

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 213

Determining Characteristics of the Software

Components Reusability for Component Based

Software Development

Suryani Ismail1, Wan M. N. Wan Kadir2, Noor Maizura Mohamad Noor1 and Fatihah Mohd1
1School of Informatics & Applied Mathematics,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
2Software Engineering Department, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 Johor Baharu, Malaysia.

sue@umt.edu.my

Abstract—Nowadays, due to the availability of many

alternatives of common-off-the-shelf software components,

Component-based Software Development (CBSD) is becoming a

popular approach to software development. CBSD is the

software development with the assembly of existing software

components. There are many characteristics and sub

characteristics for software component reusability available

today. The challenge is how to determine the suitable

characteristics and sub characteristics reusable component for

CBSD. The aim of this study is to determine the suitability of

characteristics and sub characteristics for software component

reusability for CBSD. The survey is conducted among of

software reuse practitioners at Universiti Malaysia Terengganu.

The finding from the empirical study conducted that involves

software developers and practitioners as the respondents will be

used in development of metrics for reusable component. This

metrics can be used to measure the reusable component for

CBSD.

Index Terms—Component Based Software Development;

Empirical Study; Reusable Component; Software Component.

I. INTRODUCTION

Currently, component based software development (CBSD)

is becoming a popular approach to the development of

software. It is the new approach of software development,

utilizing the assembly of existing software components.

CBSD aims to make the most reuse of present software

artifacts. Although there has been a significant interest in

component reuse since the early 1980s, it was only grown into

a recognized practical in past few years and economical

technique to software development [1]. Many organizations

implementing CBSD as their software development model in

order to decrease cost of development, reduce market time

and improved the quality of the software reuse [2].

CBSD is a procedure that highlights the design and

building systems using design of reusable software

components [3]. In the process of software development,

developers may use an existing software components with a

small or without any modification so that the development

times are reduced. Figure 1 shows Lego as an example of a

component based approach. It provides a set of building

blocks in a variety of shapes and colors. Lego is peddled in

boxes that have a number of blocks that can be composed to

create up toys such as trains, cars, and airplanes [4]. System

development with components mostly focuses on objects that

can be simply reusable and relationships among the objects;

beginning from the requirements of system and from the ease

of access of existing components [5].

Figure 1: Concept of Component-based software engineering [4]

Software development can be categorized based on their

use in the CBSD process; i) adapted components, ii)

assembled components, iii) update components [3]. These

components have been reused in the software development

based on their types of need for CBSD processes.

Currently, there are numerous types of research in CBSD

which can be group into seven (7) categories; component

modeling and specification, retrieval techniques and

specification matching, generative approach to component

development, adaptation techniques, coordination and

composition languages, verification, testing and certification

and configuration management. In CBSD, new software

developments always employ software reuse concepts in

general and software component reuse in specific.

Shambhu and Mishra [6] stated that software component

reuse helps reducing production cost and time in a new

software development. CBSD is a techniques used by

researchers and practitioners to improve the quality of

software systems with lower cost and shorter time to market,

where it uses existing reusable components instead of writing

from scratch [5]. There are many characteristics of

component reusability such as portability,

adaptability/legibility, understandability and confidence that

provided significant support for facilitating component for

reuse in CBSD.

The aim of this study is to determine the suitability

characteristics and sub characteristics for software

component reusability for CBSD that exist from three

models; Reboot model [7], Cardino model [8] and Washizaki

model [9]. The quantitative approach was used for this

research via a survey. The survey is conducted at Information

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229269107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

214 e-ISSN: 2289-8131 Vol. 9 No. 3-5

Technology Management Center, University Malaysia

Terengganu (UMT). The results of the survey indicated that

the characteristics are appropriated to be used for measure

reusable components in CBSC were; i) portability, ii)

adaptability (flexibility), and iii) understandability.

This paper is organized into four sections. In Section II, the

related works of study is presented. The component

evaluation characteristics are elaborated in Section III. The

finding and discussion are presented in Section IV. Lastly, the

conclusion and the future study subjects are drawn in Section

V.

II. RELATED WORKS

The reuse of components in many systems is one of the core

contributions of CBSD. The idea of componentizing software

had been suggested as a way of tackling the software crisis

since 1969 [10]. In this way, a component is developed only

once, and could be used in other application which can reduce

development effort and indirectly increase the cost-saving for

software development process [5].

Biggerstaff and Freeman [11,12] defined software

component as a direct reuse of the software. Jacobson [13],

proposed that a component is an implementation abstraction,

where it is developed and packaged based on the aim of reuse

that it differs from code fragments, modules and programs. In

practice, Heinman and Council [14] defined a software

component as an existing piece of software written with reuse

that can be deployed with little or no modification. In general,

components include interface, computational, memory,

manager, and controller. Components also can be distributed

in the form of an object codes and reused in another

environment by downloading it online.

One of the popular basic concepts of component based

software development is reusability and how often a

component is used in new software development [15].

Software reusability is defined as the use of existing software

artifacts to build a new software [16]. Quality, productivity

and maintainability of new software can be improved using

the concepts of component reuse. A reusable component are

defined in three categories namely, black box reuse, glass box

reuse and white box reuse. In order to recognize the

components reusability according to their quality, original,

and reusability, the component evaluation approaches are

essential to evaluate the components with reuse or

development for reuse.

From the review of literature related to component

evaluation, common approaches used in component

evaluation are product line component (PLC) approach [17],

original component (OC) approach [18] quality component

(QC) approach [19] and reusable component (RC) approach

[20]. It was found that the evaluation of components

primarily focuses on their characteristics, sub characteristics,

and metrics to support software component evaluation.

The techniques to define the metrics in reusable component

are semi-formal technique [9] and informal technique [21].

Compared to OC and QC approach that used one level of

validation, RC used two level of validation to validate the

metrics which is anecdotal [21] and industrial experiment.

Based on Reuse Based Object Oriented Technology

(REBOOT) model [7], the RC approach has been proposed

for evaluating reusable components. This approach includes

four components: understanding, adaptability (flexibility),

portability, and confidence (probability). Every characteristic

has sub characteristics. The purpose of the RC is to measure

the reusability of components in order to realize the reuse of

component effectively and to identify the best components in

terms of their reusability. Table 1 shows the characteristics

for component evaluation approaches described in this

section.

Table 1
The Characteristics of Component Evaluation Approaches

Evaluation Approaches Characteristics

Product line components
(PLC)

i) Understandability
ii) Component replaceability

iii) Functional commonality

iv) Applicability
v) Nonfunctional commonability

vi) Variability richness

vii) Tailorability

Original components (OC)

i) Functionality

ii) Reliability

iii) Usability
iv) Efficiency

v) Maintainability

Quality components (QC) i) Functionality
ii) Reliability

iii) Usability
iv) Efficiency

v) Maintainability

vi) Portability
Reusable components (RC)

i) Portability

ii) Adaptability (flexibility)

iii) Understandability
iv) Confidence/ probability

III. COMPONENT EVALUATION CHARACTERISTICS

Based on previous studies that are simplified in Table 1,

common approaches used in component evaluation are PLC

OC, QC, and RC approach. From these approaches, there are

fifteen (15) characteristics for component evaluation are

noted, namely understandability, component replaceability,

functional commonality, applicability, nonfunctional

commonability, variability richness, tailorability,

functionality, reliability, usability, efficiency,

maintainability, portability, adaptability (flexibility),

understandability and confidence/ probability [8-10, 22-24].

In this study, RC approaches with four (4) characteristics

namely portability, adaptability (flexibility),

understandability and confidence/ probability are chosen for

component evaluation. The evaluation is done by applying

experimentation which is a classical scientific technique that

can be used to evaluate empirical study [25,26].

Controlled experimentation is defined as: “A replicated

experiment is conducted in a smaller artificial environment,

but in realistic situations compared to the real projects” [27].

The goal of the controlled experimentation is to evaluate the

component reusability evaluation approach in an academic

setting. Participants with software engineering background

were selected as experimental respondents. Respondents

were guided to complete the required experimental tasks. In

specific, the experiment results were obtained by highlighting

the experimentation context and design procedures,

quantitative analysis results.

Therefore a survey to determine the characteristics and sub

characteristics was done among of software reuse

practitioners. A set of questionnaire has been designed based

on Linkert scale parameters [28]. The set of questionnaires

was distributed among eighteen (18) respondents who are

considered to be the expert software component users. The

Determining Characteristics of the Software Components Reusability for Component Based Software Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 215

respondents consists of eight (8) officers from the

Application Development Sections from Information

Technology Management Center, University Malaysia

Terengganu (UMT) and ten (10) computer science lecturers

at the School of Informatics and Applied Mathematics, UMT.

From the survey, the results for suitable characteristics and

sub characteristics for RC were determined. The following

section elaborated the findings of the survey.

IV. RESULT AND DISCUSSION

Table 2 and Figure 2 show the results of a survey of four

main characteristics of RC; i) portability, ii) adaptability

(flexibility), iii) understandability and iv) confidence/

probability. The results indicate that the highest mean value

for understandability is 3.11 followed by portability,

adaptability and confidence; with the corresponding values of

2.94, 2.91 and 2.85 respectively. Since confidence has the

lowest results based on the survey, it can be concluded that

the appropriate characteristics that are going to be selected for

the study are understandability, adaptability and portability.

Table 2

Descriptive Statistics for Characteristics

Characteristics N Mean Std. Deviation

Understandability 18 3.11 0.29
Adaptability 18 2.91 0.49

Portability 18 2.94 0.35

Confidence 18 2.85 0.54
Valid N (list wise) 18

Figure 2: Mean for Each Characteristics

Table 3 shows the results of the survey according to three

sub characteristics for understandability. The results show

that the highest mean value for the documentation level is

3.42 followed by observability with the mean of 3.22 and

complexity, with the value of 2.69. From the results, it can be

concluded that the appropriate sub characteristics to be

chosen for the study are documentation level and

observability.

Table 3

Descriptive Statistics Sub Characteristics for Understandability

Sub Characteristics N Mean Std. Deviation

Documentation level 18 3.42 0.49

Observability 18 3.22 0.35
Complexity 18 2.69 0.77

Table 4 shows the results of the survey on three sub

characteristics for adaptability. The results show that

customizability has the highest mean value of 3.50 followed

by modularity and generality with corresponding mean of

2.72 and 2.5 respectively. From the results it can be

concluded that the appropriate sub characteristics to be used

for the study is customizability.

Table 4

 Descriptive Statistics Sub Characteristics for Adaptability

Sub Characteristics N Mean Std. Deviation

Customizability 18 3.50 0.54

Modularity 18 2.72 0.75

Generality 18 2.50 0.79

Table 5 shows the results of four sub characteristics for

portability. Based on the table, compliance will be chosen as

the sub characteristic for adaptability since it has the highest

mean value of 3.17 followed by external dependencies with a

mean value of 3.06. The other two sub characteristics;

deployability and replaceability only scored mean values of

2.94 and 2.61 respectively. From the results it can be

concluded that the appropriate sub characteristics selected for

study is external dependency because based on previous

study it is common use for measure reusability.

Table 5

 Descriptive Statistics Sub Characteristics for Portability

Sub Characteristics N Mean Std. Deviation

External dependency 18 3.06 0.54

Compliance 18 3.17 0.38
Deployability 18 2.94 0.54

Replaceability 18 2.61 0.63

Table 6 shows the results of three sub characteristics for

confidence. Sub characteristic maturity has the highest mean

value of 3.11 followed by error tolerance with a mean value

of 2.69 and observed reliability of 2.75.

This study elaborates that mean value belong to confident

was not suitable to be selected for RC characteristic since it

showed the lowest value from the survey. Furthermore, the

previous study stated confidence is more suitable to be chosen

for the evaluation of the creation of new software reuse

framework [8].

Table 6

 Descriptive Statistics Sub Characteristics for Confidence

Sub Characteristics N Mean Std. Deviation

Maturity 18 3.11 0.58

Error tolerance 18 2.69 0.69

Observed reliability 18 2.75 0.65

From the analysis, three of four characteristics are selected,

such as understandability, adaptability, and portability that

have been employed in proposed model for RC (see Figure

3). In this proposed model there are two terms being

employed; i) the reusability characteristics, and ii) sub

characteristics that are organized in an evaluation of

component reusability level.

Journal of Telecommunication, Electronic and Computer Engineering

216 e-ISSN: 2289-8131 Vol. 9 No. 3-5

Figure 3: Proposed Model for RC

V. CONCLUSION

The survey indicates an existing evaluation [22,23] that

among four characteristics, only three are suitable to be used

as a measurement of RC components. These characteristics

are understandability, adaptability, and portability has been

employed in proposed component reusability evaluation

approach for CBSD. Confidence was not suitable to be

selected for RC characteristic since it showed the lowest

value from the survey and the previous study stated

confidence is more suitable to be chosen for the evaluation of

the creation of new software reuse framework.

In future, this proposed approach can be used to develop

metrics suite for measure the reusable components and level

of reusability for RC.

ACKNOWLEDGMENT

The authors would like to express their deepest gratitude to

Research Management Center (RMC), Universiti Teknologi

Malaysia (UTM), and Ministry of Higher Education Malaysia

(MOHE) for their financial support under Research

University Grant Scheme (Vot number

Q.J130000.2516.11H71).

REFERENCES

[1] I. Sommerville, Software Engineering. United States of America:

Addison Wesly, 2001.

[2] C. Szyperski, D. Gruntz, and S. Murer, Component Software Beyond

Object Oriented Programming. New York: Adision Wesley, 2002.
[3] R. S. Pressman, Software Engineering: A practitioner’s Approach.

New York: Mc Graw Hill International Edition, 2001.

[4] Basic Concepts of Component-based software. Available at
http://www.idt.mdh.se/kurser/cdt501/2008/lectures/book%20Basic%2

0Concepts%20of%20CBSE.pdf.

[5] A. I. Khan, Noor-ul-Qayyum, and U. A. Khan, “An improved model
for component based software development,” Scientific & Academic

Publishing, Software Engineering, vol. 2, pp. 138-146, 2012.

[6] K. J. Shambhu and R. K. Mishra, “Accessing software quality for
component-based software through trustworthiness and dependability

analysis,” Internal Journal of Development Research, vol. 5, no. 4, pp.

4259-4261, Apr. 2015.
[7] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting experiments

in software engineering,” in Guide to Advanced Empirical Software

Engineering, F. Shull, J. Singer, and D. I. K. Sjoberg, Eds. London:
Springer, 2008, pp. 201-228.

[8] G. Cardino, F. Baruchelli, and A. Valerio, “The evaluation of

framework reusability,” ACM SIGAPP Applied Computing Review -
Special Issue on Frameworks and Patterns in Software Reuse, vol. 5,

no. 2, pp. 21-27, 1997.

[9] H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A metrics suite for
measuring reusability of software components,” in Proc. Software

Metrics Symposium, 2003, pp. 211-223.

[10] M. McIlory, Mass Produced Software Components, in NATO
Conference Software Engineering. 1969, Petrocelli/Charter: New

York, 1969.

[11] T. Biggerstaff and C. Richter, “Reusability framework, assessment, and
directions,” IEEE Software, vol. 4, no. 2, pp. 41-49, 1989.

[12] P. Freeman, “Reusable software engineering: Concepts and research

directions,” in Proc. ITT Proceedings of the Workshop on Reusability

in Programming, 1983, pp. 137.

[13] I. Jacobson, Object-Oriented Software Engineering: A Use Case

Driven Approach. Redwood City CA, USA: Addison-Wesley. 2004.
[14] G. Kotonya, I. Sommerville, and S. Hall, “Towards a classification

model for component-based software engineering research,” in 2003

Proceedings 29th Euromicro Conference, 2003, pp. 43-52.
[15] K. Tyagi and A. Sharma, “Significant factors for reliability estimation

of component based software systems,” Journal of Software
Engineering and Applications, vol. 7, no. 11, pp. 934, 2014.

[16] B. Jalender, A. Govardhan and P. Premchand. “Designing code level

reusable software components,” Int. Journal of Software Engineering
& Applications, vol. 3, no. 1, pp. 219-229, 2012

[17] P. Clements, Software Product Lines. USA: Addison-Wesley, 2002.

[18] A. S. Andreou and M. Tziakouris, “A quality framework for developing
and evaluating original software components,” Information and

Software Technology Journal, vol. 49, no. 2, pp.122-141, 2006.

[19] M. Bertoa and A. Vallecillo. “Quality attributes for COTS

components,” in 6th International Workshop on Quantitative

Approaches in Object-Oriented Software Engineering

(QAOOSE'2002), 2002, pp. 128-144.
[20] H. Washizaki, H. Yamamoto, and Y. Fukazawa. “A metrics suite for

measuring reusability of software components,” in Proceedings of the

Ninth International Software Metrics Symposium (METRICS’03).
2003, pp. 211-223.

[21] R. Dumke and A. Schmietendorf, “Possibilities of the description and

evaluation of software components,” Metrics News, vol. 5, no. 1, pp.
13-26, 2000.

[22] M. Goulao and F. B. Abreu, “Towards a component quality model,” in

Proc. Work in Progress Session of the 28th IEEE Euromicro
Conference, 2002.

[23] J. S. Her, J. H. Kim, S. H. Oh, S. Y. Rhew, and S. D. Kim, “A

framework for evaluating reusability of core asset in product line
engineering,” Information and Software Technology, vol. 49, no. 7, pp.

740-760, 2007.

[24] A. Alvaro, E. S. De Almeida, and S. L. Meira, “A software component
quality model: A preliminary evaluation,” in 32nd EUROMICRO

Conference on Software Engineering and Advanced Applications

(EUROMICRO'06), 2006, pp. 28-37.
[25] D. I. K Sjoeberg, J. E Hannay, O. Hansen, V. B. Kampenes, A.

Karahasanovic, N. K. Liborg, and A. C. Rekdal, “A survey of

controlled experiments in software engineering,” IEEE Transactions
on Software Engineering, vol. 31, no. 9, pp.733-753, Sept. 2005.

[26] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, B. and A.

Wesslén, Experimentation in Software Engineering. Berlin Heidelberg:
Springer, 2012.

[27] M. V. Zelkowitz, and D. R. Wallace, “Experimental Models for

Validating Technology,” Computer, vol. 31, no. 5, pp. 23-31, May
1998.

[28] I. E. Allen, and C. A. Seaman. “Likert scales and data

analyses.” Quality progress, vol.40, no. 7, pp.64, 2007.

