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ABSTRACT 

This work represents a detailed study of the optimization of this process: foraging 

within a single, finite food patch for a limited amount of time. The work is an example of 

the computational algorithms of statistical physics being applied to the ecological field of 

foraging behavior. The analysis begins with an examination of the probability 

distributions observed in the movement parameters of the zooplankton, Daphnia. While 

foraging, these small aquatic organisms stochastically choose movement parameters with 

particular levels of variation, or noise, which are similar across several species. Here, 

related simulations consistently show that these noise levels may be adjusted to maximize 

foraging efficiency, regardless of the physical constraints imposed in the models. The 

results are presented as an example of natural stochastic resonance, in which some 

function of noise (in this case, the variability in parameter choices), when adapted to a 

biological process (e.g., the gathering of food), can optimize that process. The architect of 

this optimization is suggested to be natural selection, a hypothesis further explored with a 

novel evolutionary algorithm which transforms uniform and uncorrelated parameter 

distributions into "optimal" forms over thousands of generations of competition amongst 

foraging agents. The results of the algorithm support the implication that the noise levels 

are evolved quantities, and also reinforce the hypothesis that stochastic resonance may 

have a role in their evolution. And lastly, the evolutionary algorithm was extended to 

larger aquatic organisms feeding in patches through the addition of the Reynolds number 

as a physical constraint. The results of the modified algorithm clearly differentiate 

between the trajectories predicted for smaller and larger animals, and match very well 

with the experimental data reported here for both the Daphnia, and also for a larger fish 

species, the paddlefish. Since both organisms filter-feed inside finite patches of food, 

albeit on different scales, the results clearly show the degree to which the physical 

constraints imposed upon an animal can dictate the evolution of their behavior. 
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1. INTRODUCTION 

"It is often said that physicists oversimplify biology. But it must be pointed 

out that physicists (and engineers) also oversimplify physics." 

(Nunez & Srinivasan 2006) 

Computational models drawing on the concepts of statistical physics and 

nonlinear dynamics have now been applied to many fields of research, particularly the 

biosciences. Biological systems are among the most complex systems in nature; large 

numbers of variables, abundant nonlinearities, and, in many cases, a less-than-complete 

understanding of all of the components in their makeup enforce the idea that these 

systems can be extremely difficult to characterize digitally. Models, on the other hand, 

are most beneficial when they are simple. Simple models incorporating even a few key 

details of a complex system may prove to be especially insightful and informative. Such 

is the motivation here. 

1.1. FORAGING THEORY 

The work which follows originates from the ecological and biophysical field of 

foraging theory, warranting a brief introduction to this field. There have been many full­

length texts written on the subject, most famously Stephens and Krebs (1986) and Kamil 

eta/. (1987), which the reader may refer to for more discussion and detail. Foraging 

theory, often called optimal foraging theory, explores the decisions that animals make 

when searching for and utilizing food sources. The type of environment which contains 

the food is usually accounted for, and a typical assumption made by theorists is that, to 

increase their chances of survival, animals must attempt to maximize their average rate of 

energy intake. One can never directly ask an animal about its personal approach to 

gathering food or about the reasons for which it makes specific decisions, but hypotheses 

about possible answers to these questions are abundant and relevant, and sometimes 

testable through the numerical analysis of computational foraging models and the 

comparison of these results to experimental observations. 



1.2. A BASIC FORAGING MODEL 

A basic foraging model is designed to quantitatively explain a specific decision 

that a forager must make while gathering food. As mentioned above, it is assumed that 

foragers attempt to maximize their energy intake per unit time. As a result, decisions 

made by foragers are most often evaluated in terms of the amounts of energy gained 

and/or lost, and on the advantage or disadvantage that specific decisions may impart. 
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Basic models run sequentially according to rules imposed on the simulated 

foragers. These rules are called constraints, and are typically classified as either intrinsic 

or extrinsic. An intrinsic constraint could represent, for instance, a physical limitation of 

the forager itself, such as the distance it can travel in a single step. An intrinsic constraint 

could also be a tolerance level of a fitness-related need, such as a particular diet 

requirement (Pulliam 1975), or a minimum number of hours of sleep (Rechtschaffen et 

al. 1989). Extrinsic constraints, on the other hand, are rules dictated by the virtual 

environment in which the animal operates. For example, in a certain environment, there 

may be an abundance of food, or, alternatively, a lack thereof In the basic model, 

foragers are expected to know all ofthe constraints, and abide by them accordingly. 

It is also generally assumed in the basic model that the total time that animals 

spend foraging is divided between the time spent searching for prey and the time spent 

pursuing, capturing, and eating this prey. MacArthur and Pianka ( 1966) called these two 

time divisions Ts (searching) and TP (pursuing and capturing). They are also given credit 

for conceiving of and distinguishing between the two most basic problems studied by 

foraging theorists: first, whether a forager attacks or ignores a particular item of prey that 

it has encountered (prey model), and, secondly, how long should a forager remain inside 

a patch that it has encountered (patch model). Their original quantitative study had the 

goal of determining the optimal number of prey species types to include in a predator's 

diet. In other words, they investigated the decision of a forager to hunt a particular 

number of prey species, and ignore all other possible prey species. The different prey 

species were assumed to be equally abundant, but differed in the pursuit times, TP, 

necessary for capture. The species were then ranked from the lowest to highest pursuit 

times (easiest-to-capture to hardest-to-capture), and then added to the diet one by one in 

this order. 
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In the prey model, by adding more types of prey to the predator's diet, the search 

time is minimized since the predator will more often run across something eligible to be 

eaten. However, if the diet is expanded to include too many types of prey, then too much 

foraging time will be lost attempting to capture and eat the most elusive prey, and the 

overall energy consumption rate will diminish. In the patch model, the prey is assumed to 

be contained in localized patches, but still must be pursued and captured within the patch. 

So, again, increasing the number of prey types in the diet will increase the number of 

patches eligible to be hunted, and therefore decrease the time spent searching for food 

(traveling between patches). But, just as in the prey model, as more elusive prey are 

added to the diet, extra time must be spent (or wasted) pursuing the harder-to-capture 

prey types. 

1.3. THE LAW OF NATURAL SELECTION 

Even under the assumption that animals do indeed attempt to maximize energy 

consumption, MacArthur and Pianka's work does beg some questions, such as, "How 

would any typical animal know when to limit the number of types of prey species that it 

decides to pursue?" 

An animal's food consumption, and therefore its energy consumption, is 

important to the animal since its fitness depends upon it. Fitness may be viewed as the 

"health" of an organism, or, as in evolutionary biology, as the probability that an 

organism will be able to survive in a particular environment. Organisms with higher 

fitness levels are able to survive harsher conditions, and those that survive end up being 

those that reproduce. Each production of offspring passes along this healthy organism's 

DNA, allowing inheritance of the traits that it possesses, and ensuring that these traits, the 

traits of a fit organism, will become more common over time. This is the basis of the 150-

year-old theory of natural selection. 

The question of an animal's management of its prey species is now more easily 

answered in the context of natural selection, where one may reason that an animal may 

not necessarily know whether or not it is pursuing too many elusive prey items, but if 

those animals that avoid certain prey have better health, then they will be more likely able 

to survive in that particular environment. Optimal foraging theorists, therefore, simply 
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assume that many cycles of this selection of efficient foragers has taken or will take place 

when they assume that the most optimal foraging strategy will be the one which is the 

most efficient. 

1.4. SUMMARY 

MacArthur and Pianka's model does not speculate as to exactly how many types 

of prey should be present in the diet of a typical forager; rather, they give meaningful 

predictions about how a particular animal's diet might change if, for instance, 

environmental conditions altered the availabilities of prey (for a recent example, see 

Clavero et al. 2003 ). But MacArthur and Pianka also seem very reluctant to rely on the 

assumptions which led to the conclusions of their own work. For instance, they 

subjectively mention in their paper that "such 'optimum theories' are hypotheses for 

testing rather than anything certain," and that, "hopefully, natural selection will often 

have achieved such optimal allocation of time and energy expenditures." Perhaps they 

were tentative because their results lacked the support of even a single example of 

experimental or observational data. 

Stephens and Krebs (1986) pointedly wrote that, "Only the behavior and ecology 

of real animals can determine the ultimate value of foraging models." It is with this very 

understanding that the following work has been performed. The work is predominately 

theoretical, but it stands upon direct relationships with recorded observations of real 

animals, some of which were made during the course of this study. Section 2 introduces a 

foraging model designed to analyze the decisions made by the real zooplankton Daphnia 

regarding the movement parameters they use to traverse their food patches. Data 

regarding the decisions that they commonly make - and which provide success - are 

presented, and the factors which may have rewarded these decisions, such as stochastic 

resonance, are evaluated. Section 3 discusses the development and use of a novel genetic 

algorithm to model the evolution of Daphnia foraging trajectories through the 

competition of feeding agents. Winners are chosen in each generation based on their 

ability to maximize their energy intake, and histograms describing successful movement 

parameter decisions are passed on from one generation to the next as a form of 

inheritance. In Section 4, an extrinsic physical constraint is added to the evolution and 
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feeding models in order to extend their application beyond tiny zooplankton to larger 

aquatic filter-feeding species, such as the paddlefish. The modified model predicts vastly 

different optimal trajectories for larger fish, and the results are compared to the observed 

trajectories of living captive paddlefish. Section 5 offers perspective on the possibility of 

inherited foraging behavior, and finally, Appendices A (Dees et al. 2008a), B (Dees et al. 

2008b ), and C each contain a complete manuscript offering further detail and important 

results from the material presented in Sections 2, 3, and 4 respectively. 



2. DAPHNIA PATCH EXPLOITATION 

2.1. MOVEMENT PARAMETER DISTRIBUTIONS 

Daphnia, commonly called water fleas, are small, bulbous aquatic organisms on 

the order of2.5 to 5 mm in length (see Figure 2.1). They move about much differently 

from fish, which undulate their body and tail. Instead, Daphnia are "rowers". They 

intermittently stroke a set of large second antennae as if the antennae were oars, pushing 

their bodies forward for a small distance, and then pausing as they bring the antennae 

forward before stroking again (Pennak 1953). Changing directions is presumably the 

result of an unevenly-powered stroke between the two antennae, resulting in jagged 

trajectories with sharp changes in direction, reminiscent of a traditional random walk 

(Brown 1828, Keiyu eta!. 1993, Komin eta!. 2004, Uttieri eta!. 2004, Schimansky­

Geier eta!. 2005, Haeggqwist eta!. 2008). To study this motion, researchers have 

reduced it to precise physical parameters. For example, each stroke resembles a small 

"hop" which covers a particular distance (a "hop length"), the pause times between hops 

are measured in seconds, and changes in direction can be described as turns through 

angles ("turning angles"). 

Figure 2.1. Photograph of a Daphnia magna 1 

1 This photograph was taken by Dr. Lon Wilkens of the UMSL Department of Biology. 
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The swimming trajectories used by Daphnia are critical to the fitness of the 

organisms, mainly because Daphnia are filter-feeders. Both large and small filter-feeders 

collect items of prey by straining the medium that surrounds them as it flows through 

some specialized cavity in their bodies. Most fish species which are filter-feeders swim 

with their mouths open, allowing water to flow inside. This water then typically leaves 

their body through the gills, where appendages called gill rakers separate and secure any 

food particles that are present. Daphnia filter-feed using a slightly different method; they 

have bristly thoracic legs which flutter inside the outer shell of their underbelly, creating 

a current of water through this carapace. If the Daphnia happens to be located in patches 

of phytoplankton or algae, particles of these organic substances will be removed from the 

feeding current by the bristly legs (Pennak 1953). 

When Daphnia are observed feeding, they are rowing constantly. There are cases 

in which Daphnia react in predictable ways to odors of food (van Gool & Ringelberg 

1996) and other stimuli (see Appendix A- Discussion), but in general, their small-scale 

motion during foraging and otherwise is very stochastic. To analyze a particular 

individual stroke and try to draw a purposeful conclusion based on its parameters would 

be essentially impossible. However, over a longer period of time, a full trajectory will be 

realized, and many hop lengths, turning angles, and pause times may be measured and 

interpreted statistically. By creating a histogram of these measurements, for example, a 

Daphnia's general preference for particular movement parameters during foraging may 

be revealed. This is precisely the method by which Daphnia were studied at the 

University of Missouri at Saint Louis and at the Great Lakes WATER Institute in 

Milwaukee, Wisconsin. Histograms of turning angles for six species of Daphnia were 

reported by Garcia et a/. (2007), and histograms of hop lengths and pause times for two 

species of Daphnia were reported in Appendix A - Experimental results. 

The results of the turning angle data were illuminating and definitive. As 

mentioned above, six species of Daphnia were studied, along with two more groups, the 

juveniles of D. magna and D. pulex. All but one species exhibited exponential 

distributions (histograms) of turning angles. Even more remarkably, the standard 

deviations, a, of the distributions were very similar across 8 sets of Daphnia, with the 

average value aave = 1.06 ± 0.5 radians (Garcia eta/. 2007). This result includes, 
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however, a statistical outlier, the value of a for D. lumholtzi. This species of Daphnia 

sometimes has spikes ("spines") protruding directly out of its head, a feature not found in 

the other species of Daphnia. For D. lumholtzi (with spines) a was 2.3 ± 0.4 radians; 

removing this value from the group average results in O"ave = 0.89 ± 0.2 radians, a much 

more compact range. Although variations in pause times are somewhat limited by the 

propensity of the Daphnia to sink if it does not stroke, the standard deviations of the 

pause time distributions, r, were also very similar across species. r for D. pulex was 0.26 

± 0.04 s, and r for D. magna was 0.35 ± 0.06 s (see Appendix A- Experimental results). 

The similarities in the values of u and r across different species of Daphnia seem 

to indicate that these animals prefer to have certain levels of variability, jitter, or noise in 

their choices of movement parameters. (Note that hop lengths are proportional to, and 

most likely physically constrained by, the size of the animal; D. magna are typically 

about twice as large as D. pulex, and have a typical hop length which is 2.3 7 times 

longer, according to the results of Appendix A.) This raises two questions: 1) Since the 

noise levels in the movement parameter distributions are consistent across species, did 

these noise levels enable the Daphnia that utilized them to have "superior" trajectories 

which resulted in consistently higher rates of food consumption, and therefore higher 

fitness levels? 2) Did these noise levels provide advantages which allowed certain 

Daphnia to survive at a higher rate and perpetuate their tendencies in parameter choices 

to future generations of Daphnia through natural selection? These questions will be 

addressed in the text which follows, and in Section 3, respectively. 

2.2. THE ROLE OF STOCHASTIC RESONANCE 

The theory of Stochastic Resonance (SR) was originally proposed theoretically by 

Benzi et a!. ( 1981 ), and followed shortly thereafter with observations detailing the 

theory's possible role in the 100,000 year periodicity of Earth's recurring ice ages (Benzi 

eta/. 1982, Nicolis 1982). SR is most simply envisioned as the addition of some function 

of noise to a signal that is very weak, and therefore outside the range of its intended 

detector. The signal-to-noise ratio (SNR) for a signal which cannot be detected would 

obviously be vanishingly small. This situation is demonstrated in Figure 2.2a, where a 0.5 

kHz signal is shown oscillating directly below a detection threshold (solid line). Although 
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quantities of noise present in transmitted signals (or mechanical systems) have been 

traditionally thought of as somewhat annoying imperfections, the reader will see that 

when Gaussian noise is added to this signal (Figure 2.2b ), there are times when the 

signal-plus-noise rises above the threshold and can be detected. These detections are 

symbolized by the pulses shown in Figure 2.2c. Detections occur most often when the 

original sinusoid is at its peak, and therefore the dominant frequency of the pulses 

matches the frequency of the original signal (see the peak in the power spectrum at 0.5 

kHz in Figure 2.2d). Measuring the SNR of the new, noisy signal will give a much better 

result than measuring it using the original clean -but subthreshold- signal. In this 

manner, noise has improved the usefulness of the otherwise undetectable signal. 

Threshold 
a 

Signal I< 5ms >J 

c 

_.._ 
Detections 

f' 10·2 ..--------------------::-~ 

~>~· ~1 f\1 d 
·f 1<>-" ~----'-----l ___ _ 
Q) E Noise intensity 

"C 10·5 
~ 

! 1()-6 

~ 10·7._ ___ ~----._ ___ ~------~ 
~ 0.0 0.5 1.0 

Frequency (kHz) 

1.5 2.0 

Figure 2.2. Illustration of Stochastic Resonance2 

2 Adapted by permission from Macmillan Publishers Ltd: Nature, Weisenfeld & Moss, copyright 1995. 
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Note in Figure 2.2 that if the noise added to the original signal had a very small 

amplitude, then the signal-plus-noise might still never rise above the detection threshold. 

And, alternatively, if the intensity of the added noise were too high, then detections will 

be made quite often at places other than the peaks in the original signal, thus diminishing 

the SNR through over-detection. There is obviously an intermediate noise intensity which 

provides the best possible SNR, and this is illustrated by the plot of SNR versus noise 

intensity in the inset of Figure 2.2d. The noise intensity which causes a peak in the SNR 

is the level of noise which optimizes the detection process for this system. 

SR has now been identified in a wide range of physical systems (Gammaitoni et 

al. 1998), including many biological adaptations (Moss et al. 2004). Studies of animal 

sensory systems alone, for instance, have determined that specific levels of external noise 

can optimize the motion-detecting abilities of crayfish (Douglass et a!. 1993 ), the 

sensitivity of the cochlea in leopard frogs (Jaramillo & Wiesenfeld 1998), and the range 

at which the electrosensitive rostrum of the paddlefish can detect the electric fields 

generated by its favorite prey, the Daphnia (Russell et al. 1999). In a similar way, it is 

legitimate to ponder the hypothesis that specific levels of noise in the choices of 

movement parameters by Daphnia might be advantageous during foraging, possibly 

optimizing the amount of food that the organisms gather. 

2.3. DAPHNIA FORAGING MODEL 

To test this hypothesis, a computational model of simulated foraging agents was 

developed in Garcia et al. (2007), and then redesigned and further explored in Appendix 

A. The complete details ofthe model are discussed in the Simulation methods section of 

Appendix A, but a brief description is presented here. Since Daphnia feed in patch-like 

accumulations of phytoplankton and photosynthetic algae (Lampert 1989; Franks & Jaffe 

2001 ), the concept of the foraging model originates from the patch model introduced in 

Section 1.2 above. These patches of phytoplankton and algae form during the daytime 

hours at the surface of the water while Daphnia remain lower in the water column. At 

night, however, Daphnia rise to the surface in a process called die! vertical migration 

(Ringelberg 1993) and traverse these patches, feeding through the night. So, the extrinsic 

constraints in the model are that Daphnia feed on patchy food typically residing at the 



surface of the water, and they do this mostly at night. Thus, in the model, the motion of 

the agents is realized in two dimensions, the agents feed for fixed lengths of time (or, 

equivalently, over fixed trajectory lengths), and the feeding area consists of a circular 

grid of uniformly distributed food particles, symbolizing a round patch. 

The movement parameters used by real Daphnia, as discussed above, form the 

basis for defining the modeled agents' trajectories, as they represent the internal 

constraints of the modeled agents' movements. Turning angles, hop lengths, and pause 

times are chosen at random for each "hop" executed by the foraging agents from 

representative distributions. These distributions are inspired by data collected from the 

real animals (Garcia eta/. 2007; Appendix A- Experimental results). They have pre­

defined shapes and therefore precise levels of noise, leading to specific levels of 

variability in the random choices of movement parameters made by the foraging agents. 

11 

For each trial, ten modeled agents begin to forage simultaneously in the food 

patch, and each agent "consumes" every piece of food that it crosses during the 

completion of its trajectory. (During each hop, an agent crosses many, many food 

particles- the scale of the grid is much smaller than the length of a hop in all cases.) 

After the time has expired, or after the full length of the trajectory has been reached, for 

all agents, the total amount of food gathered from the patch is tabulated. This amount is 

plotted on a graph against the noise level of the turning angle or hop length distribution in 

question. After many noise levels for a particular parameter distribution have been tested 

in this manner, the result is a complete curve of food gathered versus noise level, such as 

the example shown in Figure 2.3. If there is a specific noise level that provided the 

greatest advantage to the foraging agents during the trials of the model, then there should 

be a peak in the amount of food gathered at this noise level on the plot, such as the one 

seen in Figure 2.3. This noise level is therefore the "preferred" noise level, and the 

trajectories realized using parameters picked from distributions defined by this noise 

level might offer fitness advantages to those organisms using them. 
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There are just a few aspects of the Daphnia foraging model which are more 

complex than the rules of the basic foraging model introduced in Section 1.2. For 

instance, as the foraging agents feed, the food particles "consumed" are removed from 

the food patch and no longer available to be eaten by that or any other agent. This 

invokes an extrinsic constraint known as destructive foraging (Viswanathan et al. 1999). 

In destructive foraging, food sources are destroyed once they are used; in non-destructive 

foraging, the food sources replenish immediately or over some period of time after they 

are exploited. Also, in the Daphnia foraging model, the time allotted for foraging is not 

divided between the activities of searching for prey and then pursuing and capturing prey. 

The experimental data that this theoretical research relies on assumes that Daphnia have 

already found the patch; therefore, it is their motion within a single food patch that is of 

interest. Likewise, the Daphnia foraging model does not analyze how much time a 

forager should spend inside this patch. The feeding time is fixed here at a level more 

appropriate for traversing a single patch. The non-trivial complexities of a model 

containing many patches for Daphnia to search between are discussed further in Section 

3.2. 
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2.4. RESULTS 

The results of this study (Appendix A) are very simple and very robust. Through 

the use of two feeding protocols (feeding during the hops, as described above, and 

feeding during the pause times, as described in Appendix A - Simulation methods), and 

through the use of several foraging time allotments, many adjustments to turning angle 

and hop length noise levels, and even several fixed hop length values, in every case, and 

for every combination of constraints, the resultant curves of food gathered versus noise 

level always featured a peak at some optimum level of noise in the turning angle or hop 

length distributions. In reference to question (1) posed above, these peaks lend support to 

the hypothesis that there may indeed be optimum amounts of variation in foragers' 

choices of movement parameters which maximize their ability to gather food within a 

patch. The following section will discuss the possible implications of this finding - and 

whether or not the noise levels observed in Daphnia today might have been selected 

naturally. 



3. EVOLUTION OF PREFERRED NOISE LEVELS 

3.1. NATURAL SELECTION OF FAVORABLE NOISE 

As discussed above, SR offers a means by which a system may exploit some 

variety of noise for use as an optimization tool. After its discovery, SR began to be 

frequently observed, but was rarely purposefully employed. In 1996, the breakthrough 

experiments of Morse and Evans showed that the addition of certain levels of noise to 

electrical representations of vowel sounds increased the decipherability of these sounds 

based on responses obtained from the experimental stimulation of investigational 

cochlear implant devices using the dissected sciatic nerves of toads (Xenopus laevis). 

These sciatic nerves served as significant biological (not computational!) models of 

nerves in the human auditory system since the two types are very similar genetically. 
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This simple utilization of noise was just the beginning of an entire assemblage of research 

studies designed to help enhance the sensitivity of the cochlear implants used by 

profoundly-deaf patients (e.g., Chatterjee & Robert 2001). But is it possible that natural 

selection beat Morse and Evans to the punch? 

Experimenting with amphibian, instead of human, cochlea, Jaramillo and 

Wiesenfeld (1998) examined the inner hair cells of the leopard frog (Rana pipiens) ear 

canal, and found that they were not attached to the canal's membrane quite as rigidly as 

more superficial hair cells. This allowed the inner hair cells to more easily undergo a type 

of Brownian motion as they fluttered in the surrounding medium. It was further shown 

that this extraneous Brownian motion stimulated the hairs at a level of noise which 

allowed the frogs to hear weak, sub-threshold sounds in the water through a stochastic 

resonance-like effect. This prompted the suggestion that the detachment of the inner hair 

cells from the typical membrane structure might have at one time provided a fitness 

advantage to a few lucky frogs. Natural selection, then, might have "detected" this 

advantage, and sustained it. 

There is still a difference, though, between the detection of the effects of SR and 

its intentional exploitation. For instance, the noise levels that are presumed to be 

advantageous to Daphnia are different from the external noise utilized by the leopard 

frog in that, for Daphnia, the noise must somehow be generated internally. This may 
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happen either by a learned strategy, or through specific brain "circuitry", and very recent 

evidence suggests that both of these possibilities may be plausible. For instance, Li et al. 

(2008) have shown that the eukaryotic amoebae Dictyostelium and Polysphondylium 

exhibit exponential distributions of turning angles very similar to those employed by 

Daphnia when searching for food in the absence of apparent external stimuli. The 

amoebae's motion under this construct was shown through simulation to be more 

efficient than if they instead practiced a traditional random walk, since exponential 

distributions increased the probabilities that the cells would find their targets. Just like 

Daphnia, the noise that was observed in this case was found in the choices made by the 

organisms, but what is the internal origin of these habitual choices? 

There is, indeed, the intriguing possibility that the brain of the organism may 

contain neurons specifically evolved to provide noisy accessory signals to functional 

stimulation. The first evidence for this phenomenon was found in the antennallobe of the 

fruit fly, Drosophila (Shang eta!. 2007). The antennallobe in Drosophila is similar to the 

olfactory bulb of vertebrates in that it is used to facilitate the sense of smell. In addition to 

the typical olfactory neurons, the receptors of smells, Drosophila's antenna! lobe contains 

other local excitatory neurons which respond to odors with increased activity, but this 

excitation does not have any noticeable odor-specific spatial structure across the lobe. If 

the total output of the antennallobe were to be measured, the local excitatory activity 

would be detected as a form of noise being added to the typical olfactory stimulation. As 

it is, the neurons responsible for relaying sensory information from the antennallobe to 

the rest of the brain are driven by this combined signal, and the overall sensitivity of the 

system is increased by the accessory noise in a SR effect similar to the example in Figure 

2.2b. Furthermore, enhanced sensitivity- and, therefore, a competitive advantage -

conveniently occurs at the particular levels of noise which the excitatory local neurons 

have evolved to produce. 

So, for the fruit fly, it now seems possible that natural selection, or whichever 

other method of designing species one believes in, was successful in internalizing a 

source of noise and "purposefully" exploiting it. The following section will discuss a 

model designed to investigate whether or not the ancestors of Daphnia might also have 

benefited from the internalization of noise. 
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3.2. SIMULATION OF EVOLVING DISTRIBUTIONS 

As shown in Section 2.3, the Daphnia foraging model resulted in classic 

stochastic resonance curves predicting optimum levels of noise in the Daphnia's turning 

angle and hop length distributions. A new simulation, EVO, will now be used to explore 

whether the process of natural selection might have been "guided" by the advantages 

provided by SR. In other words, EVO will help to determine whether or not Daphnia 

might have limited their collective parameter choices to narrow ranges of variance after 

many cycles of natural selection had affirmed the advantage of these choices. EVO's 

algorithm will employ the same general feeding mechanisms that were used in the 

Daphnia foraging model. Particularly, foragers will feed inside a uniformly-distributed, 

circular food patch for a finite amount of time, and they will travel along a trajectory 

made up of hops and turns. (Feeding during the pause times will not be investigated using 

this algorithm, per the discussion below.) 

The main differences between the Daphnia foraging model and EVO are that the 

foragers in EVO will be assembled into sequential groups representing consecutive 

generations, and the movement parameter distributions from which the foragers construct 

their random trajectories will now be dynamic, changing by a small percentage after each 

use by a single generation of foragers. This can be contrasted with the Daphnia foraging 

model, in which foragers always used pre-defined distributions with specific noise levels. 

These evolving parameter distributions will act as the "parent", and the members of a 

generation, the "children", will choose their movement parameters randomly from this 

parent distribution. After a complete generation of children have eaten, each forager's 

rate of energy (food) intake will be judged and compared to the others in that generation. 

There will be a single "winner" who is the most efficient forager, and the rest of the 

population will be deemed "losers" and disregarded. The winner will then share its 

strategy for choosing movement parameters with future generations by providing an 

inheritance in the form of an update to the current, evolving, parental movement 

parameter distribution. This update will consist of adding some percentage (typically 2%) 

of a histogram of the successful child's movement parameters to the parent distribution. 

Also during the update, the same amount (2%) that was added will then be subtracted 
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from the parent parameter distribution, but this subtraction will be divided equally 

(percentage-wise) across each bar of the distribution. Thus, the total area of the 

distribution will always be preserved. The new distribution will then be used as the parent 

distribution for the next generation of foragers. In this manner, initially uniform and 

uncorrelated parameter distributions will be modified over and over, generation after 

generation, eventually evolving to what will presumably be an optimal result used by the 

most successful foragers. The full description of the EVO algorithm is presented in the 

Supplementary material of Appendix B. 

Although EVO depends on the variability of parameters chosen randomly, too 

much variability can also erode the ability of the algorithm to effectively direct the 

evolution of the distributions. For instance, one might think that it would be extremely 

interesting to combine EVO with the basic patch model described in Section 1.2, where a 

forager encounters many patches along its trajectory, and must decide how to efficiently 

exploit them. A model like this was indeed attempted, and a typical layout of the patches, 

along with a sample trajectory, is shown in Figure 3.1. The competing agents begin 

foraging at the center of this group of patches. The most successful agent provides an 

inheritance as described above, but recall that it is only the distribution that is inherited, 

not the order of the choices. The next generations' choices of movement parameters may 

not have the same timing between the processes of investigating a patch (larger turning 

angles, smaller hop lengths) and traveling between patches (smaller turns, longer hops). 

Furthermore, in this model, the positions of the smaller patches are chosen randomly 

before each generation since food patches are not necessarily a constant in nature, so 

there is simply too much variability in what is required of the forager from generation to 

generation to effectively arrive at any significant improvement in the agents' foraging 

efficiencies. Evidence of this effect is seen in the plot of food gathered versus generation, 

Figure 3.2, where the amount of food gathered remains constant, showing little to no 

improvement over thousands of generations. 
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Another instance of having insufficient criteria for the evaluation of foragers 

occurs when more than one forager is allowed to participate in the inheritance. For 

example, suppose that 1 0 foragers are allowed to eat simultaneously, as in the Daphnia 
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foraging model, and 20 groups of 1 0 simultaneous foragers now compete with each other 

and are constituted as a generation. The foragers in this generation select movement 

parameters at random from an inherited parental distribution. The most efficient group of 

10 foragers must be chosen to provide the inheritance to the next generation, but this 

choice becomes complicated when trying to account for the parameters used by each 

member of every group. When histograms of parameters are formed from groups of 10 

foragers, they now represent quite a large number of angles. This is problematic because 

large numbers of angles chosen from the parent distribution means that the resultant 

grouped childrens' histograms will very closely resemble this parental distribution, and, 

in tum, they will also more closely resemble each other, regardless oftheir foraging 

success (or failure)! The results of food gathered by the most successful group under this 

algorithm are shown in Figure 3.3. Data from 8000 consecutive generations of foragers is 

shown. The efficiency hardly improves from beginning to end. The variability between 

the parents and the children, and between children and other children, has been lost, akin 

to the loss of random mutations in nature. Even in this case, when there are only 10,000 

angles chosen from a 63-bin distribution, the inheritance is virtually meaningless, as the 

figure shows. 
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EVO has been designed with constraints which should address these problems. 
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Foragers in EVO operate one at a time, feeding independently inside a fully-populated 

food patch, and they begin their trajectories at the center of the patch instead of starting 

from random positions. The success of a forager will depend on its ability to stay inside 

of the food patch and avoid its own path. The forager's efficiency will not be affected by 

an unlucky random starting position or the trajectories of its neighbors. These rules offer 

the clearest, simplest view of the competition between foragers. 

While the published results discuss only the evolution of turning angle 

distributions, hop length distributions were also evolved using this algorithm. They were 

evolved by themselves (while turning angle distributions remained uniform), and also 

simultaneously with the turning angle distributions. Hop length distributions of different 

ranges were tested, with some distributions limiting hop lengths to 25 units, and other 

distributions limiting hop lengths to only 5 units. (Note that the radii of the food patches 
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were held constant at 100 units.) One might expect this variety of scenarios to result in 

the evolution of diverse hop length distributions, but, in fact, this was not found to be the 

case. 

For simulations in which the hop length distributions were evolved while the 

turning angle distributions were held constant and uniform, the hop lengths increased 

steadily to the largest available length (5 or 25 units, depending on the simulation). 

Foragers will not typically leave the food patch while choosing angles from a uniform 

distribution of angles, since the abundance of larger angles and sharper turns are not 

conducive to extended straight travel. The foragers in these simulations did, however, 

over many generations, attempt to develop strategies for avoiding their own paths 

through less-localized trajectories. Since less localized trajectories can always be 

achieved with larger hop lengths, larger hop lengths became advantageous. The resultant 

food gathered, the hop length distributions at 1500, 3000, 4500, and 6000 generations, 

and the winning trajectory at generation 6000 are shown in Figures 3.4 and 3.5 for 

maximum hop lengths of 5 units and 25 units, respectively. Notice that the plot of food 

gathered in Figure 3.4 shows much more improvement in efficiency than the same plot in 

Figure 3.5. This happens because the larger hop lengths(> 5 units) present in the uniform 

distribution at the beginning of the simulation in Figure 3.5 immediately provide less­

localized trajectories, and, therefore, much higher quantities of food gathered, so that 

there is little room for improvement. 

This tendency for hop lengths to steadily increase did not change when the 

turning angle distributions were allowed to evolve at the same time as the hop length 

distributions. These results are pictured in Figures 3.6 and 3.7, again with maximum hop 

lengths allowed being 5 units and 25 units, respectively. (Note that the turning angle 

distributions are plotted in absolute value form.) The hop length distributions at 

generation 10,000 appear to be very similar for both simulations, even though the turning 

angle distributions do not. These consistent results in hop length distribution warrant the 

decision to focus the reported work on the evolution of turning angle distributions only, 

while the hop lengths were held fixed at certain lengths. 
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The published results of EVO were further focused by limiting the analysis to just 

the first feeding protocol used in Appendix A, where foragers feed along their paths of 

travel. As mentioned in Appendix A, Daphnia may feed during their hops, during the 

pauses, or possibly at all times. There are no experimental reports which would prove that 

either protocol is more relevant than the other. The first feeding protocol, therefore, 

serves every intended purpose. For instance, in real systems, the concentration of food in 

a patch should decrease as foragers feed , thereby reducing their clearance rates (Hartgers 

1999), while diffusion of the food particles should insure that as long as the animals 

remain inside of the patch, they should be consuming at least a little food as they strain 

the surrounding medium. The first feeding protocol is accurate in this sense as the food 

concentration decreases during foraging, but the foragers typically will still find food 

along at least some part of each individual hop. (Alternatively, see the large voids of food 

cleared from the patch using the second feeding protocol in Figure 11 of Garcia et al. 



(2007).) Additionally, the algorithm of the first feeding protocol is very simple to 

understand, and offers a clear picture of the success of foraging agents. 

3.3. THE RESULTS OF 'EVO' 
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Appendix B reports the comparison of the optimum turning angle distribution 

noise intensities predicted by the Daphnia foraging model and the "supposed" optimum 

turning angle distribution noise intensities derived by the evolution of these distributions. 

The experiment is designed to address question (2) proposed above (in Section 2.1 ), and 

to provide support for the hypotheses that, since the turning angle distribution noise 

levels are similar across several species, they might be evolved quantities, with SR 

having a role in this evolution. 

For the sake of comparison, the Daphnia foraging model was modified slightly to 

match the constraints imposed in EVO. In other words, foragers in both models were 

programmed to operate independently, and to start their trajectories in the center of the 

food patch. As the distributions in EVO evolved, the noise intensities of the distributions 

steadily decreased from the large amount of noise present in the uniform distribution to a 

point of stasis, where the noise intensity then remained approximately constant for tens of 

thousands of generations thereafter. This supports the hypothesis that the noise intensities 

could have arisen via natural selection. 

As fixed hop length values were increased, the Daphnia foraging model predicted 

increasing values for the optimal noise intensity. Strikingly, the EVO simulation showed 

the same effect -with increased hop lengths, the stasis values for the evolved turning 

angle distribution noise intensities were larger. Thus, EVO "tracks" the predictions of the 

Daphnia foraging model's SR-like curves, supporting the hypothesis that SR could have 

"guided" the selection of Daphnia over millions of generations. 

The numerical values of the noise intensities evolved by EVO were very similar 

to those predicted by the Daphnia foraging model for the same hop length values. The 

average difference between the predicted and evolved noise intensities across all hop 

lengths reported was 0.083 radians. In each case, however, the evolved noise levels were 

slightly higher than those predicted by the Daphnia foraging model. As discussed in 

Appendix B, the differences between the perfect Gaussians used in the Daphnia foraging 
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model and the evolved distributions are most evident near the tails of the distributions. As 

also discussed in Appendix B, these differences are more easily seen when fewer trials 

are considered, rather than the averaged result of 1 0 trials, such as those presented in the 

Appendix. For example, Figure 3.8 shows an evolved turning angle distribution (grey 

bars) which is the averaged result of just two trials at hop length = 1.0 units. The 

distributions that make up this averaged result have evolved for 100,000 generations, and 

have had steady noise levels for almost 70,000 of those generations. The figure also 

shows a true Gaussian fit (red curve) at the noise level predicted by the Daphnia foraging 

model for this hop length. Notice that the evolved distribution lacks the gradual tapering 

present in the tails of the true Gaussian, potentially resulting in larger measurements of 

standard deviation (noise level), as seen in the experimental results (Appendix B­

Results). 

It is suggested in Appendix B that the EVO algorithm might have a slight problem 

sustaining histogram bins which have low bin heights (representing small probabilities). 

This could be due to the continual subtraction of the certain percentage of every bin's 

height before the addition of the inheritance at the frequent generational updates. If a bin 

height falls very close to zero, it will continue to have a certain percentage subtracted 

after each generation, but will be less and less likely to be added back through 

representation in the inheritance. On the other hand, the pre-defined distributions in the 

Daphnia foraging model have bins of every height, including low-height bins in the tails 

of the distributions. If foragers in the Daphnia foraging model need to select larger 

turning angles, they may choose them from the tails of the distributions with no problem. 

If foragers in EVO need these angles, however, they must preserve fairly large bins to 

select them from, such as the tall bins seen extending above the Gaussian fit in Figure 3.8 

around ± 1 radian. 
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The overall shapes of the evolved distributions may have also been affected by 

the ratio between the total trajectory length and the radius of the food patch. In Appendix 

B, a ratio of 15: I was used. This ratio was chosen somewhat arbitrarily, as there are no 

previous studies which provide accurate information for how long or for how many hops 

a Daphnia in the wild traverses inside a single patch (or for how quickly the Daphnia 

might enter a second patch if it were to leave the first) . It was verified, for instance, that 

when this ratio is changed to I: 1, the turning angle distribution will evolve into a delta 

function at zero radians. This is an effective strategy for the foragers at this ratio because 

it eliminates any chance of them crossing their own paths. And since there is zero 

possibility for any forager to actually leave the patch, crossing one's own path becomes 

the only judgment criterion available. 

Another point, which was not discussed in Appendix B, is that the results of 

Garcia et a!. (2007) showed that the noise levels found in the turning angle distributions 

of juvenile Daphnia pulex and juvenile Daphnia magna were 0.52 ± 0.05 and 1.0 ± 0.2 



radians, respectively, while the noise levels exhibited by the adults in the same species 

were 20 and 58% larger, also respectively. Juveniles, being smaller in size than the 

adults, also have smaller hop lengths, and so it seems that the proportional relationship 

reported between the fixed hop lengths and the predicted and evolved noise intensities 

might actually have some biological basis. 
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4. THE CIRCLING TRAJECTORIES OF PADDLEFISH 

4.1. PHYSICAL LAWS AFFECT ANIMAL BEHAVIOR 

An animal's behavior is determined by many factors. Among them are the 

characteristics of the animal's predators and prey, the instincts and capabilities that the 

animal inherits, and also the environment in which it lives. There are many physical laws, 

too, which have a significant impact on animal behavior. Consider all of the actions that 

an animal must take to maintain its internal heat, energy, and fluid balances, balances 

which are typically described by simple physical input and output equations (Schmidt­

Nielsen 1997). Other physical laws are more externally prevailing, such as the law of 

gravity. These physical laws cannot be ignored when attempting to analyze an animal's 

behavior. 

The locomotion of animals is a very commonly studied physical activity due, in 

part, to the major associated energy costs. These energy costs are usually (and most 

easily) calculated by measuring the rate of oxygen consumption during the activity 

(Schmidt-Nielsen 1997). Horses offer a helpful comparative example in that they have 

three different modes of movement: walking, trotting, and unreserved running 

(galloping). An obvious assumption might be that the faster a horse travels, the more 

energy it must use to maintain its speed. This is actually not the case, as illustrated in 

Figure 4.1. This figure shows that, if a horse is specially trained to move at different 

speeds within a particular gait, a wide range of energy consumption rates are associated 

with these different speeds (for each gait, see the fitted data points in Figure 4.1). 

However, untrained horses moving at the different gaits upon their own volition are 

observed to move at the speeds indicated by the blue histograms below the curves in 

Figure 4.1. The histograms show that typical horses prefer the most efficient speed within 

the range for each gait. A horse's instinctual movements seem to be governed by some 

physical law of energy efficiency. 
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For a different perspective on the investigation of energy efficiency, consider the 

following question: what is the most efficient way to get from one place to the other, 

running, swimming, or flying? The answer to this question, of course, depends somewhat 

on what is between the two places, meaning that it would be hard to swim through a 

desert, and it would be hard for a swimming organism such as a fish to fly over a 

mountain. But, more generally, if an animal were equipped to move a certain distance 

across a featureless planar terrain using any of the three methods of locomotion - running 

on land, swimming in water, or flying through the air - which method should the animal 

3 Reprinted by permission from Macmillan Publishers Ltd: Nature, Hoyt & Taylor, copyright 1981. 
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choose? For a given body mass, the surprising answer is that swimming is the most 

efficient method of the three, even though a swimming organism must push through a 

much denser medium (Schmidt-Nielsen 1972). Running is actually the least efficient, to 

the surprise of those who might have thought that flying would be the most energetically 

demanding. To combat this idea, Schmidt-Nielsen (1997) reminds his readers that 

"migrating birds fly nonstop for more than 1 000 km, and it would be difficult to imagine 

a small mammal such as a mouse that could run that far without stopping to eat and 

drink." The energy cost comparison of running, swimming, and flying is shown in Figure 

4.2. 
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Figure 4.2. Energy Cost Comparison of Running, Swimming, and Flying4 

One main reason for the high efficiency of swimming is that most swimming 

organisms are buoyancy-neutral, and therefore expend very little energy (if any at all) to 

support their own body weight vertically. They simply wiggle their streamlined bodies 

and easily propel themselves forward. But this is not the case for all aquatic organisms. 

Even in Figure 4.2, it is seen that as the body mass of the swimmer gets smaller, the 

energetic cost of swimming gets larger, and data is not even reported for tiny organisms 

such as Daphnia, with masses on the order of milligrams (Ward & Robinson 2005). The 

following sections will address the fact that the swimming efficiency of small organisms 

is affected quite differently from that of larger swimmers by the density of water. It will 

4 From Schmidt-Nielsen (1972), Reprinted with permission from AAAS. 



be shown that if this difference is accounted for in foraging simulations, radically 

different foraging behaviors will occur. 

4.2. DAPHNIA VS. P ADDLEFISH 
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As described in Appendix C, Daphnia and paddlefish offer an interesting 

comparison by which to investigate the effects of the physical laws associated with 

swimming in a dense medium. Although both organisms are filter-feeders, and both feed 

on patchy food sources (see Folt & Bums (1999) for a discussion of the patchiness of 

paddlefish prey), the animals differ greatly in their size, and also, therefore, in the flow 

regimes in which they operate. Daphnia swim in the viscous flow regime, where, after 

each propelling stroke by their large second antennae, the surrounding fluid immediately 

stops their motion due to large frictional forces which easily overcome such a tiny 

momentum (Videler eta/. 2002). Daphnia never build sustainable inertia that would 

allow them to coast in the water, and so for each hop and tum along their trajectory, they 

are starting from zero velocity. 

Paddlefish, on the other hand, do operate in the inertial flow regime. They build 

linear momentum as they travel, a momentum which is significantly decreased when they 

decide to change direction (Weihs 1972). Regenerating this lost momentum is quite 

costly for the larger animal, so the single most inefficient motion for a paddlefish would 

be to make a sharp tum, or, in other words, to make a tum through a large angle. Large­

angle turns affect Daphnia very little at all, however. It has been shown that due, to the 

Daphnia's nearly-round shape and small body volume, turns in the water are like 

rotations, a type of motion which does not seem to be impeded as they swim, and which 

incurs a near-zero cost to the organism (Videler eta/. 2002). It is natural to hypothesize 

that these physical differences between the two animals must have some effect on their 

overall behavior as they search for food in similar environments. 

4.3. THE PADDLE FISH MODEL 

It is simple to imagine that the patchy swarms of Daphnia on which paddlefish 

feed have boundaries which are circular in shape when seen from above, reminiscent of 

the patches of zooplankton upon which Daphnia feed. Also, since most fish generally 
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swim in a limited horizontal plane (Webb 1991), the swimming trajectories ofpaddlefish 

can be easily modeled in a 2-dimensional environment. These constraints represent two 

of the most basic rules present in the Daphnia foraging model and EVO, immediately 

suggesting a simulated comparison between foraging Daphnia and foraging paddlefish. 

This comparison is further motivated by observations of the vastly different swimming 

trajectories of real Daphnia and real paddlefish. While Daphnia move in random walk­

like trajectories, as mentioned above (see Uttieri et al. 2004 for pictures of 3-

dimensionally-tracked trajectories), data from captive paddlefish reported in Appendix C 

show highly structured circling patterns in both clockwise and counter-clockwise 

directions. A model similar to the Daphnia foraging model and EVO, designed to 

incorporate the effects of swimming in different flow regimes, might offer an explanation 

for the distinct differences between the two types of trajectories. 

As described in Appendix C, the EVO simulation was modified by the addition of 

a penalties which punish a swimmer in the inertial flow regime for turning. The incurred 

penalties reflect the use of extra resources to maintain swimming speed by generating 

momentum along the new heading after changing directions. Since the resource used in 

this case is energy, the modeled agents are punished by a subtraction of some of the food 

that they had collected while feeding. These penalties will not, of course, be applied to 

organisms in the viscous flow regime, thereby providing a point of differentiation 

between the modeled Daphnia and the modeled paddlefish. 

Two different methods for the application of penalties were considered for the 

paddlefish simulation. The first method, P~, was designed to account for the differences 

between the bodies of the paddle fish and the bodies of Daphnia. Unlike the small, 

roughly-spherical Daphnia which can easily execute a turn by rotating in the water, a 

larger, longer fish must bend its body to change direction, pushing the sides of its body 

against a viscous medium, thereby consuming some energy. It was assumed in the 

definition ofP1 that a fish uses very little strength to keep its flexible body bent, so that 

consecutive turns at the exact same angle would incur no penalty (due to a lack of further 

body-bending). However, even if the fish wanted to simply straighten its body out so as 

to discontinue turning, this movement would also require more pushing against the 

medium, and would therefore require a proportional amount of energy. Mathematically, 



P1 is directly proportional to the absolute value of the difference between each pair of 

consecutive turning angles, 11a = lan+J- ani, and was applied accordingly. 
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The reader will obviously be thinking that the definition of P1 is incomplete 

because consecutive turns through the same angle will still create a loss of linear 

momentum which must be replenished. The definition of a second penalty, P2, addresses 

this problem. When it is applied, P2 requires a subtraction of food gathered in an amount 

directly proportional to the absolute value of each turning angle used by the forager. This 

linear relationship is shown qualitatively in Figure 4.3, and the results of applying both 

penalties are discussed in the following section. 

-1t 

Linear Penalty I 

0 
Turning Angle 

Figure 4.3. Linear Penalty Relationship (P2) 

4.4. RESULTS OF THE P ADDLEFISH MODEL 

1t 

The results of the preliminary trials of the paddlefish model (Figure 4.4) were 

qualitatively the same whether just P~, P2, or a combination of both penalties was 

assessed on the simulated foragers. The first column in Figure 4.4 shows the average 

result of food gathered over 50,000 generations and 10 trials; the second column shows 

the trajectory of a single forager at generation 50,000, and the third column shows the 

mean turning angle of the evolving distribution in each of 10 trials over 50,000 
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generations. The bold black line in the plot of mean turning angle represents the absolute 

value of the average result of mean turning angle for the 10 trials (which appear 

individually as multicolored lines). Circling trajectories are predicted for all combinations 

of penalties applied, matching explicitly with the experimental paddle fish data presented 

in Appendix C - Results. This suggests that, in the model, the energy costs attributed to 

turning dictate that the most efficient method for a larger filter-feeding forager to exploit 

a patchy food source is by swimming in circles. 

See Appendix C for many other variations of this model, all of which produce a 

circling behavior for foragers in the inertial flow regime, and never for foragers in the 

viscous flow regime. Note that, in the appendix, only penalty P2 was applied to inertial 

swimmers, being that it is the simplest (yet still effective) definition of energy costs 

associated with turning. 
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Figure 4.4. Paddlefish Model Results 

4.5. CIRCLING 

The extent of the circling behavior found in the trajectories of the modeled 

Daphnia, the modeled paddlefish, and the live paddlefish were quantified in the 

Mathematical analysis section of Appendix C using a "circling index". This measure was 

invented for the study, and is described in more detail in the Appendix. Briefly, the 

circling index is a measurement of the frequency within a given trajectory that left-hand 

turns follow other left-hand turns, and that right-hand turns follow other right-hand turns . 
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The index is based upon the notion that trajectories containing numerous consecutive 

turns in either the left-hand or right-hand direction will contain lengthy segments of 

spiraling or circling motions. Trajectories that exhibit perfect circles, for instance, will 

never have a random "mixing" of right and left-hand turns. These highly-ordered 

trajectories will be defined by a circling index value of 1. On the other hand, trajectories 

in which the directions of turns are chosen completely at random and in no noticeable 

patterns will appear to resemble traditional random walks. Trajectories of this type will 

have circling index values of very nearly 0. 

A table of circling index values, not given in Appendix C, is shown below (Table 

4.1 ). Simulations of foraging Daphnia are compared, using a two-tailed, unequal­

variance t-test, to what is called the "Daphnia control" simulation. In the control 

simulations, the inheritances for the evolving turning angle distributions are provided by 

a random forager rather than the most successful forager. This leads the evolving 

distributions to remain uniform and uncorrelated throughout the trial. Both the Daphnia 

and the Daphnia control simulations have very low (near-zero) circling index values 

which are statistically similar, indicating that the modeled Daphnia change directions 

randomly, and confirming once again that the modeled Daphnia exhibit random walks. 

The t-test between the paddlefish simulation and the paddlefish control 

simulations tells a different story. The paddlefish simulation shows an average circling 

index of0.99, while the paddlefish control simulation's index is similar to those of the 

Daphnia and the Daphnia control simulations, averaging only 0.09. The statistically 

significant difference between the paddlefish simulation and the paddlefish control 

simulation (as well as the significant difference between the modeled paddlefish and the 

modeled Daphnia) proves that the assessment of energy expenditure penalties due to 

turning in this model leads to distinct circling behavior. 

In addition to the simulated values, Table 4.1 also shows the circling index values 

for 19 real paddlefish. Some of these animals obviously circled more than others, but an 

average circling index value of 0.60 is indicative of a general tendency to exhibit distinct 

circling behavior. Further details about comparisons of the turning angles measured in the 

trajectories of the real paddlefish to surrogate sequences of these turning angles are given 

in Appendix C - Mathematical analysis. 
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Table 4.1. Circling Index Values for Simulated Data and Real Animals 

Daphnia Daphnia Paddleftsh Paddleftsh Captive 
Simulation Control Simulation Control Paddleftsh 

0.0906 0.0187 0.9975 0.0201 0.5809 
0.0059 0.0015 0.9975 0.0179 0.8741 
0.0121 0.0495 0.9975 0.1121 0.4722 
0.0116 0.0099 0.9975 0.0777 0.5944 
0.1473 0.1616 0.9772 0.0946 0.5954 
0.1021 0.1282 0.9974 0.0041 0.8085 
0.0366 0.0865 0.9975 0.0930 0.2139 
0.1450 0.0071 0.9949 0.1080 0.7541 
0.1008 0.1564 0.9873 0.3905 0.8545 
0.0637 0.1851 0.9874 0.0146 0.8261 

Mean 0.0716 0.0805 0.9932 0.0933 0.1962 
std. Dev. 0.0537 0.0722 0.0070 0.1127 0.3166 
T-test 0.7574 0.0000 0.8443 

0.6642 
0.7553 

T -test between DaphnM and Paddleftsh simulations 0.0000 0.6348 
0.5318 
0.3439 
0.6578 

Mean 0.6063 
Std. Dev. 0.2147 

At this point, an observant reader might point out the fact that in Appendix C, the 

holding tank for the real paddlefish is described as square-shaped, while the modeled 

agents swim in circular patches. However, it has been verified that simulated agents 

foraging in a square food patch while turning penalties are assessed do indeed exhibit 

circling behavior (data not shown). In fact, it could be argued that since the real fish swim 

in a square tank, it is quite remarkable that they still circle, even though they are not able 

to follow along the side of a tank to do so. 
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5. PERSPECTIVES AND FUTURE WORK 

5.1. INHERITED BEHAVIOR 

There is an open question in biology that has been hotly debated since before the 

time of Charles Darwin, and which looms in the background of many of the assumptions 

and conclusions presented in this manuscript. Can behavior be inherited? 

Even the definition of behavior itself seems to be debatable. Clark and Grunstein 

(2000) mention the following two definitions within 4 pages of their text: 1) perception of 

a stimulus in the environment, followed by the integration of this perception with 

previous experiences and a reaction to the stimulus, and 2) whatever it is that an animal 

does to stay alive and reproduce. The second definition obviously seems analogous to the 

definition of an "instinct", and conjures images of animals working as machines, 

performing their duty without question and without reasoned logic. But, the first 

definition seems to involve, at minimum, learning and thinking, if not also analysis and 

invention. Behavior which must be learned, though, is obviously not inherited, so the 

second definition seems most appropriate for this discussion. Clark and Grunstein (2000) 

mention, for instance, that a newborn human baby with no prior experience will withdraw 

its hand from a harmful flame. They also successfully argue that even a single-celled 

paramecia use Na+, K\ and Ca ++pumps and channels to manipulate the polarization of 

their cell membrane in order to align themselves with certain fields and currents, avoid 

extreme temperatures or UV light, and find food and mates, all without having a brain or 

nervous system. Surely, their behavior must be inherited genetically. 

Darwin did not promote the inheritance of behaviors, per se, but he did believe in 

the inheritance of instincts, and perhaps in mutations of these instincts. He touched on 

this in his notebooks regarding the transmutations of species, which were later published 

in the 1960s. In trying to understand why species which diverge into separate groups are 

eventually unable to produce offspring, he wrote "Instinct goes before structure ... hence 

aversion to generation, before great difficulty in propagation" (Burkhardt 1975). Darwin 

was acknowledging here that instincts could somehow change, but he did not give a clear 

indication of why. Darwin also used this explanation to discuss changes in other 

behaviors as well. He stated, for instance, that if the instincts of a particular species of 
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bird urged the birds to begin feeding solely by fishing, those birds which were best 

adapted to fishing would end up being the ones to reproduce, and then the structure of the 

bird would adjust accordingly. 

Opponents of the possibility of inherited behavior argue that it is only genes that 

are inherited, and they present analogies which disassociate genes from behavior, such as 

this one: Imagine a series of 26 dominos, labeled A to Z, standing upright and in a 

straight line across a tabletop. Now, imagine that toppling domino A towards the others 

represents having a specific gene, and toppling domino Z represents the outward 

expression of some trait or a behavior. Toppling A is sufficient for topping Z, but not 

necessary. Z could be toppled in 25 other ways, including directly knocking over domino 

Z. And while it is essentially agreed upon by biologists that a single gene is typically not 

responsible for something as complex as a behavior, but rather that several, or more 

likely, many genes may be involved, it is very hard to prove that the only way a given 

behavior can occur (or be inherited) is through a specific set of genes (Moore 2001 ). 

There are many examples from current research, however, which lead to the 

opposite conclusion. A striking example from the field of foraging behavior involves the 

gene-dependent regulation of foraging habits in the roundworm (Caenorhaditis elegans). 

The patch exploitation of roundworms hinges on expressions of the alleles of a single 

gene, npr-1 (Clark & Grunstein 2000; Gloria-Soria & Azevedo 2008). If the 215F allele 

of npr-1 is represented in a group of worms, the worms will tend to clump together in a 

small area of a larger food patch as they feed. If the 215V allele is represented in the 

group, the worms will avoid contact with one another and spread out evenly across the 

food patch. Thus, in this case, foraging behavior is proven to be inherited. 

5.2. FUTURE WORK 

The study in Appendix A relies heavily on experimental observations performed 

by Garcia et at. (2008). The measurements of movement parameters in this study were 

taken from the trajectories of several different Daphnia that moved across the field of 

view of the digital camera during the experiment. While this method avoided any edge 

effects that the aquarium might have induced, it did not allow for the collection of long 

sequences of consecutive movement parameters used by any particular organism. If, 
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instead, one single Daphnia were monitored for a longer period of time in a larger 

aquarium to accumulate a chronological sequence of measurements of turning angles, 

hop lengths, and pause times, the analysis of the trajectory could include time-sensitive 

measurements such as auto-correlation ofthe measurements of a single parameter, or 

correlation between different parameters. Such time series data might inspire a re-design 

of the simulations, and also might transform the interpretations of Daphnia's foraging 

strategy. This data would also allow the circling index to be calculated for the real 

Daphnia trajectories, a measurement which was unfortunately not able to be included in 

Appendix C. 

The work in Appendix B could be extended further by performing the same 

analysis while using the second feeding protocol described in Appendix A. In the second 

feeding protocol, foragers consumed food during the pauses in between each hop rather 

than along the line of the hop. After each hop, the simulated agent is imagined to be 

straining the surrounding medium, consuming all food particles in the surrounding area at 

a speed which is based on a clearance-rate factor. This phenomenon is modeled as a 

steadily increasing circular area in the food patch where the food particles have been 

consumed. As in most other cases, the food was not replaced under the description of 

destructive foraging. This feeding protocol has not yet been applied to EVO in any 

capacity, but an effort to do so may offer new, interesting information, or robustness to 

the current results. 

And lastly, a major improvement to the study ofpaddlefish circling behavior 

would be the observations of paddle fish circling in their natural environment. This is a 

very complicated task to perform, however. Radio-tracking is a great technology for 

detecting long-range migrations, but it is not superior for detecting circling, due to its 

poor spatial resolution. Ultrasound tracking could be used over shorter ranges and would 

offer better resolution, but it is thought that, in the wild, a paddlefish would most likely 

swim too far away from a researcher once a transmitter is implanted and the fish is 

released (Michael Hofmann, personal communication). Direct observations by divers 

would be useful and possible, but again, the paddlefish might be scared by the diver and 

quickly swim away. A feasible place to observe paddlefish might be industrial hatchery 

ponds. There are still drawbacks to this idea, however, as the environment would only be 
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semi-natural, and the scientist would have to contend with poor visibility and possibly 

overpopulation. This type of observation must be accomplished, however, to confirm the 

validity of the paddlefish model, as so pointedly argued by Stephens and Krebs ( 1986). 
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5 Reprinted from the Journal of Theoretical Biology, Volume 252, Dees eta/., Patch exploitation in two 
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Elsevier. 
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Abstract 

We explore the variability that animals display in their movement choices as they forage in a finite-sized food patch with a uniform 
food distribution, and present a framework for how these choices may be adjusted to optimize foraging efficiency. Inspired by 
experimental studies of the zooplankton Daphnia, we model foraging animals as "agents" moving in two dimensions in repeated and 
successive sequences of hops, pauses. and turns. For Daphnia and other species, critical movement parameters such as hop lengths, pause 
times, and turning angles are typically reported as probability density functions. Similarly, the agents in our simulations choose their 
movement parameters at random from such distributions. Each distribution is defined by a characteristic width, which we interpret as a 
"noise width," available to be tuned for increased foraging efficiency. We investigate the sensitivity of the system by measuring the food 
gathered by the agents as the turning angle and hop length noise widths are varied. In all cases, we find a maximum in food gathered at 
some particular value of the noise width in question, suggesting that these results can be considered robust examples of natural stO£·hastic 
resonance. 
(:• 2008 Elsevier Ltd. All rights reserved. 

Keyword .. : Turning angle: Hop length; Foraging; Natural stochastic resonance 

1. lntroductioll 

Studies of successful foraging have attracted the atten­
tion of researchers for several decades (e.g., Kamil and 
Sargent, 1981; Kamil et al., 1987; Stephens and Krebs, 
1986; Okubo and Levin. 2001). For many animals, research 
has focused on particular types of random searches 
within environments that offer a specified distribution of 
resources. The conditions and responses that optimize 
foraging success are crucial to the forager's survival, and 
are therefore of particular interest. for instance, it is well 
known that, in order to maximize their advantage, animals 
will often modify their patterns of movement when 
favorable "patches" of resources are discovered (Bell, 
1991). As an example, zooplankton, which provide the 
inspiration for the present study, have been shown to 
adjust their swimming trajectories when they encounter 

•corresponding author. Tel.: + 13145165015; fax: +I 3145166152. 
E-mail address: nathan.dees(a umsl.edu (N.D. Dees). 

0022·5193/S-see front matter f 2008 Elsevier Ltd. All rights reserved. 
doi: 10.1 016/j.jtbi.2008.01.026 

their prey (e.g., Cowles and Strickler, 1983; Buskey, 1984; 
Tiselius, 1992; Bundy et al., 1993; Larsson and Kleiven, 
1996; Dodson et al., 1997; Uttieri et al., 2004; Menden­
Deuer and Griinbaum, 2006). 

Patterns of movement are created by particular choices 
of movement parameters, such as hop lengths and turning 
angles. These parameter choices can be assembled into 
representative distributions; modifications of these patterns 
entail changes in the distributions. In the present paper, we 
represent critical movement parameters with probability 
density functions whose definitions include characteristic 
widths. Adjustment of these widths can be interpreted as an 
organism's means of "tuning" its range of possible of 
choices in order to improve, or even optimize, its foraging 
efficiency. The idea of adjusting variance in order to 
achieve a beneficial outcome has been discussed in recent 
years under the name of stochastic resonance (Douglass et 
al., 1993; Wiesenfeld and Moss, 1995; Levin and Miller, 
1996). In classical stochastic resonance, an optimal amount 
of variance, or noise, can enhance the signal-to-noise ratio 
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Fig. I. Schematic diagram of the two-dimensional hop-paus&-turn 
sequences used to simulate random walk.ers. 

of a weak, subthreshold periodic signal. More generally, 
stochastic resonance is a phenomenon in which an 
intermediate amount of noise can optimize some behavior 
of the system in question. 

In the present study, we consider how an animal searching 
for food could use a certain amount of noise or "jitter" in 
its choices of turning angles or hop lengths, to exploit ~he 
maximum amount of resources in a localized food patch. 
We model such searches using simulations, first suggested by 
Garcia et al. (2007), in which "agents" move about and feed 
in food patches of finite size for a fixed feeding time. The 
food is plentiful and uniformly distributed over the patch, 
and we use experimentally motivated correlated random 
walks consisting of repeated and successive sequences of 
hops, pauses, and turns (hereafter called "hop pause turn" 
sequences) to simulate the motion. 

Fig. 1 illustrates the movement parameters used by an 
agent in each step of the hop pause turn sequence. In the 
simulation, these parameters are chosen at random from 
distributions, whose characteristic widths we describe as 
"noise widths," or "noise intensities." We find that the 
noise width of both the turning angle and hop length 
distributions can be tuned to give a maximum in the agent's 
foraging efficiency under various conditions and for 
various feeding strategies, providing a robust example of 
natural stochastic resonance. 

2. Experimental results and distribution functions 

Here, we present the results of experimental studies of 
Daphnia pulex and Daphnia magna movement. Experiments 
were performed as described in Garcia et al. (2007). Briefty, a 
very low density of daphnias (typically 8 12 individuals) was 
placed in a Perspex aquarium measuring 26 x 26 x 5 cm3 

and containing a uniformly distributed feeding solution of 
freeze-dried Spiro/ina. The depth of the solution was limited 
to 1.5 2 em, so that Daphnia motion could be approximated 

in two dimensions. This approximation is biologically moti­
vated, since, in the wild, Daphnia feed on phytoplankton or 
algae, which are typically found in patches confined to a thin 
horizontal plane (Derenbach et al., 1979; Lampert, 1989; 
Cowles et al., 1993; Franks and Jaffe, 2001). 

Swimming zooplankton alter their patterns of movement 
when encountering many different stimuli, including light 
sources in the visible range (Ringelberg, 1987). Therefore, 
visible light was eliminated from the room during the 
experiment. The motion of the animals was illuminated by 
infrared light, and recorded digitally by a Sony DCR­
TRV80 camera operating at 30 frames per second. The 
videos were captured directly onto a computer for further 
processing. The videos were analyzed as described in 
Garcia et al. (2007) to create histograms of turning angles, 
hop lengths, and pause times of traveling daphnias. Edge 
effects of the aquarium were avoided in data collection by 
following the trajectories of animals near the center of the 
aquarium, and switching focus to another animal if the 
initial daphnia of interest neared the edge of the tank. 
Thus, data in each histogram below are gathered from 
multiple animals, typically three to four. 

After data collection, we fitted the experimentally 
measured histograms with various distributions, each of 
which contains a clearly defined width parameter (available 
for "tuning" in the simulations). We narrowed the selection 
to those fits with the highest R-squared values, which are 
presented in Table I for each parameter and species. 

We selected distributions for use in our simulations 
based on Table 1 in combination with real biological 
constraints of zooplankton movement, as discussed below. 

2.1. Hop lengths 

Although some relatively long hop lengths do appear in 
the recorded data, a three-parameter Lorentzian distribu­
tion allows for extremely large values of the hop length 
parameter, which are completely unrealistic for the 
hop pause turn sequences of Daphnia movement. Further­
more, the two-parameter exponential decay fit shows 
significantly lower R-squared values than all other results· 
so this fit was excluded as well. Therefore, the th~ 
parameter Gaussian, 

P(/) = K exp [ -0.5 (' ~Ia) 
2

] , (1) 

Table I 
R-squared values are given for different fits to the experimental hop length 
and pause time data 

R-squared values distributions Hop lengths Pause times 

D. pulex D. magna D. pulex D. magna 

Threo-parameter Gaussian 0.88 
Threo-parameter Lorentzian 0.84 
Two-parameter exponential decay 0.82 

0.94 
0.89 
0.65 

0.87 0.94 
0.89 0.94 
0.88 0.85 
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was chosen to represent the hop length data, where I is the 
hop length, /0 is the peak of the distribution (i.e., the most 
probable hop length), A.0 is the noise width of the hop 
length distribution, and K is a normalization constant. 
Experimentally recorded hop length data are shown in 
Fig. 2A and B for the two species respectively. 

2.2. Pause times 

Although a range of pause times was observed experi­
mentally, as shown in Fig. 3, extremely long pause times 
are not observed in actual Daphnw movement, and thus the 
three-parameter Lorentzian distribution was excluded 
because it allows unrealistically long pauses. For represen­
tation of the pause time data, both the Gaussian and 
exponential decay fits show high R-squared values. Indeed, 
the Gaussian and exponential fit overlay each other exactly 
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Fig. 3. (A) Pause time histogram for D. pulex, where the solid line is a fit 
using Eq. (2) with No~ 66.9 and to= 0.26± .04 s. In this case, a Gaussian 
Iiiio the data is completely covered by the exponential lit (solid line). (B) 
Pause time histogram for D. magna with the solid line showing an 
exponential fit (Eq. (Z)) with No~ 112.1 and to = 0.35 ± .06 s; dotted line 
shows a Gaussian fit. N is the total number of pauses gathered from 
multiple animals, typically three to four. Error bars show the square root 
of the number of counts in each histogram column. 

in the D. pulex histogram (see Fig. 3A). The Gaussian fit to 
the D. magna data (Fig. 3B) does not, however, allow for 
the several longer pause times which appear, and which 
could be observed experimentally as a result of the "hop 
and sink" motions Daphnia use when searching in a food 
patch (Larsson and Kleiven, 1996). Therefore, the expo­
nential decay fit (2) 

P(T) =No exp[ :A, (2) 

was chosen, where Tis the pause time, -r0 the noise width of 
the distribution, and N0 is a normalization constant. In 
Fig. 3, we show the histograms of the pause times recorded 
for the two species. 
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2.3. Turning angles 

The distributions of unsigned turning angles were 
described in Garcia et al. (2007) using exponential 
distributions, 

P(a) =No exp[-~) , (3) 

where <X is the turning angle, and u0 is the noise width of the 
distribution. Noise widths were found to be 
170 = 0.74±0.1 radforD. pulex, and uo = 1.2±0.1 rad for 
D. magna. In the actual experiments, the Daphnia turning 
angle distributions were symmetrical about the vertical 
axis, with approximately as many left turns (negative) as 
right turns (positive). In the simulations described below, a 
random sequence of positive and negative turning angles 
is generated from the distribution (3), with either sign 
(i.e., direction) equally probable. In order to study the 
effects of different noise widths, we generate such distribu­
tions and sequences for a variety of values of 170• 

3. Simuladon methods 

We simulate the movement of "agents", or virtual 
animals, foraging in circular food patches of radius R 
within an unlimited, continuous two-dimensional space. 
For each simulation trial, 10 agents starting from random 
locations within the patch move simultaneously as random 
walkers in a hop pause turn sequence. They traverse the 
patch, and compete for resources that they find either along 
their path (first feeding protocol), or during the pauses 
between hops (second feeding protocol). The total amount 
of food eaten by the 10 agents is tabulated, and then 
averaged over thousands of separate trials. 

The food patch is covered with a grid of2.5 x 106 "food 
cells". Each cell is represented by a row and column index, 
and is considered as containing a food particle which is 
available to be "eaten" by an agent. Once an agent eats a 
food particle in a particular row and column, the particle is 
removed (no longer available to be "eaten" by any of the 
agents) and tabulated as part of the total food gathered by 
the group of agents. However, notice that it is not 
advantageous for agents to travel too closely to their own 
paths or the paths of other agents, as the food in these 
areas will have been removed. Also, if the agents travel 
outside of the food patch, they will not find food there 
either, though their movement is unimpeded. 

Two different feeding protocols have been used in the 
simulations, inspired by the traits of real Daphnia. In order 
to feed, Daphnia "hop" along by intermittently pulling 
themselves forward with strokes of their large second 
antennae. Meanwhile, bristly thoracic legs flutter con­
stantly inside the carapace (outside shell) of the animal, 
creating a constant current Oow of the surrounding 
medium through the carapace cavity (Pennak, 1953). The 
bristles filter food particles from the medium whenever 
the legs are beating. This can occur, for instance, along the 

path as the animals hop (first feeding protocol used in the 
simulations) or as the animals siphon the medium while 
pausing between hops (second feeding protocol). 

3.1. First feeding protocol 

The agents feed during the hop segment of a hop pau­
se turn sequence. The length of travel for each agent is 
always fixed, and is therefore proportional to the total 
foraging time. Pauses in this case are irrelevant. During 
the walk, each cell (food particle) touched by an agent 
is removed (eaten) and tabulated; this food particle is 
subsequently not available to be eaten by that or any other 
agent. 

For simulations in which the turning angle noise width is 
varied, the hop length I is fixed, and turning angles IX are 
chosen at random from the distribution (3). Each agent 
executes N total hops, eating along the hops, and with total 
travel length Nl. When an agent reaches the end of the fixed 
length of travel, the walk is terminated. The output of the 
simulation is the total food gathered as a function of the 
noise width of the turning angle distribution. 

In another group of simulations, the turning angle 
distribution is fixed; it is defined by a noise width which 
had produced a maximum in food gathered as the turning 
angle noise width had been varied. Hop lengths are chosen 
at random from the distribution (1), while the hop length 
noise width is varied. The total length traveled is again 
fixed, and quantified as ~1 1; . The output of the 
simulation is the total food gathered as a function of the 
noise width of the hop length distribution. 

3.2. Second feeding protocol 

In our second feeding protocol, agents feed only during 
pauses in the hop pause tum sequence. Each hop is 
therefore separated from the next hop by a pause time T; 
taken from the distribution (2). At the end of each hop, the 
agent feeds within a small circle of area A;= pT;, where pis 
the ingestion (feeding) rate. During a pause, all food cells 
located within the area A; are removed from the food patch 
(eaten) and tabulated. Therefore, the area cleared, and 
hence, the amount of food consumed, is proportional to 
the pause time, T;. When consecutive pause times T; 
accumulate to the total fixed feeding time for each agent in 
a trial, the agents' walks are terminated. 

4. Simulation results 

Using the first feeding protocol (feed during hops, fixed 
hop length, no pause, random turning angles) we studied 
the amounts of food gathered as a function of the turning 
angle distribution width (turning angle noise width). Here 
we have assigned the dimension mm to the hop length 
and to the radius of the circle, because these numbers 
are realistic for real foraging Daphnia. (For example, 
(/) = 0.97mm for D. mllgna.) In Fig. 4A, we show the 
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Fig. 4. first feeding protocol, bop length fixed. Food gathered versus 
turning angle noise width. In each trial, 10 agents are started at random 
locations within the food patch all feeding simultaneously. Five thousand 
trials were perfonned for each turning angle noise width a0 • The statistical 
precision is approximately the size of the symbols, and hence error bars 
are omitted. (A) Food gathered versus turning angle noise width for the 
four fixed bop lengths indicated, with food patch radius R = IOOmm and 
total distance traveled Nl = 400mm. (B) shows the same measure for three 
different totaltrajectOty lengths, with bop length fixed at I= I mm. 

food gathered as a function of turning angle noise width 
for four values of fixed hop length. Other conditions of the 
simulation are given in the figure caption. Fig. 4B shows 
the food gathered versus turning angle noise width for 
three values of the total distance traveled (proportional to 
feeding time) using an identical hop length of I mm. Both 
panels show that a maximum in food gathered occurs at 
particular values of the turning angle noise width. 

In the next simulation, we vary the hop length noise 
width, Ao, defined in Eq. (1). The values of /0 and K in 
Eq. (I) are held fixed at the average lit values of these 
parameters for the two species, as reported above. For each 
hop, a turning angle is chosen from the distribution given 
in Eq. (3), with the turning angle noise width fixed at 
o-0 = 0.82 rad. This is the value which bad resulted in the 
maximum food gathered in Fig. 4A. We truncate the choice 

1.278+4 

J 1.268+4 
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~ 1.25e+4 

u. 
1.24e+4 

1.23e+4 +--------.-------~ 
0.1 1 10 

Hop length Distribution Wdth (mm) 

Fig. 5. first feeding protocol, hop length random. food gathered versus 
bop length noise width. TurninJ angles were chosen from a distribution in 
the fonn of Eq. (3) with noise width a0 .. 0.82 rad. Hop lengths were 
chosen from the distribution described by Eq. (I), for various values of Ao. 
with /0 = 0.68mm and K = 93.5 (the averages of the values for the two 
species; see Fig. 2). R = IOOmm, and Nl = 140mm. Seventy-five thousand 
trials ( 10 agents each trial) were accomplished for each value of A0• 

of hop lengths at 5.0mm because, as shown in Fig. 2, this 
limit is close to the experimentally observed upper limits 
for D. magna and D. pulex. The results shown in Fig. 5, 
therefore, reflect bop lengths chosen from the distribution 
Eq. (I) ranging from 0.1 to 5.0mm. 

We note that again there is a maximum in food gathered 
at a particular noise width. In this case, the food gathered 
peaked at a hop length distribution with Ao = 1.13 mm. 
Although the results of this simulation show less variation 
in total food gathered than in other simulations, it should 
be noted that the turning angles are chosen from already 
"optimized" distributions. The smaller percentage increase 
in food gathered near the maximum in this case suggests 
that there is little room left for improvement after the 
turning angle noise width has been tuned. Nonetheless, the 
observation of any peak at all in Fig. 5 provides a proof-of­
principle demonstration of a stochastic resonance effect as 
the noise width of the hop length distribution is varied. 

We now turn to the second feeding protocol, in which 
the agents feed during pause times only. First, we repeat 
the simulations of food gathered versus turning angle noise 
width, just as we did for the first feeding protocol as shown 
in Fig. 4, except that the foragers now feed during pause 
times. The results are shown in Fig. 6A for several different 
fixed hop lengths. Fig. 6B shows the effects of different 
ingestion rates at a fixed bop length. The ingestion rate is 
given as food cells consumed per second; recall that there 
are initially 2.5 x 106 total food cells in the entire food 
patch. As with the first protocol, we lind maxima in the 
amount of in food gathered as turning angle and bop 
length noise widths are "tuned". 

In order to complete the comparison between the two 
feeding protocols, we investigate the food gathered under 
the second feeding protocol while varying the bop length 
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Fig. 6. Second feeding protocol (feeding during pauses). Food gathered is 
shown as a function of turning angle noise width for a total feeding time of 
140 s. (A) Results for several fixed hop lengths with a fixed ingestion rate 
of 2000 food cells consumed per second. One thousand and five hundred 
trials were accomplished (10 agents per trial) for each value of the turning 
angle noise width, a0 • (B) Simulations with four different ingestion rates, 
using a fixed bop length of 3.0mm. Two thousand and five hundred trials 
were accomplished (I 0 agents per trial) for each chosen value of the 
turning angle noise width, 110• 

noise width. Again, the choices of bop length are truncated 
to a range of 0.1 5.0 mm. The turning angle is selected at 
random from the distribution (3), with Go == 1.01 rad, 
corresponding to the value at which maximal food was 
gathered in Fig. 6A. As before, /0 and Kin Eq. (I) are fixed 
as the average values of these fit parameters between the 
two species. The results are shown in Fig. 7. 

Again, we find a clear peak in the amount of food 
gathered. In the following section we discuss the implica­
tions of these observations. 

5. Discussion 

It is not difficult to understand, from a purely 
mathematical standpoint, why there are maxima in the 
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Fig. 7. Second feeding protocol (feeding during pauses). Food gathered 
versus bop length noise width. Turning angles were chosen from the 
distribution given in Eq. (3) with the noise width 110 = 1.01 rad. Hop 
lengths were chosen from tbe distribution Eq. (I) for various values of Ao. 
with /0 = 0.68 mm and K = 93.5. The ingestion rate used was 2000 food 
cells consumedfs. R = IOOmm, and Nl = 140mm. Twenty-five thousand 
trials were accomplished (10 agents each trial) for each value of A0. 

amount of food gathered, at least in the case of the turning 
angle distribution. Consider three possible turning angle 
distributions as sketched in Fig. SA. At the extremes are 
very wide (far left panel) and very narrow (delta function, 
far right panel) distributions. Now consider three example 
trajectories (illustrated in Fig. SB) generated with turning 
angles taken from the distribution (3), with three different 
values of the noise width Go. Foragers using trajectories 
with Go= 0.3 rad (very narrow, delta function-like) or 
Go= 5.0rad (very wide, nearly uncorrelated Brownian· 
like), will gather less food than those utilizing distributions 
with the intermediate noise width. The wide distribution 
leads to too many path-recrossing events, and the agent 
spends too much time in a localized region, thus depleting 
the resources there, while leaving the outer regions of the 
food patch unexplored. The narrow distribution, on the 
other hand, leads to nearly straight line motion over 
considerable distances, and the agent escapes the food 
patch too quickly to exploit the resources. Clearly, there 
must be a preferred width of the turning angle distribution 
between these two extremes. 

As a further illustration of a preferred noise width, our 
simulations have shown that maxima exist for each 
characteristic of the motion investigated (turning angles 
and hop lengths), and for both feeding protocols. The 
locations of these maxima, however, shift slightly depend­
ing on the conditions of each simulation. It is qualitatively 
possible to understand the displacements of these maxima. 
For example, Fig. 4A shows that the peak in food gathered 
exists at higher values of the turning angle noise width 
when the (fixed) hop length is increased. We note from 
Fig. 8 that larger turning angles, on average, lead to 
tighter, more localized trajectories (blue trajectory). 
The converse is also true; small turning angles lead to 
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Fig. 8. (A) ldm.lized wide, intermediate, and narrow turning angle 
distributions. (B) Three example trajectories for narrow (oro= 0.3 rad, 
red trajectory), prefem:d (oro- 0.8 rad. black trajectory), and wide 
(oro = 5.0 rad, blue trajectory) noise widths of the turning angle distribution. 

straighter, more directed motions (red trajectory). Increas­
ing the hop length by itself would simply lead to less 
compact trajectories. The system compensated by shifting 
the peak towards higher values of the turning angle noise 
width. Fig. 48 shows that the location of the peak in food 
gathered does not move horizontally with increasing total 
length traveled (increased feeding time). Since no statistical 
characteristics of the trajectories are changed, we do not 
expect the preferred noise width value to change. The 
amplitude of the maximum (in food gathered) simply 
increases with feeding time, as one would expect. Fig. 6 
shows that these characteristics arc preserved with the 
second feeding protocol. However, Fig. 6B inrucates that 
the preferred turning angle noise width decreases slightly as 
the feeding rate increases. This is also possible to under­
stand. As the circles where food is gathered increase in area 
(larger feerung rates during similar pause times), the agent 
must reduce, on average, its turning angles in order to 
achieve more directed trajectories. These allow the agent to 
escape localities where, at large feeding rates, resources are 
depleted more rapidly. 

Much like the agents in the simulations, real zooplank­
ton also show signs of adjusting their trajectories in 
response to foraging conditions. Light intensities (e.g., 
Ringelberg, 1987), odors of predators (e.g., Pijanowska 
and Kowalczewski, 1997), odors of prey (e.g., Buskey, 
1984; van Gool and Ringelbcrg, 1996), visual or chemo­
sensory perception of possible mates (e.g., Strickler, 1998), 
and turbulence (e.g., Saiz et al., 1992; Kierboe and Visser, 
1999) have all been noted to elicit specific behavior. 

Copepods often decrease their swimming speed (Strickler, 
1982; Cowles and Strickler, 1983; Buskey, 1984; Tiselius, 
1992; Bundy et al., 1993) or increase their turning rate 
(Tiselius, 1992; Bundy et al., 1993) in areas of high food 
concentration. Daphnia also slow down when encountering 
abundant prey (Cuddington and McCauley, 1994; Larsson 
and Kleiven, 1996); they decrease their path lengths (over 
time) and travel in a hop-and-sink motion rather than a 
hop pause turn sequence. Zooplankton may also, pre­
sumably, be forcing larger quantities of the surrounding 
medium through their bodies in these environments 
(Strickler, 1982); everything works together to increase 
the prey encounter rate. 

In the case of a high density of uniformly distributed 
food, it bas been shown that uncorrelated purely Brownian 
motions are less than optimum; instead, correlated random 
walks have often been found to result in optimal foraging 
(e.g., Kareiva and Shigcsada, 1983; Berg, 1993; Byers, 
2001). The Levy statistic has also been applied to foraging 
trajectories observed for microzooplankton (Bartumeus 
ct a!., 2002), which, interestingly, transition from Brownian 
statistics when resources are plentiful and uniformly 
distributed to Levy statistics when resources become sparse 
or patchy (Bartumeus et al., 2003, 2005; Bartumeus, 2007). 
Our results provide a mathematical context for these 
behavioral adjustments. 

It has been argued in a variety of cases that success in 
foraging for food enhances an animal's fitness. This theory 
was applied most notably to Darwin's famous finches 
(Sulloway, 1982; Grant, 2003), and has continued through 
more modem applications such as Parker and Maynard 
Smith (1990) and Lemon (1991). Dodson et al. (1997), 
studying the effects of light and food on inruvidual 
organisms (clones) of D. pulex and D. magna, suggested 
that "[a]mong-clone differences in food and light effects 
may be the result of natural selection." We suggest that, as 
an example of natural stochastic resonance, the distribu­
tions which represent the choices of foraging movement 
parameters of an organism have characteristic noise widths 
which may be "tuned" to more advantageous values by 
natural selection over many generations. 
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Abstract 
Search strategies are currently of great interest, with reports on foraging ranging from 
albatrosses and spider monkeys to microzooplankton. Here, we investigate the role of noise in 
optimizing search strategies. We focus on the zooplankton Daphnia, which move in 
successive sequences consisting of a hop, a pause and a tum through an angle. Recent 
experiments have shown that their turning angle distributions (fADs) and underlying noise 
intensities are similar across species and age groups, suggesting an evolutionary origin of this 
internal noise. We explore this hypothesis further with a digital simulation (EVO) based solely 
on the three central Darwinian themes: inheritability, variability and survivability. Separate 
simulations utilizing stochastic resonance (SR) indicate that foraging success, and hence 
fitness, is maximized at an optimum TAD noise intensity, which is represented by the 
distribution's characteristic width, a. In both the EVO and SR simulations, foraging success is 
the criterion, and the results are the predicted characteristic widths of the TAOs that maximize 
success. Our results are twofold: (1) the evolving characteristic widths achieve stasis after 
many generations; (2) as a hop length parameter is changed, variations in the evolved widths 
generated by EVO parallel those predicted by SR. These findings provide support for the 
hypotheses that (1) a is an evolved quantity and that (2) SR plays a role in evolution. 

IMJ This article features online multimedia enhancements 

(Some figures in this article are in colour only in the electronic version) 

Introduction 

In its most general form, stochastic resonance (SR) is a 
process whereby the addition of a rand001 function, or 'noise', 
can optimize a physical or biological process (Wiesenfeld 
and Moss 1995). SR has been studied for many years 
and was discovered in sensory biology well over a decade 
ago (Douglass et al 1993). In nearly all experiments with 
SR. the noise was added from an external source, such as 
environmental noise. However, considering the evolution 
of organisms, if such external noise is, or was, beneficial 
to sensory systems, one might expect natural selection to 
have exploited it, as suggested by Jaramillo and Wiesenfeld 

1478-3975108!04400 I -t%$30.00 

(1998). If the advantageous use of noise was subsequently 
internalized, one might also expect to find neural circuits in 
the central nervous system specifically designed to make use 
of SR. Indeed, experimental evidence for such a circuit in the 
Drosophila olfactory system has recently been reported (Shang 
et a/2007). Such circuits, as yet undiscovered elsewhere, may, 
however, be widespread. 

Here, we investigate the nexus between SR and animal 
foraging behavior, a topic of great recent interest (e.g., 
Viswanathan et al 1996, Bartumeus et al 2003, Boyer 
et al 2004, Shlesinger 2006, Buchanan 2008). As a 
behavior, foraging is subject to noise in the form of a 
presumably internally-generated variability in an animal's 

C> 2008 lOP Publishins Ltd Prinled in the UK 
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choice of movements. Animal behavior mediated by internal 
noise has been reported in two other experiments with 
Drosophila (Maye et al 2007, Reynolds and Frye 2007), 
and more recently in human psychophysics experiments 
(Emberson et al 2007). In our previous experiments, 
Daphnia foraged in a patch with uniformly distributed 
food, moving in approximately two dimensions. In the 
absence of directional stimuli (such as visible light or non­
uniform food distribution), their turning angle distributions 
(fADs) [-71' to 71'], with left-hand and right-hand turns 
equally probable, were well described by an exponential 
function (Garcia et al 2007), P(a) = N0 exp[-lal/a], 
where a is the turning angle, N0 is the number of angles 
observed and a is the noise intensity (characteristic angle 
or width) of the TAD, the primary quantity measured in the 
experiment. Sincethevaluesof a werequitesimilaracross five 
different species, including adults and juveniles of two species, 
we suggested that the noise intensity is an evolved property 
(Garcia et al 2007). Additional evidence for an evolutionary 
origin of a has recently emerged from experiments with single 
cells of two different species of slime mold searching for a 
chemical signal in a two-dimensional space. In the absence of 
directional stimuli, both species exhibited exponential TAOs 
(Liang et al 2008) similar to those we observed in Daphnia 
(Garcia et al 2007). 

To further study the hypothesis that the characteristic 
widths of TAOs are evolved quantities, we have developed 
a model-free simulation, EVO, of natural selection using 
the simplest and fewest possible assumptions. We compare 
the results of EVO with simulations of SR similar to those 
performed by Garcia et al (2007) and Dees et al (2008) which 
indicate the values of o that are optimum for foraging success. 
These simulations are designed to answer the question: how 
might the observed exponential TAOs and their characteristic 
widths have arisen? 

Methods 

EVO simulation 

EVO updates an evolving TAD at each generation, 
commencing with a uniform and uncorrelated distribution 
of turning angles ranging from -71' to +71'. This initial 
distribution represents the 'primordial noise', or variability, 
that is available at the beginning of the natural selection 
process as originally discussed in detail by Darwin (Gould 
2002). Twenty agents forage independently in circular food 
patches of radiusR = I 00 units. The patches are covered with a 
uniform gridof71'·10'i square cells, 0.1 x 0.1 units in size. The 
cells represent food particles to be 'consumed' by the agents. 
Each agent traverses a total distance of 1500 units (simulating 
a fixed feeding time). The agents can move within or outside 
the patch, randomly choosing a new turning angle at each hop 
from the current TAD. All food particles that the agents cross 
directly while completing their trajectories are removed from 
the food patch, 'consumed', and tabulated. After all agents 
have completed feeding, the single agent that collected the 
most food is identified. Only this most successful agent is 

2 

55 

Communication 

allowed to supply information critical to fitness to the next 
generation of agents. A distribution is created from its choices 
of turning angles, and a fraction, h. the inheritance of this 
distribution, is added to the evolving TAD. The next generation 
of foragers chooses random angles from this modified TAD, 
and the updating process continues indefinitely. 

We emphasize that the 'inheritance' consists only of a 
slight bias in the next generation toward the set of choices made 
by the most successful feeder in the preceding generation. 
This does not mean that all members of the next generation 
will acquire the feeding strategy of the ancestral 'winner', as 
the angles are chosen randomly from the evolving distribution. 
Indeed, due to the random nature of the simulation, a number 
of the 'chii<h'en' will perform even worse than their gluttonous 
ancestor. 

Daphnia in the wild exhibit so-called die/ vertical 
migration (Zaret and Suffern 1976, Ringel berg 1993), avoiding 
predators by spending the daylight hours near the bottom of a 
lake or pond (Bollens and Frost 1989) while thin patches of 
photosynthetic algae (Derenbach et al 1979, Lampert 1989, 
Cowles et al 1993, Franks and Jaffe 2001) develop near the 
surface. At night, Daphnia rise to the surface to feed on this 
algae, and therefore are forced to swim in approximately two­
dimensional planes. Also, fractal characterization of three­
dimensional Daphnia pulex swimming trajectories has shown 
that their paths are much less vertically complex than pure 
three-dimensional random walks, and also that they typically 
travel within 4 em vertical planes (Uttieri et a/2005). We thus 
justify our two-dimensional approximation in this regard. 

In our simulations, the hop length is treated as a fixed 
parameter. The ratio of hop length to food patch radius is a 
dimensionless parameter. We hold the radius fixed at 100 units 
as described above, and perform simulations for three values 
of the hop length. The resuhs can be compared to experimental 
studies of Daphnia foraging if we take one unit in our 
simulation as equal to 1 mm, comparable with the average 
hop length for D. magna of 0.95 mm (Dees et al 2008). 
Following this analogy, we can consider the food patches used 
in our simulations as circles of radius 100 mm. This choice 
is in agreement with high density food (phytoplankton/prey) 
patch sizes measured in freshwater (Doubell 2008, personal 
communication) as well as in marine environments (Doubell 
et a/2006, Franks and Jaffe 2001). 

SR simulation 

In the SR simulation, agents again forage in food patches as 
defined in the EVO simulation while traversing a fixed distance 
(1500 units). Apart from these two constraints, the EVO and 
SR simulations are completely independent. 

At the end of each hop during the SR simulation, an 
agent chooses a new turning angle at random from a normal 
distribution (see discussion below) using a predetermined 
width, o . Any food particles touched by the agent along its 
trajectory are removed from the patch and tabulated. Twenty 
agents feed in this manner for the chosen value of a. The 
maximum food gathered by the agents in this population of 
20 is then recorded, disregarding extreme outliers (values ;:.::. 3 
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Figure 1. (a) Food gathered by the most successful a gem in each generation o f the EVO s imulation versus generation number for three 
values of the inheritance parameter II as indicated. Insets show normalized turning angle distributions (P(a) versus a. with a ranging from 
- ;r to ;r ) for h = I / 50 at genera tion 600 (wide distribu tion) and generation 7000 (narrow distribu tion). Asymptotic TADs averaged across 
len tr ials with the hop lengths indicated for h = 1/ 50 are shown in (b)-(d). The dashed l ines are fit s to the normal distribution with 
parameters detem1ined by maximum likelihood e tinution. The width of each distr ibution yields a value o , as listed in table I . tb) o == 
0.42 ± 0.01 rad. (c) o == 0.57 ± 0.02 rad and (d) o = 0.70 ± 0.02 rad. Error bars represent the inheritance . II (1 / 50). multiplied by the bin 
height. representing the maxinmm possible inter-generational change in bin height. The insets in (b) d) show example trajectories inside 
circul ar pa tches. 

Table I. Asymptotic. optimal and mcasure.d values of 0'. 

Hop length 
(mm) 

Asymptotic noise 
intensity \EVO)' (rad) 

Optimal noise intensity 
( SR)b (rad) 

Average experimental 
noise intensity' (rad) 

0.5 
1.0 
1.5 

0.42 ± 0.0 1 
0.57 ± 0.02 
0.70 ± 0.02 

0.33 ± 0.06 
0.50 ± 0.09 
0 .61 ± 0.10 

1.06 ± 0.1 

' Values are the mean and standard deviation of ten trials; h = I / 50. 
b Values are the mean and tandard devia tion of I 00 trials . 
' Value is averaged over data from 5 species . as well as juveniles from 2 of these species. 
Precision is estinlated; see Garcia e/ at (2007 ). 

inter-quartile ranges from the third quartile). Next, a second 

value of a is chosen , and a second populat ion of 20 agents 

feed. with the maximum food gathered again recorded. This 

process continues for .t6 values of a ranging from 0. 1 to 

10 rad , constitut ing a single trial. The resu lt of a trial is a curve 

ofmaximum food gatheredasafunctionofa. Weperfonn 100 

such trials , and then calculate the particular value of o which 

results in the peak of the curve for each tria l. These 100 values 

of a are averaged, and the average (and standard deviation) is 

reported in tab le 1 as the optim al SR noise intensity. 

3 

For a more detailed descript ion of the EVO 
and S R algorithms. see the supplementary material 
stacks.iop.org/PhysBio/5/044001 . 

Resu lts 

Figure 1 (a) shows the food gathered by the most successful 
agent in the EVO simulation as a function of the number 
of generations. The food gathered plateaus after a number of 
generations depending on the va lue of inheritance parameter h. 
with larger values of II leading to stasis in earlier generations, 
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as expected. Insets show examples of the evolving TAOs 
which begin with wide characteristic widths (large o) and 
become narrower (smaller o) in later generations. Similar 
plateaus arise often in both natural and artificial selection 
(Falconer 1981, Robertson 1980). Note that these plateaus 
are achieved in remarkably few generations, a testament to the 
power of natural selection (Endler 1986). Surprisingly rapid 
evolutionary processes have also been shown in other natural 
selection-based (albeit model-dependent) simulations, such as 
Nilsson and Pelger's model for the evolution of the fish eye 
(1994). 

Asymptotically achieved TAOs, together with Gaussian 
fits and representative trajectories, are shown in figures 1(b)-­
(d). The choice of normal fitting curves is the result of 
statistical analysis of the asymptotic distributions. The shapes 
of the evolving and asymptotic distributions, and consideration 
of the experimental data, suggest null hypotheses that 
correct fits would either be Laplacian (double-exponential) 
or normal. We calculated the Cramer-von Mises W2, the 
Watson T.J2, the Anderson-Darling A2 and the Kolmogorov­
Smirnov D statistics (D'Agostino and Stephens 1986, Ffron 
and Tibshirani 1993, Puig and Stephens 2000) for the 
empirical distribution functions to help discern between the 
two possibilities. Although one might immediately expect 
normal distributions based on the central-limit-theorem, we 
point out that this applies only in the limit of a large number 
of observations, which may not apply to the foraging situation 
under investigation here. Our model, for instance, does not 
involve an infinite number of experiments with ir!finite sets of 
turnir!g angles; nor do we model either an infinite feeding time 
or a food patch of ir!finite size. 

A table detailing the results of our statistical analysis is 
provided iri the supplementary material. Briefly, assessment 
of the Laplacian null hypotheses for the hop length value 
1.0 mm gave W 2 = 0.191, T..f2 = 0.151, A2 = 1.191 and 
D = 1.102, qualifying the null hypothesis to be rejected at the 
0.025, 0.01, 0.025 and O.Dl levels, respectively. However, for 
the normal distribution, the statistic values of W2 = 0.084, 
T..f2 = 0.080, A2 = 0.512, andD = 0.814reject the normal null 
hypothesis at the 0.25 level for the first three statistics, and 
at the 0.1 level for D. The significance levels we report show 
that neither distribution has been rejected outright by all tests, 
although there is convincingly less evidence that our resultant 
distribution is Laplacian. 

Figure 2(a) shows o as a function of generation for three 
different values of h, while (b) shows o as a function of 
generation for different hop lengths. In each case, as in 
figure l(a), stasis is achieved as the number of generations 
increases. Note that, in figure 2(b), the evolved value of o 
increases as hop length increases. Stasis values of o shown in 
figure 2(b) are reported in table 1. It is these final asymptotic 
values of o that we consider to be evolved quantities. But 
the question immediately arises: are these evolved quantities 
optimal for foraging success? If they indeed arise from natural 
selection, then we expect that they might in fact be optimal as 
consistent with a 'strict Darwir!ian' interpretation of natural 
selection. We independently test this assertion using the 
stochastic resonance simulation to extract optimal values of 
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Flgure 2. (a) Evolution of o using different values of the 
inheritance, h, with the hop length parameter fixed at 1 mm shows 
an asymptotic approach to similar values of o. Note lessening 
variability in curves with lesser inheritance. Curves represent 
averages over two trials. (17) Evolution of o using different values of 
fixed hop length shows asymptotic behavior to different values of a. 
Curves represent averages over ten trials. 

u, which are then compared with the experimental findings 
of Garcia et al (2007), and with the predictions of EVO, 
in table 1. 

In the SR simulation, the maximum value of food gathered 
was averaged over 100 trials for each value of o. Plotting these 
values for food gathered versus u results in classic SR curves, 
shown in figure 3, whereir! a beneficial feature (food gathered) 
is maximized at optimum noise intensity ( u ). We find that the 
optimum noise intensities for SR are typically intermediate 
values of o ; in other words, TAOs that are either too narrow or 
too wide lead to less than optimal foraging efficiency. We also 
note that the optimum noise ir!tensity increases as hop length 
increases, a result that 'tracks • similar findings from the EVO 
simulation (see figures 1(b)--(d), 2(b) and table 1). 

Discussion 

Comparison of figures 2(b) and 3 (and the first three columns 
in table 1) shows that our evolutionary simulation converges on 
a solution to the foraging problem similar to that achieved with 
the SR algorithm. Optimal foraging is achieved at increasir!g 
values of u for increasing hop length. This is found both in 
the values of u for which the SR algorithm achieves maximum 
food gathered, and in the asymptotic values of u achieved with 



Phys. Bioi. 5 (2008) 04400 I 

~ 1.6 .. 
:fi 
.!:!. 

"! 1.2 .. 
i! • "' l 0.8 

0.2 

••••••• Hop Length 0.5 
-- Hop Length 1.0 
---- Hop Lcagth 1.5 

1.0 
TAD Wldtb, tT (rad) 

5.0 

Figure 3. Food gathered versus u for the three bop lengths 
indicated, calculated using the SR simulation. Curves are averaged 
results from I 00 trials; error bars, shown every third point on each 
cwve, represent the standard deviation. Each trial incorporates 20 
independent determinations of the food gathered by an agent for 
each of 46 values of u. Here, we only sbow values of u from 02 to 
5 rad on lhe horizontal axis. 

EVO. Furthermore, the two algoritlnns lead to very similar 
optimal noise intensities. While these results do not prove the 
two hypotheses stated above, they offer substantial support in 
their favor. 

Since both algoritlnns are performing optimizations 
independently, it is quite remarkable that they converge on 
similar solutions. The result that both optimal (SR) and 
asymptotically achieved (EVO) values of o increase with 
hop length can be explained at a 'geometrical' level with 
the following argument (see also the discussion in Dees et 
al (2008)). It is clear that larger turning angles (distributions 
with larger o) lead to more compact trajectories, while smaller 
turning angles lead to straighter trajectories. The latter case, 
combined with larger hop lengths, leads to the feeding agent 
quickly leaving the food patch, and hence to a decreased 
feeding efficiency. Thus, optimal feeding will be achieved 
at wider turning angle distributions for longer hop lengths, a 
result shown both in the SR and the EVO simulations. 

How does one interpret the shapes of the evolved 
distributions? Higher animals, such as albatrosses 
(Viswanathan et a/ 1996), monkeys (Boyer et al 2006) 
and marine predators (Sims et al 2008), including humans 
(Bertrand et al 2007), searching in non-uniform environments 
can make complex cognitive decisions about where food is 
located (Boyer et al 2006). Their foraging behavior has 
been described using Levy-shaped distributions, though this 
description has recently been revised in the cases of some 
animals (Edwards eta/ 2007). Trajectories of smaller animals 
such as Daphnia cannot be described using Levy statistics 
since the animals move through short hops of limited distance. 
In contrast, experimental studies of slime mold cells (Liang 
et al 2008), and the studies of foraging Daphnia (Garcia 
et al 2007, Dees et al 2008) which motivated our present 
paper suggested exponential turning angle distributions. 
Maxima can be obtained from the SR algoritlnn regardless 
of whether it is based on exponential distributions as in Dees 
et al (2008), or based on normal distributions as in the present 
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study. Our model-free approach in EVO, however, seems to 
'prefer' the Gaussian distribution 

The areas of largest disagreement between the Gaussian 
fits and the evolved distributions in figures 1(b)-(d) lie near 
the extremities of the distributions. This is even more apparent 
when looking at individual rather than averaged distributions 
(data not shown). This may be a result of the algorithm 
itself, which consists of repeated percentage-wise subtractions 
from the 'parent' distribution followed by the addition of the 
inheritance. This may lead to a gradual tapering of the evolving 
distribution in low-percentage areas, possibly diminishing 
the outer edges of the tails. Furthermore, looking at the final 
results, for each hop length tested, the peak noise intensities 
extracted by SR are slightly less than those predicted by EVO. 
We suggest that because foragers in SR are selecting angles 
from perfectly formed TAOs, they have access to all angles 
throughout the entire distribution [ -n- to n-], including the 
furthest reaches of the tail. If EVO does indeed systematically 
diminish some of the tail, the only way that foragers in EVO 
will have access to these angles is to foster slightly wider 
distributions, where the angles they need are no longer in the 
outer tail regions. Still, the values of table 1 show definite 
agreement between the two models. 

Our results follow the conventional view of natural 
selection as an 'optimizing' mechanism, famously critiqued 
by Gould and Lewontin (1979). Ultimately, however, the 
problem is deeper-and evolution more subtle---than that. 
Natural selection is constrained by the physical limitations 
of animal morphologies, as well as by historical contingencies 
that may privilege less-than-optimal solutions. Nonetheless, 
traces of optimization remain, as, perhaps, in the observed 
turning angle distributions of real Daphnia and the single cells 
of slime molds. 
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Supplementary Material 

EVO Simulation 

The EVO simulation begins with an initially uncorrelated distribution of turning angles, D1(a), 
ranging from -1t to +7t. This represents the "primordial noise" that is available at the beginning of 
the natural selection process as originally discussed in detail by Darwin (Gould 2002). We divide 
the angular space into 63 bins and initially write N/63 into each bin, where N is the total number 
of angles to be chosen for a given agent's trajectory. A population of 20 agents represents the 
initial, or first generation of foragers. Each agent in this population begins to forage from the 
center of an independent food patch. (There are 20 separate food patches, one for each forager.) 
Each food patch is .a circle of radius 100 units containing a uniform distribution of n·106 food 
particles. The food particles are laid out in a grid of small boxes measuring 0.1 by 0.1 units. One 
box represents the radius of absorption of a forager. An agent independently chooses an angle at 
random from D 1(a), and this angle is tabulated in a register identified with that agent. The agent 
hops for a fixed hop length in the direction dictated by its choice of a. Along the hop, the position 
of the forager is determined every 0.05 units, and any food particle being directly touched by the 
agent at that time is removed from the patch and tabulated in a second register identified with that 
agent. Upon the end of the first hop, the agent again chooses another angle from DJ(a), and hops 
for a second time in a different direction determined by the new a. The new angle and any food 
particles touched by the agent during this hop are tabulated in the registers. After the trajectory 
extends to 1500 total units, the movement is terminated, and a new forager begins to feed in a 
new food patch. After this process is repeated for the entire population of 20, the registers for 
food collection are surveyed. The agent who gathered the most food particles is identified as the 
most successful and all other agents together with their registers are discarded. The turning angles 
chosen by the successful agent are used to modify the turning angle distribution using the formula 
Dl(a) = (1-h)D1(a) + hC1(a), where C1(a) represents the histogram of angles chosen by the most 
successful agent as distributed among the bins of D 1(a), and normalized to 1.0. C1(a) is 
attenuated by the inheritance, h (typically= 1150), ensuring a gradual change, and the addition of 
D1(a) multiplied by (1-h) preserves the total area (1.0) represented in the evolving probability 
distribution. Through this algorithm, information critical to survival is passed on to the next 
generation. A second generation of agents is created exactly as the first, and the iterative process 
commences again as before. However, the second generation chooses its turning angles from the 
modified distribution, Dl( a). At the end of the second generation, the turning angle distribution is 
updated again with survival information from the second generation's most successful agent to 
make D 3(a). The turning angle distribution evolves from generation to generation accordingly. 

After 10 trials ofEVO have been performed, the asymptotic noise intensities were determined for 
each hop length value as follows: The distributions for 10 trials of EVO at each hop length were 
averaged together at every generation. For this averaged set of TADs, the distribution width u 
versus generation number was calculated using the MLE technique; this data is shown in figure 
2b. Along these curves, we used a sliding window of 10,000 generations, and calculated the slope 
within each window. At the first window in which the slope changed sign from negative to 
positive, the first generation in the window was considered to be the first generation in the stasis 
state. The asymptotic noise intensity is the MLE value at this generation. We also mention that 
the same result can be achieved this way: u can be calculated generation by generation for each 
trial independently, and the first generation in the stasis state for each trial can be determined via 
the same windowing method. Then, the values of sigma for each generation following the onset 
of stasis can be averaged for each trial, and then across all 10 trials, giving the same asymptotic 
result as before. It is these asymptotic values of u that we call evolved quantities and compare 
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with the optimum widths predicted by stochastic resonance and with the experimental findings of 
Garcia et al. (2007) in table 1. 

SR Simulation 

In each trial of the SR simulation, 1 00 trials of 20 agents feed independently in a food patch for a 
range of predetermined values of a. The food patch is identical to that in the EVO simulation. It 
consists of a circle of radius 100 units containing a uniform distribution of n x 106 food particles, 
each represented by a small square of size 0.1 by 0.1 units. Each agent starts at the center of a 
fully-populated food patch and travels for a fixed distance of 1500 units. For each trajectory, a 
value of a is chosen, and by extension a normal probability distribution of turning angles, P a( a.)= 

No I ( a.J2;;) · exp[- Y2 (a - Jl i I if], is defined, where a represents a set of turning angles with 
mean p, N0 is the number of angles to be observed, and a is the noise intensity of the distribution. 
The choices of turning angle range from -n to +n, with the constraining provision that left and 
right-hand turns are equally probable (p = 0, as seen in the experimental data (Garcia et al. 
2007)). After N0 random turning angles are chosen from the defined distribution, the agent then 
executes N0 hops using the chosen angles until the trajectory is terminated after the last hop. Any 
food particles directly crossed by the agent along this trajectory are removed from the patch and 
tabulated. The maximum value of food gathered (within three interquartile ranges from the third 
quartile, in order to exclude extreme outliers) amongst the 20 foragers is then recorded, and the 
process begins again with a second value of a. This process continues for 46 values of a ranging 
from 0.1 to 10 radians (including the value of a predicted by EVO), constituting a single trial. 
The result of the trial is a set of values of maximum food gathered for each value of a tested, 
which, when plotted, results in a curve similar to that in figure 3. After 100 trials are completed, 
we calculate the value of a which results in the peak of the curve for each trial. These 100 values 
of a are averaged, and this average value and its standard deviation are reported in table 1 as the 
optimal SR noise intensity. The curves from these 100 trials are averaged and plotted in figure 3, 
with the standard deviation at each point of the curve represented by the error bars. 

Statistical Analysis 

Goodness-of-fit tests were performed on the asymptotic evolving distributions in EVO. We test 
the averaged asymptotic results from 10 evolved distributions for each hop length. Our first null 
hypothesis, HL, was that the empirical distribution functions (EDFs) were Laplacian distributions, 
and our second null hypothesis, HN, was that the EDFs were normal distributions. We then used 
a bootstrap method (Efron & Tibshirani 1993), creating 1000 samples of 100 random angles 
chosen from the averaged EDF in question, and for each sample calculated the Cramer-von Mises 
W2

, the Watson U2
, the Anderson-Darling A2

, and the Kolmogorov-Smirnov D statistic. (These 
statistical tests are outlined in Puig & Stephens (2000) for the Laplacian distribution, and in 
D 'Agostino & Stephens ( 1986) for the normal distribution.) We then determined the mean 
percentage points calculated from the 1000 samples, and compared these values to the 
significance level tables in the above references. The results are as follows: 
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Statistic, Laplacian % Significance Normal % Significance 
O.Smm Point Level Point Level 
wz 0.251 ± .11 0.01 0.128 ± .05 0.10 
uz 0.182 ± .05 0.01 0.123 ± .05 0.10 
A2 1.501 ± .68 0.01 .793 ± .36 0.10 
D 1.268 ± .21 0.01 .971 ± .18 0.05 
Statistic, Laplacian % Significance Normal % Significance 
l.Omm Point Level Point Level 
wz 0.191 ± .08 0.025 0.084± .04 0.25 
u2 0.151 ± .05 0.01 0.080 ± .03 0.25 
Az 1.191 ± .47 0.025 .512 ± .20 0.25 
D 1.102 ± .21 0.01 .814±.16 0.10 
Statistic, Laplacian % Significance Normal % Significance 
l.Smm Point Level Point Level 
wz 0.202 ± .07 0.025 0.085 ± .04 0.25 
u2 0.165 ± .05 0.01 0.081 ± .04 0.25 
A2 1.31 ± .45 0.025 0.530± .22 0.25 
D 1.11 ± .20 0.01 0.802 ± .17 0.15 
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Summary 

Optimal balance between energy usage and feeding is crucial to an animal's fitness, and 
thus is a driving force in the evolution of species. Animals show varieties of different 
foraging strategies, each adapted to particular ecological and physical constraints. For 
example, while paddlefish and zooplankton Daphnia both filter-feed on patchy food 
sources, they have enormous differences in size, and therefore in Reynolds numbers and 
the flow regimes in which they operate. To examine the effects of these physical 
constraints on the evolution of foraging strategies, we have modified a recent evolution 
simulation written for Daphnia by adding an energy penalty proportional to each turning 
angle used by modeled foraging agents. This modification accounts for the loss of linear 
momentum of undulatory swimmers as they change direction, a loss which Daphnia do 
not experience in the viscous flow regime. In stark contrast to the random-walk-like 
trajectories predicted for Daphnia, the model now predicts distinct circling trajectories 
and non-zero peaks in the turning angle distributions of larger species such as paddlefish. 
These results may explain the experimental data also reported here: the circling patterns 
and bimodal turning angle distributions observed in juvenile paddlefish. 

Keywords: 

Reynolds number, foraging strategy, evolution model, turning angle, paddlefish, Daphnia 

1. Introduction 

In a recently developed a model, EVO (Dees et al. 2008), we used the central principles 
of Darwinian natural selection to simulate the evolution of the turning angle distributions 
(TADs) of the filter-feeding zooplankton species Daphnia. The model features 
computer-generated agents foraging in a continuous two-dimensional space containing a 
finite circular food patch. The freely changing (evolving) parameter is the TAD of the 
foraging agents, and the agents' fitness levels are determined by the quantity of food they 
gather in a specified amount of time. After thousands of generations, the evolved T ADs 
resemble those of the real animals in shape and width, and the trajectories which result 
are very similar to those of the real animals. Here, we investigate the predictions of EVO 
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when considering the physical constraints encountered by larger aquatic filter-feeders, 
such as the paddlefish. The comparison of the two models has significant implications 
regarding the role of physical constraints in driving the evolution of foraging strategies. 

Filter-feeders collect food by straining large volumes of their surrounding 
medium as it flows through some part of their bodies, usually their mouth. Feeding, 
therefore, requires this flow, and is almost always accompanied by locomotion of some 
sort. While both real (Garcia et a!. 2007) and modeled (Dees et a!. 2008) Daphnia travel 
in trajectories resembling random walks resulting from single-peak zero-mean T ADs, 
experimental and observational studies show that many filter feeders swim in circular or 
elliptical trajectories as they feed or search for food, particularly when the food is patchy. 
The behavior is typically suggested to be an effective method of staying within a food­
rich area, and extends from smaller fish species, such as anchovy (Hunter & Dorr 1982), 
and medium-sized species, such as herring (Batty et al. 1986), to the largest living fish 
species, the whale shark (Nelson & Eckert 2007). With regard to turning angles and 
distributions, traversing a circle would be achieved by using many consecutive positive 
(or negative) turning angles, resulting in clockwise (or counterclockwise) circling. Each 
set of consecutive positive or negative angles would appear on a TAD as a non-zero peak, 
in strong contrast to the TADs of Daphnia. 

Why do Daphnia swim so differently from other filter-feeders? One obvious 
reason is that the fish species and Daphnia operate in radically different flow regimes. 
Reynolds numbers (Re) for zooplankton have been measured to be between 0.1 and 100, 
depending on their velocity (Videler et al. 2002; Catton et a!. 2007). However, Re for 
small fish are typically one or two orders of magnitude higher, and those of larger fish 
and whales are up to a half-dozen orders of magnitude higher (Videler eta!. 2002). As a 
result, zooplankton swim in the viscous flow regime, while all of the other species 
mentioned operate in the inertial flow regime. Daphnia also use a different mode of 
propulsion than fish species. The propulsive efficiency of the undulatory swimming used 
in the inertial regime diminishes at very low Re (Uchiyama & Kikuyama 2008), so most 
zooplankters are "rowing" creatures. Daphnia, for example, move in repeated and 
successive sequences of a hop, a pause, and a tum through an angle, stroking their large 
second antennae like oars to lunge forward during each hop (Pennak 1953). 

Locomotion is a major component of the energetic budget for most species 
(Domenici eta!. 2007). This would seem to be particularly true for filter-feeders, whose 
energy output (locomotion and metabolism) is so intricately connected to energy input 
(feeding). We report here the evidence of another filter-feeding species, the paddlefish 
(juveniles), circling in captivity. Experimentally, the fish exhibit bimodal TADs with 
non-zero peaks, consistent with the reasoning outlined above for circular swimming. To 
model the possible evolutionary origin of this circling behavior, we have modified EVO 
for larger Re by applying a slight energy cost proportional to each change in direction 
made by the inertial swimmers. While significant inertia is never achieved by organisms 
in the viscous flow regime (Anderson 1992), previous findings show that turning motions 
increase drag forces and decrease momentum for fish in the inertial flow regime (Weihs 
1973). We assume that lost momentum can only be recovered by additional energy 
expenditure, so the penalty we impose affects the agents' food-gathering efficiencies 
proportionately. With this simple modification to EVO, we obtain fully-evolved TADs 
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which display non-zero peaks and the simulated foragers demonstrate circling trajectories 
which strongly resemble the experimental results we present for the paddlefish. 

2. Methods 

Paddlefish swimming behavior 

Swimming behavior was measured in 19 paddlefish (Polyodon spatula) of length of 15-
35 em. The paddlefish were obtained from the Blind Pony and Hunnewell Fish Hatchery 
of the Missouri Department of Conservation. The fish were kept in large bio-filtered and 
aerated tanks containing dechlorinated water raised to a salinity of 2% by the addition of 
stock salt (Gunther Co., St. Louis). Fish were fed daily and kept under a 12:12 hour light 
regime. All experiments were conducted in compliance with the guidelines of the 
International Animal Care and Use Committee of the University of Missouri at St. Louis. 

To record the swimming activity, individual fish were transferred to a rectangular 
monitoring tank of 1 x 1 m or 1 x 1.5 m. A video camera was placed above the tank and 
the fish were monitored for 10 to 120 min. Videos were directly digitized by a computer 
at a rate of 2-5 frames per second and at a resolution of 320 x 240 pixels. The swimming 
path was determined by the program Vidana (www.vidana.net). Each frame was analyzed 
automatically by tracing the outline of the fish and calculating the center coordinates and 
direction (heading) of the fish. Thus, for each frame, the coordinates (x, y) and an angle 
representing the fish's heading were recorded. These data were further analyzed with the 
software Igor 6.0 (Wavemetrics). Turning angles, calculated as the changes in heading, 
were plotted as a function of time; histograms of turning angles were also generated. 

Paddlefish model 

To model the evolution ofpaddlefish TADs (and the resultant foraging trajectories), we 
began with an initially uniform and uncorrelated probability distribution of angles, D 1( a), 
representing the "primordial noise" available at the beginning of the natural selection 
process (see Gould 2002). The range of D 1(a) is -1t to +7t, and we divide this angular 
space into B bins (typically, B = 200). The distribution is normalized to 1.0, with the 
probability of choosing an angle from a given bin being 1 I B. The arena devised for 
feeding is a circular food patch of radius R units (typically, R = 1 00) overlaid by an 
evenly dispersed grid of 1t x (1 OR)2 food particles. Each feeding agent begins at the 
center of an independent, fully-populated food patch, and travels for N steps of unit 
length (typically N = 2000) while consuming every food particle that lies along the 
trajectory. The food particles are not replaced as the agent is foraging, following the 
definition of destructive foraging (Viswanathan et a/. 1999); in other words, if the agent 
visits any space in the grid more than once, food will no longer be found there. 

A population of 20 agents represents the initial generation of foragers. The first 
agent in the population begins by choosing an angle at random from D 1( a), and moves 1 
unit in the direction dictated by this choice of a. The agent gathers every food particle in 
the grid touched along this step. The agent then chooses another angle from D1(a), and 
moves for a second time in a different direction determined by the new a. Upon using 
this second angle, the agent has made a turn, or some change in direction. In general, as a 
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fish swims straight ahead, it has a linear momentum (mass · velocity) in the direction that 
it is swimming. For the fish to maintain a constant swimming speed, any change in 
direction requires some accelerating force (thrust) along the new heading in order to 
restore the original velocity (see Discussion). We assume that these momentum-building 
thrusts after each turn require energy outputs directly proportional to the angular amounts 
of directional change (Weihs 1973), or, in terms of the model's parameters, the required 
energy output for each turn is directly proportional to the absolute value of the turning 
angle used. We assess this energy cost after each tum by subtracting a proportional 
amount of food gathered, P = 5 ·I al, from the agent's existing food collection. 

The agent feeds as described above until the trajectory extends to N units, upon 
which the movement is terminated. Every turning angle used along the trajectory and 
every particle of food collected is recorded. Next, a new forager begins to feed in a new, 
fully-populated food patch. This feeding process continues for the entire population of 20 
agents. The agent who gathered the most food particles is identified as the most 
successful (efficient) agent, and all other agents, together with their recorded quantities, 
are discarded. 

Next, the turning angles chosen by the most successful agent are used to generate 
anew TAD, 

(2.1) 

where H1( a) is a normalized (to 1.0) histogram of the angles chosen by the most 
successful agent as distributed among the bins of D1(a). H1(a) is multiplied in (2.1) by 
the inheritance value, h, a small fraction (typically h = 1150) governing the magnitude of 
adjustment from one generation to the next. D1( a) is attenuated slightly in (2.1) by the 
value (1-h ), and then added to h·H1( a), preserving the total area of the evolving 
distribution. Through this modification of the "parent" distribution, D 1( a), information 
critical to efficient foraging is passed on from one generation to the next. A second 
generation of agents feeds exactly as the first, this time using turning angles chosen 
randomly from the modified distribution, D2( a). After the second generation has finished 
feeding, the evolving TAD is updated with survival information from the second 
generation's most successful agent in order to generate the distribution D3(a), and so on. 
The TAD evolves for thousands of generations in this manner. 

Daphnia model 

To simulate the swimming behavior of foraging zooplankton, we apply an algorithm very 
similar to that described above for the paddlefish, but we must consider the different flow 
regimes in which the organisms operate. Tiny organisms like Daphnia do not develop a 
conservable momentum as they swim. Instead, after each stroke, the surrounding fluid 
immediately stops their motion and dissipates their kinetic energy (Videler 2002). 
Changes in direction made by these organisms are more like rotations in the water, a type 
of movement that is not inhibited at such low Re (Videler 2002). 

To account for this, we simply remove the energy penalty, P, assessed on changes 
in direction in the paddlefish model, while leaving the rest of the algorithm intact: the 
Daphnia feed in a circular food patch of the same size and density as do the paddlefish; 
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they remove food particles along their trajectory; they are simulated using the same 
number ofbins, B, steps, N, and agents (20). Also, D1(a) is again the evolving parameter, 
evolved using the same inheritance value, h, and the same updating algorithm. This 
ensures a direct comparison between the two organisms based solely on the 
aforementioned energy considerations. 

Control simulations 

For both the paddlefish and Daphnia simulations, controls were performed as follows. 
Controls were identical to the simulations described above, except that the evolving TAD 
was updated after each generation using a set of angles chosen by a random agent in the 
population rather than those chosen by the most successful agent. This means that the 
evolving distribution progressed in no particular direction, and by no particular criteria. 

Mathematical analysis of turning angle sequences 

In order to quantify the amount of circling in both our real and modeled data, we have 
developed a circling index, C, to analyze the measured sequences of turning angles. C 
was determined as follows. Circling is the result of using a large number of consecutive 
turning angles that have the same sign, meaning that the same direction of turning is used 
repeatedly. As a consequence, during circling, there should be a low number of changes 
in direction from clockwise to counterclockwise (and vice-versa) and, consequently, a 
low number of differently-signed angles chosen one after the other over time. We will 
call these instances of positive turning angles followed by negative turning angles (and 
vice-versa) "zero-crossings". 

For each sequence of turning angles measured, we first calculated the number of 
zero-crossings that occurred during the sequence, nzc. For comparison, we then 

randomized the order of the turning angles in the sequence, creating a "surrogate" 
sequence, and determined the number of surrogate zero-crossings, s zc • We note that for 

each surrogate sequence, the distribution of the turning angles remains identical to that of 
the original run. We also note that in extreme cases where this distribution is 
characterized by either all-positive or all-negative turning angles, any randomized 
sequence will show no zero-crossings. In this situation, typically found in the model data 
only, we modified the original sequence of turning angles by concatenating it with a copy 
of the identical angles, but with reversed sign. This assures that we have an equal number 
of positive and negative turning angles while preserving the temporal structure of the 
original sequence. 

From each original turning angle sequence, 100 different surrogate sequences 
were created, and a range of s zc was found. The mean of the 100 values of s zc, szc , 
reflects the typical number of zero-crossings that would appear if an animal or agent 
chose angles at random from the distribution. We define C as 

C = !szc - n zc 1. (2.2) 

This result gives us the degree of non-randomness of the original turning angle sequence 
used by the forager. A circling index of 0 indicates that the number of zero-crossing in 
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the original sequence is similar to the case in which angles were chosen randomly from 
the distribution, while a value close to 1 indicates a high degree of non-randomness, or 
consecutively chosen positive (or negative) angles, resulting in circling. 

Lastly, since there is no "control" group for comparison with the real paddlefish 
data, we tested for significant differences in the zero-crossing values between the original 
turning angle sequences and those of the surrogate sequences. If nzc is lower than the 

lowest value of szc, the probability for the null hypothesis is <0.01, i.e., the resolution of 

the p-value for 100 iterations of the randomized data (see Kajikawa & Hackett 2005). 

3. Results 

Paddlefish swimming behavior 

The normal swimming behavior of 19 paddlefish was monitored in open field conditions 
(defined as a featureless arena) for a period of 10 to 120 minutes. Fish were constantly 
swimming with a speed of 5-10 em s-1

• Most fish showed long periods of using either 
consecutive positive or consecutive negative turning angles resulting in clockwise or 
counterclockwise circling, respectively. Circling was sometimes interrupted by more 
erratic swimming, mostly along the walls. To quantify the amount of circling, we 
calculated C and found values of 0.61 ± 0.21, with the numbers of zero-crossings in the 
original sequences of turning angles being significantly different from those of the 
surrogate sequences (p<O.Ol). 

Histograms of turning angles of most fish were bimodal and showed negative and 
positive peaks corresponding to periods of clockwise and counterclockwise circling. 
Turning angles roughly equaled ±0.4 rad, which means the fish needed about 15 seconds 
for a full circle. These values varied with the size of the fish; smaller fish made smaller 
circles, but this was not quantified systematically. The data in figure 1 shows an example 
of a fish monitored for about 1 hour. Figure Ia shows the swimming path during a five­
minute section of the recording. For the entire hour, the turning angles were± 0.4 rad 
(figure lc) with a few zero crossings indicating a change in direction. The TAD (figure 
1 b) shows two non-zero peaks of equal height, demonstrating that the fish was circling 
for the same amount of time in the clockwise and counterclockwise directions. Many 
fish, however, showed an uneven bimodal distribution and circled longer in one direction 
than in the other. Often, circling was interrupted by periods of erratic swimming, 
particularly at the beginning, just after transferring the fish to the experimental tank. In 
some cases, erratic swimming continued for a long time and pronounced circling was not 
seen. These were interpreted as attempts to escape the experimental setup, and were 
accompanied by a rapid and unsteady swimming speed. 
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Figure 1. (a) A sample experimental paddlefish swimming trajectory representing 250s 
of continuous data shows evident circling behavior. (b) A histogram of turning angles 
from a real paddlefish trajectory shows a bimodal distribution with a positive and a 
negative peak, suggesting the animal utilizes both clockwise and counterclockwise 
circling. (c) A sequence of turning angles used by the real animal plotted over time 
shows prolonged periods of using either positive or negative turning angles with few 
sporadic zero-crossings, again indicating circling behavior. 

Daphnia model 

The first row of panels in figure 2 shows the results of the Daphnia simulation, originally 
introduced in Dees eta/. (2008). Note the labels in the upper and lower left comers of 
each panel. The first panel ("Daphnia-FG") shows a gently rising curve of food gathered 
representing the steadily increasing efficiency of the foragers, and then a period of stasis 
indicating the maximum efficiency has been achieved. Probabilities shown in the 
"Daphnia-TAD" panel appear to be divided equally between the positive and negative 
turning angles, a feature confirmed by the near-zero result in the mean turning angle a 
over the 50,000 generations shown ("Daphnia-MTA" panel; the final value of a , a 1 , is 

0.0369 ± 0.0652 radians over ten trials, 100,000 generations per trial). These features 
lead to a trajectory which resembles a traditional random walk, displaying uncorrelated 
left-hand and right-hand turns in equal amounts, but the somewhat exponential nature of 



71 

the distribution leads to less compact trajectories which weave around the food patch. 
The distribution allows the forager to explore the entire patch strategically, remaining 
inside the patch while also avoiding its own path (where food has been removed) as much 
as possible. 

The control simulation for the Daphnia model (figure 2, second row) shows no 
evolution in the efficiency of food gathered, as one might expect. This result is echoed 
by a final TAD which is not significantly altered from its original highly noisy state. The 
mean turning angle curve remains near zero for the entire 100,000 generations (a 1 = -

0.0287 ± 0.2458 radians over ten trials), and the resultant trajectories are tight, localized 
tracks in the center of the circle. These trajectories show a stark contrast to the 
meandering, exploratory, open trajectories produced by the original Daphnia simulation. 
The original Daphnia model showed circling index values of 0.072 ± 0.050, while the 
Daphnia control circling index was 0.080 ± 0.070. These results are not significantly 
different (t-test, p>0.05, n=IO). 

Paddlefish model 

The simple addition of the energy cost P for inertial flow regimes changes the dynamics 
of the evolution model tremendously, as shown in the middle row of panels in figure 2. 
In the early phases of the paddlefish simulation, the initial pressure to reduce the 
occurrences of large positive (-1r) and negative (-1t) turning angles is elevated in 
comparison to the Daphnia simulation since, in addition to avoiding one's own path, the 
imposed penalty, P, proportional to jaj, punishes these large angles heavily. 
Consequently, the plot of food gathered for the paddlefish (figure 2, panel "Paddlefish­
FG") shows a slightly steeper initial increase than that of the same plot describing the 
Daphnia agents. 

The plot of the mean turning angle for the paddlefish (panel "Paddlefish-MTA") 
hovers near zero for several thousand generations while the larger angles are eliminated 
from each side of the evolving distribution, due to the pressure from the penalty P and the 
need to avoid path-recrossing events in the center of the food patch. Correspondingly, 
the agents are carried further and further away from the center of the food patch as they 
utilize sma1ler turning angles from a narrowed distribution. As a limiting case, one can 
imagine an extremely narrow TAD, a delta function at zero radians. This delta function 
would guide the agents directly away from the center of the food patch, and then quickly 
beyond its edges, resulting in a near-minimum amount of food gathered. To avoid this 
limiting case, the distribution must stop narrowing as the agents begin to reach the edge 
of the food patch. The solution to this problem is the next phase of the evolution; the 
TAD shifts towards either the positive or the negative side, and the agents begin to 
choose similarly-signed angles consecutively, causing their trajectories to curve away 
from the edges of the food patch before they cross these edges and leave the patch. As the 
distribution shifts, the mean turning angle begins to swing sharply away from zero, as 
shown in the "Paddlefish-MTA" panel, and the food gathered ("Paddlefish-FG" panel) 
begins to level off just as it does in the Daphnia simulation, as all of the agents are 
beginning to remain inside the patch. The paddlefish trajectories at this point have short 
periods where they resemble those of the fully-evolved Daphnia, meandering and 
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weaving while staying inside the food patch. (An example of this can be seen in the 
generation 3000 path in figure 4.) 

With a shifted distribution and many consecutive right-hand or left-hand turns 
being randomly selected, the agents begin to show signs of tight, smooth spiraling in 
between periods of Daphnia-like meandering. This occurs near the peak of the mean 
turning angle curve, and when the distribution is shifted as much as possible, circles 
begin to emerge (see the generation 11,000 path in figure 4). There is still some pressure 
for agents to avoid their own paths as they circle tightly, and furthermore, this initially 
tight circling requires larger turning angles (and therefore larger subtractions due to P) 
than wider circles would. The agents respond by slowly expanding the diameter of their 
circles, shifting the mean of the TAD slowly back towards zero while still preserving the 
efficient circling motion. 

The food gathered again begins to increase during this final shift in the TAD 
mean until, again, a period of stasis is reached. The circles in the trajectories expand to 
the point where their diameters stretch from the starting point at the center of the food 
patch to the very edge of the food patch. This result provides a minimal amount of 
incurred subtractions of P, and a minimal amount of path-recrossing events. Note that 
the result is the same whether the motion is clockwise or counterclockwise, and we 
achieve both results at random. We report (and plot) the results of the mean turning 
angle in absolute value form. For 10 trials, Ia 11 = 0.0219 ± 0.0002 radians. 

Circling indices, as calculated from ten fully-evolved distributions, had values of 
0.990 ± 0.070, which are significantly different from the ones calculated from the 
paddlefish control simulations described below (t-test, p<0.0001, n=10) and also from the 
Daphnia model, which does not have a penalty for large turning angles (t-test, p<0.0001, 
n=lO). 

To achieve a more precise estimate of the final TAD and la11 in the paddlefish 

simulation, we ran a high-resolution version of the model, in which the angular space was 
limited to [ -1tl5 to 1tl5] while the number of bins remained at 200. In this case, the width 
of each bin was one-fifth the original size. This method of limiting the initial range of 
angles to a smaller set is justified by the fact that all other paddlefish simulations 
discussed above resulted in very narrow evolved distributions with final widths of less 
than 0.4 radians(< 7% of21t). The initial trajectories in this implementation ofthe model 
(data not shown) resemble the meandering Daphnia trajectories, as the larger-valued 
turning angles had already been "removed" before the simulation began. Therefore, the 
period of eliminating larger turning angles is not necessary, and the plot of food gathered 
does not include the initial rise usually accompanying this phase of the evolution, as in 
figure 2, panel "Paddlefish-FG". Additionally, the mean turning angle shifts more 
rapidly away from zero, and shows no initial oscillations (compare the figure 2 panels 
"Paddlefish HiRes-MTA" with "Paddlefish MTA"). The dynamics from this point 
forward are the essentially identical to those described above for the regular paddlefish 
simulation, with Ia 1 1 = 0.0466 ± 0.0012 radians for a food patch of radius 50 units, and 

Ia 1 j = 0.0219 ± 0.0002 radians for patch radius 100 units. See below for additional 

discussion of the role of patch size in the original paddlefish simulations. 
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The paddlefish control simulation (bottom row in figure 2) displays many of the 
same features as the Daphnia control simulation. The amount of food gathered does not 
evolve over time, the mean turning angle remains near zero for the entire 100,000 

generations (ja 1 j == 0.0433 ± 0.2206 radians), and the final TAD consists ofuncorrelated 

noise. The final trajectory (figure 2, "Paddlefish control-Path") is indistinguishable from 
its Daphnia control counterpart, showing the same very tight, localized shape. 
Daphnia 
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Figure 2. The results of EVO are shown for 5 variations of the model: the Daphnia 
model, the Daphnia control, the paddlefish, the high-resolution paddlefish, and the 
paddlefish control. Agents feed over a trajectory of 2000 unit-length hops. Food patch 
radii are 100 units, except in the high-resolution paddle fish case, where the patch radius 
is 50 units. The inheritance value, h, is 1150. Column 1 (FG) represents the evolution of 
food gathered in a given feeding time plotted over 20,000 generations (out of 100,000 
generations completed for each variation of the model). The plot represents the average 
value of evolving food gathered over 10 trials. Column 2 (MTA) shows the evolution of 
the mean turning angle of the evolving distribution over 50,000 (out of 1 00,000) 
generations. For the Daphnia model and the two control cases, the plots represent the 
average result over 10 trials. For the paddlefish and high-resolution paddlefish 
variations, the plot represents the average of the absolute values of the results for each of 
10 trials. Column 3 (TAD) shows examples of final evolved TADs for a single run after 
100,000 generations of evolution. Column 4 (Path) shows trajectories corresponding to 
the TADs in Column 3. The dotted circle represents the boundary of the food patch. 

Non-destructive foraging 

In order to further isolate the role of energy considerations in the evolution of circling 
trajectories, we tested versions of the paddlefish and Daphnia models in which the 
destructive foraging element was removed. For the paddlefish agents, this means that 
there are now only two main objectives: stay inside the patch, and avoid larger turning 
angles. For the Daphnia, however, excluding the need to avoid one's own path means 
that there is now only one objective: stay inside the patch. With the rest of the two 
algorithms being identical, this exercise offers a direct comparison of the role of the 
penalty P in the development of paddle fish foraging strategy as they feed inside the food 
patch. 

The results are easy to see- the Daphnia's behavior is drastically affected by this 
change, while the paddlefish agents again discover circling, as illustrated in figure 3. This 
illustrates the strength of the energy penalty as a determining criterion ofthe paddlefish's 
foraging strategy. 
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Figure 3. Results are shown for the Daphnia and paddlefish variations of the model 
where non-destructive foraging (NDF) is utilized. Fixed hop lengths are 1 unit. Agents 
feed over a trajectory of total length 2000 hops. Food patch radii are 100 units, and h = 

1/50. Descriptions of columns are the same as in figure 2. In Column 2 (MTA), the 
mean turning angle is shown for the Daphnia NDF case (not an absolute value), while the 
absolute value of the mean turning angle is shown for paddlefish NDF (average over 10 
trials for both variations). 

Effects offoodpatch size 

Lastly, with all other parameters in the paddlefish model held fixed, we investigated the 
effects of patch size on the dynamics. The results, shown in figure 4, indicate that the 
dynamics are qualitatively similar for each patch size tested. However, there are some 
quantitative differences. For the largest patch sizes, the foragers are able to travel further 
away from the center before reaching the edge of the food patch. As a result, the steep 
initial rise in food gathered extends higher for larger patches (figure 4a). Also, the initial 
reduction of large turning angles lasts longer, narrowing the distribution more quickly 
than in the smaller patch sizes. This more rapidly narrowing distribution leads to a less 
substantial shift of the distribution to one side - the shift occurs quickly, and the plot of 
mean turning angle peaks sooner (figure 4b). It takes longer for foragers in smaller 
patches to achieve the balance of staying inside the patch (by using less straight travel), 
while avoiding one's own path during spiraling (by using more straight travel). For 
example, the peak in Ia I for a patch of radius 150 units occurs around 8,000 generations 

while the peak in Ia I for a patch of radius 50 units occurs around 30,000 generations. 

Also, for every patch size tested, the simulation eventually results in trajectories which 
circle between the starting point and the outer edge of the patch, so it becomes obvious 
that smaller patch sizes should lead to larger resultant mean turning angles (tighter 
circles), and this is indeed the case (figure 4b ). The values for Ia 1 I for patches of radii 
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50, 75, and 150 units were 0.0537 ± 0.0046, 0.0293 ± 0.0004, and 0.0150 ± 0.0003 
radians, respectively. Lastly, we note that smaller food patches evolved to slightly lesser 
amounts of food gathered, as tighter circles led to more path-recrossing events where the 
animals do not find food. For example, the final value of food gathered for patch size 
150 was 22102 ± 42 food particles, while for patch size, it was only 20977 ± 211 food 
particles. 
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Figure 4. The effects of four different patch sizes (PS) are shown here with all other 
parameters left the same. As before, agents feed over a trajectory of 2000 unit-length 
hops, and h = 1/50. 100,000 generations are completed for each patch size. (a) A plot of 
food gathered for each generation over 100,000 generations is shown for each PS. 
Results are the average values over 10 trials. (b) The absolute value ofthe mean turning 
angle over 100,000 generations is plotted for each PS (average result over 10 trials 
shown). The bottom two rows in the figure show T ADs and trajectories at different 
generations during a single run with patch radius 100 units. The generations at which 
these "snapshots" are taken are labeled above the distributions. The distributions are 
shown at different scales relevant to the data, with the angular space originally divided 
into 200 bins. Dotted circles represent the edges of the food patch. 

Discussion 

We have investigated two filter-feeding aquatic animals, where one, the zooplankton 
Daphnia, is the typical meal for the other, the paddlefish. This fact is only important 
when one considers that it demands that the organisms live in the same environments, 
subject to similar ecological conditions. It has also been shown that both organisms feed 
on patchy food (Folt eta!. 1993); yet, the swimming behaviors and TADs of the two 
organisms are remarkably different. 

As discussed above, organisms like Daphnia are not able to coast after a 
propulsive stroke; they do not operate with any considerable inertia. Clearly, momentum 
and the loss thereof would not be a factor when analyzing their hydrodynamic efficiency. 
Alternatively, when fish in the inertial flow regime bend their bodies to tum, this causes 
an increase in the added mass on the central part of the fish's body (Weihs 1972). 
(Added mass is the mass of the water carried forward by a fish during locomotion.) Extra 
power is required to accelerate this water, both in the direction of motion and in all other 
directions. The greater the amount of water acted on by the fish, the greater the amount 
of energy it will need to propel itself in the new direction after a tum (Frith & Blake 
1995). In addition to the water, the fish's mass must also be accelerated in these cases. 

Our analysis suggests a particular strategy - circling - which may optimally 
balance the food gathered with the energy expended when feeding in a patchy 
environment. The propulsive behaviors of fish, however, and the metabolic costs of these 
behaviors are quite complex (see Blake (2004) for a review). Three relevant types of 
swimming were compared in Boisclair and Tang (1993): "forced swimming", "directed 
swimming", and "routine swimming". Forced swimming involves undulatory propulsion 
against a constant current at a steady rectilinear speed, a very common method of 
swimming imposed on fish being investigated in laboratory experiments. Directed 
swimmers are trained to follow shadows around a circular aquarium, and therefore are 
constantly turning (circling) in stationary water (e.g., Muir et a!. 1965). And routine 
swimming involves continual random changes in direction and speed, often thought of as 
spontaneous activity (e.g., Smit 1965). Smit ( 1965) first suggested that spontaneous 
activity may be more costly than straight swimming. He observed large amounts of 
oxygen consumption in fish swimming spontaneously, and yet the fish covered relatively 
little distance, leading him to assume that energy was being wasted. Weatherly and Gill 
(1987) found that, according to oxygen consumption rates and corresponding 
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electromyogram (EMG) values in rainbow trout, spontaneous activity produced a 
metabolic rate almost 4 times as high as that measured for similar speeds during forced 
swimming. Webb ( 1991) demonstrated that fish expend more energy during routine 
swimming than during forced swimming of comparable speeds due to increases in drag 
by a factor of 3. Finally, the empirical analysis of Boisclair and Tang (1993), mentioned 
above, showed that the energetic costs of routine swimming were on average 9.4 times 
higher than those of forced swimming. 

The differences between Daphnia and these undulatory swimmers become very 
obvious when one considers that, of the three types of swimming mentioned above for 
fish, the one that most closely resembles the modeled "optimal" trajectories of Daphnia is 
the very costly routine swimming. Routine swimming similarly compares to the three­
dimensionally tracked trajectories of the real Daphnia (Uttieri 2004). It can be presumed 
that Daphnia could execute a forced swim, a directed swim, and a routine swim at similar 
speeds and all at a similar metabolic cost. 

Why, then, do paddlefish swim in circles? Boisclair and Tang (1993) also 
showed that directed swimming was, on average, only 1.6 times more expensive than 
forced swimming, while routine swimming was 6.2 times more expensive than directed 
swimming, indicating that swimming in circles is highly efficient compared to 
spontaneous activity. This may be especially important for species like paddlefish, which 
are ram ventilators, and can only maintain adequate levels of oxygen through constant 
motion (Burggren & Bemis 1992). 

In addition, circling may be a strong indicator for patchy food sources. If we 
extended the patch size in our destructive-foraging model to infinity, simulating uniform 
food sources continuously in all directions, the T ADs for both the Daphnia and the 
paddlefish models will evolve to a delta function at zero (data not shown), and simulated 
foragers will swim directly away from the starting point for the entire trajectory. This 
result ensures for both sets of agents that there are no path-recrossing events, and for 
paddlefish, that there are no energy penalties for turning (a minimum amount of drag). 
But an unlimited patch of food does not exist in the wild. If a fish finds a favorable spot, 
swimming straight may not be the best strategy. For instance, swimming at only 10 crn!s, 
if our juvenile paddlefish headed on a straight trajectory, they would cover 60 min only 
10 min. Considering that aggregations of Daphnia are typically on the order of 1-10 m, a 
paddlefish may want to exploit the area by feeding in this aggregation for longer than just 
a couple of minutes. Circling may be the most efficient way to do this. 

Although our paddlefish model evolved circling trajectories almost identical to 
those of the real fish, the underlying mechanisms are certainly different. In fact, the 
distributions themselves have differences, as seen when comparing the bimodal TAD of 
the real animal (figure lb) with the single-mode distributions of the modeled paddlefish 
(figure 2, "Paddlefish-TAD" and "Paddle fish HiRes-TAD"). If angles are picked at 
random from the single-mode, non-zero-mean distributions evolved in the model, angles 
of similar sign would obviously often follow each other, resulting in circling. This is 
precisely what occurs in our model. However, if the modeled agents constructed 
trajectories from symmetric bimodal T ADs, as are often seen in the measurements of the 
real paddlefish (figure lb), random selection by agents surely would not result in circling, 
as positive and negative turning angles would alternate randomly. We show here that, 
obviously, the real fish do not select angles randomly. They must use a form of 
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"memory" to choose angles from only a single side of the bimodal distribution for 
extended periods of time, and even when they become distracted, they are able to resume 
this strategy quickly, as seen in figure lc. In any case, it is remarkable that, despite the 
limited 'intellectual' capabilities of our model, the final result of the evolution is similar 
to that of the real animals. This shows that the physical constraints that act upon an 
animal (in this case, the Reynolds numbers) dictate to a large degree the final behavior of 
the animal, independent of the evolutionary pathway which leads to this behavior. 
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