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PUBLICATION THESIS OPTION

The papers presented within the body of this thesis
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tion.

Because of journal requirements, matrices and
vectors have been denoted by placing a solid line
below their corresponding symbols. Symbols designated
in this manner will appear in bold-face type within the

journal copy.



iii

ACKNOWLEDGMENTS

I would like to thank many people for the roles
which they have played in my pursuit of graduate work.

Initially I would like to thank Dr. J. Earl Foster
for encouraging my return to school; Dr. Richard D. Rocke
for his unfailing interest in my personal endeavor; Dr.
Donald A. Gyorog for his many ideas and suggestions.
Particular thanks go to Dr. Virgil J. Flanigan for the
guidance and encouragement he provided during the course
of this investigation. I would also like to thank Dr.
Donald L. Cronin, Dr. Thomas L. Noack and Professor
Sylvestor J. Pagano for serving on my doctoral committee.
Additional appreciation is expressed to Mrs. Toby Cohen
for typing the manuscript.

I am further indebted to the Department of Mechanical
and Aerospace Engineering of the University of Missouri-
Rolla, the National Science Foundation, and the U.S. Army
Weapons Command for partial support of this work.

Grateful appreciation is also expressed to my
father and mother, Mr. and Mrs. Rudolph Fermelia, whose
encouragement to pursue a higher education has always
served as an inspiration to me. Thanks are also due to
Eileen, Jeanne, and Mary Kate who many times had to
sacrifice our family days during the course of this work.

No acknowledgment would be complete without my

expressed appreciation to my wife, Kathleen, for her



iv

prayers, understanding and many sacrifices she endured in
order to make the completion of graduate work possible.

It is to her that I owe the greatest debt of gratitude.



ABSTRACT

The nonlinear set of equations which represents
helicopter motion are linearized about a prescribed
nominal state. Once the linearized system is obtained
it is validated by comparing the output of the
nonlinear system to that of its linearized counterpart.
Having obtained a linear model, linear system theory
may then be applied in order to investigate the
stability and control characteristics of the aricraft.

General techniques for simulating helicopter pilot
response for inclusion in a flight path simulation program
have been devised. To provide the desired flight goal,
a nominal flight trajectory is obtained from an existing
nonlinear model. With this basis a deterministic pilot
model which attempts to minimize flight deviations from
the nominal can be developed for generating descriptions

of the desired flight path.
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LINEARIZATION OF EQUATIONS
WHICH GOVERN THE MOTION

OF A HELICOPTER

by
Alfred Fermelia
and

Virgil J. Flanigan¥*

ABSTRACT

The nonlinear set of equations which represents
helicopter motion are linearized about a prescribed
nominal state. Once the linearized system is obtained
it is validated by comparing the output of the
nonlinear system to that of its linearized counterpart.
Having obtained a linear model, linear system theory
may then be applied in order to investigate the

stability and control characteristics of the aircraft.

*The authors are associated with the Department
of Mechanical and Aerospace Engineering, University
of Missouri-Rolla, Rolla, Missouri, where Mr. Fermelia
is a Graduate Student and Dr. Flanigan (member ASME)
is an Associate Professor.
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NOTATION

In the paper all bold-face capital letters denote
matrices. Vectors are defined in column format and are
denoted by lower case letters in bold face type. All
scalars will be denoted by plain upper or lower case

letters. Occasionally it may be necessary to illustrate

a vector in the following format:

— —

%y

Ry

Xn
. P

These general rules will hold unless otherwise specified

in the text.

Numbers in brackets designate references at the

end of the paper.



INTRODUCTION

In order to investigate the stability and control
characteristics of a helicopter, a suitable mathematical
model which represents the dynamics of the vehicle must
be selected. Several mathematical models describing
helicopter dynamics are available. Two of these, the
Bell C-81 program [l] and the U.S. Army ECOM hybrid
simulator [2] are especially notable in that the necessary
aerodynamic coefficients and various simulation constants
have been established for a particular helicopter. The
major limitations for the present C-81 program are its
large size and lengthy computation time for simulated
maneuvers. The C-8l1 program developed by Bell requires
approximately 200 seconds of computer time to yield 1
second of helicopter flight simulation, whereas the ECOM
model takes approximately 32 computer seconds to yield 1
second of flight simulation. This reduction in time is
attributed to the simplified analysis of the transient
aerodynamics and rotor force in the latter model. Since
the ECOM model represents a considerable savings in
computer costs, has been validated by the Bell Helicopter
Corporation [3], contains a simplified analysis of the
transient aerodynamics and rotor forces, and is a general
purpose simulation designed for simulation of ten or more
helicopters, it was selected to provide the basic struc-

ture for the helicopter dynamics.



Validation of the nonlinear model was achieved by
(1) a comparison check with actual flight test data
under trim conditions and (2) evaluation of the transient
response due to control inputs. Figure 1 shows the
comparison between actual flight test and the ECOM
model. Transient responses of pitch, roll and yaw and
their rates due to a longitudinal cyclic input are
illustrated in Figure 2. The responses are typical of
actual flight data.

In actual flight the pilot manipulates the controls,
cyclic, collective, and pedal, either to trim the
helicopter for steady flight by balancing the external
forces and moments or to produce a desired maneuver by
controlling the unbalance of these forces and moments.
These external actions on the aircraft are expressed as
nonlinear functions of the independent variables which
are used to describe the state of the helicopter. Even
though the control system being considered is nonlinear,
the equations governing its motion may be characterized
as linear over certain regions of the state space.

Computational techniques for the analysis of
nonlinear control systems are not well understood and
are in their infancy, even with the present state of the
art. Nevertheless, there are some useful mathematical
tools which may be applied to nonlinear systems. One
such tool, linearization, is a very powerful and useful

technique. In implementing linearization, it is usually



assumed that the nonlinear control problem has been
completely solved for one set of parameters, initial
conditions and system inputs, and then seeks the solution
for different parameters, initial conditions or inputs
which are "sufficiently close" to those of the exact
solution. The exact solution, often called the nominal
solution or nominal trajectory is assumed known for one
set of conditions.

The purpose of this paper is to describe the
linearization procedure as applied to the equations of
motion which represents helicopter motion. Once the
linearized system is obtained it is discretized and
then validated by comparing the output of the nonlinear
system to that of its linearized counterpart.

A listing of the nonlinear equations of motion and

the linearization technique is described in the appendix.

Problem Statement
The helicopter airframe simulation provided by ECOM
presents the equations of motion in the form
x = ¢[f,m,x] (1)
where ¢ (a 10 x 1 vector) is a nonlinear function of the
vector forces, moments, and state variables. The external
vector forces and moments active on the airframe may be

expressed as

|Hh
I

glx,ul (2)

=
[

h[x,u] (3)



where g (a 3 x 1 vector) and h (a 3 x 1 vector) are
nonlinear functions of state vector, X, and the control
vector u. Hence equation (1) may be written as

X = ¢(x,u). (4)
Hence it is desirable to obtain a linear system which

approximates the system described by equation (4).

Solution

Allow the state vector and the control vector to be

perturbed from some nominal condition, i.e.,

| ™

= E* + 65 (5)
u = u* + §u (6)
where x* and u* are defined as nominal state and control
vectors respectively. Similarly Su is the perturbed
control and §x is the change in x due to the new control
and also possibly to perturbed boundary conditions.
Expanding ¢ (x,u) about the point (x*,u*) and retaining

only first order terms in powers of (x-x*) and (u-u¥%)

yields
o(x,u) & o(x*,u*) , 3¢  8x , 30  du (7)
ai X* aE’. x*
u* u*
where, by definition
My ... . "%
. ! ST
i’? = . (8)
0X .
8919 . . . 2?19
B%; 5§10_d




3, . By
ou, U,
30 | .
5@ = . (9)
910 . . . 3910
9y 9y

Denoting the 10 x 10 Jacobian matrix, %gy by A(x,u) and

the 10 x 4 Jacobian matrix, %% by B(x,u), equation (7)

can be written as
$(x,u) & ¢(x*, u*) + Alx*,u*)déx + B(x*,u*)du. (10)
Substituting this expression into the right hand side of

equation (4) and using (5) yields

X* + 6x = ¢(x*,u*) + A(x*,u*)sx + B(x*,u*)su. (11)
But since

x* = ¢ (x*,u*),
equation (11) simplifies to
§x = A(g{_*,y_*)Gg + B(x*,u*)su. (12)
The boundary conditions for the linearized equation
are obtained in a straightforward fashion. Assume, for
example, that only the initial condition is prescribed
and for the nominal solution is §*(to) = 50*' If the
initial condition for the perturbed problem is changed
to §(to) = X then the initial condition for the solution
to the linearized equation is

Sxlte) = x5 = X

Having obtained a solution to the linear perturbation



equation (12), the approximate state of the vehicle is
obtained by using equation (5).

Since the system being considered is essentially
discrete in form, i.e., the pilot manipulates the controls
at a sampling rate compatible with his reaction time, it
is convenient to discretize equation (12).

Consider the derivative §x(t) to be approximated as

§x(t + At) - 6x(t)

§x(t) = T . (13)

Substituting equation (13) into (12) yields

Sx(t + At) - 8x(t)
e = A(x*,u*)8x(t) + B(x*,u*)du(t)
or
§x(t + At) = (I + AAt)Sx(t) + BAtSu(t) (14)

where the arguments of A and B have been suppressed in
order to simplify the notation. Note that I represents
the 10 x 10 identity matrix.
Note also that equation (14) can also be written as
Sx(t) = (I + AAt)Sx(t - At) + BAtSu(t - At). (15)
Using equation (15) and the discrete version of (5), i.e.,
x(t + At) = x(t) + 8x(t), (16)
will yield a set of discrete equations which represent

the motion of a helicopter.

Validation
Once the linearized system is obtained it is validated
by 1) a static check, 2) a homogeneous test case, and

3) by implementing an objecting function test. All three
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methods of validating the linear model compare the output

of the nonlinear system to its linearized counterpart.

This section will describe the above comparison tests.
Static Check: 1In order to linearize the equations

of motion all variables describing the internal dynamics

of the vehicle had to be expressed in terms of the state

and control parameters. An examination of the equations

in Appendix A illustrates the complexity of this objective.

In order to insure that all auxiliary variables were

properly expressed the static test was contrived.

To illustrate the static test, consider the partial

3¢, 09} df, 3¢

= + (17)
.9 Bfl 8§l 8§l

where the right hand side of equation (17) is obtained from
(1) . Note the force, fl’ is the sum of forces acting on
the aircraft c.g. along the longitudinal axis--see Appendix

A. It can be shown that

(3]

41

1

)
3+

where m is the mass of the aircraft. Also examination of
Appendix A illustrates that the last term of (17) is
easily verified. Hence the only term to substantiate is
the partial

of

X

—

(o2
(=)

Assuming that x4 is the only variable allowed to change,

the total variation in the force, fl, can be approximated

as



1l

Bfl
51 = 3%, Sx1 (18)
where
A *
§x, = X=Xy (19)
A *
6f, = £,-F, . (20)

The true variation, Gfl, due to the perturbation, 6§1,
is obtained from the nonlinear system as indicated by
equation (20). Hence the partial of fl with respect to
X, can be substantiated by comparing the output of the
linear system (18) with that of its nonlinear counter-
part (20). The remaining elements in the matrices A,
and B can be verified in a similar manner. Appendix C
contains tables of data recorded from the static tests.
Homogeneous Test: In this test the aircraft obtains
a trim configuration after which the nonlinear equations
are integrated. The solution of (4) is given by
x (k+1) = x(k) + x(k)-At. (21)
Its linearized counterpart is obtained by solving (14)
with the control perturbation set equal to zero, i.e.,
Sx (k) = (I+AAt)Sx(k-1). (22)
Substituting (22) into (5) yields
x(k+l) = g*(ks + 8x (k). (23)
Results of the homogeneous test are given in
Appendix D.
Objective Function Test: A pseudo flight path is

chosen and compared with the state generated by the
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linear system. This error is fed into an objective
function which in turn is minimized. That is, a control
goal is calculated which minimizes the objective function.
The control goal is fed into both linear and non-linear
systems and the corresponding outputs are then compared.
Appendix E contains the results of the objective function

tests.

Conclusions and Recommendations

With a few exceptions, the results obtained in the
state check indicates that the linear model gives a good
approximation to the nonlinear system. Examination of
Table CT-2 shows a larger error in the change of the
yawing moment, 6NA, due to approximately a 2% change in
the w velocity. However, for larger percentage changes in
w and at higher flight speeds this error decreases. The
large error at 50 knots can be attributed to the change
in engine torque. In the derivations of the linearized

equations it was assumed that the engine torque, Q was

B’
not a function of the w velocity. However, this torque
does indeed change as a function of w and hence introduces
an error when ignored. For larger changes in w, the
effect of the change in engine torque is negated by
changes in the other parameters. This is also true at
higher speeds.

At higher speeds the linearization deteriorates for

larger percentage changes in the state variable--see
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Tables CT-5, CT-6, CT-17, and CT-18. However, the
linearization with respect to the control variables is
valid for changes up to 10%.

The inability to match the rate of climb is inherent
to both the homogeneous test and the objective function
means of validation. To explain this error, consider
equation (24),

H = uesin 0 - (vesin ¢ + wecos ¢) cos 0. (24)
As illustrated by the preceding equation, the change in
the rate of climb depends on the variation in the linear
velocities and the euler angles, 6 and ¢. Now consider
the fourth entry of H in Table ET-2. Note that a reversal
of sign exists between the two models. However, compari-
son of the other independent variables which comprise H
shows good agreement--see Table ET-4. For this particular
entry, calculation indicates the error is due to incorrect
matching of the w velocity. Note that this velocity, when
obtained via the linear model, is less than 0.3% of the
actual. Obviously prediction of the w velocity is within
reason, and therefore either a new linear model must be
implemented or this error must be tolerated. While it
appears that there is another linear representation that
could be used, further tests have been conducted that

indicate the simulation can endure this error without

serious degradation of overall performance.
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APPENDIX A

EQUATIONS OF MOTION

The U.S. ECOM simulation is designed to compute the
forces and moments acting on the helicopter rotor and air-
frame. These forces and moments are resolved in a body
axis coordinate frame. Body axes are defined with the
origin at the aircraft center of gravity and axes oriented
as:

Xé Forward through the nose, perpendicular to the

rotor shaft;
= Out to the right, perpendicular to the plane
containing the rotor shaft and X;

Zé Down and parallel to the shaft.

The state variables are defined as follows:

A . . .
1. u= Forward velocity, positive directed along X.

2. vé Side velocity, positive directed along Y.
3. é Down velocity, positive directed along Z.
4. pé Roll rate, directed along X.
5. qé Pitch rate, directed along Y.
6. é Yaw rate, directed along 2.

A

7. ¢= Roll angle.

8. 6é Pitch angle.

e

Yaw angle.

o
<
e

10. Q= Rotor rpm.
Parameters 7-9 are the EFuler angles which relate the actual

position of the aircraft to an inertial reference frame.



The pilot input control variables are defined as

follows:
1. Uy = collective pitch
24 u, & lateral cyclic

lI=>

3. us longitudinal cyclic

>

u, tail rotor pitch

Having defined the coordinate frame and the inde-
pendent variables, linear perturbation theory can be
applied to obtain a linear model. However, before
linearization is performed the nonlinear equations of

motion will be summarized below:

Forces

. XA

u=-—+rv-gw - g sin 6

m

° YA

LA + pw - ru + g cos 6 sin ¢

° ZA

LAl — + qu = pv + g cos 6 cos ¢
Moments

p=[Ly - (I, -T )arl/I .

q = IMy - (I,,-I, )rpl/I

r = [N, - (Ixx'Iyy)pq]/Izz

Euler Angles

=p + § sin 6

De S~
I

r sin ¢ + g cos ¢

(r cos ¢ + g sin ¢)/cos 6

-
Il
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Rotor speed

¢ = (QMR)/IROT

To illustrate the method of linearization, consider
the equation representing the sum of forces acting on the
aircraft c.g. along the longitudinal axis, i.e.,

. XA
u=——+rv - qw-g sin 6 (1)

where

X, = £(u,v,w,p,q,r,Q,u)

and the control vector, u,is defined as

—— -

=

Now by letting all variables be perturbed from some

nominal value, i.e., let

u = u* + du
v = v¥*¥ + §v (2)
etc.

and since XA may be expanded as

_ of §x of du
aTax | T 7a
x*,u* xX* ,u*

— " — — —

(3)
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Equation (1) can be expressed as

+ r*§v + g*Sw - w*Sqg + v*Sr - g cos 6* §6(4)

Note that the vector §x represents the perturbed state;

i.e.,
5x° = (du 6v 6w 8p 8q Sr 8¢ 80 Sy 89),
and that Sdu is the perturbed control vector
T =
Su” = (Gu1 6u2 6u3 6u4).

Also it should be pointed out that the partials in
equation (3), are evaluated along a prespecified nominal
state, x*, and a nominal control, u*.
By inspection (4) may now be expressed in the form
su = a 6x + b du,
where a and b are (1x10) and (1x4) row vectors respectively.
Implementing the perturbation technique on the
remaining equations yields a set of linear differential
equations of the form
§x = ASx + Bdu,

where A is a (10x10) stability matrix and B is a (10x4)

control matrix.

Matrix A
In order to examine the elements which comprise the

A matrix, consider the partitioned form of A, i.e.,
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. A, J A
A3 I A4
where
Al = Aij i=1-6 J = 1-6
A, = Aij i= 1-6 j = 7-10
Ay = Aij i = 7-10 j = 1-6
By = Aij i=7-10 k = 7-10

The elements of Al, A2, A3, and A4 are given in

Tables Al-1, Al-2, Al-3, and Al-4, respectively.



TABLE Al-1

ELEMENTS OF A

1
4 5 6
f f f
1,4 1,5 1,6,
m m m
£ £ £
2,4, 2,5 2,6 _
m m m
£3,4 f3,5 by
——= - v + u L
m m m
+ - + -
f4,4 : [f4,5 (Iyy Izz)]r [f4,6 (Iyy Izz)]q
‘ I I I
XX XX XX
- - f
f5,4 5 (Izz Ixx)r f5,5 (Izz Iyy) 5 5,6
I I I I I
YY YY Yy Yy b6 4
= £ - f £
(Ixx Iyy) " 6,4 (Ixx Iyy) % 6,5 6,6
I I I I
zz zz ZZ zZ zz

ve



TABLE Al-2

ELEMENTS OF A2

25

7 8 10
f
1,10
0 -g cos 6 -
£
g cos ¢ cos 6 -g sin ¢ sin 6 21;110
3,10
-g sin ¢ cos 6 -g cos ¢ sin 6 r;1
f
4,10
0 0 =
f
5,10
0 0 =
f
0 0 6,10




TABLE Al-3

ELEMENTS OF A

3
1 2 3 4 5 6
0 0 0 1 -tan 06 sin ¢ -tan 6 cos ¢
0 0 0 0 cos ¢ -sin ¢
sin ¢ cos ¢
0 0 0 0 cos 6 cos 6
£10,1 | 10,2 | 10,3 | f10,4 £10,5 £10,6
Tror TroT TroT TroT Tror Tror

9¢



TABLE Al-4

ELEMENTS OF A

4

7 8 10

7 -tan 6(q cos ¢ = r sin ¢) —&(cos 6 + tan 6 sin 6) 0

8 -(r cos ¢ + g sin ¢) 0 0
g cos ¢ _ r sin ¢ .

9 cos 6 cos © Y tan B 0

10 0 0 0

LE
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Note the fi 3 components of the Al matrix represents
14
partial derivatives with respect to specific states
evaluated at some nominal state, x%*, and a nominal

control, u*. They are as follows:

BXA
£1,9 = = J = 16
I g ux*
oY
_ 9%a L
fzrj—BX- 3—16
I g%, y*
07
_ A s 1o
£3,5 = %, ] = =8
I | x#*,u*
oL
A -
f4,j = =5 Jj 1-6
J x* ,u*
oM
- _A v
f5,j = e Jj 106
J | x*,u*
oN
A L
6,5 = ox; J=1-6
. x*,u*

The forces acting on the aircraft are given by the

equations
Xp = Xp + Xyt Fyps
Yy = Yp + Ypp * Vyg * Fype
Z, = Zp + %y * Zyg ~ Lype

and the external moments acting along the X, Y, and 2

axes of the aircraft are



29

LA = DZ « F + DZTR - Y + DZVS - Y + L

YR TR VS F’
MA = =-DZ - FXR + DZ - LMR + (DXW-DX) - ZN - DZW -« X
+ DXHS - ZHS + MF,
NA = -DX - FYR - DXTR - YTR - DXVS - YVS + QE + NF'
respectively.

At this point the components of the Aq matrix may be

expanded as follows:

BXA BXF BXW aFXR
= + +
oY oY oY oY
3YA ) YL N Ymp . Yy .\ Fy R
oY oY 4 oy oY
9% ) d%p . A2 .\ CRATE ) dLyp
oy oy oy oy oy
oL oF oY Y oL
A _ . YR . TR, noug . VS F
a DZ s— + DZTR 5y = 5y
oM oF dLy 07
A XR R W
. . + DZ - + (DXW - DX) -
3y DZ 5y D 5y ( ) 5y
X 902 oM
W HS F
- ® » +
DZW 5y + DXHS 3y 3y
oN oF oY oY
A YR TR VS
——— ¢ —_— - X R . - DXVS hd
oy DX oy pXT Ay oy
0Q oN
P R



where the state vector, y, is defined as

T =
y =(u v w p g r ).

The fuselage, wing, main rotor, and tail rotor forces

along the X, Y, and Z axes of the aircraft are

X Axis
Xp = qp * SYF + CYF1
Xjg = d, * SXW + CSWL + i - Z,

F = AL B sin .
XR Z < Z U)i ll)i 1
Wi Yj
+ AD cos V.
(Z wirYj 1>
5
Y Axis
YF = qp, ° SYF « CYFI
= . e, YVS
YVS dy, SYVS C

AL B

.,y 51nwi

H
=<
o
1
|
—Ne
<
’.J
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2
Y = . .
TR FKTR1 eTR (VT + FKTR2)
- FKTR3 (VTR + VIM)

Z Axis

ZF = gy ° SZF « CZFI

ZW = Gy SZM - CzZwWl

L = AL

MR Z lPirYj

Vs 5
ZHS = dy ° SZHS +« CZHS

Therefore the partials of forces and moments with

respect to the state variable, y, are given as

Forces:
oX aq
_A_ L., sxp1 . cxF1 + q. - SxF1 . OCSFl
oy oy L oy
+ _3%3‘; SXF2 - CXF2 + SXW + CXWL + i_ - SZW + CZWl
oCXFZ dCXW1 g oaCZW1
+ . + . .
+q,  SXFZ 5y SXW 5y i, + SXW =52
§ S oAL
, siny. < Sy.
N Y5 oy 1] l1)1 l1)1
B dAD
. V., VerVo
+ ALwi Yj sin wi ; 1] _ j{:‘—‘—gi;—l'coswi
y 4 Y '



32

BYA BqL
52— = gz— SYF + CYFl + SYVS - CYVS>
dCYF1 aCYVS
+ . .
qar, {SYF 5y + SYVS 5y }
8AL¢
Z{ Z - B, siny, + (BAD"’i'Yj
y V. i B cosy.
v, Y. * Y- L *
- J J
BBW
- ALW siny i
v,y '3 L
i J
3Y, . av.2  aY._ 3V 3Y oV
+ TR T + TR TR + TR IM
8VT2 oy Vg oy IV1y oy
BZA aqv
gz— = —;— SZF ¢ CZFl1 + SZW +« CZW1l + SZHS - CZHS)
dCZF1 . 3CzWl . 3CZHS
+ qv SZF 8X + SZW BZ + SZHS aX
AL
) byr¥y
oy
'J)l Yj
Moment
9L 3F oY oY oL
—B g ¢ e 4 DEVE e A
BY_ = DZ 3}[_ DZTR az 31 BX
9M OF oL 92
A _ <! . MR _ W
T -DZ 5y + DX 5y (DXW-DX) 3y
BXW aZHS BMF

- ¢ - . +*
DZW 7 + DXHS 5y 5y
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ON F dY dY
YR TR VS
g—— = =-DX —g—— - DXTR - —32— - DXVS - —gi—
BQE BNF
— +
oy oy

At this point the elements of matrix A, are fully
described. Considering the matrix A, the only elements
to be clarified are those in the fourth row. These

elements are given as

. _ 9X, _ 9Xp . Xy . P
1,10 o8 00 o8 P19l
. B Y, _ AY L, . 9¥rp . 5 S . 3
2,10 ~ 23Q 0% el EJ9) EY9)
. B 92, _ 9Zp . 9% . 9Zyg _ 9Lyp
3,10 © 3Q EJ9) o0 EY9) 00
L OF dY dY
= et = ' —— . TR . 27Ys
f4,10 = sﬁ— = DZ 30 + DZTR 0 + DZVS 50
. 9Ly
o0
£ = Efé = -DZ% .EE&B + DX aLMR
5,10 30 1Y) 30
3% X 3% M
W W HS F
+ (DXW-DX) - g T DZW * mo— + DXHJ + —o= + ==
ON OF dY
A YR TR
= —_— = - ¢ —— - TR ¢ ———
f6,10 = 30 DX » —g ~ DX 50
dY 30 AN
VS E F
- DXVS + —o= + * ==

Utilizing the definition of the fuselage, wing, main rotor,

and tail rotor forces and movements, the above equations



can be expanded in the same manner as were the elements

of Matrix Al.

Matrix B
In order to facilitate the description of the

control matrix, B, consider the partitioned form, i.e.,

B1
B=§—
2
where
Bl = Bij i=1-6 j = 1-4
B2 = Bij i = 6-10 j = 1-4.
Matrix Bl can be expanded as follows
bl,l...bl,4
Bl =1
b6,l . ® bGIi
where
. 1 BXA " 1 SMA
=& 3w, 5,5 m 3u, '
1,7 m auj J 3
. 1 BYA ’ 1 BNA
g = == ey 3 —I_n.a-'
2 m auj 6,3 Uy
02
M | A _
b3’] - 55; ’ j =1,4.
R
b4,3 T m Buj !
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Similarly the matrix B2 is given as

B2=
b . . b
__10,1 10,4J
where
bi,j = 0.0 i=7-9 J = 1-4
and
b L o= 1 IV j = 1-4.

10,5 - IROT 3u

Utilizing the equations representing the forces and
moments and performing the differentiation required of
them, the control matrix B is totally defined. Therefore

the objective of this appendix has been completed.
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APPENDIX B
LIFT AND DRAG CURVES

Investigation of the ECOM model reveals that the
changes of the incremental 1lift and drag parameters gener-
ated by the main rotor are both of the order of 6000 pounds.
Therefore it is mandatory that the approximation of the
lift and drag coefficient be as accurate as possible. The
purpose of this appendix is to illustrate the technique
developed to linearize these coefficients.

Before discussing the linearization technique, the
method by which these coefficients are obtained will be
explained. Since both 1lift and drag coefficients are
generated in the same manner, this presentation will only
consider the latter parameter.

The inputs required to obtain the drag coefficient,
CD, are the rotor blade angle of attack, a, and that
component of velocity, Unpr which is tangent to the cord of
the rotor blade. Since the data available exists only for
particular values of the velocity, Upr an interpolation
technique must be employed to give values of CD for any
velocity and any angle of attack (Figure BF-1).

A simple example best illustrates the interpolation
technique employed. Consider Figure BF-2 and suppose that
the rotor blade at a particular station is operating with
a tangential velocity between 250 and 500 feet per second.
Knowing the angle of attack, o, the drag coefficient for

the velocities of 500 and 250 feet per second are obtained.

Therefore since
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Ut =500

Ut =250

ANGLE OF ATTACK

Figure BF-1 Coefficient of Drag Vs. Angle of Attack

UT =500
CD2 UT =250

CD1

ANGLE OF ATTACK

Figure BF-2
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UT = 250 =+ CD1

Unp 500 - CD2

Simple interpolation allows the drag coefficient at a

velocity between 500 and 250 to be calculated as

UT - 250
CD = M (CD2 - CDl) + CDl.

Using this form, the total variation of CD is given
by

_ 3CD 3CD
(SCD = m GUT + W (S(X-

At this point it should be noted that the coefficient of
§a represents the slope of the curves presented in Figure
BF-2. Note that for small perturbations in the angle of
attack, the slope 3CD/%a will be constant. But if the
change, 8o, is large enough to cross the break point of
the curve, the slope 3CD/30 will also change values.
Hence a sensing device must be implemented to determine
these break points.

It can be verified that the variation in the angle
of attack can be obtained very accurately. If this is the
case, then it is possible to partition §a into m parts--
see Figure BF-3. At a particular station, the only
parameters known are the angle of attack, o, the
corresponding drag coefficient, CD, the slope of the drag
curve, oCD/da, and the total variation of the angle of

attack, Soa. Assume that the angle of attack is increasing



DRAG COEFFICIENT ba

== G == == st s mn st s s i, oy i . v

CD g — e e

sco

CD2f e e —

COp e e e s

Cotf- —— — — — — —

COgp —— — —

CD - — ——=
CD, [-——

e ——— - —

e — —— — — — — —— —

ANGLE OF ATTACK

oY

m-1

Figure BF-3
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and that we partition its total change into m parts.
Since o is increasing, a new angle of attack, oy, can be

obtained as follows:

Introducing oq into the drag routine yields a corresponding
drag coefficient, CDl and the slope, 9CD/da. By repeating

this procedure over the entire interval,

< o < o
OLO__ s

ml

the drag coefficient and the slope, 39CD/da, will be known
at all partitioned points.
The total change of the drag coefficient can now be

expressed as

o0CD

§CD = a—U-; (SUT + (CDl - CDO)
+ (CD, - cpy) + . . . +(CD - CD__4),
or
3CD 3cD  Sa
§CD = ag— U + 75— (=}
T
aCDh ,Sa 3CD1  Sa
T = T r oo d0. ( m)
aCDl ,da
+ s = F e (—m'
where

9CD A slope before the break point

oCD1 A slope after the break point.
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Assuming there are n values of 3CD/da, the above equation

becomes

scp = 9C€D SUp + n 9CD .., (m-n) 93CD1

Sa.
BUT m Jo m a0,

Utilizing this equation yields a very accurate
linearization of the incremental drag force. Note that
the choice of the value m is arbitrary. However, a choice
of m equal to 20 gave excellent results for both the 1lift

and drag forces.



APPENDIX C

STATIC TESTS

This appendix contains data obtained from static
tests conducted at airspeeds of 50 and 110 knots.
Tables CT-1 through CT-12 contain data pertaining to
an airspeed of 50 knots. Data corresponding to the
airspeed of 110 knots are presented in Tables CT-13

through CT-24.

42



EFFECT OF STATE PERTURBATIONS ON FORCES

TABLE CT-1

(SPEED EQUALS 50 KNOTS)

43

% Change in

Perturbed Forces

State Variable Model* GXA 6YA GZA
sSu ¥ 2% NM -1.092 -0.042 -3.207
LM -1.091 -0.042 -3.210
Sv % 2% NM 0.022 -0.843 -0.281
M 0.022 -0.843 -0.287
Sw ¥ 2% NM -0.170 -0.070 -3.700
LM -0.169 -0.077 -3.649
Sp Y 2% NM 1.048 -1.529 -7.781
LM 1.043 -1.530 -7.781
el Y 2% NM 1.406 0.914 -1.805
LM 1.406 0.914 -1.806
Sr V¥ 2% NM 0.002 13.762 -0.129
LM 0.002 13.762 -0.129

*NM indicates Nonlinear Model

IM indicates Linear Model
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TABLE CT-2

EFFECT OF STATE PERTURBATIONS ON MOMENTS
(SPEED EQUALS 50 KNOTS)

$ Change in - Perturbgﬁ Moments -
State Variable Model* A A A
Su ¥ 2% NM -1.968 5.938 -6.469
LM -1.968 5.936 -6.491
Sv ¥ 2% NM -2.775 -0.308 15.678
LM -2.779 -0.310 15.462
Sw ¥ 2% NM -0.600 -0.690 0.004
LM -0.602 -0.690 -0.217
Sp v 2% NM -54.122 -11.938 -0.769
LM -54.124 -11.893 -0.987
e v 2% NM 6.910 -38.491 0.484
LM 6.907 -38.472 0.265
Sr N 2% NM 46.444 -0.078 -425.121
LM 46.443 -0.078 -425.343

*NM indicates Nonlinear Model

LM indicates Linear Model



TABLE CT-3

(SPEED EQUALS 50 KNOTS)

EFFECT OF STATE PERTURBATIONS ON FORCES

45

Perturbed Forces
% Change in SXA 43YA OZA
State Variable Model*
Su % 5% NM -23.233 -.884 -65.285
LM -23.049 -.987 -65.059
Sv ¥ 5% NM .042 -1.693 -.438
M .042 -1.694 -.444
Sw Y 5% NM -2.952 -1.449 -61.12
LM -2.955 -1.450 -61.13
Sp % 5% NM 2.135 -3.067 -15.434
M 2.127 -3.067 -15.432
Sq % 5% NM 2.810 1.820 -3.484
LM 2.809 1.820 -3.481
Sr ¥ 5% NM 0.002 27.517 -0.129
LM 0.002 27.517 -0.130

*NM indicates Nonlinear Model

IM indicates Linear Model



TABLE CT-4
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EFFECT OF STATE PERTURBATIONS ON MOMENTS
(SPEED EQUALS 50 KNOTS)
$ Change in . Perturbgg Moments .
State Variable Model* A A A
Su ¥ 5% NM -41.872 128.161 -140.067
LM -41.750 126.859 -135.978
Sv ¥ 5% NM -5.587 -0.544 31.345
LM -5.590 -0.542 31.123
Sw ¥ 5% NM -10.970 -10.680 -0.293
LM -10.972 -10.691 -0.512
Sp v 5% NM -108.279 -24.103 -1.555
M -108.280 -24.037 -1.775
e Y 5% NM 13.784 -76.939 0.949
LM 13.782 -76.867 0.730
Sr ¥ 5% NM 92.855 -0.078 | -850.246
M 92.854 -0.078 | -850.487

*NM indicates Nonlinear Model
IM indicates Linear Model




TABLE CT-5

(SPEED EQUALS 50 KNOTS)

EFFECT OF STATE PERTURBATIONS OMN FORCES

47

. Perturbed Forces
* Change in 5X 5Y 37
State Variable Model* A A A
Su ® 10% NM -45.060 -1.469 -125.644
LM -44.,335 -1.346 -124.914
Sv ¥ 10% NM 0.081 -3.394 -0.754
M 0.082 -3.395 -0.757
Sw ¥ 10% NM -6.919 -3.359 -143.199
LM -6.935 -3.361 -143.237
Sp ¥ 10% NM 4.314 -6.141 -30.734
LM 4.231 -6.141 -30.734
§q v 109 NM 5.618 3.633 -6.848
LM 5.618 3.633 -6.834
Sr % 10% NM 0.002 55.022 -0.129
M 0.002 55.027 -0.130

*NM indicates Nonlinear Model
LM indicates Linear Model



TABLE CT-6

EFFECT OF STATE PERTURBATIONS ON MOMENTS
(SPEED EQUALS 50 KNOTS)

48

. Perturbed Moments
% Change in 3T, = 5N
State Variable Model* - A A A
Su t 10% NM -80.245 249.386 | -275.211
LM -79.817 244.166 -262.768
sv ¥ 10% NM -11.210 -1.006 62.663
LM -11.213 -1.006 62.445
Sw % 10% NM -25.394 -24.905 -0.699
LM -25.403 -24.978 -0.907
Sp ¥ 10% NM  |-216.593 -48.472 -3.133
LM -216.594 -48.217 -3.350
8q % 10% NM 27.533 -153.932 1.879
M 27.531 -153.657 1.659
Sr ¥ 10% NM 185.676 -0.078 |-1700.425
LM 185.674 -0.078 [-1700.775

*NM indicates Nonlinear Mo
LM indicates Linear Model

del



TABLE CT-7

EFFECT OF CONTROL PERTURBATION ON FORCES
(SPEED EQUALS 50 KNOTS)

- !

% Chsoge ih Perturbed Forces
Control 5% 37 5
Variable Model* A A ZA

Sul N 2% NM . =-27.630 . -14.040 |-493.700

LM -27.632 -14.062 -493.681

6u2 no2% NM -1.120 1.99 0.200

LM -1.118 2.010 0.253
6u3 N 2% NM 1.387 0.940 7.900

LM 1.387 0.927 7.938
6u4 A2% NM 0.024 11.497 0.253

LM 0.020 11.500 0.200
*NM indicates Nonlinear Model
IM indicates Linear Model

TABLE CT-8

EFFECT OF CONTROL PERTURBATIONS ON MOMENTS
(SPEED EQUALS 50 KNOTS)

% Change in Perturbed Moments
Control ST, M SN
Variable Model* A A A

Su. & 2% NM -106.570 -43.460 ~7.230
4 LM -106.652 -43.454 -7.243

Su. N 2% NM 15.042 8.614 .957
2 M 15.241 8.611 .994

Su. N 2% NM 7.068 6.449 0.390
3 M 7.028 6.450 0.439

Su. ¥ 2% NM 54.306 -0.049 |-305.892
4 LM 54.306 -0.051 |[-307.253

*NM indicates Nonlinear Model
LM indicates Linear Model



TABLE CT-9

50

EFFECT OF CONTROL PERTURBATION ON FORCES
(SPEED EQUALS 50 KNOTS)

% ggiziglln Perturbed Forces
Variable Model* axA GYA 6ZA
Su, ¥ 5% NM -68.460 -35.410 -1227.700

1
M -68.540 -35.378 |-1228.484
Su, N 5% NM -2.830 4.970 0.200
LM -2.832 5.039 0.215
Sugy N 5% NM 3.430 2.310 19.400
M 3.488 2.288 20.073
Suy v 5% NM 0.020 5.760 0.200
LM 0.024 5.758 0.251
*NM indicates Nonlinear Model
LM indicates Linear Model
TABLE CT-10
EFFECT OF CONTROL PERTURBATIONS ON MOMENTS
(SPEED EQUALS 50 KNOTS)
3 ghaigilin Perturbed Moments
ontr
Variable Model* 8LA 6MA SNA
Su. ¥ 5% NM -268.640 |-109.968 -18.179
1 LM -268.313 |-109.791 -18.168
Su. ¥ 5% NM 37.643 21.609 2.485
2 LM 38.213 21.606 2.546
Su. ¥ 5% NM 17.483 -16.048 1.094
3 LM 17.349 -16.169 1.136
su., ¥ 5% NM 27.214 -0.049 |-153.603
4 LM 27.214 -0.052 |=153.746

*NM indicates Nonlinear Model
LM indicates Linear Model



TABLE CT-11

EFFECT OF CONTROL PERTURBATION ON FORCES
(SPEED EQUALS 50 KNOTS)

51

® Change In Perturbed Forces
Control TX Ty 57
Variable Model* A A A
suy Y 10% NM -161.460 -74.701 |[-2551.300
LM -161.197 -74.694 |-2551.327
S, v 10% NM -5.690 9.990 0.200
LM -5.687 10.227 0.249
fu, v 10% NM 6.84 4.600 38.600
LM 8.973 4.546 40.798
gu, N 10% NM 0.020 50.240 0.200
LM 0.023 50.232 0.249

*NM indicates Nonlinear Model
LM indicates Linear Model
TABLE CT-12

EFFECT OF CONTROL PERTURBATION ON MOMENTS
(SPEED EQUALS 50 KNOTS)

% Change in Perturbed Moments
Control 3T 3
Variable Model* A MA SNA
dul A 108 NM -566.589 -82.804 -38.316
LM -566.481 -85.039 -38.317
duz & 10% NM 75.731 43.268 5.059
LM 77.560 43,256 5.205
6u3 % 10% NM 34.843 -32.042 2.269
LM 34.472 -47.147 2.269
6u4 v 10% NM 237.180 -0.049 | -1343.273
LM 237.177 -0.051 [ -1343.880

*NM indicates Nonlinear Model
LM indicates Linear Model




EFFECT

OF STATE PERTURBATIONS ON FORCES

TABLE CT-13

(SPEED EQUALS 110 KNOTS)
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$ Change in Perturbed Forces
State Variable Model* SxA SYA SZA
Su ¥ 2% NM -34.767 5.538 15.793
LM -34.555 5.407 14.635
Sv ¥ 2% NM 0.027 -1.332 -0.602
LM 0.027 -1.332 ~-0.600
Sw ¥ 2% NM 0.520 -1.021 -69.176
M 0.520 -1.021 -69.178
Sp X 2% NM 0.528 -1.441 -15.570
LM 0.527 -1.441 -15.567
Sq Y 2% NM 1.416 1.018 -3.840
M 1.416 1.018 -3.836
Sr ¥ 2% NM 0.001 18.034 -0.488
M 0.001 18.034 0.486

*NM indicates Nonlinear Model

IM indicates Linear Model




EFFECT OF STATE PERTURBATIONS ON MOMENTS

TABLE CT-14

(SPEED EQUALS 110 KNOTS)
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¢ Change in

Perturbed Moments

State Variable Model* 6LA GMA 6NA
Su ¥ 2% NM -26.800 233.662 -250.062
LM -26.945 232.757 -246.995
Sv ¥ 2% NM -3.653 -0.511 21.993
LM -3.655 -0.507 21.941
Sw ¥ 2% NM -7.730 -32.921 -0.355
LM -7.733 -32.923 -0.406
Sp ¥ 2% NM -99.752 -11.985 -0.781
LM -99.754 -11.968 -0.835
8q ¥ 2% NM 7.709 -66.452 0.480
LM 7.707 -66.429 0.425
Sr ¥ 2% NM 46.414 -0.254 -601.914
LM 46.414 -0.250 -601.972

*NM indicates Nonlinear Model

LM indicates Linear Model



EFFECT OF STATE PERTURBATIONS ON FORCES

TABLE CT-15

(SPEED EQUALS 110 KNOTS)
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% Change in

Perturbed Forces

State Variable Model* GXA aYA 6ZA
Su b 5% NM -70.210 11.322 -33.089
LM -69.141 10.812 -28.796
Sv ¥ 5% NM 0.053 -2.665 -0.711
M 0.053 -2.665 -0.713
Sw ¥ 5% NM -0.150 -2.967 -198.062
LM -0.149 -2.968 -198.101
Sp % 5% NM 1.058 -2.884 -30.648
LM 1.053 -2.884 -30.646
§q ¥ 5% NM 2.830 2.034 -7.191
M 2.830 2.033 -7.186
Sr ¥ 5% NM 0.000 36.070 -0.500
LM -0.001 35.066 -0.487

*NM indicates Nonlinear Model

LM indicates Linear Model



TABLE CT-16

EFFECT OF STATE PERTURBATIONS ON MOMENTS
(SPEED EQUALS 110 KNOTS)
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% Change in

Perturbed Moments

State Variable Model* GLA SMA GNA
Su ¥ 5% NM -53.413 471.468 -506.180
LM -53.896 465.996 -493.830
Sv ¥ 5% NM -7.311 -0.765 44.030
LM -7.313 -0.764 43.978
Sw ¥ 5% NM -7.730 -32.921 -0.355
LM -7.733 -32.923 -0.406
Sp ¥ 5% NM -199.509 -23.729 -1.519
LM -199.512 -23.687 -1.575
8q ¥ 5% NM 15.414 -132.686 1.000
M 15.411 -132.604 .945
Sr ¥ 5% NM 92.824 -0.254 |-1203.799
M 92.825 -0.250 |-1203.850

*NM indicates Nonlinear Model

LM indicates Linear Model



EFFECT OF STATE PERTURBATIONS ON FORCES

TABLE CT-17

(SPEED EQUALS 110 KNOTS)
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% Change in

Perturbed Forces

State Variable Model* 6XA GYA GZA
Su b 10% NM 145.651 24.071 -75.238
M 140.760 21.988 -58.122
Sv ¥ 10% NM 0.100 -5.230 -0.900
M 0.106 -5.333 -0.940
Sw ¥ 10% NM -1.269 -5.568 -368.707
M -2.639 -5.562 -368.815
Sp ¥ 10% NM 2.125 -5.769 -60.809
M 2.105 -5.770 -60.806
Sq ¥ 10% NM 5.659 4.066 -13.906
LM 5.656 4.065 -13.885
Sr ¥ 10% NM 0.001 72.127 -0.488
LM 0.001 72.129 -0.487

*NM indicates Nonlinear Model

LM indicates Linear Model



EFFECT OF STATE PERTURBATIONS ON MOMENTS

TABLE CT-18

(SPEED EQUALS 110 KNOTS)
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. Perturbed Moments
% Change in 5L M SN

State Variable Model* A A A
Su % 10% NM -107.838 975.564 -1055.101
LM -109.632 949.021 -1004.724
Sv ¥ 10% NM -14.630 -1.280 88.098
LM -14.630 -1.277 88.051
Sw ¥ 10% -42.122 -186.288 -1.785
-42.075 -176.784 -1.792
Sp ¥ 10% NM -399.020 -47.274 -3.000
LM -399.027 -47.123 -3.054
Sq ¥ 10% NM 30.824 -265.270 2.043
LM 30.819 -264.967 1.987
Sr ¥ 10% NM 185.645 -0.254 -2407.487
M 185.645 -0.250 -2407.604

*NM indicates Nonlinear Model

LM indicates Linear Model




EFFECT

TABLE CT-19

OF CONTROL PERTURBATION ON FORCES
(SPEED EQUALS 110 KNOTS)

% Change in

Perturbed Forces

Control
Variable Model* 46XA GYA 8ZA
aul v 2% NM -9.610 -12.810 -563.200
LM -10.684 -12.800 -563.277
Su, v 2% NM -0.770 1.530 .900
LM -0.770 1.526 .926
Su, v 2% NM 3.920 2.720 47.700
M 3.976 2.701 48.186
Su, Y 2% NM 0.000 4.630 0.900
LM -0.005 4.625 0.926
*NM indicates Nonlinear Model
LM indicates Linear Model
TABLE CT-20
EFFECT OF CONTROL PERTURBATION ON MOMENTS
(SPEED EQUALS 110 KNOTS)
K ghazgelin Perturbed Moments
ontro L §M SN
Variable Model* 6 A A A
Su. ¥ 2% NM -97.210 -215.751 -6.629
1 LM -97.083 |-207.651 ~6.622
Su~. ¥ 2% NM 11.554 6.327 0.710
2 LM 11.567 6.314 0.720
Su. ¥ 2% NM 20.609 -5.292 1.320
3 LM 20.479 -5.459 1.322
su. ¥ 2% NM 21.887 0.507 -123.255
4 LM 21.883 0.510 |-123.257

*NM indicates Nonlinear Model

LM indicates Linear Model
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TABLE CT-21

EFFECT OF CONTROL PERTURBATIONS ON FORCES
(SPEED EQUALS 110 KNOTS)

® Change Perturbed Forces
Control 5% 37 3
Variable Model * A A ZA
Suy Y 5% NM -33.680 -32.530 -1408.400
M -34.609 -32.498 -1408.674
su, Y 5% NM -1.920 3.780 0.900
LM -1.914 3.840 0.926
Suy v 5% NM 11.180 6.740 118.800
LM 12.096 6.717 119.293
Su, Y 5% NM 0.000 15.370 0.926
LM 0.002 15.370 0.900

*NM indicates Nonlinear Model
IM indicates Linear Model
TABLE CT-22

EFFECT OF CONTROL PERTURBATION ON MOMENTS
(SPEED EQUALS 110 KNOTS)

% Change in Perturbed Moment
Control ST M N
Variable Model* A A A

su. % 5% NM |-246.745 |-466.361 -16.734
1 LM ~246.474 |-459.472 -16.714

Su~. Y 5% NM 28.664 15.055 1.867
2 LM 29.118 14.992 1.905

su. X 58 NM 47.036 -23.940 3.379
3 M 50.934 ~30.603 3.380

Su, ¥ 5% NM 72.614 0.507 -410.685
4 LM 72.612 0.457 |-410.684

*NM indicates Nonlinear Model
LM indicates Linear Model



TABLE CT-23

EFFECT OF CONTROL PERTURBATIONS ON FORCES
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(SPEED EQUALS 110 KNOTS)
® Change in Perturbed Forces
Control 5% TY 3
Variable Model* A A ZA
Suy v 10% NM -46.870 -51.670 | -2239.700
LM -55.990 -51.532 | -2240.362
duz Y 10% NM -3.840 7.540 0.900
M -3.832 8.017 0.923
6u3 v 10% NM 21.180 13.430 237.300
M 26.340 13.160 244,789
Su, Y 10% NM 0.000 30.720 0.900
M 0.003 30.720 0.921

*NM indicates Nonlinear Model
LM indicates Linear Model

TABLE CT-24

EFFECT OF CONTROL PERTURBATIONS ON MOMENTS
(SPEED EQUALS 110 KNOTS)

% Change in Perturbed Moments
Control T M N
Variable Model* A A A

u 10% NM ~391.895 | -792.191 -26.543
1 LM -390.825 | -723.561 ~26.472
o 10% NM 57.181 29.634 3.793
2 LM 60.797 29.530 4.047
- 108 NM 101.849 -39.007 6.809
3 LM 99.803 ~74.315 6.682
% NM 145.084 0.507 | -821.295

gy M LM 145.080 0.445| =-821.293

*NM indicates Nonlinear Model
LM indicates Linear Model
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APPENDIX D

HOMOGENEOUS TEST

Results of the homogeneous test used for substan-
tiating the linear model are tabulated in this appendix.
Table DT-1 compares nonlinear and linear position of the
aircraft with respect to an inertial reference frame.
Respective components of the velocity are compared in
Table DT-2, and the angular orientation of the aircraft

body axis with respect to the inertial frame is tabulated

in Table DT-3.



TABLE DT-1

HELICOPTER POSITION
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North East Altitude
Model* (feet) (feet) (feet)

NM 8.908 -0.020 1000.00
LM 8.908 -0.020 999.989
NM 17.816 -0.041 1000.000
M 17.816 -0.041 999.999
NM 26.724 -0.061 999,999
M 26.724 -0.061 999,999
NM 35.632 -0.081 999.999
LM 35.632 -0.081 999,997
NM 44,539 -0.101 999.998
LM 44.540 -0.100 999.994
NM 53.448 -0.121 999.996
M 53.448 -0.120 999.989
NM 62.356 -0.141 999.993
M 62.357 -0.139 999,982
NM 71.264 -0.161 999.987
M 71.265 -0.157 999.973
NM 80.171 -0.180 999.986
LM 80.174 -0.175 999.964
NM 89.079 -0.199 999.981
M 89.083 -0.191 999.953

*NM indicates Nonlinear Model
LM indicates Linear Model



TABLE DT-2

HELICOPTER VELOCITY
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&odel* N (ft/sec) E (ft/sec) H (ft/sec)
NM 178.160 -0.406 -0.001
LM 178.160 -0.406 -0.001
NM 178.160 -0.406 -0.004
LM 178.160 -0.405 -0.005
NM 178.160 -0.405 -0.012
LM 178.160 -0.403 -0.013
NM 178.160 -0.404 -0.023
LM 178.161 -0.400 -0.034
NM 178.160 -0.402 -0.036
LM 178.163 -0.395 -0.068
NM 178.160 -0.399 -0.050
LM 178.166 -0.388 -0.102
NM 178.160 -0.393 -0.064
LM 178.168 -0.379 -0.135
NM 178.160 -0.384 -0.078
LM 178.170 -0.367 -0.166
NM 178.160 -0.372 -0.089
LM 178.173 -0.352 -0.195
NM 178.160 -0.356 -0.099
LM 178.176 -0.330 -0.216

*NM indicates Nonlinear Model
IM indicates Linear Model



TABLE DT-3

ANGULAR ORIENTATION
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Model* ¢ (RAD) 8 (RAD) Y (RAD)
NM ~0.030 -0.077 0.000
LM -0.030 -0.077 0.000
NM -0.030 -0.077 0.000
LM -0.030 -0.077 0.000
NM -0.030 -0.077 0.000
LM -0.030 -0.077 0.000
NM -0.030 -0.077 0.000
LM -0,030 -0,077 0.000
NM -0.030 -0.077 0.000
LM -0.030 -0.077 0.000
NM -0 . 029 =-0.077 0.001
LM -0.030 =0.077 0.001
NM =) . 028 ~0.077 0.002
LM ~-.029 =0.077 0.001
NM -0.029 -0.077 0.003
LM -0.028 ~0.077 0.002
NM -~ . 029 -0,.077 0.004
LM -0.027 -0.077 0.003
NM -0.028 -0.077 0.006
LM -0.027 -0.076 0.005

*NM indicates Nonlinear Model
LM indicates Linear Model
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APPENDIX E

OBJECTIVE FUNCTION TEST

The control goal which is fed into both linear and

nonlinear systems is chosen to minimize the quadratic form
= T
J = [§d (k+1) - Xq (k+1)1 We [ﬁd (k+1) - Xq (k+1)1
+u (07 W (k)

where We and Wu are arbitrary weighting matrices for the
predicted stat; error and the control efforts, respectively.
Specification of the desired flight path is characterized
by the state vector, X3 (k+1).

By substituting (15) and (16) into the objective
function and utilizing the fact that

u, (k) = ug (k-1) + du (k-1),

the objective function may be minimized with respect to
Su (k-1). The result of this minimization is the control

goal, Eg (k), required to drive the aircraft to the

desired state. This is obtained by adding the perturbed

control given by

sul (k-1) = < x3 (k+1) = x] (k) + ¢ (k-1) 8x (k-1)
T T
Wy 6(k-1) = u (k-1) W, } 0% (k=1) Wy 6 (k-1)
+ Wu

to the nominal  control u(k-1).
Results of the objective function test are contained
in the appendix. Table ET-1 compares nonlinear and linear

position of the aircraft with respect to an inertial
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reference frame. Respective components of the velocity
are compared in Table ET-2, angular orientation of the
aircraft body axes with respect to the inertial frame

is tabulated in Table ET-3, and the linear velocities of
the aircraft with respect to the body axes are given in

Table ET-4.



TABLE ET-1

HELICOPTER POSITION
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North East Altitude
Model* (feet) (feet) (feet)

NM 8.908 -0.020 1000.000
LM 8.908 -0.020 999.999
NM 17.816 -0.041 1000.000
LM 17.816 -0.041 999,999
NM 26.724 -0.061 999.999
LM 26.723 -0.061 999.998
NM 35.632 -0.081 999.999
M 35.632 -0.081 999.997
NM 44,541 -0.102 999.999
LM 44,541 -0.101 999.994
NM 53.449 -0.122 1000.00
LM 53.450 -0.120 999.990
NM 62.356 -0.143 1000.001
LM 62.359 -0.140 999.985
NM 71.264 -0.163 1000.002
LM 71.268 -0.159 999.979
NM 80.171 -0.183 1000.003
M 80.177 -0.177 999.972
NM 89.077 -0.202 1000.005
LM 89.086 -0.195 999.965

*NM indicates Nonlinear Model
LM indicates Linear Model



TABLE ET-2

HELICOPTER VELOCITY
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Model* N (ft/sec) E (ft/sec) H (ft/sec)
NM 178.160 -0.406 -0.001
LM 178.160 -0.406 -0.001
NM 178.160 -0.406 -.004
LM 178.159 -0.405 -.005
NM 178.170 -0.406 -.009
LM 178.165 -0.404 -.010
NM 178.170 -0.409 0.009
LM 178.168 -0.402 -0.032
NM 178.160 -0.410 0.012
LM 178.171 -0.399 -0.054
NM 178.160 -0.408 0.020
LM 178.174 -0.394 -0.076
NM 178.160 -0.405 0.024
LM 178.170 -0.388 -0.098
NM 178.140 -0.398 0.032
LM 178.179 -0.379 -0.118
NM 178.130 -0.390 0.045
LM 178.180 -0.368 -0.134
NM 178.120 -0.376 0.058
LM 178.182 -0.352 -0.143

*NM indicates Nonlinear Model
LM indicates Linear Model




TABLE ET-3

ANGULAR ORIENTATION

Model* ¢ (RAD) ® (RAD) Y (RAD)
NM -0.030 -0 077 0.000
LM -0.030 -0.077 0.000
NM ~0.030 ~0.077 0.000
LM -0.030 =0.077 0.000
NM -0.030 -0.077 0.000
LM =030 -0.077 0.000
NM =-0.030 =0.077 0.000
LM -0.030 =0 . 077 0.000
NM -0.030 -0.077 0.000
LM =0« 030 -0.077 0.000
NM -0.030 -0.077 0.001
LM -0.029 =-0.077 0.001
NM -0.030 -0.077 0.001
LM -0.029 -0.077 0.002
NM -0.030 -0.007 0.002
LM -0.029 -0.007 0.003
NM -0.030 -0.077 0.004
LM -0.029 -0.077 0.004
NM -0.030 ~0:077 0.006
LM -0.028 -0.077 0.000

*NM indicates Nonlinear Model
LM indicates Linear Model



TABLE ET-4

LINEAR VELOCITY
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Model* U (ft/sec) V (ft/sec) W (ft/sec)
NM 177.630 0.001 -13.736
LM 177.630 0.001 -13.736
NM 177.630 0.001 -13.736
LM 177.629 0.001 -13.736
NM 177.636 -0.005 -13.733
LM 177.634 -0.003 -13.731
NM 177.634 -0.017 -13.760
LM 177.640 -0.018 -13.720
NM 177.629 -0.049 -13.773
LM 177.643 -0.057 -13.708
NM 177.623 -0.116 -13.784
LM 177.647 -0.134 -13.693
NM 177.615 -0.232 -13.784
LM 177.651 -0.259 -13.678
NM 177.607 -0.411 -13.776
LM 177.655 -0.439 -13.663
NM 177.596 -0.665 -13.756
LM 177.657 -0.681 -13.648
NM 177.536 -1.008 -13.729
LM 177.658 -0.984 -13.634

*NM indicates Nonlinear Model
LM indicates Linear Model
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APPLICATION OF MODERN CONTROL
TECHNIQUES TO DEVELOP
HELICOPTER FLIGHT

PATHS

by
Alfred Fermelia
and

Virgil J. Flanigan*

ABSTRACT

General techniques for simulating helicopter pilot
response for inclusion in a flight path simulation program
have been devised. To provide the desired flight goal,
a nominal flight tfajectory is obtained from an existing
nonlinear model. With this basis a deterministic pilot
model which attempts to minimize flight deviations from
the nominal can be developed for generating descriptions

of the desired flight path.

*The authors are associated with the Department of
Mechanical and Aerospace Engineering, University of
Missouri-Rolla, Rolla, Missouri, where Mr. Fermelia is a
graduate student and Dr. Flanigan (member ASME) is an

Associate Professor.
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NOTATION

In the paper all bold-face capital letters denote
matrices. Vectors are defined in column format and are
denoted by lower case letters in bold face type. All
scalars will be denoted by plain upper or lower case
letters. Occasionally it may be necessary to illustrate

a vector in the following format:

p— ——

=1,

iy

These general rules will hold unless otherwise specified
in the text.
Numbers in brackets designate references at the

end of the paper.



INTRODUCTION

The objective of this paper is to present general
techniques for simulating helicopter pilot response.
During flight the pilot manipulates the controls either
to trim the helicopter for steady flight by balancing
the external forces and moments or to produce a desired
maneuver by controlling the unbalance of these forces
and moments. Discussions of the physical phenomena
involved with the aerodynamics of the rotors and fuselage
are given in several references [1, 2, 3].

The cyclic stick, collective stick, and foot pedal
comprise the controls of the vehicle. Cyclic stick
control (forward-aft and lateral displacements) causes
a cyclic variation in the main rotor blade pitch which
results in the reorientation of the rotor thrust vector.
This tilt of the rotor thrust provides the moment for
pitch and roll motions. A change in blade pitch is also
obtained by the collective stick control. However, the
variation in pitch is the same for all blade azimuth
positions which effects the magnitude of the rotor thrust
primarily for vertical and forward speed control of the
aircraft. Since the required engine power is related to
the rotor thrust, the engine fuel control is usually
synchronized with collective pitch. 1In addition, the
pilot may vary the fuel setting by slight adjustments of

the fuel control. During flight the pilot maintains a
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constant awareness of turbine speed and power. To reduce
the complexity of the simulation model, the usual
approximation of constant rotor RPM is assumed, and

pilot manipulation of the fuel control is avoided.
Through the foot pedals the pilot can control the tail
rotor pitch, hence thrust and thereby the yawing moment.
Thus, the simulated pilot's control will be composed of
forward-aft cyclic, lateral cyclic, pedal and collective.

The control will be represented by the vector

Uyl = collective
u, A lateral cyclic
u = A (1)
us | = longitudinal cyclic
Uyl = pedal

The purpose of the pilot control input is to create
necessary aerodynamic forces and moments to control
helicopter motion and attitude which is measured by the
c.g. velocity and the angular orientation (yaw, pitch,
and roll) and velocity of the fuselage. This output

state will be denoted by the vector

[u ]

v velocity of the c.g.
w

P angular velocity of

d the fuselage (2)
x= |r

Y angular orientation

G of the fuselage

¢

Q_J rotor speed
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To provide closed-loop action for the simulation, the
pilot model must interpret the necessary control u as
a result of any deviation in x from the desired state.
A block diagram illustrating the overall concept of the
flight path simulation is shown in Figure 1. The blocks
numbered 1 through 6 are included in the helicopter
dynamics model (reference 4). 1In the present study only
block 8 will be considered. Hence the pilot control
action, block 9 of Figure 1, will be assumed to be a
unit gain. This assumption implies that the control goal

is instantaneously predicted, i.e., a perfect pilot.

DETERMINISTIC PILOT MODEL

There are two basic approaches to developing a
mathematical representation of the human operator's
data sampling, error quantization and control goal
decision roles. These two approaches are significantly
different in their characterization of the operator.
One method involves the qualitative and psychological
aspects of the pilot. Functions such as sensing of the
aircraft state and various instruments, the categorizing
of these measurements as acceptable or non-acceptable,
the human prediction and memory capability, and the
human ability to adapt his response to the given situation
would be included in this type of model. Probably one

of the better illustrations of this approach is given by
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Benjamin [6]. His study was for the relatively uncompli-
cated case of single input-output tracking whereas the
helicopter pilot has four control inputs at his disposal
with the desirability of controlling at least ten output
variables. Adding to this complexity to a model such as
Benjamin's which is already elaborate from the stand-
point of the logic structure is not feasible due to
computer limitations.

The second approach can be entitled a quasi-pilot
engineering model which describes the overall performance
of the pilot without close regard to psychological
functions of the human operator. Some authors [7] have
referred-to these two approaches in a descriptive way as
microscopic and macroscopic modeling of the pilot,
respectively. From the results of the many previous
investigations concerned with the modeling of a human
operator in various tasks, it is apparent that the
engineering model approach is the most feasible based on
the current simulation state-of-the art.

The essential functions of the pilot model are
to evaluate the system error, predict the necessary

control input goal, and perform the control input

manipulation. These functions are illustrated in Figure

2. Thus the pilot model provides the feedback (see
Figure 1) required for the closed-loop simulation of

the helicopter flight path in conjunction with the

helicopter dynamics model [4]. Since the development of
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the pilot logic for a general maneuver is impractical,
the desired trajectory for the helicopter state is
prescribed [5]. Comparison of this nominal with the
actual state produces the error from which the control
goal can be resolved. Once the goal is established the
pilot response and dynamics in performing the control
manipulation can be modeled as a multi-variable tracking
task.

The first consideration will be the general features
of the discrete time deterministic control goal model.
From the desired trajectory the state X3 (t) is known at
discrete time intervals o, T, ..., kT, ..., etc., as
depicted in Figure 3. In addition, from the trimmed
flight conditions, the initial state x(0) and the control
vector u(0) are known. It is presumed that the starting
point of the trajectory will be a steady or trimmed
flight condition. With these quantities given as initial
data the helicopter dynamics portion of the simulation
will yield the new state at t=T, i.e., x(T). At the time
T a new selection of control is necessary for the next
interval T to 2T. The control vector is constant for the
length of the discrete sampling time and is only changed
by some amount du(kT) at the next sampling instant. With
the new control the dynamics model again yields the
subsequent state of the helicopter. This repetitive

process continues for the desired time of the prescribed



nominal path. The question to be answered is, what
control goal or change of control is required at each of
the sampling times?

For small perturbations the nonlinear helicopter
dynamics can be approximated by the linear state
equation [5].

§x(t) = ASx(t) + Béu(t) (3)
where the system and control time-invariant matrices, A
and B, are evaluated at the particular state from which
the control change is to be calculated. The solution of
equation 3 for the time interval kT to (k+1)T is known
to be [8, 9, 10]

§xq [(k+1)T] = ¢ (T)6x(kT) + 6(T)Su (kT) (4)
where ¢ is a (10x10) stability matrix and 6 is a (10x4)
control matrix [5].

Since the desired state vector is given at the
discrete time increments §d(kT), it is proposed that
the necessary control goal ug(kT) to follow the desired
path be calculated with the simplified linear model. The
selected goal should minimize the deviation between the
nominal and linear helicopter states. Hence, a cost
function, J, which provides the basis for selecting the
best control vector should include these considerations.

For convenience, a quadratic form is defined

3 = ET[(k+1) TIW_ [ (k+1) TIE[ (k+1)T] (5)

79
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the function J is to be minimized by the proper selection
of u(kT) where WX is a time varying matrix for the
predicted state error at time, (k+1)T. ©Note that the
predicted error at the time, (k+1)T, is

E[(k+1)T] = §d[(k+l)T] - §l[(k+l)T] (6)
but from equation (4) with x, (kT) set equal to the
actual state x(kT), the cost functional is

3 = xy [(k+1)TIW [ (k+1) TIxy[ (k+1)T] (7)

—2 x2 [ (k+1)TIW, [ (k+1) Tl xq [ (k+1) 7]

-2 2 [ (e+1) TIW, [ (k+1) T {9 (T) 8x[ (k=1) T]
+ 0(T)sul(k-1)T1} + {$d(T)Sx[(k-1)T]

+ 0(T)6ul (k=1)TI}TW_[ (k+1) T {6 (T) 8% [ (k=1)T]

+ 0(T)8ul (k-1)T]}

Therefore, in order to minimize the cost functional,

(kT) is given by

the control gg
_lgg(kT)= ul (k-1)T] + Sul (k-1)T] (8)
where
suT[(k-1)T] = {xq[(k+D)T] - (x(XT) + 6 (T)8x[(k-1)T]) "}
W[ (1) 718 () {67 (MW, [ (k+1)T16 (1)) (9)

Application of the control law given by equations

(8) and (9) to certain desired flight paths results in a

*The selection of the weighing matrix W, is discussed
in detail in Appendix A.
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maximum/minimum control. Therefore in order to avoid

this condition alternate cost functions can be considered.
If the computed control is not feasible then the

obvious solution is to minimize an objective function

which weights the control, i.e., consider

J = ET[(k+1)T]We[(k+l)T]E[(k+1)T]

+ u’ (KT)W_ (kT) u (kT) (10)

The control that minimizes (10) is given by

su’ (k1) = {x3[(e+1)T] - (x7 (k™)
+ 6xT (k)67 (T) IW_[ (k+1)T]0 (T) (11)
foT(T)W_[(k+1)T10(T) + W (kT)} T

Generation of this control for certain desired flight
paths resulted in a control vector u which was not feasible.
Clearly this control should satisfy all control constraints
provided the time varying weighting matrix Wu is chosen
correctly. Therein lies the problem, i.e., how does one
choose the weighting matrix We as a function of time?*
Attempts were made to select Wu(kT) to no avail.

In order to motivate the algorithm which does produce
a control which satisfies all control constraints, consider
again equation (11). Note the effect of the control
weighting function is to add to the penalty associated

with the state error, i.e., the last term in brackets of

*Appendix A discusses the technique used to
obtain W, (kT).
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equation (l11l) grows larger. Therefore consider the control
given by equation (9). This equation can be written as

suT (k) = %[ (k+1)TI{6T (MW _ [(k+1)TI6(T)} " (12)

where

L) T1 S0 [ (K1) T) - (x (KT)
+¢(T) 8x[(k-1)T1) } W[ (k+1)T10 (T)
Comparing equations (11) and (12) indicates that if
(T (MW, [(k+1)T16 (T) + W (kT)} 7 (13)
= (6T (D)W, [ (k+1)TI0 (T)}

the two equations are identical. Equation (13) can also

be written
T
{6 (T)Weu[(k+l)T]6(T)}
= {GT(T)We[(k+1)T]G(T)} (14)

Now assume that the control law generated using
equation (9) is not feasible. The solution for the kT

time is given by

|

suj (km) = & (em) [07 ()W [ (k+1) 70 ()17 (15)
solving for x (kT) yields
%, (km) = u” (kT) [87 () [(k+1)T10 (T)] (16)

Since the control given by (9) is not acceptable, i.e.,

it is too large or too small, consider an iteration that

will guarantee feasibility.
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The first jth iteration is given by (15), the j+1
iteration yields the control

Suji,y (kT) = %5 [k+1)TI 6T (DW_ 6 ()] (17)
Therefore, it follows that

§xT [ (k+1)T] = Su3,q (kT) 187 (T)W, 0 (T) ] (18)
Note in essence the objective function in the jth
iteration is equation (5), whereas the j+1 iteration
utilizes the cost function given in equation (10). Note

however the necessity to select both a weighting matrix
for state and one for the control no longer exists.

In order to demonstrate the feasibility of the
control consider

su3 (kT Sy (k) = K7L+ T] (67 ()W [ (k1) TI0 (1)) ™

16T (T)W_[ (k+1)T16 (T) 1 [ (k+1)T] (19)
Substituting equation (18) into (19) yields

T
sul (kT) 8uy (KT) = sul,y () (87 (T) W, 6(T) ]

[GT(T)We[(k+l)T]6(T)]—l[8T(T)We[(k+1)T]6(T)]_l

T T
(67 (T) W, 0 (T) 1" 6uy (KT) (20)

m
Then subtracting ngT6gj from 52j+l_65j+1 yields
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T T

5u§+l{1-eTweue[(eTweefd5wTwee)‘T]eTweua}éuj+l
where the time parameters have been omitted for clarity.
Now in order that the j+1 iteration be less than the jth
iteration, the term in brackets must be less than a
preselected negative definitive matrix P, i.e.

I - RMR <P (22)

where

RAD W0

T -1,.T -T
MA (67W_6) ~(87W,D)

Note the matrix M is a known constant, hence solving

equation (22) for R will insure a feasible control. The

solution of equation (22) is given in Appendix B.

RESULTS AND CONCLUSIONS

In order to demonstrate the application of modern
control techniques to helicopter motion, four flight
paths were considered. These four consisted of the
helicopter in the configuration of a level flight, climb,
dive, and a turn. In order to compare nonlinear vs linear
models, inertial position and angular velocities of the
helicopter were plotted as a function of time. Figures

3 through 22 illustrate the results for the different

configurations.



85

Comparison of Figures 11, 12, 13 and 14 indicates
that the predicted roll matches the desired state within
+0.4 of a radian. Although roll was not matched as well
in the climb orientation, it nevertheless matches the
shape of the desired state better than that of the level
flight, or dive. Note that in the turn flight path, the
shape of the predicted roll closely follows the desired
trajectory. Examination of the figures also reveal that
the linear model attempts to follow the trend of the
desired for those flight paths which give rise to
maximum motion, i.e., examine the roll histograms.

The oscillatory nature of Figure 13 may be explained by
noting that the system to be controlled is of the 10th
order. Note that the frequency content of the desired
roll is quite low, hence the control of the roll parameter
is delegated a lower priority than the control responsible
for controlling the forward velocity. This is illustrated
by Figures 31-34 which gives the control histograms for
the dive trajectory.

As might be expected, results of the climb flight
path are mirrored in the dive trajectory. This is very
apparent when comparing the time traces of pitch for
both cases. The stability of the level flight might
certainly be questioned after examination of the pitch
channel for that particular configuration. However,
noting that the amplitude at the end of 2 seconds is

less than that obtained at 1.4 seconds, gives evidence
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that the trajectory is stable. Credence to this conjec-
ture is given by examination of the pitch channel for the
turn, i.e., the turn consists of a level flight for the
first 2 seconds.

Having examined the characteristics of roll and
pitch, expectations are that the yaw channel would
exhibit the same type of performance. Examination of
Figures 19 through 22 indicate that this is indeed true.

It is interesting to note that in all angular
velocity channels the response in the linear model appears
to lag behind that of the desired flight path. Also in
every case considered the magnitude of the response is
much larger than that of the nominal. This is best
illustrated by Figure 12. Cause of these anomalies can
be explained by the linear model chosen to represent
the nonlinear helicopter. In selecting a suitable model
to approximate the helicopter two linear configurations
were initially considered. The models considered were:

6 (T) 8% (kT) + 6 (T)8u (kT) (23)

Il

6, [ (k+1)T]

and

Gil[(k+l)T] ¢ (T)8x(kT) + ¥Y(T,T-1)8x[(k-1)T]

+ 6(T)8u(kT) + T[T, T-1]18ul (k-1)T] (24)
Equation (23) was chosen for the following reasons:
1) reference [11l] indicated that it could indeed
approximate the nonlinear model, 2) a model similar to
(23) was used in reference [12] and 3) simplicity of (23)

as compared to the complexity of (24).
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The anomalies mentioned above can be explained by
the omission in (23) of information contained in the
coefficient matrices Y and T of (24). Clearly by
neglecting ¥, information regarding the frequency
content of the system will be lost. Similarly omission
of T may result in generation of a control law which
exceeds the bounds of a feasible control.

In concluding, this paper demonstrates that modern
control techniques can be applied to a helicopter which
allow the vehicle to follow a predetermined flight
path, i.e., feasibility of a helicopter auto pilot.
Clearly performance of the algorithm selected to generate
the control law yields a measure of the linear system
chosen to represent the nonlinear helicopter. However,
due to errors in the linear model, a technique had to be
developed whereby a feasible control law could be obtained.
In order to achieve this, an algorithm was developed to
determine a weighting matrix as a function of time. This
technique can be implemented on other systems with a

similar effect.

FUTURE CONSIDERATIONS AND EXTENSIONS

In the previous section it was noted that the
calculation of the control goal does not account for the
pilot response. It is presumed that the goal is instan-

taneously predicted; however, it is evident that the
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pilot cannot respond with such precise behavior. To
approximate the pilot's response in performing the
control task the describing function developed for a
tracking can be included as the action part of the pilot
model. Such a pilot action model coupled with the
alternate linear model discussed in the previous section
are natural extensions of this dissertation. Discussion
of the alternate linear representation was presented in
the previous section. Therefore, only the pilot action
model [5] will be discussed at this time.

Two of the most evident human characteristics are
a variable gain and a delayed response. The simplest
form of the transfer function would be

G(s) = Ke '° (25)

The gain K is dependent upon the system dynamic
characteristics, the nature of the control task, the
physical and emotional condition of the operator, and
other factors influencing the difficulty of the control
task. For unpredictable signals the time delay, 1, may
be as much as 0.5 seconds but decreases in magnitude with
operator experience. Generally, a value of from 0.1 to
0.2 seconds could be assumed.

In addition to the pure delay a first order
neuromuscular lag has been observed. Several early
investigators suggested various combinations of deriva-

tive and integral control modes to better describe the
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adaptive nature of the human operator. These have

evolved into the form

Ke_Ts(l+Tls)
(1+Tnsf(l+Tis) *

G(s) (26)

Equation (26) is expanded in block diagram form in
Figure 39. As shown, the nonlinear function of the
pilot is described by a linearized transfer function and
an assumed remnant term. In a complicated task such as
the control of a helicopter, the remnant could be quite
large. Since it is difficult to exacly specify this
term, it is more easily treated as a superimposed

noise. Some investigators have criticized the
indiscriminate use of (26) since the data for developing
the linearized equation was primarily for single input-
output tasks. However, based on reference [13], equation
(26) can be utilized to describe the pilot transfer

function and hence is a natural extension to the work

presented previously.
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APPENDIX A

WEIGHTING MATRICES

The selection of the weighting matrix We is obtained
in the following manner. Since the desired state at

time KT is known apriori, the error between desired and

actual state is approximated by
2 i k i o7
e; (kT) = xé(kT)-{xl[(k-l)T] + xl[(k—l)T]At}> 2

where

and
At A sample time.

The corresponding diagonal weighting function is given

by
1 .
—e_2‘ O . . 0
1
§
W, (kT) = ei
. 2 .
. . l
2
0 : x & 1

In a similar fashion the weighting function, W,, on
the control can be obtained. However, note that in
selecting the weighting function on the control, the
problem of singularity becomes increasingly severe. That
is, the control may remain constant over two or more

sample times making the inversion of W, impossible.
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APPENDIX B
SOLUTION OF THE MATRIX RICCATTI EQUATION
To solve

T -
XA" + AX - X(HTR 1H)x = -P (B-1)
where X, A, P, R are n x n matrices, H is an n x m matrix
and R is an m x m matrix apply the following algorithm:

1) Find the characteristic equation of the 2n x 2n

matrix

W = (B-2)

P -A
It will have even powers in the unknown.
2) Find all the roots of this equation, retaining the
n roots which have negative real parts.
3) Use these complex quantities to generate the
coefficients of the polynominal having them as

roots. Denote the result by

an_lsn"l + eee togs ta, =0 (B-3)

4) Find the matrix

Wi1 W2
A (B-4)
LYZI 22
5) Evaluate X from

S | . (B-5)
X = Wiy Wy or X =Wy, Wy
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The equation

XAT + AX - XMX + P = 0 (B-6)

where A, X, M, P are n x n matrices, holds if and only

if
< -1
W = XWX (B=7)
where
— = ~ =
I 0 I 0
X A x1 = (B-8)
| X T | -X I
- - - —
AT M AT M
WA W=
| P -R | |0 =3 |

~

with A A A - MX.

Proof: The desired result is obtained by direct
expansion of (B-7) according to the definitions in (B;8).

I can also be shown that

det (sI-W) = (-1 "A(s)A(-s), (B-9)
where

A(s) A det(sI-A). (B-10)
From the above

_l~
det (sI-W) = det (sI-X WX)

- det X 1 det(sI-W)det X. (B-11)
By inspection, det X = det x_l, so that
det (sI-W) = det(sI-W) (B-12)

Using this result and the definition of ﬁ,
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— -1 -
I Y sI - AT -M
det(s I - W) = det
| O I] Lo s I + éJ
(B-13)
P .~
sI - A -M + Y(sI + A)
= det
__O sI + A _

for arbitrary Y. Choose Y = M(sI + A) % and obtain

det(sI - W) = det(sI - AT) det (sI + A). (B-14)

Now
det(sI + A) = det [-I(-sI - A)] = (-1)" det(-sI - A).
(B-15)

By combining this with (B-13) and B-10, the desired
result (B-9) is obtained.

From (B-9) it is clear that the characteristic

equation of W has even power only.
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