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ABSTRACT 

The problem of the unique parameter identification of 

nonuniform distributed RC networks is addressed in this 

dissertation. Previous literature provides for the 

equivalence of distributed networks with respect to the 

terminal characteristics. Therefore, the question is 

whether unique parameter identification is even possible. 

This work settles that question by presenting the sufficient 

conditions to insure a unique solution to the parameter 

identification problem. One theorem requires the knowledge 

of a driving-point impedance, the knowledge of the physical 

length, and the constraint that the r(x)c(x) product 

remains constant to insure uniqueness of the parameters 

r(x) and c(x). Relaxation of the r(x)c(x) product 

constraint allows for other combinations of r(x) and c(x) 

which produce identical terminal characteristics, thus 

destroying the uniqueness property. However, knowledge of 

a driving-point impedance, of the physical length, and of 

r(x) is sufficient to uniquely determine c(x). Sufficiency 

theorems which involve one of the [A,B,C,D] parameters 

rather than a driving-point impedance are also included. 

A practical parameter identification routine is then 

presented in order to find the unknown parameters. A 

Fletcher-Powell/Davidon unconstrained minimization technique 

is used although any routine with appropriate convergence 

properties may be utilized. Examples of parameter 

identification of known networks are given. 
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CHAPTER I: INTRODUCTION 

A. Introduction to Distributed Networks 

The advent of microelectronic technology has made 

several devices physically practical which were only of 

theoretical interest before this technology became available ; 

for e xample, the traveling-wave transistor, the metal-oxide

semiconductor field-effect transistor, the distributed RC 

network, etc. Much literature has been devoted to the 

distributed RC network. Such work includes that of analysis. 

synthesis, approximation, stability, sensitivity, and 

fabrication. For a treatment of the history, theory, and 

applications of distributed RC networks, [1 ] and [ 2] should 

be consulted. It is the purpose of this dissertation to 

present some results in parameter identification of 

distributed RC networks, an area which has received little 

attention in the literature. 

B. Governing Equations 

One form of the distributed RC network is the three

layered device depicted in Figure 1 .1. Many variations of 

this s tructure and its characteristics a re made possible by 

attaching terminals at chosen points on the device and also 

by adding additional layers to the basic structure. 
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RESISTIVE LAYER 

DIELECTRIC LAYER 

CONDUCTIVE LAYER 

(a) Side View 

CONDUCTIVE LAYER 

DIELECTRIC LAYER 

...... ,..... - RESISTIVE LAYER ...... 
-0 -

(b) Top View 

Figure 1.1. Structure of a Distributed RC Network 



Figure 1.1 provides a description of the device considered 

in this paper. 

The defining mathematical relationships between 

voltages and currents of a distributed RC network are not 

derived here, as ample space has already been devoted to 

3 

such derivations [1,pp.27,28], [2,p.19], and [J,pp.1J0,131]. 

The incremental model of the distributed RC circuit is 

indicated in Figure 1.2, from which the following defining 

equations can be derived: 

av(x,t) 
= -r(x)i(x,t) (1.1a) 

ax 

ai(x,t) av(x,t) 
= -c(x) (1.1b) 

ax at 

Taking the Laplace transform of (1.1) with respect to 

t {with zero initial conditions) gives: 

d 
V{x,s) 0 r(x) V(x,s) 

(1.2) 
dx I(x,s) sc(x) o I(x,s) 

where s is the Laplace transform variable and V(x,s) and 

I(x,s) are the transformed voltages and currents, 

respectively. (1.1) may also be combined to form the 

following sets of equations: 
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r(O)llx r(x)[lx 
i(x) 

r(d)llx 

• • • • • • 
+ 

c(x)llx 

• • • 
X X = d 

Figure 1.2. Incremental RC Transmission Line 



2 a v(x,t) 1 dr(x) av{x,t) 
2 -- = 

ax r(x) dx ax 

av(x,t) 
r(x)c(x) (1.Ja) 

at 

a 2i( x t) 1 dc(x) ai(x,t) 
2 -- = 

a x c(x) dx ax 

a i(x,t) 
r(x)c(x) (1.Jb) 

a t 

Application of the Laplace transform with respect to 

time to {1.J) gives 

1 dr ( X ) d V ( X , S ) 

r(x) dx dx 

sr (x) c (x )V (x, s) = 0 ( 1. 4a) 

d 2I(x,s) 1 dc(x) di( x ,s) 

c(x) dx dx 

sr(x)c( x )I(x,s) = 0 (1.4b) 

Thus , four sets of equations are available which 

describe the voltage-cu rren t characteristics of a general 

distributed RC network: a) two sets of second-order 

5 
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differential equations, one in the time domain and the other 

in a transformed domain, and b) two sets of first-order 

coupled differential equations, one in the time domain and 

the other in a transformed domain. 

C. Physical Assumptions 

All of the preceding governing equations are based on 

certain assumptions which must be considered in the modeling 

process. The incremental resistance, r(x), and the 

incremental capacitance, c(x), are assumed to be invariant 

with respect to frequency, time, temperature, and the 

magnitudes of the voltage and current in this dissertation. 

Another assumption made in the governing equations is 

that of one-dimensional current flow in the device. Ghausi 

and Kelley [1,p.2J9] consider this assumption and derive 

governing equations where the one-dimensional current 

assumption is usually considered sufficient for r(x) and 

c(x) of small variations or where the length-to-width ratio 

is large; multidimensional current flow is a topic for 

further research as mentioned in Chapter V. 

D. Review of the Literature 

Many articles have been published related to 

distributed networks as shown by the bibliography of [1] 

alone. Only literature relating to the identification of 

the incremental resistance and capacitance is considered here. 
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R. A. Rohrer [4] casts the synthesis problem as a 

parameter-optimization problem and presents a solution by 

use of variational calculus. The parameters r(x), c(x), 

g(x), and l(x) are constrained to be greater than zero. 

Hellstrom [5] considers a method for finding equivalent 

functions for given r(x) and c(x), which when viewed from 

the terminals produce identical electrical characteristics. 

Implications of Hellstrom's work suggest that the identifi

cation of r(x) and c(x) for a specific network may not be 

possible. Part of the work of this dissertation proves that 

such identification is possible under certain constraints. 

Karnik and Cohen [6] approach the problem by using classical 

optimal-control techniques and use a gradient technique for 

the final solution. Jain [7] converts the identification 

problem into a network-matching problem, which results in 

solving an initial-value Riccati equation. Protonotaries 

and Wing [8] consider a synthesis problem in which poles and 

zeros of driving-point functions of RC distributed networks 

are given. Wohlers [9] utilizes a procedure given the input 

reflection coefficient. Sondhi and Gopinath [10] determine 

the shape of the vocal tract by use of an LC line model and 

driving-point impulse response data. 

E. Purpose and Scope of the Dissertation 

Very little space has been devoted in the literature 

to conditions sufficient to guarantee unique parameter 

identification of systems governed by partial differential 
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equations. It is the purpose of this dissertation to 

present some work done in this area by considering 

sufficiency theorems for unique parameter identification of 

systems governed by equations of the form (1.1) - (1.4). 

Specific application is made of this work to the area of 

taper identification of distributed RC networks. 

Chapter II develops and proves some sufficiency theorems 

for taper identification of the RC distributed network 

involving driving-point information. Chapter III extends 

the theorems in Chapter II so that transfer-function type 

information can be utilized. Chapter IV presents a 

practical parameter identification routine using numerical 

optimization techniques. The concluding chapter extends 

the work of Chapters II and III to cover other 2-element

kind distributed networks. Also included in Chapter V 

are detailed suggestions for further research. 



CHAPTER II: UNIQUENESS THEOREMS ON TAPER IDENTIFICATION 

OF RC DISTRIBUTED NETWORKS 

A. Introduction 

9 

This chapter defines taper identification of a 

distributed RC network and contains theorems which provide 

for the uniqueness of tapers in such networks. Theorems in 

this chapter involve knowledge of a circuit driving-point 

impedance; thus, both voltage and current at a port must 

be known or measurable. Proofs are included with the 

theorems. 

B. Taper Identification of a Distributed RC Network 

Definition 2.1: Taper is the set of coefficients 

r(x) and c(x) in the distributed RC network governing 

equ ations (1.1) through (1.4). 

Definition 2.1: A taper is said to be identified 

if r(x) and c(x) are uniquely determined. 

In light of definitions 2.1. and 2.2., the taper 

identification problem is that of finding the coefficients 

r(x) and c(x) given certain circuit terminal electrical 

measurements and other circuit properties. Chapters II 

and III discuss sufficiency conditions to guarantee a 

unique taper. 
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C. Equivalence and Uniqueness 

Several authors, [1,pp.129-133 ] and [5 ] , have discussed 

methods by which equivalent networks (networks with the same 

terminal electrical properties) can be generated. These 

methods are based on spatial transformations which generate 

new taper functions but still satisfy the same basic 

differential equations. The topic of equivalence provides 

a good starting point when looking for uniqueness properties. 

Characteristics may be found which differentiate a given 

network from all _other equivalent networks. As an example, 

[5] demonstrates that three networks, a) r(x)c(x) = K, 

b) r(x) = r 0 and c(x) -ax ) ( ) ax c 0 e , and c r x = r 0 e and 

c(x) = c have the same terminal characteristics including 
0 

the same total resistance and capacitance. A characteristic 

which differentiates each of these networks from the other 

two is found to be the physical length. From the same work, 

a second example may be drawn using Bessel-tapered networks 

which produce equivalent terminal characteristics: 

a) c = c 0 [1+ )r0 c 0 x/z 0 ] and r = r 0 /[1+ )r0 c 0 x/z 0 ] , 

b) c = c exp(z)r c x/z ) and r = r 0 , and c) c = c 0 and 
0 0 0 0 

r = r /[1+ 2)r c x/z ] . As in the first example, a 
0 0 0 0 

distinguishing characteristic of the three equivalent 

networks is found to be the physical length. The same 

result is also concluded from e x amples in [1,pp.131-13J ] . 

These examples suggest that the physical length of the 

distributed RC network is a parameter to be considered in 

the taper identification problem; however, it should be 



noted that r(x)c( x ) and r(x) also provide characteristics 
c(x) 

which distinguish the three networks. 

The following example demonstrates that identical 
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terminal characteristics, physical length, and the ratio 

r(x)/c(x) do not provide sufficient information for taper 

uniqueness. Consider two tapers, (1) r(x) = c(x) = J /2 and 

(2) r(x) = c(x) = 1 + x, where d = 1 for both lines. It 

can be shown that both tapers have identical terminal 

characteristics; they also have identical physical lengths 

and r(x) / c(x) ratios. The [y] parameters are as follows: 

= -JS csch( 3JS) 
2 

Thus without further information concerning the networks 

it is impossible to distinguish one network from the other 

by j u st a knowledge of the terminal characteristics, physical 

length, and the ratio r(x) / c(x). If, however, the r(x)c(x) 

product is constrained to be constant, then networks of the 

same length which exhibit identical terminal characteristics 

consist of identical taper functions as proven in Theorem 2 . 1 . 

D. Taper Uniqueness Theorems 

In the lumped-network case, a Driving-Point (D.P.) 

function does not imply a unique circuit configuration. 

For uniqueness other constraints must be invoked. The 
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same holds true for the distributed RC network. An RC 

D.P. function is not sufficient to totally characterize all 

properties of a given network as demonstrated in the 

following theorem. 

Theorem 2.1: Given the driving-point function from a 

continuous taper, the physical length, d, and that the 

r(x)c(x) product remains constant; then the taper, r(x) 

and c(x), for a distributed network is unique. 

Proof: [8 ] proved that for a given RC D.P. function, 

the u(R) function is unique. o(R) is a function relating 

total accumulated resistance to total accumulated 

capacitance at some point, x, along the line as shown in 

Figure 2.1. 

Since negative and zero resistances and capacitances 

are not allowed, o(R) is an increasing differentiable 
do(R) 

function, and > 0. Therefore, o(R) has a unique 
dR 

inverse, e(C) = R. 

Let o(R) C and e(C) = R be the unique functions 

associated with the given RC D.P. function. Assume that 

two different tapers exist which satisfy the hypothesis: 

r 1 (x), c 1 (x) and r 2 (x), c 2 (x). 

The total resistance and capacitance associated with 

each taper must be equal since both tapers produce the 

same o(R) function. 



c Total 

c 

-----

c = 

X 

R = Total Re s istance at Point x = Jr(y)dy 
0 

X 

C = Total Capacitance at Point x = Jc(y)dy 
0 

Figure 2.1 . Accumulated Capacitance 

vs. 

Accumulated Resistance 

13 

R 
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d d 
R = R2 = Jr1 (y)dy = J r 2 (y)dy ( 2 .1) 

1Total Total 0 0 

d d 
c = c = J c 1 (y)dy = J c 2 (y)dy (2.2) 

1Total 2Total 0 0 

Both tapers have the same cr(R) and e(c) functions but 

do not necessarily occur concurrently on the x axis; this 

can be formalized by 

Xi X2 
R = J r 1 (y)dy = Jr2 (y)dy ( 2 . J ) 

0 0 

x1 X2 
c = J c 1 (y)dy = J c 2 (y)dy (2.4) 

0 0 

where the functional relati onship between x 2 and x 1 may b e 

defined as x 2 = x 2 (x1 ). Differentiating (2.3) and (2.4) 

with respect to x 1 yields (The validity of this differenti

ation is proven in Appendix A) 

r1(x1) = r2(x2) 
dx2 
dx 1 

(2 . 5 ) 

c1{x1 ) c2 (x2 ) 
dx2 

= 
dx 1 

(2 . 6 ) 
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Dividing (2.6) by (2.5) yields 

= (2.7) 

Recalling that r(x)c(x) = K, where K is unspecified, 

(2.7) can be manipulated to yield 

= (2.8) 

= ( 2 .9) 

where Ka and Kb are constants. Substituting (2.8) and 

(2.9) into (2.5) and (2.6) yields 

K = dx2 
a dx1 

(2.10) 

Kb = dx 2 
dx1 

(2.11) 

with boundary conditions x 2 (o) = 0 and x 2 (d) = d. From the 

solution of either (2.10) or (2.11), x 2 = x 1 . Therefore 

r 1 (x) = r 2 (x), c 1 (x) = c 2 (x), and the taper is unique. This 

completes the proof of Theorem 2.1 by contradiction. 

The r(x)c(x) = K restriction in the hypothesis of 

Theorem 1.1 is theoretically appealing. [ 1,pp.115-129 ] 

devotes several pages in consideration of networks with 
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such configurations. Analysis is simplified under this 

restriction, resulting in closed-form solutions and network 

parameters in some cases. From a construction point of 

view this restriction calls for a uniform dielectric-layer 

thickness, an assumption frequently made. However, in 

cases where the dielectric is made as thin as possible to 

yield a relatively large capacitance, measurement and 

control of this layer's thickness present the most problems 

of the three layers. For these reasons holding r(x)c(x) c K 

may be too restrictive, and Theorem 2.2, which follows, may 

present a more practical hypothesis where the uniform 

thickness requirement is not required. The proof of 

Theorem 2.2 is an amended version of that used for 

Theorem 2.1. 

Theorem 2.2: Given a distributed RC D.P. function, 

r(x), and d; then c(x) is unique. 

The proof is very similar to that of Theorem 2.1. 

Since r 1 (x) = r 2 (x), (2.J) implies 

(2.12) 

Substitution of (2.12) into (2.7) yields 

(2.13) 

which proves the uniqueness of c(x). 
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The utility of the preceding theorem lies in the 

knowledge of r(x). In a fabrication process the engineer 

may have confidence in the accuracy of r(x) or may be able 

to make point measurements for its determination. In any 

case c(x) is the parameter for which the lesser information 

is available. 

An obvious corollary can be made by simply interchanging 

r(x) and c(x). 

Corollary 2.1: Given a distributed RC D.P. function, 

c(x), and d; then r(x) is unique. 
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CHAPTER III: UNIQUENESS IN TERMS OF A CHAIN PARAMETER 

A. Introduction 

This chapter presents a uniqueness theorem which is 

less restrictive than those in Chapter II. Preliminary to 

this uniqueness theorem is another theorem and a set of 

corollaries which prove that one of the chain parameters and 

RT and CT are sufficient to specify a driving-point 

immittance of a distributed RC network. From a practical 

point of view, the transfer function required when specifying 

one of the chain parameters may be more easily obtainable 

than the driving-point function. Before statement of 

the uniqueness theorem the chain parameters as given in 

[8 ] are stated for further reference in this chapter. 

Cl) 

A(s) = TT (1 + s/a. i) 
i = :l 

(J.1) 

00 

B(s) = RT TT (1 + s/13 i) 
i = 1 

(J. 2 ) 

00 

C(s) = CTs TT (1 + s/yi) 
i =1 

(J.J) 

00 

D(s) = TT (1 + s /6 .) 
i =1 

l 
{J.4) 
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where 

0 < ( a ., 6.) < y . 
l l l (J. 5a) 

and i = 1,2 •.•. 

0 < (6., a.) < [3. 
l l l 

B. A Theorem Relating A(s), RT' and CT to a D.P. Impedance 

The theorem in this section specifies the relationship 

of A(s), RT, and CT to a driving-point impedance of a 

distributed RC network. In particular A(s), RT' and CT 

provide sufficient information to completely specify the 

short-circuit output impedance, --1- . 
y22 

Theorem _3.1: Given A(s) from a distributed RC network 

and the total resistance and capacitance, RT and CT: then 

the short-circuit output impedance is completely specified. 

Proof: Let A(s) and B(s) take the form of (_3.1) and 

(_3.2) where the ai's are known and the [3i's are unspecified 

but bounded by ai < [3i < ai+1 fori = 1,2 ,.3 ..•. 

Protonotarios and Wing [8] established the relationship 

between CT, A(s), and B(s) as: 

00 

~ 
i =1 

1 

a. 2 A ' (-a. ) B (-a· ) 
l l l 

(_3.6) 

where the prime denotes differentiation with respect to s. 
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Substitution of B1 (s) = B(s)/RT in (Jo6) produces 

00 1 
L: 

i=1 a. 2A'(-a.)B1 (-a.) 
l l l 

( 3 0 7 ) 

Now let the Si 's vary within the given bounds implying 

that CT is variable. The Si's which give RTCTMIN can be 

found by taking 

= 0 (Jo B) 

Substituting (J.?) into (JoB) and interchanging the 

order of differentiation and summation (as justified in 

Appendix B) results in 

1 00 1 
L: = 0 

i =1 u. A'(-a . )B 1 (-a . )( a .-Sk) 
l l l l 

The specific values of -Sk' k = 1,2,Jo o o o which 

satisfy (Jo8) are the zeros of 

CD 1 
K(s) = L: 

i =1 a .A'( -a . )B1 ( - a. )( s+a1.) 
l l l 

(J.9) 

( Jo10 ) 

The poles of (Jo10) are the - a i' i = 1,2,Jo o o o; t herefore , 

(Jo 10) c a n be expanded using the Weierstrass factor t h eorem 

[1] yielding 
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00 

K(s) = A.(s) TI 

( 1 + s/S. ) 
l = 

B1 (s) 
A.(s) (3.11) 

i=1 (1 + s/a.) 
l 

A(s) 

where A.(s} is an entire function with no zeros. 

Invoking the Mittag-Leffler theorem [11,p.157-162] 

on (J.11) (as justified in Appendix C) results in 

K(s) = 
00 

A.(s) 2: 
i=1 

(J.12) 
A' (-a. ) ( s + a. ) 

l l 

It can be shown that A.(s) is a positive constant, 

A. (Appendix D) ; thus, comparison of (J.10) and (J. 12) 
0 

yields 

1 
(J.13) = 

.Ja.A. 
l 0 

The absolute value is required, because the interlace 

property of a . and [3. causes 
l l 

It can be shown that A'(-a i)B(-a i) > 0; therefore, 

substitution of (3.13) into (J.12) results in 
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co -Ja . A. 
K(s) = L 1 o = 

i = 1 a . I A' (- a . ) I ( s + a . ) 
(J.14) 

l l l 

Manipulation of (J.14) results in 

B1 (s) 

A(s) 

1 00 1 
= L 

£ i =1 FIA'(-a .~l(s+ a .) 
0 l l l 

where A. 0 can be evaluated by letting s = 0 in (J.15) 

resulting in 

(J.15) 

(J.16) 

To completely specify the short-circuit output impedance 

with C (J.15) must be multiplied by RT resulting in 
TMIN 

1 B(s) 00 1 
= = L 

i =1 /O::IA'(-a. )fCs+a.) 
l l l 

(J.17) 
A(s) 

To obtain 1/y22 for the actual CT, s is replaced by 

sC~CT . Thus the knowledge of the open-circuit voltage 
MIN 

transfer function, 1/A(s), RT' and CT is sufficient to 

completely specify a distributed RC network output impedance. 



C. Resulting Corollaries 

A series of three corollaries are now stated with 

partial proofs which require one of the three remaining 

chain parameters as part of the hypothesis. 

Theorem J.1 is easily modified to form a corollary 

requiring knowledge of the short - circuit current transfer 

function rather than the voltage transfer function. 

Corollary J.1: Given D(s) from a distributed RC 

network and the total resistance and capacitance, RT and 

CT; then the short-circuit input impedance 1/y11 is 

completely specified. 

The proof follows the same pattern as Theorem J.1 

except that an equivalent expression for {J.6) [8 ] is used 

involving o., D(s), and B(s). 
l 

1 

23 

= 
00 

l: 
i=1 o. 2 n• (- 6 . )B(- 6.) 

(J.18) 

l l l 

The proof is not given, but the short-circuit input 

impedance is 

B(s) 

D(s) 
= 

where k = CT /CT. 
MIN 

00 1 
l: 

i =1 .J6i"ID'(- 6i)l(s/k+ yi) 
(J.19) 



where 

JC = 
0 

00 

2:: 
i =1 

1 

Corollary J.2: Given B(s) from a distributed RC 

network and the total capacitance CT; then the short

circuit output admittance y 22 is completely specified. 

The proof of Corollary J.2 differs slightly from 

that of Theorem J.1. The differing points are mentioned, 

but a complete proof is not given. 

From [8, (56) ] 

1 1 

24 

= 
00 

2:: 
i =1 ~. 2B' (- ~. ) A (- ~. ) 

+- (J.20) 

l l l 

where a 1 and b 1 are Taylor series coefficients of A(s) and 

B(s), respectively. After substitution of B 1 '( - ~i) = 
CX) 1 

B' ( -~i )/RT and i : 1 ~ = a 1 in (J. 20), differentiation with 
l 

r e spe ct to a k and simplification yields 

CX) 

2:: 
i =1 

-1 

~ · B1' (-~.)A(-~.)( ~ . - a k) l l l l 

1 
= 0 

The values of -ak which sat isfy (J. 21) are zeros 

of 

00 -1 1 
H(s) = L: 

i = 1 ~. B1' (-13. )A(-13.) (s + 13l.) l l l 

+ 
s 

(J.21) 

(J.22) 
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The poles of (3.22) are the -S's and the origin. 

H(s) can be written in infinite product form using the 

Weierstrass factor theorem and then expanded by the Mittag

Leffler Theorem yielding 

A.1(s) 00 (1+ s/a.) A.1(s) A(s) 
H(s) l = TT = 

s i =1 (1+s/S.) 
l 

s B1 (s) 

00 -A(-s.) 1 
= A.1(s) L: 

l + 
i=1 S. Bt (- S. ) ( s + S. ) s 

l l l 

where t.. 1 (s) is an entire function with no zeros. 

Comparing (J.22) and (J.23) yields t.. 1 (s) = t.. 1 = 1 and 

A2 (-Si) = 1. Thus A(-Si) = 1; therefore, since 

(J.2J) 

A(-S. )B1' (-S.) < 0 fori = 1,2 .... , (J.23) simplifies to 
l l 

A(s) 

sB1 (s) 

00 

= L: 
i = 1 

1 

S . B 1• ( - S . ) (s + S . ) 
l l l 

1 
+ (J.24) 

s 

After multiplication by s substitution of B(s), 

(J.24) can be recognized as the following short-circuit 

output admittance: 

= 
A(s) 

B(s) 
= 

1 s 
+ 

k 

By substitution of y . and C(s) for s. and B(s), 
l l 

respectively, Corollary J.2 can be modified to form 

Corollary J.J. 



Corollary J.J: Given C(s) and the total resistance 

of a distributed RC network; the open-circuit input 

impedance z 11 is completely specified. 

The proof follows directly from Corollary J.2. and 

only the results are indicated as follows: 

A(s) k 00 1 
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z11 = = + L (J.26) C(s) sCT i =1 JYilc'(-yi) l<s/k+yi) 

Although the preceding theorems and corollaries are 

proven for specific driving-point immittances, similar 

expressions for other driving-point immittances can be 

derived with little trouble. 

D. Another Uniqueness Theorem 

The collection of Theorem J.1 and Corollaries J.1, 

J.2, and J.J states that one of the chain parameters and 

RT and/or CT are sufficient to specify an RC driving-point 

immittance. These results coupled with the theorems and 

corollaries of Chapter II result in the following theorem. 

Theorem J.2: Given one of the chain parameters of a 

di s tributed RC network, RT and CT, the condition that t h e 

r(x)c(x) product remai n s constan t, an d the phys ical l ength, 

then the taper is unique. 

The proof requires the application of the preceding 

theorems in this chapter and Theor em 2 .1. One of the c h a in 

parameters and RT and CT provide for a driving-point 

immittance of the network. Theorem 2.1 requires such a 
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driving-point immittance and the remainder of the hypothesis, 

thus yielding the uniqueness of the taper. 

Obviously Corollaries 2.1 and 2.2 may also be invoked 

to form this variation of Theorem 3.2. 

Corollary J.4: Given one of the chain parameters, 

RT and CT' r(x) (or c(x)), and the physical length of a 

distributed network; then the taper is unique. 



CHAPTER IV: A PRACTICAL TAPER IDENTIFICATION ROUTINE 

A. Introduction 

This chapter presents a practical approach to taper 

identification by utilization of a numerical minimization 

routine. A discussion of the program is included, a s 

well as a table containing the results of a number of 

variations on the problem. Preceding the presentation 

of the routine is a discussion of the elements involv ed 

in taper identification. 

B. Elements of Taper Identification 

The preceding chapters have been devoted to theorems 

and corollaries involving the uniqueness of the taper. 

A uniqueness c ondition only fulfills part of the 

requirement s of a g ood identifica t i on s cheme. Al s o 

included in a good s cheme are the utili zation of a l l 
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known properties of the network and an iterative algorithm 

which con verges to the uniqu e t a p e r functi on . 

I t seems reasonable t hat t h e i dentificat i on rout ine 

inclu de as mu ch known information as possible if for no 

other reason than a better model fi t . Ma ny of t he bas i c 

propert i es , such as t h e i n t erlace property, which a re 

k nown about distributed networks a r e derived from t h e 

general form of the defining equations. Thus from an 



identification point of view, the best model to choose 

is one based on the defining equations; consequently 

these basic properties are incorporated implicitly. 
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Also, in the taper identification problem the coefficients 

to be identified appear explicitly in the defining equations. 

A high-order ordinary differential equation can also 

be used for the model; however, several problems are 

inherent with this model. For example, suppose that a 

high-order differential equation is chosen as the model 

for the open-circuit voltage transfer function of an 

unknown RC distributed network. If the poles in the 

transfer function model are to remain on the negative 

real axis, as in the physical device, then one of two 

techniques is required. The first is to implement the 

modeling process in a constrained optimization routine 

in which the only feasible poles are those on the negative 

real axis. Unfortunately, the technique is quite 

formidable for high-order systems. The second technique 

is to use classical identification t echniques implementing 

interval analysis for the pole selection. Such a method 

requires an interval factorization routine, which is again 

quite formidable for hi gh-order s ystems . 

The finite-order differential equation model does 

not lend itself to the taper identi f ication problem becaus e 

the taper coefficients do not appear in the model. However, 

a crude taper identification can be a ccomplished by 

identifying coefficients which form a driving-point impedance. 



From this function a continued-fraction expansion yields 

the ladder-line element values. Taper identification by 

this method is quite poor because of the high-order system 

required for marginal results; thus, this method can only 

provide theoretical interest rather than a practical 

identification scheme. 

This discussion does not mean to imply that a finite

dimension model can not be used to advantage. Relatively 

small-order models have been constructed quite effectively 

for low-frequency applications; however, for taper identi

fication purposes, the model chosen is one based on the 

defining equations because basic properties are implici t ly 

incorporated and the coefficients r(x) and c(x) are 

incorporated explicitly. 

C. Preliminary Observations 

Before presenting a taper identification routine, 

some preliminary considerations are discussed concerning 

the theorems of the previous chapters and also the domain 

in which the problem is solved. The objective is to find 

a routine which not only incorporates the hypotheses of 

the theorems in the previous chapters but also finds the 

taper function. It should be noted that two examples are 

tabulated which do not fulfill all the hypotheses of the 

theorems. These examples are e xplained in section D-J. 

Recall the result of Chapter III : given one of the chain 

parameters, physical length, RT and CT' and the condition 

JO 



31 

that the r(x)c(x) product remain constant; then the taper 

is unique. This implies that the implementation of taper 

identification can be done in the frequency domain. Other 

advantages exist for identification in the frequency domain. 

For example, laboratory equipment can also impose a constraint 

on the domain in which to work. Most laboratories are better 

equipped to measure frequency response data as opposed to the 

time domain impulse response data. 

Consider the time-domain representation of one of the 

chain parameters or even a driving-point impedance. If the 

taper identification is to be done in the time domain, then 

the routine is forced to solve equations such as (1.1) or 

(1.J). Suppose driving-point impulse response data is avail-. 

able; then the routine must solve either (1.1) or (1.J) from 

knowledge gained at one boundary. If the time-domain equiv-

alent of one of the chain parameters is specified, then data 

is specified at both boundaries which necessitates the solu

tion of a two-point boundary-value problem. Thus two pro

grams are required to evaluate the conditions on the trans -

mission line. In the frequency domain, the problem is 

simpler. The only program required is one to evaluate the 

specified transfer function which can be accomplished by 

solving a simple matrix ordinary differential equation with 

variable coefficients at several frequencies. 

Another problem present in a practical identification 

routine in either the time or frequency domains is the 

approximation of an infinite number of samples by a finite 
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number. In the frequency domain, for example, the a i's of 

00 
A(s) = 'IT 

i=1 
(1+s/a.) 

l 

can not possibly be determined be a finite number of data 

points of A(s). A similar statement can be made regarding 

the time domain. The approach used in the following routine 

is to take a large number of samples in the frequency range 

of interest; first use a portion of the data points noting 

the results; then increase the number of data points, and 

compare the results. Ten samples have been found to yield 

good results for simulated data; in the case of actual 

laboratory data, more measurements produce a smoothing effect 

on the data. In the measured data cases, samples were taken 

over one decade and the range of the generated samples were 

one to two decades. This procedure produces good results, 

and the cost of additional evaluations is relatively 

insignificant. 

From the data-measurement point of view, several checks 

are available concerning the accuracy of the data. The low-

frequency short-circuit driving-point impedance is shown to 

approach RT by simply taking the ratio of B(jw)/A(jw) and 

letti ng w + 0. In a similar manner, the low-frequency open

circuit driving-point impedance is shown to approach that of 

a capacitor whose value is CT. 

The driving-point response for large w is most easily 

considered by using the asymptotic expressions for the 

chain parameters as given in [8]: 
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A(s) 'V Kek.JS · 

B(s) 'V (K1ek.JS)/.JS 

C(s) 'V K2.JSek.jS 

D(s) 'V K k.jS 
3e 

when k, K, K1 , K2 , and K3 are positive constants and the 

asymptotic expressions are valid for large sand larg(s)(< ~· 

From the limit of the short-cricuit input impedance results 

the following: 

lim 
jw-+ro 

lim 
j w -+oo 

1 
y11 

= lim 
j w -+00 

= 

B( jw) 
D( jW) 

= 

In a similar manner the open-circuit case can also be treated. 

lim 
j w-+oo 

lim 
jw -+00 

= 

K ~ k.J}W 
2-vJWe 

lim 
jw -+00 

= 

A( jw) 

C ( jw) 
= 

The magnitude result of the high-frequency response 

is intuitively expected. The phase-response result serves 

as a convenient check for laboratory data. 
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A number of synthesis routines have been published 

in the literature which minimize a given objective function 

by finding optimal values for the given parameters. These 

programs with proper modification could be applied to the 

distributed RC network taper identification problem if, for 

example, a program written for a general line is converted to 

the RC case. Typical programs have picked a convenient value 

for the physical length, run the program, and then scaled the 

results to the desired length. To apply such programs to the 

RC taper identification problem requires that the actual 

length be supplied before running the program. The theorems 

of Chapters II and III preclude the possibility of more than 

one global minimum; however, one must still deal with 

problems of relative minima. 

D. A Taper Identification Routine 

1. Introduction 

A practical taper identification routine is presented 

in this section. The routine minimizes an error function 

involving actual driving-point (or transfer) data and calcu

lated data by varying expansion coefficients of r(x) and c(x). 

The minimization portion of the program is implemented by a 

version of the Davidon method as modified by Fletcher and 

Powell [17]. The RC transmission-line equations are solved 

by a program written by Peirson [16]. Both programs are 

well documented in the literature; therefore, little space is 

devoted to their explanation, although a flow chart (Figure 4.1; 
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of the overall routine is given to aid explanation. Program 

results appear in tabular form and are generated by a number 

of variations on the basic identification problem. 

2. Program Explanation 

The Davidon-Fletcher-Powell algorithm is an uncon

strained minimizational technique using a modified gradient 

method. For further information on the topic, [7] or [8 ] 

may be consulted. The specific program [17], is chosen not 

only for its convergence properties, but also for its utili-

zation of difference approximations for derivatives. 

n 
J = :L: 

i=1 
Z (w i) 

Actual 
Z(wi) 

Calc 

2 

The values of Z(w.) are found by solving an ordinary 
l 

Calc 

(4 .1) 

differential equation with variable coefficients (see(1.J)). 

In general, closed form solutions do not exist for such 

equations, and thus they must be solved numerically. 

Therefore, a closed-form expression for the derivative of 

J with respect to a coefficient is not possible, and an 

approximation for the derivative is required. 

The subroutine for solving the transmission-line 

equation is given in [16]. The program solves an ordinary 

differential equation with variable coefficients by 

breaking the line into a finite number of sections and 

finding a Taylor series approximation of the chain 

parameters of each section. Then the overall chain 



matrix is simply the product of all incremental chain 

matrices. Care should be exercised that the number of 

sections and the number of terms in the Taylor series 

approximation of each section are large enough to insure 

the desired accuracy. For further details [16] should be 

consulted. 

A flow chart of the overall program is given in 

Figure 4.1. The flexibility of the program allows for its 

utilization in a variety of circuit configurations and 

tapers; however, this flexibility requires the user to be 

knowledgeable of every part of the program, rather than 

merely supplying data and observing the output. 

36 

The basic scheme of the program is to identify the 

coefficients r(x) and c(x) by driving the error expression, 

such as (4.1), to a minimum. In general expansions of 

r(x) and c(x) take these forms: 

n 
r(x) = ~ f 1 (ri,x) 

i =1 
(4.2) 

n 
c(x) = ~ f 2 (ci,x) 

i =1 
(4.J) 

The user is at liberty to choose the exact expansion which 

he feels best fits the taper being identified. Naturally, 

if the user suspects a fairly uniform taper, then a small

degree power series may suffice; however, if the taper is 

one of significant variation, then a trigonometric expansion 
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may be in order. As examples, the following expansions 

were found successful. 

n 
r(x) = ro + ~ r. (x-d/2)n 

i=1 l 
(4.4) 

n 
r(x) = ro + ~ r. cos(a.x + b. ) 

i=1 l 1 1 

Referring to (4.4), initial results were obtained with an 

approximating function taking the form of a Taylor series 

expanded about x = 0; however, less error was achieved by 

using (4.4). It should be noted that within the subroutine, 

which solves the transmission-line equation, is a subroutine 

which returns to a calling program the values of r(x) and 

c(x) evaluated at some point on the line, as well as the 

first n derivatives of r(x) and c(x) with respect to x 

evaluated at the same point. The value of n is determined 

by the degree of the Taylor series expansion of the 

incremental transition matrix. Normally the value of 

n is small: two or three. Therefore, the expansions 

chosen must be differentiable n times in the interval 

x = 0 to x = length of line; furthermore, the user must 

program the derivatives in the subroutine. Care must be 

exercised in choosing an approximating expansion. 

Referring to Figure 4.1, the identification routine 

is terminated within the Davidon-Fletcher-Powell routine 

by checking each component of two vectors: HVf(x) and 

AHVf(x), where His a positive definite matrix, Vf(x) 
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MAINLINE 
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OF OF 
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PRINT OPTIMUM VALUES 

OBJECTIVE 

FUNCTION 
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F . 4 1 Flow Chart of Taper Identification Program 1gure . • 

. . -



is the gradient of f, and A is a constant chosen by 

quadratic interpolation during each iteration to minimize 

f(x-AHVf(x)). Hvf(x) is referred to by [18] as a 

directional vector and AHVf(x) is a vector containing 

the step-size information. For this specific program, 

each component of both vectors must be less than 10-6 

before termination occurs. 

J. Results 

Program results presented in Table I are discussed 

in this section. The first column refers to the source 

of the data. Two distributed RC networks (Figure 4.2 and 

Figure 4.J) were available for testing from which actual 

laboratory data were obtained. Magnitude and phase 

39 

information was measured from analog outputs of an impedance 

bridge for one decade in frequency. The generated data was 

simulated by programming the given network response for 

various tapers over the given range. For the first case, 

the taper used to generate a short-circuit transfer 

admittance was r(x) = e 2x and c(x) = e-2x For the short

circuit current-transfer function, the taper r(x) = ex 

and c(x) = e-x was chosen. Finally, for the open-circuit 

voltage transfer function the taper was c(x) = cox25TIX 

and r(x) = 1/c(x). The second column of Table I refers to 

the type of data used. Driving-point data can be impedance 

or admittance, and the transfer data can be a voltage ratio, 

current ratio, impedance, or admittance. The program is 
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Table I. Identification Program Results 

SOURCE TYPE FREQUENCY NUMBER OF PHYSICAL 
OF OF RANGE DATA LENGTH 

COEFFICIENTS IDENTIFIED 
DATA DATA POINTS 

OPEN-CKT. r( x )= [16 .19+( x-.092) ]1o4 

MEASURED D.P. 100-1kHz 21 .184m 

IMPEDANCE c(x)=[1.51+. 162 (x-.092) ] 10-7 

OPEN-CKT. r( x )=[ J.9+.999(x-. 206) ]105 
MEASURED D.P. 100-1kHz 21 .512m 

IMPEDANCE c(x)=[J.09+1 .00(x-.206) ]10-7 

~HORT-CKT. r( x )=1.1069+1.9949( x-.05) 

GENERATED TRANSFER 16-1JOHz 10 .1 +.96752(x-.05) 2+.9991(x-.05)3 

~DMITTANC c(x) =e-2x=GIVEN 

SHORT-CKT. r( x )=ex= GIVEN 
GENERATED CURRENT 16 - 1kHz 10 .1 

TRANS FER 
c( x )=.95214-.9982 (x-.05) 

-2.5908(x- .05)2+1 .0648 (x- .05)3 

OPEN-CKT. r( x )=1/c (x ) 
GENERATED VOLTAGE 2 . 5-20Hz 10 .09 

TRANSFER c(x )=.49977+ .500J1cos (J1 .416x-.0021531 ) 



Figure 4.2. Distributed RC Network 

Fabricated at Bell Telephone Laboratory 

4 1 



Figure 4.J. Distributed RC Network 

Fabricated at University of Missouri -Rolla 
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written to accept data as an ordered pair, (Real, Imaginary). 

The following three columns contain information concerning 

the frequency range tested, the number of points sampled, 

and the physical length of the network. The frequency 

range of the data was chosen such that the real part of 

the data was within an order of magnitude of the imaginary 

part, with data points spaced logrithmically. All data 

was generated by use of the [4] parameters given in 

[1,p.120]. The last column displays the type of expansion 

as well as the optimized coefficients. The program can 

be run in several modes depending on the identification 

requirement. Coefficients for both r(x) and c(x) can be 

found, r(x) can be given and coefficient for c(x) can be 

found, or c(x) can be given and coefficients of r(x) can 

be found. 

It should be noted that in the measured data the r(x)c(x) 

product was not constrained to be constant. The reason for 

relaxing this constraint was to allow for a more accurate 

model. Since all of the hypotheses of the sufficiency 

Theorem 2.1 were not satisfied, a single global minimum could 

not necessarily be expected; therefore, several starting values 

were utilized to insure the given results represented the 

physical network. 

The optimum coefficients for r(x) in the short-circuit 

admittance transfer case are given in Table I. The percentage 

deviation from the desired r{x), shown in Figure 4.4, is 

always within +1.33 per cent of the desired r(x). The short-
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circuit current-transfer case provides a similar result. 

The percentage deviation from the desired c(x), shown in 

Figure 4.5, is always within +.9 per cent of the desired 

c (x). The slightly larger deviation of the r(x) function 

as compared to the c(x) function is attributed to the larger 

variation of r(x) = e 2x as compared to c(x) = e-x over the 

distance 0 to 0.1. A polynomial was chosen for the tapers 

for investigative reasons. Naturally, the deviation can be 

reduced by choosing an approximating function of the same 

form as the original taper as shown in the open-circuit 

voltage-transfer case. 

For the open- circuit voltage-transfer case, the 

generated data was that of c(x) = cos2 (5Tix) and 

r(x) = 1/c(x). The approximating function chosen was 

c(x) = c 1 + c 2 cos(c3x + c4 ), r(x) = 1/c(x). Note that 

this function is capable of exactly reproducing the initial 

taper. Two sets of data were used to examine the effects 

of data accuracy on the routine. The initial se t was data 

of seven-digit accuracy. The second set of data was formed 

by rounding the first set of data to two digits. The exact 

c(x) and the two optimum functions are given below. 

c(x) = 0.5 + 0.5 cos(10Tix) 

Generated 

(4.6) 

c(x) = 0.49977 + 0.50031 cos(31.416x - .0021531 ) (4. 7 ) 

7 Digit 

c(x) = 0.51058 + 0.49952 cos(31.422x + .057268) (4.8) 

2 Digit 
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Figure 4. 8 . Frequency Responses of Three Tapers Whose 

Capacitances are (4. 6 ) - (4. 8 ) 



The results of these two examples are displayed in Figure 

4.6 and Figure 4.?. As can be seen from Figure 4.6, by 

increasing the data accuracy from two digits to seven 

digits, the maximum percentage deviation is reduced from 

12 per cent to .8 per cent and the maximum actual error is 

reduced from . 018 to .0089. A significant change occurred 

in the objective function errors. 

As shown in Figure 4.?, by increasing data accuracy 

by 5 digits, the objective function error was reduced by 

approximately nine orders of magnitude. Figure 4.8 displays 

the conventional frequency characteristic of tapers generated 

by c(x)'s of (4.6) - (4.8). The three tapers have frequency 

responses which are coincident; this is consistent with the 

fact that frequency response is relatively insensitive to 

small variations in the taper [8,p.11]. Thus an increase in 

the accuracy of the data has produced a significant reduction 

in the per-unit capacitance. It is the conclusion of this 

section that, although frequency responses are relatively 

taper insensitive, if the data accuracy is sufficient a 

small taper variation can be detected. 

Data scaling is required in most cases. Good results 

were obtained by scaling magnitudes to the range of one 

to ten and scaling the frequencies to the same range. All 

runs were made on an IBM 370-168 machine with compile and 

execution time running from 2.06 minutes to J.8 minutes 

depending on the number of variables and starting values. 
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4. Conclusion 

The purpose of the taper identification routine 

presented is to show the feasibility of such a method, 

rather than presenting a routine which optimally identifies 

any type of taper. 

Although the Davidon-Fletcher-Powell routine was 

used as the search routine, similar results were obtained 

using a Hook-Jeeves pattern search routine in the small

number-of-variables cases. The Hook-Jeeves method becomes 

increasingly inefficient compared to the Davidon-Fletcher

Powell as the number of variables increases. 

Although the routine is written for taper identification 

of distributed RC networks, the program is easily modified 

to handle any general RLGC line or any subset thereof. 



51 

CHAPTER V: CONCLUSIONS 

A. Introduction 

This concluding chapter contains information on how 

work in the preceding chapters may be extended to cover more 

general distributed networks; also included is a summary of 

the dissertation, as well as some promising areas for 

further research. More specifically, the work done on RC 

distributed networks is shown to be applicable to the GL and 

LC distributed lines also. Suggestions for further research 

include work in the areas of two-dimensional RC taper identi

fication and the general RLGC distributed networks, as well 

as more general transform methods for the treatment of 

distributed networks. 

B. Application to Analogous Two-element Distributed Networks 

The resul t s of t he corollaries and theorems of 

previous chapters can also be applied to analogous two

element distributed networks with only minor modifications 

in the hyp o t heses and proofs. For example, consider the 

series inductance-shunt conductance case where the 

incremental model is given in Figure 5.1. 

A secon d - order Laplace t ransformed equation r elating 

t he transformed voltage to the distance variable is given 

by 
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l(O)t.x l(d)t.x 

• • • • 

+ 

g( 0 )t, X V(x,s) g(x)6x g ( d )t, X 

• • • • • 
X = 0 X X = d 

Figure 5.1. Incremental Model of an L-G line 
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1 dl(x) dV(x,s) 
- sl(x)g(x)V(x,s) = 0 (5.1) 

1(x) dx dx 

Note the duality between (5.1) and (1.4b); the voltage 

is analogous to current, g(x) analogous to r(x), and l( x ) 

analogous to c(x). This duality of lines implies that 

impedances of RC lines are of the same form as the 

admittances of LG lines. The reverse statement is also true. 

The networks do not possess identical chain parameters, 

because the critical frequencies nearest the origin differ; 

however, the forms are the same as established by duality. 

The duality that exists between the RC and GL lines 

is the following: 

where "----" is interpreted as "is the dual of". 

The series-inductance shunt-capacitance distributed 

network may be treated by using appropriate transformations 

suggested by [9,p.164 ] to reduce the equation to an RC 

case. The transformations are 



JP = s 

l(x,p) = si(x,s) 

Substitutions of (5.2) and (5.J) into the defining LC 

equations 

dV(x,s) 
= - sl(x)I(x,s) 

dx 

di(x,s) 
= - sc(x)V(x,s) 

dx 
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(5.2) 

(5.J) 

(5.4) 

(5.5 ) 

yields two first-order differential equations of the form 

(1.2), the RC case. 

Thus it has been shown that the governing equations of 

GL and LC distributed networks can be transformed to 

equations of the same form as the RC case, which has been 

investigated in this dissertation. Therefore, corollaries 

and theorems of Chapter II and III can be applied with only 

slight modifications to the hypotheses. 

C. Summary 

The purpose of this dissertation is to study the 

conditions under which RC distributed networks can be 

identified as well as to provide a practical means by 

which these networks can be identified. Taper identification 
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is defined in terms of the knowledge of certain coeffic i ent s 

in the governing differential equations. Sufficiency 

conditions for taper identification are examined and found 

to be knowledge of Zdp(s), r(x)c(x) = K, and d (physical 

length). These results are generalized to the less 

restrictive sufficiency conditions: knowledge of RT, CT, 

r(x)c(x) = K, d, and one of the chain parameters. The 

actual identification is done with either a Hooke-Jeeves 

direct-search algorithm or a Fletcher-Powell modified 

gradient algorithm. Although a major portion of this 

dissertation is devoted to RC distributed networks, the 

previous section shows that the results of the paper also 

apply to the LG and LC cases as well. 

D. Suggestions for Further Research 

1. Two-Dimensional Taper Identification 

If two-dimensional variations in r and c are allowed, 

then the defining equation relating voltage to the two

dimensional space-coordinate system in the time domain is 

+ 
1 ar av av 

(5.6) + = rc 
r ax ax ay ay 

where v = v(x,y,t), r = r( x ,y), and c = c(x,y) [ 1,p.242 ] . 
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An equation such as (5.6) may be required when studying 

networks where the problem can not be cast into one of the 

four coordinate systems suggested by [1,p.247] which allows 

for a solution by separation of variables and one-dimensional 

current flow. Another case where an equation of the form of 

(5.6) may be required is in networks which have an abrupt 

taper transition without the utilization of an equipotential 

strip. In such cases one-dimensional current flow is no 

longer valid. A physical motivation for studying such an 

equation is to obtain a more accurate model of the network; 

or, from a fabrication point of view, predict more closely 

the device physically constructed. 

The identification problem remains the same as in the 

one-dimensional case, that of identifying the taper. The 

solution of the two-dimensional identification problem 

requires more than modification of work presented in this 

dissertation. Beyond the modification of definition of 

taper, impedance, etc. for two-dimensional utilization, the 

question of the uniqueness of the equivalent of the 

C = u (R) function must be addressed. Little research has 

been done in this area; however, a good starting point for 

such work would be [12,pp.J9-50]. The problem treated 

there is not that of (5.6), but of the heat equation. 
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2. Taper Identification of a General RLGC Distributed 

Network 

The motivation for the identification problem associated 

with the general RLGC distributed network again lies in the 

modeling process. [4] addressed the problem of synthesis 

of a general line but did not consider the uniqueness 

properties required in an identification problem. 

The uniqueness property associated with a general RLGC 

line is closely related to the inverse Sturm-Liouville 

problem. The following is the defining equation for a 

general RLGC distributed network in the transformed domain 

[1,p.28]: 

1 d 
[r(x) + sl(x)] 

dV(x,s) 

r(x) + sl(x) dx dx 

[g(x) + sc(x)][r(x) + sl(x)] V(x,s) = 0 (5. 7 ) 

(5.7) can be simplified using the following transformation 

X 
z = J[r(y) + sl(y)]dy (5 . 8 ) 

0 

X 
y = J[g(y) + sc(y) ] dy ( 5 . 9 ) 

0 
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(5,8) and (5.9) transform (5.7) into 

dY 
v = 0 (5.10) dZ 

where 

dY g(x) + sc(x) 
= (5.11) 

dZ r(x) + sl(x) 

[1J,pp.424-4J6] and [14] have considered the problem 

(5.12a) 

with boundary conditions 

y(o) - hy(o) = 0 and 
dy(1) d 

dx dx 
( 5 . 12b) 

where xi s a real variable and g(x), h, and h1 c an be 

complex. The set of values of A for which ( 5 .12) has a 

nontrival solution is called the spectrum of the operator 
d2y 

L[y ] = - q(x)y. The inverse Sturm-Liouville problem 
dx 2 

i s that of finding L[y] g iven two spectra corresponding to 

different boundary conditions. From the identification 

viewpoint, this requires determining q(x) from these 
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spectra. For the RC case the work by [14] provides for the 

uniqueness of a'(R) in the following equation: 

sa' (R )V = 0 (5 . 13 ) 

For the general RLGC line, the transformed equation is 

(5.10). The major difference between (5 .1 0) and (5. 13 ) is 

that the independent variable is a complex variable. Thus 

the work to be done in this area is to extend the work by 

[14] to complex differential equations of a complex variable. 

3· More General Transform Techniques 

The defining partial differential equations for a 

distributed RC line g iven in Chapter 1 are functions of 

two variables, x and t. When Laplace-transformed with 

respect to t, these equations become ordinary differential 

equations in x . If the coefficients r(x) and c(x) are 

specified, then , in general , the equations can be solved 

numerically [15], [16], and for a small class of tapers, 

closed-form solutions are possible. Ano ther approach, if 

r ( x ) and c(x) are specified, is to take a second Laplace 

transform with respect to x . The second transform may or 

may not yield an a l gebraic equation . The work to be done in 

this area would be to find another transform which would 

convert the ordinary differential equation in x into an 

algebraic equation. Although this might not be possible 
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for a general taper, series expansions, such as Taylor or 

Fourier, for r(x) and c(x) might be fruitful. Associated 

with this problem is the inverse transform. Obviously, the 

inverse transform must exist and be tractable for the method 

to succeed. 
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APPENDIX A: PROOF OF THE DIFFERENTIABILITY OF (2.J) AND (2.4) 

Let r 1 Cx1 ) and r 2 Cx2 ) be positive continuous function, 

and let 

a. = (A .1) 

The inverse functions associated with (A.l) are guaranteed 

to exist and are defined as follows: 

= (A.2) 

= (A.J) 

By differentiating (A.2) and (A.J) with respect to a., 

the following may be formed: 

/
dx 1 

da. 
= dx 2/dx1 (A.4) 

(A.4) exists because (A.2) and (A.J) are differentiable and 

do not take on values of 0 or m . It should be noted that 

if r(x) is sectionally continuous (A.4) does not necessarily 

exist. In a practical case where the taper is not 

continuous, such as a pair of cascaded lines, the 

connection made between the lines is an equipotential 



conductive strip. An e x ternal connection is easily made 

to the strip so that the cascaded lines may be treated as 

two separate lines. Any loading problems may be 

surmounted by a short circuit. 
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APPENDI X B: INTERCHANGE OF OPERATIONS IN EQUATION (J.15) 

Uniform convergence of the differentiated sum allows 

the interchange of the operation of differentiation and 

summation. The approach is to apply the Weierstrass M-test 

to (3.15). 

Rewriting (3.15) yields 

o(RTCT) 1 oo 1 
= L: (B. 1 ) 

as . s. i = 1 a. A'{-a .)B1 (-a. )( a .- S J.) 
J J l l l l 

Consider the kth term of the sum (B.1) 

1 
< ------------------------ = Nk 

a kA'(-ak)B1 (-a k)( a k-a j+1 ) 

1 

for k > j + 1. 

Rewriting the kth term of (3.7) yields 

1 
= 

The a have no upper bound. 
k 

(B.2) 

{B.3) 



Invoking the limit form of the comparison test to (B.2) 

and (B.J) yields 

lim = lim 

k -+ 00 k -+ 00 

ak- a . 1 .J+ = 1 

Thus LNk converges; therefore, (B.1) converges uniformly 

by the Weierstrass M-test. 
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APPENDIX C: PROOF OF EQUATION (J.18) 

The purpose of this appendix is to show that (J.17) 

can be expanded in the partial-fraction expansion shown 

in (J.18) by use of the Mittag- Leffler theorem. The 

approach is to prove that (J.17) is uniformly bounded on 

a set of contours where no contour passes through a pole 

of (J.17). 

Let the contours be the circles, en' such that 
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= (C. 1 ) 

where ~ is a zero of (J.17) and 0 < e < 2 TI · 
n 

It is sufficient to show that 

( 1 + s ~~. ) I n 1 = 
( 1 + s / a. . ) n 1 

where M is independent of n. 

a . 
l 

~ . 
l 

(s +~.)~ n 1 < M 
(s + a. .) 

n 1 

(C.2) 

The magnitude of each factor will now be shown to be 

less than one. Consider the following factor: 

(C.J) 



By expanding s using Euler' s relationship and n 
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substituting into (C.J), the extrema o£ (C.J) can be £ound 

b y di££erentiation with respect to e. The extrema occur 

on the real axis, minima at e = ~ and maxima at 8 = 0. 

Thus it is su££icient to consider (C.J) at its maximum. 

Evaluating (C .J ) at 8 = 0 yields 

It is easily shown that 

there£ore 

a. . 
l 

13 + 13. n 1 

13. 13 + a. 
1 n 1 

a . 
l 

13 . 
l 

< 1 

(C.4) 

(C. 5 ) 

thus satis£ying the hypothesis o£ the Mittag-Le£fler 

theorem [11,p . 159] and justi fyi n g the £allowing expansion: 

(1 + s/13i) co 1 - a1J (C. 6 ) CD 
= 1 + L: b.[ n 

i =1 l s + a . 
i =1 ( 1 + s/a . ) l l 



where 

b. == 
l 

B1 ( - a i) 

A' (-a . ) 
l 

If the infinite sums 

CD 

2::: 
i =1 

b. 
l 

s + a . 
l 

converge then (C.6) can 
(X) 

bounded; therefore, 2::: 
i =1 

be 
b. 

l 

a . 
l 

CD 

and 2::: 
i =1 

b. 
l 

a . 
l 

simplified. The b.'s are 
l 

converges and f urther, 

(X) 

.2::: 
b· l conver ges by the comparison test. Thu s 

1 = 1 s + a. 
l 

(C.6) simplifies to 

(X) 

n 
i =1 

( 1 + s/s . ) 
l 

( 1 + s/a . ) 
l 

= 
00 

2::: 
b. 

l 

i =1 s+ a . 
l 

= 
00 

2::: 
i = 1 A' (-a . ) ( s + a . ) 

l l 
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(C.?) 



APPENDIX D: JUSTIFICATION OF A(s) = A 
0 

By (J.16) and (J.1 8 ) 

00 1 
~ = A(s) 

00 

2:: 
i =1 a .A'(-a . )B1 {-a. )(s+ a .) 

l l l l 
i 1 A ' ( - a . ) ( s + a. ) 

l l 

where A( s ) is an enti r e f unc t i on wi t h no zeros in the 
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(D. 1 ) 

finite complex plane. Comparing residues of lik e poles of 

(D.1) yields 

1 

a .B1 (-a .) 
l l 

Solving for A( s ) yie l ds 

A(s) = 

therefore 

A( s ) = 

1 

2 a .B1 (-a. ) 
l l 

A 
0 

= 
1 

a . B 12 ( - a . ) 
l l 

i = 1,2 .... (D. 2 ) 

(D.J) 
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