitudes of the control signal ~(t) as well 

as the values of A and B themselves. Furthermore, the identification 

time is not necessarily reduced when the adjustment law gains are 

increased, i.e., when the elements of the matrices KA and KB are in­

creased in magnitude. For any combination of ~(0) and ~(t), there is 

also a combination of CA' CB' KA' and ~ which yields the minimum 

identification time. However, at present there is no criterion for 

the selection of these matrices. 



APPENDIX D 

EQUATION ERROR LEARNING MODEL IDENTIFICATION TECHNIQUE 

The identification technique discussed in this Appendix is a new 

multivariable extension of the single input/output equation error 

learning model originally developed by Lion(l7]. Since the rationale 

behind the development of the multivariable learning model is very 

similar to that of the single input/output learning model, for Which 

the details are given in [17], only a brief, but descriptive deriva-

tion is included here. Unlike the work of Lion, however, the effect of 

non-zero initial conditions is included in this Appendix. 

The linear time-invariant system to be identified, given by (62), 

is of the form 

• 
x(O) = X 
- -o 

(D-1) 

where A and B are the unknown constant matrices, ~ is the state vector 

of known dimension n, and y_ is the control vector of known dimension m. 

The states of (D-1) are assumed to be accessible, i.e., directly measur­

able, a.nd the system (D-1) is assumed to completely state controllable. 

Note also that since A and B are constant matrices, term by term in-

tegration of (D-1) yields 

~(t) = A ~(t) + B ~(t) 

where 

t 

'i(t) -I ~(t) d;t + ~(0) 
0 

+ X • -o 

!(0) c: 0 

(D-2) 

(D-J) 



and 

t 

!!(t) - J ]!(t) dt + !!(o) 

0 

~(0) = 0 • 

Consider a learning model of the form of (D-2), i.e., 

g(t) D A ~(t) + B ~(t) + !o 
A A 

85 

(D-4) 

(D-5) 

where A and B are the estimates for A and B, respectively, and the 

equation error ~ is defined as 

• (D-6) 

Note that (D-5) reduces to (D-2) and the identification is complete 

when 
/' 

A= A (D-7) 

and 
A 

B=B (D-8) 

The equation error learning model identification technique is illus-

trated by the block diag:ra.m of Figure D-1. 

Substituting (D-5) into (D-6), the equation error becomes 

A - /' -e=x-Ax-Bu-x - - - - -o • (D-9) 

From (D-9) it is evident that the equation error learning model (D-5) 

is easily implemented and avoids the requirement that ~ be accessible, 

which would have arisen had a. learning model of the form analogous to 

(D-1) been utilized. 

Substituting (D-2) into (D-9), the equation error becomes 

(D-10) 
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Figure D-1 Equation Error Learning Model Identification Technique 
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where the parameter misalignment ma. trices ~A and ~B are defined as 

(D-11) 

and 

(D-12) 

In o:rder to determine how to adjust A arrl B in order to achieve 

the desired identification, consider the Liapunov function 

(D-1)) 

where KA and ~ are constant real symmetric positive definite matrices. 

Note that V is positive unless the identification is complete, in which 

case V = o. Differentiating (D-lJ) one obtains 

• • 

V = - tr(L\!K~1A) - tr~KiJ.B) (D-14) 

Consider now parameter adjustment laws of the same form as those 

used in the response error learning model identification technique 

(Appendix C), i.e., 

(D-15) 

and 

A -T 
B = ~.!!!. (D-16) 

Substituting {D-15) and (D-16) into (D-14), one obtains 

• T -T {1\T -T) 
V a: - tr{6A.!! .!. ) - tr,_!! !! t (D-17) 
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or, using the trace identity 

. . (D-18) 

Substituting (D-10) into (D-18) yields 

T 
V • - ~ ~ (D-19) 

Thus V is negative unless !. = _2, in which case V = o. Therefore, from 

the definition of the Liapunov function given by (D-lJ), one sees that 

the net misalignment between the system and learning model parameters 

must be decreasing whenever ~ ~ Q. 

From (D-10) it is evident that !. • Q implies only that 

(D-20) 

and it is possible for ~ to be a null vector without the par.ameter mis-

alignments being zero. However, if the elements of the vector 

[~T ~TJT are linearly independent over the required identification 

interval [o,tid], then~= o implies that.6A = [o] and.6B = [o] am, 

conversely, .6A 1 [o] and/or.6B ;: [o] implies that !. 1 o. Therefore, 

since the Liapunov function is positive definite in the misalignments 

.6A and .6B and its derivative is negative definite in ~' then .6 A arxib.B 

must asymptotically approach a nul:J..i.e., .6A ~ [o] and.b.B ~ [o] as t-+ oo, 

if the elements of [~T ~TJT are linearly independent. 

As ha.s been shown previously, the linear independence of the ele­

ments of the vector [~T ~TJT is the sufficient ~ondition for identi­

fiability when using either the parameter estimation equation given by 
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(65) or the response error learning model identification technique dis-

cussed in Appendix C. It may be possible to prove that the linear in­

dependence of the elements of [~T ~TJT implies the linear independence 

of the elements of [~T ~TJT and is, therefore, also a sufficient con­

dition for identification for the equation error learning model tech-

nique. However, as no proof is currently available, the above state-

ment is at present only a hypothesis. 

Lion [17] has shown for the single input/output equation error 

that the state variable filters need not be integrators. This is also 

true for the multi variable learning model described herein, but the 

complexity of the learning model is, of course, increased. 

Consider, for example, multiplication of the LaPlace transform 

of (D-1), given as 

s ~(s) = A ~(s) + B ~(s) + ~ ' 
(D-21) 

by the scalar function g(s), which yields 

g{s) s x(s) = g{s) A ~(s) + g(s) B ~(s) + g(s) ~ • (D-22) 

It is evident that (D-22) may also be written as 

s ~(s) • A x(s) + B ~(s) + g(s) ~ (D-2)) 

where 

~(s) = g(s) ~(s) (D-24) 

and 

u(s) = g(s) u(s) - - (D-25) 

The inverse La.Place transform of (D-23) yields 

• 
~(t) • A x(t) + B y(t) + g{t) !o (D-26) 
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where 

(D-27) 
and 

(D-28) 

The learning model equivalent to (D-5) may now be written as 

~(t) =A x(t) + B ~(t) + g(t) ~o (D-29) 

where A and B are the estimates for A and B, respectively, and the 

equation error equivalent to (D-6) is defined as 

• 
- A 

~=~-~ (D-30) 

~ A 

The proof that A ~ A and B -+ B as t _. oo is identical to that given 

previously. 

It has been shown that if the filtering of each element of both 

~ and ~ is identical and the initial condition term in the model (D-29) 

reflects the impulse response of the filter, then a. state variable 

filter other than an integrator may be used. 

Even though identification is guaranteed for the equation error 

learning model, the identification time is highly dependent on the 

settings of KA and ~' the initial condition ~(o), the frequency con­

tent and amplitudes of the control signal ~(t) as well as the values of 

A and B themselves. Furthe~ore, the identification time is not 

necessarily reduced when the adjustment law gains are increased, i.e., 

when the elements of the matrices KA and ~ are increased in magnitude. 

For any combination a£ e(O) and ,!!(t), there is also a combination o:f 



KA and ~ which yields the minimum identification time. At present, 

however, no criterion for the selection of these matrices can be 

given. 
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APPENDIX E 

GENERALIZED EQUATION ERROR LEARNING MODEL IDENTIFICATION TECHNIQUE 

The equation error learning model identification technique discussed 

in Appendix D can be further generalized by defining additional equation 

error vectors. The parameter adjustment laws then become functions of 

these additional equation error vectors. The net result is a reduction 

in the identification time. A brief derivation of the generalized equa-

tion error learning model is included in this Appendix. This derivation 

follows closely that of the Appendix D. 

The linear time-invariant system to be identified is of the form 

x=Ax+Bu - - - x(O) = X 
- -o (E-1) 

where A and B are the unknown constant matrices, _! is the state vector 

af known dimension n, and !! is the control vector of known dimension m. 

The states of (E-1) are assumed to be accessible and the system is 

assumed to be completely state controllable. 

Since A and B are constant matrices, one can write after i term by 

term integrations of (E-1) 

~ =A ~i + B ~i + (t
1

-
1
/(i-l)!) .!a (E-2) 

where 

~=_[!.Jot x(t) (dt)
1 

' 
(E-3) 

J:!.fot u(t) (dt)
1 -u -= =i • (E-4) 

and ~j(O) m Q and uj(O) • 0 , j -= 1, 2, •••• i • 
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Consider k learning models of the form 

(E-5) 

and define the i'th equation error as 

• 
- A 

~i = ~i - ~i (E-6) 

Notice that (E-5) reduces to (E-2) when 
A 

A= A (E-7) 

and 
A 

B=B (E-8) 

and that the above model reduces to that given in Appendix D when i c::: 1 • 

Substituting (E-2) into (E-5), the i'th equation error becomes 

..: /"- A- il 
~i = ~i -A ~i - B ~i - (t- /(1-1):) ~ (E-9) 

The generalized equation error learning model identification technique 

based on (E-9) is illustrated in the block diagram of Figure E-1 for 

k = 2. 

Substituting (E-2) into (E-9) the i'th equation error becomes 

(E-10) 

where ~A and ~B are defined as 

(E-ll) 

and 

(E-12) 

A A 

In order to determine how to adjust A and B in order to achieve the 
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desired identification, consider the Liapunov function 

(E-13) 

Where KA and ~ are constant real symmetric positive definite matrices. 

Note that V is positive unless the identification is complete, in which 

case V = 0. Differentiating (E-13) one obtains 

• • 
• I AT -J!') (A T -~) 
V == - tr~AKA A - tr,~ l3 (E-14) 

Assume now that parameter adjustment laws of the form 

(E-15) 

and 

(E-16) 

are utilized where the Ki matrices are real symmetric positive definite. 

Substituting (E-15) and (E-16) into (E-14), one obtains 

ar, using the trace identity, 

• k T 
V c - E ~iKi[L\_~i +~~i] 

i=1 

Substituting (E-10) into (E-18) yields 

• 
v = -

(E-17) 

(E-18) 

(E-19) 



or 

• T 1. 

[

K 

V=-!!_ 0' (E-20) 

where the generalized equation error ~ is defined as 

• (E-21) 

Thus V is negative unless ~ = Q, in which case V = o. Therefore, :from 

the definition of the Liapunov function given by (E-13), one sees that 

the net misalignment between the system and learning model parameters 

must be decreasing whenever ~ f Q. 

From (E-10) it is evident that ~ = Q implies only that 

(E-22) 

fori= 1, ••• , k and it is therefore possible for~ to be a null vector 

without the parameter misalignments being zero. However, 1£ for any 

[ -T -TJT value of i the elements of the vector ~ ~i are linearly independent 

over the identification interval [o,tid], then~= Q implies that 

~A = [ 0] and~ s [ 0] and, conversely, ~A , [ 0] and/ or ~B ,. [ 0] implies 

that ~ , o. Therefore, since the Liapunov function is positive definite 

in the parameter misalignments ~A and ~ and its deri va. ti ve is negative 

definite in .!!.t ~A and~B must asymptotically approach zero, i.e., 

[ [ J [-T -TJT L\-+- 0 J and ~-+- 0 as t -. oo if the elements o£ .!.i_ !!.:t are linearly 



97 

independent for some value of 1. 

The advantage of the generalized equation error learning model 

discussed herein as compared to the leaming model discussed in Appendix 

D can be seen by examining the effect that the use of k learning models 

has on the Liapunov function and its derivative. As seen from (E-13), 

the Liapunov function is not affected by the number of learning models 

being utilized. However, recalling tha. t the generalized model reduces 

to that of Appendix D for the case of k = 1, one sees from (E-19) that 

the use of k > 1 learning models makes the Liapunov function derivative 

more negative, which should increase the rate of convergence of the 

parameter misalignments since the Liapunov function itself has not been 

altered. 

Of course, the increase in complexity of the learning model is not 

worthwhile unless each additional error vector is distinct, i•e., it 

does not contain either the same elements or scalar multiples of the 

same elements as any of the other error vectors. This is true since if 

each additional error vector is not distinct, then the effect is the 

same as could be obtained by a simple change to the parameter adjust­

ment law gains. From (E-10) one sees that whether or not the k error 

vectors are distinct is directly dependent upon the characteristics of 

the filtered vectors, i.e., ~ and !!,i as given by (E-3) and (E-4). This 

is, of course, the reason that a different state variable filter is 

defined for each value of i. 

Lion [17] has shown for the single input/output identification 

problem that if there are p parameters to be identified, then the iden­

tification time must decrease as the adjustment law gains are increased 



if P equation errors are used. Lion [17] :further states that :for this 

to be true, the input signal must also have a given :frequency content, 

namely, the number of frequencies must be greater than or equal to p/2 

ar the input signal must be noisy. 

For the state space representation given by (E-1), there are 

n(n+m) unknown parameters to be identi:fied. If the results obtained by 

Lion [17] for the single input/output system also held for the multi­

variable input/output system discussed herein, then (n+m) learning 

models of the form (E-5) would be required to make the identification 

time decrease as the adjustment law gains are increased. As can be seen 

from Figure E-1, this expansion vastly complicates mechanization of the 

learning model identification technique. The Lion requirement on input 

signal frequency content appears to be equivalent to the condition that 

the elements of [xT ~TJT be linearly independent over the identification 

time interval. 
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APPENDIX F 

COMBINED ERROR LEARNING MODEL IDENTIFICATION T~HNIQUE 

The response error learning model identification technique dis­

cussed in Appendix C and the equation error learning model identification 

technique discussed in Appendix D can be combined into a single identi-

fication technique. The net result is a reduction in the identifica-

tion time. A brief derivation of the combined error learning model is 

given in this Appendix. This derivation follows closely that of Appen-

dices C and D. 

The linear time-invariant system to be identified, given by (62), 

is of the form 

I x(O) == X - -o 
(F-1) 

where A and B are the unknown constant matrices, ~ is the state vector 

of known dimensinn n, and ~ is the control vector of known dimension m. 

The states of {F-1) are assumed to be accessible and the system is 

assumed to be completely state controllable. Notice also that since A 

and B are constant matrices, term by term integration of (F-1) yields 

~(t) =A ~(t) + B ~(t) + ~ (F-2) 

where 

~(t) - J~(t) dt + ~(0) ~(o) = o (F-3) 

and 

:i!(t) == J~(t) dt + ~(0) u(o) == o - - (F-4) 

Consider now learning models of the form 

. "' "' 
~= A .!. + B ~ - D ~l (F-5) 
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and 

(F-6) 

where the response error is defined by 

(F-7) 

and the equation error is defined by 

(F-8) 

Note that (F-5) reduces to (F-1) and (F-6) reduces to (F-2) and the 

identification is complete when 

"' Ac:A 
' (F-9) 

"' B- B 
' (F-10) 

and 

!!1 = Q • (F-11) 

The combined error learning model technique is illustrated in 

Figure F-1. It is evident that both the response error learning model 

identification technique and the equation error learning model identi-
• 

fication technique avoid the requirement that ~ be accessible. 

The response error state equation is obtained by differentiating 

(F-7) and substituting (F-1) and (F-5). The equation error is obtained 

by substituting (F-2) and (F-6) into (F-8). Performing these operations, 

one obtains 

• 
!.1 a: D !.1 + ,6A~ + ~:s.!! (F-12) 

and 

• (F-lJ) 
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where L\ and~ are defined as 

A 

~A·A-A (F-14) 

and 

(F-15) 

A A 
In ol'.."der to determine how to adjust A and B in order to achieve the 

desired identification, consider the Liapunov function 

I AT -1 ) {AT -1 ) T 
·2V -= tr¥-lAKA ~A + tr~~; + !.1!.1 (F-16) 

where KA and ~ are constant real symmetric positive definite matrices. 

Note that V is positive unless the identification is complete, in which 

case V a: o. Differentiating (F-16) one obtains 

• (F-17) 

Noting that 

T• T T T 
.!1~1 - !.1n .!!.1 + .!!.~~ + !.A!! (F-18) 

and using the trace identity, (F-17) may be rewritten as 

(F-19) 

Assume now that parameter adjustment laws of the form 

• 
A [ T -TJ A = K A !.12£ + K !.~ (F-20) 

and 
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(F-21) 

are utilized, where K is a constant real symmetric positive definite 

matrix. Substituting (F-20) and (F-21) into {F-19), one obtains 

V TD Tvr - ~~ 
= el ~1 - ~2'~~~A~ + ~BJ!J 

• 
(F-22) 

Substituting (F-13), one gets 

(F-23) 

or 

. ID 
v = !!.T Lo (F-24) 

where the combined error vector ~ is defined as 

• (F-25) 

• 
Thus, V is negative definite in ~ if D is a negative definite matrix. 

Therefore, from the definition of the Liapunov function given by (F-16) 

one sees that the net parameter misalignment, as well as the error ~. 

must be decreasing whenever ~ ~ Q • 

From {F-12) and (F-13) it is evident that ~ = Q implies only that 

X 

~ 0 ~B 0 -X 

ICI 0 (F-26) 
~ 

0 L:lA 0 ~ -.!! 
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and it is possible for ~ to be a null vector without the parameter 

misalignments being zero. However, if the elements of either [~T ~TJT 

or [&T ~TJT are linearly independent over the identification interval 

[o,tid], then.! a Q implies that ~A = [o] and~ = [o] and, conversely, 

~ ;f [o] and/or~ -, [o] implies that~~ Q. Therefore, since theLia­

punov function is positive definite in the parameter misalignments~ 

and~B and the response error ~l and the Liapunov derivative is negative 

definite in~' L\_ and~B must asymptotically approach zero, i.e., 

"\-+ [ 0] and ~B ~ [ 0] as t -. oo, if either of the vectors [ xT .!!. TJT or 

[ -T -TJT ~ .!!. has linearly independent elements. 

The advantage of the combined error learning model discussed herein 

as compared to the response error learning model discussed in Apperdix 

C can be seen by examining the effect that the addition of the equation 

error learning model has on the Liapunov function ard its derivative. 

As seen from (F-16), the Liapunov function is not affected by the 

addition of the equation error learning model. The derivative a£ the 

Liapunov function has, however, been made more negative by the addition 

of the equation error learning model, which should increase the rate of 

convergence of the parameter misalignments since the Liapunov function 

itself has not been altered. 

The increase in learning model complexi ty due to the addition of 

the equation error learning model is not worthwhile unless the two error 

vectors are distinct, i.e., they do not contain either the same elements 

or scalar multiples of the same elements. This is true since if the 

equation error is not distinct from the response error, then the effect 



is the same as could be obtained by a simple change to the negative 

definite mtrix D. Since the response error is governed by (F-12), 
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while the equation error (F-13) is directly dependent upon the character­

istics of ~and !!, the choice af integrators for the state variable 

filters should allow the two error vectors to be distinct. 



APPENDIX G 

DISCRETE TIME PARAMETER IDENTIFICATION 

0..1.. Single Point Es tima. ti on 

The discrete time-invariant system whose parameters are to be 

identified, as given by (86), is 
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x (m+l) = ~0 x (m) + <P.0 x (m) -p ppo-p peo-e (G-1) 

where x and x are the n dimensional state vectors of the Pursuer -p -e 

and the Evader, respectively, and the m'th sample occurs at t = meT. 

Defining x and lf-.0 as - '*'po 

and 

T T 
X = [x X ] 
- -p -e 

~0 1 
peo-J 

the system equation may be written in more convenient form as 

x (m+l) = qf x(m) -p po- • 

The parameter identification equation for <P.0 is derived in po 

(G-2) 

(G-J) 

(G-4) 

Chapter IV based on the initial condition plus 2n additional equally 

spaced samples. However, any 2n+l successive equally spaced samples 

are sufficient. Therefore, the minimum mean square error es tima. te for 

<P.0 at sample time mAT, based on the last 2n+l samples, may be written po 

from (98) and (99) as 

~0 (m) =[X (m) XT(m-1)] M(m-1) 
po P 

(G-5) 
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where 

M(m-1) - [X(m-1) XT(m-1)]-l (G-6) 

and Xp(m) and X(m-1) are defined as 

Xp(m) = [x (m) ••• x (m-2n+2) x (m-2n+l)] --p --p l? (G-7) 

and 

X(m-1) = [~(m-1) ••• ~(m-2n+l) ~(m-2n)] • (G-8) 

Although X(m-1) as defined by (G-8) is a square matrix since it 

includes 2n successive samples of ~' this restriction is not inherent 

in the identification equations given by (G-5) and (G-6). Thus, more 

than 2n samples of 2£_p and ~ could be included in Xp and X, respectively. 

If the measurements of x and x are perfect, then inclusion of -p -e 

additional samples in the identification equations is superfluous. 

However, depending on the magnitude of the states of x and x as well 
-p -e 

as the sampling interval, even small measurement errors can cause 

significant errors in the estimate for~0 when based on only 2n+l 

samples. Obviously, the minimum mean square error estimate can be 

improved through the use of addi tiona.l samples. Since measurement 

error is inherent in any practical system, the estimate should always 

include as many samples as practical. 

Consider the addition of one additional sample at time (m+l) AT. 

The discrete time estimate may now be written as 

(G-9) 

where 
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M(m) m [ [~(m) X(m-1)] [~(m) X(m-l)]TJ-l • (G-10) 

G~2. Recursive Estimation 

One usually desires to make a new estimate of~0 for each new po 

set of samples. However, if equations of the form of (G-9) and (G-10) 

are employed, then in order to make successive estimates& (1) all 

samples must be saved, (2) matrix multiplication must be performed for 

each sample using matrices of ever expanding dimension, and (3) matrix 

inversion must be performed for each sample. Luckily, a multivariable 

recursive estimation equation, which eliminates all of the above re-

quirements, can be derived in a manner similar to tha. t utilized by 

Lee [16j for single input/output systems identification problem. 

By performing the indicated operations, equations (G-9) and (G-10) 

may be rewritten as 

(G-11) 

ani 

• (G-12) 

Using (G-6) in (G-12), M(m) may be rewritten in terms of M(m-1) as 

(G-13) 

or, applying the rna trix inversion lemma, 

M(m) c M(m-1) (G-14) 

- M(m-1) ~(m) [1 + ~T(m) M(m-1) ~(m)]-l~T(m) M(m-1) • 

Substituting M(m) into (G-11) one gets 
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A 

<f>;
0 

(m+1) = ~ (m+1)~T (m)M(m-1) (G-15) 

- ~(m+1)~T(m)M(m-1)~(m) [1 + ~T(m)M(m-1)~(m)]-1~T(m)M(m-1) 

+X (m)XT(m-1)M(m-1) p 

- Xp(m)XT(m-1)M(m-1)~(m) [1 + ~T(m)M(m-l)~(m)]-1~T(m)M(m-1) 

+ ~(m+1) [1 + ~T(m)M(m-1)~(m)]-1~T(m)M(m-1) 

- !p(m+l) [1 + ~T(m)M(m-1)~(m)]-1~T(m)M(m-1) • 

Rearranging terms and using (G-5), equation (G-14) becomes 

Ao "'o 
~ (m+1) = ~ (m) po po 

+ !p(m+1) [1 + ~T(m)M(m-1)~(m)]-1~T(m)M(m-1) 

-~~0(m)~(m) [1 + ~T(m)M(m-1)~(m)]-1~T(m)M(m-1) 

+ x (m+1)xT(m)M(m-1) 
-p -

(G-16) 

- !p(m+1)~T(m)M(m-1)~(m) [1 + ~T(m)M(m-1)~(m)]-1~T(m)M(m-1) 

- !p(m+1) [1 + ~T(m)M(m-1)~(m)]-1xT(m)M(m-1) 

or, gathering terms, 

A A 

¢~0 (m+1) = <;P;
0 

(m) (G-17) 

+ [!p(m+1) -~;0(m)~(m)] [1 + ~T(m)M(m-1)~(m)]-1~T(m)M(m-1) 

+ x (m+1)xT(m)M(m-1) 
-p -

- ~(m+1) [~T(m)M(m-1)~(m) + 1] [1 + ~T(m)M(m-1)~(m)J-~1m)M(m~ 
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or, finally, 

"' "' ~o (m+l) = ~o (m) po po (G-18) 

+ [~(m+1) -~;0(m)~(m)] [1 + ~T(m)M(m-1)~(m)]-l~T(m)M(m-1) 

+ x (m+l)xT(m)M(m-1) - x (m+l)xT(m)M(m-1) --p - --p -

Therefore, the recursive discrete time minimum mean square error 

identification equation is 

A I' 

~o (m+l) = c:no (m) po -rpo (G-19) 

Ao T 1 T 
+ [!p(m+l) - ~p0(m)~(m)] [1 + ~ (m)M(m-l)~(m)]- ~ (m)M(m-1) 

where the recursive equation for M(m-1) is given by (G-14). The in-

dicated matrix inversion is actually just division by a scalar so that 

the original matrix inversion has been avoided. 

G-3. Initialization of the Recursive Estimation Process 

In order to utilize the previously derived recursive identification 
"'o equation (G-19) and its recursive coefficient equation (G-14), ~ and po 

M must be initialized. This initialization can be accomplished using 

the following techniques. 

The first and most obvious initialization technique utilizes (G-6) 

at time (2n-l).6T to compute M(2n-l) and (G-5) at time 2nAT to compute 
A 

As shown by example later, the estimateqp~0(2n) computed 

from (G-5) can be very much in error if the initial measurements are 

noisy. However, no a priori information is required or utilized in 

this technique. 



The second initialization technique also utilizes (G-6) to 

compute M(2n-l). However, for the incomplete information differen-

tial game, there is sufficient a priori information available from 

the limiting estimates of the opponent's system parameters to allow 

"'o c omputa. ti on of an initial value of ~· at t = 0. Therefore, this po 

initial estimate can be used as the estimate at t = 2n.AT. As shown 

by example later, this initialization results in slower parameter 

identification, but the estimates are also much less sensitive to 

measurement noise. 

111 

The third initialization technique, which avoids the matrix in­

version required by (G-6), is discussed by Lee [16] for the single 

input/output system identification problem. As applied to the multi-

variable system identification problem being considered herein, this 

technique consists of setting 

M(-1) = a I (G-20) 

where a~ oo, in order to initialize (G-14) am using the a priori value 

"' of ~0 (0) to initialize (G-19). The result, as shown by example later, 
po 

"'o 
is an asymptotically convergent solution fDr M andq?po which begins 

with the first ra. ther than the ( 2n+ 1) sample. 

A fourth initialization technique exists for the incomplete in-

formation differential game since an initial estimate for 

* 
<Pepo 

* q>eeo 

(G-21) 

can be made at time t -= o. This a priori information can be used to 
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initialize the recursive coefficient equation (G-14) by computing 

(G-22) 

where 

A 1 
x(-1) = [ c;P- ~(o) ••• (G-23) 

"' 
The initial value of ~0 ( 0) is again utilized in order to initialize po 

(G-19). Consequently, estimation of ~0 again starts with the first po 

sample. However, as shown by (G-22), one matrix inversion is still 

required. 

G-4. Simulation 

Digital simulation was used to examine the response characteristics 

of the recursive discrete time identification technique when applied to 

the continuous linear time-invariant system given by 

X -5/2 2/3 X X (0) 0 -p -p -p 
:c: = (G-24) 

• 
X -1/2 -1/2 X X (0) 10 
-e -e -e 

A fourth order Runge-Kutta integration routine with a fixed 0.001 

sec om step size was used in order to maintain accuracy. Note that 

(G-24) closely approximates the early stages of the example incomplete 

information game, discussed in Chapter III, in which the Evader is the 

ignorant player. 

The recursive identification technique was simulated for the case 

of both perfect am noisy measurements using the four initialization 



"'o techniques previously discussed. The initial values of ~ ( 0) and 
ppo 

llJ 

Ao 
<I>peo (0) were calculated using (82) and (8.3) of' Chapter IV, where :the 

a priori limiting estimates for A 0 and A 0 are given as ppo peo 

(G-25) 

and 

A0 = 1/2 peo (G-26) 

The simulation results using the four initialization techniques 

are shown in Figures G-1, G-2, G-J, and G-4, respectively. As shown, 

the first initialization technique yields the fastest identification, 

but the estimates are very sensitive at the start to even minor measure-

ment errors. The third initialization technique results in a slightly 

slower parameter identification, but is relatively insensitive to 

measurement noise. The second and fourth initialization techniques are 

quite similar in that they both result in a large initial transient and 

the identification is much slower than for either the first or third 

technique. From these simulation results, the third initialization 

technique, which avoids the requirement for matrix inversion, is the 

best overall choice, at least for systems and initial conditions similar 

to those of the simulation example. 
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Figure G-1. Discrete Time Parameter Identification - First 
Initialization Technique 
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Figure G-2. Discrete Time Pa:r:ameter Identification - Second 
Initialization Technique 
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Figure G-J. Discrete Time Pa1'8Jileter Identification - Thi:rd 
Initialization Technique 
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Figure G-4. Discrete Time Pa:rameter Identification - Fourth 
Initialization Technique 
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