MISSOURI

S&l

Library and

Learning Resources Scholars' Mine
Doctoral Dissertations Student Theses and Dissertations
1975

Bit penetration into rock - A finite element study

Jaw-Kuang Wang

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

0 Part of the Mechanical Engineering Commons
Department: Mechanical and Aerospace Engineering

Recommended Citation

Wang, Jaw-Kuang, "Bit penetration into rock - A finite element study" (1975). Doctoral Dissertations. 12.
https://scholarsmine.mst.edu/doctoral_dissertations/12

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.


https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/12?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

BIT PENETRATION INTO ROCK - A FINITE ELEMENT STUDY

by

JAW-KUANG WANG, 1943-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

MECHANICAL ENGINEERING

1975

T3051
111 pages
c.1

e

}: < e

=t
Advisor < - (’ ./ -~
. ; - ,—":) g / \ﬂi ¢ ) N
- P i pr, N !
L ’2{;/ A ’/Jf%««'é-f/\v/ VA éx %T'ux« ALG

Ra{ev/g J. Q g

246514



il

ABSTRACT

A finite element approach has been developed to simulate bit
penetration from bit-rock interaction to chip formation. A mathe-
matical rock failure model, based on a review of the existing
literature on rock tests, has been proposed to represent post-failure
rock behavior and applied in the penetration simulations. The finite
element program has been developed for two dimensional plane strain
problems with non-linear material properties, geometrical non-
linearities and fracture. An anisotropic element as well as variable
stiffness and stress release methods have been used. An iteration
method, using an incremental approach, has been applied for contin-
uous penetration and modifications of material properties and dis-
placements. Quantitative information on stress, displacement and
material failure in the entire penetration process can be obtained
through computer simulation. Blunt point, wedge and cylindrical
bits are used in the penetration simulations. Blunt point bit
penetration, with two different post-failure rock strengths, has

been simulated and compared with experimental results.
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I. 1INTRODUCTION

Although many novel rock disintegration techniques have been
introduced in recent years, only a few have shown promise for prac-
tical applications. The most common and practically important
method, which has been used to drill millions of feet of rock every
yvear, 1is still the mechanical action of drilling machines. 1In spite
of the importance of the method, however, the basic bit penetration
mechanisms involved are still not well known. Advances in basic
studies could result in better designs and faster penetration rates.

The bit penetration mechanisms are essentially a sequence of
rock failures. Unfortunately, knowledge of the post-failure behavior
of rock is very limited. Only a few investigators in the past have
extended their studies in this area, and the information at hand is
far from being sufficient. On the other hand, the constitutive
theories, which we generally apply for describing rock behavior in
the elastic state, become inadequate for the fractured rock. The
complexity of the post-failure character of rock makes our task for
a general constitutive law and its solution practically impossible
at present.

Because of these difficulties, much of the past success in bit
penetration studies has been achieved through experimentation, and
some empirical formulae developed from these studies have been

1% . . . . .
introduced™ . They generally provided guidelines in particular

circumstances and could rarely be generalized or used to predict

*Numbers refer to references listed in the Bibliography.



different and untried conditions. With regard to analytical methods,
progress has been made only in the prediction of the initial crack

of an elastic brittle rock under the penetration of a rigid wedge and
in the calculation of the stress field beneath indentors using the
slip-line theory of plasticityz’z.

Sikarskie and Cheatham, in their recent review of the present
art of penetration problems in rock mechanics, made the following
suggestions for further Studya.

1. An improvement in the description of fracture growth-~how
the stress field changes due to the fracture region and the stabilirty
of the fracture growth.

2. A better description of the crushing phase.

3. Possible extensions: a) extension to other geometrics
and tool conditions, b) extension to other constitutive behavior.

The purpose of this study is primarily to develop a general
mathematical model to simulate the sequences of failure mechanisms
and provide a better description of the aforesaid penetration phases
--initial cracking, crushing and chipping. Furthermore, a satisfac-
tory model of this nature (non-linear material properties, geomet-
rically non~linearities and fracture) will also serve the common
interest of a broad area of rock mechanics.

The finite element method, which has been applied to numerocus
rock mechanics problems, will be used for this study. Its special
suitability lies in the fact that the complexity of rock behavior

can be handled, and arbitrary geometrical configurations and boundary

conditions can be applied without difficulty.



ITI. REVIEW OF LITERATURE

A. Experimental Studies

Experimental studies on bit penetration have been conducted
extensively by many means. Among them, quasistatic tests and drop
tests, with strain gage measurement and high speed photography were
used most often. Although different methods have been used and the
quantitative results have varied over a wide range, the penetration
phenomena observed have been similar, i.e., sequences of radial
cracking, crushing and chipping. The Drilling Research Institute
has conducted a series of studies on rock failure and crater forma-
tion under the impact of a blunt wedge bit. The events were recorded
using high speed photography and strain gage measurements and can

5
be summarized by the following (Fig. 1)

1. Crushing of surface irregularities as bit first makes con-
tact with rock.

2. Ilastic deformation of rock from continued application of
load by bit. Surface cracks radiate out from lines of stress con-
centration at boundary of cutting edges.

3. Crushing of central wedge of rock into fine fragments.

4. Chipping out of large fragments along curved trajectory to
surface adjacent to crushed zone.

5. Crumbling away of crushed zone and displacement by bit as
it continues to penetrate. Entire sequence may be repeated if blow
energy is sufficient.

These observations have been generally confirmed by later

. . . 1,4-10
investigators in both static and dynamic experiments .
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Figure 1. Sequence of Rock Failure and Crater Formation

(After Hartmans)

Reichmuth and others investigated the depth of penetration
. . : y 6,7
after cutting the indented specimen perpendicular to the wedge .
The sectioned surfaces showed that the damaged depths were greater
than those observed after removing the crushed material, and tensile
cracks were initiated a short distance away from the bit-rock inter-
face. These fractures started in directions radiating out from the

bit. The vertical cracks ran deep into the rock while others tended

to curve toward the free surface as shown in Fig. 2.
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Fizure 2. Fracture Patterns for Wedges (After nOLCthCIO)
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Porosity is an important material property in bit penetration.
Ladanyi, using a flat-ended cylindrical punch in his study, concluded
that in the case of a dense rock of low porosity indentation failure
initiated at the edge of the punch with a tensile crack forming a
truncated cone beneath the punch8. As the applied load increased,
the cracks continued stable growth up to a certain load level. Fi-
nally, the cone crushed and the cracks propagated to the free sur-
faces in an unstable manner (Fig. 3a). In the case of a porous
brittle rock, the punch could be pushed to a certain depth with
little damage to the surrounding material. With increasing load,
the crushed and compressed rock beneath the punch led to radial

cracking in a way similar to the case of a dense rock (¥ig. 3b).

‘ EXTREME %ﬂvﬁhﬂj;uww” EXTREME

INTERMEDIATE

—~ INTERMEDIATE

Q. BRITTLE-DENSE b. BRITTLE-POROUS

Figure 3. Assumed Indentation ¥Failure Modes for bExtreme
and Intermediate Cases of brittle-Dense and
Brittie-Porus Rocks (After Ladanyi®)

One of the most consistent results in experimental penetration

-_19

. / P
studies has been the force-penetration (¥F-P) characteristics
Reichmuth recorded ¥-P curves during the process of penetration using

a load cell and a displacement transducer7. As shown in Fig. 4a, the



oscillating curve represents cyclic material failure while the pene-
tration process alternates phases of crushing and chipping. Figure
4b shows a typical F-P curve in Indiana Limestone due to impact of a
blunt point bitg. A crushed zone formed along AB and a chip was
formed at B. Along BC the chip flow from the crater resulted in
collapse of the zone of crushed rock beneath the tooth with a de-
crease in the force. The process was repeated with different degrees
of chipping at D and E. F-P curves are functions of loading rates,

rock properties and tooth profiles.
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olA___1 1 ! L Fl 1
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Figure 4. Typical Force-Penetration Curves

(After Reichmuth? & Mourerg)



B. Analytical Studies

The slip-line theory of plasticity has been applied in the study

. . ) 12-17 .
of stress field indentation problems . The theory, which was
originally developed to analyze the deformation of a rigid perfectly-
plastic so0lid under conditions of plane strain, has been mainly
employed for investigating industrial processes such as rolling,
extrusion and forging. Hill extended the theory to the case of a
plastic material using a yield condition based on the Coulomb-Mohr
. . 12 A . e .

criteria~. He showed that two families of characteristics exist
which are inclined at an angle of + (1/4-0/2), where ¢ is defined as
the angle of internal friction. The Coulomb-Mohr criteria was used
to represent rock behavior because of its good first approximation
with experimental results and also for mathematical simplicity.

Cheatham used this theory to study maximum and minimum forces

. 14 .
necessary to penetrate a rock with a wedge-type tooth . These
forces corresponded to the limiting cases of rough and smooth tooth-
rock interfaces. The influences of tool profile and confining
pressure on the required forces were also briefly discussed. Paricau
and Fairhurst extended the work on a wedge tooth to smooth, fric-
, A 15

tional and rough interface conditions ~. Clark et al. extended the
study to blunt point, round point and cylindrical indentors using
the same interface conditions .

While the slip-line theory gives a good first approximation of
the stress field under an indentor, especially at the high confining
nressure condition where rock behaves as a ductile material. the

theory with its idealized material properties is, however. unable to



interpret the brittle penetration failure mechanism. Some simplified
wedge penetration models for brittle rock have been proposed. Paul
and Silarskie introduced a model for brittle crater formation in
rockz. They assumed that fractures occurred along a plane extending
from the wedge tip to the free surface at an unknown angle ¥, and the
Coulomb-Mohr criteria is satisfied simultaneously along the entire
chip surface. According to the theory, the peaks on the F-P curve
should lie on one straight line (Fig. 5). Dutta suggested similar
nodels based on experimental observations and obtained a linear F-P
relationship for wedges, and a parabolic one for cones ~ . These
models covered some important events in the failure sequence; how-
ever, they could not describe the detail of the crater formation and
gave no quantitative evaluation of the stress and displacement ficlds
during the penetration process. The simplified models also neglected
the effects of some important material properties such as porosity.

brittleness, etc.

RS
"

P. WEDGE FORCE IN THE ith PENETRA-
l TION CYCLE

PLANER ANGLE OF PLANAR FRACTURE
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=TOTAL FORCE

T = NORMAL FORCE
di

= SHEAR FORCE

Ficure 5. Tdealized Model of In("il))'j(\nt Chipping
(Ater Paul o Siharskie-)
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Sikarskie and Altiero, using an integral method, have succeeded
in predicting incipient fracture from the penetration of a wedged-
shaped tool without considering the compressive failure of the mate-—

rial and the change of stress field3.
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III. MECHANICAL PROPERTIES AND FAILURE THEORIES OF ROCK

In almost every engineering problem, equations are used to
obtain quantitative information for the selections and decisions
of design. Some material properties and constitutive equations must
be inserted into the equations to yield data. The validity of the
solution obtained is no greater than the validity of the material
properties and constitutive law applied. Therefore, understanding
rock behavior is of primary importance in the study of rock mechanics
problems and is an essential element in a better engineering design
of bits and drilling equipment. In this chapter, mechanical proper-
ties and failure theories of rock, which are related to the penetra-
tion study, will be discussed.
A. Tensile Strength
Rock is weak in tension. For an igneous rock, the compressive
. . 18
strength could reach 20 times greater than the tensile strength .
Zienkiewicz et al. considered rock as a 'no tension' material in
9 .
their study of the structure of a rock mass . Fissured rocks and
) 20
joints are often considered incapable of sustaining tensile load .
In the axial tension test, rock failure is instantaneous and
always clear cut, disposed normally to the axis of the cylinder. The
primary difficulty in this test is the lack of a satisfactory means
to grip a specimen without introducing bending stress. Improving
methods such as glueing the metal end caps to the sample or widening
the cylindrical diameter at the ends of the specimen have been tested
Many investigators prefer the indirect methods,

with some success.

such as bending or Brazilian tests. The dispersion of results from
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tensile tests is usually large. A number of results are required to
obtain acceptable average values.
B. Uniaxial Cowmpression

The behavior of intact rock in uniaxial compression has been
investigated by Bieniawski on QuartziteZI. He found that the stress-—
strain curve can be divided into four regions. At the beginning of
the compression, preexisting microcracks in the specimen are closed
over a small increment of stress. During the crack closing, an
increase in modulus of elasticity takes place resulting in a non-

linear region of the stress-strain curve as shown in Fig. 6. In

region 1I, the stress-strain curve is essentially linear. Initial
cracks may start at the end of this stage. Region III represents
stable fracture propagation as the gtress level increases. Before

the applied stress reaches its peak, an unstable fracture propagation
takes place resulting in progressive {lattening of the stress-strain
curve in region 1IV. Meanwhile, experimental results in uniaxial
compression tests indicate that microfractures in a specimen tend to
propagate in the axial direction. These tensile cracks in the axial
planes result in a fast increase in lateral strain and a reversal in
volumetric change as shown in Fig. 6.

Most uniaxial compression tests have been terminated after the
ultimate strength has been reached. Little is known of the post-
failure behavior of rock, which is important to many engineering and
geological problems in drilling, excavation and bearing. In conven-
tional testing machines, when the maximum carrying ability of the

specimen is exceeded, the sudden release of the stored energy in the
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machine drives the sample to a rapid, uncontrolled collapse. Only
in recent years, have attempts been made to control brittle frac-
tures in compression tests by increasing the stiffness of testing
machineszz-ZA.

Barnard developed a very stiff compressive machine and success-
fully obtained complete stress-strain curves for Concretezz. The
results demonstrated the ability of concrete to undergo a very large
displacement without ceasing to carry load (Fig. 7). He also sug-
gested that reduced cross section specimens give more consistent
results over prisms due to the fact that reduced cross section speci-
mens yield a more consistent failure position and a more homogencous
gage reading.
C. Shear Strength

Figure 8a 1llustrates shear strength versus displacement of an

. . .25 ; .

intact rock sheared in a direct shear device . 1In this process,
shear strength reaches a maximum at some small value of displacement
where fracture occurs along the potential discontinuity. With con-
tinuing displacement, shear resistance gradually decreases until it
finally approaches a minimum value corresponding to the residual
failure stress. If a series of identical tests are conducted with
various normal loads N, then the maximum and residual failure
strengths associated with their normal loads can be drawn to form
two extreme failure envelopes as shown in Fig. 3b. The vertical dis-
tance between the two envelopes indicates the reduction in shear
strength with continuing displacement.

Patton, in his study of the shear strength of rock, found that

with large displacements originally polished rock surfaces become
ol
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scratched and gouged26. The frictional resistance increases from
some initial low value to a higher residual value. On the other
hand, if the original surfaces are rough, they become smooth with
cont inued displacements, and the frictional resistance progressively
approaches the above mentioned residual value. He also used speci-
mens containing a number of irregular 'teeth', representing various
degrees of rough surfaces, in direct shear tests and obtained differ-
ent failure envelopes lying between the two extreme failure condi-
tions as shown in Fig. 8b.

D. Rock Behavior under Combined Loading

In triaxial compression tests, the state of confinement influ-
ences rock properties of intact rock. An increase in confining
pressure could result in an increase in ultimate strength, strain
and stiffness. Under sufficiently high pressure, as the cases in
deep o0il wells, rock becomes ductile.

One convenient way to summarize the results of triaxial tests
is to plot the data in terms of major and minor principal stresses
at failure on a Mohr diagram as shown in Fig. 9a. A curve tangent
to the family of Mohr circles for tests conducted at various con-
fining pressures is the failure envelope for the particular intact
rock tested. Bieniawski in a survey of published rock fracture data

concluded that Mohr envelopes are approximately linear over a wide

range of confining pressure .
Although the post-failure behavior of rock under triaxial
loading is not well tested, it is agreed that the falling branches

of the stress-strain curves in triaxial tests follow the same trend
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as observed in the uniaxial compression or direct shear tests (Fig.

9b)24’27.

The residual strength of pulverized rock after a large
displacement could be approximated by a linear Mohr envelope with no
cohesive strength as given in Fig. 9a.
E. JVailure Theories

sriffith was the first to formulate a theoretical study on frac-
ture initiation based on energy considerationszl’ZS. Later on, an
alternative approach, which considered the stress concentration at the
crack tip, was adopted because of the difficulty of experimentally
evaluating the surface energy of a material. Griffith postulated that
the presence of small cracks or flaws existing in almost every rock
causes large stress concentrations at the tips of these cracks when
the material is stressed. He derived the relationship between the
applied stress field and the tensile stress at the crack tip, assuming
the crack has the shape of a flat ellipse. When the tensile stress at
or near 1its tip reaches a critical value, the crack will start to
extend. This critical value may be expressed by a corresponding crit-
ical value of the applied stress for the case of uniaxial tension.
Therefore, a fracture initiation criterion is formulated, which re-
lates the principal stress components of an applied stress field to

o,

the uniaxial tensile strength of the material , as

(o - 03)2 / (o1 +05) =~ 8 0 (1)

*Note that the uniaxial tensile strength is negative in this study.
Hence, in substituting a numerical value for Oy s the negative sign

must be shown, e.g. 0, = -300 psi.
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Where 04 and 04 are the major and minor principal components of the
applied stress and Or 1s the axial tensile strength of the material.
Griffith's original theory does not consider the closure of
cracks. Under compressive stress conditions, however, closure may
occur before the tensile stress at the crack tip is high enough to
initiate fracture. When closure takes place the shear resistance,
resulting from the contact pressure between the crack faces, has to
be overcome before propagation of the crack can occur. McClintock
and Walsh modified Griffith's original theory to account for this
effect and obtained a relationship between the principal stresses
required to initiate fracture. When the normal stress on the crack

surface is compressive, the equation is

0] = 0 — - -+ g (2)

Where f is the coefficient of friction between the crack faces and
U~ 1s the uniaxial compressive strength of the material.

As discussed above, original and modified Griffith theories
refer to fracture initiation only. The fracture propagation path
and its associated stress redistribution are very difficult to
predict. Furthermore, the theories assumed a single flaw in a
semi-infinite elastic media, i.e., the intersection of adjacent flaws
has been neglected. Therefore, Griffith's hypothesis, based on a
genetic concept, cannot represent a complete rock failure mechanism.
Nevertheless, if a modified friction coefficient is assumed, which

is different from the internal crack friction, then the modified
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Griffith theory almost coincides with the experimental failurc enve-
lope of an intact rock?8,
F. Mathematical Material Failure Model for Rock

Obviously, rock failure is too complicated to be expressed by
a single criterion. In the interest of the study of practical
engineering problems, a mathematical model based on observations of
experimental results is proposed as follows:

1. Before the stress state reaches the maximum failure
strength, rock is considered linear-elastic, isotropic and homoge-
neous.

2. The simplified failure criterion for an intact rock is
assumed to be a linear Mohr envelope as shown in Fig. 107 . Tensile
rupture occurs when the minor principal stress equals the uniaxial
tensile strength of the material. When the normal stress on the
potential shear surface is compressive, i.c., where the modified
Griffith theory applies, a linear envelope is chosen. The transition
between tensile and compressive failures can be approximated by the
relationship between intrinsic shear strength T, and uniaxial tensile

strength 0, as:

1 .
P —
U

2 To + Ot (3)

1 is the slope of the Mohr envelope.

3. After tensile fracture, rock loses 1its cohesion on the
newly created surface and still retains its strength in the direction
parallel to the fracture surface. This situation can be approximately

simulated in a computer code using the finite element method, which



SHEAR STRESS, T

.

< it
b
RO
// P d
\A\‘%/ /:/’/5/’
s L
Q/ ///// /////’//
NS5 442
AR,
PR > i
Q,Ca AN, O??’
Py /// o ls -~ \’
<@ P4 qu
° /;35;4’15’/ W
‘:\V P //,/’//// O
”
v
£72 220275 WY
2022777 O
ARV IR \)V
NP PR M \®)
B
v c 2 22 @
.22
/Rl
‘s
g/

{
P

Figure 10.

e

PRINCIPAL STRESSES, o

Idealized Failure Envelope for Rock

20



21

will be discussed in detail in the next chapter.

4. After compressive failure, rock strength and stiffness
decrease gradually along with the displacements until they finally
reach the residual values. Degrees of failure are represented by
dividing the space between two extreme envelopes, intact and resid-
uval, into many levels. On each level, i.e., the same failure
envelope, the degree of failure and material properties are assumed
the samec.

The slope of the Mohr envelopes for maximum and residual failure
strength, the shapes of the falling branch of stress-strain curves
as well as the variations of rock properties during the process of
progressive rock failure are different from rock to rock. Therefore,
extensive tests along with refined experimental methods are necded
for a better understanding of the post-failure behavior of a particu-
lar rock used in a penetration study.

In order to compare the results from computer simulation with
experimental tests, a particular rock, Salem (Indiana) Limestone,

. 1¢
will be used for this study. Its properties are :

Tensile strength, g, -759 psi
Compressive strength, 0, 6,370 psi
Young ‘s modulus, E 3,660,000 psi
Poisson's ratio, Vv 0.272

Angle of maximum Mohr envelope, Omax 30 degrees

Because the study of the post-Iailure behavior of rock is still
in the developing stage, the information for Salem Limestone needed

to establish a mathematical failure model as suggested above is still
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incomplete. Some interpolations between bounded values and extra-
polations from the available properties are necessary.

The angle of the residual Mohr envelope Gr has not been well
tested. Therefore, two estimated values. 25 and 30 degrces, will
be used in the simulations.

Since the stiffness of rock decreases with the displacements,
the instantaneous value of Young's modulus for a fractured rock is
assumed to be the slope of the chord of the stress-strain curve as
shown in Fig. 11.

The post-failure curves, as shown in the previous sections,
display a fast strength loss at the beginning of rock failure and
a gradually flattening toward their residual levels. A simple

mathematical relation, representing this characteristic, is given as:

. - O /,
L. = EPC P = N (4)
i”‘ s
Smax Or
Where B, instantaneous stiffness

i

c slope constant

P ratio of strength

0 instantancous strength

o maximum strength

max

o residual strength

Figure 11 shows two post—-failure stress-strain curves with

constants ¢ = 2 and 2.5. These two constants will be used in the

analytical study.
While the stiffness of rock decreases in progressive failure,

Poisson's ratio should also be changed accordingly. Since Poisson's



ratio for fractured rock is not available, an alternative approach
is suggested. The compressibility B of an intact rock is defined

as:

AV 8 A i
5 T B A (5)
Where v volume
Ay volumetric change, for plane strain problems
AV 3 1 5
3 —1( + 0 + 0)
p pressure, p 5 (o, v ,
Ap pressure change

If we assume that the relationship of Hq, (5) can also be appliced
to the post-failure state with a constant compressibility, then
Poisson's ratio becomes a function of the instantaneous stiffiness

E.. The variable Poisson's ratio v, can be expressed as:
i

v, = ; 1 - ;(1 - 2] (6)

Figure 11 illustrates the change of Poisson's ratio along the

stress—-strain curve.
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IV. THE FINITE ELEMENT METHOD AND ITS APPLICATION

FOR PENETRATION SIMULATION

A. General

The finite element method has advanced rapidly with the advent
and improvement of electronic digital computers. A considerable
volume of literature and text books has accumulated over a relatively
short period. The general philosophy and mathematical background of
this method can be obtained from many publications. Therefore, in
this chapter, discussions will be concentrated on specific methods
applied in the simulation of bit penetration.

In order to associate the finite element metnod with the
proposed mathematical material failure model as described in the
previous chapter, some finite element techniques will be used 1in the
simulation. An anisotropic element is introduced to represent an
element after tensile failure. Variable stiffness is used in the
simulation of progressive strength failure of rock. A stress release
technique and iteration method are applied during the process of
successive penetration.

Bit penctration studies of a long wedge (or blunt point) bit
acting on a large block of rock can be considered a plane strain
problem, without considering the end effect. The finite element
program developed for the penetration study is based on this
Mathematical derivation of the method, using the

assumpt ion.

displacement approach, has been illustrated in detail in the text

by Zienkiewicz , and basic relations are listed in appendix A tor

reference.



B. Anisotropic Element

When the minor principal stress of an element reaches its
critical value in tension, a fracture surface is created perpen-
dicular to the principal direction. This newly developed surface
imposes an additional boundary to the system and results in a
significant stress redistribution in the immediate vicinity as well
as a change in the structure stiffness. The simulation procedure
can be accomplished by regriding the whole structure including the
crack surface as a free boundary. However, the amount of work for
this procedure is considerable and the continuing modification of
successive failures of the structure may be too complicated and
costly to be practical. An alternative method, using an anisotropic
element to represent a tensile fractured element, has been recom-
mended by Sandhu et al. in their study on tensile fracture propa-

24 . L
gation . The method assumes that the crack plane is a principal
plane for the anisotropic element. In the direction normal to the
plane, Young's modulus and Poisson's ratio are reduced to very small
values. Nevertheless, the element is still capable of withstanding
stress parallel to the crack plane. The planc strain elasticity

matrix, [DJ, for a symmetric anisotropic element can be expressed as

2 -
n(l—nvz) nv2(1+v1) 0
[D] - ,,A_,W”_-_E”Z,_md_?_ n\)q(1+\)1) ( l-v‘f) 0 (7)
- (1+\)l) (l~\)l—2n\)§) ' '
2
0 0 m(1+v})(1—v;—2nvw)J



Where

F.
4 and me oL _
E, 2 (1 +v,)

n =
The constants El and Vi are associated with the behavior in the
fracture plane, and E2 and V2 with a direction normal to these.
When the direction of the fracture surface is inclined at an
angle, 3, to the global coordinates, a transformation for the

matrix is necessary. If [D'] represents the local matrix, then it

is easy to show that

o
N

[o] = [z][p'][1]* (:
Where [T] is the transformation matrix and [D] is now the elasticity
matrix in global coordinates.
C. Non-linear Material Properties
In small strain linearly elastic problems, using the displace-
ment approach, we have always arrived at the final answer by solving

the system of equilibrium equations:

(K] {6} = {r} (9)
Where {R} and {8} list respectively all the external forces acting
at nodes and all the nodal displacements, and [K] is the assembled

stiffness matrix.
For non-linear material problems, the stiffness matrix of each

element is a function of its stress or strain level. Therefore, the

final stiffness matrix [K] of the whole structure can be expressed as

{R}

[K({oh]18}

or [k(feh]ist = (R} (19)

ﬁ,
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The above equations can be solved by iterative methods. In
order to study successive penetration, the incremental displacement
method is used. Rewriting the above equation in terms of small

penetration increments, we obtain

[K],_;{A83 = (AR} (11)

Where [K]n—l is the stiffness matrix at the previous stress state,
and {A6}n and {AR}n are matrices of small incremental displacements
and nodal loads.
D. Geometric Non-linearity

In the previous section, Eq. (11) has been derived based on
small displacements with non-linear material properties. For
problems with large displacements or strains, assuming the geometry
of c¢lements remains unchanged and using first-order, infinitesimal
linear strain approximations may yield an inaccurate solution.
Practical engineering structures such as plates, columns and other
relatively slender designs decrease their load-carrying capacity
with continuing deformation. Modifications of the structure stiff-
ness become necessary for large displacement problems. In bit
penetration studies, although action is conducted on a large block
of rock, the relative material movement around a bit could cause
serious errors after a certain depth of penetration. Using the
iteration method as suggested in Eq. (11), adjustment for this
geometric non-linearity can be accomplished by redefining element
coordinates in the computation of stiffnesses. Rewriting Eq. (11),
we have

[K(5,0)] .1 {88}, = (AR} (12)
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Where [K(@,U)]n_l is the stiffness matrix formulated by the most
recent coordinates of the elements.

It should be noted that not all non-linearities arc accounted
for in this study. But since large strains in rock are not possible
without fracture significant errors are not introducedzg.

E. Stress Release

Zienkiewicz, et al. have suggested a so called 'stress transfer'
method to study linear elastic rock behavior by considering rock as
a 'no tension' materia]lg. The method converts excessive stresses
that an element cannot bear to nodal loads and reapplies these nodal
loads to the element nodes and thereby to the system, i{.c., c¢xcessive
stresses can be released from an over stressed element to neighboring
elements. Assuming {AO}C are the excessive stresses In an clement,

then the transformation for nodal loads {AR1® is given by
(aR}" =/ (8] 7 {01y (13}
e

Where [B] is the strain-displacement coefficient matrix.
Strress releases can basically be divided into two cases, tensile

and compressive releases. When the minor principal stress OB ot an

clement reaches its critical value, tensile fracture occurs and the

critical tensile stress should be released. Figures 12a and 12b show

the stress states of an element before and after stress release.

Figure 12c¢ represents the stress relationship on Mohr's circles. In
the process of successive penetration, tensile or shear stresses
may be accumulated on the tensile fractured surface. These small
stress increments are released by a similar procedure as illustrated

in Fig. 13. The above release method can also be applied for an
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element which has failed in compression with its minor principal
stress in tension, which according to the assumption in the mathe-
matical material failure model the tensile stress should be recleased.

In the case of compressive stress release, when the stress state
of an element reaches the failure envelope in compression, a small
amount of major principal stress, Ol’ is released as shown in Fig.
14, At point A the element reaches its maximum strength before the
stress release, and point B represents the released stress state with
a reduction in major principal stress AOl from point A. In the
process of incremental bit penetration the stress state of an element
may increase again to its new failure point C. A similar stress
release procedure, as started at point A, 1is repeated. If the incre-
mental displacement of bit penetration and the amount of stress
release are sufficiently small values, then the falling branch of
the stress—-strain curve as shown in Fig. 14 can be closclv tollowed.
F. Iteration Process

Simulation of bit penetration starts from the initial contact
of a bit and an intact rock without pre-existing stresses. A small
assigned incremental penetration is imposed in each iteration. Withn
the assigned small displacement on the boundary and the current

structure stiffness, the incremental stresses can be obtained by

solving the matrix equations as given in Eq. (12). 1If the displace-
ment increment is sufficiently small, tihen each incremental solution

may be considered linear and could be accomplished accurately in one

step In order to trace actual fracture propagation during penetra-

tion, the computer program is designed to adjust penetration
3
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magnitude in each iteration by allowing no more than one unfailed
element to reach the failure envelope. The ratio of the adjustment
is used in calculating actual incremental stresses. After the
accumulated total stresses for each element are obtained, the stress
states of all failed elements are checked to determine their current
situation. Further modifications for material properties and re-
leases for excessive stresses follow, if necessary. An additional
loop within the same iteration is performed to release these exces-—
sive stresses. In this loop, transformation from stresses to nodal
loads is accomplished using Eq. (13), and the penetration boundary
is adjusted to keep the bit stationary. Stress redistribution is
accomplished at the end of this loop by adding the incremental
stresses, generated from the transferred nodal loads, to the total
stresses of all elements.,

Since the incremental penetration is small, modification for
geometric non-linearity is taken after a specified number of itera-
tions. Before each execution of the program, the number of itera-
tions n and coordinate modifications m have to be specified. With
these numbers, the computer program can automatically iterate n times
before modifing the node coordinates and formulating the new struc-

ture stiffness. At the end of every n iterations, node and element

data are punched on cards for plotting and continuation of simulation.
A simplified flow chart of the program is shown in Fig. 15, also, a
computer program list with input instructions is given in appendix B.

In order to make a proper modification of the failed elements,

a simplified classification is introduced:
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Class 1: tensile fracture with an open crack. An anisotropic
element is used for this class. Incremental stresses gencrated on
the crack surface should be released. Tensile or compressive stresses
in the crack direction are checked for possible further failure. If
the stress in that direction reaches the tensile or compressive
strength, then the failed element becomes class 4 or class 3, respec-
tively. These classes are introduced in the following paragraphs.

Class 2: tensile fracture with closed crack. 1If the crack was
closed, then the normal stress on the crack surface becomes compres-—
sive. Therefore, anisotropic material properties are abandoned.
However, the crack direction is recorded in case of crack reopening.
Compressive failure is checked for a possible change of failure state.

The above crack opening is determined by comparing the current
element volume with a testing volume which is obtained by applying
the current major principal stress on the element. [ the volume of

the current element is greater, then the crack is open.

Class 3: compressive failure. Elements in this class follow

the progressive strength failure as discussed in the previous

sections When the sum of the principal stresses of an element is

in tension, the element is classified as class 4.

Class 4: loose fragments. All the stresses in the element

are released Young's modulus and Poisson's ratio are assigned small

values The element volume at the beginning of this class is

If the current volume is smaller than the recorded valuv,

recorded.

the element becomes class 3.

In practical penetration simulations, most elements stay in
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class 3. Some fractured tensile elements may change their classifi-
cations from class 1 to class 3 as penetration continues. Only verv
few elements near the edge of a bit become class 4.
G. Simulations

Blunt point, sharp wedge and cylindrical bits, representing
different degrees of dullness, are used in the penctration simula-
tions as shown in Fig. 16 with dimensions.

As proposed in the previous chapter, two material failure models
with different stress-strain slopes and residual angles of the Mohr

envelope are chosen. The first model, with ¢ = 2.0 and Or: 25, is

used for all bits; and the second model, with ¢ = 2.5 and Ur; 3,

is applied only with the blunt point bit for the purpose of com-
parison.

A rough bit-rock interface 1is assumed for all cases, i.¢., no
relative movement on the contact surface between bit and roci.
Figure 17 shows a finite element grid which is typical of the tvpe

used in this study. The overall size and the imposed boundary

conditions of the grid are comparable with the experimental test

conducted by Maurer, which will be used to compare with the analvti-

cal results .

1. Blunt point bit

A series of plots showing principal stresses, degreces and types

of element failure and position of elements at various stages of

penetration of the blunt point bit, using the first material model,

. P N, - Loheoine te o ral i
. . e . . oghown in Fig. lda, rock begins o Tz
is illustrated in }312;, 18. As sh :

after a small elastic deformation at the boundary of the cutting
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edge, where high stress intensity exists. Major principal stressos
in all elements are in compression with directions toward the pene-
trating bit. Elements immediately under the bit have high compres-
sive minor principal stresses which keep these elements in the clas-
tic state. The highest stress intensity elements at this stage are
under the cutting edge. Fracture in the rock propagates from the
edge downward to a certain distance creating a central high com-
pressive zone and separating it from two sides of the rock as shown
in Fig. 18b. As the penetration continues, the failed arca cxpands
toward the symmetric center of the rock and forms a compressive

failure zone surrounding a small portion of the high compressive

elastic area immediately under the bit, as shown in Fig. ldéc.  In-

creasing penetration at this point has little effect on the sitae

Vi

elements, but gradually reduces material strength and stiffness «

3 T T m et
in Fi : 3d. leoclement
the compressive zone as shown 1n Fig. 18c and 13d [he o«

3 DY afy b 3 2 » )()‘) 3 —
which have failed in compresslon, under the pressure of the pemn

trating bit, are squeezed 1into lateral movement, as a consequence,
it - 7

i f the compressive zone
tensile fractures start from the bottom © i ]

: ; i Sie, 18c¢, 18d and
and gradually spread to both sides, as shown in Fig. I8¢, I
. : 3 Ge0 he increasing
18e. 1If the penetration 18 further increased, tne ¢ ¢
: i that fractures
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i ’ m a chip. At
start to propagate in these elements and finally form I

i From the original
ki away from tac ortgin
i of the chip awv
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b
e the chip tormation
fous he sequence of
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vy 1 T ‘Y(‘J}_‘ ”‘Ili"”.
18h ‘the downward tenslio o T whii

Is shown from Fig. 18f to

18 due to the 1imited space, reaches

has not been fully shown in Fig.
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j‘-. TENSILE MINOR PRINCIPAL STRESS 0% 5% 10% 20% 40% 60% B80% 100%

Figure 18h. Blunt Point Bit Penetration Using the First Material
Model
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SCALE: SYMBOLS FOR ELEMENT FAILURE
FOR PRINCIPAL STRESSES + 10,000psi E’:TENSILE FRACTURE @iOOSE FRAGMENTS
FOR DIMENSIONS +—— 0.0l in. DEGREE OF COMPRESSIVE FAILURE
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Figure 20a. Blunt Point Bit Penetration Using the Second Material
Model
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FOR PRINCIPAL STRESSES +— 20,000 psi
FOR DIMENSIONS +— 0.02 in.
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Figure 20b. Blunt Point Bit Penetration Using the Second Material

Model
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SCALE: SYMBOLS FOR ELEMENT FAILURE
FOR PRINCIPAL STRESSES + 20,000 psi [:'ELTENSILE FRACTURE @WQOSE FRAGMENTS
FOR DIMENSIONS +—— 0.02 in. DEGREE OF COMPRESSIVE FAILURE

+f COMPRESSIVE PRINCIPAL STRESSES ‘ . n @ @ @
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Model

Figure 20c.



about 1" depth from the free surface at the final stage of the
penetration. The corresponding F-P curve of this penetration simu-
lation is plotted in Fig. 19. Cross marks on the curve indicate

the positions of the bit penetration, where stress field and element
failure are plotted. Every dot represents an iteration in the
computer programn. As shown in Fig. 19, the F-P curve of this simu-
lation is lower than the experimental result, however, the depths

of bit penetration at the peaks of both curves, where the first chip
is formed, are close. The analytical F-P curve at the beginning of
the penetration showing a steeper slope is probably due to the
linear-elastic assumption on rock before failure.

Figure 20 shows the sequence of the blunt point bit penetration
using the second material failure model of higher post-failure
strength. Some differences between two simulations are observed:

a) the depth of penetration to form the chip is deeper in the second
simulation, b) the degrees of failure of the elements in the com-
pressive zone are more homogeneous, c) the F-P curve in Fig. 19 for
the second simulation is higher than the curves of the first simu-
lat ion and the experimental result. These results demonstrate the

influence of the post—failure rock behavior and properties on bit

penetration.

2. Sharp wedge bit

Initial position of the bit 1is given in Fig. 16 with a small

dent in the rock. At the beginning of this simulation, the finite

clement grid is arranged to have only one element making contact

with the bit. After the successive penetration, if the wedge starts
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to reach the next element, a second contact element is assigned,
etc.

As shown in Fig, 21 the compressive failure zone quickly
spreads from the edge of the wedge to the area under the bit. The
tensile crack under the compressive failure zone starts to propagate
before the side elements have developed high enough pressure to form
a chip. When the penetration reaches a depth as shown in Fig. 21c,
chip formation is in process. The F-P curve of this bit penetration,
as shown in Fig. 22, almost reaches its peak at this stage. Further
penetration will complete the chip and pulverize the compressively
failed elements as shown in Fig. 21d.

A wedge bit, with the action of the inclined bit surfaces,
creates quicker lateral pressure on the side elements than the other
dull bits in a small penetration, which results in carly chip forma-
tion and more effective bit penetration as shown in the simulation.

Because of the quick chip formation in this simulation, the
contact boundary has not been modified.

3. Cylindrical bit
Ponetration simulation begins at the contact of the first

element with the cylindrical bit. TIn the process of continuing

penetration, the contact area of the interface is gradually modified

as described in the wedge bit simulation.

Figures 23a and 23b show the failure propagation at the early

stage of penetration. Along with the continuing penctration dnd

i i - i > bit : bressive failure
increasing contact surface with the bit, the comj

zone of the rock keeps expanding in lateral and vertical directions
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as shown from Fig. 23c to 23e. Tensile cracks and latoral pressure
are also increasing simultaneously. Final chip formation and addi-
tional radical cracks are shown in Fig. 23f.

For every new element to contact the bit, the F-P curve of this
simulation shows a jump in applied force with small penctration as
illustrated in Fig. 22. The number at each jump indicates the order
of the new contact element. After the element at the edge of the
contact zone gradually decreases its strength with penctration, the

increased force starts to fall as shown in the figure.



SCALE:
FOR PRINCIPAL STRESSES +— 10,000psi
FOR DIMENSIONS +—— 0.0l in.
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Figure 2la.
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SCALE:
FOR PRINCIPAL STRESSES +— 10,000psi
FOR DIMENSIONS +—— 0.0l in.

+= COMPRESSIVE PRINCIPAL STRESSES
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Figure 21b.
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SCALE:
FOR PRINCIPAL STRESSES +— 10,000psi
FOR DIMENSIONS = 0.0l in.

_|_= COMPRESSIVE PRINCIPAL STRESSES
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Figure 2lc. Sharp Wedge Bit Penetration



SCALE:

FOR PRINCIPAL STRESSES + 10,000psi
FOR DIMENSIONS +—— 0.0l in.
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Figure 21d.
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SCALE:

FOR PRINCIPAL STRESSES + 10,000psi

FOR DIMENSIONS —— 0.0l in.
-|_= COMPRESSIVE PRINCIPAL STRESSES
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Figure 23a.
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SCALE: SYMBOLS FOR ELEMENT FAILURE
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Figure 23b. Cylindrical Bit Penetration




SCALE:
FOR PRINCIPAL STRESSES + 10,000psi
FOR DIMENSIONS +—— 0.0l in.
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Figure 23c.
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Figure 23d. Cylindrical Bit Penetration
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V. CONCLUSIONS AND RECOMMENDATIONS

A Conclusions

Thie sequence of rock failure mechanisms and the quantitative
intormat ion on stress, displacement and material failure in the
process of bit penetration can be obtained through computer simu-—
lat ion.  Using the proposed mathematical rock failure models and
the developed finite element code, the analytical results presented
in this study have shown a reasonable agreement with experimental
obscervat ions.  Three tool profiles have been simulated to demonstrate
their shape effects on the penetration mechanism. The special

suitabilitv of the finite element method has also been shown in the

study of the influence of the post-failure rock strength and proper-
ties on bit penetration.
B. Recommendat ions

. Extensive study along with refined experimental methods are
nceded for a better understanding of the post-failure behavior of
rock. Stress-strain relationships, residual Mohr envelopes as well
as the variations of rock properties in progressive strength failure
must be known to improve the analysis.

2 With better understanding of the post-failure behavior of

rock, present computer codes can be modified to adapt a more com-—
nvelope

plicated non-linear rock behavior such as a non-linear Mohr e

and variable stress-strain curve as a function of confining pressure.
i ies i cai S > can
Constitutive equations for rock properties in the failure state cé

also be applied to yield better results.

3. This bit penetration program can be generalized for the



studies of various bit-rock interface conditions, different tool

actions and other related rock failure problems,

4. VWedge type penetrators with increasing edge radii could

give some of the effects of wear.

68



4,

6.

10.

13.

14,

69

BIBLIOGRAPHY

Maurer, W. C., "The State of Rock Mechanics Knowledge in
Drilling,” Proc. 8th Sym. Rock Mech., Univ. of Minn., Sept.
1966, p. 355-395,

Paul, B., and Sikarskie, D. L., "A Preliminary Theory of Static
Penetration by a Rigid Wedge into a Brittle Material,” Trans.
AIME, Vol. 232, 1965, p. 372-383.

Sikarskie, D. L., and Altiero, N. J., "The Formation of Chips
in the Penetration of Elastic-~-Brittle Materials (Rock),’ Trans.
ASME, J. of Applied Mech., Sept. 1973, p. 791-797.

Sikarskie, D. L., and Cheatham, J. B., Jr., "Penetration
Problems in Rock Mechanics,'" Rock Mech. Sym., ASME, AMD, Vol.
3, 1974, p. 41-71.

Hartman, H. L., "Basic Studies of Percussion Drilling," Mining
Engineer, Jan. 1959, p. 68-75.

Reichmuth, D. R., "Correlation of Force-Displacement Data with
Physical Properties of Rock for Percussive Drilling Systems,”
5th Sym. Rock Mech., 1963, p. 33-60.

Singh, M. M., and Johnson, A. M., "Static and Dynamic Failurc
of Rock under Chisel Loads,' Trans. AIME, Vol. 33, 1967,

p. 566-373.

Ladanyi, B., "Rock Failure under Concentrated Loading," 10th
Sym. Rock Mech., 1972, p. 363-387.

C "Bit Tooth Penetration under Simulated Borchole
e s

Maurer, W. |
147331442,

Conditions," J. of Pet. Tech., Dec. 1965, p.

Gnirk, P. F., and Cheatham, J. B., Jr., "An Experimental Study
of Single Bit-Tooth Penetration into Dry Rock at QOnLinlng
Pressures of 0 to 5,000 psi," J. of SPE, Vol. 5, Ho. =, June
1965, p. 117-130.

Dutta, P. K., "A Theory of Percussive Drill Bit Pcnftiation,”
Int. J. Rock Mech. Min. Sci., Vol. 9, 1972, p. 543-567.

Hill, R., "Mathematical Theory of Plasticity,’” Clarendon

Press, Oxford, 1950.
and Friedrichs, K. 0., "Supersonic Flow and Shocy

Courant, R.,
Tnc., N. Y., 1948.

Waves,' Interscience,

Jr.. "An Analytical Study of Rock Penetration
9

) . B. cq 7 1
Cheatham, J ’ " proc. of 8th Annual Orilling anc

by a Single Bit Tooth,



16.

17.

19.

o

[N}

23.

24.

25.

26.

27.

28.

70

Blasting Sym., Univ. of Minn., Minn., 1958.

Pariscau, W. G., and Fairhurst, C., "The Force-Penetration
Characteristic for Wedge Penetration into Rock,'" Int. J. Rock
Mech. Min. Sci., Vol. 4, No. 2, 1967, p. 165-180.

Johnson, Sowerby, and Haddow, ''Plane-Strain Slip-Line Fields,"
American Elsevier Publishing Co., Inc., N. Y., 1970.

Clark, G. B., et al., "An Investigation of Thermal-Mechanical
Fragmentation of Rock,' Univ. of Mo.-Rolla, RMERC, Annual
Report, July 1972.

Krech, W. W., et al., '"A Standard Rock Suite for Rapid Lxzcava-
tion Research,'" BuMines RI 7865, 1974.

Zienkiewicz, 0. C., et al., "Stress Analysis of Rock as a no
Tension' Material," Geotechnique, 18, 1968, p. 56-66.

Sandhu, R. S., Wu, T. H., and Hooper, J. R., "Stresses,
Deformations and Progressive Failure of Non-liomogeneous I"igsured
Rock," The Ohio St. Univ., Final Report, ARPA Order No. 1579,

Mar. 1973.

7. T., "Mechanism of Brittle Fracture of Rock,"
407-423.

Bieniawski,
Int. J. Rock Mech. Min. Sci., Vol. 4, 1967, p.

Barnard, P. R., "Researches into the Complete Stress-Strain
Curve for Concrete,' Mag. Concrete Res., Vol. 16, No. 49,

1964, p. 203-210.

Cook, N. G. W., and Hojem, J. P. M., "A Rigid 50-Ton Compression
and Tension Testing Machine,' South African Mech. Engr., Nov.
1966.

"Detailed Analysis of Rock Failure in

Wawersik, W. R., ! .
" Pph. D. Thesis, Univ. of Mion.

Laboratory Compression Tests,
1968.

"Design of Surface and Near-Surface

Deere, D. V., et al.
, , ’ Sym. Rock Mech., Minn., 1966.

Construction in Rock," 8th

Modes of Shear Failure in Rock and

. D., "Multiple
Patton, F. D., u p ote.

Related Materials,'" Ph. D. Thesis, yniv. of Ill.,

. . A
vpropagation of Brittle Fracture in Rock,

Bieniawski, Z. T., :
: Univ. of Texas—Austin, 1968.

10th Sym. Rock Mech.,

nprittle Fracture Propagation
(3.

. .. PR
Hoek, i7., and Bieniawski, Z. 1.,

in Rock under Comprcssion," 1nt. J. Fracture Mech. 1,
1965, p. 137-155.



29.

30.

31.

71

Zienkiewicz, 0. C., "The Finite Element Method," McGraw Hill
Co., London, 1971.

Stagg, K. G., and Zienkiewicz, 0. C., "Rock Mechanics in
Engineering Practice," John Wiley & Sons, Ltd., 1968.

Jaeger, C., "Rock Mechanics and Engineering,'” Cambridge
University Press, 1972.



72

VITA

Jaw-Kuang Wang was born in June 14, 1943, in Taiwan, Republic
of China. He received a Bachelor of Science degree in Mechanical
Enginecering from Cheng Kung University in June 1966.

He served in the Chinese Air Force from July 1966 to July 1967,
then worked as a Mechanical Engineer at the Bureau of Inspection and
Quarantine from July 1967 to August 1968.

In September 1968 he enrolled in the Graduate School of the
University of Missouri-Rolla, where he received his Master of Science
degree in May 1970.

In March 1975 he married Miss Shu-Huei Li in Rolla, Missouri.



73
APPENDIX A

FUNDAMLNTAL EQUATIONS FOR PLANE-STRAIN PENETRATION PROBLEMS

Displacement Function:

{f} = [N]{S}e , [N] = general function of position

{6}%= nodal displacements

Strain-Displacement Relations:

Stress-Strain Relations:

fo} = [p]le) = [p][B}{83°
1 v/ (1-v) 0
] - E_(1=v) v/ (1-V) 1 0

-2
(1+v) (1-2v) 0 (1-2v)/2(1-v)

Force-Displacement Relations:

(without initial stress, initial strain and body force)

(R} = [K]{@}C ,  {R}®= nodal forces
) - [ 187" [0] [0] [8]av
e

Force-Stress Relations:

{R}e:fe [B:IT{O}dV



APPENDIX

PROGRAM INPUT INSTRUCTIONS AND LISTING

This computer program is applicable to plane strain analysis
of stress, deformation and progressive failure in rock, using the
proposed mathematical rock failure model as presented in this thesis.
Incremental boundary displacement is used for simulation of fracturc
initiation and propagation in an arbitrary elastic rock structurece.
The program is capable of terminating or continuing at any specific
stage of simulation.

The following set of cards is required for the start of cach
problem.
1. Identification Card (20A4):

Cols. 1-80 This card contains information to be printea

with results.

2. Control Card (715, 3F10.0):

Cols. 1-5 Number of nodal points (350 maximum)
6~10 Number of elements (350 Maximum)
11-15 Number of displacement boundary cards

(100 maximum)

16-20 Number of iterations per coordinate modifica-
tion

21-25 Number of coordinate modifications

30 Data check option, O run complete progran,

1 test data only

35 Continuation option, ) new proegram.

1 continuation



36-45 Incremental displacement, in.
46-55 Initial displacement, in.
56-65 Anistropic ratio, ratio = E, / El

3. Material Properties Information (7F10.0):

Cols. 1-10 Young's modulus, psi

11-20 Poisson's ratio
21-30 Compressive stress (+), psi
31-40 Tensile stress (-), psi
41-50 Angle of maximum Mohr envelope, degree
51-60 Angle of residual Mohr envelope, degrec
61-70 Post-failure stress-strain slope, ¢

4. Element Cards (5I5):

One card for each element

Cols. 1-5 Element Number
6-10 Nodal point, I

i1-15 Nodal point, J

16-20 Nodal point, K

21-25 Nodal point, L

Maximum difference between nodes around an element must be less

than 30. Element cards must be in numerical sequence. 1f element

cards are omitted, the program automatically generates the omitted

information by incrementing by one the preceding I, J, K, and L. 1hc
last element card must be supplied.
5. Displacement Boundary Cards (3I5):

One card for each boundary element which is subject to Incre=

mental displacements.
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Cols. 1-5 Nodal point, I
6-10 Nodal point, J
11-15 Element number

6. Nodal Point Cards (215, 2F10.0):
One card for each node with the following information:
Cols. 1-5 Nodal point number
10 Number which indicates which displacements
are to be specified
11-20 X-coordinate
21-30 Y-coordinate

The number in column 10 is defined as:

0 No specified displacement

] Specified displacement in X direction

2 Specified displacement in Y direction

3 Specified displacements in X and Y directions

Nodal points must be in numerical sequence. If the cards are

omitted, the omitted nodal points are generated at equal intervals

along a straight line between the defined nodal points.

7. Continuation:

a) Change column 35 in the control card.

b) Change identification card, number of iteration, incremental

displacements, etc., if necessary.

c¢) Element volumes of the original coordinates will be punched

on output cards at the start of each new problem. These cards =hould

be placed after the displacement boundary cards in the continuation.

Original nodal point information is abandoned.
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d) After a specified number of iterations, information on
nodal points and elements will be punched on cards. The most recent
set of cards will be used for the next run. It is placed after

element volume cards.
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C % %ot ot g gk g At o g ot ook o % e o o ok Rk 3ok o o 2 ok o ok o ok e ok ok ok ol ook ok o ok o ok ok
C
C STRESS ANALYSIS OF PLANE STRAIN SOLID
C WITH INCREMENTAL DISPLACEMENT BOUNDARY
C
C % %o o oo f o e %o o koA ok ko ok ROk ok o o ok e o K o ok o ok o o o kol ok R R K ok K
COMMON E(T,10) s NUMANP,NUNMELy NUMPC 4MTYPE NP ,ANTIHED(20),
1R{350),72(350),UR(350),UZ{350),C00(350),1BC{1001,
2JBCLLIO00)Y,PRILIQV) yANGLEL4) ,SIGI10) NDEG,IFF(350),
IVOLM{350) yNEWRZ ¢ INNy ICHEK KONTDIND,FK(350),IFH(350),
4BETA(350)
COMMON/ARG/RRRIS) 4 ZZ2(5)4SI10,10),PLL10),LM(4),0D(3,+3),
THH{ 104 10) ¢RR{4) ¢Z2Z(4)sCU343),H{D,10) D646} F{10,101),
2TP(6) 4y XI(10)+EE(5),IX(350,5),EM0D(3501)
CUMMON/BANARG/MBANC NUMBLK,B(120),A{120,60)
CUMMON/ PLANE/EE2P,LE2PPFFKK
CUMMON/ITT/URR(BSO)vUZZ(3SO).SlCG(3SO'4),DVGL(BSO)
COMMUN/lO/IN,IOUT,NUMl,NDATl,NUATZ,NRECl
DIMENSIGN IB(20)
DEFINE FILF 41350,250,UsNRECL)

NTEST=0 RUN CGOMPLETE PROGRAM
NTEST=1 TEST DATA JONLY

o e o e e o o e s ok o R Kok % R R ok R KR R R R R kR R R R R R XK

READ INFORMATION FOR CCNTROL, STRUCTURE s

MATERIAL PROPERTIES, AND ITERATION

##**#*#*##*vt#***#**##**#***#*****#*************##*******#*

DATA SET REFERENCE NUMBERS

OO0

DATA NUI,NOZ.NO3.N04,N08,NDQ/S.7.6,418y9/

IN=NU1
[ouTP=NOZ
10UT=NO3
NUM1=NU4
NOAT1=NGB
NOAT2=NLS9

MAX8=60

C v y - s
READ(IN,1000) HED,NUMNP'NUMEL,NUMPC,NP'NRZ,NTtST,hUNTD

1,0P,DP1,4ANI

KINTO=0, NEw PRUGRAM
KUNTD=1, CCNTINUATION

aNeNaNe]

WRITELIOUT,2000) HED:NUMNP'NUMEL,NUMPC,NP'NRZ'

LKUNTD,0P,DP L, ANI
NDEG=2%NUMNP
IF(NTEST) 53,574+53
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53 WRITE(IOUT,2014)
57 REAU([N,lOOb’(E({ol)v[:l'7’
WRITECICUT,2001) (£(1,1),4I=1,T7)

FUSey1)=E(5,1)/57.256
ELOy1)=E(6,1)/07.296
ES1=TAN{E(5,1))
E61=TAN{E(5,11))
ES5=SQRT(L.+E51%ES])
E{Ly2)=0.5%E(3, L)% (ES5+1.~E51)/(E55+1.+F51)
F(392)=2%(1+SIN(E(S, 1)) )/COSIF(L,1))%Fb]
EEL2)=E(2,1)
C
Cole et dde e fede oo e ok ool ek ko ke o b e A e ekl ke K e Rk ok K R oF Wk kK F
C READ AND PRINT ELEMENT DATA
Cddod ek ok koo dokosk ok koo ool kb ke e ko sk ek o ek ok Rk Kk kA %
c
N=0
130 READCINGZ1003) M, (IX{My1),I=1,4)
140 N=N+1
[F(M=N) 170,170,159
150 NN=N-1
IX{NysL)=IX{NN,1)+1
IX{N,2)=IX{NN,2)+1
IX{Ny3)=IX(AN,3)+1
IX(Ng4)=IXINN,4)+1
170 IX(N,5)=1
IF(M=N) 183,180,140
180 IF{NUMEL-N) 190,190,130
190 CUNTINUE

C
Cododo o AR % e A R R R R AR Y AR E XK KT RFRR AL LR EHHL RN S SRR EXEE L E %

C READ AND PRINT NOOAL PUINT BATA
O o e e e ke X e o e e e oo Aok R A oK ook o B ke R e o R e A e R R R R R R R R R X K
C
[F(KONTD .£Q. 1) GO TG 110
L=0
60 READ(IN,L0D2) N,CTDEINY 4RIN) 4 ZIN)
NL=L+1
IX=N-L
IF{L) 65,470,655
65 DR=(R{N)-R(LJ)I/LX
DZ=(Z(N)Y=2{L))}/IX
70 i=L+1
IFIN-L) 100,590,803
89 CODEILYI=0.0
R{L)=R{L=-131+DK
ZELYy=2{L-11+D2Z
GO 10 70
99 CONTINUFE
[F(NUMNP-N) 100+s110400
100 WRITE({ICUT,2009) N
NTEST=1
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110 CONTINUE
C
C ek o ok e ok o e e o A oo ook X ok ok o o ol o ook ool oot ook e ok o kol X o e X R R ok i K
C READ AND PRINT DISPLACEMENT BOUNDARY CUNDITIUN
Coott ok ook d ddoook folodokolok ookl ok kol R ROk R R KR A R E R ek k
C
IFI(NUMPC) 290,+310,290
290 WRITE(IOUT,2005)
DO 300 L=1,NUMPC
READ(IN,1004)IBCIL*2-1),1B8C(L*2),JBC(L)
300 WRITE({IQUT,2007)IBCIL%2-1),IBC(L*2},JBL(L)
[=NUMPC+1
Jac(n)=0
310 CONTINUE

C
C ok e ot ok ot o ok o O 0K R R FOR T 3 Rk Rk R ROR R R Rk Ok R OR R XK R Rk R

C DETFRMINE THE BANDWIDTH OF THE STIFFNESS MATRIX
% ot e ok o ok ok ok ok R XK KRR R b Rk Rk R R R R RO R R R R Rk R R R R Rk
C
J=0
DO 340 AN=1,NUMEL
DO 340 I=1,4
DO 325 L=1,4%
KK=TABS{IXIN, I)-IXIN,L))
IF{KK=J) 325,325,320
320 J=KK
325 CONTINUE
340 CONTINUF

C CHECK BANDWIDTH

MBAND=2%J+2 ’
[F(MBAND-MAXB) 345,345,340
346 WRITF(ICUT,2013) MAXSB
CALL EX1T co05
345 IFINTEST) 535434745
Zét% égé:l%?;;.'BA&DHIBTH OF STIFFNESS MATRIX EXCEEDS',13)
C##*******#*##********##&#**#***********##***v*#****##*#*###

OLVE S AY CALLING SUBRUUTINES
g**igii;*iligglgig*i:*###***#***t#*t#t**#*#**#*#**#***##*###
C

347 CONYINUE

C

00 350 N=1,NUMNP
URR{N)=0.

350 UZIZ(N)}=0.
DO 360 I=1,NUMEL
IFE(1)=0
IFH{T)1=0
ovoL(1)=0.
FK(I)=1a.
BETA([)=0.
DO 360 J=ly4
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360 SIGG(I,41=0.
IND=0

IFIKONTD +EQ. O) GO TO 390
READ(INSGZLILILL)(VOLM(I),=1,NUMEL)
READ(CIN,L1CLO)(CODECT)yRUTDIZ{T1),1=14NUMNP)
READCINGLOLLIYCTFALT) o FKET) oEMUDIL) 4BETACT)LSICGUL, 1),
ESTGG(TI32)9STGGUI4) =1, NUMEL)

IND=1

390 DO 370 I=1,NUMNP
UR(I11=0.
370 UzZ(1)=0.

NEWRZ=0

555 DO S00 NRN=1,4NP
I NN=NNN
ICHEK=0

IND=IND+1
ASSIGN INCREMENTAL OISPLACEMENT

DO 301 I=1+NUMPC

301 UZ(IBC(I*2=-1))=NP+0PI
UZUTBC{NUMPC*2) )=DP+DPI
DPI=0.
GO 10 516

510 CONTINUE
DO 515 I=1,NUMNP
[F(CODE(I) «EQ. O.) GG TJ 515
[F(CODECT)=2.) 5124513,514
512 URI(1)=0.
GO TO 515
513 UZtli=0C.
Go TO 515
514 UR(I)=0.
UZ{1)=0.
515 CONTINUE
516 COUNTINUE

FORM STIFFNESS MATRIX
CALL STIFF

SOLVE FOR DISPLACEMENTS
CALL BANSCL

COMPUTFE STRESSES
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IND=IND+]
[INN=/
CALL STRESS

3

[ TChEK=T1)503,500,500
503 TCHEK=T+#]CHEK
Gur TO 510

50 )3 CONTINUE

C

C oot % & %8 fof o f e oo g o ook o oS Ok ROKO A w ok 4 ok e ol e ook ok X e o o e i o ok o o e 3 3 o Xk

C MAONTFY COUGRDINATES

Co% food o g ook otk ol o e % g BB A D ko ok kol kR %ok ok e sk e e ook R okl ok R ke
NFWRI=NFEWR/Z+]
M 600 I=1,.NUMNP
RETY=rETI)Y+URRLD)

HOO Z1)Y=Z201)Y+ull(l)

[F{KONTD NEo C) GO T 601
WRITE(ICLUT LI EVELMITY,I=1 4 NUMEL)
WRITECIOULTP, 11110 VCLM(T),,I=1,NUMEL)

601 WRITE(LIOUT,2011) (I,CODECTI) oRETD)9ZUT )y I=1,NUMNP)
WRITE(ICU?P,IOIO)(CCDE(I),R(I),Z(I),I=1.NUMNP)
leTE(IUUT'/Ulq)(IyIFH(K),FK(I),EMDD(I)'BEWA(I),

lbluG(Iyl),SlGG(lyZ),SIGG(Iy4)'l=l,NUMEL)
NPITP(IUUTP'lOll)(!FH(I),FK(I),pMUD(I)yBETA([),

151(,";(Iyl)yF»I(;G(IpZ)'SlCG(Iyé),I=I|NUMEL)
[FINEWRZ=NRZ)5254504,5U4

52% 00 526 I=1,NUMNP
URR(T)I=0.
526 UZ2I(1)1=0.
GO TO 5595
504 CONTINUL
C

C*«*¢¢t¢¢*¢¢t*¢*¢*¢**$**¢z$x***********ﬁ*tt*********###t****

o -
509 CAaLL EXIT ]
C***t##*t**###i*#*******#$i**t#***#******ttk*****#***t***#**

C

1000 FORMAT(20A4/71543F10.0)

1007 FHRMAT(!b.fh.O.QFI0.0)

100} FORMATIS1S)

1604 FUORMAT(319)

100 FORMAT (B8F1lU.0)

1019 FﬂRWAT(j(F3.0,2F11.8))

1011 FURMAT(I3,F 7.4y 1P5E13.06)

1111 FORMAT({1PG6EL3.O) NN

O FORMAT(IHU 20A4//75X, " NLa L ; | >

ZOUUL'LO. 0F ELEMENTS=',13/5X, "NU. aF Dl%é. Be gzcg;;ézgz.
25X, "'NO. OF (TERAI[GNS=',IB/5Xg'NO.VUF MODI 'DPI"” '
ililﬁx,'CLhIINUAXIUAz',I)/Hx,'DP:',?13.5/5X, =%y

Ded/ 595X sANE=1yF10e0//) _ . o

2001QEA;M2;(5;.'E=',EZO.B/SX,'POISSCNs RATIG-;;iZb.8/5A,

I'STRESS(C):'.EZO.S/SX,'STRESS(T):"EZO.S ’



83

2*MAX e ANGLE=',F1l0.5/5X, "RESe ANGLE=',F10.5/5X,
3*SLOPE=',F10.5//)

2005 FORMAT(//5X s *DISPLACEMENT B. C.! 'l rJye
LY ELEMENT U1 £ Bse Ca'/14X,*1%,14X,%J% 44X,

2007 FORMAT(3115)

2009 FORMAT(5X,*NODAL POINT CARD tRRUR N=',15,

1*'e EXECUTION TERMINATED.')

2014 FORMAT(5X,*PROGRAM wILL NOT BE EXECUTED. CNLY DATAY,
1' WILL BE TESTED.')

2018 FORMATISHINGP 16X,y T TYPE? ,16X,"R(1)",16X,'2(1)'/ (15,
1E10.0,2€20.7))

2019 FORMAT{10FLIELEM. NO.,* IFHTT) Yy 10X, '"FKLT) T, 8X,
LYEMADIT ) 98X, *BETALTI) Yy 6Xs "SIGGIT 1) ,6X,*SIGGLT,2)0,
26X 4 *SIGGLIL4)"/(2110,6E15.5))

STOP
END

SUBROUTINE STIFF

COMMON E(T7,10) ,NUMNPyNUNMELy NUMPL ,MTYPE NP yANT,HEU(20]),
1R{350),2(350),UR{350),U2(350),C00E(350),IBC(100),
2J8CL{100),PR{II0CO)I)ANGLE(4),SIG(10) ,NDEG, IFF{350),
3VOLM{350) yNEWRZ,INN, ICHEK 4KONTU IND,FKI350), [FHI3501),
4BETA(350)

COMMONZARG/RRRI5) 4 2Z4(5)4yS{10,103,P(10),LM{4),D0(3,3),
IHH{10,10) yRR{4),2Z14)4C13,3),H(06,10),0006,6),F(L10,100,
2TP(6) 4 XT(10),EE(5), IX{350,5}),EM0D(350)

COMMON/ RANARG/MRAND, NUMBLK,R({120),A(120,60)
COMMUN/IO/IN, [OUT AUML ,NDATL,NUATZ,NRECT

INITIALIZATICN

REWIND NDATZ
NB=30
ND=2%NB
ND2=2#%ND
STOP=0.0
NUMBLK=0

DO 50 N=1,ND2Z

B(N)=0.0

DO 50 M=1,ND
50 A(NyM)=0.0

FORM STIFFNESS MATRIX IN BLOCKS

60 NUMBLK=MNUMBLK+1]
NH=NB¥* (NUMBLK+1}
NM=NH-NB
NL=NM—-NB+1
KSHIFT=2%NL-2



70
30

90

94

100

98

99

30

35

101

102

105

84

DU 210 N=1,NUMFL
NREC1=N

TF{IX(NGS)) 210,210,65
DN B I=1,4
TECIXINGT)=NL) BCy7C,70
TECIXIN,T)Y-NM) G0,50,80
CONTINUE

GU o TO 210

IXINg5)==1XIN,5)

IFCINN EC. 1) GO TG 100

READINUMLUNRECLY HHyCyRRRIS),ZZZE5) 4 EFE2)55,V0L
EM=FEMUD(N)

G0 TO 130

IF(IND +EQs. 1 ) GO TO 101

IFOTFHINY) 98,498,99

FEL2)=F1(2,1)

GO TO 102

VOLL=0.

IFLIXING3) «EGe IX{N,4)) GO TO 3G
RRRUS)=(R{IXANG LI V4RUIIXINGZ2) I +RIIXINGIIIHREIX (N, %)) )%
1.25
LZZ15)Y=CZ0IXING L)) #ZUIXING2Y)I#ZUIXIN,3DI+Z0IXIN,4)) )%
1.25

LIX=IXIN,5)

IXIN,S5S)=IX{N,1)

J=4

GO TG 31

RPR{SI=(REIXIN, LYY +REIXING2VI#RETIX (N, 3)) )/ 3.
272(5)=(ZUIX{NyI))+Z0IXINS2)I+L0IXINS3D) /30
TIX=IX(Ny4)

IX{Ny4)=IX(N,1)

J=3

g 35 legJ

R1I=RUIX{NsI)})

L1=40IXIN,G L))

R2=R{IXIN,I+1))

= Nyl+l))

ééMéiféi(;z*(lelﬁ)-Zl}+Rl*(ZZ-ZZZ(S))+RRR(5)*(£I—22))
VOLL=VOLL+CCMM

IFIIXIN,4) ~EQe IX{N,1)) IXIN,4)=11X
[FIIX{N,5) -EQ. IX{Ns1)} IXIN,5)I=TIX
FE(2)=.5={.5-E42, L1 )*EMODIN) /ECL L)
TE(EF(2) «6T. 0496771 L(21=0.499T7
[F(IFHIN) .EQ. 1 <CR. TFHIN) oEGe 4)
IF(IFHIN) EQ. 2) £E(2)1=E(2.1)

GO TO 102

MMM=NUMEL

FE(2)=E(2,1)

CALL QUADIN,VOLN)}

IF{VJaL) 1C5,105,106
WRITE(ICUT,2003) N

Elted=.1%c(2,4 1)



C
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Stop=1,
106 EM=E(1,1)
IFCIND oFQe 1) GO TO 110
EM=EMODIN)
ITFLIFHINY JNEWS 3 JCR. VOGL LT, VOLMIN)) GO TO 115
EF{2)=0.10%E(2, 1]}
CALL QUAC(NsVGL,N)
GO TO 115
110 VOLMIN)=VCL
EMUDIN)=E(Ls 1)
115 WRITE(NUML'NRECL) FHoCoyRER(S5)4ZLL(S)4EEL2), S5, VUL

130 IF(FE(2) FEQ. 1%E(2,1) AND. EM LoT. ANI*EL(1,1))
tEM=ANI*E(1,1)

131 DO 140 J=1,10
DG 140 K=1,10

140 SUJeKI=EMES(U,yK)

IF(IX{N,3)-IXIN,4)) 145,156,145
145 DG 150 11=1,9
CC=S{11,10)/5(10+10)
DO 150 JJ=1,5
150 S(II,JJ)=S(11,JJ)-CC*S(10,JJ)

DO 155 11=1,8
CC=S(114G)/519,9)
DO 155 JJ=1,8
155 SCI1,JJ1=S(11,J4J)-CC*$19,JJ)
156 CCNTINUE

ADD ELEMENT STIFFNESS TO TCTAL STIFFNLSDS

DC 166 I=1y4
166 LMII)=2%IX{N,I)=2

DO 200 I=1ls+4
D0 200 K=1.2
[I=tM{T)+K-KSHIFT
KK=2%[—-2+K
DO 200 J=1ls4
DO 200 L=1s2
JI=LMUJ)+L-T1+1-KSHIFT
LL=2%Jd=-2+L
[F{JJ) 2CCy200,175
175 (F(ND=JJ) 18041954195
180 WRITE(ICUT,2004) N
STGP=1.0
GO TO 210
165 A(lI,JJ):A(lI,JJ)+S(KK,LL)
200 CUNTINUE
210 CONTVINUE

ADN CUNCENTRATED FORCES WITHIN BLOCK
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LFINM=NUMAP ) 211,211,212
211 NSTOP=NM
GO TO 213
212 NSTUP=NUMNP
213 DO 250 N=ALLNST(OP
K=2#%N— KSHIFT
BIK)I=B{K)+JZIN)
250 BUIK-1)=8B(K-1}+URI(N)

DISPLACEMENT B. C.

310 DO 400 M=NL,NH
IF{M=NUMNP) 315,315,400
315 U=URI(M)
N=2%M=]-KSHIFT
[F(CODEIM)) 390,400,316
316 IF(CODE(M)-1.) 317,370,317
317 IF(CCDE(M)=-2.) 318,350,318
318 IF{CODE(MI-3,.) 390,380,390
370 CALL MUDIFY(A,8,ND2,MBAND,N,U)
GO TO 400
380 CALL MUDIFY(A,R4ND2sMBANDsN,sU)
360 U=Ul(M)
N=N+1
CALL MODIFY{A,B8,ND2,MBANDN,U]}
400 CUCNTINUE

WRITE BLUCK CF EQUATICNS ON TAPEL AND SHIFT UP LUWER BLUCK

WRITE(NDAIZ)(B(N).(A(N.N),N=1,MﬁAND!.Nzl,NU)
DO 420 N=14NOD
K=N+ND
RIN)=8B{(K)
B(K)}=0.0
DO 4«20 ¥=1,N0
A{N,M)=A{K,M)
420 A{K,M)=U00

CHECK FOR LAST BLJUCK

[F (NM=NUMNP) 6C,48C,480
480 CONTINUE

IF(STOP) 4904+50U,4%0
490 CALL EXIT
500 RETURN

ELEMENT NG.o [4)

RMAT (26HONEGATIVE AREA 14
So04 0 : CEEDS ALLUWARLE 141}

2004 FORMAT( 29HORAND wIDTH EX
END
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SUBROUTINE QUADIN,VCL,MMM)

COMMON E(7110)yNUMhp,NUMELpNUMPC,MTYPL.NP,ANI,HfU(ZO)'
lR(350’,Z(350)yUR(3SU),UL(350);CUUE(3bO)vlHQ(ILO).
ZJBC(IOU)va(IOD)QANGLE‘4)vSIG(lU)vNUtG.IFF(35()v
3VOLM(350)1NEﬁRZyINN,ICHEK,KUNTD'INU,FK(350);!FH(550)1
4BETA(350)

COMMON/ZARG/RRRIS) ¢ ZL2(5) 45(LU,10)4PL10)t M{a),00(3,3),
lHH(lOQlO)’RR(‘t)yZL(")QC‘ayj,'H(Ule)'D(OvO’v}’( 1uslu),
2TP{6) o XTU10)4EE(S) 4 IX(350,5),tM0DI350)

COMMUN/BANARG/MBAND y NUMBLK ,B(120),A1{120,40)

COMMON/ 10/ INy IQUT 4y NUML,NDATL,NDAT 2, NKEC 1

90 I=IXI{N,1)
J=1IX{N,2)
K=IX{N,y3}
L=IX{(Ny4)

FCRM STRESS-STRAIN RELATIONSHIP
10 IF(IFH{MMM) NE. 1) GO T0O 20
ANISOTROPIC ELEMENTS

E2=1./ANI |
COMM=1a/ ({1a+E{2, 1) )% (1 a—b(2, 1)t 2% 0 (2)%EF 000

Cll=E2%{1.—E2%FEL2)*EE{2) )*CLMM
Cl2=E2%FE(2)%{1l.+E(Z,]1))*%COMM
C22={1e—E{24 )%E(2,1))*CLNMY
C33=.5/{1.+EE(2))

BETAA=(BETA(MMM) +90,)/57.296

SINB=SIN{BETAA)

CCSB=COS{BETAA)

SINB2=SINBEXSINB

SINB4=SINB2*SINBZ

C0SB2=C0SB*L05H

COSB4=COSB2%(G582

SINBC=SINB*CUSB

SINBC2=SIN32¥C0SB2

=t %03 38STNECY
tylarC -9, T 33%

C(1,1)=Cll*cosa4+2.*c12¢sxw5c2fg§gt5twg
C‘1:2):C1I*SINBCZ+CIZ*(bIN84+CHSDw)+CZ(
ISINRC?2 , L o
C(1'3)=SIABC*(Clltcosaz-CZZ*s1ma3+(51‘,/ IR R AR
12.%C33))

Ct2,11=C(1,2) ) o
C(Z,Z)=C11*SINfﬁ‘f*Z-*ClZ*)IMﬂL{*v
C(2,3):S¥NBC*(Cll*SINBZ—CZZ*CuS&
12.%C33))

C{3,11=C11,3)

C(3 2,:(;(2'3) . A:(‘_).z l.\..v\’?Q
C(3.3)=SINBC2# (CL1-2.#C12+C22) 40 338 (0 A5747 070

22*Ct>8~+«.‘;*5':?uﬂk

c*(CUS“Z*bIK“A)‘(ulL*



s¥aks)

AOO

20

15INB4)

60 1O 3¢
CCMM=(1a~EE(2)) /{1 a+EE(2))%(1e—2.%EF(2)))
Clls1)=COMM
ClLy2)=COMM*EE(2)/(1l.~FE(2))
Cll1,3)=0.0

Cl2+1)=C(1,2)

Cl2,2)1=CCMM

C(Z,3)=0.0

C(3,11=0.0

C(3,2)=0.0
Cl3,3)=e5/({1.+EE(2))

FORM QUADRILATERAL STIFFNESS MATRIX

30

94

96

97

100

119

RER(S)I=(RITI+R{J)+R(KI+R{L) ) /4.0
ZZZ215)Y=(2{1)+2(J)+2(K)+2(L))/ 4.0
DO 97 M=1l,4%

MM=TIX{AN,M)

IF(RIMM)}) S€4¢34,96
R{MM)=.01%(RREK(5)*4,-R{L}))/3.
RRR{M)=R{MM)

LZ272{M)Y=21MM)

D0 100 I1=1410

DG 100 JJ=1410
HH(JJ,11)=0.0
S{11,4J1)=0.0

DC 119 IlI=1l+4
JI=IXIN, IT)
ANGLE(IT)=CGDE(JJI/DT.3

CHECK FOR TRIANGULAR ELEMENT

120

[IF{K—=L) 125,120,125

CALL TRISIF(1.2,3,MMM)
RRR(5)=‘RRR(1)+RRR(Z)*KPR(3))/5.U
LZZ(S)z(ZZZ(1)#ZZZ(2)+ZZ[(3))/3.0
voL=xI(1)

GO TO 130

QUADRILATERAL ELEMENT

125

127

129

132

viL=0.0

caLlL TRISTF (441,45, "MM)
VOL=VOL+XI(1)

catLt TRISTF(11205,MMM)
VCoL=vOL+XI{1)

cAaLL TRISIF(2v3151MMM)
vOoL=voL+xI({l)

CALL TRlSTF(39415vMNM)
VUL=VOL*X[(1’

DO 140 I1=146

88
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0O 140 JJ=1,10
140 HH(LI,JJ)=HH(I1,JJ)/4.0

130 RETURN
ENC

SUBROUT INE TRISTF(II,JJ4KKyMMM)

COMMON F(7,10) yNUMNP yNUMEL y NUMPC+MIYPE NP ANI,HED(20],
1R(350),2(350),UR{350),UZ(350),C0DE(350),1IBC(100),
24BC L1003 4,PR(1CO) yANGLE(4)SIG(10),NDEG, IFF(350),
3VOLM(350) yNEWRZ g INN, [ICHEKKONTD,IND,FK(350),IFH(350),
4BETA(350)

COMMCN/ARG/RRRIS5) ¢Z22(5)45(10,410),P(10),LM(4),0D(3,3),
1HH(10,10)4yRR{4}4ZZ{4)+C(3,3),H(b6,10),D(6,6),F(1U,101},
2TPL6) , XTL10),EEL5) 4 IX(350,5),EMODE350)

COMMCN/TO/INSIOUT4NUML oy NCATL,NDAT2,NRECY

NOUBLE PRECISIUN CCOMM,UPKR{3),0DPLZ(3)

INIVIALIZATICN

tMi1)=11
tM(2)=JJ
LME3)=KK

RRE1)=RRRA{II)
RR{2)=RRR{JJ)
RR( 3)=RRR(KK)
RR{4)=RRRIII)
2241)=2221411)
LI{2y=1L11134J)
22(3)=222(KK)
2204)y=7221011)
DO 115 I=14+3
DPRR{I)=RR(T)
115 DP2ZL1)=22(1)

85 DO 100 I=146
DO 90 J=1,10
F([,J)=0.0

90 H(I,4)=0.0
DG 130 J=1+6

100 DUI,J4)=0.0

FURM INTEGRAL{G)IT*(C)*{G)

)*(DPZZ(3)—DPZZ(l))+DPKR(l)*(DPZZ(2)'

MM=DPRR ({2
o pPLLL2))

lCPZL(B))+DPRR§3)*(DPL£(1)-
XI{1)=CCVMM/2.

D(2,6)=X1(1)%C(1,2)
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CO3s5)=XT(1¥%CL3,3)
D(545)=XI(1)%C(3,3)
D{byo)=XT(LI*C(2,2)
D0242)=X1C1)%CLLe1)
D{3,3)=x1(1)1%C{3,3)
[H(TFH(MMM) oNEL. 1) GO TU 108

ANTSUTRUPIC ELEMENTS

D02,3)=xT(1)*C(1,3)
DE2,5)=XTCLI%C(1,3)
O(3,6)=X1{11¥%C(2,3)
DUS,6)=x1{1)%C(2,3)

108 DU L1100 I=1,46
DO 110 J=I,46
110 0(J,1)=0(1,J)

FURM CUEFFICIENT=DISPLACEMENT TRANSFORMATION MATHIX

DD(l91)=(CPRR(2)*DPZZ(B)-DPRR(B)*DPZL(Z))/CUMN
UU(192)=(DPRR(3)*DPZZ(1)—DPRR(1)*DPZZ(3))/CLMM
vDD(1,3)=(DPRR(1)*DPZZ(2)~DPRR(Z)*UPZZ(1)3/CUMN

o

OO

]

120

DDL2,13={CPZZ12)-DPZL(3))/CLMNM
DD(2,2)=(CPZL{3)=DPZZ(1))/CUMM
DO(2,3)=(CPZZI1)-DPZZ{2)}/LCHMM
DD(3,1)=(DPRR{3)-DPRR(2}1/COMM
DD{(3,2)=(DPRR(1)=DPRR(3)}/COMM
DD(3,3)=(DPRR(2)—DPRR(l))/COPM

50 120 I=1,3
J=2%LM({I)-1
H{1l,4)=C0(1, 1)
H{2,J4)=D0(2,1]}
H(3,4)=DD(3,1)
H{4,J+1)=0D{1,1)
H{5«Jd+1)=0D{2,1)
H(b'J+l)=UD(3,I)

FORM ELEMENT STIFFNESS MATRIX (H)

128
129
139

138
139

NU 130 J=1,10

DO 130 K=1,6

IFIH(KyJ)) 128,130,128

DO 129 I=1,0
F(lyJ):F(IgJ’*D(lqK)*H(KyJ)

CCNTINUE

DO 140 1=1.10
DO 140 K=1ls6 '
[F{HIK,1)) 1384140133

DO 139 J=1,10
S(I'J’:S(I'J)+H(KqI,*F(KYJ,

T=(D}Y*x{H)



T,

Lee s Co T TR0t
Bk ST TANSEORMATION MATRIX
eg ) i 4l Tl
ooal) Jotede
b1 ) ’“‘(IQJ):H"'(lyJ)*H(lyJ)

23

2b

t)" )

Seoor Ul It MODTEY (A Ay NEJeM3AND y Ny L)
EPEASTUN AL 209600 y80120)

L 2y M=y M AND
T N= M

TF () 239452354230
AR ) =k ) -ALR M) EY
"\(l"v)'—u.(‘/

K= N+M-]

TF N ,‘f‘\) 85\)0("#312‘3\)
BLX ) =2 {K)=A(N M)*U
AlNsM)=0 .0

CONT INUL
Afti,1)=1.0

A{NDY =)
b TURN
FNO

SUARUUTINE BANSUL
COMMUN/EANARG/ MM, NUNBLK,BI120)yA{120,60)

CHMMtN/IU/IN.ILUT.NUMI.NCATI'NDAT21NREC1

REQUCE FIUATICNS 7Y BLUCKS

AN=60

NE NN+
NH=NN+LN
REWIND NUDATH
REWIND NCATZ
NR =)

GLoTU 150

SHIFT BLOCK UF FQUATIUNS

100 NB=NBR+]

DO 125 N=1,NN
AM=ANEA

91



OO

OVOO

YO

fy]

125

B{N)=B(NM)
B{NM})=0.0

DO 125 M=1,MM
AUN,M)=A{NM, M)
A‘NM.M)ZO.U

READ NEXT BLLCK GF EQUATICNS INTOU CURE

150

ITHONUMBLK=NB) 150,42C0,150

RLEAD (NLCAT2) (BIN)y (AINM) g M=1 , MM}, N=NL,NH)

TFINB) 200,100,200

REDUCE BLCCK CF EQUATICNS

200

225

230

250

275

150

B 300 N=1sNN

[F{AIN, 1)) 225,300,225
BIN)I=B(N)/A{N, 1)

DO 275 L=2,MM
IFLAIN,L)) 230,275,230
C=A[N,L)/A(N,1]}

I=N+#L -1

J=0

DO 250 K=L,MM

J=Jd+1
A(IQJ):A(IvJ)-C*A(N,K)
BLI)=8B{I)—AIN,L})*BIN)
A{N,L)=C

CONT INUE

CCNTINUE

WRITE S3LOCK GF REDUCELD EJUATIONS UN TAPE 1

375

IF (NUMBLK=NB) 375,40Cy31

WRITE (NCATL) (BINY s LACN M) g M=2 MM )y N= 1NN

GO Tu 1C0

BACK=-SUBSTITUIICN

400

425

459

475

00 450 M=1,NN
N=NN+1-NW

DO 425 K=2q MM
L=N+K~-1
BIN}=BIN)—A(N,K)I=B(L)
NM=N+NN

B{NM)=B{N)

A(NM NBI=B{N])
NB=NB-1

[FINB) 475,500,475
BRACKSPACE NDATI

READ (NCATL) (BIN)s(ALN,
BACKSPACE NODATI1

GO TO 400

5

M) N2 MM N

108

92



OO

&Y

c

c

C#***#**#**************#***

c

93

ORDER UNKNCWAS IN B ARRAY

500

600

10

12

C#*******#*****#*#*#*****#*****#******#*#***#

CA

15

16

K=0

DO 600 NB=1,NUMBLK
D3 600 N=1,NN
NM=N+NN

K=K+1}
BIK)=A(NM,NB)

RE TURN

END

SUBRQUY INE STRESS

COMMUN E(7,10),NUMNPyNUMEL,NUMPC ,MTYPE,NP,ANT,HED(20),
1R{35Q0),2(350)UR(350),UZ2(350),CO0E(350),IRC(1001},
2JBC{100) ,PR{100) ANGLE{4)4SIG(10)NDFG, IFF{3501,
3VULM(350)1NEWRZyINN,!CHEK,KONTD,INU,FK(350)'iFH(350,,
4BETA(350)

COMMUN/ARG/RRR(S),ZZZ(5),5(lO,lO)gp(lO3yLM(4)1DU(3v3),
lHH(lO:lO)'RR(4’yZZ(Q)vC‘3,3’9H(6'lo’,D(o;b)oF(lU'lO)y
2TP(6)9X¥(10)1EE(5’yIX(BﬁJvS)oEMUD(350)

COMMUN/BANARG/MEANC,NUMELKg8(IZO)pA(120.60)
COMMUN/[II/URR(350)’UZZ‘350)ySIGG(35094l,DVCL(BSO)

COMMON/IU/[N,[DUT,NUMl.NDATl,NDAT?yNREC[

DIMENSION SIGi(BSO)ySIGZ(BSO),5164(350),F35(10!

UCCN=0.

f18c=1

PN=0.

EE2P=E(2,1)

DO 9 I=1,NUMEL
IX{I,5)=1ABS(IX(I,5))
DO 10 I=1yNUMNP
UR{INI=0.

uzZ(l)=0.

IF{ICHEK=1)125154+15
WRITE{ICUT,2000)

Ak Rk xERRXEE

LCULATE STRESSES
O L L LA A L L L Lkt dies

DO 200 N=1,NUMEL

EM=EMOD(N)

NREC1=N |
READ(NUML*NREC1) HH,C,RRR(S):ZZZ‘S),Et(ZJ»S:VUL
IFIEE(Z2) +EG. L1%E(2+1) <AND. EM .GT. ANT*E(L1,1))

1EM=ANI*E(1,1)

17 DO 120 I=1,4

11=2%1



17

| SRR

JI0% RN, 1)
PLTI=1)=20)d-1}
ST =n0dd)

A 1=9,10

20 J=1410
s, d)-501,J %M
190 [=1,7

SR U A R

IS5 m=l,4
R (D)2 RETD)=STT#8,K)*¥P(K)

VTS GRS LY, LIS G, LU NESTLO,9)

TP M) 195,160,155

DY S LR RO =505, LOYERR (2) ) /CUMM
D) = LUy 9IS (9 )¥RR{2) ) /COMM

L7) T-1,¢
Telll)l=u.
FIE U AU SR U GV
TOLL)=T0 (L) +n{1,K)*FP(K]}
= (1) TR
2(()):T’r)(f)
a3 T (3T

gt Lo =143

B -
T 2 S e

D180 K=143

Mo QUM L] g K ) ERR (K ) REN
ST (h)y-Stm

ooty =15 03)

[F(ICHeR oFve U) GO TU 199

aMUL AT STRESSED

sl U0y 1) STCLL Y+ T0ningl)
\II"»M(N,J)*-\IG(Z)fbl(G(N,Z)
‘ilk,(,('\.Q)fSlG(Q)4‘»1(L&(N,/')
TR B RS

STy =s1nil)
‘)":‘«)('\J)TSIU‘/’))

ST IN)I=STH04)

[P LIRHIN) JGTe 0 LU 10 200
f%ilx(;lzbl(’»(1}*51(6('\”1)
‘»I’;’}/J:SI(;(Z)+SH»G('\'))
Cioa=5101a)+ST0GIN, 4
FL=USTGEI4STNG2) /2.

AR -{(STLOL=->T5621/2.
x,k—"'SuR!(t‘t’»**Z*SlGGQ**Z)
SIGESY=CL+CR

Wl ta)y-—-LR
.\1(1(7):28.648*;’”/\{\42(bl(:(}fntd)
S51=—SI1G16)

\‘I_Cvl(>(5)

94



C
C
C

X Rals

95

CHECK EBELEMENT FATLURE

194

195

CALL FRTES1,S3,1K0D,UCC,PTL,PLCI

[E (UCU-UCIN) 195,164,194

UCCN=UCC

TF(UCO .FG. PCC) TIKC=3

[FUCD .EG. PT1) [IKO=1

TUCO=N

MM=N

AR ITE(ICUT, 2001 )N, IKOD,PTL,PLCySIGED)ySTGL0),SIGHTD,

1SIGUL) 3SIGL2)451614),51GG1,51652,51CC4

200 CONTINUE

[F (ICHEK JGT. 0) GO TO 800

ADJUST INCREMENTAL DISPLACEMENT

205

206

207

204

2J8
209

229

N=1UCO
CC={SIGG{N,1)+SIGGIN,2))/2.
BB=({SIGGIN,L)-SIGGIN,2)) /2.
CR=SQRT(BR%x¥2+SIGG(Ny4)%%2)
S1==CC+(R

$3=—CC-CR

CALL FRT(S1sS3,1K0D,UCG,PTL,PCC)
[FIIIKO LEQe 3) UUCG=PCC
[F(IIKO JFQ. 1) LUCC=PTIL

[F(UUCD GE. 1.) GC TOU 205
IF{{UCGN-UUCG) LT, 0.01) GU
60 TO 206

RAYIO=0.

IFHIN)=T1KQ

Gu Ty 209
RAIIO:(l.—UUCO)/(UCDN—UUCO)
[F{RATIC .GT. Lal}t GO TO 268
[FHIN)=TTKUJ

G YO 2C9

RATIN=1.1

[FLUCION=]1.001) 209,2044+204
RATIO=1.
[FHIN)=11KO

G0 YO 209
RATIO=1L.1
WRITE{ICUT,3000)

1d 2067

D0 220 I=1,NUMNP
URR(I)=P(2#I~1)*RATIG+URR(I)

UZZ(!)lP{ztl)*RAT[F+dZZ(i)

WRITE(ICUT,3003)
DG 700 A=1,NUMFL



96

ACCUMULATE TGTAL STRESSES

NNl

SIGGING1)=STGLIN)I*RATIU+SICG(N, L}
STGGINS 2)=STG2IN)I*RATIC+SIGGIN, 2)
SIGGINs4)=STG4IN}X¥RATIOC+SIGGN, 4)

INDENTOR PRESSURE

YOO O

[FI(N=JBC(TIBCI}IZ2Y ] 4210,211

210 RJI=RAIBRC(IIBC*Z))
2Jd=2(18C{IIBC*2)}
RI=R{IBCLIIBC*2-1))
LZ1=2(18C{118C*2-11})
PLI=SQRT(IRI=-RINHARI-RIV+(LI=-21)%(/7J-21))
PL2=ATANZ2U{ZJ=21)(RJI=RL))
PRUIIBC)=PLLI¥{SIGGIN 4 ) ¥SINIPLZ)=STLOGUN 20 ¥ nlbla))
PN=PN+PR(ITIEC)
ITRC=1I8BC+1
TF{IIBC-NUMPC) cll,211,212

212 JBC(IIBCI=NUMEL+L

211 CONTINUE

NRECI=N

READINUML*NRECT) HH,C'RPR(5).ZZZ(5),LE(Z)pb.WJ
NRFCI=NUMEL+I]

WRITF‘NUMl’NRECI) *’}"CQ‘{FR‘S"ZliZ({))yi,‘k(.?)y\)v\”;l

CALCULATE PRINCIPAL STRESSES

YOO

CC={SIGGIN, L) #SIGGIN,2)) /2.
BB={STGGINg1)-SICGINs2)}}/2.
CR=SQRT(EB**Z*SIGG(N,4)**2)
SIGI5)=CC+CR

SIGLoi=CL-LR
SIG(7)=28.646*ATANZ(SIGC(A,Q)'w“)
[F{IFHIN) oiEa O} GO TU 100

E*#******#*****#****##**¢#**#***#*tt###*#v?t#t%%t$#t¢vfﬁt$tt
C CLASSIFY FAILED ELEMENES & AUDTEY MATL<Lal PR Mf.‘.‘i;.*“
C###**#*#*##*#***#**#*###t*t#*##t#tt#tv*tttﬁtttt4t$~~t tudtt
C

IFF{N)=0

FFK=0a1

UCOU=0.

DVOLP=0.

SIG6P=0.

XF(N—IUCU)216v2159216

21% FK{N)=1le )
[FLIFHINY -1 25442549270

210 S1=—SIGl6])
$3==S151{5)



O

230
231

232

234

2317

97

viLL=0a

FIX=1IX(Ny5)

IXIN,S5)=TXIN, 1)

N0 230 1=1,4
RI=R{EIX{NLI))I+URRIIX{IN, 1))
Z1=Z{IX{N,I))+UZZUIX{N,I))
R2=R{IXINy IT+1))+URRCIX{N,1+1))
22=201XUIN,I#1))+UZZUIXIN,I+1))
COMM= 5% (R2%(ZZZ(5)=Z1)+R1*(22-2ZZ(5))+RRRUS)I*(L1-L2))
VOLL=VOLL+CUMM

[FCIXIN,3) LEQ. IX{N,4)) GO TG 231
CONTINUE

IX{IN,5)=11IX

DVOL (N} =VCLL-VGLMIN)

IFLIFHIN)=3) 232,250,245

ALFA2=(SIGIT)-BETAIN))/2€E.648

SIG6P=CC~-CR*COS (ALFA2)

SIGLP=CC+CR®COS(ALFA2)

S129=CR&SIN{ALFA2)
DVOLP:(1.-E(2'1))*(1.-2.*E(2,l))/[(1'1)*5100P*VULV(\)

IF(DVOL{N) «LT. DVOLP) GU 10 235
[F{SIG6P .GT. —Fléa,l)) GU TO 233

IF(S1G6P JLTe —E(3,1)) GU TU 270

IF(EE(2) «EQ. JJluxE{ 2, 1)) Gu TU 234
IFH(N)=1

EE(2)=0.10%E(2,1)

CALL QUADINVOL o N)

NREC1=N

WRITE(NUMI'NRECL) HH'CQRPR(B’1[12(5”EE(Z’,5,VuL

IF(S[GIP -GT. 50. .CRO blZP .G[c bu.) HE 7

GO TG 290

EMODIN)=0.9%E{L,1)
FRINI=C.95

CALL FQTF(SleB,FK(N)vIKJDqU
IF(IKDO—1) 236,237,270

co)

EE(2)=E(2,1)
JFH{N)=2

CALL QUAC(N:VUL;N)
NRECL=N o R i
WRITE(NUMl.NRELl) hh'CyQPR(){';LZ())H
IF(SIGLS) «GTe. 50.) o0 T 26U

Gu 1o 290

LhW1)szL

EMDD(N)=O.8*E(1'13
FKIN)=0.9



[F{DVOLIN) .G6T. 0.1 GO TU 240

[FHIN)=3
EE{2)=e5-1.5—EEZP)Y*#ENMODINY/E{L, L)
TF(FE(2) aGT e 0.43977)EE(2)=0.49977
CALL QUALCIN,VOL,N)
NREC1=N
WRITE(NUMIYNRECL) HH CyRRRUS)yZZZ{5),EEL2}45,V0OL
GO TO 260
238 EMUD‘N)=0~B*E(1,1)
FK{N}=0.9

240 IFHI{N)=4
BETA(NY=DVCL{N)
[F{DVOL(N) .GT. 0.) BETA(N}=0.
EE(2)=0.10%E(2,1)
CALL QUADIN,VCL,N)

NREC1=N
WRITEINUMLONRECL) FHyCoRRR(D) 224151 12) 95, VLL

242 IF(ABS(SIGI5)) GT. 50. OR. ABS(SIGLO)) OT e 5040
LGO TU 265
GO TO 2%0

245 [F{DVOLIN) GT. BETA(N)) GL TU 24/l
[FHIN)=3
Eﬁ(2)3.5-(.5-EEZP)*ENQC(N3/E(1'1)
[F(EE(2) «GT. 0.49GTTYEE(2)1=0449911
CALL QUADIN,VOL,N)
NREC1=N
WRxYE(NUMl'NREC1) FH,Q,R&R(ﬁ},;LZ{s,v%L{B)’B'V,L
GU TO 290

250 I[FI(SIG(H)+SIG(61) .GE. De) GL 1L 24U
caLL FQ?F(SI.S3,FK(N),IKGD,UCU)
1E(IKOD Ede 3) UL T 266

[F(OVILINY «GT. Ua oAND. EELZ) obve Uol¥tlayld)

160 TO 2853
[F(DVCL{N) LT« O JAND. EE(2) oRbe DelxF (2410

160 TO 253
FF(2)=.5~(.b—EEZP)*EMUU(N)/L(1,1)

[FIEEL2) .GT. CJ4ISTTIVEE(2)=0a619TT

[F{DVOL(N) «GT. O.) EEL2)=0.1%E (2 1)

CALL QUALIN:VELN)

NRECL=N

WRITE(NUMLYNRECL) FH.C,RRR(SJ,ZZZ(S)v
253 IF(SIGI5) «GTe 50.) GC TO 260

G0 TO 290

EE(2)y5evUL

254 EE(2)=0.10%L{2s11
BETAIN)=SIGLT)
CALL QUAC (N, VOL 4N
NRECL=N

98



a4Q

WRITE(NUMLONRECL) FHoCoRPRUS)Z2LUH) JEE( 21,5, VLL
GO TO 260
C
Cteobte koo o A ko ek ke X e F N KRR S R AU R SRS ek n e s b D
C  TRANSFER EXCESISIVE STRESSES TO NODAL LUADS
AL T I R A E R L
C
255 IFF{N)=1
BETA2=BETA(N}/2R.648
SRP=,5%SIGOP*{1.-COS(BETAZ))
SIP=.5%SIG6PX(1.+CCSIBETA2))
SRZIP==—,5%SIG6P*{SIN{HETAZ))
GO 1O 290
260 IFFIN)=2
261 IF(EE{2) JGE. E(2,1)) GG TG 264
SIG72= SIG(T7)/28.648
SRP=.5%SIG{6)%{1.~COSISIGT2))
SZP=.5%SIC(o)%x{1.+4C0S(SIGT2))
SRZP=-,5%SIGI{6)*SINISIGT2)
GO TO 290
262 CCP=.5%(~-SIG(5)+SIG(6))
CRP=,5%{=SIG{5)-51G{61}1]
GO TQ 279
265 [FF(NiI=4
SRP:00
SiP=0.
SRZIP=0.
GO TO 290
266 IF{UCT 0T. 1.03) FEK= o l4.09%JCO-Teud)/aun
IFIUCH +GTe 1a09) FF&=.1D
GO TO 271

270 IFHIN)=3

271 IFF(N)=3
TH=FKI{N)*(ELS, L)-L {6, 1) yJ+ELG, 1)
DSl=2-*il-+SIN(TH))/CUB(TH)*(FK(u)*:(i,:)—lhx

1S1G15)) | 1 |
FK(N)zFK(A)—(.3+.?¢Fth))*(.5¢P%K+./v$er*51~t;)/
110000.) o
TH=FK(N)*(E(5.1)—[(6.1))+E(b.§) - o
DSZ=24*(1.+SIN(TH))/CCS(TH)*(F&(R)*F(iyél'Tn‘(T‘)v
1S1G{5))

DSP=(DS1-DS2)*E(T,1}
IF(DSP GT. 0Si) CsP=D51-50.
EMUU(N)=E(1:1)*FK(N)**E(Iyl)
SIGbp=(SlG(6)—SIG(5))*(1.—?5?/
GO TO 289

288 FKI{N)=.C5
EMUDINI=L001
TH=.95%F (64 1)
SIGbP=SlG(5)-2.#(1.+SIN(TH))/CC)(TH

UTAN(TH) ®STIGI(S))

SIS inin)

yx( oatt i)

216514



(4]

IF(SIG(5) .GT. 0.) LSP=DS1
289 TF(EMUDIN) oLTe. OLCOLl%E(Ll,1)) EMOUIN)I=0.00LLEL,1)

FF (212 S—{.0-FE2P)RFMOC{N)/E(L,y1})

[TFLEE(2) «GTe O0e49G7TYEL(2)=0.46G977

[FIDVOLIN) «GT. 0.) £E(2)=0.10%0(/2,1)

CALL QUAUIN,VGL N

NRECI=N

WRITE(NUMIENRECL) HH'CvRRR(S)oZZ[(‘)’v!’f’(Z)ybv\/“l_
272 1F(SIG{5) .LE. 04) GO TO 274

SIGH6P=SIG(6)*{1.—DP/DST]

CCP=,5%SIG6HP

CRP=-,5%S1G6P

Gu YO 279

274 CCP=.5%{SIG(5)+51G6P)
CRP=45%{SIG{5)=SIG6P)

279 ALFA2=SIG(7})/28B.648
SRP=CCP+CRPECOS{ALFAZ)
SZP=CCP-CRPECOS({ALFAZ)
SRZP=CRP*SIN(ALFAZ)

290 WRITE(ICUT,3002) Ny TFFIN) g TFHINY JUCO L (2) stk L0
1EMOD(N),DVOL(N),DVOLP,SIGG(N,l).blﬁ@(N,R).\lh&(h.«),
2ST1G(5)4SIGL6),SIGETY,STGLOP

IF{IFF(N)-1)7C0,710,71C

710 SRR=SIGGIN,1i-5RP

SZ2Z=SICGIN,2)—5LP
SRZ=SIGGIN,4)-SRLP
730 SIGGUIN,1)=5RP
SIGGIN,2)=5LP
SIGG(Ny4)=SRZP

739 NRECI=NUMEL+1 ‘ \
RFAD(NUMI'NRECI3HH,C,RRR(5),ZZZ(S).VF(/).SyVUL

IF(IXIN,3) LEQ. IX(N,&)) GO 10 751
DO 740 I=1.1V
740 FSS(I)=(hk(2,[)*SRRéHH(3,1)*SPZ+
1SZ22¥y*vOL
FSR=.25%FSS5(9)
£S7=.25%FSS(1G?

HM().I)*H<[*HH(Q.1)'

DO 750 I=1+4 v o
UR(lX(NyI))rFSS(I*Z‘l)*FSR*UF(IA\‘,I))

750 UZ(IX(N'I)}tFSS(I*Z)*FSZ+UZ(IX(N11H
GO YO 3C0
751 DO 755 I=1,0 - , o ,
759 FSS({)=(UH(Z,I)*SRR&%H(3¢I)*SRL*Hﬁ(D,i}‘5%40 {ee 1)
1SZ2Z)%ViL
DO 756 1=1+3
156 UZ(IX(N'!3)2F33(1¢/3
300 CONTINUE

700 CONTINUE
WRITE(ICUT,20030 (1

FSS(I*Z—l)*L&(IX(h,I))
N OEYETRER

PRI I)'Izlv-‘\‘””o‘:)



C

C

101

TPEN=ULZ(1)+Z(1])
WRITE(ICUT,2004)PN,TPEN
GO TO 810

300 DU 801 I=1,NUMNP

URR(I)=8(2%[-1)+URRI{L)
801 UZZ(L)=8(2*1)+UZZ(])
810 CONTINUE

2000 FORMAT(S5HIE=NO,1X, "IKOD#,3X,*PT1*,3X,*PCC*y5X,"MAX-S",
15X 9" MIN=S?y5Xy *ANGLE? y 2X*DR-STRES" $2Xs *UZ-STRES", 1X,
2'DRZ-STRESY ; 2Xy *R-STRES S 42Xy " {=STRESS' , 1 X, *RZ-S5TRESS!
3)

2001 FORMAT(215,2F6.2,1P9E10.2)

2003 FORMAT(//5X,*PRESSURE BOUNDARY!*//(5X, 'PRU 13,7 1=",
1E16.01%)

2004 FORMAT(/5X,*TOTAL PRESSURE=',F16.0//5X,
1'TOTAL PENETRATION=',f13.6)

2008 FORMAT(110,1P3E15.4)

3000 FORMAT(/' EL. NOa=1,1545X,"11K0O=*,13,5X,'UCON=",
1F10.3,5X,'UUCD='.F10.3,5X,'RATIU='.F10.3/)

3002 FURMAT(14'12'14,F6.2,F8.4oF6.2,lPlOElO.d)

3003 FORMAT{4HINO.,* IFF IFH uco ol FK EMODINY ',
1* DVOLIN) DVOLPIN) R-STRESS I-STRESS RZ-STRESS ',
2' MAX-ST MIN-ST ANGLE SIGePY)
RETURN
END

SUBROUTINE FRT{SL 53, KGD,UCU,PTL,PCC)
COMMON E(7,10)
PYL=0.
PCC=0.
uco=0.
IKOD=0
[F({S3 .GT. 0.) GO TO 510
PT1=S3/E(4,1)
uco=pPT1
IF{E(4,1) oLT. S3) GC TO 510
IKOD=1

510 PCC=(SI*53)/(E(371)+E(3,2)*53)
[F(PCC .LT. UCO) GO TO 590
uco=pPCC
IF(PCC .GT. 1) IKCD=3

590 CONTINUE
RETURN
END

SUBROUT INE FRTF(SI:S3yFKpIKODvUCO)

COMMON E(T,10)
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TH=FKE[(E(S5, 1)L {6,1))¢E({0,])
UC0=0.
[KOD=0
IF{53 .GT. 0.} GO TOQ 510
UCO=S3/E(4,1])
[H(UCH JGT. 1) IKED=1
$3=0.
510 PCC=(S1-S3)/(2.%(1 +SIN(TH))I/COS{TH)IX(FK=E(1,2)4+
ITAN{TH)®S3))
IF(PCC LT. UCQ) GG TO 540
ycn=prCcC
IF{PCC GT. 1.} IKOD=3
580 CONTINUE
RE TURN
END
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