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ABSTRACT 5

The Popov criterion for absolute stability of nonlinear
feedback systems is applied to several example problems.
Model transformations such as pole shifting and zero shift-
ing extend the class of systems to which the criterion
applies. Extensions of the criterion having simple graph-
ical interpretations yield stronger results for systems with
constant monotonic slope-bounded nonlinearities. Additional
extensions lacking simple graphical interpretations in the
complex plane are also demonstrated by example.

Stability throughout a region in parameter space is
discussed, and the Kalman conjecture is verified for a new
class of systems. The Popov criterion is also used to prove
BIBO stability, process stability, and degree of stability.
The conservatism of the criterion, i. e., the margin of
actual performance beyond guaranteed performance, is dis-
cussed in the light of simulation results.

An interactive computer program is developed to make
the Popov criterion, along with two of its extensions, a
convenient tool for the design of stable systems. The user
has the options of completely automatic parameter adjustment

or intervention at any stage of the procedure.
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PREFACE

The goal of this research has been to find and pull
together the results obtained during the past decade or so
relating to frequency domain stability criteria for non-
linear systems. These results are somewhat scattered in
the literature and sometimes presented in a form too
abstruse for direct application by control system engi-
neers. It is hoped that this dissertation will help to
establish these criteria in their maximum power and gener-—
ality as convenient, practical tools that the control
engineer will not hesitate to use. The interactive computer
program, especially, should help bridge the gap between
mathematical theory and convenient design practice.

The author gratefully acknowledges the role of his
advisor, Dr. D. Ronald Fannin, in the achievement of the
results presented here. Dr. Fannin introduced the author
to the Popov criterion, and his suggestions were the basis
of many of the ideas pursued here. Frequent discussion
helped refine rough ideas and provided the needed guidance.
The author also acknowledges the programming consultation of
Mr. Hardy Pottinger and the typing service of Mrs. Eunice

French.
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I. INTRODUCTION

A. Problem Formulation

Stability is a word with several connotations, but
in some sense it is always an important consideration in
practical control systems. Given a more or less fixed
structure to perform a particular function, several aspects
of performance, including stability, must be evaluated to
determine the adequacy of sets of system parameters. In
analysis one wants to establish system stability before
going on to more stringent considerations such as accuracy,
speed, reliability, sensitivity, cost, or optimality. In
system synthesis the first concern is also system stability,
and it may be much more difficult to guarantee a more com-
plete characterization of system behavior. Stability con-
siderations serve to identify those designs worthy of further
study and to suggest changes which would stabilize an un-
stable system.

For linear feedback systems the well-known frequency
domain stability criteria of Routh, Nyquist, Bode, Nichols,
and others are found in standard texts and are in wide
use [1]-[2]. More recent state-space techniques are also
applied to the question of linear system stability. Both
the "classical" frequency domain techniques and the state-
space techniques are utilized in control system synthesis

and dynamic response analysis.



For nonlinear systems stability is a much more diffi-
cult question. Nonlinear differential equations are not
nearly as amenable to solution in closed form, and the very
definition of stability is fairly complicated. A simple
definition of stability suitable for linear systems must
be replaced by a variety of definitions for different kinds
of stability in nonlinear systems. This requirement arises
because of the variety of dynamic behavior found in nonlinear
systems not possible in linear systems. Phenomena such as
limit cycle oscillation in the absence of input and initial
conditions, finite escape time, jump resonance, and harmonic
and subharmonic oscillation exist only in nonlinear systems.
Inasmuch as all practical systems are to some degree non-
linear, this complicated behavior cannot immediately be
ruled out, and straightforward linear analysis may not be
appropriate [2].

The various definitions of nonlinear system stability
state the sense in which "stable" system behavior is bounded
and not greatly influenced by small disturbances in initial
conditions or input. The most general rigorous techniques
to establish nonlinear system stability are due to Liapunov
and Popov and the various extensions of their results.
Describing function techniques are often useful for approxi-
mations. The Liapunov techniques may be described as time
domain approaches, involving functions of the state varia-
bles. The Popov and related criteria such as the circle

criterion may be described as frequency domain criteria,
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since they involve the transfer function of the linear part
of the system [2]. This paper emphasizes investigations of
the frequency domain criteria.

The class of systems considered is those which can be
modeled as a linear part and a separable gain-bounded non-
linearity. A convenient block-diagram description is shown
in Figure 1. The linear part must be time-invariant, but
may have time delays. The nonlinear part may be time-
varying, may have hysteresis or deadband, or both, and
need not be monotonic. It is required that |u| be bounded
for every finite |e].

Mathematically, many such systems are described by a
set of linear, homogeneous, first-order ordinary differen-
tial equations with constant coefficients, with the addition
of a nonlinear function whose argument is a linear combina-

tion of the state wvariables.

X =A x + B u (1.1)
u = u(o,t); O =c¢C X
where
x = state vector, n x 1
A = system transition matrix, n x n
B = system control matrix, n x 1
u = nonlinear control function; u(o,t) = 0

o = linear combination of state wvariables



Nonlinear
Time-varying Linear Plant
Element Plus Compensator

-e (t)=y (t)
L (E) G(s) >

Figure 1. Form of Systems Considered.



c system output matrix, 1 x n

t time

and the dot notation indicates differentiation with respect
to the independent variable (time, unless otherwise speci-
fied). The block diagram and vector-matrix equation

representations are related by

G(s) = -c[sI-A] 1B.

The most important class of nonlinearities excluded
by this system description is those where o0 is a nonlinear
function of state variables (products of state wvariables,
for example). Transformation of system variables can some-
times change an inadmissable nonlinearity into the required
form.

The Popov criterion, the circle criterion, and the
related frequency domain criteria involve inequalities of
functions of G(s). The basic Popov and circle criteria
have straightforward graphical interpretations, while for
the various extensions attempts at graphical interpretation
are not always enlightening.

The object of this research is to review the various fre-
quency domain stability criteria for possible use in computer-
aided design of stable systems. Where a simple graphical in-
terpretation is possible, distance or area functions are
derived as a measure of the degree to which a system fails to
meet the stability criterion. Sensitivity of these functions

to parameter changes then guides the procedure for



stabilization of the system. The whole procedure is
implemented so that a user can perform his computer-aided
design in an interactive mode, permitting the on-line
alteration of approach and specifications as he proceeds
with the design and learns more about the characteristics
of the system. The user's intuition and experience are
freed to guide him quickly to the best performance-design
effort tradeoff for the particular problem at hand. The
inexperienced user has the option of minimal intervention
in the design procedure.

All the criteria considered give sufficient conditions
for stability—--conditions which can be more stringent than
necessary. A search is made for the criterion which is
least restrictive for a particular problem, so that the
stable design obtained is not overly conservative. As a
rule, describing the nonlinearity as specifically as
possible, especially when it is "nearly linear", can permit
the use of less stringent criteria leading to more design
flexibility and better dynamic performance.

Several examples indicate how frequency domain stability
criteria may be exploited to the fullest in the synthesis of
stable nonlinear feedback systems. The examples, along with
analysis of loci in the complex plane, suggest that certain
classes of systems satisfy the Aizerman and/or Kalman

conjecture, and are amenable to linear analysis.



B. Historical Background

The concept and use of feedback control has examples
from the beginning of recorded history. An irrigation
control system is mentioned in the code of the Babylonian
king Hammurabi (cir. 18th century, B.C.). C. Huygens of
Belgium in the 17th century discussed the regulation of
windmills and water wheels. A. Meikle of Scotland invented
an automatic turning gear for windmills in 1772. With the
Industrial Revolution of this period feedback regulators
for steam pressure, liquid level, temperature, etc., also
came into widespread usage. In 1788 James Watt invented
a centrifugal governor for his steam engine.

Mathematical analysis of control systems began with
James Clerk Maxwell's work, "On Governors," in 1868. The
independent work of I. A. Vyshnegradskii in 1876 began the
outstanding Russian achievement in the differential equation
school of regulator theory, which continues today. Near
the end of the 19th century Henri Poincare and A. M.
Liapunov developed mathematics for a gualitative stability
analysis of nonlinear systems, and avoided the more diffi-
cult problem of an explicit solution. Liapunov's second,
or direct method continues to give rise to new control tech-
nology. Routh and Hurwitz also made lasting contributions
to control theory in the 19th century.

Balthasar van der Pol's famous 1927 investigation of

the nonlinear oscillations of an electronic multivibrator



was a most elegant application of geometric and analytic
methods.

At Bell Telephone Laboratories in the 1930's H. Black,
H. Nyquist, and H. W. Bode advanced frequency domain linear
feedback control theory for application to vacuum tube
amplifiers. 1In fact Nyquist's stability criterion is
a special (linear) case of the circle criterion used in
the research of this paper. During World War Two regulator
technology was combined with the more recent feedback
amplifier technology to produce servo control systems to
aim heavy guns, position antennas, guide aircraft, and
control other mechanisms of war with speed and precision
[31-1[8].

The more recent and specific roots of this paper begin
with the 1944 formulation of the "absolute stability"
problem by A. I. Lur'e and V. N. Postnikov. This problem
has to do with the global asymptotic stability of a system
with a single gain-bounded but otherwise unrestricted non-
linearity. V. A. Yakubovitch and I. G. Malkin in the Soviet
Union and J. LaSalle and S. Lefschetz in the United States
developed sufficient conditions for absolute stability by
working in the time domain.

Beginning in 1959 V. M. Popov of Rumania developed a
distinct frequency domain approach to the absolute stability
problem which had a convenient graphical interpretation.
Popov and Yakubovitch established connections between the

differential equation approaches based on Liapunov's second



method and the frequency domain approaches. Through the
1960's Popov's results were extended by many investigators,
notable among whom are M. A. Aizerman, E. N. Rozenvasser,
R. E. Kalman, J. J. Bongiorno, Jr., who introduced the
circle criterion; I.>W. Sandberg, B. N. Naumov, G. J.
Murphy, G. Zames, R. W. Brockett, J. C. Willems, J. L.
Willems, C. A. Desoer, A. G. Dewey, and E. I. Jury. Others
also continue to keep the body of literature growing on the

subject of frequency domain stability criteria [9]-[10].



10

IT. REVIEW OF THE LITERATURE

A. Basic Popov and Circle Criteria

V. M. Popov's first paper in which he began developing
a new approach to absolute stability appeared in 1959 in a
Rumanian Journal [1l1l]. Over the next two years Popov
elaborated on his results in a series of papers in Rumanian
and Russian. In 1962 his "Absolute stability of nonlinear
systems of automatic control" [12] appeared in Automation
and Remote Control, an English translation of a Russian
journal. The 1964 translation of Aizerman and Gantmacher's

book Absolute Stability of Regulator Systems [9] is prob-

ably the most complete English documentation of Popov's
results through 1963 and the history of the absolute
stability problem leading up to Popov's work.

Popov's original theorem applies only to single-valued
time-invariant nonlinearities, but subsequent extensions
by Popov and others established the Popov criterion in its
full generality. Popov's original proof consists of re-
placing the differential equation by an integral equation
and using methods of functional analysis. Proofs yielding
substantially the same results and using similar methods
were offered by Desoer [13], Sandberg [14], J. L. Willems
[15], and Hsu and Meyer [10]. An alternative approach to

the proof uses a Liapunov function. Yakubovitch [16],
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Kalman [17], and Brockett [18] contributed proofs of this
type. Brockett also offered a heuristic justification of
the Popov criterion based on a correspondence between the
Popov inequality and an interconnection of passive (hence
stable) electrical networks [19].

In 1964 J. J. Bongiorno, Jr., of the United States
introduced the circle criterion for a special class of
functions, with g = 0 [20]. A more complete form was given
by Sandberg [21]. The circle criterion yields stronger
results than the Popov criterion when the nonlinearity
lies in a sector [Kl’KZ]' K2>Kl>0. Versions of the circle
criterion can also be used when the linear part is not
stable and when Kl<0. There are also related criteria for
multiple nonlinearities, some involving a matrix inequality
of the Popov type, where K and g are diagonal matrices
[22]-[25].

Hsu and Meyer [10] consolidated many of the scattered
stability criteria, formulating the generalized theorem of
Popov and the generalized circle criterion, which will be
the standards of this paper. For reference purposes, Hsu
and Meyer's generalized theorem of Popov is repeated here:

Consider the basic feedback systems of Figure 1. Let
the linear element be output stable (see Chapter VI, A).
In order for the system to be both absolutely control-and-
output asymptotic for (u/e)e[0,K], it is sufficient that a
real number q exists such that for all real w20 and an

arbitrarily small 6>0, the following condition is observed:
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Re [ (1+3jwg) G(jw)] + % > 5 > 0.

The restrictions on g and K, depending on the nature of

the nonlinear element are:

1)

2)

3)

4)

for u = f(e), a single-valued, time-invariant element:
if 0<K<w, then =—wo<g<w
if K=«, then 0=g<w

for u = érle(t)], a nonlinearity with passive hysteresis:
0 <K< and -—-«<g=0

for u = 3rka(t)], a nonlinearity with active hysteresis:
0<KSw and 03g<e

for u = gTe(t),t], a general nonlinearity (time-vary-

ing, and possibly with hysteresis):

0 <K= and g=0

Hsu and Meyer also clarified pole shifting as the

connecting link between the Popov and circle criteria. 1In

most problems, results obtained by the circle criterion can

be duplicated by the Popov criterion, provided that pole

shifting is used to the maximum, i.e., provided that maximum

linear negative feedback is applied around G(s) such that
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the shifted nonlinearity remains in the first and third
quadrants.

With benefit of hindsight and knowledge of the
generalized criteria it appears that much of the early
literature on the absolute stability problem is needlessly
complicated by the separate consideration of numerous
special cases and distinctions between direct and indirect
control and between principle and particular cases. This
fragmentation grew as differing approaches were used in
several versions of the problem before the overall unifica-
tion became apparent. Historically, this pattern seems to
be the usual one in all scientific and technological re-

search. The future may well bring further unification.

B. Z(s) Multipliers

Popov's original 1959 success with a new approach to
the problem of absolute stability revitalized interest in
frequency domain techniques. Among the important exten-
sions of Popov's work, several require that there exist a
function 2 (s) such that Z(s) [G(s) + 1/K] is positive real,
where the required form of Z(s) is determined by the
restrictions on the nonlinearity, and K is an upper bound
on the nonlinearity f (o) or its derivative df (o) /do. It

is noted that when Z(s) = 1 + sq we have the ordinary Popov
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criterion. The extensions have been given a circuit-
theoretic interpretation, but to date they are little used
in practical problems. Later in this paper there is discus-
sion of the extent to which the results obtainable from
these extensions exceed those obtainable from the original
Popov criterion, and how to find an appropriate Z(s).

R. W. Brockett's 1966 survey of "The Status of Stability
Theory for Deterministic Systems" [19] has a lengthy bibliog-
raphy listing most of the important extensions up to that
time.

In 1965, Brockett and J. L. Willems [26] gave criteria
involving Z(s) multipliers to establish asymptotic stability
in the large under each of the following restrictions on

the nonlinearity:

1) feAk and feM_ (f is bounded in a sector (0,k) and is

monotone)
2) feMk (f is monotone, with slope bounded by k)
3) feOk (f is an odd monotone function, with

slope bounded by k)

4) fePk (f is a power law nonlinearity).

The restrictions on f£ are progressively more stringent, and
the corresponding forms of Z(s) are progressively more
general. Brockett proposed a Z(s), for monotone nonlineari-
ties, as a rational function with real interlacing poles

and zeros.
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In 1966 G. Zames [27] considered variously restricted
nonlinearities and the removal of a multiplier from the
linear element. The frequency response of the linear
element is modified by the removal, and, in effect, the
size of the forbidden region is reduced.

In the same year, R. P. O'Shea [28] gave a criterion
for continuous nonlinearities bounded by monotone functions.
The next year M. A. Lakshmi Thathachar, M. D. Srinath, and
H. K. Ramapriyan [29] obtained a result for nonlinearities
with restricted asymmetry, having the property
<

S ¢ for all o.

’f(o)
f(-o

In 1967 O'Shea [30] and in 1970 Y. V. Venkatesh [31] used
Z(s) multipliers with both causal and noncausal terms, i.e.,
with poles in the right half plane, thus going beyond re-
sults suggested by a heuristic circuit-theoretic inter-
pretation relating paséivity or causality to stability.

The extensions involving a Z(s) combine ideas from
Liapunov theory, functional analysis, and network synthesis,
as well as classical frequency domain control theory. The
more recent papers especially rely heavily on a functional
analysis notation and linear algebra, dealing with the
properties of operators and transformations in Banach
spaces. See, for example, the papers by I. W. Sandberg
[32],[33], and M. K. Sundareshan and M. A. L. Thathachar

[34].
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C. Graphical Extensions

The basic Popov and circle criteria are attractive in
applied work because they have simple graphical interpreta-
tions. Unfortunately this feature is not shared by most of
the extensions involving Z(s) multipliers, because each
arbitrary coefficient in Z(s) corresponds to another degree
of freedom in the shape of the boundary of the forbidden
region. Only one degree of freedom (in this work, the
slope of a straight line) can be handled conveniently in a
graphical interpretation.

There are two extensions, however, which do have simple
graphical interpretations, with the slope of a straight line
the only parameter to be determined in a search to satisfy
the criteria. A systematic algorithm is quite feasible to
determine the satisfaction of these two criteria. With the
more general Z(s) multipliers, however, it seems feasible
only to use trial and error, or at best suggest heuristic,
intuitive guidelines to obtain satisfaction of the criteria.
Consequently only the simple graphical criteria are fully
utilized here in interactive computer—-aided analysis and
design. Despite this limitation, the availability and use
of two additional criteria in the designer's bag of tricks
can lead to stronger results than those obtainable from

the basic Popov or circle criteria alone.
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A. G. Dewey's 1966 criteria for differentiable non-
linearities [35] and Y. Cho and K. S. Narendra's [36] 1968
off-axis circle criterion for monotonic nonlinearities
provide, along with the Popov criterion, a total of three
distinct ways to attack the stability problem when the non-
linearity is time-invariant, continuous, and monotonic.

The graphical plane of analysis is wIm[G] vs. Re[G] for the

Popov criterion, (l1/w)Im[G] vs. Re[G] for the Dewey criterion,
and Im[G] vs. Re[G] for the off-axis circle criterion. These
planes will be called the G*, G**, and G planes, respectively.

At the outset of a problem, all the applicable criteria
will be considered, perhaps in all three planes, and the
criterion yielding the least conservative results will be
the basis for parameter adjustment. At the end of the
design procedure the other criteria will be checked again,
to insure that the final design is no more conservative

than necessary to guarantee stability.

D. Applications to Design

Fannin, Judd, and Seacat [37], [38] and Passmore, Chao,
and Vines [39] wrote a series of papers utilizing the basic
Popov and circle criteria in design of systems guaranteed
to be stable. A distance function is defined in the G* or

G plane as a measure of how badly a system fails to satisfy
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the appropriate stability criterion. Parameters of the
linear part are adjusted, based on the sensitivity of the
distance to parameter changes, until the criterion is
satisfied. Rushing and Fannin [40] used an area function
instead of a distance function and automated the procedure
in a batch mode operation. The present paper builds on
this work, automating the design procedure in an inter-
active mode, and exploiting extensions of the basic
stability criteria.

B. N. Naumov and Ya. Z. Tsypkin [41l] utilized a mapping
from the G plane to the logarithmic amplitude-logarithmic
frequency (Bode plot) plane as the basis of a nonlinear
compensation procedure. G. J. Murphy [42],[43] used a
mapping from the G plane to the logarithmic gain—-phase
(Nichols chart) plane for his compensation procedure.
Murphy also used Z(s) multipliers more general than 1 +
jwg. C. E. Zimmerman and G. J. Thaler [44] extended
classical lag and lead compensation to nonlinear systems,

using the Popov criterion.
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ITI. EXTENDING THE USEFULNESS OF THE CRITERIA

A. The Modeling Problem

The following discussion of several aspects of
mathematical modeling is important because it is shown
how stronger results are obtained from the stability
criteria, and how the class of systems treated is broad-
ened. First, the conventional or natural formulation of
a practical system may not have the equilibrium point of
interest coincident with the origin of the state space,
contrary to what is essentially required by Popov.
Second, tradeoffs are possible between the characteristics
of the linear and nonlinear parts, without changing the
stability properties of the model. This permits the use
of additional stability criteria not applicable to the
original model. Third, the actual nonlinearity may not
be confined to a sector. Nonetheless it may be possible
to replace the actual nonlinear characteristic with an
equivalent combination of ficticious elements such that
the system is amenable to analysis by the methods of this
paper. Fourth, some models with nonlinearities not ex-
pressible as a function of a linear combination of state
variables can be transformed into the required form by
a change of variables.

Finally, it must be remembered that no model can be

truly global in a state space of infinite extent. While
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this last point frustrates the quest for global asymptotic
stability, it can enhance the results obtained for an in-the-
large, but finite region. The following sections discuss

these points in more detail.

B. Translation of Coordinates

All the Popov-type stability criteria are used to
establish stability of the origin of the unforced system.
Often it is necessary to translate the axes of the state
space before the Popov criterion can be applied. When the
output variable is a mechanical position the origin is
naturally chosen at the mechanical equilibrium. In other,
non—-mechanical processes, as for example where the output
is temperature, pressure or composition, the equilibrium
point of interest is definitely not where the output has a
value of zero (on an absolute scale). In these cases it
is necessary to translate coordinates in the state space.

Consider the following example.

Example #1:

e 7 B T 7] ]j

X1 0 1 0 X1

Xy = 0 0 1 X, + 0| £(o); f(0)=sat(x2) + 1
X3 -6 =11 —é— x%_ 0—
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where the sat function is defined by

1, x, > 1

- _1 < <
sat(xz) < Xy, -1 5 x, 21

_Tl' X, < -1
so that f(g) = f(x2) has a characteristic given by Figure
2(a).
At equilibrium
X, = 0 = X, + sat(xz) + 1
X, = 0 = X3
Xy = 0 = —6xl - llx2 - 6x3.

These equations imply a single equilibrium point at

(%%, - %, 0). Now translate coordinates so that the

equilibrium point is at the origin. Let

11
2 =X T 13

N

I

X

+
N



Figure 2.

(a)

(b)

Nonlinear Characteristics of Example #1.
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so that

Zl = xl =
22 = x2 =
Z3 = X3 =

Zl 0
Z2 = 0
1 -_—6

3 3
1
Z, - %
Z3
11
-6(2, + 13
=
1 0
0 1
11 -6

Z 0

3

[sat(Z2 -

where the nonlinearity is given by Figure 2 (b).

The output matrix,

¢ is defined by

23
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The transfer function G(s) of the linear part is given by

-e(s)

G(S) == '—m = —C[SI—A]_ B

-1
s -1 0 1
=10 -1 0] 0 S -1 0
6 11 s+6 0

6
(s+1) (s+2) (s+3) )

(End of Example #1.)

Another type of situation arises when there is
empirical open loop frequency response (gain and phase)
data on the input-output behavior of G(s) even though its
structure is not known. In this case the equilibrium
point(s) of the closed loop system with a particular non-
linearity can be calculated from knowledge of G(0). The

following simple example illustrates the approach.
Example #2:
The system is in the standard form of Figure 1.

The subscript o denotes equilibrium value.

e, = —f(eo) G(0).



Solve for the equilibrium value(s) of the output, y.

Let

fle)) = el‘el’ + 1 and assume G(0)>0 and e, <0.
e, = —(eoleol + 1) G(0)
= (=2 + 1) G(0)
o

2 -
G(0)e; - e - G(0) =0

1

eo = 3oty [+ /1 + 416(0)17%]

which is less than zero when the negative square root is
taken, justifying the assumption eo<0. No real solution
exists if it is assumed that eo>0.

With the equilibrium value of the output determined,
the nonlinear characteristic must be translated so that
the equilibrium point lies at the origin of the new
coordinates, e, and g(ez), as shown in Figure 3. The

translation determines the Popov sector containing the

25

nonlinearity, and with the empirically derived G(jw) locus

(or G*(jw) or G**(jw) locus) the stability criteria can

be applied.

(End of Example #2.)



Nonlinear
f(el) Characteristic

g(ez)

Equilibrium
Point

€1

Shaded area is sector
containing nonlinearity.

Figure 3. Translation of Coordinates.
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C. Pole Shifting

Pole shifting provides a means of obtaining equivalent
descriptions or models for the same system which may be
preferable for analysis. The procedure involves nothing more
than trading linear gain of the nonlinearity for linear feed-
back around G(s). The system of Figure 4(b) is obtained from
the system of Figure 4 (a) by pole shifting, where a linear
gain of 1.0 has been taken from the nonlinearity and applied
in a local feedback loop around G(s). The new Ga(s) has its
poles shifted from the original G(s), while the zeros remain
unchanged. Gibson [45] treats both pole shifting and zero
shifting in some detail.

One reason for pole shifting is to shift the poles of an
unstable G(s) into the left half plane as required by the Popov
criterion. The root locus methods of linear analysis indicate
when this shift is possible and how much feedback is required.
Another reason for pole shifting is that stability analysis
based on Figure 4 (a) involves the circle criterion, with the
nonlinearity in the sector [1,2]. The circle criterion is un-
wieldy when g # 0, while if g = 0 the results may be too
conservative. In the equivalent system of Figure 4 (b), the
nonlinearity is in the sector [0,1], permitting the Popov
criterion with g # 0 to be used. Thus when it is permissible
for q # 0, it can be advisable to apply pole shifting to the
maximum so that the lower bound of the nonlinearity sector is
zero. Then apply the Popov criterion, or any of its exten-—

sions where the slope of a line is a free parameter.



ul —el =Y
G(s) i
(a)
G(s)
Ga(s) 1 + G(s)

w
?
|
H
-
N
| it
(®)
n

(b)

Figure 4. Pole Shifting.
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A disadvantage of such pole shifting occurs when the
original nonlinear characteristic is monotonic, but not
monotonic after pole shifting to the maximum. Pole shift-
ing can then rule out the criteria requiring a monotonic
nonlinearity. In such cases it may be advisable to pole

shift by a smaller amount, so that the characteristic

remains monotonic.
D. Zero Shifting

Hsu and Meyer [10] use the zero shifting transformation
primarily to establish the applicability of the Popov
criterion to systems where the numerator and denominator are
of the same degree. The system of Figure 5(b) is obtained
from the system of Figure 5(a) by a zero shifting trans-
formation defined by e, = e + cu. The zeros of the new
linear part, Gc(s), are shifted, while the poles remain
unchanged.

In Figure 5(a) the point (el,ul) defines the lower
bound, a, on the sector. Under the transformation e, =
e + cu, this point maps to the point (el + cu, , ul) in
Figure 5(b). Similarly, the point (el,uz) defining the
upper bound, b, on the sector maps to the point (el +

cu,, u2) in Figure 5(b). The new sector in Figure 5 (b)

defined by the transformed points is

! 2 - 2 B
l+ac ' 1l+bc™*



30

u=f (e)
u
'e— € [a,b]
—e=y
e G(s)
u=fc(ec)
u [—2_ _9__]
u e l+ac’1l+bc
2 1 c
e u e = -e
1 :4 c u _ C
tou e+cu G(s)-c -~
I S|
- 2--
(b)

Figure 5.

Zero Shifting
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The new linear part, Gc(s) is defined by

Li-e (£)}
GC(S) = L “}c{—e(t) - cu(t)} = G(s) - c.

B ACTI N Z {u(t) s

Zero shifting combined with some decompositions of
multiple-valued nonlinearities given by Gibson [45] permits
improved results to be obtained for systems with certain
hysteresis type nonlinearities.

The system of Figure 6(a), having a symmetric relay
characteristic with hysteresis and deadband, can be trans-
formed into the equivalent system of Figure 6(b). In the
simplified transformed system of Figure 6(c) the Popov
criterion can be applied with no restriction on the sign

of g. For

_ K
G(s) = (s+2) (s+3) (s+4)
and a = .5, b =1, M = 1; the transformation leads to an

upper bound on K of 104 for absolute stability of the
sector u/e € [0,2], compared to 51 for Figure 6 (a) (g=0).
Both of these bounds on K were found with the aid of the
interactive computation package, and the value obtained
after zero shifting is very close to the maximum value of

K for a linear characteristic of slope 2, which is KmaX =
165,

The Popov-type methods cannot be applied at all to
the system with the backlash characteristic of Figure 7(a),

because the nonlinearity is not confined to a sector. The



Figure 6.

-b

—a

G(s)

G(s)
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b-a

G(s)-

Zero
With Hysteresis and Deadband

Shifting Applied to a Relay Characteristic



////slope

n

G(s)

(a)

G(s)

33

(b)

Figure 7.

exactness.

///,—lepe = h

Equivalence to Figure 7 (a) becomes exact as
hk—»~; in practice hk2100 gives sufficient

k 1
‘S—[G(S)+ E—i-]

(c)

Zero Shifting Applied to Backlash Characteristic



u
N It
"‘b ] b
1 1 = G(s)
r=0 - —L—
-—M 2
(a)
G(s)
r=0
(b)
////slope = =
M
+ b
G(S) s —N-l
- -M
r=0
(c)

Figure 8.
With Hysteresis
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Zero Shifting Applied to a Relay Characteristic



- e ot |mw -

Figure 9.

(a)

(b)

=e+cu

(c)

Zero Shifting Applied to Three Hysteresis

Characteristics
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decomposition given by Gibson yields the system of Figure
7(b) . After simplification to Figure 7(c), the usual Popov
criterion can be applied.

Figure 8(a) depicts another system whose nonlinearity
is not of the reguired form. Where the original character-
istic is multiple-valued, the output of the nonlinearity is
on the same segment as it was immediately previously. If
the nonlinearity is at point P, or P, and |e| decreases,
the output follows the diagonal rather than the horizontal
segment. Zero shifting yields Figure 8(c), where the new
nonlinearity is confined to the sector [0,K], so that the
Popov criterion can be applied.

It should be pointed out that three superficially
identical relay-type characteristics with hysteresis but
no deadband may actually have three different character-
istics, as shown in Figure 9. Zero shifting is useful only
for the top characteristic. The bottom characteristic is
the one associated with ordinary electromechanical relays,
and the zero shifting transformation does not exist in an

interval about the origin of the zero shifted characteristic.

E. Product Nonlinearities

Baron and Meyer [46],[47] show how, in certain models
with product nonlinearities, non-zero equilibrium points
can be investigated for stability by means of a change of

variables. The technique is presented in the context of
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a nuclear power reactor, where the neutron density n, and
the n-vector y of several temperatures, satisfy the state

equations

n = Kn

Ay - bn (3.1)

%
I

where K, the reactivity, is a function of the state of the

reactor.
K=K + cy -pn .

The product nonlinearity arises from the Kn term of the
state equations. Equilibrium points are at the origin,

nl = yl = 0, and at

(p—-clAb)—l K

n = n2 o

_ _ A—1 _ -1, -1
y——yz——A b(p-c A ~b) KO.

Translation of coordinates defined by
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puts the equilibrium point (n2,y2) to the new origin. The

kinetic equations are

Now let

6+n
c = 1n[___27.

Tl

The kinetic equations can now be written as

¢ = c'x - pn, (e%-1)

x = Ax - bn, (e® -1)

which is of the standard form for the Popov criterion.
The essential characteristic of the system (3.1) is

that one state variable, n, is decoupled from the rest

except insofar as K is a function of the other state

variables, and that the remainder of the system is linear.
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F. Stability In-the-Large

Another important modeling point concerns constraints
on the value of the output variable, e. In the vicinity of
the equilibrium point under consideration the nonlinearity
may be accurately modeled by a particular mathematical
function. If the domain of the function is taken to be
[-»,+>], the sector containing the nonlinearity may be
larger than actually required. Direct constraints on the
output variable, or constraints on the state variables, may
permit a sharpening of the stability criteria by limiting
the domain, and likewise the range of the nonlinear character-
istic.

Such constraints, of course, spoil the linearity of the
part of the system represented by G(s), and if any variable
actually reaches its constraint the stability criteria are
not applicable. In a particular problem engineering judge-
ment is called for to estimate how far the state variables
might reasonably deviate from the desired operating point.
The stability results would be equivalent to those obtained
by Liapunov methods in which stability in-the-large is
determined for a finite region R and it is estimated that
disturbances would always be within R. Liapunov functions
used in proofs of Popov type criteria also lend themselves

to establishment of finite regions of stability [48], [49].
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Iv. REGIONS IN PARAMETER SPACE SATISFYING
STABILITY CRITERIA

A. Parameter Space Where the Popov Criterion is Satisfied

D. D. Siljak [50] reformulated the absolute stability
problem to include parameter variations. By analytic means
he obtained the region R, in parameter space where the
Popov type inequality is satisfied. The results have impor-
tant implications regarding system sensitivity and in the
verification of the Aizerman and Kalman conjectures.

The object of this chapter is to first review the work
of Siljak by considering the details of his example. Siljak's
work is compared to results obtained by graphical interpreta-
tion of the Popov criterion. Then an analytic interpretation
of the Popov type inequality is developed based on the Routh
criterion. This interpretation is suitable for checking
the satisfaction of stability criteria involving general
Z(s) multipliers. Finally the conjectures of Aizerman
and Kalman are considered,band a verification of the Kalman
conjecture is obtained for a new class of systems, based
on the equation for the locus curvature and the Routh
criterion.

Siljak first puts the Popov inequality for an n-th

order system into the form

2n i
) a;w >0 for all w20 (4.1)

i=0
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where the coefficients a; are real functions of the
parameters of G(s), the sector bound K, and the free
parameter g representing the reciprocal slope of the Popov
line in a graphical interpretation. If ap>0 and if there
are no positive real roots of the left hand polynomial,
then (4.1) is satisfied for all w20. For this to take

place, it is sufficient, by Descartes' rule of signs, that

a.zo, i=1,2, . . . 2n.

These inequalities define a region R, of absolute
stability in Euclidian parameter space, R". The mere suffi-
ciency of Descartes' rule means that R, is only a sub-
region of R, the region where the Popov criterion is
satisfied, which itself is only a subregion of R, where
there is absolute stability. Nevertheless it is wvaluable
information that every combination of parameters in Ry
corresponds to an absolutely stable system.

Furthermore Siljak shows how to imbed a hyperrectangle,
R3, of maximum volume centered about the point of nominal
parameter values in the irregularly shaped R,. In this way

independent restrictions on each parameter are obtained.

< < <
Ry £ R, £ Ry 5 Rg.

The following example illustrates how the regions

R, and R3 are obtained and compares these results to



those obtained by a graphical use of the Popov criterion.

Example #3:

sz+uzs+u3 52+u s+u
G(s) = (s¥1) (s+2) (s+3) 3 g >
s S ul(s +6s"+11s+6)
K =1 ; S = Jjw.
The Popov criterion for g = 0 is

% + Re[G(jw)]1>0 for all w20

2, .
Hy—w i,
1 + Rel 3 5 ] >0
ul(—jw -6w +jllw+6)

(u3-w2+ju2w)[(6—6w2)-j(llw—w3)]
1 + Rel 55

> 0

+(llw—w3)2]

ul[(6—6w2)2+(llw—w3)2]+(u3—w2)(6—6w2)+u2w(llw—w3) > 0

2 4 6
-— -— - <+ > .
36ul+6u3+(49ul 6u3+llu2 6)w +(l4ul u2 6)w +ulw 0

42
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The coefficients of each power of w are required to be

greater than zero:

ag = 36u; + 6u3 >0 (4.2)
a, = 49u; + 1llyp, - 6Ly — 6 20 (4.3)
a, = 14111 = M, t 6 2 0 (4.4)
ag = Mg 2 0. (4.5)

Equations (4.2) through (4.5) determine the region R2 in
a 3-dimensional parameter space where the Popov criterion
is satisfied for g = 0.

Next a hyperrectangle (a right parallelopiped in
this case) of maximum volume is imbedded in Ry, with the
center at some specified point (ﬂl,ﬂz,ﬁ3). The volume

V is defined as
v o= 23 (uy-1) (uo-Ts) (Ha=Ta) (4.6)
1 1 2 2 3 3°° °

Now V is maximized subject to the constraints (4.2) through

(4.5). Substitute the expressions for one of the parameters
obtained from the equalities (4.2) through (4.5) into (4.6)

and set the partial derivatives equal to zero. For example,
if constraint (4.3) is solved for ug = ug (pz,p3), where

the superscript 0 denotes extreme value, and substituted into

(4.6), then (4.7) and (4.8) are obtained.
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OV (U, ,Uy,)
2773
—_— =0 (4.7)
8u2
OV (U, ,H,)
2737
I = 0. (4.8)

Altogether there will be four sets like (4.7), (4.8), each
set corresponding to one of the constraint equations.
Each set defines a region in parameter space, and the

intersection, R satisfies all four constraints.

3’
From (4.3)

_1 3
My = Zg (6H3=11u,+6)

3 1

v=2" g

(6u3-llu2+6)-ul] (uz—uz)(u3-u3)-
Let (Hy,M,,H3) = (.2,0,0).

29 (6u3-11u2+6) - .2] MoHg

3.6 11 2 6
= 27 [3g MyM5 - g HaH3 t (g = -2) HyH5l
oV _ o .6 222 6
Buy 0 = Zg M3 ~ Zg WoH3 * (Zg = -2) ¥3
2 —
= .1224u3 - .4490u2u3 .0776u3 (4.9)



oV _ _ 12 _ 11 2 6
315 0 = 79 ¥aM3 o V2t (gg — -2 1,
—_— — 2—-
.2449u2u3 .2245u2 .0776u2. (4.10)
Solving (4.9) for Mo yields
0 _ 1 2
My = TZZ?H; [.12241.13 .0776u3]
= .2726113 - «1728. (4.11)

Substituting into (4.10) yields

0 = .0501u§ - .0423u; + .0067

0 .0423+/.00045
H3 .1002

.6337, for a minimum volume inside R2

.2106, for a maximum volume inside R2.

Using the smaller number and (4.11),

(.2726) (.2106) - .1728

0
Ho
= -.115

45



wIm[G(jw)]

46

Envelope containing

all loci
- O,
4 a \
/ © m/-\ '
y "
IQZD, \ 0
l ox / '@ q
) YN - Re [G(jw) ]
1 A
K ' |
oy
mo | 2
-1 A | o G(s)=
I G,, .2(s3+652+lls+6)
| |
Po ! s%+.115s+.21
/ / O G(s)= '3 2'
-2 + | / .226 (s +6s“+11s+6)
(O]
R
/ 2 -
, / A G(s)= s +.§1552.21
/ .226 (s~+65°+11s+6)
Q9
_3 + /A /
/ / 2
+.115s-.21
Pe O G(s)= 8 ===
/ / .174 (s +6s“+11s+6)
/! © |
_.4 -7 ,
!
o
!
/
-5 ¢ /
!
/
/
P

Figure 10.

of R3

G* (jw) loci For Parameter Sets at the Vertices
of Example #3



0 1
My = 19 (6(.2106) - 11(-.115)+6]

.174.

A region where constraint (4.3) is satisfied is defined

by

|uy - .2 £ .2 - .174 = .026
[u, = 0 = .115
lu3 - 0| = .21.

It is found that this region also satisfies the other con-
straints (4.2), (4.4), and (4.5), so that the region R3
is defined.

The G*(jw) locus is plotted for parameter values
corresponding to the vertices of R3 in Figure 10. The
most negative real coordinate of all these loci is -.22,
compared to -1/K =-1. Recognizing that the G*(jw) locus
shifts continuously as parameters are varied, it is clear
that R, is much more restricted than needed to satisfy the

3
Popov criterion.

(End of Example #3.)

In a problem where g is not restricted to be zero,
g will appear in (4.1) and must be set to particular values
to obtain numerical bounds for R3. The procedure should

be repeated for a variety of g values, and the largest of

47



the regions thus defined taken as R3. The union of the
regions is a region where the criterion is satisfied, but
the union is not a hyperrectangle. An additional con-
straint, such as g £ 0, may be necessary according to the
type of nonlinearity in the system.

The sector bound K can also be left as a parameter,

and included in the definition of volume. Leaving g and

K as parameters in Example #3, the Popov criterion becomes

% + Re[(1+jwg)G(jw)] > 0 for all w 2 O

N (ymwtiu,e) [(6-607) - 3 (1lw-w)]

g + Re[(l+jwq) ( ) 35 )]> 0
ul[(6—6w Y + (llow-w™) 7]

u

El [(6—6w2)2 + (llw—w3)2] + (u3—w2)(6—6w2) + uzw(llw—wB)

+ wq[—uzw(6—6w2) + (u3-w2)(1lw—w3)] > 0

36u
1
- > 0 (4.12a)
2y g+ 6M3
9uy > (4.12b)
14u
_ ) 8 - - > 4.12c
a, = —x + 6-u,+6qu, q(ll+u3) 20 ( )
M1
a, = + g2 0 (4.124)

48
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3

vV =2 (ul—.z) u2u3 (K-1) . (4.13)

Solve (4.12b) for Myr using the equality to zero.
- K - -
My = 5 [6u3+6 llu2+6qu2 llqu3]. (4.14)

Substitute into (4.13) and set the partial derivatives

equal to zero.

3 (K

vV = 2 [Zg (6u3+6-llu2+6qu2—llqu3)—.2]u (K-1)

gH3

Y% _ K : _ - K _(_
355 0 = [Zg(6us+6-1lqus)-.2] My (R-1) + 2 [7g(-11+6q) ]
- 4.15
Houg (K-1) ( 5)
oV _ (K - - K_(e_ -
gﬂg = 0 = [Zg(6-11u,+6qu,) -21u, (K 1)+21[79(6 11lq) Ju,u5(K-1)
(4.16)
v 0 = [g—(G +6-11lu,+6gqu,—1llgu,)-.2]Ju, u, K
3K 29 '\°H3 2 2 3 2H3
1 - -
= [Fg (6H3+6-11u,+6qu,y—11lguy) —.2]1H, ;. (4.17)

Simultaneous solution of (4.14) through (4.17) (if it ex-

0O .0 0 0
ists) yields extreme values of the parameters, ul,uz,u3,K .

To get numerical results, g must be set to a particular



value. Repeat the procedure setting g to many different
values. The region R3 is then the largest of all the
regions defined for particular values of g.

As an extension to the volume concept, it might be
desired to exponentiate each factor of the equation for V
according to the relative tolerance desired in the corres-
ponding parameters. In Example #3 suppose that a large
tolerance bracket on El is more important than the tolerance

on HZ or E3. Then let
3 - 2 — -
V=2 (ul-ul) (Hy=H,) (n3=u3) .

Other extensions could be applied to the Popov-type
criteria involving more general Z(s) multipliers, where
the coefficients of Z(s), like g in the Popov criterion,
are treated as parameters.

Larger regions of absolute stability can be obtained
by use of the Routh criterion. Beginning with equation
(4.1) it is noted that only even powers of w are present.
It is known that a0>0. To satisfy the stability criterion,

it must be shown that the polynomial

n .
1
a.w
1

o~

Pl(w) =

i=0

has no positive real roots. A method outlined by Siljak

[51] based on the Routh criterion follows.
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Replace w by -jw to form Pz(w). Pz(w) has the same
roots as Pl(w) except for a rotation of +90 degrees. Form
the Routh array for Pz(w). The number of roots of Pz(w)
with positive real parts is equal to the number of sign
changes in the left hand column of the array. This is
equal to % the number of complex roots of Pl(w). (See
Figure 11.) Require that there be n sign changes--

meaning that there are no real roots of P, (w). This

1

requirement can in general be satisfied non-uniquely, so
that possibly a variety of regions in parameter space
could be found where there is absolute stability. For

example #3 the Routh array is formed as follows:

2
Pl(w) = ul(36—72w2+36w4+12lw2—22w4—w6)+(u3—w2)(6—6w )

2
+ uzw(llw—wB) = ulw6+(l4ul—u2+6)w4+(49ul+llu2—6u3—6)w

+ 36ul+6u2.

Replace w by -jw to form Pz(w).
6 Cu+6) Y - (49 +11u-61,-6) Wi +36w +61, -
Pylw) = pyu +(14u,-uy+6)w My o~ By 176H,

The Routh array for Pz(w) is given in Figure 12, where the

second row is formed by differentiating the first row.



Im(w)
X X
ta3 -3~ Re [w]
X X
(a) Roots of Pl(w)
Im[w]
X X
X
Re [w]
X
X X

(b) Roots of Pz(w)

Figure 11l. Rotation of Roots for a Typical Pl(m)
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- 14u, -+ - (49 .~

Hy Hy7H,y 6 ( Ul+llu2 6u3 6) 36ul+6u3
-6ul 4(l4ul—u2+6) —2(49ul+llu2—6u3—6)
- L4y -u.+6) 249y +11p.~6u.-6) 361 +61

3 1 "2 3 1 2 3 1 3

- i(1411 - +6)2 + 4(49u,+11py,-6u,-6) 2(l4u -U,+6) (49U, +11lu,-6u,~-6) + 6u, (36u,+6),)

[ 3 1 "2 1 2 3 ] {3 1 "2 1 2 3 1 1 3 }
-1 - 1
3 (l4ul u2+6) - §(l4ul—u2+6)

36ul+6u3

[} ]%(49ul+llu2—6u3—6) + | } %(14U1'U2+6)]
L]

[ 3¢ - (36ug+6uy) ]

13

36ul+6u3

Figure 12. Routh array for Pz(w) of Example #3.
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As can be seen from the Routh array for even this simple
example, it is not easy to interpret the region(s) defined
by requiring a certain number of sign changes in the left
hand column. It is easy however to substitute sets of
parameter values into the first two rows and form the Routh
array for particular cases. By trial and error, a region
can be fairly rapidly and accurately delineated where the
criterion is satisfied.

The Popov criterion is satisfied in the Routh array
for Example #3 if and only if there are three sign changes
in the left hand column. This can be checked rapidly for
any set of parameters--more rapidly than a G*(jw) locus
can be plotted. This kind of check can also be made
readily for criteria involving general Z(s) multipliers.

As a check on the Routh array of Figure 12, the
nominal parameter values of Example #3 are substituted into

the first two rows, and the rest of the array elements are

calculated. From Example #3, (31,32,33) = (.2,0,0).
-.2 8.8 -3.8 7.2
-1.2 35.2 -7.6
2.9333 -2.5333 7.2
34.163 -4.6545
-2.1337 7.2
110.63

7.2



There are three sign changes in the left hand column of
the above Routh array, as required to satisfy the Popov
inequality for Example #3. Now substitute parameter values
outside the region R3 defined in Example #3. Let (51’32’53)

= (.1,0,0). The Routh array is below.

-.1 7.4 1.1 3.6
-.6 29.6 2.2
2.4667 .7333 3.6
29.778 3.0758
.4785 3.6
-220.96
3.6

There are still three sign changes in the Routh array,
illustrating the conservatism of R3. If however (ﬂl,ﬂz,ﬂ3)
= (.01,0,0), then there is only one sign change, as the
following Routh array shows, so that the Popov criterion

cannot be satisfied.

-.01 6.14 5.51 .36
-.06 24.14 11.02

2.1167 3.6733 .36
24.244 11.030

2.71 « 36

7.81

.36



These results are consistent with the graphical interpreta-
tion where it is found that for u2 = u3 =0, My = .025 is the

minimum value of Wy, which will satisfy the Popov criterion.

B. Curvature of the G(jw) Locus--Aizerman and Kalman

Conjectures

If the stability of a class of nonlinear systems corres-
ponds to the stability of a related linear system, then one
can use the simpler methods of linear analysis to establish
regions in parameter space where there is absolute stability.
Verifications of the Aizerman and Kalman conjectures establish
this correspondence between nonlinear and linear systems.

It is clear from graphical considerations that if the G (jw)
locus has monotonically decreasing magnitude and always curves
in the same direction as w increases, then a straight line can
be drawn through the most remote (from the origin) intersection
of the G(jw) locus and the negative real axis without inter-
secting the locus at any other point. The off-axis circle
criterion then says that for constant monotonic nonlinearities
the Kalman conjecture holds, i.e., if the constant linear sys-
tem is stable for all gains in the sector [0,K], then so is

the nonlinear system for all constant nonlinearities satisfying

< df(e) < ¢
0 - e -

To establish the constant direction of curvature of
the G(jw) locus, the formula for the curvature of a two-

dimensional parametric curve is used [52].
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b

dx _d%y _ ay

7{ _ dw ds ~ dw = dw?
3
dx, 2 dy, 2 2
[ (d_w-) + (d—w ]

where X and Y are the real and imaginary parts, respec-
tively, of G(jw). The numerator polynomial P(w) is formed;
if the coefficients of all powers of w have the same sign,
that is a sufficient condition (by Descartes' rule of
signs) for there to be no positive real roots of P(w). In
other words the curvature of the locus is never zero. If
this test fails, then the Routh array may be formed for
P(-jw), as was done for the polynomial from the Popov
inequality.

A check of the curvature using Descartes' rule has

verified the Kalman conjecture for the trivial cases

K
G(s) = ——
(s+a)4
and
K
G(s) ) S
(s+a)5

and the less trivial cases

K
(s+al)2(s+a2)

G(s) =
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and

G(s) = L3 .

(s+al)3(s+a2)

Verification of the Kalman conjecture for this last case
is believed to be an entirely new result. It was not
necessary to invoke the Routh criterion.

The computations involved in forming P (w) and evaluat-
ing the coefficients increase rapidly as the order of the
system and the number of distinct poles and zeros increase.
Even with the aid of FORMAC, an IBM language for non-
numeric machine computation, the analysis becomes imprac-—
tical for systems with several distinct poles and zeros.

The verification for G(s) = K required 244K

(s+al)3(s+a2)

bytes of core storage and about 60 minutes execution time

on an IBM 360/50.

Another rather specialized verification of the Kalman
conjecture makes use of a distance function in the G(s)

plane. Consider the transfer function

Sz"'«"il.2

(sz+m§)(s+b)

G(s) =

along with a nonlinearity, F, which is constant and single-
valued.
The verification is based on the off-axis circle

criterion of Cho and Narendra [36] for monotonic non-

linearities. A distance function is formulated and required
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to be always positive in order to satisfy the criterion.
This inequality defines a region in parameter space for
which the Kalman conjecture holds.
In its present form G(s) is a critical case, having
poles on the imaginary axis. G(s) does have stability-in-
the-1limit, so that an arbitrarily small amount, >0, of linear
feedback moves the system poles into the left-half plane, and
puts the system into the form required for the theorems of
Cho and Narendra. This pole shifting transformation yields
Gl(s) and Fl.
If the Gl(jw) locus lies entirely to the right of a
straight line passing through the point (- % + §,0), 6>0

small, and if the nonlinearity satisfies the conditions

F. (e,)-F. (e,)
0 = 1 1 1 2° < K for all e, # e
el—e2 1 2

then the system is asymptotically stable, according to Cho

and Narendra.

The Hurwitz sector for Gl(s) is

wgb
(-<, 2 - €)
a
2 2
G, (s) = Sie), = — 2 2 2
1 1+eG(s) s3+(b+€)52+wos+(wob—€a )
Gl(O) = 2 S
wob—ea



It will be shown that under certain conditions the Gl(jw)
locus lies entirely to the right of a line passing through

the point

k= 35 " 61 + 6,0), 6l>6>o

so that the system is asymptotically stable if

2 2
o Fl(el)-Fl(ez) - wob e; _
- e.—-e - 2 .2
1 2 a +61(w0b ea’)
wgb

wgb
(ol —2_—)
a
. dF
and the corresponding sector for Jo 1is
w2b
[e N
r_2 2
a

The difference between these two sectors is arbitrarily
small, so that for all practical purposes the Kalman

conjecture is satisfied.



Now for simplicity the G(jw) locus is considered
instead of Gl(jw) locus since by continuity arguments
they differ by an arbitrarily small amount for any w # Wq -
Gl(jwo) lies far to the right. In order for the G(jw) locus
to lie entirely to the right of a straight 1line, the line
must have a slope equal to the slope of the locus asymptote.

The slope is —wo/b, so that the required line through the

point

2
a
(- 5 5 = 61 + &, 0)
w~b—-ca
0
has for its equation
wgbx + wobzy + (a2 + 63) = 0, 63(6,61,8) > 0

where x and y denote horizontal and vertical coordinates,
respectively.

The distance in the G(s) plane between a point of the
G(jw) locus and the straight line is given by Sherwood and

Taylor [52]

wgb Re [G(jw)] + wobz Im[G(5w)] - (a

d = :L .

4. 2 2, 4, 3
(wob + wob )

Requiring d>0 for all w20 so that the G(jw) locus lies to

the right of the line leads to

61
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2
b
2b>w0|l - ;—2-| + 8, §,(85)>0 (4.18)

as a sufficient condition for the Kalman conjecture to be
true. A counterexample [57] to the Aizerman conjecture has

a” = .5, b = wy = 1. These parameters do however satisfy
(4.18), illustrating a case where the Kalman conjecture holds
when the Aizerman conjecture does not.

Note that for b = a the inequality (4.18) is trivial
and may be satisfied for any wqe This is a consequence of
the fact that the Kalman conjecture holds for all second
order systems.

The preceding results are subsumed by the analytical
work of Dewey [35], who showed that a transfer function of
the form

2 _2
s —a

(sz+wg)(s+b)

G(s) =

satisfies the Kalman conjecture for all values of a, b,
and wg. Actually, somewhat stronger results were obtained,
in that the Aizerman conjecture holds if the nonlinearity
is constant, single-valued, and monotonic. The present
verification, however, is a new use of a distance function
in a graphical interpretation.

The Aizerman conjecture (and hence the weaker Kalman

conjecture) is verified in the literature for all first

and second order transfer functions [9], for third order
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systems without numerator dynamics [53], and for some other
special third and fourth order systems [54],[55]. Recently
Fujii and Shoji [56] have verified the Aizerman and Kalman
conjectures for other third and fourth order transfer
functions, whose coefficients satisfy certain relationships.

In general, of course, neither the Aizerman nor Kalman
conjecture holds, for counterexamples have been found [571,
[58], and an analytical disproof has been given [59]. One
of Fitts' counterexamples has

2
S

[(s+.01)2% + .9%1[(s+.01)2 + 1.12]

G(s)'=

which is of the form of the transfer function of a two-
stage tuned amplifier [60], demonstrating that practical
systems need not satisfy the Aizerman conjecture or the
Kalman conjecture.

The verification of the Aizerman and Kalman conjec-
tures is desirable because it allows the use of the methods
of linear analysis, such as the root locus technique and
the Rough-Hurwitz test, to determine the sector of allowable
nonlinearities. The verification of the Kalman conjecture
obtained in the present research adds slightly to the
class of systems where this conjecture is known to hold.

It seems likely that an inductive proof might be possible
to verify the Kalman conjecture for all transfer functions

with negative real poles and no numerator dynamics.



V. COMPUTER~-AIDED DESIGN

A. Area Measure of the Degree of Failure to Meet the

Criteria

Earlier uses of a distance function [37]-[39] seemed
adequate for the examples considered, but examples can
be conceived for which the distance function is ill-suited.
Figure 13(a) illustrates such a problem. The solid locus
is for the original system parameters. The distance func-
tion, d, is taken as the maximum perpendicular distance
from points on the locus to the Popov line. Locus fre-
quency w; corresponds to the distance function d. Suppose
it is found that perturbation of a particular parameter
reduces the distance d from the wq point of the locus to
the Popov line. On this basis the parameter is adjusted.
The distance d is reduced, but it is not at all clear that
the Popov criterion is more nearly satisfied. This adjust-
ment actually makes the criterion more unsatisfied, due to
the increase in distance to the Popov line from other
frequencies, W, for example. It is thus possible to
improve the situation at one frequency, but worsen it at
others.

Use of the area function as the basis for parameter
adjustment, as shown in Figure 13(b), avoids the preceding

difficulty. The area measure includes information about
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Adjusted wIm[G(jw)]
Locus '
w
Original w ///
Locus w2
]
@1
Re [G(jw) ]

_ 1

Popov k
Line

(a) Distance Function, d
wIm[G(jw)]
Popov Line
Re [G(Jjw) ]

~ L

k
Area, A
reduced
to zero

(b) Area Function, A

Figure 13.

Distance and Area Functions
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the locus at all frequencies where it is to the left of the
Popov line and leads to the best overall parameter adjustment
for the entire section of the locus. In terms of the number
of arithmetic operations required, an area can be calculated
about as fast as a maximum distance can be found. The
elemental areas summed in the computer programs are shaped
as thin horizontal trapezoids in the case of the Popov
criterion and as thin radial trapezoids in the case of the
circle criterion.

It should be remembered that neither the distance func-
tion nor the area function corresponds to any physical system
characteristic. The functions are purely artificial guides
to direction and amount of parameter adjustment. Fortunately,
these functions seem to vary rather smoothly with parameter
changes, based on the author's experience with the inter-
active computer program. In terms of the automatic parameter
adjustment, it is found that, for almost all examples con-
sidered, the adjustment required is more than what is indi-
cated on the basis of the initial sensitivities. This is as
expected, since a parameter value is more directly related to
a linear dimension of the G(jw) locus than to an area within
the locus, which would be more related to the square of the
parameter value.

To exploit these relationships it is proposed to use
a quadratic curve fitting scheme to estimate parameter

values which would just reduce the area function to zero.
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After the area function is computed for three parameter
values, the second degree polynomial A(p) passing through
these three points is determined, so that the roots of the
polynomial give an estimate of what value of parameter o)
causes the area A to vanish. Obviously, only real roots
are meaningful, and the root nearest the three known points
should be taken.

Trials of this scheme in several examples have produced
very closely the parameter value regquried to reduce the
area function to zero whenever the initial points are all
within a factor of two (2) of the value required. When-
ever the scheme failed, giving complex roots for A(p), one
or more of the initial points differed from the required
value by more than a factor of six (6). Example #4 shows,
however, that the technique is sometimes successful despite
large adjustment requirements. A(p) is formed by construc-
ting the Lagrange polynomial which interpolates at the
three known points [61].

While this adjustment technique may speed the reduction
of the area function to zero, it precludes the adjustment
of more than one parameter during the adjustment procedure.
Definition of a multidimentional guadratic polynomial
A(pl,pz, e e . pk) would be the first step in developing
an analogous procedure for more accurate adjustment esti-
mates when several parameters are variable. A gradient
method could then be used to find the best combination of

parameter adjustments. This scheme, of course, hinges on
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A(pl,pz, - & = pk) being a true relationship between the

area function and the parameters.
Example #4:

552

(S+p)(s+2)(s+3); P = 1; g unrestricted.

G(s) =

Applying the Popov criterion with a nonlinearity in
the sector [0,20] yields a minimum of the area function of
Amin = .01975 at g = 0. It is decided to guarantee absolute

stability by adjusting p. Perturbation of p yields the

data

A(.9) = .01854
A(l1.0) = .01975
A(l.1) = .02066.

Forming the second degree Lagrange polynomial which passes
through these points, and taking the root nearest p = 1
gives a parameter estimate of p = .1527 for absolute
stability. It is verified that the adjustment actually

required for absolute stability in the sector [0,20] is

p = .12.

(End of Example #4.)



B. Degree of Stability

The concept of stability is improved in its usefulness
by the extension to specify a degree of stability. A
response y(t) is defined to be asymptotic of degree o if

and only if

f %% y(t)12 at < w.
0

All the Popov type stability theorems can be used to
establish stability of degree o if the G(-a+jw) locus is
used, and if the linear part is output stable of degree
a [10].

There is a very close relationship between degree of
stability and the linear system concept of settling time.
Results concerning degree of stability thus help to
characterize the transient response of the nonlinear system.
The difference between the guaranteed degree of stability
and the experimental degree of stability can be taken as a
measure of the conservatism of the Popov criterion in a

particular problem.

Example #5:

_ 4
G(s) = {55 27 (s+b) (%) "
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Figure 14. Nonlinear Characteristic and Transient
Response for Example #5.
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The nonlinear characteristic is shown in Figure 14 (a).

During analog simulation it is found that b = 1.1 and
c = 2.0 is barely sufficient for a stable (degree zero)
response. Due to the discontinuous nature of the nonlinear

characteristic, the degree of stability o (or asymptoticity)
of the response is discontinuous with respect to parameter
changes at a = 0. As long as the relay switching action
continues following removal of input, the settling time

is comparatively long, as determined by looking at the two
negative peaks in Figure 1l4(b). After the response has
decayed to the point where the relay output is always zero,
the settling time is faster. The degree of stability is
defined by this later or ultimate settling time. It
appears that this design has a degree of stability of about
o = .2. Illustrating the conservatism of the Popov criterion,
it is required that b = 6.4, ¢ = 2.0 to guarantee stability
of degree a = .2 for all passive hysteresis characteristics

in the sector [0,3.75].

(End of Example #5.)

C. Stronger Results Obtained as the Nonlinearity is

Restricted

In the following example the same G(s) is analyzed
for stability for several successively smaller, more specific,

classes of nonlinearities. The results illustrate that



stronger results, i.e., larger sector bounds, can generally

be obtained as the nonlinearity is more precisely specified.

Example #6:

A transfer function considered by Dewey and Jury [62]
is representative of the frequency response of many compen-
sated feedback servosystems. The relevant loci are shown

in Figure 15.

40
s (s+1) (s+.8s+16) °

G(s)

For a general time varying nonlinearity it is required that
g = 0 in the Popov criterion, leading to a Popov sector

determined by

min Re[G(jw)] = lim Re[G(jw)] = -2.625
w w0

So for stability u/ecle,.381], where €>0 and arbitrarily
small. This same Popov sector also applies to constant
nonlinearities with passive hysteresis, requiring

—-»<g<0. For constant single~valued nonlinearities or
constant nonlinearities with active hysteresis, the Popov
sector is [e,.65]. If the nonlinearity is further re-
stricted to single-valued monotonic slope-bounded charac-
teristics, analysis in the G plane yields superior results,

defining a stability sector of e3du/des1.23. 1In the G**
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Im

Popov line locus —
(g # 0)

G** Jocus
~— Popov line
(g = 0)

Figure 15. G,G*, and G** Loci for Example #6.



plane the stability sector is eXdu/defl.43, which is a
further improvement over the basic Popov sector. For

linear characteristics the Hurwitz sector is (0,1.75).

(End of Example #6.)

D. Determining Parameter Adjustments

In determining the parameter adjustments to most
efficiently reduce the area function, A, or other error
measure, the sensitivities may be wgighted according to
the normalized "cost" of adjusting the respective param-
eters. The desirability, Li’ of adjustment of parameter

P, can thus be expressed by

P.
I, = 1 oE

i ¢y Bpi

where cy is the relative cost of adjusting parameter P

and E is the error measure. The partial derivative is

74

estimated numerically by examining the effect of parameter

perturbations, usually 1%, on A. The final design is
optimal in the sense that the parameter most "cost effi-
cient" in reducing A 1is adjusted at each step. This is
no guarantee however that the design obtained has the

lowest possible total cost.

There may be hard constraints on the values that may

be taken by the adjustable parameters. When a parameter

value reaches its constraint as a result of the adjustment
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procedure, the parameter effectively becomes fixed, and
its adjustment is no longer considered in the automatic
adjustment routine.

The computer program thus determines the desirability,
L of adjusting each variable parameter and selects for
adjustment the parameter with the greatest Li' The amount
of adjustment per step is determined by the user, who
specifies that the error function shall be reduced by a
certain fraction, 1/N, of its original value with each
step of the adjustment. To meet this specification the
routine uses the parameter sensitivity to determine the
amount of adjustment required. Before each step the Li
are recomputed. Any parameters which reach hard con-
straints are exempted from further adjustment in subsequent

steps.
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VI. SHORT STEPS BEYOND CONTROL AND OUTPUT ASYMPTOTICITY

The purpose of this chapter is to indicate the scope of
the results that can be obtained with the aid of the inter-
active program. By themselves the Popov-type criteria can
establish control and output asymptoticity. With a few
further restrictions, additional results often follow, e.g.,
global asymptotic stability, BIBO stability, and process

stability.
A. Popov Theorems

Control and output asymptoticity refers to the asympotic
behavior of the input and output respectively of G(s). A
system is output asymptotic of degree a if for every set of

initial conditions
(o]

J [e%ty () 1%at <.
0

A similar definition holds for control asymptoticity. If a
system of the standard form of Figure 1 is control asymptotic
of degree a and the linear part is output stable of degree a

then

1im e%*ty(t) = o.

t>oo
A linear part G(s) is said to be output stable of degree a if
for every set of initial conditions the impulse response g(t)

and the initial condition response yo(t) satisfy the relations

[10]
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dt < o

J [e%tg (t)12at < =, j e“Flg(t)

0] 0]

co
-

L at 2 - t 2
jo [e yo(t)] dt < o, Jo [e® yo(t)] dt < o

'eat

yo(t) < o 0StSe,

A system may be control and output asymptotic and yet
fail to be asymptotically stable if, for example, there
are unstable dynamic modes within the linear part which are
unobservable. For systems of the form of (1.1), a necessary
and sufficient condition for complete observability is that
there be no pole-zero cancellation in c(sI—A)_l, and hence
none in G(s) = -c(sI—A)‘lB. Ogata [63] gives a detailed
treatment of observability and the related "dual" concept
of controllability.

A sufficient condition for global asymptotic stability
is satisfaction of a Popov type criterion for 0<K<« and
0sg<«, plus Re[Ai]<0 for all the eigenvalues A; of the system
matrix A [10]. The Popov criterion requirement that G (s)
be output stable means that all eigenvalues corresponding
to observable states must have negative real parts. Beyond
the Popov criterion, the only restriction here on the eigen-
values is that those corresponding to unobservable states
have negative real parts. Thus for a completely observable
G(s), satisfaction of the Popov criterion with 0<K<« and

qu<°° is sufficient for global asymptotic stability.
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If G(s) is rational and the nonlinearity is constant,
single-valued, and piece-wise continuous, then the restric-
tion 0=g<~ may be dropped from the requirements for global
asymptotic stability. Any real finite g is allowed in such

cases [9].

B. BIBO Stability

A system is said to possess bounded input bounded output
(BIBO) stability if, for all bounded inputs, the corresponding
outputs are also bounded. BIBO stability can be established
if a system satisfies a Popov type theorem for control and
output asymptoticity of degree €>0, and G(s) is output stable
of degree . For systems which by the Popov criterion are
control and output asymptotic of degree zero, having G(s)
which are analytic functions of s along the jw axis, control
and output asymptoticity of degree € is established as
follows.

It is known that G(s) is output stable of degree
zero. This implies that the eigenvalues XA; all have nega-
tive real parts. So for finite dimensional systems and
infinite dimensional systems with Re[A;] bounded away

from zero, there exists some sufficiently small €l>0 such

that



Re[Ai]<—€l<0 for all i.

So G(s) is output stable of degree €,>0. The other re-

1
quirement is that the G* (-e+jw) locus lie entirely to
the right of the Popov line. Given the G* (jw) locus
lies entirely to the right without intersecting the
Popov line, analyticity of the G*(s) function implies
that there exists a sufficiently small €2>0 such that
the G*(—€2+jw) locus also lies entirely to the right

of the Popov line. Take & = min(el,ez), and the system
is control and output asymptotic of degree £>0.

A sufficient condition for a composite system to be
BIBO stable is that it be an additive interconnection
of subsystems each of which is BIBO stable and that the
interconnection be such that all loops pass through a
nonlinear characteristic with hard saturation.

For example, consider the composite system of
Figure 16. Suppose that inputs ry and r, are bounded
and that subsystems Sl’ sz, and s3 are BIBO stable.

The output of S, is bounded even for unbounded in-

put, Y due to the hard saturation characteristic.

The input to s o being the sum of two bounded sig-

1’ 1’
nals, is bounded. The output of sl is also bounded,
due to the BIBO stability of Sq- Since the input to s,

is bounded, so is the output of S3- Thus the outputs of
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Figure 16. BIBO Stability of a Composite System
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composite system are bounded for bounded inputs. The

reasoning is easily generalized for other configurations.
It may be much easier to establish BIBO stability

for the individual subsystems by the Popov-type methods

than to establish BIBO stability directly for the

composite system. Pole shifting might be useful to estab-

lish the hard saturation characteristics where needed.
C. Process Stability

The same parameter adjustment procedure used to
stabilize a system with no input can also be used to
establish the stability of the forced solution (process
stability) [10]. With process stability the actual
forced solution y(t) approaches the nominal forced
solution yn(t) as t>o, despite bounded input dis-

%
turbances Ar(t)eLz.

-

2 y
Ar (t)eL, if and only if J |Ar(t) |7 dt < o
0

2



82

For process stability the derivative of the nonlinearity,
du/de, is bounded in a sector, [kl'kz]' generally a larger
sector than that bounding the nonlinearity itself. The
critical circle is centered on the real axis of the G plane
and passes through the —l/kl and —l/k2 points. Pole shift-
ing can transform the critical circle to a vertical line.
Process stability is a more stringent requirement than

global asymptotic stability of the unforced system.
Example #7:

~ 50
G(s) = teoy (s+3) (s¥4) °

The nonlinear characteristic is shown in Figure 17 (a).
Pole shifting by an amount .171 puts the nonlinearity into
the sector [0,.662]. The Popov criterion is satisfied for
stability when the parameters of the linear part are adjusted

until the original G(s) is

_ 50
G(s) = [g=.71) (s+3) (s+4)

The slope of the pole shifted nonlinearity is contained in
the sector [0,2.05]. Satisfaction of the Popov criterion
for this sector with g = 0 guarantees process stability.

To meet this condition parameters are further adjusted

until the original G(s) 1is



slope =

y(volts)
~—5 V. pulse removed here
8--
50
G =
(s) (s—.154) (s+6.36) (s+5.36)
61
2 V. pulse
~removed here
4--
2--
10 20 30 40 50 time
(b) (sec.)

Nonlinear Characteristic and Transient Response

Figure 17.
for Example #7 With Process Stability

83



84

= 50
G(s) = (s=.154) (s+6.36) (s+5.36) °

Transient responses for this design are shown in Figure

17 (b) .

(End of Example #7.)

D. Instability Theory--Oscillators

Analogous to the Popov and circle criteria for
stability, Brockett and Lee [64] developed geometric
conditions involving the G(jw) locus sufficient for in-
stability. One of these instability theorems is applied

in the following oscillator design problem.

Example #8:

The system is in the standard form of Figure 1 with

2
(s+1) (s%+.707s+.25)

g €[1.176,2.222]; G(s) =

Stability cannot be established by the frequency domain
methods, but one cannot conclude from this that the system
is unstable. However, applying one of the instability
theorems of Brockett and Lee [64] establishes definitely

that the system is unstable.

In Figure 18, the G(jw) locus encircles without touch-

ing (in the CCW direction) the circle centered on the real
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Im[G(jw)]

Re [G(jw) ]

-

1.176 2.222

(not to scale)

Figure 18. Instability for Example #8
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axis passing through -1/1.176 and -1/2.222 fewer times (-1)
than the number of poles of G(s) in the right half plane
(0). It follows from the instability theorem that there
exists some set of initial conditions for which the unforced
response is unbounded. Note that the nonlinearity is un-
specified except for its sector. The system is unstable

for any characteristic in that sector, so that we have an

absolute instability analogous to absolute stability.

(End of Example #8.)



VII. REPRESENTATIVE EXAMPLES AND COMPARATIVE RESULTS

The capability of the interactive computer program is

further demonstrated in some of the examples of this chapter.
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Discussion of the results gives an indication of the conserva-

tism of the stability criteria under various circumstances.

A. Conservatism of the Criteria

1. Time-Stationary Systems

The Popov-type stability criteria give sufficient con-
ditions for absolute stability of classes of nonlinearities.
The examples studied indicate that the conservatism of a
criterion is inversely related to the degree that the class
is specified. Criteria for constant single-valued monotonic
nonlinearities, for example, yield results such that it is
difficult to find systems not satisfying the criteria which

are nevertheless stable.

Example #9:

G(s) = 12< -
(s+a) (s +2Cwns+wn)
The nonlinearity is a saturation characteristic shown
in Figure 19(a). As shown in Figure 19 (b), there is very
close agreement between parameter sets barely satisfying the

Popov criterion and sets found during analog simulation



Parameters of G(s)

a c W,

1 .707 .5
Experimentally 1.41 - 707 -5
stable sets 1 .960 .5

1 .707 « @

1 =107 «5
Sets satisfying 1.51 .707 .5
Popov criteriorn 1 1.116 5

i | .707 .697

(b)

Figure 19. Nonlinear Characteristic and Stable Parameter

Sets for Example #9
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to produce barely stable responses.

(End of Example #9.)

On the other hand the criterion for an asymmetric
nonlinear characteristic with hysteresis yields very con-

servative results.

Example #10:

G(s) = K
(s+py) (s+p,) (s+p5)

4
(s+.2) (s+.5) (s+2)

As shown in Figure 20(a), the nonlinear characteristic
has passive hysteresis, so g is restricted by -«<gqS0. With
this restriction the Popov criterion yields a maximum value
of K for absolute stability of Koax = .35 (total "gain" =
.35 x 4.5/1.2 = 1.31). For a linear characteristic of gain
4.5/1.2 = 3.75 in place of the nonlinearity, the maximum
K for stabiiity is Kpax = 1.027. A positive g, if allowed,
would yield Foas = 1.027. Zero shifting, to eliminate the
hysteresis and permit positive g's, is not possible because
the characteristic is not odd. For comparison purposes,
zero shifting is applied as outlined in Chapter III, D to
the similar odd characteristic of Figure 20(b), and Kmax =
1.02 is obtained.

During analog simulation it is found that KS1.72 stabilizes

the system. Other sets of experimentally obtained stable



4.5 T
-5.2 -1.2
e
l.6 4.3
t-4.5
(a)
u
4. 51
-4.3 -1.6
e
1.6 4.3
- —-4.5
(b)
Parameters of G(s)
K Py Pa P3
1.72 .2 .5 2
Experimentally 4 -68 -3 2
stable sets 4 5 1.1 5
4 .2 .5 3.6
.35 .2 .5 2
Sets satisfying 4 2.6 .5 2
Popov criterion
4 .2 3.5 2
4 .2 .5 20

(c)

Figure 20. Nonlinear Characteristics and Stable Parameter
Sets for Example #10
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parameters are listed in Figure 20 (c). During simulation
much smaller parameter adjustments stabilize the system
than are called for by the Popov criterion. There is no
proof for the stability of these apparently stable designs,
but simulation with a variety of large initial conditions,
both on the analog computer and using the digital IBM Con-
tinuous System Modelling Program (CSMP), gives responses

which all approach the origin asymptotically.
(End of Example #10.)

Very recently Rootenberg and Walk [65] discussed
the question of system behavior when the constant, odd,
monotonic, differentiable, memoryless nonlinearity lies
between the Popov and Hurwitz sectors. They obtained
results offering a tradeoff between the "amount" by which
the Popov criterion may be violated and the guarantee that,
if a limit cycle exists, it must be at a fundamental fre-

quency below a certain value.
2. Time-Varying Systems

The restriction of g = 0 in the Popov criterion for
time-varying systems tends to increase the conservatism of
the criterion for most nonlinearities, as Example #11 will
show. The criterion must hold for the "worst" nonlinearities
of the class, i.e., those characteristics for which the con-
servatism of the criterion is minimal.

General time-varying nonlinearities, being the

largest class, will in general include characteristics



92

which are "worst", while the smaller, more precisely defined
classes of characteristics exclude some of the "worst"
characteristics.

Suppose, for example, that the nonlinear characteristic
is a time-varying gain, K(t). G(s) is such that a periodic

K(t) of frequency w, tends to excite oscillation, while

0
for any other type of characteristic the system is absolutely
stable. The Popov criterion with g = 0 must accommodate K(t)
of frequency wo, and thus yield conservative results for
other characteristics.

With the nonlinearity restricted to constant single-
valued characteristics, the singular "worst" case is elimi-
nated from consideration. There is no other special
characteristic to be accommodated by the criteria for this
smaller class. This leads to much less conservatism for

typical characteristics of the smaller class. Consider the

following parametric amplifier.

Example #11:

The parametric amplifier circuit of Figure 21 (a) is

described by the equation
t a
i(t) = y(t=-t) v(t1) dT + 3¢ [Cl(t) V(t)]
0
where y(t) is the impulse response of Y(s). The circuit
is represented in block diagram form in Figure 21(b). In

the absence of any input the circuit can be put into the
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(a)

Figure 21.

parametric Amplifier of Example #11
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standard form for application of the Popov criterion, as

shown in Figure 21 (c). The linear part is

s2 4+ (G g+ _1_
0

and has a G*(jw) locus shown qualitatively in Figure 21 (d),

4 pmho, and L = .25 yh.

for cO = 3 pf, G = 10"
Since the capacitor Cl(t) is time-varying the Popov
line must be vertical, giving a Popov sector of [0,.16] pf
for Cl(t). A time-invariant Cl' however, could be nonlinear
and arbitrarily large and still the circuit would be absolutely
stable by the Popov criterion with g # 0.
Desoer and Kuh [66] give an equation for the current

gain IG(s)/Is(s) whose denominator wvanishes for certain

component values, pump frequency w and signal frequency.

pl
This means that under certain conditions an ouput current
can exist in the absence of an input current is, which is

just the sort of instability the Popov criterion cannot rule

out.

(End of Example #11.)
3. When the Popov and Hurwitz Sectors Are the Same

The Popov criterion is not at all conservative if the

Popov sector is the same as the Hurwitz sector. In this
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case the Aizerman conjecture holds, and the absolute
stability of the nonlinear system corresponds exactly to
the stability of the autonomous linear system with gain at
the upper bound of the sector. The stability criteria for
such linear systems are perfectly sharp, i.e., the system
can be proven either absolutely stable or unstable, with no
uncertainty or conservatism. Thus the absolute stability
of the nonlinear system can also be definitely established

one way or the other, without conservatism.
4. Stability of Degree a

Though no examples have been found, it is conceivable
that under certain circumstances the conservatism of a
stability criterion applied to a particular problem can be
demonstrated analytically. Suppose it is desired only to
establish stability of degree zero, and the Popov criterion
yields a Popov sector smaller than the Hurwitz sector.
From the definition of stability of degree a, it is clear
that a system stable of degree 0>0 must also be stable of
degree zero. So the Popov criterion is overly conservative
if it yields a Popov sector for stability of degree zero
equal to or smaller than the PopoVv sector for stability of
degree o>0.

Several transfer functions having loci such that the

Popov sector is smaller than the Hurwitz sector have been

examined for stability of degree 0>0. Among those con-

sidered were
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2
G(s) = 2 —-5
(s“+1) (s+1)

G(s) = 402
s (s+1) (s“+.8s+16)
G(s) = s+2 )

s (s+.5) (s%+3.25+64)

In each case the Popov sector is smaller for stability
of degree a>0 than for stability of degree zero.

For the G*(jw) locus for an output stable G(s) the
G*(-a+jw) locus (a>0) will intersect the real axis farther
to the left, as shown in Figure 22. This follows from
consideration of the Nyquist criterion for linear systems.
The line segment from the intersection of the G(-a+jw) locus
with the real axis to the origin corresponds to the range
of gains for which the linear system is not stable of
degree o. The degree of stability o increases from zero
as the gain K decreases slightly from the value where a=0.
The G(-a+jw) locus must intersect the real axis farther to
the left than the G(jw) locus. Also then, the G* (—a+jw)
locus must intersect the real axis farther to the left
than the G*(jw) 1locus.

The Popov line, however, may be determined by points
on the locus other than the intersection with the real
axis. To the author's knowledge the possibility of the

situation shown in Figure 22 is not excluded, where the



Popov line for stability

of degree a=0

wIm[G(s) ]
Popov line for
stability of degree
a>0
— /

— G(-a+jw) locus

G(jw) locus

Re [G(s) ]

Figure 22.

Stability of Degree «
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Popov sector for stability of degree o>0 is greater than
the Popov sector for stability of degree a=0. In such
cases the Popov criterion for stability of degree zero is

clearly overly conservative.
B. Criteria With General Z(s) Multipliers

There are basically two systematic approaches for the
application of stability criteria involving general Z(s)
multipliers. Both are means of establishing that the

expression
z(s)™t [G(s) + 1/K]

is positive real. The graphical approach, by the procedures
of [41]-[44], relies heavily on the user's skill and intui-
tion in working with the classical graphical techniques of
linear systems analysis, such as the Bode plot and the
Nichols chart. The other approach is entirely analytical,
making use of a Routh array as discussed in Chapter IV, and
involves trial and error calculations, which can be gquite
extensive. The graphical approach may be preferred by
experienced control engineers working with simpler forms

of Z(s) multipliers, while the analytical approach is
easily automated and capable of handling more complicated

Z(s) multipliers with little extra user effort.
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The graphical approach developed by Murphy [42] con-
sists of the following steps. Complications arising when
there are poles of G(s) on the imaginary axis have been

omitted here.

1

1) Plot the Bode diagram for [KG(s)]

2) Transfer the data from the Bode diagram to a
Nichols chart.

3) Read from the Nichols chart the data for plotting
a Bode phase curve for [KG(s)]_l/{l+[KG(s)]—l}

H(s) and plot that curve.
4) Search for a Z(s) of the required form such

that graphical addition of the Bode phase curve
for this function to the Bode phase curve plotted
in step 3 results in a phase curve that is
excluded from the range -3n/2, -n/2 of phase
values.

These steps can be short cut by shading the region of

the Nichols chart where

-3r < < =1
—— = arg H(s) = 3

and requiring that the locus obtained by graphical addition
. -1 .

in the curvilinear coordinates of [KG(jw)] and Z(jw)

remain outside of the shaded area.

In the analytical approach one forms the polynomial

Pl(w) for the numerator of
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Re {2 (jw) [G(ju) + ¥1)

where the denominator is the sum of two squares and then
replaces w with -jw, forming Pz(w), keeping the free
coefficients, Cy of Z(s) in literal form. Routh arrays
are then systematically generated for sets of the cy
within the allowed coefficient space. The search terminates
successfully when a Routh array is found having the proper
number of sign changes in the left hand column. If the
allowable coefficient space is sampled with a fine grid
and exhausted without generating a successful Routh array,
then it is concluded with fair certainty that stability
cannot be established with the given criterion.

Unfortunately, the coefficient space of the cy is
generally unbounded, so that a truly exhaustive sampling is
impossible. Practical terminations of the search along one
coefficient direction would be when the coefficient becomes
either dominant or insignificant over the other coefficients,
both fixed and free, in each term of Pz(w) where it appears.
Specifying a suitable fineness for the sampling grid is
also a problem. Fortunately, the Routh array is easily
programmed and requires little machine time per array.

In the following example both approaches to applying

criteria with 2(s) multipliers are demonstrated.
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Example #12:

G(S) — 5 52
T (s+1) (s+2) (s+3)°

This is the same G(s) considered in Example #3.
By the Popov criterion it is found that, with a constant
single-valued nonlinearity, the system is absolutely stable
in the sector [0,8]. If the nonlinearity is monotonic
with slope bounded by K, a Z(s) multiplier of a form given
by Brockett and Willems [26] can be used to establish a
larger sector of stability, [0,K]. One of the simplest

forms of Z(s) permitted is

- 1+As
B+Cs

Z(s)

where A, B, and C are real and non-negative. The require-

ment is that
z(s) [G(s) + &I
K
be positive real, or equivalently that
Re{z (jw) [G(jw) + %1} Z 0 for all w 2 O.
Applying the graphical method of Murphy [42], the

[KG(jw)]_l locus is plotted on the Nichols chart of Figure

23 where K has been taken to be 100. 1In order to shift



102

M_W i 11\% mx%my \:
: // / / 7//M
RS A //W///////
e TN ///
RN\
G% M d o 4 m/

Phase

Nichols Chart for Example #12

Figure 23.
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the locus out of the shaded forbidden region, Z(s) must have
a maximum phase lag of about 60° at w = .14, and a phase
lag of 30° at w = .62. Therefore the pole of Z(s) is
chosen to be well below w = .14, and the zero is chosen
above w = .62. At the same time the zero must not be at
such a high frequency that the lower left end of the locus
(not shown) is shifted into a forbidden region. (Note that
the pattern of curvilinear coordinates is periodic to the
left and right, with cyclical forbidden regions.) To meet
these requirements let

1+
z(s) = .Olis °

Since only the phase of Z(s) is relevant, its magnitude
is ignored, i.e., taken to be identically one. The addition
of the phase of Z(s) in the curvilinear coordinates yields
the locus completely outside the forbidden region.

This choice for Z(s) is also verified by substituting

A=1, B= .01, c=1, and K = 100 into Pl(w) and generating

the appropriate Routh array.

2

4
P (w) = 1000w8+225,5070%+252,4140°+6490°+36.

The Routh array for Pz(w) = Pl("jw) is
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100 =255 ,507 252,414 -649 36
800 -1,533,042 1,009,656 -1,298
-63,877.5 126,207.5 -486.75 36
-1,531,449.3 1,009,649.9 -1,297.5491
-84,094.197 432.62809 36
1,001,771.2 -1,953.1491
416.23227 36
-88,596.508
36

The four sign changes verify that the system is absolutely
stable in the sector [0,100].

Alternatively a systematic trial-and-error search
could have been made in the ABC-space to find values such
that the corresponding Routh array has the four required
sign changes. The FORTRAN program listed below determined
that A = .1778, B = .01, and C = .1778 yields a Routh
array with four sign changes. These values correspond to
a pole at .0562 and a zero at 5.62. Note that the level
of nesting of the DO loops equals the number of arbitrary
parameters, making the handling of more complicated forms
of Z(s) quite time consuming. The total search time in-
Creases as D2Pn, where D is the degree of the polynomial
Pl(w), P is the number of sample points for each parameter,

and n is the number of parameters. In this example A, B,

and C ranged from .01 to 10, with four points per decade.
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20

Listing

DIMENSION P(9,5)

READ(1,10)AS,AF,BS,BF,CS,CF

FORMAT (6F10.4)

DO 20 I=1,9

DO 20 J=1,5

P(I,J)=0.

DO 100 I=1,13

A=AS*EXP (ALOG (AF/AS) * (I-1)/12.)

DO 100 J=1,13

B=BS*EXP (ALOG (BF/BS) * (J-1) /12.)

DO 100 K=1,13

C=CS*EXP (ALOG (CF/CS) * (K-1) /12.)

P(1,1)=100.*A*C

P(1,2)=-100.*C*(~5.%100.-6.-11.*A) -A*(-6.*B*100.-11.*100.*C)
1-(-5.%A*100.-6.-6.*A-1.)*(-6.*C*100.-100. *B)
P(1,3)=6.*B*100.*A+5.*100. *C+(-5.*%100.-6.~-11.*%A) * (-6.*B*100.
1-11.*100.*C)+ (-=5.*A*100.-6.*A-1.) * (6. *C*100.+11.*100. *B)
1+(-6.*C*100.-100.*B) * (6. *A+11.)
P(1,4)=-6.%(-6.*B*100.-11.%100.*C)~6.*B*100.*(~5.%100.-6.-11. *A)
1-(6.*A+11.) *(6.*C*100.+11.*100. *B)

P(1,5)=36.*B*100.

P(2,1)=8.*P(1,1)

P(2,2)=6.*P(1,2)

P(2,3)=4.*P(1,3)

P(2,4)=2.%P(1,4)

KOUNT=0

DO 60 L=3,9

MEND=5-L/2

DO 50 M=1,MEND

105
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50 P(L,M)=(P(L-1,1)*P(L-2,M+1)-P(L-2,1)*P(L-1,M+1))/P(L-1,1)
IF(P(L,1)*P(L-1,1) .GT. 0.)GO TO 60
KOUNT=KOUNT+1

60 CONTINUE

- IF(KOUNT .EQ. 4)GO TO 110

100 CONTINUE

110 WRITE(3,120)A,
WRITE (3,120) (P
WRITE (3,120) (P
WRITE (3,120) (P
WRITE (3,120) (P
WRITE (3,120) (P
WRITE (3,120) (P(7,I
WRITE (3,120)P(8,1)
WRITE (3,120)P(9,1)

120 FORMAT(//5El6.4)
STOP
END

B
(
(
(
(
(

e
- ~- -~ ~ ~ -
DN WWsL,
Nt N e N i wai?”

(End of Example #12.)
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The preceding example points the way to engineering
applications of criteria involving general % (s) multipliers.
If in a practical problem the standard Popov criterion does
not yield a Popov sector corresponding to the Hurwitz
sector, chances are good that a less conservative sector
can be obtained by use of the appropriate Z(s) multiplier.
The authors mentioned in Chapter II ([26]-[31]) have
given forms of Z(s) suitable for nonlinearities which are
slope-restricted, odd, power law, with restricted asymmetry,
etc. The present research, being primarilly directed toward
criteria with graphical interpretations in the complex
planes, leaves further investigation along the lines of

Example #12 to future research.
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VIII. CONCLUSION

The original Popov criterion, enhanced by several
theoretical extensions and system transformations, can be
applied to a large class of feedback systems. Several
of these criteria have straightforward graphical inter-
pretations, and are the basis of an interactive computer
program for stable system design. The frequency domain
criteria not only provide sufficient conditions for
absolute stability, but also yield information regarding
degree of stability and transient response, BIBO stability,
process stability, and absolute instability. The degree
of conservatism of the Popov criterion is explored for
various types of systems by means of examples'with com-—-
parisons to simulation results.

The most important result of this research is the
development of a versatile interactive computer program
making it possible for the control engineer to use the fre-
quency domain criteria with a great deal of convenience,
speed and flexibility. Other original results of this
research are the use of the G** plot, zero shifting so that
the Popov criterion can be applied to some otherwise inad-
missible nonlinear characteristics, a new verification of the
Kalman conjecture, BIBO stability for composite systems, and

the use of the Routh array with criteria having general Z(s)

multipliers.
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Beyond the results of this dissertation, further re-
search seems worthwhile on several fronts. The mathemati-
cally inclined researcher might extend the present results
to sampled data systems or pursue other verifications of
the Aizerman and Kalman conjectures utilizing locus curva-
ture. The criteria involving the general Z(s) multipliers,
only touched on here, might be further reduced to engineering
practice and adapted to interactive system design. With the
computational tools developed here, the experimentally
inclined worker can easily analyze and/or design a wide
variety of nonlinear feedback systems, and compare to
simulation results or actual system performance.

The researcher with a computer science orientation
would surely find many improvements begging to be imple-
mented in the interactive program listed in Appendix A.

The most obvious are a complete recoding in assembly
language to avoid the time consuming overlays of the present

programs, and the utilization of a graphics unit to display

Nyquist-type loci and Popov lines.
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