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ABSTRACT 

A finite element approach has been developed to simulate bit 

penetration from bit-rock interaction to chip formation. A mathe

matical rock failure model, based on a review of the existing 

literature on rock tests, has been proposed to represent post-failure 

rock behavior and applied in the penetration simulations. The finite 

element program has been developed for two dimensional plane strain 

problems with non-linear material properties, geometrical non

linearities and fracture. An anisotropic element as well as variable 

stiffness and stress release methods have been used. An iteration 

method, using an incremental approach, has been applied for contin

uous penetration and modifications of material properties and dis

placements. Quantitative information on stress, displacement and 

material failure in the entire penetration process can be obtained 

through computer simulation. Blunt point, wedge and cylindrical 

bits are used in the penetration simulations. Blunt point bit 

penetration, with two different post-failure rock strengths, has 

been simulated and compared with experimental results. 
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I. INTRODUCTION 

Although many novel rock disintegration techniques have been 

introduced in recent years, only a few have shown promise for prac-

tical applications. The most common and practically important 

method, which has been used to drill millions of feet of rock every 

year, is still the mechanical action of drilling machines. In spite 

of the importance of the method, however, the basic bit penetration 

mechanisms involved are still not well known. Advances in basic 

studies could result in better designs and faster penetration rates. 

The bit penetration mechanisms are essentially a sequence of 

rock failures. Unfortunately, knowledge of the post-failure behavior 

of rock is very limited. Only a few investigators in the past have 

extended their studies in this area, and the information at hand is 

far from being sufficient. On the other hand, the constitutive 

theories, which we generally apply for describing rock behavior in 

the elastic state, become inadequate for the fractured rock. The 

complexity of the post-failure character of rock makes our task for 

a general constitutive law and its solution practically impossible 

at present. 

Because of these difficulties, much of the past success in bit 

penetration studies has been achieved through experimentation, and 

some empirical formulae developed from these studies have been 

p'( 
introduced . They generally provided guidelines in particular 

circumstances and could rarely be generalized or used to predict 

*Numbers refer to references listed in the Bibliography. 
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different and untried conditions. With regard to analytical methods, 

progress has been made only in the prediction of the initial crack 

of an elastic brittle rock under the penetration of a rigid wedge and 

in the calculation of the stress field beneath indentors using the 

slip-line theory of plasticity2 • 3 

Sikarskie and Cheatham, in their recent review of the present 

art of penetration problems in rock mechanics, made the following 

4 suggestions for further study . 

1. An improvement in the description of fracture growth--how 

the stress field changes due to the fracture region and the stability 

of the fracture growth. 

2. A better description of the crushing phase. 

3. Possible extensions: a) extension to other geometries 

and tool conditions, b) extension to other constitutive behavior. 

The purpose of this study is primarily to develop a general 

mathematical model to simulate the sequences of failure mechanisms 

and provide a better description of the aforesaid penetration phases 

--initial cracking, crushing and chipping. Furthermore, a satisfac-

tory model of this nature (non-linear material properties, geomet-

rieally non-linearities and fracture) will also serve the common 

interest of a broad area of rock mechanics. 

The finite element method, which has been applied to numerous 

rock mechanics problems, will be used for this study. Its special 

suitability lies in the fact that the complexity of rock behavior 

can be handled, and arbitrary geometrical configurations and boundary 

conditions can be applied without difficulty. 
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II. REVIEW OF LITERATURE 

A. Experimental Studies 

Experimental studies on bit penetration have been conducted 

extensively by many means. Among them, quasistatic tests and drop 

tests, with strain gage measurement and high speed photography were 

used most often. Although different methods have been used and the 

quantitative results have varied over a wide range, the penetration 

phenomena observed have been similar, i.e., sequences of radial 

cracking, crushing and chipping. The Drilling Research Institute 

has conducted a series of studies on rock failure and crater forma-

tion under the impact of a blunt wedge bit. The events were recorded 

using high speed photography and strain gage measurements and can 

be summarized by the following (Fig. 1) 5 : 

1. Crushing of surface irregularities as bit first makes con-

tact with rock. 

2. Elastic deformation of rock from continued application of 

load by bit. Surface cracks radiate out from lines of stress con-

centration at boundary of cutting edges. 

3. Crushing of central wedge of rock into fine fragments. 

4. Chipping out of large fragments along curved trajectory to 

surface adjacent to crushed zone. 

5. Crumbling away of crushed zone and displacement by bit as 

it continues to penetrate. Entire sequence may be repeated if blow 

energy is sufficient. 

These observations have been generally confirmed by later 

. 1 4-10 
investigators in both static and dynamic experlments ' 
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Reichmuth and others investigated the depth of penetration 

6,7 
after cutting the indented specimen perpendicular to the wedge 

The sectioned surfaces showed that the damaged depths were greater 

than those observed after removing the crushed material, and tensile 

cracks were initiated a short distance away from the bit-rock inter-

face. These fractures started in directions radiating out from the 

bit. The vertical cracks ran deep into the rock while others tended 

to curve toward the free surface as shown in Fig. 2. 
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Porosity is an important material property in bit penetration. 

Ladanyi, using a flat-ended cylindrical punch in his study, concluded 

that in the case of a dense rock of low porosity indentation failure 

initiated at the edge of the punch with a tensile crack forming a 

truncated cone beneath the punch8 . As the applied load increased, 

the cracks continued stable growth up to a certain load level. Fi-

nally, the cone crushed and the cracks propagated to the free sur-

faces in an unstable manner (Fig. 3a). In the case of a porous 

brittle rock, the punch could be pushed to a certain depth with 

little damage to the surrounding material. With increasing load, 

the crushed and compressed rock beneath the punch led to radial 

cracking in a way similar to the case of a dense rock (Fig. 3b). 

_ ____,,_r;1~-- EXTREME z---=s .,,, --~(•-'·•'" ,. EXTREME 
!;!w ·.,,~; 

INTERMEDIATE 

a. BRITTLE- DENSE b. BRITTLE-POROUS 

Fip,ure '3. Assumed [ndentatjon Fa i lnrc Hodes for Extreme 
;md Intermediate C<Jses of' i)::--ittle-·Densl' and 
Britt1P-Porus Rocks (After Ladanyic3) 

One of the most consistent results in experimental penetration 

studies has been the force-penetration (F-P) 
7-17 

characteristics -

Reichmuth recorded F-P curves during the process of penetL!t .i.on us in~; 

a load cell and a displacement transducer 7 . As shown in Fig. 4a, the 
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oscillating curve represents cyclic material failure while the pene-

tration process alternates phases of crushing and chipping. Figure 

4b shows a typical F-P curve in Indiana Limestone due to impact of a 

9 
blunt point bit . A crushed zone formed along AB and a chip was 

formed at B. Along BC the chip flow from the crater resulted in 

collapse of the zone of crushed rock beneath the tooth with a de-

crease in the force. The process was repeated with different degrees 

of chipping at D and E. F-P curves are functions of loading rates, 

rock properties and tooth profiles. 

10,000 

~ 5,000 
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B. Analytical Studies 

The slip-line theory of plasticity has been applied in the study 

12-17 
of stress field indentation problems . The theory, which was 

originally developed to analyze the deformation of a rigid perfectly-

plastic solid under conditions of plane strain, has been mainly 

employed for investigating industrial processes such as rolling, 

extrusion and forging. Hill extended the theory to the case of a 

plastic material using a yield condition based on the Coulomb-Mohr 

criteria12 . Be showed that two families of characteristics exist 

which are inclined at an angle of + (lT/4-¢/2), where ct) is defined as 

the angle of internal friction. The Coulomb-Mohr criteria was used 

to represent rock behavior because of its good first approximation 

with experimental results and also for mathematical simplicity. 

Cheatham used this theory to study maximum and minimum forces 

14 
necessary to penetrate a rock witl1 a wedge-type tooth . 7hese 

forces corresponded to the limiting cases of rough and smooth tooth-

rock interfaces. The influences of tool profile and confining 

pressure on the required forces were also briefly discussed. Parieau 

and Fairhurst extended the work on a wedge tooth to smooth, fric-

f d . . 15 
tional and rough inter ace con ltlons . Clark et al. extended the 

study to blunt point, round point and cylindrical indenters using 

17 
the same interface conditions 

While the slip-line theory gives a good first approximation of 

the stress field under an indentor, especially at tl1e high confining 

pressure condition where rock behaves as a ducti1e material, the 

theory ~ith its idealized material properties is, however, unable to 
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interpret the brittle penetration failure mechanism. Some simplified 

wedge penetration models for brittle rock have been proposed. Paul 

and Silarskie introduced a model for brittle crater formation in 

2 
rock . They assumed that fractures occurred along a plane extending 

from the wedge tip to the free surface at an unknown angle ljJ, and the 

Coulomb-Mohr criteria is satisfied simultaneously along the entire 

chip surface. According to the theory, the peaks on the F-P curve 

should lie on one straight line (Fig. 5). Dutta suggested similar 

models based on experimental observations and obtained a linear F-P 

relationship for wedges, and a parabolic one for cones11 These 

models covered some important events in the failure sequence; how-

ever, they could not describe the detail of the crater formation and 

gave no quantitative evaluation of the stress and displacement fields 

during the penetration process. The simplified mod~ls also neglected 

the effects of some important material properties such as porDsity. 

brittleness, etc. 

R 

F~i p,ure 5. 

T 
d· I 

J 

Pi = WEDGE FORCE IN THE i th PENETRA-
TION CYCLE 

\f! = ANGLE OF PLANAR FRACTURE 

d; =PENETRATION IN THE i th CYCLE 

R =TOTAL FORCE 

N = NORMAL FORCE 

S =SHEAR FORCE 

Tdea1i.zed :'lodel of JnciJ;icnt Chippin)'. 
(.\ftyr !:'<.·l!ll c~ Sik<lr:-;];iL'..:) 
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Sikarskie and Altiero, using an integral method, have succeeded 

in predicting incipient fracture from the penetration of a wedged

shaped tool without considering the compressive failure of the mate

rial and the change of stress field 3 . 
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III. MECHANICAL PROPERTIES AND FAILURE THEORIES OF ROCK 

In almost every engineering problem, equations are used to 

obtain quantitative information for the selections and decisions 

of design. Some material properties and constitutive equations must 

be inserted into the equations to yield data. The validity of the 

solution obtained is no greater than the validity of the material 

properties and constitutive law applied. Therefore, understanding 

rock behavior is of primary importance in the study of rock mechanics 

problems and is an essential element in a better engineering design 

of bits and drilling equipment. In this chapter, mechanical proper-

ties and failure theories of rock, which are related to the penetra-

tion study, will be discussed. 

A. Tensile Strength 

Rock is weak in tension. For an igneous rock, the compressive 

18 strength could reach 20 times greater than the tensile strength . 

Zienkiewicz et al. considered rock as a 'no tension' material in 

19 
their study of the structure of a rock mass Fissured rocks and 

20 
joints are often considered incapable of sustaining tensile load 

In the axial tension test, rock failure is instantaneous and 

always clear cut, disposed normally to the axis of the cylinder. The 

primary difficulty in this test is the lack of a satisfactory means 

to grip a specimen without introducing bending stress. Improving 

methods such as glueing the metal end caps to the sample or widening 

the cylindrical diameter at the ends of the specimen have been tested 

with some success. Many investigators prefer the indirect methods, 

such as bending or Brazilian tests. The dispersion of results from 



11 

tensile tests is usually large. A number of results are required to 

obtain acceptable average values. 

B. Uniaxial Compression 

The behavior of intact rock in uniaxial compression has been 

. t. t d b B. · k · Q · Zl 1nves 1ga e y 1en1aws 1 on ,uartzlte . He found that the stress-

strain curve can be divided into four regions. At the beginning of 

the compression, preexisting microcracks in the specimen are closed 

over a small increment of stress. During the crack closing, an 

increase in modulus of elasticity takes place resulting in a non-

linear region of the stress-strain curve as shown in Fig. 6. In 

region II, the stress-strain curve is essentially linear. Initial 

cracks may start at the end of this stage. Region III represents 

stable fracture propagation as the stress level increases. Before 

the applied stress reaches its peak, an unstable fracture propagation 

takes place resulting in progressive flattening of the stress-strain 

curve in region IV. Meanwhile, experimental results in uniaxial 

compression tests indicate that microfractures in a specimen tend to 

propagate in the axial direction. These tensile cracks in the axial 

planes result in a fast increase in lateral strain and a reversal in 

volumetric change as shown in Fig. 6. 

Most uniaxial compression tests have been terminated after the 

ultimate strength has been reached. Little is known of the post-

failure behavior of rock, which is important to many engineering and 

geological problems in drilling, excavation and bearing. In conven-

tional testing machines, when the maximum carrying ability of the 

specimen is exceeded, the sudden release of the stored energy in the 
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machine drives the sample to a rapid, uncontrolled collapse. Only 

in recent years, have attempts been made to control brittle frac-

tures in compression tests by increasing the stiffness of testing 

. 22-24 
mach~nes . 

Barnard developed a very stiff compressive machine and success-

22 
fully obtained complete stress-strain curves for concrete The 

results demonstrated the ability of concrete to undergo a very large 

displacement without ceasing to carry load (Fig. 7). He also sug-

gested that reduced cross section specimens give more consistent 

results over prisms due to the fact that reduced cross section sp0c·i-

mens yield a more consistent failure position and a more homogt>neous 

gage reading. 

C. Shear Strength 

Figure Sa illustrates slwar strength versus displacement of an 

k 1 d • d • L [ • 25 intact roc s1eare In a 1rect Stlear cev1ce . In this process, 

shear strength reaches a maximum at some small value of displacement 

where fracture occurs along the potential discontinuity. With cc1n-

t inuing displacement, shear resistanc<.' gradual1 y dct·rL'ascs unt i 1 it 

finally approaches a minimum value corresponding to the residunl 

failure stress. If a series of identical tests are conducted witil 

various normal loads N, then the maximum and residual failure 

strengths associated with their normal loads can be drawn to form 

two extreme failure envelopes as shown in Fig. Sb. The vertical dis-

tance between the two envelopes indicates the reduction in shear 

strength with continuing displacement. 

Patton, in his study of the shear strength of rock, iound that 

with large displacements originally polished rock surfaces becnmt' 
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26 scratched and gouged The frictional resistance increases from 

some initial low value to a higher residual value. On the other 

hand, if the original surfaces are rough, they become smooth with 

15 

continued displacements, and the frictional resistance progressively 

approaches the above mentioned residual value. He also used speci-

mens containing a number of irregular 'teeth', representing various 

degrees of rough surfaces, in direct shear tests and obtained differ-

ent failure envelopes lying between the two extreme failure condi-

tions as shown in Fig. 8b. 

D. Rock Behavior under Combined Loading 

In triaxial compression tests, the state of confinement influ-

ences rock properties of intact rock. An increase in confining 

pressure could result in an increase in ultimate strength, strain 

and stiffness. Under sufficiently high pressure, as the cases in 

deep oil wells, rock becomes ductile. 

One convenient way to summarize the results of triaxial tests 

is to plot the data in terms of major and minor principal stresses 

at failure on a Mohr diagram as shown in Fig. 9a. A curve tangent 

to the family of Mohr circles for tests conducted at various con-

fining pressures is the failure envelope for the particular intact 

rock tested. Bieniawski in a survey of published rock fracture data 

concluded that Hohr envelopes are approximately linear over a wide 

f . . 21 
range of con 1n1ng pressure 

Although the post-failure behavior of rock under triaxial 

loading is not well tested, it is agreed that the falling branches 

of the stress-strain curves in triaxial tests follow the same trend 
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as observed in the uniaxial compression or direct shear tests (Fig. 

9b) 24 • 27 . The residual strength of pulverized rock after a large 

17 

displacement could be approximated by a linear Mohr envelope with no 

cohesive strength as given in Fig. 9a. 

E. failure Theories 

Griffith was the first to formulate a theoretical study on frac-

t . . . t. b d . d . 21' 28 ure 1n1t1a 1on ase on energy cons1 erat1ons . Later on, an 

alternative approach, which considered the stress concentration at the 

crack tip, was adopted because of the difficulty of experimentally 

evaluating the surface energy of a material. Griffith postulated that 

the presence of small cracks or flaws existing in almost every rock 

causes large stress concentrations at the tips of these cracks when 

the material is stressed. He derived the relationship between the 

applied stress field and the tensile stress at the crack tip, assuming 

tl1e crack has the shape of a flat ellipse. When the tensile stress at 

or near its tip reaches a critical value, the crack will start to 

extend. This critical value may be expressed by a corresponding crit-

ical value of the applied stress for the case of uniaxial tension. 

Therefore, a fracture initiation criterion is formulated, which re-

lates the principal stress components of an applied stress field to 

* the uniaxial tensile strength of the material , as 

--------------------------

*Note that the uniaxial tensile strength is negative in this study. 

Hence, in substituting a numerical value for at, the negative sign 

must be shown, e.g. at -800 psi. 
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Where o1 and o3 are the major and minor principal components of the 

applied stress and at is the axial tensile strength of the material. 

Griffith's original theory does not consider the closure of 

cracks. Under compressive stress conditions, however, closure may 

occur before the tensile stress at the crack tip is high enough to 

initiate fracture. When closure takes p1ace the shear resistance, 

resulting from the contact pressure between the crack faces, has to 

be overcome before propagation of the crack can occur. McClintock 

and Walsh modified Griffith's original theory to account for this 

effect and obtained a relationship between the principal stresses 

required to initiate fracture. When the normal stress on the crack 

surface is compressive, the equation is 

(2) 

Where f is the coefficient of friction between the crack faces and 

Oc is the uniaxial compressive strength of the material. 

As discussed above, original and modified Cr iff it h theod es 

refer to fracture initiation only. The fracture propagation path 

and its associated stress redistribution are very difficult to 

predict. Furthermore, the theories assumed a single flaw in a 

semi-infinite elastic media, i.e., the intersection of adjacent flaws 

has been neglected. Therefore, Griffith's hypothesis, based on a 

genetic concept, cannot represent a complete rock failure mechanism. 

Nevertheless, if a modified friction coefficient is assumed, which 

is different from the internal crack friction, then the modified 
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Griffith theory almost coincides with the experimental failure enve

lope of an intact rock28. 

F. Mathematical Material Failure Model for Rock 

Obviously, rock failure is too complicated to be expressed by 

a single criterion. In the interest of the study of practical 

engineering problen1s, a mathematical model based on observations of 

experimental results is proposed as follows: 

1. Before the stress state reaches the maximum failure 

strength, rock is considered linear-elastic, isotropic and homage-

neous. 

2. The simplified failure criterion for an intact rock is 

assumed to be a linear Mohr envelope as shown in Fig. 1024 . Tensile 

rupture occurs when the minor principal stress equalG the uniaxial 

tensile strength of the material. When the normal stress on the 

potential shear surface is compressive, i.e., where tht: modified 

Griffith theory applies, a linear envelope is chosen. The transition 

between tensile and compressive failures can be approximated by the 

relationship between intrinsic shear strength T 0 and uniaxiaJ tvnsile 

strength ot as: 

(3) 

~ is the slope of the Mohr envelope. 

3. After tensile fracture, rock loses its cohesion on the 

newly created surface and sti~l retains its strength in the direction 

parallel to the fracture surface. This situation can be approximately 

simulated in a computer code using the finite element method, which 
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will be discussed in detail in the next chapter. 

4. After compressive failure, rock strength and stiffness 

decrease gradually along with the displacements until they finally 

reach the residual values. Degrees of failure are represented by 

dividing the space between two extreme envelopes, intact and resid

ual, into many levels. On each level, i.e., the same failure 

envelope, the degree of failure and material properties are assumed 

the same. 

The slope of the Mohr envelopes for maximum and residual failure 

strength, the shapes of the falling branch of stress-strain curves 

as well as the variations of rock properties during the process of 

progressive rock failure are different from rock to rock. Therefore, 

extensive tests along with refined experimental methods are needed 

for a better understanding of the post-failure behavior of a particu-

lar rock used in a penetration study. 

In order to compare the results from computer simulation with 

experimental tests, a particular rock, Salem (Indiana) Limestone, 

will be used for this study. 
13 

Its properties are 

Tensile strength, a 
t 

-759 

Compressive strength, a 6,370 c 

Young 1 s modulus, E 3,660,000 

Poisson's ratio, v 0.272 

Angle of maximum Mohr envelope, 8 max 30 

Because the study of the post-failure behavior of 

psi 

psi 

psi 

degrees 

rock is still 

in the developing stage, the information for Salem Limestone needed 

to establish a mathematical failure model as suggested above is still 
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incomplete. Some interpolations between bounded values and extra-

polations from the available properties are necessary. 

The angle of the residual Hohr envelope Gr has not been well 

tested. Therefore, two estimated values. 25 and 30 degrees, will 

be used in the simulations. 

Since the stiffness of rock decreases with the displacements, 

the instantaneous value of Young's modulus for a fractured rock is 

assumed to be the slope of the chord of the stress-strain curve as 

shmm in Fig. 11. 

The post-failure curves, as shown in the previous sections, 

display a fast strength loss at the beginning of rock failure and 

a gradually flattening toward their residual levels. A simple 

mathematical relation, representing this characteristic, is given as: 

E· EPc, p 
l 

(4) 

Where Ti' 
-'-'· instantaneous stiffness 

l 

c slope constant 

p ratio of strength 

a. 
l 

instantaneous strength 

a max 
maximum strength 

or residual strength 

Figure 11 shows two post-failure stress-strain curves with 

constants c = 2 and 2.5. These two constants will be used in the 

analytical study. 

While the stiffness of rock decreases in progressive failure. 

Poisson's ratio should also be changed accordingly. Since Poisson 1 S 



ratio for fractured rock is not available, an alternative approach 

is suggested. The compressibility S of an intact rock is defined 

as: 

tw 
v 

Where 

B ~P (5) 

v volume 

23 

hv volumetric change, for plane strain problems 

/:..V 3 
v = E (1 - 2v) p 

p 
1 

pressure, p = 3 (ox + oy + 0 2 ) 

/:..p pressure change 

If we assume that the relationship of Eq, (5) can also be applied 

to the post-failure state with a constant compressibility, tl1en 

Poisson's ratio becomes a function of the instantaneous stiffness 

v The variable Poisson's ratio v. can be exn,rcssed as: l"i" l 

1 Ei 
v 1. = -- [ 1 - - ( 1 - 2v) J 2 E 

(6) 

Figure 11 illustrates the change of Poisson's ratio along tl1e 

stress-strain curve. 
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IV. THE FINITE ELEMENT METHOD AND ITS APPLICATION 

FOR PENETRATION SIMULATION 

A. General 

The finite element method has advanced rapidly with the advent 

and improvement of electronic digital computers. A considerable 

volume of literature and text books has accumulated over a relatively 

short period. The general philosophy and mathematical background of 

this method can be obtained from many publications. Therefore, in 

this chapter, discussions will be concentrated on specific methods 

applied in the simulation of bit penetration. 

In order to associate the finite element method with the 

proposed mathematical material failure model as described in the 

previous chapter, some finite element techniques will be used in the 

simulation. An anisotropic element is introduced to represent an 

element after tensile failure. Variable stiffness is used in tl1e 

simulation of progressive strength failure of rock. A stress release 

technique and iteration method are applied dtiring the process of 

successive penetration. 

Bit penetration studies of a long wedge (or blunt point) bit 

acting on a large block of rock can be considered a plane strain 

problem, without considering the end effect. The finite element 

program developed for the penetration study is based on this 

assumption. Mathematical derivation of the method. using tl1e 

displacement approach, has been illustrated in detail in the text 

29 • 1 • l • 1 • ,l • A -by Zienkiewicz , and baslc re atlons are 1steu 1n appenulx " tor 

reference. 
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B. Anisotropic Element 

When the minor principal stress of an element reaches its 

critical value in tension, a fracture surface is created perpen-

dicular to the principal direction. This newly developed surface 

imposes an additional boundary to the system and results in a 

significant stress redistribution in the immediate vicinity as well 

as a change in the structure stiffness. The simulation procedure 

can be accomplished by regriding the whole structure including the 

crack surface as a free boundary. However, the amount of work for 

this procedure is considerable and the continuing modification of 

successive failures of the structure may be too complicated and 

costly to be practical. An alternative method, using an anisotropic 

element to represent a tensile fractured element, has been recom-

mended by Sandhu et al. in their study on tensile fracture propa-

. 24 
gatlon The method assumes that the crack p1ane is a prinripal 

plane for the anisotropic element. In the direction normal to the 

plane, Young's modulus and Poisson's ratio are reduced to very small 

values. Nevertheless, the element is still capable of w'itllstancJ in~~ 

stress parallel to the crack plane. The plane strain elasticity 

matrix, [D], for a symmetric anisotropic el_ement can be expressed as 

[D J 

0 0 

0 

0 

2 
m(l+v 1 ) (1-v 1 -2nv~) 

(7) 



Hhere 

E 
n = _l 

E 2 
and 

1 m = 

The constants E1 and v1 are associated with the behavior in the 

fracture plane, and E2 and v 2 with a direction normal to these. 

When the direction of the fracture surface is inclined at 

angle, S, to the global coordinates, a transformation for the 
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an 

matrix is necessary. If [n'] represents the local matrix, then it 

is easy to show that 

[D] = [T] [D '] [T] T ( n\ 
c) J 

~There [T] is the transformation matrix and [DJ is now the elasticity 

matrix in global coordinates. 

C. Non-linear Haterial Properties 

In small strain linearly elastic problems, using the displace-

ment approach, we have always arrived at the final answer by solving 

the system of equilibrium equations: 

[K] {o} = {R} (9) 

Where {R} and {o} list respectively all the external forces acting 

at nodes and all the nodal displacements, and [K] is the assembled 

stiffness matrix. 

For non-linear material problems, the stiffness matrix of each 

element is a function of its stress or strain level. Therefore, the 

final stiffness matrix [K] of the whole structure can be expressed as 

[K({o})] {o} {R} 

or [KCfE})] {o} {R} (10) 
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The above equations can be solved by iterative methods. In 

order to study successive penetration, the incremental displacement 

method is used. Rewriting the above equation in terms of small 

penetration increments, we obtain 

(11) 

Where [K]n-l is the stiffness matrix at the previous stress state, 

and {Ao} and {AR} are matrices of small incremental displacements 
n n 

and nodal loads. 

D. Geometric Non-linearity 

In the previous section, Eq. (11) has been derived based on 

small displacements with non-linear material properties. For 

problems with large displacements or strains, assuming tl1e geometry 

or clements remains unchanged and using first-order, infinitesim<1l 

1 inear strain approximations may yield an inaccurate solutioiJ. 

Practical engineering structures such as plates, columns anrl other 

relatively slender designs decrease their load-carrying capacity 

with continuing deformation. Modifications of the structure stiff-

ness become necessary for large displacement problems. Iu hit 

penetration studies, although action is conducted on a large block 

of rock, the relative material movement around a bit could cause 

serious errors after a certain depth of penetration. Using the 

iteration method as suggested in Eq. (11), adjustment for this 

geometric non-linearity can he accomplished by redefining element 

coordinates in the computation of stiffnesses. Rewriting Eq. (11), 

we hav<:' 

{6R} 
n 

(12) 
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Where [K(6,o)]n-l is the stiffness matrix formulated by the most 

recent coordinates of the elements. 

It should be noted that not all non-linearities are accounted 

for in this study. But since large strains in rock are not possible 

without fracture significant errors are not introduced 29 . 

E. Stress Release 

Zienkiewicz, et al. have suggested a so called 'stress transfer' 

method to study linear elastic rock behavior by considering rock as 

a 'no tension' material19 . The method converts excessive stresses 

that an element cannot bear to nodal loads and reapplies these n<1dal 

loads to the element nodes and thereby to the system, i.e., excessive 

stresses can be released from an over stressed element to neigl1boring 

elements. Assuming {Ao}e are the excessive stresses in an L'll'mPnt, 

then the transformation for nodal loads {ARle is given hy 

{AR}e =/e[B]T{i\o}edV 

~1ere [B] is the strain-displacement coefficient matrix. 

( I ') ) 

Stress releases can basically he divided into two cases, tcnsi ll' 

and compressive releases. When the minor pr inc ipa I st rcss o.) of an 

<-' 1 em en t rea c he s i t s c r i t i c a 1 v a lu e , t e n s j 1 e f r a c t u r e o c c u r s an d t h l' 

critical tensile stress should be released. Figures 12a and 12h show 

the stress states of an element before and after stress release. 

Figure 12c represents the stress relationship on Mohr's circles. In 

the process of successive penetration, tensile or shear stresses 

may be accumulated on the tensile fractured surface. These small 

stress increments are released by a siL1i Jar procedure ;is iLlustrated 

· p· 13 The above release method can also be applied for an ln lg. . 
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element which has failed in compression with its minor principal 

stress in tension, which according to the assumption in the matlw

matical material failure model the tensile stress should be releCJseu. 

In the case of compressive stress release, when the stress state 

of an element reaches the failure envelope in compression, a small 

amount of major principal stress, 0 1 , is released as shown in Fig. 

14. At point A the element reaches its maximum strength before the 

stress release, and point B represents the released stress state with 

a reduction in major principal stress ~01 from point A. In the 

process of incremental bit penetration the stress state of an element 

may increase again to its new failure point C. A similar stress 

release procedure, as started at point A, is repeated. If the incre

mental displacement of bit penetration and the amount of stress 

release are sufficiently small values, then the falling brancl1 of 

the stress-strain curve as shown in Fig. 14 can be c losv 1 v f o ll owL·d. 

F. Iteration Process 

Simulation of bit penetration starts from the initial contact 

of a bit and an intact rock without pre-existing stresses. A small 

assigned incremental penetration is impost:'d in each Herat ion. \•!i th 

the assigned small displacement on the boundary and the current 

structure stiffness, the incremental stresses can be obtained by 

solving the matrix equations as given in Eq. (12). If the displace

ment increment is sufficiently small, tl1en each incremental solution 

may be considered linear and could be accomplished acC11rately in one 

step. In order to trace actual fracture propagation during penetra-

tion, the computer program is designed to adjust penetration 
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b. AFTER STRESS RELEASE 
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Figure 14. Successive Compressive Stress Release 
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magnitude in each iteration by allowing no more than one unfailed 

element to reach the failure envelope. The ratio of the adjustment 

is used in calculating actual incremental stresses. After the 

accumulated total stresses for each element are obtained, the stress 

states of all failed elements are checked to determine their current 

s i t ua t ion . Further modifications for material properties and re-

leases for excessive stresses follow, if necessary. An additional 

loop within the same iteration is performed to release tl1ese execs-

sive stresses. In this loop, transformation from stresses to nodal 

loads is accomplished using Eq. (13), and the penetration boundary 

is adjusted to keep the bit stationary. Stress redistribution is 

accomplished at the end of this loop by adding the incremental 

stresses, generated from the transferred nodal loads, to the total 

stresses of all elements. 

Since the incremental penetration is small, modification for 

geometric non-linearity is taken after a specified number of itera-

tions. Before each execution of the program, the number of itera-

tions n and coordinate modifications m have to b<:' specified. With 

these numbers, the computer program can automatically iterate n times 

before moclifing the node coordinates and formulating tl1e new struc

ture stiffness. At the end of every n iterations, node and element 

data are punched on cards for plotting and continuation of simulation. 

A simplified flow chart of the program is shown in Fig. 15, also, a 

computer program list with input instructions is given in appendix B. 

Tn order to make a proper modification of the failed elements, 

a simplified classification is introduced: 
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Class 1: tensile fracture with an open crack. An anisotropic 

element is used for this class. Incremental stresses generated on 

the crack surface should be released. Tensile or compressive stresses 

in the crack direction are checked for possible further failure. If 

the stress in that direction reaches the tensile or compressive 

strength, then the failed element becomes class 4 or class 3, respcc-

tively. These classes are introduced in the following paragraphs. 

Class 2: tensile fracture with closed crack. If the crack was 

closed, then the normal stress on the crack surface becomes compres-

sive. Therefore, anisotropic material properties are abandoned. 

However, the crack direction is recorded in case of crack reopening. 

Compressive failure is checked for a possible change of failure state. 

The above crack opening is determined by comparing tl1e current 

element volume with a testing volume which is obtained by applying 

the current major principal stress on the element. 1 f t h l' v () 1 ll 'lll' ll f 

the current element is greater, then the crack is open. 

Class 3: compressive failure. Elements in this class follow 

the progressive strength failure as discussed in the previous 

t · When the sum of the principal stresses of an element is sec ·1ons. 

in tension, the element is classified as class 4. 

Class 4: loose fragments. All the stresses in the element 

are released. Young's modulus and Poisson's ratio are assigned smal] 

] The e lement volume at the beginning of this class is va ues. 

recorded. If the current volume is smaller than the recorded valu~. 

the element becomes class 3. 

I · 1 e etration simulations, most elements stay in n pract1ca p n 
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class 3. Some fractured tensile elements may change tlwi r c 1 i!SS i r i

cations from class 1 to class 3 as penetration continues. 

few elements near the edge of a bit become class 4. 

G. Simulations 

Blunt point, sharp wedge and cylindrical bits, represent i ng 

different degrees of dullness, are used in the pt'IH.'t rat ion s i mu 1 d-

tions as shown in Fig. 16 with dimensions. 

As proposed in the previous chapter, two material failure modL·ls 

with different stress-strain slopes and residual angles of till' :·lolt r 

envelope are chosen. The first model, with c 2 . 0 and 0 = 2 'j , i s 
r 

used for all bits; and the second model, with c = 2.) and () = ·w. 
r 

is applied only with the blunt point bit for the purpose of com-

parison. 

A rough bit-rock interface is assumed for all cases, i.e., 1111 

relative movement on the contact surface betwL·en bit and n1c k. 

Figure 17 shows a finite element grid which is typical of tile typv 

used in this study. The overall size and the imposed boundary 

conditions of the grid are comparable with the L'XJWrinll'nt<ll lv.c;t 

conducted hy Maurer, which will be used to compare with the ;ma]\·t i-

9 
cal results . 

1. Blunt point bit 

A series of plots showing principal stresses, degrees and tvpes 

of element failure and position of elements at various stages nf 

penetration of the blunt point bit, using the first material model, 

· 18 l\s shovm in Fi_g. IRa. rock hegino~ t<' fail 
1s illustrated in Fig. · · · 

after a small elastic deformation at the boundary of the cutting 
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Figure 16. Bits for the Penetration Simulations 
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edge, where high stress intensity exists. Major princ ipa 1 st rt>SSL'S 

in all elements are in compression with directions toward tiH• IH'IlL'

trat ing bit. Elements immediately under the bit have high comprl's--

sive minor principal stresses which keep these elements in tht• elas-

tic state. The highest stress intensity elements at this stage arL' 

under the cutting edge. Fracture in the rock propagates from tlw 

edge downward to a certain distance creating a central high com-

pressive zone and separating it from two sides of the rock as sllll\.Jn 

in Fig. 18b. As the penetration continues, the failed area L·xp;uJds 

toward the symmetric center of the rock and forms a compress i VL' 

failure zone surrounding a small portion of the high compress i V<' 

elastic area immediately under the bit, as shown in Fig. J,)c. ln-

creasing penetration at this point has little effect on tllv s iilL' 

elements, but gradually reduces material strength and stiffness ,,f 

the compressive zone as shown in Fig. J8c and ldd. Till' l~l(';:'>t'Pt> 

which have failed in compression, under the pressure of thl' pcnv-

trat ing bit, are squeezed into lateral movement, as a consL'CJlH'tH·v, 

tensile fractures start from the bottom of the compress i VL' z()nv 

and gradually spread to both sides, as shown in Fig. 18c, 12d 
and 

18 If · f th r 1"ncreased, the increasing 
e. the penetration 1s ur e 

·11 h the point that fracturt's 
pressure on the side elements wl reac 

1 t d finally form a cldp. :\t 
start to propagate in these e emen s an 

h t f t he chip a\..ray from t l1e or ig ina I 
t is point, the upward movemen ° 

free surface becomes obvious. 
The sequence of the chip form<.Jtion 

is slwwn from Fig. 18f to 18h · 

18 due to the limited space, reaches 
has not been fully shown in Fig. 



41 

BIT 

/ I I I I + 

SCALE : SYMBOLS FOR ELEMENT FAILURE 

FOR PRINCIPAL STRESSES f----l IO,OOOpsi rn:TENSILE FRACTURE E~:lLOOSE FRAGMENTS 

FOR DIMENSIONS 1-------i 0 .01 in. DEGREE OF COMPRESSIVE FAILURE 

t , COMPRESSIVE PRINCIPAL STRESSES 

~ ' TENSILE MINOR PRINCIPAL STRESS 
0% 5% 10% 20% 40% 60% 80% 100% 

Figure 18a. 
Blunt Point Bit Penetration Using the Fir s t Mater ial 

Model 



, I 

/ / I 

/ / I 

/ / I 

SCALE : 

FOR PRINCIPAL STRESSES 1----i IO,OOOpsi 

FOR DIMENSIONS r------i 0 .01 in. 

42 

SYMBOLS FOR ELEMENT FAILURE 
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Figure 18b. Blunt Point Bit Penetration Using the First Material 
Model 
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Figure 18c. Blunt Point Bit Penetration Using the First Material 

Model 
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Figure 18d Blunt Point Bit Penetration Using the First Material 

Model 
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SCALE • SYMBOLS FOR ELEMENT FAILURE 
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Figure 18e. Blunt Point Bit Penetration Using the First Material 

Model 
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Figure 18£. Blunt Point Bit Penetration Using the First Material 

Model 
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Figure 18g. Blunt Point Bit Penetration Using the First ~aterial 
Model 
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Figure 18h. Blunt Point Bit Penetration Using the First Material 
Model 
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SCALE = SYMBOLS FOR ELEMENT FAILURE 
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Figure 20a. Blunt Point Bit Penetration Using the Second Material 
Model 
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SCALE= SYMBOLS FOR ELEMENT FAILURE 

FOR PRINCIPAL STRESSES 1----i 20,000 psi rn:TENSILE FRACTURE EfkoosE FRAGMENTS 

FOR DIMENSIONS 1-----l 0 .02 in. DEGREE OF COMPRESSIVE FAILURE 

t, COMPRESSIVE PRINCIPAL STRESSES 
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Figure 20b. Blunt Point Bit Penetration Using the Second r~ terial 
Model 
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Figure 20c. 
Blunt Point Bit Penetration Using the Second Haterial 

Model 
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about 1" depth from the free surface at the final stage of the 

p~netration. The corresponding F-P curve of this penetration simu-

]ntion is plotted in Fig. 19. Cross marks on the curve indicate 

the positions of the bit penetration, where stress field and element 

failure are plotted. Every dot represents an iteration in the 

computer program. As shown in Fig. 19, the F-P curve of this simu-

lation is lower than the experimental result, however, the depths 

of bit penetration at the peaks of both curves, where the first chip 

is formed, are close. The analytical F-P curve at the beginning of 

tl1e penetration showing a steeper slope is probably due to the 

linear-elastic assumption on rock before failure. 

Figure 20 shows the sequence of the blunt point bit penetration 

using the second material failure model of higher post-failure 

strength. Some differences between two simulations are observed: 

a) til~ cl~pth of penetration to form the chip is deeper in the second 

simulation, b) the degrees of failure of the elements in the corn-

pressive zone are more homogeneous, c) the F-P curve in Fig. 19 for 

the second simulation is higher than the curves of the first e>imu-

laticJn and the experimental result. These results demonstrate the 

influL'nce of the post-failure rock behavior and properties on bit 

penetration. 

2. Sharp wedge bit 

· · f tl b"t l. l"ver1 l·n Fl·g. 16 with a small Initial posltlon o · 1e l- s g . 

dent in the rock. At the beginning of this simulation, the finite 

clvmcnl grid is arranged to have only one element making contact 

with the bit. After the successive penetration, if the wedge starts 
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to reach the next element, a second contact element is assigned, 

etc. 

As shown in Fig. 21 the compressive failure zone quickly 

spreads from the edge of the wedge to the area under the bit. The 

tensile crack under the compressive failure zone starts to propagate 

before the side elements have developed high enough pressure to form 

a chip. When the penetration reaches a depth as shown in Fig. 21c, 

chip formation is in process. The F-P curve of this bit penetration, 

as shown in Fig. 22, almost reaches its peak at this stage. Furtl1er 

penetration will complete the chip and pulverize the compressively 

failed clements as shown in Fig. 2ld. 

A wedge bit, with the action of the inclined bit surfaces, 

creates quicker lateral pressure on the side elc'ments than the other 

dull bits in a small penetration, which results in C'arly chip forma-

lion and more effectivP bit penetration as shuwn in the simulatillll. 

Because of the quick chip formation in this simulation, the 

contact boundary has not been modified. 

3. Cylindrical bit 

Penetration simulation begins at the contact of the first 

element with the cylindrical bit. In the process of continuing 

penetration, the contact area of the interface is gradually modified 

as described in the wedge bit simulation. 

Figures 23a and 23b show the failure propagation at the early 

stage of penetration. ALong with the continuing penetration and 

increasing contact surf:1ce with the bit, thP compressive failure 

· l.ateral and vertical directions zone of the rock keeps expanding 1n 
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as shmvn from Fig. 23c to 23e. Tensile cracks and latL'ra l prvssurl' 

are also increasing simultaneously. Final chip format ion and :1dd i-

tional radical cracks are shown in Fig. 23f. 

For every ne"l:v element to contact the bit, the F-P curv~..· of t:1is 

simulation shmvs a jump in applied force with small penetral ion as 

illustrated in Fig. 22. The number at each jump indicatl'S Lile tlrdl·r 

of the new contact element. After the element at the edge uf t ll,· 

contact zone gradually decreases its strength with penct rat ion, t lit 

increased force starts to fall as shown in the figure. 



SCALE = 

FOR PRINCIPAL STRESSES 1----l IO,OOOpsi 

FOR DIMENSIONS ,...___._, 0 .01 in. 

t , COMPRESSIVE PRINCIPAL STRESSES 

~ ' TENSILE MINOR PRINCIPAL STRESS 

56 

SYMBOLS FOR ELEMENT FAILURE 
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Figure 2la. Sharp Wedge Bit Penetration 
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Figure 2lb. Sharp Wedge Bit Penetration 
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Figure 2lc. Sharp Wedge Bit Penetration 
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SCALE ' 
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FOR DIMENSIONS r--t 0 .01 in. 
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Figure 2ld. Sharp Wedge Bit Penetration 
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Figure 23a. Cylindrical Bit Penetration 
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Figure 23b. Cylindrical Bit Penetration 
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Figure 23c. Cylindrical Bit Penetration 
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Figure 23d. Cylindrical Bit Penetration 
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Figure 23e. Cylindrical Bit Penetration 
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Figure· 23f. Cylindrical Bit Penetration 
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V · CO:.JCLLJSIOilS A:.'1D RECO:l'-IMENDATIONS 

i'lil' ~~·qtll'J~('l' o f rock fai lurn mechan1'sms and 1 
L . • t 1e quantitative 

iJl~ (lr-JJJ,lt illll till stress, displacement and material failure in the 

I 1 n 1 '· 1 • ~ ~; ' 1 !' h i t j) 11 • t r t · h b · d l' t · a ron can e o ta1ne through computer simu-

1; il j ( Jll • l' s ill~'. l he proposed mathematical rock failure models and 

t 1lt' dl '\'t'lllpl·d f[nite l'IL·mcnt code , the analytical results presented 

in t l1 i ~ st 11dv have shmvn a reasonable agreement with experimental 

' 1hst•rv:rt i (lJlS. Three tool profiles have been simulated to demonstrate 

ti lL' i.r sh;qw L' ffccts on the penetration mechanism , The special 

suitahilitv of the finite element method has also been shown in the 

study of the influence of the post-failure rock strength and proper-

t i v:; ( 111 hit pL'nel rat ion. 

B. 1\l•commc•JHia t ions 

I. Extc•nsivc study along with refined experimental methods are 

Jll'l'dcd for a better unde rstanding of the post-fa ilure be havior of 

ro('k. Strcss-str<1in relationships, residual Hohr envelopes as well 

as the variations of rock properties in progressive strength f ailure 

must lH· knmvll to improvl' the analysis. 

'J With better understanding of the post-failure behavior of 

rock, pre sent computer codes ca n be modified to adapt a more com-

pI i c;Jt Pd non-1 in ea r rock beha vior such as a non-linear Nohr enve l ope 

:1nd variable stress-strain curve as a function of confining pressure. 

Constitutive equations for rock properties in the failure state can 

aJso be applil'd t- o yiP ld better resul ts . 

3. Tbis bit penetration program can be generalized for the 



studies of various bit-rock interface conditions, different tool 

actions and other related rock failure problems, 

4. Wedge type penetrators with increasing edge radii could 

give some of the effects of wear. 
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APPENDIX A 

PUimAMENTAL EQUATIONS FOR PLANE-STRAIN PENETRATION PROBLEHS 

Displacement Function: 

[N] = general function of position 

{ s}e__ d 1 d" 1 u no a . 1sp acements 

Strain-Displacement Relations: 

{c} = [B] {o}e = 

dU 
dX 

dV 
dy 

ch~ + ~Y-
3y dX 

Stress-Strain Relations: 

{ o } [ D J {t: } = [ D] [ B] {c')} 
e 

[ 
1 v/(1-v) 0 J 

= -~~~2_ ___ vi (l-v) 1 0 
(l+v) (l-2v) 

o o (l-2v)/2(1-v) 

[n] 

Force-Displacement Relations: 

(vJiLhout initial stress, initial strain and body force) 

{R}c'= [K] {o}e , {R}e= nodal forces 

[ K] = J e [ t> J T [ D J [ D] [ B] d V 

Force-Stress Relations: 
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APPENDIX B 

PROGRA..11 INPUT INSTRUCTIONS AND LISTINC 

This computer program is applicable to plane strain ana1vsis 

of stress, deformation and progressive failure in rock, using tl1~ 

proposed mathematical rock failure model as presented in tid s tliL'S is. 

Incremental boundary displacement is used for simulation of fraclurl' 

in it iat ion and propagation in an arbitrary elastic rock st rue tun·. 

The program is capable of terminating or continuing at any SJWC if i (' 

stage of simulation. 

The following set of cards is required for tlw start of t'il<'il 

problem. 

1. Identification Card (20A4): 

Cols. 1-80 This card contains information to h1· prinli'<J 

with results. 

2. Control Card (715, JFlO.O): 

Cols. 1-5 Number of nodal points (350 maximum) 

6-10 Number of elements ( 3 50 :-1ax imum) 

11-15 Number of displacement boundary cards 

(100 maximum) 

16-20 Number of iterations per coordinate modifi1·a-

tion 

21-25 Number of coordinate modifications 

30 Data check option, 0 run complete prograrr. 

1 test data only 

35 
• ! ) 

Continuation opt1on, L 

1 continuation 



3. 

36-45 

46-55 

56-65 

Incremental displacement, . ln. 

Initial displacement, in. 

Anistropic ratio, ratio E I E 2 1 

Material Properties Information (7Fl0.0): 

Cols. 1-10 

11-20 

21-30 

41-50 

51-60 

61-70 

Young's modulus, psi 

Poisson's ratio 

Compressive stress (+) p · , Sl 

Tensile stress (-), psi 

Angle of maximum Mohr envelope, degree 

Angle of residual Mohr envelope, degree 

Post-failure stress-strain slope, c 

4. Element Cards (5I5): 

One card for each element 

Cols. 1-5 Element Number 

6-10 Nodal point, I 

11-15 Nodal point, J 

16-20 Nodal point, K 

21-25 Nodal point, L 
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Maximum difference between nodes around an element must he ll'ss 

than 30. Element cards must be in numerical sequence. If clement 

cards are omitted, the program automatically generates the omitted 

information by incrementing by one the preceding I, J, K, and L. The 

last element card must be supplied. 

5. Displacement Boundary Cards (3I5): 

One card for each boundary element which is subject to incre-

mental displacements. 



Cols. 1-5 

6-10 

11-15 

Nodal point, I 

Nodal point, J 

Element number 

6. Nodal Point Cards (215, 2Fl0.0): 

One card for each node with the following information: 

Cols. 1-5 

10 

11-20 

21-30 

Nodal point number 

Number which indicates which displacements 

are to be specified 

X-coordinate 

Y-coordinate 

The number in column 10 is defined as: 

0 No specified displacement 

1 Specified displacement in X direction 

2 Specified displacement in y direction 

3 Specified displacements in X and y direct ions 

Nodal points must be in numerical sequence. If the cards are 

omitted, the omitted nodal points are generated at equal intervals 

along a straight line between the defined nodal points. 

7. Continuation: 

a) Change column 35 in the control card. 
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b) Change identification card, number of iteration, incremental 

displacements, etc., if necessary. 

c) Element volumes of the original coordinates will be puncheJ 

on output cards at the start of each new problem. These cards siH'uld 

be placed after the displacement boundary cards in the continuation. 

Original nodal point information is abandoned. 
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d) After a specified number of iterations, information on 

nodal points and elements will be punched on cards. The most recent 

set of cards will be used for the next run. It is placed after 

element volume cards. 
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(*****~***************************************************** 
c 
c 
c 
c 

~TRt~S ANALYSIS OF PLANE STRAIN SOLID 
~ITH INC~lMENTAL DISPLACEMENT BOUNDARY 

(*********************************************************** 

c 

COMMON EC7,10),NUM~P,NU~EL,NUMPC,MTYPE,NP,ANI,HED(20), 
l R ( 3 5 U ) , Z ( 3 50 ) , U R. C 3 50 ) , U Z l 3 50) , C 00 l ( 3 !.> 0) , I BC ( 10 0) , 
2JBC( 100) ,PR( lOJ) ,ANGLEI4) ,SIGClJJ,NOEG, lfFC350J, 
3 VOL 1-1 ( 3 50) , N E wR l , INN, I C HE K, K ON TO, I NO, FK ( 3 ~0) , IF H ( 3 50) , 
4fH:TA(350) 
COM~ON/ARG/RRR(5),lll(5),SllO,lO),P(lQ),LM(4) 9 00(3,3), 

l H H ( l 0 , l 0 ) , RR ( 4) , l l ( 4) , C ( 3, 3) , H ( b, 1 0) , D ( 6, 6) , F ( l 0, 10) , 
2 T P ( 6 ) , X I ( l 0 ) , E E ( 5 I , 1 X ( 3~ 0, 5) , EMO D ( 350 l 

CUMMON/AANARG/MBANO,NUMRLK,Bll20),A(l20,60) 
CUMMON/PLANE/EE2P,~~2PP,FFKK 
GO~~ON/ITT/URRC350),UZZ(350),SIGG(350,4),DVCL(350) 
COMMUN/IO/IN,IOUT,NUMl,NDATl,NOAT2,NRECl 
DI MENS I CN IFH 20) 
OfFINE FILE 4(350,25U,U,NREC1) 

C NTEST=0 
C NTEST-=l 
c 

kUN COMPLETE PROGKAM 
TE!>T DATA JNLY 

c 
(**************************~'******************************** 
C ~EAO INFOKMATION FOR CCNTROL, STRUCTURE, 
C MATERIAL PROPERTIES, AND ITERATION 
(~~********************************************************* 
c 
c 
C DATA SET REFERENCF NUMBERS 
c 

c 

c 

c 
c 
c 
c 

OAfA NU1 9 N02,N03,N04,N08,N09/5,7t6t4t8,9/ 
JN=NUl 
IOUTP=N02 
IOUT=N03 
NUMl=N04 
NOATl=NG8 
~DAT2=NC9 

MAXB=60 

REAO(IN,lOOO) HED,NuMNP,NUMEL,NUMPC,NP,NKZ,NTEST,KU~TD 
I,OP,OPI,ANl 

KJNTO=O, NEw PROGRA~1 
KONTO=lr CCNTINUATION 

WRIT~(IOUT,2000) HEO,NUMNP,NUMEL,NUMPC,NP,NKL, 
lKUNTO,OP,OPl,ANI 

NOEG=Z*NUMNP 
IF(NTEST) 53,57,53 



c 

c 

53 WK.ITI:(l0UT,?Ol4) 
57 H.E-AlJ(IN,100':>)(f([,l),l=l,7) 

WR!TE:{ICUT,200l) (t::(l,ll,lc:::l,l) 

f:('J,l)=E(5,1)/'j7.2g6 
l(&,l)=f(6,1}/)7.296 
F5l=TAN(Ef5, l)) 
E 6 l =TAN ( [ ( 6, l ) ) 
f55=SQH.T(l.+E5l*c51) 
lC l,/)=0.5*E(3,l)*(E55+l.-E51)/(f55+l.+F':>l) 
E ( 1 , 'L ) .::: 2 • * ( 1 • + S I N ( t. ( ':>, l ) ) ) I C 0 S ( F ( :.. , 1 ) ) * F '.:> 1 
EE(2)=E(2,1) 
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C*************C********************************$************ 
C READ AND PRINT llE.1"1ENT DATA 

C**********************************************t************ 
c 

c 

N--=0 
13 0 REA 0 ( I N, 1 OJ 3 ) M ,( I X ( !"i, l ) ,I= l , 4) 
140 1\I=N+l 

I F ( M- N ) 1 7 1J ' 1 7 0 ' l 5 i) 
150 NN=N-1 

IX(N,l)~IX{~N,l)+l 

IX(~,2)=1X{NN,l)+l 

lX(N,3l=lX(~N,1)+l 
lX(N,4}-=IX(~N,4)+1 

170 IX(N,5)=l 
IF (M-N) 18J, 190,140 

l80 lF(NUMEL-~) 190,190,130 
190 CUNTINUf 

C***********************t***********************~*********** 
C READ AND PRINT NOJAL POINT DATA 
(***********************~*********************************** 
c 

IF(KONTD .EW. l) GO TC 110 
L=O 

60 RI:ADCIN,l0\)2) \i,CCDE(t\i),R(N),ZIN) 

NL =L + 1 
ZX=N-L 
IF ( L) 65,70,65 

65 DR=(R(N)-k(LJ)/ZX 
DZ=(Z(N)-l(L}l/ZX 

70 L=l+l 
IF(N-l} 10v,9U,8J 

g:) CODt:(L)=O.O 
R(l)=R(L-l)+OR 
Z(L)=l(L-l)~DZ 

GO TO 70 
90 CONTINUF 

lf(NUMNP-N) 100,1lO,b0 
100 WRITE(ICUT,2009) N 

NTEST=l 
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110 CONTINUE 
c 
(**********~***********************************~'************ 
C READ AND PRINT DISPLACEMENT BOUNDARY CUNDITIUN 
(*********************************************************** 
c 

IFCNUMPC) 290,310,290 
290 WRITF(IOUT,2005) 

00 300 l=1,f\UMPC 
R E AD ( I N , 1 0 0 4 ) I A C ( l * 2- 1 ) , I B C ( L * 2 ) , J B C C l ) 

300 \olRITE(lOUT,2007}IBC(L*2-l),JBCCL*2),JBCCL) 
I=NUMPC+l 
JBC(l)-=0 

310 CGNflNUE 
c 
(*********************************************************** 
C OETFMMIN~ THE BANDWIDTH OF THE STIFFNESS MATRIX 
(*********************************************************** 
c 

c 

J=O 
DO 340 ~=l,NUMf:L 
DO 340 1=1,4 
DO 325 L=1,4 
KK=IAHS(IXCN,I)-IX{N,L)) 
IF(KK-J) 325,325,320 

320 J=KK 
325 CONTINUE 
340 CONTlNUF 

C CHECK dANOWIDTH 
c 

MBAND=2*J+2 
IF(M~AND-~AXB) 345,345,346 

346 WRITFCICUT,2013} MAXB 
CALL E.X:lf 

34j IFlNTEST) ?J5,347,505 
2011 FORMAT(5X, 1 BANOWIOTH OF STIFFNESS MATRIX EXCE~DS•,I3J 

(*********************************************************** 
C SOLVE STRUCTURE BY CALLING SUdROUTINfS 
(*********************************************************** 
c 

c 
347 CCNT INUE 

DO 350 f\=l,NUMNP 
URR(N)=O. 

350 UZZ(N)=O. 
DO 360 I=l,NUMEL 
IFF( I )=0 
IFH( I ):::0 
DVOL ( l )=0. 
FK(I)=l. 
BETA(l)=O. 
DO 360 J= 1, 4 



c 

16 ,) S I G G ( I , J ) = 0 • 
IND=O 

IF(KONTD .EQ. J) GU TU 3~0 

REAOliN,llll)(VOLM(l),l=l,NUMEL) 
REA[) ( IN , 1 0 l 0 ) ( C l J DE ( I ) , R ( I ) , l ( I ) , I~ l , N UM N P J 
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R [ A I) ( I N , l U 11 ) ( U- H I I ) , F K ( I ) , EMU 0 ( l ) , B [ T l\ ( I ) , S I C G l I , 1 ) , 
lSI GG ( I , 2) , S I GG ( I, 4 J, I= 1 , NUME L) 

c 

c 

c 

c 

c 

IND=l 

Yl ;) D l1 3 7 0 1·= l , N U M N P 
UR(I)=O. 

".l7u UZ( I )=0. 

NE:Wi<Z=O 

555 DU 500 N~~=l,NP 
I~N=I\iNN 

ICHEK=O 

IND-=IND+l 

C ASSIGN INCREMENTAL JISPLACEMENT 
c 

c 

c 

00 301 l=l,NUt-1PC 
301 UZ(lBC(I*2-l))=OP+DPI 

Ul (I t3C ( NUMPC*2) )=DP+OP I 
OPI=O. 
GO TO ?16 

510 CONTINUE 
DO 515 I-= 1 , NU MN P 
IF ( C 00 E ( I ) • E Q. 0. ) GO T 0 515 
IF(CODt:(J)-2.) 512,513,514 

512 UlUl)=O. 
GU TO 515 

513 Ul(Il=O. 
GO TO 515 

514UR(l)=O. 
UZ(l)=O. 

51'.> CONTINUE 
516 CLNTINUE 

C FORM STIFFNESS MATRIX 
c 

CALL STIFF 
c 
C SOLVE FOR JISPLACEM~NTS 
c 

CALL oAr~SCL 

c 
C COMPUTE STRESSES 
c 



( 

c 

c 

I ~ D = I r...; r J + 1 
I~N=l 

Ct\LL ~Tf.'r~S 

I t ( I C t1 ~ K- l ) 5 U 3 , ? u 0 , 50 0 
!CHI K=l +ICHf:-K 
r,u ru ')10 

':> L. ) C f) N l I N U f:_ 
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(*******•*************************************************** 
C Mr1JIFY CO!'ii·UH;'iATES 

(**************************,;****:(*************************** 

c 

·'H W~l -=N~ wRL +- l 
~lll 6UJ 1-=l,I\UM~~p 

~ (I)= k (I) +U~ R (I ) 
r,JO l(l)=l(I)+Ull(l) 

IF(KCJNTC .\I[. 0) GO TO 601 
W R I T f ( I L U T , L 1 l 1 ) ( V C L tJ ( I } , I = l , f\U MEL ) 
..; R I T E C I 0 lJ T P , 1 1 1 1) ( V C l M ( I ) , I = 1 , N W·1 E L ) 

6 0 1 w R IT E: ( l (l U T, 2 0 13 } ( 1 , CU Dl: ( I ) , K ( I ) , l ( I ) , I= 1 , NUMN P) 
W R I T f ( I C U l P , 1 0 l 0 ) ( C CD t ( I ) , R t I ) , l ( I ) , [ = l , NU M N P ) 
~R IT[ ( IUUT,/019) (I, IFH( I) ,FK( I) ,EMOD( I) ,BE.TA( I), 

l ~ I L; G ( I , 1 ) , S I G G I 1 , 2. ) , S I G G l I , 4 ) , I = 1 , N U 11 E L ) 
·w~ t T f- ( I OUT P, 10 ll) ( If H ( I ) , F K ( I ) , F MflD ( I ) , B [ T A ( I ) , 

1 S I (, 1; ( I , l ) , ~ !(; G ( I , 2 ) , S I ( G ( I , 4 ) , I = 1 , N U MEl ) 
lf(NEWRl-I\Rl)525,5U4,~04 

5?'J L10 526 1-=1,1\UMNP 
UK. R ( I ) = 0. 

5?6 Ul/(l)-=0. 
r,n T0 "155 

50 1t CUNTll'llJl 
( 

(******~*************•***~$~******************************** 
':>0~' Chll EXIT 

(*************~***********~********************************* 
( 

lu 0 J f"f' R M fl T ( 2 0 A 1i /71 5 , 3f- I U • 0 } 
100? rtJf<,...,f',T( J5,f?.0,4Fl0.JI 
1 00 I F Cl R ~AT { 5 I 5 ) 
1004 F!IRMAT(3I'J) 
lOu~ FUR...,AT(AFl0.0) 
1010 fOP...,AT(J(F3.0,2fll.8)J 
lOll FOR~Af( 13,F7.4, lP5El3.b) 
llll fOPMAT(lP6ElJ.6) 
l. 0 0 0 F C P ..., A T ( 1 H ll 2 u A 4 I I I 5 X , ' N C • C: F NO 0 A l P 0 I NT S = ' , I 3 I 5 X t 

1'NO. Of FLEMFNTS= 1 ,13/5X, 1 NO. JF DISP. H. C. =',13/ 
25X,'N0. OF ITERATICNS= 1 ,I3/~X, 1 ND. OF MODifiCATIO~S='• 
i I } I 5 X ' ' c c ~. l { N u A l I u 1\ = I ' [ 3 I ~X ' I D p = ' ' F l J • ':>I ':>X ' ' D p I -= f ' 

4Fl0.5/5X,'ANl='tflu.?//) 
2001 FOPMAT(5X, 1 E= 1 ,E20.8/5X,'POISSCNS KATIO='•E2C.B/5Xt 

1 • S T R E S S ( C ) = • , E 2 0. ~ /5 X, ' S T RE 55 ( T) = 1 'f L 0 • 8/5 X' 



c 

2'MAX. ANGLE=',F10.5/5X,'~ES. A~Glf=',F10.5/5X, 
3 1 SLOPE= 1 ,Fl0.5//) 

83 

2005 FORMAT(//5X,'DISPLACE~ENT B. C. 1 /l4X,'I',l4X,'J',4X, 
1 'E L EM E f\ T NO. 1 ) 

2007 FORMAT(3115) 
2009 FORMATCSX,'NOOAL POINT CARD lRRUR N= 1 ,15, 

1'. EXECUTION TERMINATf::O.• J 
2014 FQRMAT(5X, 1 PRUGRAM WILL NOT BE EXECUTED. CNLY DATA', 

1' WILL BE TESTED.') 
20lcl FORMAT( 5HlN.P. ,6X, 1 TYPE', l6X, 1 rU l) 1 , l6X,' l( I) 1 / ( 15, 

lfl0.0,2F20.7)) 
2019 FORMATC10HlELEM. NO.,• IFHCI)', lOX, 1 FK(l) 1 ,8X, 

1 I E MOD l I ) I ' 8 X' ' BET A ( l ) I ' 6 X' I s I GG ( I ' l ) I ' 6 X ' I s I G G ( I '2 ) I ' 

26X,'SIGG(l,4) 1 /(2110,6El5.5)) 
STOP 
END 

SUBROUTINE STIFF 
COMMON f(7 1 10),NUMf\P,NUf'IEL,NUMPC,MTYJJ£,hiP,ANI,Ht:iJ(20), 

lRC350),l(350),UR(350),Ul(350),COOE(350),1BC(l0U), 
2 J B C ( 1 0 0 ) , P R ( 1 0 0 ) , ANGLE ( 4 ) , S l G ( 1 0 ) , N D H; , I F F ( 3 50 ) , 
3VOLM(350) 1 NEWRZ,INN 1 ICHEK,KONTD,INO,FKC350J,IFH(350J, 
48ETA(350) 

C 0 M M ON I A R G I R R R ( 5 ) , ll L ( 5 ) , S ( 1 0 , 1 u ) , P ( 1 0 ) , l M ( 4 ) , D lJ ( 3 , 3 ) , 
lHH ( 10, 1 0) , P. R ( 41 , Z l ( 4 t , C ( 3, 3) , H ( 6, 1 0) r D ( 6 , 6 ) , F ( 1 U , l J ) , 
2 T P ( 6) , X I ( 10) , EE ( 5) , I X ( 3 50, 5) , E MOD ( 3 50> 

COMMON/RANARG/M8ANO,NUM8LK, B( 120) ,A( 120, 60) 
COMMUN/10/IN,[OUT,~UMl,NDATl,NU'T2,~RFCl 

C INITIALIZATIGN 
c 

c 

c 

REWIND NDAT2 
NB=30 
N0==2*NB 
ND2=2*ND 
STOP=O. 0 
NUMBLK=O 

DO 50 N=I,ND2 
B(N)=O.O 
DO 50 M= l, NO 

50 A(~,MJ=O.O 

C FORM STIFFNESS MATRIX IN ALUCKS 

c 

c 

60 NUMBLK=~U~BLK+l 
NH=NB*{ ~UMBLK+ll 
NM=NH-NB 
NL=NM-NB+1 
KSHIFT=2*NL-2 



c 

r. 

QU 210 ~=1,~U~EL 
I\JREC1=1\J 

IF,IX(N,5)) 210,210,6? 
65 Dfl BO 1=1,4 

lF(lX(N,I)-NL) HC,7C,70 
70 lt-(IX(I\i,Il-NM) 90,90,80 
iiO ([1NTlNUl: 

Gll TO 210 

90 JX(N,5)=-IXCN,5) 
IrCINI\J .£:-C. l) GD TO 100 
RE.AD(I\JUMl':'-JRtCl) H~,C,RRR(5),ZZZ(5),FFf2),S,I/l!L 

94 l:M=f:t-4lJO(N) 
(;ll TO 1 30 

100 If ( IND .EQ. 1 ) GO TO 101 
If ( IFHl ~)) '18,48,99 

98 FEl2l=Fl2,l) 
GU TO 102 

qq VOLL=O. 
1FllX{N,3) .EQ. IX(N,4)) GO TO 30 
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R R R ( 5 ) = ( R ( I X ( N, 1 ) ) + R ( I X t ;~, 2 ) ) + K ( I X ( N , 3 ) ) + R ( I X ( ·~ , 4) ) ) * 
1.25 

l Z l ( 5 ) = ( l ( I X ( ~ t l ) ) t Z ( I X ( N , 2 ) ) + l ( I X ( ~~ , 3 ) ) + l ( I X ( 0J , 4 ) ) ) * 
l. 2 5 

liX=IX(f'"5) 
IX(N,5)=1X(N,lJ 
J=4 
GU TO 31 

-~0 RPR.(5)=(K(IX(N,l))+K(IX(N,2))+t\(IX(~,_j)))/J. 
ZZZ(5)=(7(1X(N,l))+l(IX(N,2))+L(IX(N,3)))/3. 
IIX=IX(~,4) 

JX(~,4)=1X(t\,l) 

J=3 
31 nu 3:, I=l,J 

Rl=RliX(N,I)) 
ll=LliX(N,l)) 
R?=R( IXCN,l+l)) 
lZ=lliX(N, l+l>) 
CCMM=.5*(Rl*(lZZ(5)-Zl)+~l*lZ2-LZZl5J)+~RR(5)*1ll-Z2}) 

J'> Vllll=VOLL+CG·1M 
lFIIX(N,4) .EQ. IX(N,l)) IX(N,4)=IlX 
lf(IX(N,5) .EQ. IXlt\,lJ) IX(N,5J=JIX 
Et: ( 2) = • 5- { • 5- E ( 2, l ) ) * E MC 0 ( N) IE ( 1 , 1) 
lf(EEl2) .GT. 0.4~977)ll(2l=0.~9~77 
If( IFH(N) .EQ. 1 .CR. IFH(N) .~Q. 4) [[(2)=.l*E(2,l) 

IFCIFH(N) .EQ. 2) EE(2J~E(2,1) 
GO TO 102 

101 MMf'A-=~U~El 
tf(Z)=f(?,l) 

l02 CALL QUADCN,VOL,N) 
IF(VJL) 105,105,106 

105 WRITE(ICUT,20J3) N 



c 

c 

c 

SfOP=l. 
106 FM=Ell,l) 

IF(INO .EQ. l) GO TO 110 
f~!=f::MOD ( N) 
lf-{lfH(f'.) .NE. 3 .UR. VOL .LT. VlJLM{N)) GIJ TO 11~ 

f~(2)=0.10*El2,1) 

CALL QUAC(N,VOL,N) 
GO TO 115 

110 Vf:LM(N)=VOL 
fMUf1(N)=E{l,l) 

l l ') W R I T E ( N UM L 1 N R E C 1) 1- H, C , K 1-' R { 5 ) , l L l ( S ) , t t: ( ? ) , S, V 0 L 

l 3 t) 1 F ( E t ( 2 ) • E Q • • 1 * E { 2, 1 ) • AND. EM • G T • AN I* l ( 1 , 1 ) ) 

U::M=ANI*E(l,l) 
131 DO 140 J=l,lO 

00 140 K = l , 1 0 
140 S(J,K)=fM*S(J,K) 

If( IX(N,3)-IX(N,4)) 145,156, l<t5 
145 DO 150 11=1,9 

CC=Sl I I, 10) /S( 10, 10) 
DO 150 JJ=l,9 

150 SCII,JJ)=S(II,JJ)-CC*SllO,JJ) 

DO 1 5 '::1 II= 1 , 8 
CC=SCII,S)/S(9,9) 
DO 155 JJ=l,8 

155 S( II,JJ}=SCII,JJ)-CC*S(9,JJ) 
156 CCNTI"JUE 

c 
C AD [) f l E M E N T S T I F F N E ~ ~ T 0 T C T A l ~ T I t- t- ~. t_ ~ ~ 
( 

c 

DC 166 1=1,4 
166 l'~II)=2*1X{t\i,I)-2 

DO 200 1=1,4 
DO 200 K=lr2 
I I = L M ( I ) + K- K SH I F T 
KK=2*1-2+K 
DO 2 00 J= 1, 4 
DO 200 L=l,2 
JJ=L~(J)+L-11+1-KSHIFT 
LL=2*J-2+l 
lF{JJ) 2CC,200,l75 

1 1 5 l F ( N D- J J ) 1 8 0 , 1 <..J 5 , 1 S ? 

1'3 0 W K l f F ( I CUT , 2 0 0 1t ) N 

STOP=l.O 
GO TO 210 

Lq5 A( II,JJJ=Alii,JJ)+S(KK,LL) 
2\.)J CLi\!TI!'JUf 
ZlO CCI\lTINUE 

c 
C aon CC~CENTRATED FORCES wiTYIN PL~CK 
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c 

c 

? l 1 

212 
21 3 

250 

IFCN~-NUM~P) 211,211,212 
NSTOP=t-.M 
GU TO 213 
N~ T ()P= NUM~P 
or 1 250 f\=t-..L, r-..sroP 
K"' 2 *N- tc. SHIFT 
l3 ( K) = B ( K ) +lJ l ( N) 
B(K-l)=t)(K-1 )+UR(N) 

C DISPLAClMFNT ~. C. 
c 

310 DU 400 ~=1\L, I\IH 
IFIM-NU~·NP) 315,315,400 

315 U=UR(M) 
N=l*M-1-KSHIFT 
It-' coot:: u...,,) 39o,4oo, 316 

316 lf(CODE(M)-1.) 317,370,317 
317 IFtCOO~(M)-2.) 318,390,318 
3Pi IF(COUE(M)-3.) 390,380,390 
370 CALL MGDIFY(A,B,ND2,MBANO,N,UJ 

GO TO 400 
3RO CALL ~UDIFY(A,R,N02,MBANO,~,U) 

390 U=UZ(M) 
N=~+ 1 
CALL ~OOIFY(A,3,N02,M~AND,N,U) 

400 CCNTINUE 
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c 
C WRITE RLUCK CF EQUATICNS ON TAPl AND ~HIFl UP LUW~K BLUCK 

c 

w R I T E ( N [J A T 2 ) ( H ( N ) , ( A ( f\ , t' ) , fJ = 1 , M H AN 0 ) , 1\1 = 1 , N u ) 
on 420 t\=1,Nu 
K=I\+ND 
~(N)=BCKJ 

H(K)=J.O 
00 420 t"=1,NO 
A( N,,'V\)=A(K,MJ 

420 A(K,t~)=O.O 

C CHECK FOR LAST BL0CK 
c 

480 

490 
500 

c 
2003 
2004 

lf(I\M-NUMNP) 6C,~dC,480 
CONTINUE 
IF(STOP) 490,50u,490 
CALL EXIT 
RETURN 

FORMAT(26HONEGATIVE AkEA ELEMENT ~C. 14) 
FllRMAT(2qHOAAND wiDTH EXCth)~ ALLO~ARLt 14) 

1:-NC 



c 

c 
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SUBROUTINE QUAOCN,VCL,M~M) 
COMMON Et7,10),NUM~P,NUMEL,NUMPC,MTYPl,~P,~~I,Hl0(L0), 

l R ( 3 50 ) , Z ( 3 50 ) , U R ( 3 50 ) , U L ( 3 50 ) , C 0 0 E ( 3? l1 ) , I [~ ~ ( l (• U J , 
2JBC( 100) ,PR( 100) ,ANGLE(4) ,SIGl lU) ,1\UI::I~, U:F(3'j(), 
3 V 0 L M ( 3 5 0 ) , NEW R l , 1 N N , J C HE I< , K u NT () , I ~~ r) , F t<. ( 3 ? U J , I F H ( 3 ~ 0 J , 
4BFTA(350) 

COM MGN I A R G/ R R R ( 5) , lL l ( 5 ) , S ( L 0 , l J ) , f> l l 0 J , l M l 4 ) , !) n ! 3 , 3 J , 
l HH ( l 0, l 0) , RR ( 4 j , ll ( 4) , C ( 3, 3 l , H ( ~, l 0) , D ( u, b) , H 1 U, 1 U ) , 
2 T P ( b ) , X I C 10) , E E: C 5) , I X ( 3 50, 5) , 1.- "'~ U 0 ( 3 'J 0 J 
COMMON/BANARG/MBANlJ,t..UMeLK,B(l~U),A(l21),t.01 
COMMON/10/(N,IOUT,NUMl,NOATl,N0AT2,NR~Cl 

90 I=IX(N,l) 
J= I X ( N, 2) 
K=IX(N,3) 
L=IXCN,4) 

C FORM STRESS-STRAIN RELATIOI\ShiP 
c 

10 IF(IFH(fv'~,..-) .NE. 1) GO TO 20 
c 
C ANISOTROPIC ELEMfNTS 
c 

c 

c 

c 

E2=l./ANI 
C 0 M M-= 1 • I ( { 1 • + f ( 2, l l J * ( 1 • - 1:: ( 2, 1 I - l • * f- 2 *I I ( ; ) * ~ f- ( .' I I ) 

Cll=E2*(1.-E2*fE(2)*H:{2) )*CLM"~ 
C 12= E2* fE ( 2) * ( 1. + E { 2, 1 ) ) *COMM 
C22=( l.-EC2,1J*E(2.,l) )*CCt-fM 
C33=.5/(l.+EE(2)) 

BETAA=CBETA(MMM)+90.)/57.296 
SINB=SIN{flETAAJ 
COS8=COSC8ETAAJ 
SINB2~SIN6*SIN5 

SINB4=SINB2*SINB2 
COSB2=COSB*COSR 
COSB4=COSB2*COSB2 
S I NBC=S l NB*COSB 
SINAC2=SINj2*COSB2 



c 

1SINA4) 
GO TO 30 

2 0 C C M M= ( l • - E E ( 2 ) ) I ( ( 1. + E E ( 2 ) ) * ( 1 • -2. * E f ( '/) ) ) 
Cl1rll=COtJM 
C(l,Zl=COMM*EE(2)/(l.-£F(2)) 
({ 1' 3)=0.0 
C(Z,U=C(1,2) 
CC2,2)=CC~M 

((2,3)=0.0 
((3,1)=0.0 
C( 3,2)=0.0 
C( 3,3)-=.5/( L.+E:E(2)) 

C FOKM WIJADKJL~H:RAL STIFFI\it~S MATKIX 
r. 

c 

c 

3 0 !{ F R ( 5 ) = ( R ( I ) + R ( J ) +K ( K ) + R ( L ) ) /4. 0 
ZZZl5l-=CZtl )+Z(J)+l(K)+Z(L) l/4.0 
DO 97 M= 1, 4 
MM=IX(f\,M) 
lFCRCMM)) S6,94,96 

94 R(MM)=.Ol*(RRR(5)*4.-R(L))/3. 
96 RRR(M)=R(MM) 
97 ZZZ(Ml=ZCMM) 

00 100 11=1, 10 
DO 100 JJ = 1, 10 
HH(JJ, I I )=0.0 

100 Sfii,JJ)=O.O 
DO 119 I I= 1, 4 
JJ=IX(f\, II) 

119 ANGLECII)=CODfCJJl/~7.3 

C CHECK FOR TRIANGULAR lLE~E~T 
c 

c 

IF(K-L) 125,120,125 
120 CALL TRISTF(l,2,3,~MM) 

RRR(5)=(RRR(l)+RRR(l)+kP~(3))/i.U 
iZZ(5)=(ZZZ(l)+llZ(2)+Lll(3)l/1.0 
VOL= X I ( 1) 
GO TO 130 

C QUADRILATERAL ELEMENT 
c 

125 VOL-=0.0 
CALL T~ISTF(4,1,5,~M~) 
VOL=VOL +X I ( 1) 

127 CALL TRISTF(1,z,~,r-:~"'1M) 
VCL=VOL+Xl(l) 

lZQ CALL TRISJF(2,),5,MMM) 
VCL=VOL+Xl(l) 

132 CALL TRISTF(3,4t5,M~~) 
VUL=VOL +X l( l) 
DO 140 11=1,6 
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c 

c 
c 

DU 140 JJ~l,lO 
140 HH(ll,JJ):HH(II,JJ)/4.0 

130 ~t:TURN 

END 

SUBROUTINE TRISTF( Il,JJ,KK,MMM) 

89 

COMMON f(7,lO),NUM~P,NU~EL,NUMPC,MTYPE,NP,ANI,Hf0(20), 

1 R ( 3 50) , l ( 3? 0 ) , U R l 3 ?0 ) , U l ( 3 50 ) ,C 0 0 t ( 3 50 ) , I BC ( 1 0 0) , 
2 J B C f 1 0 0 ) , P R ( 1 0 0 ) , ANGLE ( 4 ) , S [ G ( 1 0 ) , N DE G, I F F ( 3 50 ) , 
3VOLM(350),NEWRZ,INN,lCHEK,KONTO,IND,FK(350),1FH(350), 
4BETA(350t 

COMMCN/ARG/RK.fH 5) ,ZZZ( 5} ,S( 10 ,10) ,P( 10) ,LM(4), 00(3, 3), 
l H H ( 10, 1 0) , RR { 4) , Z l ( 4) , C ( 3, 3) , H ( 6, l 0) , D ( b, 6) , F ( 1 0 ,1 0) , 
2TP(6) ,X [( 10) ,EE:(':>}, IX(350,5),tMODf 350) 
CO~MCN/IO/IN,lOUT,NLMlrNCATl,NUAT2,NRECl 
noUBLE PRECISION COMM,UPkR(3),DPLZ(3) 

C INifiALIZATICN 
c 

c 

c 

c 
c 
c 

c 

LM(U=II 
LM(2)=JJ 
UH 3)=KK 

RR(l)=RRR(IIl 
RR(Z)=RRR(JJJ 
~R(3)=RRR(KK) 

RR(4)=RPR(ll) 
ZZCU=ZZZfll) 
ll(2)=lll(JJ) 
ZZf3)=ZZZ(KK) 
ll ( 4)=lll( I I) 
DO 1 1 5 I= 1 , 3 
OPRR( l}o::KR( I) 

115 OPlZl IJ=ZZ(I) 

85 DO 100 1=1,6 
DO !.JO -.l=l,LO 
F(I,JJ=O.O 

90 H( I ,J)-=0.0 
on 100 J=l,6 

100 D(l,J)=O .. O 

FORM INTEGRAL{G)T*(C)*(Gl 

C 0 ~ M =0 P R R { 2 ) * ( D P ll ( 3 ) -0 P l Z ( 1 ) _) + D P k R ( l ) * ( 0 p z l ( 2 ) -

l C p ll ( 3 ) ) + D P R R ! 3 ) * ( D P ll ( 1 } -0 P L Z ( 2 ) l 

XI ( 1 )=CC~M/2. 

D ( 2, 6) =X I ( 1 ) *C ( l , 2 ) 



c 

0 ( ~, 5) =X I ( l) *C ( _i, 3) 
u ( 5 , 5) =X I ( 1 ) *C ( 3, 3) 
IJ ( 6, o) =X I ( l t *C ( 2, 2) 
tJ ( 2, 2) =X 1 ( 1 ) *C ( 1 , 1 ) 
D ( 3, 3):::: X I ( 1) *C( 3, 3) 
l~ ( JFH(M~M) .NE. l) GO TU lOH 

C ANI~UT~~PIC tLEMENTS 
c 

c 

c 

i1(2,3)=XI lll*C( 1,.1) 
LH2,5)=XI(ll*Cl 1,3) 
J( 3,6)=XI ( U*Cl2,3) 
0(5,6)=XIll)*C(2,3) 

toe uu 110 1=1,6 
DO 110 J-=1,6 

110 O(J,Il=O(I,J) 

C FURM CUEFFICTENT-DISPLACEMENT TRANSFO~M~TION MATPIX 
c 

00(l,l)=(OPRR(2)*0PLZ(3)-0PRkl3)*DPll(2)l/COM~ 
00(l 7 2)={0PRR(3~*0Pll(1)-0PRR(lJ*OPlZ(3))/CCMM 
D0(1,3)=(0PRR(1)*DPZZ(2)-0P~R(2)*0PZZ( l))/CUM~ 
DDl2,1J=(CPZZ(2)-IJPZZ(3))/CCMM 
00(2,2)={0PZL(3)-0PZZ(l))/CUMM 
0 D ( 2 , ~ ) = ( C P l Z ( 1 ) - D P ZZ ( 2 ) ) I C C r-·. M 
DD(3,l)=(DPRR(3)-0PRR(2))/CO~M 
00(3,2)=(0PRR(l)-0PkR(3))/CUMM 
DOl3,3)=(0PRRl2)-DPRR(1))/CO~M 

QU 120 1=1,3 
J=2*LM( 1 )-1 
H( 1,J)=C0(1,1) 
H( 2,J)=00(2, IJ 
H ( 3, J) =DO (-~,I) 
Hl t-.,J+l )=CD( l, l) 
H( 5,J+ll=OD(2, I) 

120 H(b,J+l)=00(3,1) 
c 
C FORM ELEMFNT STIFFNESS ~ATRIX (H)T*(D)*(H) 

c 

c 

DO 130 J=1,10 
00 130 K=l,6 
lf(H(K,J)) 128rl.3Q,l2H 

12 8 DO 12 9 I = 1 , 6 
129 f( I ,J)=f( I,J)+D( I,K)*H(K,J) 
l3 1J C 0 NT I NU E 

DO 140 I= 1, 10 
DO 140 K.,;;l,6 
JF(H(K,I)) 138,140,131 

138 DO 139 J=l,lO 
13q 5( I,J)=5( I,J)+~(K, l)*f(K,J) 

90 



r 

l ·~ J C i . ~ T I 'FH 

f '~· ... ') 1 ,< .' I •, r ' A • l ~ r . 'I .. T 0 ' ,, ,. ~ .) I • I "\ "" /l J 1\ ~A T R I X 

'• d ) ' I: : 1t l .J I - l ' L 

) · 1t l ) j ::- l t 1 [) 
'• 1 l • '' • ( I , J ) ~ H ~- ( I , j ) +I i ( 1 , .J ) 

·~ ; 1 'J :, • J 

t '"" ') 

1 I v ~ \ ) 1 t r; :\ ( 1 2 J , r, J ) , u ( 1 2 J ) 

i; l. ? '; d ~-=- ? , M 0 fl. r--, U 

"= :\- ~· + l 
I f ( ><. ) / l 'J , 2 3 'J , 2 ~ J 

,) ~ l •l ( ~-) = ·~ ( ~ l- A { ", "-') *U 

, .. .( "'' .... ):: '-·. c 
.' j '' K = ·~ + ~- l 

I f l \ f .;- " ) 2 ~ C , l 4 J , 2 4 0 
?4.J M('\)=-:-\(K)-1\(~,M)*U 

,"., ( ·~ , "1 ) = l) • J 
/'• l U 1'. T I Nl!l 

" ( ~J • 1 ) :: l • 0 
'H f\ >-= tJ 
·U HJ~I\ 
!- ~ fl 

') l) r l!~ lJ U T I N f- H A N \ U L 
C r ~ M ."1 L :'-J I F t. f\ ti R b n' M , 1\ U r-' f1 l K , B ( lL 0 ) , A ( 1 2 0 , 60 ) 
C 1 1 ~ M L r-.. I I (' I I N , I L, Lj T , N U :.n , N C A T 1 , N 0 A T 2 , N R t: C 1 

<. ~ l U U Ct I :J l J A T I C f\ S 'lY K L L!C K ~ 
(. 

c 

r~ N = t> n 
'H =- N .~+ l 
1\oH=NNH.N 
RF\oii".JD 1\[1/ITl 
K r \ol I Nil f\ I~ A T 2. 
N ~~-= ,) 
Gl; T(J 1~0 

C SHIFT ~lCCK UF EQUATllNS 
c 

100 Nl~=NR+l 

DO 12 5 N= 1, N 1\ 
\~=f\\IH, 
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c 

I·H ") =B ( ""'') 
13(1\M)=O.O 
DO 125 fo'=l,MM 
A( l'i,M)=A(Ni"l,,'-1) 

125 A(NM,M)=O.u 

C Rff\D NEXT BLLCK OF UJUATIONS INTU CURf:
C 

c 

l~(~UMBLK-NB) 150,2CO,lSO 
150 RlAD (NCAT2} {B(N),(A(f\,M),M=l,MM),N=NL,NH) 

IF{NB) 2CO,lCU,200 

C RFDUCE BLOCK CF EQUATICNS 
c 

c 

200 UU 300 ~=l,f\N 

IF(A(N, 1)) 225,300,22? 
225 B(N)=B(f\)/A(N,l) 

00 275 l=2,MM 
IF(A(N,l)) 230,275,230 

230 C=A(N,L)/A(N.l) 
I=N+L-1 
J=O 
DO 250 K=L,MM 
J=J+l 

250 A(l,J)=A(I,J)-C*A(f\,K) 
B( l )=8{ U-AlN,l.J*B(N) 
A(N,L)=C 

275 CONTINUE 
"300 CONTINUE 

C W~ITE dLOCK OF REOUCf.C EWUATlONS Ui\J TAPE- l 
c 

lf(NUMBLK-NBJ 375,40C,375 
375 WRITE (NCATl) (8(N),(A(I\,~),~=2,M~),N=l,~~) 

GO TO lCO 
(. 

C RACK-SUBSTITLflO~ 
r 
'·' 

400 

425 

45J 

475 

c 

DO 4':>0 ,_,=l,Nt\ 
N=NN+l-r-' 
00 425 K=2,.'1M 
L=N+K-1 
B(N)=B(N)-A(N,K)*H(L) 
NM=I\.I+NN 
8(1\l"1)=8(N) 
A(I\:M,NB)=P(N) 
NB=N B-1 
lF(NR) 475,500,475 
BACKSPACE NOATl . 
REA 0 ( N CAT l ) ( !3 ( N ) , ( A ( N , '-1) ',.~ = 2 'M M ) t ~ = 1 'r · '" ) 
BACKSPACE NOATl 
GO TO 400 

92 



93 

C ORDER UNKNCW~S IN A ARRAY 
c 

c 

c 

c 

500 K=O 
UO 600 ~B=l,~UMBLK 
DO 600 N=l,NN 
"M=N+N~ 
K=K+l 

600 B(K)=A(NM,NB) 
RETURN 
END 

SUBROUTINE STRESS 
COMMUN E(7,10),NUMNP,NUMEL,NUMPC,MTYPE,NP,ANI,HEU(20), 

l R ( 3 50) , Z ( 3 50) , UR ( 3 50) , U Z ( 350) , C 00 E ( 3 50 J , lAC ( 10 0) , 
2 J B C ( l 0 0 ) , P R ( 1 0 0 J , ANGlE ( 4 ) , S I G ( 1 0 ) , N D F G , l F F ( 3 50 ) , 
JVOUH 350) ,NEWRZr INN,ICHEK,KONTO, INU,FK( 350), I FH( 350), 
4BETAC350) 

COMMON/ARG/RRR(5),ZZZ(5),S(l0,10),P(l0},LM(4),00(J,3), 
1 HH ( 10, l 0) , RR ( 4) , Z Z ( 1t) , C ( 3, 3), H ( 6, l 0) , 0 ( o, 6) , F ( l u, 1 u) , 
2TP(6),Xf(l0),EE(5) ,IX(35J,5),EM00(3~0) 

COMMON/BANARG/MBANC,NUMBLK,B(120l,Atl20,60) 
COMMON/Iff/URRC350),UZZt350),SIGGl350,4),0VCL(350) 
COMMON/IO/IN,IOUT,NuMl,NOATl,NDAT2,NRECl 

DIMENSION SIGll350J,SIG2(150),SJG4(350J,F~S(l0) 

UCCN=O. 
IIBC=l 
PN=O. 
EE2P=Ef2,1) 
DO 9 t=l,~UMEL 

9 IX(I,5)=1A8S(IX(l,5)) 
DO 10 I=l,NUMNP 
UR (I 1=0. 

10 UZ(l)=O. 

IF(ICHEK-1)12,15,15 
12 WRITE( ICUT,2000) 

c 
(*********************************************************** 
C CALCULATE STRESSES 
C*********************************************************** 
c 

15 00 200 ~=l,NUMEL 
EM=EMOO(N) 
NRECl=N 

16 READ(NUMl'NRECl) HH,C,RR~(5),ZZZC5),Ecf2lrSrVUL 
IFlfE(2) .EC •• 1*E(2,ll .AND. E~ .GT. ANl*E(l,l)) 

1EM=ANI*E(1,1) 
17 DO 120 1=1,4 

11=2*1 



I, 

( 

J J =- • ' * I x. I ~~ , I I 
~ ' ! 1 1 - L l = f-. I J J - l l 

l . 1 ·' ( 1 I l = •·, ( .J J l 
): t'll J-=:<},10 

/ 1J J-=l,LC 
'J ,(!,J)-')(J,Jl*f.M 

;" l')d I=l,l 
.; :.· I I l = . , • 

I ') :) ~- -' I , d 
I'>J h·•(!)o'·~lll-SII+K,Kl*J.'(K) 

. v '~ - \ ( ·; , '1 l * ') ( l J , l J ) - S ( <j , l J I* S ( l 0, c;) 

1 ' r r r · "1 ~ l 1 'J ? , 1 l> o , t ') 5 
l' ' ') ( 'l ) - ( ) ( l. '1' 1 d ) * fJ 1\ ( i ) - ~ ( r...,' l 0) * R K ( 2. ) ) I cUM M 

·' ( l ; ) - ( - '· ( 1 r; , cj I * t< K. ( 1 I + '> ( } , 9 } * k K ( 2 ) I I C 0 f'J. M 

l :. 1 I 7 l ! - l , o 
T I' ( ; ) = ,) • 
). tl"' ~.;;;1,1.__; 

]71 TP([)=TP({)+i--H.(1,t<)*~(K) 

"' ·• ( l l .o. T 1J ( .:' l 
"' '~ ( / l = T P ( t l 
~ , ( ~ l ~ T P ( 3 ) + T P ( ') ) 

Jt, lhJ I=J,; 
\\.!~A-= j e 

t)'' lYU K=l,1 
'-,li'-'::Sll~+C (I ,K)*K.k( K)*lf'J. 

l ., .) \ I : , ( l ) - "' l J M 

) I . · ( ~ ) .::. :~ 1 r, ( 1 l 
I r ( f ( f • t K • 1- ·• • :; ) G C 1 U 1 Y 0 

,jt,\.(',,i) -~1((1 )+:")1(';(1\i,l} 

'>I :·,t, ( ~~, 2)-= ') J G ( 2. ) + S I ( G (hi, 2) 
') I l, ( , ( ~ , 4 l = S I c; ( 4 ) + ') ll G ( N , 1t ) 

. ) I T (I ? c Ll 

1'1,) \Jt,i(\)-=-\ll~( l) 

'• I r: / ( 1"4 ) = ~ I l; ( / ) 
·.; r 1. ~ ... < N l = ~ 1 :. ' ,., > 
I f I I r ~· I '" l • l; T • U l l~ li 1 U 2 U 0 
S I(.(; l = S ((~ ( 1 I+ S H·G P'11 t 1) 
·, I r ~ '; t! = S I (, ( 2 ) + ~ I ( · G ( r--, • ? ) 
\ 1 1 , '" 4 =- :., 1 (, t ~ .. > + ~ r G G ' 1\i , ·:. 1 
r. L = t ') I \, (~ l + S I (, G 2 )I 2 • 
i~ t\ .,. ( S I L C 1- .) I •; G 2 ) I 2 • 
( k --= S 1J R r l l \ l~ * * 2 + S I(~ G t.t * * 2 ) 
')([,(''d=CC+CR 
·,Ir,(t,)"'((-(t~ 

q (~ ( l ) = 2 H. 6 4 H *A 1 AN 2 ( ~ l C G 4, b ti ) 

~ 1 =- S I G C 6) 
') ~ = - c, I (, ( 5 ) 
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c 
C CHlCK ll~MFNT FAILU~E 

c 
C/1LL FKT(Sl,S3, IKOO,UCC,PTltPCC) 
If (UCO-UCUH lY5,1Ci4,lej4 

lrt4 UCCN-=UCC 
lf-lUCCJ .F~. PCC) IIKC=3 
I f ( U C ,J • £ Q. P T l ) l I K 0= l 
IUCU=N 
~M=N 

95 

195 ~RIff( 1CUT,200l)N, IKOD,PTl,PCC,SlG(')) ,Slb(o),<;IG( 7J, 
1Sif.(ll,SlGf2),SIGl4),SIGGl,SlGG2,SICG4 

c 

c 
c 

200 CONTINUE 

IF ( ICHEK .Gf. 0) GCJ TO 800 

C ADJUST INCREMENTAL DISPLACE·'1ENT 
( 

c 

c 

c 

N=IUCO 
CC=lSIGG{~,li+SlGGlN,2)l/2. 
H B = ( S I G G f " , 1 ) - S I GG ( N, 2) ) I i.. 
CR=SQRT(E8**2+SIGG(N,4)**2) 
Sl=-CC+CR 
S1=-CC-CR 
CALL FRT(Sl,S3,1KOO,UCC,PTLtPCC) 
IFlliKO .EW. 3) UUCU=PCC 
IF(IIKO .FQ. U uUCC=PTl 

IF-IUUCO .GE. 1.) GC ro 205 
IF((UCU~-UUCG) .LT. O.OU GO Tll 207 

GO TO 206 
?.05 RATIO=O. 

lfH(N)=JIKO 
G\J TO 2Qq 

206 RATIO=(l.-UUCO)/tUCON-UUCOI 
lf(~ATIC .GT. l.lJ GO TO 2C8 
[fH(N)=lJt<LJ 
GC TO 2C9 

20 7 R 1\ T 1 0 = l. 1 
If· ( lJ(;JN-1 .001) 209,204,204 

204 RATI0-=1. 
IFH(N)=IIKO 
GO TO 209 

208 H/\TIO=l.l 
2'J9 WRITEllCUT,:30J:J} 

00 220 I=l,~UMNP 
U R R ( I ) = ~ ( 2 * I- l ) * r( AT I 0 +UK R ( I ) 

220 Ull(f)-=P(.C*Il*KATlf:+JZl(L) 

WRITf.( ICUT,3003) 
Dt1 71JO ~=l,"Ur-lfl 



c 
c 
c 

c 
c 
c 

c 

c 

ACCUMULATE TCfAL STRF~SfS 

SIG~{N,lJ=SIGl(N)*kAllO+SlGG(N,l) 

SIGG(N,2)=SIG2lNJ*RATIO+SIGG(N,2) 
SIGG(N,4)=SIG4(N)*RATIO+SIGG(~,4) 

INDENTOR PRfSSURf 

210 

212 
21 l 

I F ( N- J S C ( I I B C ) ) 2 I l , 2 l U , 2 l l 
RJ=~(IRC(IIBC*l)) 

ZJ~Z(IBC(IIBC*2), 

RI=RIIBClllBC*2-ll) 
l I = l ( I d C ( I I B C * 2- 1 > ) 
P l~ ·= S Q R T ( ( R J- R I ) * ( k J- R l ) + ( L J- l I l ,_ ( I J -l 1 J J 
P l2 ==AT A N2 ( ( l J -l I ) , ( R J- R l ) ) 
P R ( I I 1:3 C ) = P l l * ( S I G G ( N , 4 ) * ') l N l P l ? ) - S I u G ( i'4 ; l :::.: L , ~) { ~ L ' J J 
PN=PN+PR(IIEC) ' , 
IIBC=IIBC+l 
TFliiBC-NU~PC)~lltL11,212 
JBC( IIBC)-=~Ut--.EL+1 
CONTINUE 

NRfCl=N 
READ(NU~l'NRECl) HH,C,~PK(?) ,ZLll 5) ,U Ul ,:>,VU 

NRFCl=NU~El+1 
W R I T F. ( N U M 1 ' N R f C l ) t- 1- , C , ~ ~. R ( 5 ) , l i Z I 'J ) , t l ( 2 l , ', , v' r , L 

C CALCULATE PRINCIPAL STRESSfS 
c 

CC=ISIGG(~,lJ+SIGGl~,l.))/2. 
B B= ( S I G G { f\, 1 ) - S I GG U~, 2l ) I 2. 
CR=SQRTlPB**2•SJG(,(~,4t**2) 
SIG(5)=CC+CR 
SIGlb)=CC-CI< 
SIGl7)=28.64d*ATAN2(SIGG(~,4),0~) 
IF{ IFH(N) .LE: .. U} Grl TO iOO 

c C*************~*******************O**********~'O****o~••••t~ 
C C l A S S I F Y F .Ll I l t: f) E L f t.-1 E N T S i: '-1 ll 0 I f- Y '"1 A F ..' lt• ! P k , P f ·d I t , 

C************************6*~**~*******•********•*~*c~•~*~*t* 
c 

c 

IFF(N)=O 
FFK=O.l 
UCO=O. 
OVOLP=O .. 
SIG6P=O. 
IF(N-IUCU)216,215,216 

2L5 FK(N)=1. 
If( IFI-1(1\)-U 2'?4,2'"-.A,z-ro 

2 1 ·.> S l =- S I G l 6 ) 
S3=-SJG{5) 



c 

c 

c 

c 

c 

c 

c 

c 

c 

Vf1LL=O. 
llX=IX(t\,5) 
I X ( r~ , 5 ) = I X l ~ , l ) 
f)U 2 30 I= 1 , 4 
I< l =R (I X ( N, I)) +UJ.: R ( 1 X ( t'll, I)) 
ll=Z( IX(N,I) )+Ull( IX(N,I)) 
R 2 = R ( I X ( N, I + 1 } ) + UR R ( I X ( t'1 , 1 + l ) ) 
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Z 2 = Z ( 1 X ( 1'\ , I + l ) ) +U Z Z ( I X ( N, I+ 1 ) ) 
CGM~=.5*{R2*(Zll(5)-Zl)+Rl*(Z2-Zll{~))+RRR(5J*lll-l2)l 

VOLL=VOll+COMM 
IF( IXlN,3) .EQ. IX(N,4)) GO TO 231 

230 CONTINUE 
2'~1 IX(N,5)=11X 

OVUL(N}=VCLL-VGLM(N) 
IFliFH(N)-3) 232,250,245 

232 AlfA2=(SIGl7)-BETA(N))/28.64H 
SIG6P=CC-CR*COS(ALFAL) 
SlGlP=CC+C~*COS(AlfA2) 
Sl2P=CR*SIN(ALFA2) 
D V 0 l P-= ( 1 • - E ( 2 , l ) ) * ( 1 • - 2 .. * E ( 2 , l 1 l I £ ( l , l l * ~ I (, o P * V l) L "' I ~\ J 

IF (0\IUL {N) .LT. DVOLPl Gu TO 23'J 

IF(SIG6P .GT. -E(4,U) GU TD 2 3:3 

IF(S[G6P .LT. -t:(J,l)) GO TO 270 

IF(EE(2) .EQ. J.ld*E(Z,ll) Gu TU 234 

IFH(N)=l 
EE£2t=O.l0*E(2,1) 
CALL QUAO(N,VOL,N) 
NRECl=N 
W R 1 T E ( N U M 1 ' N t< E C l ) H H , C t :~ F k ( 5 ) , lll I "J I ' t t ( 2 l ' ') ' v , ; L 

2 3 't I F ( S 1 G 1 P .. 1...; T • 5 0 • • C t< • ~ l 2. P • G f • 'J :j • l 
GU TO 290 

215 EMOD(N)=0.9*Eil,l) 
FK(N}==C.95 
CALL FI-~TFIS1 1 S3,fK(N), IK,lD,UCUl 
IF ( lKU0-1) 236,237,270 

236 EE{2)=E(2,l> 
IFH(N)=2 
CALL QUAC(N,VUL,~) 
NR E c 1 = N . . ' c I . l ( . ) ~ ' I ' ) ) ' 'l 
WRITE(NIJMl'NRECl) ~t-<,C,Rfif<{;),~_L.) ,, 1

' ' ' 

IF(SIG(5) .GT. 50.l __;u TO 260 
GO rn ~~<Jo 

237 EM00(N)=0.8*E(l,l) 
FK(N)=0.9 



c 

c 

c 

c 

c 

IF(DVtll(N) .GT. 0.) GO TU 240 

IFHIN)=3 
E E ( 2 ) ·= • 5- ( • 5- E E: 2 P ) * E fol 0 D ( N ) IE ( 1 , l) 
IflFE(2) .GT. 0.4qg77lEE(2)=0.49977 
CALL WUACl~,VOL,N) 

N~ECl=N 

wRITEl~U~l'NRECl) HH,C,RRRl5l,ZZZl5),EtC2) ~ VGL 
Gl1 TO 260 ' ' 
EMOD(N)=O.B*E(l,l) 
FKIN)=0.9 

240 IFH(N)=4 
RETA(N)=OVOL(N) 
IF(OVOL(N) .GT. O.l BETA(~)=O. 

EE(2)=0.10*t(2,1) 
CALL QUAO(N,VCL,N) 
NRECl=N 
WRITE(NUMl'NRECl} ~H,C,PRR(5J,ZZL(~),~L(2),~,VLL 

2 4 l I F ( A 8 S ( S I G ( 5 J ) • G T • 50 • • OR • A B S ( ~ I G ( b ) ) • G T • >.> 0 • ) 

lGO TO 265 
GO TO 290 

245 IF(DVOL(N) .GT. BETA(N)) GL TU 242 
lFH(N)=3 
E f: ( 2) = • 5- l • 5- E E 2 P ) * l ~ fl C ( N) I E l l , l l 
lf([E(2) .GT. 0.49977)E~(21=0.4q977 
CALL QUAO(N,VOL,NJ 
NRECl=N 
W R I T E ( N U M 1 • N R E C 1 ) 1- H , C , K ,~ R ( S ) , :.. L Z { 'J ) , t: l ( 2 ) , :-) , V , ., l 

GU TO 290 

2j0 IF((SIGl5)tSIG(6)) .GE. O.) GtJ lU 240 
CALL FRTF(Sl,S3,FK(N),IKGD,UCU) 
I F l I K 0 D • f <J • 3 ) G C T U 2 6 6 

lf(DV~ll(t\i) .Gr. 0 •• AND. tfL:'l .t~. u.l*lU,Ul 

lGU TO 253 
I F ( D V 0 l ( 1\J ) • t T • 0 • • AND • t-: r ( 2 ) • ~; F • ') • l * F- ( Z ' 1 J ) 

lGO TO 253 
Ff(2}=.5-(.~-EE2P)*U~UD(N)/E( 1, l) 
[F(Ef(2) .GT. U.49S77}EE(2}=0.4J977 
IF(DVOL(N) .GT. O.l Ef{2)=0.1*~(2,U 
CALl QUAC(~~VOL,N) 
NRECl=N WRITE(~U.'11 1 NRFC1) I-H,C,RRR(5),llZ(5),[t(2},~,VuL 

2 53 IF ( S I G ( 5) • G T. 50. l G C T u Z b (l 

GO TO 290 

254 EE(2)=0.lO*E{2,lJ 
BETA(N)=SIG(7) 
CALL QUAO(N,VUL,N) 
NR EC l=N 
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c 

W R I T E ( N U M 1 1 N R F C l ) t- H, C , K 1-' R ( 5 ) , ll L I '.:>) , F- F I n , S , V t, L 
GO TO 260 

qq 

(*********************************************************'* 
C TKANSFER EXCE:iSIVE STRESSES TO NllDAL LtlADS 
C****************************~***************~*C*****~···*•* 
c 

c 

255 IFF(NJ.,l 
Rb.TA2=BETA(N)/2R.648 
SRP=.5*SIG6P*(l.-COS(H~TA2)) 
SZP=.5*SIG6P*(l.+CCStBETA2)) 
SRlP=-.5*SIG6P*(SIN(HETA2)) 
GO TO 290 

260 IFFCN)=2 
261 IF(EE(2) .GE. E{2,1)) GO TO 26l 

SIG72= SIG(7)/7.8.648 
SRP=.5*SIG(6)*(1.-COS(SlG72)) 
SZP=.5*SI((b)*(l.+COS(SIG72)) 
SRZP=-.5*SIGC6)*SI~CSIG72) 
GO TO 290 

262 CCP=.5*l-Slf(5)+SIG(6)) 
CRP=.5*(-SIGI5)-SIGI6)) 
GO TO 279 

26 5 l F F ( N j = 4 
SR P=O. 
SLP:O. 
SRZP=O. 
GO TO 290 

266 IF(UCCJ .liT. 1.03) f-FK.-=.l+.O'J*(.J(ll-l.J1l/.JtJ 

270 
271 

288 

IFCUCO .GT. l.G9) FF~=.l~ 
GO TO 211 

IFH(N}=3 
Iff(N)=3 
r f i = F K ( N ) * ( I: l 5 , l ) - l ! (J , l ) l + E ( (1 ' 1 l 
iJ S l·= 2 • * f l • + S I N ( T H ) l I C u :) ( T H } * I f- K ( r • i ~' : l 1 ' ,: l - i t. ~ · ( 1 ' - l ~ 

1SlG(5)) , 'f"•"' t')l - . 7:<1-K(~})*( 'J*Ft-tt+./:;*r "''"Jl" J F K ( N ) -= t- t<. ( r-.. ) - ( • J + • ' ' • 
110000.) .1 ,r. 

I F ( F K ( "' ) • l T • J • 0 5 ) G ( ) T J L :) ~ 
T H = F K ( N ) * ( c ( 5 , 1 ) - C ( 6 • l l ) + E ( 6 ' l ) _ T • • ( T .~ ) , 
D S 2 = 2 .. * { 1 • + S I N ( T H ) ) I C C S ( T H l * ( F r<. ( ~. ) * F ( 1 ' i. ) ,, . . 

lSIG(5)) 
DSP=(0Sl-DS2)*E(7,1) 
IF(OSP .GT. 051) OSP-=DSl-50. 
EMUO(N)=E(l,lJ*f-K{fi.)**EllrU,- . i 

S I G 6P = ( S I G ( 6 ) - S l G ( 5 ) ) * ( 1 •- nSf-' I .I~ 1 l + ~ I ·' I 'J l 
GO TO 289 
FK(N)=.C5 
E~Ul.HN1=.0Dl 

T H = • 9 5 * F ( 6 ' l ) T l * ( .~ 4 * t ( 1 , ::. ) -
SIG6P=SIG(5)-2.*(l.+SI~(TH))/C(;j( ~ .J 

UTAN(TH)*SIG(S)) 



c 

c 

c 

289 

272 

IF(SlG{5) .GT. 0.) DSP=OSl 
I_FlEMOD(N) .LT. O.OOl*f.:(l,l) l t:i"l(J[i(r'd=lJ.nOl~ll l,U 
EF (2)=.5-( .~-Ff2P)*f~OC(I\I)/U 1, l) 
lF(~E(2) .GT. 0.49977)E[(2)=J.4Q977 
IFCDVOL(N) .GT. 0.) l~(2)=0.10*f(2,ll 

CALL WUAO(N,VOL,N) 
NRECl=N 
WRITf(NUMl'NRECl) HH,C,R.RR(5),lll('.d .~~ (2) ,~,\l!il 

IF(SIG(5) .LE. O.l GO TU 274 
SIG6P=SIG(6)*(1.-0~P/0Sll 

CCP=.5*SIG6P 
CRP-=-.5*SIG6P 
GO TO 279 

274 CCP=.5*(SJG(5)+SIG6P) 
CRP=.5*(SIG(5)-SIG6P) 

279 ALFA2=SIG(7)/28.b4H 
SRP=CCP+CRP*COS{ALFA2) 
SZP=CCP-CRP*COS{ALFA2} 
SRZP~CRP*SIN(AlfA2) 

}()() 

2 9 0 ., R I T f ( l C U T , 3 0 0 2 ) N , l F F ( N ) , I f H ( N l , U C.. (l , r f ( ;> l , ~ ~• ( \ ) , 
1 E MOt)( N ) , 0 VOl ( N) , OV OL P , S I C G ( N, l l , ~ I r;G P'>~ , Z l , '> I <,(, ( r., 4 l , 
2SIG(5),SIG(6),SIG(7),SIG&P 

IFflff(N)-1)700,710,710 
710 SRR=SIGG(N,ll-SRP 

SZZ=SIGG(N,2)-SZP 
SRZ=SIGG{N,4)-SRZP 

730 SIGG(N,l)=SRP 
SIGG(N,2)=SZP 
SIGG(N,4)=SRZP 

739 NRECl=N~MEL+l 
R fAD ( 1'4Uf-11 'NR E C 1 j H H, C, f.~ R R ( ':>) , Z L i ( 'J ) , H ( I ) , ~ , V 1; l 

IF(IX(N,3) .EO. 1X(N,4)) GO TO 7~1 
DO 740 J-=1, lu 

74 0 F S S ( I } = ( h 1- ( 2, I ) *Sf{ 1< t ri H ( 3, I ) * S P l + f-' fi ( '), l J t- \ < l .. I~ r 1 I u, i l t 

lSZZ)*VOl. 
FSR=.25*FSS(<J) 
F<;Z=.25*FSS(l0J 

Dll 750 1=1,4 
U R ( 1 X (t~ , I J ) = F S 5 ( I * 2-1) + f 5 R + U F ( I X : ·~ , I ) ) 

750 UZl IXfN,l) )=FS~( I*2l+FSZ+UZ( IxP., l I) 

GO TO 3CO 
751 DO 755 l-=1,6 , . . ... 
7 5 5 F S S ( I ) = (t J ~ ( 2 , I) * S h. R + H·-' ( 3 ,I ) * ~ R L t H H :> , l I * ~ ~<£ + •· • · ( t. • I l • 

lSZZl*VOL 
00 756 1=1,3 
UR ( l X ( 1\J ., I ) ) = F S S ( I * 2-1 ) + L r{ ( I X ( ~. ' I ) l 

7':>6 U l ( 1 X t N, I } ) = F S S { t *!) + :_· .: { 1 X ( ·,' l l l 

300 CONTINUE 
700 CONTINUE 

W R [ T ( ( I 0 U T, 2 0 0 3 ) ( I , P K. { I ) , I= 1 ' NU M PC ) 



c 

c 

TPEN=UZZll)+l(l) 
WRITE(IOUT,2004)PN,TPEN 
GO TO 810 

800 DO 801 I=l,NUMNP 
U~R(l)=8(2*1-l)+URR(l) 

801 UZZ(l)=8(2*Il•Ull(l) 
~HO CONTINUE 
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;:> 0 0 0 F ll ~ M AT ( 5 H 1 E- NO ' 1 X • I I K 0 f) I ' 3 X ' • p T 1 ' ' 3 X ' • p c c I ' ~X ' • MAX- s • ' 
l5X,'MIN-S',5X, 1 A~GLE',2X,'DR-STRES',2X,'DZ-STRES',lX, 
2. URZ- s T REs' '2 X' • R- s TR E ~ s I 'z X' I l- ':> T IH s s I ' 1 X' 'R z- s T k f s s I 

3 J 
2001 FORMAT(215,2F6.2,lP9El0.2) 
2003 FORMAT(//5X,'PRESSURE BOUNOARY'//(5X, 'PR( 1 , 13, 1 I=', 

1El6.0t) 
2004 FORMAT(/5X, 1 TOTAL PRESSURE=',Fl6.0//5X, 

l'TOTAL PENETRATlON= 1 ,Fl3.6) 
2008 FORMAT(IlOrlP3EI5.4) 
3000 FORMAT(/' EL. N0.= 1 ,15,5X,'IIK0=',13,5X,'UCON=', 

lfl0.3,5X, 1 UUCO='•Fl0.3,5X,'RATIO=',fl0.1/l 
3002 FORMAT(I4,I2,14 1 F6.2,F8.4,F6.2,1Pl0fl0.t) 
3003 FORMAT(4HlN0., 1 IFF IFH UCO tF2 FK H-IOD(N) ' 

l' OVOL(N) OVOLP(N) R-STRESS Z-STRESS Rl-STRESS 
2' MAX-ST MIN-ST ANGLE SIG6P') 

RETURN 
END 

SUBROUTINE FRT(Sl,S3,IKGD,UCU,PTL,PCC) 
COMMON E(7,l0) 
PTl=O. 
PCC=O. 
UCO=O. 
IKOO=O 
IF(S3 .GT. O.l GO TO 510 
PTl=S3/E(4,1) 
UCO=PT l 
1F(E(4,l) .LT. 53) GC TO 510 
IKOD=l 

510 PCC~(Sl-S3)/(E(3,l)+E(3,2)*S3) 
lF(PCC .LT. UCO) GO TO 590 

UCO=PCC 
If(PCC .GT. 1.) IKOD=3 

590 CONTINUE 
RETURN 
END 

SUBROUTINE FRTf(Sl,S3,F~,IKOO,UC0) 
COMMON E(7,10) 



r H = F K * l t- 1 5 , 1 J - 1::. ' 6 , 1 J ) + £ < C) , 1 ) 
LJCO=O. 
IKDD=O 
1~1~3 .GT. 0.) GO TO 510 
lJ(D=S3/E(4,l) 
lf-IUCIJ .GT. 1.) IKCD=l 
S3=0. 

')10 PCC=(Sl-S3)/(2.*ll.+SIN(TI-t) )/CllS(THI*(FK*H 1,2)+ 
lTAN(TH)*S3)J 

IFIPCC .LT. UCO) GO TO 5HO 
UC!l=PCC 
IF( PCC .GT. 1. I IKOD=3 

580 CCNT INUF 
RETURN 
fND 
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