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ABSTRACT 

The Popov criterion for absolute stability of nonlinear 

feedback systems is applied to several example problems. 

Model transformations such as pole shifting and zero shift-

ing extend the class of systems to which the criterion 

applies. Extensions of the criterion having simple graph-

ical interpretations yield stronger results for systems with 

constant monotonic slope-bounded nonlinearities. Additional 

extensions lacking simple graphical interpretations in the 

complex plane are also demonstrated by example. 

Stability throughout a region in parameter space 1s 

discussed, and the Kalman conjecture is verified for a new 

class of systems. The Popov criterion is also used to prove 

BIBO stability, process stability, and degree of stability. 

The conservatism of the criterion, i. e., the margin of 

actual performance beyond guaranteed performance, is dis-

cussed in the light of simulation results. 

An interactive computer program is developed to make 

the Popov criterion, along with two of its extensions, a 

convenient tool for the design of stable systems. The user 

has the options of completely automatic parameter adjustment 

or intervention at any stage of the procedure. 
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PREFACE 

The goal of this research has been to find and pull 

together the results obtained during the past decade or so 

relating to frequency domain stability criteria for non-

linear systems. These results are somewhat scattered in 

the literature and sometimes presented in a form too 

abstruse for direct application by control system engi­

neers. It is hoped that this dissertation will help to 

establish these criteria in their maximum power and gener­

ality as convenient, practical tools that the control 

engineer will not hesitate to use. The interactive computer 

program, especially, should help bridge the gap between 

mathematical theory and convenient design practice. 

The author gratefully acknowledges the role of his 

advisor, Dr. D. Ronald Fannin, in the achievement of the 

results presented here. Dr. Fannin introduced the author 

to the Popov criterion, and his suggestions were the basis 

of many of the ideas pursued here. Frequent discussion 

helped refine rough ideas and provided the needed guidance. 

The author also acknowledges the programming consultation of 

Mr. Hardy Pottinger and the typing service of Mrs. Eunice 

French. 
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I. INTRODUCTION 

A. Problem Formulation 

Stability is a word with several connotations, but 

in some sense it is always an important consideration in 

practical control systems. Given a more or less fixed 

structure to perform a particular function, several aspects 

of performance, including stability, must be evaluated to 

determine the adequacy of sets of system parameters. In 

analysis one wants to establish system stability before 

going on to more stringent considerations such as accuracy, 

speed, reliability, sensitivity, cost, or optimality. In 

system synthesis the first concern is also system stability, 

and it may be much more difficult to guarantee a more com­

plete characterization of system behavior. Stability con­

siderations serve to identify those designs worthy of further 

study and to suggest changes which would stabilize an un­

stable system. 

For linear feedback systems the well-known frequency 

domain stability criteria of Routh, Nyquist, Bode, Nichols, 

and others are found in standard texts and are in wide 

use (1]-[2]. More recent state-space techniques are also 

applied to the question of linear system stability. Both 

the "classical" frequency domain techniques and the state­

space techniques are utilized in control system synthesis 

and dynamic response analysis. 
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For nonlinear systems stability is a much more diffi­

cult question. Nonlinear differential equations are not 

nearly as amenable to solution in closed form, and the very 

definition of stability is fairly complicated. A simple 

definition of stability suitable for linear systems must 

be replaced by a variety of definitions for different kinds 

of stability in nonlinear systems. This requirement arises 

because of the variety of dynamic behavior found in nonlinear 

systems not possible in linear systems. Phenomena such as 

limit cycle oscillation in the absence of input and initial 

conditions, finite escape time, jump resonance, and harmonic 

and subharmonic oscillation exist only in nonlinear systems. 

Inasmuch as all practical systems are to some degree non­

linear, this complicated behavior cannot immediately be 

ruled out, and straightforward linear analysis may not be 

appropriate [2]. 

The various definitions of nonlinear system stability 

state the sense in which "stable" system behavior is bounded 

and not greatly influenced by small disturbances in initial 

conditions or input. The most general rigorous techniques 

to establish nonlinear system stability are due to Liapunov 

and Popov and the various extensions of their results. 

Describing function techniques are often useful for approxi-

mations. The Liapunov techniques may be described as time 

domain approaches, involving functions of the state varia­

bles. The Popov and related criteria such as the circle 

criterion may be described as frequency domain criteria, 
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since they involve the transfer function of the linear part 

of the system [2]. This paper emphasizes investigations of 

the frequency domain criteria. 

The class of systems considered is those which can be 

modeled as a linear part and a separable gain-bounded non­

linearity. A convenient block-diagram description is shown 

in Figure l. The linear part must be time-invariant, but 

may have time delays. The nonlinear part may be time-

varying, may have hysteresis or deadband, or both, and 

need not be monotonic. 

for every finite lei. 

It is required that lu i be bounded 

Mathema t i cally, many such systems are descr i bed by a 

set of linear, homogeneous, first-order ordinary differen­

tial equations with constant coefficients, with the addition 

of a nonlinear function whose argument is a linear combina­

tion of the s tate varia ble s. 

X = A X + B U ( l. l) 

u = u( 0 , t ); 0 = C X 

where 

X = sta t e v e ctor , n X l 

A = system t ransition matrix , n X n 

B = system control matrix , n X l 

u = nonl i n e a r control function; u(o, t ) = 0 

0 = linear c ombination o f state v a r iables 



Nonlinear 
Time-varying 

Element 

U I 
I 

Linear Plant 
Plus Compensator 

G(s) 

Figure l. Form o£ Systems Considered. 

4 

-e (t) =y (t) 



c = system output matrix, 1 x n 

t = time 
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and the dot notation indicates differentiation with respect 

to the independent variable (time, unless otherwise speci­

fied). The block diagram and vector-matrix equation 

representations are related by 

G(s) = -c[si-A]-1 B. 

The most important class of nonlinearities excluded 

by this system description is those where cr is a nonlinear 

function of state variables (products of state variables, 

for example). Transformation of system variables can some­

times change an inadmissable nonlinearity into the required 

form. 

The Popov criterion, the circle criterion, and the 

related frequency domain criteria involve ine qualities of 

functions of G(s). The basic Popov and circle criteria 

have straightforward graphical interpretations, while for 

the various extensions attempts at graphica l interpreta tion 

are not always enlightening. 

The object of this research is to review the various fr e ­

quency domain stability criteria f or possi ble use in computer­

a ide d d e sign of sta ble s ystems. Whe r e a simple gra phica l in­

terpretation is possible, distance or area functions are 

derived as a me asure o f the d e gree to which a s y stem fails to 

meet the sta b ility crite rion. Sensi t ivi ty o f t hese f unctions 

to parameter changes then guides the procedure for 



stabilization of the system. The whole procedure is 

implemented so that a user can perform his computer-aided 

design in an interactive mode, permitting the on-line 

alteration of approach and specifications as he proceeds 

with the design and learns more about the characteristics 

of the system. The user's intuition and experience are 

freed to guide him quickly to the best performance-design 

effort tradeoff for the particular problem at hand. The 

inexperienced user has the option of minimal intervention 

in the design procedure. 
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All the criteria considered give sufficient conditions 

for stability--conditions which can be more stringent than 

necessary. A search is made for the criterion which is 

least restrictive for a particular problem, so that the 

stable design obtained is not overly conservative. As a 

rule, describing the nonlinearity as specifically as 

possible, especially when it is "nearly linear", can permit 

the use of less stringent criteria leading to more design 

flexibility and better dynamic performance. 

Several examples indicate how frequency domain stability 

criteria may be exploited to the fullest in the synthesis of 

stable nonlinear feedback systems. The examples, along with 

analysis of loci in the complex plane, suggest that certain 

classes of systems satisfy the Aizerman and/or Kalman 

conjecture, and are amenable to linear analysis. 



B. Historical Background 

The concept and use of feedback control has examples 

from the beginning of recorded history. An irrigation 

control system is mentioned in the code of the Babylonian 

king Hammurabi (cir. 18th century, B.C.). c. Huygens of 

Belgium in the 17th century discussed the regulation of 
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windmills and water wheels. A. Meikle of Scotland invented 

an automatic turning gear for windmills in 1772. With the 

Industrial Revolution of this period feedback regulators 

for steam pressure, liquid level, temperature, etc., also 

came into widespread usage. In 1788 James Watt invented 

a centrifugal governor for his steam engine. 

Mathematical analysis of control systems began with 

James Clerk Maxwell's work, 11 On Governors, 11 in 186 8. The 

independent work of I. A. Vyshnegradskii in 1876 began the 

outstanding Russian achievement in the differential equation 

school of regulator theory, which continues today. Near 

the end of the 19th century Henri Poincare and A. M. 

Liapunov developed mathematics for a qualitative stability 

analysis of nonlinear systems, and avoided the more diffi­

cult problem of an explicit solution. Liapunov's second, 

or direct method continues to give rise to new control tech­

nology. Routh and Hurwitz also made lasting contributions 

to control theory in the 19th century. 

Balthasar van der Pol's famous 1927 investigation of 

the nonlinear oscillations of an electronic multivibrator 



was a most elegant application of geometric and analytic 

methods. 
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At Bell Telephone Laboratories 1n the 1930's H. Black, 

H. Nyquist, and H. w. Bode advanced frequenc'y domain linear 

feedback control theory for application to vacuum tube 

amplifiers. In fact Nyquist's stability criterion is 

a special (linear) case of the circle criterion used in 

the research of this paper. During World War Two regulator 

technology was combined with the more recent feedback 

amplifier technology to produce servo control systems to 

aim heavy guns, position antennas, guide aircraft, and 

control other mechanisms of war with speed and precision 

[3]-[8]. 

The more recent and specific roots of this paper begin 

with the 1944 formulation of the "absolute stability" 

problem by A. I. Lur'e and V. N. Postnikov. This problem 

has to do with the global asymptotic stability of a system 

with a single gain-bounded but otherwise unrestricted non­

linearity. V. A. Yakubovitch and I. G. Halkin in the Soviet 

Union and J. LaSalle and S. Lefschetz in the United States 

developed sufficient conditions for absolute stability by 

working in the time domain. 

Beginning in 1959 V. M. Popov of Rumania developed a 

distinct frequency domain approach to the absolute stability 

problem which had a convenient graphical interpretation. 

Popov and Yakubovitch established connections between the 

differential equation approaches based on Liapunov's second 
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method and the frequency domain approaches. Through the 

1960's Popov's results were extended by many investigators, 

notable among whom are M. A. Aizerman, E. N. Rozenvasser, 

R. E. Kalman, J. J. Bongiorno, Jr., who introduced the 

circle criterion; I. W. Sandberg, B. N. Naumov, G. J. 

Murphy, G. Zames, R. W. Brockett, J. C. Willems, J. L. 

Willems, c. A. Desoer, A. G. Dewey, and E. I. Jury. Others 

also continue to keep the body of literature growing on the 

subject of frequency domain stability criteria [9]-[10]. 
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II. REVIEW OF THE LITERATURE 

A. Basic Popov and Circle Criteria 

V. M. Popov's first paper in which he began developing 

a new approach to absolute stability appeared in 1959 in a 

Rumanian Journal [ll]. Over the next two years Popov 

elaborated on his results in a series of papers in Rumanian 

and Russian. In 1962 his "Absolute stability of nonlinear 

systems of automatic control" [12] appeared in Automation 

and Remote Control, an English translation of a Russian 

journal. The 1964 translation of Aizerman and Gantmacher's 

book Absolute Stability of Regulator Systems [9] is prob­

ably the most complete English documentation of Popov's 

results through 1963 and the history of the absolute 

stability problem leading up to Popov's work. 

Popov's original theorem applies only to single-valued 

time-invariant nonlinearities, but subsequent extensions 

by Popov and others established the Popov criterion in its 

full generality. Popov's original proof consists of re­

placing the differential equation by an integral equation 

and using methods of functional analysis. Proofs yielding 

substantially the same results and using similar methods 

were offered by Desoer [13], Sandberg [14], J. L. Willems 

[lS], and Hsu and Meyer [lO]. An alternative approach to 

the proof uses a Liapunov function. Yakubovitch [l6], 



Kalman [17], and Brockett [18] contributed proofs of this 

type. Brockett also offered a heuristic justification of 

the Popov criterion based on a correspondence between the 

Popov inequality and an interconnection of passive (hence 

stable) electrical networks [19]. 

In 1964 J. J. Bongiorno, Jr., of the United States 

introduced the circle criterion for a special class of 
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functions, with q = 0 [20]. A more complete form was given 

by Sandberg [21]. The circle criterion yields stronger 

results than the Popov criterion when the nonlinearity 

Versions of the circle 

criterion can also be used when the linear part is not 

stable and when K1 <0. There are also related criteria for 

multiple nonlinearities, some involving a matrix inequality 

of the Popov type, where K and q are diagonal matrices 

[22]-[25]. 

Hsu and Meyer [10] consolidated many of the scattered 

stability criteria, formulating the generalized theorem of 

Popov and the generalized circle criterion, which will be 

the standards of this paper. For reference purposes, Hsu 

and Meyer's generalized theorem of Popov is repeated here: 

Consider the basic feedback systems of Figure 1. Let 

the linear element be output stable (see Chapter VI, A). 

In order for the system to be both absolutely control-and­

output asymptotic for (u/e)£[0,K], it is sufficient that a 

real number q exists such that for all real w~O and an 

arbitrarily small o>O, the following condition is observed: 
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Re[(l+jwq) G(jw)] + i ~ 8 > 0. 

The restrictions on q and K, depending on the nature of 

the nonlinear element are: 

1) for u = f (e) , a single-valued, time-invariant element: 

if O<K<oo, then -oo<q<oo 

if K=oo, then Q.:5q<oo 

2) for u = J""'[e(t)], a nonlinearity with passive hysteresis: 

O<K<oo and -oo<q.::::o 

3) for u = ~[e (t)] , a nonlinearity with active hysteresis: 

O<K.:::;oo and o.::::q<oo 

4) for u = di[e(t) ,t], a general nonlinearity (time-vary­

ing, and possibly with hysteresis): 

O<K_:::oo and q=O 

Hsu and Meyer also clarified pole shifting as the 

connecting link between the Popov and circle criteria. In 

most problems, results obtained by the circle criterion can 

be duplicated by the Popov criterion, provided that pole 

shifting is used to the maximum, i.e., provided that maximum 

linear negative feedback is applied around G(s) such that 
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the shifted nonlinearity remains in the first and third 

quadrants. 

With benefit of hindsight and knowledge of the 

generalized criteria it appears that much of the early 

literature on the absolute stability problem is needlessly 

complicated by the separate consideration of numerous 

special cases and distinctions between direct and indirect 

control and between principle and particular cases. This 

fragmentation grew as differing approaches were used in 

several versions of the problem before the overall unifica-

tion became apparent. Historically, this pattern seems to 

be the usual one in all scientific and technological re-

search. The future may well bring further unification. 

B. Z(s) Multipliers 

Popov's original 1959 success with a new approach to 

the problem of absolute stability revitalized interest in 

frequency domain techniques. Among the important exten-

sions of Popov's work, several require that there exist a 

function Z(s) such that Z(s) [G(s) + 1/K] is positive real, 

where the required form of Z(s) is determined by the 

restrictions on the nonlinearity, and K is an upper bound 

on the nonlinearity f(cr) or its derivative df(cr)/dcr. It 

is noted that when Z(s) = 1 + sq we have the ordinary Popov 
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criterion. The extensions have been given a circuit­

theoretic interpretation, but to date they are little used 

in practical problems. Later in this paper there is discus-

sion of the extent to which the results obtainable from 

these extensions exceed those obtainable from the original 

Popov criterion, and how to find an app ropriate Z(s). 

R. W. Brockett's 1966 survey of "The Status of Stability 

Theory for Deterministic Systems" [19] has a lengthy bibliog­

raphy listing most of the important extensions up to that 

time. 

In 1965, Brockett and J. L. Willems [26] gave criteria 

involving Z(s) multipliers to establish asymptoti c stability 

in the large under each of the following restrictions on 

the nonlinearity: 

l) fE~ and fEM00 (f is bounded in a sector (O,k) and is 

monotone) 

(f is monotone, with slope bounded by k) 

(f is an odd monotone f unct ion, with 

slope bounded by k) 

(f is a power law nonlineari t y ). 

The r es trictions on f a r e prog r essive ly more s tringent, a n d 

the corresponding forms of Z (s) are progressively more 

general. Br ockett p r opose d a Z(s), f or monotone nonlineari­

ties , as a rationa l f unction with real interl acing p oles 

and zeros . 
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In 1966 G. Zames [27] considered variously restricted 

nonlinearities and the removal of a multiplier from the 

linear element. The frequency response of the linear 

element is modified by the removal, and, in effect, the 

size of the forbidden region is reduced. 

In the same year, R. P. O'Shea [28] gave a criterion 

for continuous nonlinearities bounded by monotone functions. 

The next year M. A. Lakshmi Thathachar, M. D. Srinath, and 

H. K. Ramapriyan [29] obtained a result for nonlinearities 

with restricted asymmetry, having the property 

In 1967 O'Shea [30] and in 1970 Y. V. Venkatesh [31] used 

Z(s) multipliers with both causal and noncausal terms, i.e., 

with poles in the right half plane, thus going beyond re­

sults suggested by a heuristic circuit-theoretic inter­

pretation relating passivity or causality to stability. 

The extensions involving a Z(s) combine ideas from 

Liapunov theory, functional analysis, and network synthesis, 

as well as classical frequency domain control theory. The 

more recent papers especially rely heavily on a functional 

analysis notation and linear algebra, dealing with the 

properties of operators and transformations in Banach 

spaces. See, for example, the papers by I. W. Sandberg 

[32], [33], and M. K. Sundareshan and M.A. L. Thathachar 

[ 3 4] • 
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C. Graphical Extensions 

The basic Popov and circle criteria are attractive in 

applied work because they have simple graphical interpreta-

tions. Unfortunately this feature is not shared by most of 

the extensions involving Z(s) multipliers, because each 

arbitrary coefficient in Z(s) corresponds to another degree 

of freedom in the shape of the boundary of the forbidden 

region. Only one degree of freedom (in this work, the 

slope of a straight line) can be handled conveniently in a 

graphical interpretation. 

There are two extensions, however, which do have simple 

graphical interpretations, with the slope of a straight line 

the only parameter to be determined in a search to satisfy 

the criteria. A systematic algorithm is quite feasible to 

determine the satisfaction of these two criteria. With the 

more general Z(s) multipliers, however, it seems feasible 

only to use trial and error, or at best suggest heuristic, 

intuitive guidelines to obtain satisfaction of the criteria. 

Consequently only the simple graphical criteria are fully 

utilized here in interactive computer-aided analysis and 

design. Despite this limitation, the availability and use 

of two additional criteria in the designer's bag of tricks 

can lead to stronger results than those obtainable from 

the basic Popov or circle criteria alone. 
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A. G. Dewey's 1966 criteria for differentiable non­

linearities [35] andY. Cho and K. S. Narendra•s [36] 1968 

off-axis circle criterion for monotonic nonlinearities 

provide, along with the Popov criterion, a total of three 

distinct ways to attack the stability problem when the non­

linearity is time-invariant, continuous, and monotonic. 

The graphical plane of analysis is wim[G] vs. Re[G] for the 

Popov criterion, (l/w)Im[G] vs. Re[G] for the Dewey criterion, 

and Im[G] vs. Re[G] for the off-axis circle criterion. These 

planes will be called the G*, G**, and G planes, respectively. 

At the outset of a problem, all the applicable criteria 

will be considered, perhaps in all three planes, and the 

criterion yielding the least conservative results will be 

the basis for parameter adjustment. At the end of the 

design procedure the other criteria will be checked again, 

to insure that the final design is no more conservative 

than necessary to guarantee stability. 

D. Applications to Design 

Fannin, Judd, and Seacat [37], [38] and Passmore, Chao, 

and Vines [39] wrote a series of papers utilizing the basic 

Popov and circle criteria in design of systems guaranteed 

to be stable. A distance function is defined in the G* or 

G plane as a measure of how badly a system fails to satisfy 
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the appropriate stability criterion. Parameters of the 

linear part are adjusted, based on the sensitivity of the 

distance to parameter changes, until the criterion is 

satisfied. Rushing and Fannin [40] used an area function 

instead of a distance function and automated the procedure 

in a batch mode operation. The present paper builds on 

this work, automating the design procedure in an inter­

active mode, and exploiting extensions of the basic 

stability criteria. 

B. N. Naumov and Ya. Z. Tsypkin [41] utilized a mapping 

from the G plane to the logarithmic amplitude-logarithmic 

frequency (Bode plot) plane as the basis of a nonlinear 

compensation procedure. G. J. Hurphy [42], [43] used a 

mapping from the G plane to the logarithmic gain·-phase 

(Nichols chart) plane for his compensation procedure. 

Murphy also used Z(s) multipliers more general than l + 

jwq. c. E. Zimmerman and G. J. Thaler [44] extended 

classical lag and lead compensation to nonlinear systems, 

using the Popov criterion. 



III. EXTENDING THE USEFULNESS OF THE CRITERIA 

A. The Modeling Problem 

The following discussion of several aspects of 

mathematical modeling is important because it is shown 

how stronger results are obtained from the stability 

criteria, and how the class o£ systems treated is broad­

ened. First, the conventional or natural formulation of 

a practical system may not have the equilibrium point of 

interest coincident with the origin of the state space, 

contrary to what is essentially required by Popov. 
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Second, tradeoffs are possible between the characteristics 

of the linear and nonlinear parts, without changing the 

stability properties of the model. This permits the use 

of additional stability criteria not applicable to the 

original model. Third, the actual nonlinearity may not 

be confined to a sector. Nonetheless it may be possible 

to replace the actual nonlinear characteristic with an 

equivalent combination of £icticious elements such that 

the system is amenable to analysis by the methods of this 

paper. Fourth, some models with nonlinearities not ex­

pressible as a function of a linear combination of state 

variables can be trans£ormed into the required form by 

a change of variables. 

Finally, it must be remembered that no model can be 

truly global in a state space of in£inite extent. While 
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this last point frustrates the quest for global asymptotic 

stability, it can enhance the results obtained for an in-the­

large, but finite region. The following sections discuss 

these points in more detail. 

B. Translation of Coordinates 

All the Popov-type stability criteria are used to 

establish stability of the origin of the unforced system. 

Often it is necessary to translate the axes of the state 

space before the Popov criterion can be applied. When the 

output variable is a mechanical position the origin is 

naturally chosen at the mechanical equilibrium. In other, 

non-mechanical processes, as for example where the output 

is temperature, pressure or composition , the equilibrium 

point of interest is definitely not where the output has a 

value of zero (on an absolute scale). In these cases it 

is necessary to translate coordinates in the state space. 

Consider the following example. 

Example #1: 

0 1 0 1 

0 0 1 + 0 f(o) f( o )=sat(x2 ) + 1 

-6 -11 -6 0 
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where the sat function is defined by 

so that f(cr) = f(x2 ) has a characteristic given by Figure 

2 (a) • 

At equilibrium 

= 0 = 

These equations imply a single equilibrium point at 

ll l (12 ,- 2 , 0). Now translate coordinates so that the 

equilibrium point is at the origin. Let 
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-1 1 

(a) 

(b) 

Figure 2. Nonlinear Characteristics of Example #1. 
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so that 

z2 = x2 = z3 

In matrix notation we have 

0 l 0 l 

= 0 0 l 

-6 -11 -6 0 

where the nonlinearity is given by Figure 2(b). 

The output matrix, c is defined by 

= L£.J z 

zl 

= 0 l 0 z2 

z3 



The transfer function G(s) of the linear part is given by 

G(s) = -e(s) = -c[si-A]-l B 
u(s) 

s 

= 0 -1 0 ...._ ______ __, 0 

6 

6 = (s+l) (s+2) (s+3) 

-1 
-1 0 1 

s -1 0 

11 s+6 0 

(End of Example #1.) 

Another type of situation arises when there is 

empirical open loop frequency response (gain and phase) 

data on the input-output behavior of G(s) even though its 

s tructure i s not known . In this case the equilibri um 

point(s) of the closed loop system with a particular non-

linearity can be calculated from knowledge of G(O) . The 

f ollowing simple example illustrates the approa ch. 

Example #2: 

The system is in the standard f o r m o f Figure 1. 

Th e s ubs c ript o de notes equ i l i b ri um v alue. 

= - f(e ) 
0 

G ( 0) • 

24 



Solve for the equilibrium value(s) of the output, y. 

Let 

2 
= -( ~ 0 + 1 ) G ( 0) 

2 G(O)e - e - G(O) = 0 
0 0 

e- 1 [l±/1+4[G(0)] 2 ] o - 2G(O) 

which is less than zero when the negative square root is 

taken, justifying the assumption e <0. 
0 

exists if it is assumed that e >0. 
0 

No real solution 

With the equilibrium value of the output determined, 

the nonlinear characteristic must be translated so that 

the equilibrium point lies at the origin of the new 

coordinates, e 2 and g(e 2 ), as shown in Figure 3. The 

translation determines the Popov sector containing the 
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nonlinearity, and with the empirically derived G(jw) locus 

(or G*(jw) or G**(jw) locus) the stability criteria can 

be applied. 

(End of Example #2.) 



Equi libri urn 
Point 

Figure 3. 

Nonlinear 
Characteristic 

Shaded area is sector 
containing nonlinearity. 

Translation of Coordinates. 

26 
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C. Pole Shifting 

Pole shifting provides a means of obtaining equivalent 

descriptions or models for the same system which may be 

preferable for analysis. The procedure involves nothing more 

than trading linear gain of the nonlinearity for linear feed­

back around G(s). The system of Figure 4(b) is obtained from 

the system of Figure 4(a) by pole shifting, where a linear 

gain of 1.0 has been taken from the nonlinearity and applied 

in a local feedback loop around G(s). The new Ga(s) has its 

poles shifted from the original G(s), while the zeros remain 

unchanged. Gibson [45] treats both pole shifting and zero 

shifting in some detail. 

One reason for pole shifting is to shiftthepoles of an 

unstable G(s) into the left half plane as required by the Popov 

criterion. The root locus methods of linear analysis indicate 

when this shift is possible and how much feedback is required. 

Another reason for pole shifting is that stability analysis 

based on Figure 4(a) involves the circle criterion, with the 

nonlinearity in the sector [1,2]. The circle criterion is un­

wieldy when q f 0, while if q = 0 the results may be too 

conservative. In the equivalent system of Figure 4(b), the 

nonlinearity is in the sector [0,1], permitting the Popov 

criterion with q f 0 to be used. Thus when it is permissible 

for q f O, it can be advisable to apply pole shifting to the 

maximum so that the lower bound of the nonlinearity sector is 

zero. Then apply the Popov criterion, or any of its exten­

sions where the slope of a line is a free parameter. 



1 

(a) 

(b) 

G(s) 

-e 
1 = y 

G(s) 
Ga(s) = 1 + G(s) 

r------- ., 
I 1 
1-el = 

I 

I 
I 
I 

G(s) 

L - --- - -- - _J 

=y 

Figure 4. Pole Shifting. 

28 
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A disadvantage of such pole shifting occurs when the 

original nonlinear characteristic is monotonic, but not 

monotonic after pole shifting to the maximum. Pole shift-

ing can then rule out the criteria requiring a monotonic 

nonlinearity. In such cases it may be advisable to pole 

shift by a smaller amount, so that the characteristic 

remains monotonic. 

D. Zero Shifting 

Hsu and Meyer [10] use the zero shifting transformation 

primarily to establish the applicability of the Popov 

criterion to systems where the numerator and denominator are 

of the same degree. The system of Figure S(b) is obtained 

from the system of Figure S(a) by a zero shifting trans-

formation defined by e = e + cu. c 
The zeros of the new 

linear part, G (s), are shifted, while the poles remain c 

unchanged. 

In Figure S( a ) the point (e 1 ,u1 ) d e fine s the lower 

bound, a, on the sector. Under the transformation ec = 

e + cu, this point maps to the point (e1 + cu1 , u 1 ) in 

Figure S(b). S i milarly, the p oint (e1 ,u2 ) defining the 

upper bound, b, on the sector maps to the point (e1 + 

cu2 , u 2 ) in Figure S(b). The new s e ctor in Fig ure S(b) 

defined by the trans f orme d points i s 

ul u2 
[e +cu ' e +cu ] = 

1 1 1 2 
a b ] 

Il+ac ' l+bc · 



+ -o=-
r=:o -

---
/ 

~ 

u=£ (e) 

~ 

~-u2 

~/1--ul 
~ 

/ el 
/ 

-u2 

(a) 

u=£ (e ) 
c c 

-u 
2 

(b) 

e 

e = c 
e+cu 
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u [a,b] - £ e 

u -e=y 
G(s) 

u a b 
e £ [ l+ac '_l_+_b_c-] 

c 

..._...;u~G(s)-c 
-e c 

Figure 5. Zero Shifting 



The new linear part, G (s) is defined by c 

oC{-ec(t)} _L {-e(t) - cu(t)} 
Gc(s) = L {u(t)} - .L {u(t)} = G(s) - c. 
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Zero shifting combined with some decompositions of 

multiple-valued nonlinearities given by Gibson [45] permits 

improved results to be obtained for systems with certain 

hysteresis type nonlinearities. 

The system of Figure 6(a), having a symmetric relay 

characteristic with hysteresis and deadband, can be trans-

formed into the equivalent system of Figure 6(b). In the 

simplified transformed system of Figure 6(c) the Popov 

criterion can be applied with no restriction on the sign 

of q. For 

G(s) K = (s+2) (s+3) (s+4) 

and a= .5, b = 1, M = 1; the transformation leads to an 

upper bound on K of 104 for absolute stability of the 

sector u/e e: [0 ,2], compared to 51 for Figure 6 (a) (q~O). 

Both of these bounds on K were found with the aid of the 

interactive computation package, and the value obtained 

after zero shifting is very close to the maximum value of 

K for a linear characteristic of s lope 2, which is K = max 

105. 

The Popov-type methods cannot b e applie d at a ll to 

the system with the backlash characteristic of Figure 7(a), 

because the nonlinearity is not confined to a sector. The 
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u 

+ 
G(s) 

M 

(a) 

M 
-b 

b 
G(s) 

r::o -M 

(b) 

1-M I -b 
G(s)- b-a .. 

+ -o- J 
- - . 

b M 

~-M 4 -r::o 

(c) 

Figure 6. Zero Shifting Applied to a Relay Characteristic 
With Hysteresis and Deadband 



r:=o 

slope = n 1 

G(s) 

(a) 

lope = h 

+ + 
G(s) 

(b) Equivalence to Figure 7(a) becomes exact as 
hk~oo; in practice hk~lOO gives sufficient 
exactness. 

lope h 

1--~k[G(s)+ !__] 
s n 1 

(c) 
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Figure 7. Zero Shifting Applied to Backlash Characteristic 



u 

(a) 

+ + M t---

-M 
r=:o 

(b) 

r=:o 

(c) 

G(s) 

G(s) 

l lope = c 
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Figure 8. Zero Shifting Applied to a Relay Characteristic 
With Hysteresis 
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I 
I 
I 

----~,----~--~---- e 
1 
I 

u 

u 

e 

(a) 

(b) 

----------+----------e c 
= e+cu 

u 

=e+cu 

u 

e c 

-----------+------------ e 
=e+cu 

(c) 

Figure 9. Zero Shi£ting Applied to Three Hysteresis 
Characteristics 

c 
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decomposition given by Gibson yields the system of Figure 

7 (b) • After simplification to Figure 7(c), the usual Popov 

criterion can be applied. 

Figure 8(a) depicts another system whose nonlinearity 

is not of the r e q uired form. Where the original character-

istic is multiple-valued, the output of the nonlinearity is 

on the same segment as it was immediately previously. If 

the nonlinearity is at point P 1 or P 2 and lei decreases, 

the output follows the diagonal rather than the horizontal 

segment. Zero shifting yields Figure B(c), where the new 

nonlinearity is confined to the sector [O,K], so that the 

Popov criterion can be applied. 

It should be pointed out that three superficially 

identical relay-type characteristics with hysteresis but 

no deadband may actually have three different character-

istics, as shown in Figure 9. Zero shifting is useful only 

for the top characteristic. The bottom characteristic is 

the one associated with ordinary e lectromechanical relay s, 

a nd the zero shifting transformation does not exist in an 

interval about the origin of the zero shifted characteristic. 

E . Product Nonlinear i t ies 

Baron and Meyer [46], [47] show how, in ce rtain mode ls 

with product nonli nearities, non- z e ro e q u i l i brium points 

can be investigated f or stabili t y by means o f a change o f 

variables. The technique is presented in the context of 



a nuclear power reactor, where the neutron density n, and 

the n-vector y of several temperatures, satisfy the state 

equations 

n Kn 

y Ay - bn ( 3. l) 
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where K, the reactivity, is a function of the state of the 

reactor. 

K = K0 + c y - pn . 

The product nonlinearity arises from the 

state equations. Equilibrium points are 

nl = yl = 0, and at 

I 
Ab)-1 n = n2 = (p-c Ko 

-1 I 
A-lb)-1 y = y2 = A b(p-c 

Translation of coordinates defined by 

e = n - n 2 

Kn term of the 

at the origin, 

K 
0 
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puts the equilibrium point (n 2 ,y2 ) to the new origin. The 

kinetic equations are 

x = Ax-be 

K = c•x-pe. 

Now let 

8+n 
cr = ln[ 2]. 

n2 

The kinetic equations can now be written as 

x = Ax - bn 2 (ecr -1) 

which is of the standard form for the Popov criterion. 

The essential characteristic of the system (3.1) is 

that one state variable, n, is decoupled from the rest 

except insofar as K is a function of the other state 

variables, and that the remainder of the system is linear. 
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F. Stability In-the-Large 

Another important modeling point concerns constraints 

on the value of the output variable, e. In the vicinity of 

the equilibrium point under consideration the nonlinearity 

may be accurately modeled by a particular mathematical 

function. If the domain of the function is taken to be 

[-=,+=],the sector containing the nonlinearity may be 

larger than actually required. Direct constraints on the 

output variable, or constraints on the state variables, may 

permit a sharpening of the stability criteria by limiting 

the domain, and likewise the range of the nonlinear character­

istic. 

Such constraints, of course, spoil the linearity of the 

part of the system represented by G(s), and if any variable 

actually reaches its constraint the stability criteria are 

not applicable. In a particular problem engineering judge­

ment is called for to estimate how far the state variables 

might reasonably deviate from the desired operating point. 

The stability results would be equivalent to those obtained 

by Liapunov methods in which stability in- the-large is 

determined for a finite region R and it is estimated that 

disturbances would always be within R. Liapunov functions 

used in proofs of Popov type criteria also lend themselves 

to establishment of finite regions of stability [48] , [49]. 



IV. REGIONS IN PARAMETER SPACE SATISFYING 
STABILITY CRITERIA 
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A. Parameter Space Where the Popov Criterion is Satisfied 

D. D. Siljak [50] reformulated the absolute stability 

problem to include parameter variations. By analytic means 

he obtained the region R2 in parameter space where the 

Popov type inequality is satisfied. The results have impor-

tant implications regarding system sensitivity and in the 

verification of the Aizerman and Kalman conjectures. 

The object of this chapter is to first review the work 

of Siljak by considering the details of his example. Siljak's 

work is compared to results obtained by graphical interpreta-

tion of the Popov criterion. Then an analytic interpretation 

of the Popov type inequality is developed based on the Routh 

criterion. This interpretation is suitable for checking 

the satisfaction of stability criteria involving general 

Z(s) multipliers. Finally the conjectures of Aizerman 

and Kalman are considered, and a verification of the Kalman 

conjecture is obtained for a new class of systems, based 

on the equation for the locus curvature and the Routh 

criterion. 

Siljak first puts the Popov inequality for an n-th 

order system into the form 

2n 
I 

i=O 

i a.w > 0 
~ 

for all w~O (4.1) 



where the coefficients a. are real functions of the 
1 

parameters of G(s), the sector bound K, and the free 
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parameter q representing the reciprocal slope of the Popov 

line in a graphical interpretation. If a 0>o and if there 

are no positive real roots of the left hand polynomial, 

then (4.1) is satisfied for all w~O. For this to take 

place, it is sufficient, by Descartes' rule of signs, that 

i = 1,2, . 2n. 

These inequalities define a region R2 of absolute 

stability in Euclidian parameter space, Rn. The mere suffi-

ciency of Descartes' rule means that R2 is only a sub-

region of R1 , the region where the Popov criterion is 

satisfied, which itself is only a subregion of R0 where 

there is absolute stability. Nevertheless it is valuable 

information that every combination of parameters in R2 

corresponds to an absolutely stable system. 

Furthermore Siljak shows how to imbed a hyperrectangle, 

R3 , of maximum volume centered about the point of nomina l 

parameter values in the irregularly shaped R2 . In this way 

independent restrictions on each parameter are obtained. 

The following example illustrates how the regions 

R2 a nd R3 are obtain e d a nd compare s t hese r e sult s to 



those obtained by a graphical use of the Popov criterion. 

Example #3: 

G(s) 3 2 11 1 (s +6s +lls+6) 

K = l ; s = jw. 

The Popov criterion for q = 0 is 

1 + Re[G(jw)]>O for all w~O 
K 

l + 

l + 

> 0 

> 0 

2 2 3 2 2 2 3 ll 1 [(6-6w) +(llw-w) ]+(11 3-w) (6-6w )+ll 2w(llw-w) > 0 
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The coefficients of each power of w are required to be 

greater than zero: 

ao = 36lll + 6l-!3 > 0 ( 4. 2) 

a2 = 49lll + lll-12 6}..l3 - 6 > 0 ( 4. 3) 

a4 = 14lll - l-12 + 6 > 0 ( 4. 4) 

a6 = l-11 2 0. (4.5) 

Equations (4.2) through (4.5) determine the region R2 in 

a 3-dimensional parameter space where the Popov criterion 

is satisfied for q = 0. 

Next a hyperrectangle (a right parallelepiped in 

this case) of maximum volume is imbedded in R2 , with the 

center at some specified point (lJ 1 ,~2 ,lJ 3 ). The volume 

V is defined as 

Now V is maximized subject to the constraints (4.2) through 

(4.5). Substitute the expressions for one of the parameters 

obtained from the equalities (4.2) through (4.5) into (4.6) 

and set the partial derivatives equal to zero. For example, 

0 0 if constraint (4.3) is solved for l-1 1 = l-1 1 ( l-! 2 ,l-l 3 ), where 

the superscript 0 denotes extreme value, and substituted into 

( 4. 6) , then ( 4. 7) and ( 4. 8 ) are obta ine d. 
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= 0 ( 4. 7) 

= 0. ( 4. 8) 

Altogether there will be four sets like (4.7), (4.8), each 

set corresponding to one of the constraint equations. 

Each set defines a region in parameter space, and the 

intersection, R3 , satisfies all four constraints. 

From ( 4. 3) 

( 4. 9) 



av = = 12 11 2 6 
a~ 3 ° 49 ~2~3 - 49 ~2 + <49 - · 2 > ~2 

(4.10) 

Solving (4.9) for ~2 yields 

= .2726~3 - .1728. (4.11) 

Substituting into (4.10) yields 

2 
0 = .0501~3 - .0423~3 + .0067 

0 .0423±1.00045 
~3 = .1002 

={6337, f or a minimum volume inside R2 

.2106, for a maximum volume inside R2 . 

Using the smaller numbe r a nd (4.11 ), 

~~ = (.2726) (.2106) - .1728 

= -.115 
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0 G(s)= 
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Re [G(jw)] 
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2 s +.115s+.21 
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2 s +.llSs-.21 
3 2 .226(s +6s +lls+6) 

2 s +.llSs-.21 

. 174(s 3+6s 2+lls+6) 

Figure 10. G*(jw) loci For Parameter Sets at the Vertices 
of R3 of Example #3 
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0 
lJl = 

1 49 [6(.2106) 
= .174. 

- ll(- . 115)+6] 

A region where constraint (4.3) is satisfied is defined 

by 

1~1- .2 1 < .2- .174 = .026 

I ~ 2 - o I < • 115 

It is found that this region also satisfies the other con-

straints (4.2), (4.4), and (4.5), so that the region R3 

is defined. 

The G*(jw) locus is plotted for parameter values 

corresponding to the vertices of R3 in Figure 10. The 

most negative real coordinate of all these loci is -.22, 

compared to -1/K =-1. Recognizing that the G*(j w) locus 

shifts continuously as parameters are varied, it is clear 

that R3 is much more restricted than needed to satisfy the 

Popov criterion. 

(End of Example # 3. ) 

In a problem where q is not restricted to be zero, 

q will appear in (4.1) and must be set to particular values 

to obtain numerical bounds for R3 . The procedure should 

be repeated for a variety of q values, and the largest of 
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the regions thus defined taken as R3 . The union of the 

regions is a region where the criterion is satisfied, but 

the union is not a hyperrectangle. An additional con-

straint, such as q < 0, may be necessary according to the 

type of nonlinearity in the system. 

The sector bound K can also be left as a parameter, 

and included in the definition of volume. Leaving q and 

K as parameters in Example #3, the Popov criterion becomes 

~ + Re[(l+jwq)G(jw)] > 0 for all w > 0 

~ + Re [ (l+jwq) 

2 3 + ().1 3 - w ) (llw-w ) ] > 0 

36).11 
+ 6).13 > 0 (4.12a) ao = K 

49).11 
6).13-6+11).12-6q)J2+llq )J 3 2 0 (4.12b) a2 = -

K 

14).11 
+ 6-).12+6q)J2-q(ll+)J3) > 0 (4.12c) a4 = K 

= 
).11 

+ q > 0 (4.12d) 
a6 K 
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(4.13) 

Solve (4.12b) for w1 , using the equality to zero. 

( 4. 14) 

Substitute into (4.13) and set the partial derivatives 

equal to zero. 

av = 0 = 
aw 2 

• W W (K-1) 2 3 

av = 0 = aw 3 

(4.15) 

(4.16) 

Simultaneous solution of (4.14) through (4 . 17) (if it ex-

0 0 0 0 ists) yields extreme values of the parameters, w1 ,w 2 ,w 3 ,K 

To get numerical results, q must be s et to a particular 
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value. Repeat the procedure setting q to many different 

values. The region R3 is then the largest of all the 

regions defined for particular values of q. 

As an extension to the volume concept, it might be 

desired to exponentiate each factor of the equation for V 

according to the relative tolerance desired in the corres-

ponding parameters. In Example #3 suppose that a large 

tolerance bracket on ~l is more important than the tolerance 

on ~ 2 or ~ 3 • Then let 

Other extensions could be applied to the Popov~type 

criteria involving more general Z(s) multipliers, where 

the coefficients of Z(s), like q in the Popov criterion, 

are treated as parameters. 

Larger regions of absolute stability can be obtained 

by use of the Routh criterion. Beginning with equation 

(4.1) it is noted that only even powers of ware present. 

It is known that a 0 >0. To satisfy the stability criterion, 

it must be shown that the polynomial 

2n 
P 1 (w) = I i a.w 

1. i=O 

has no positive real roots. A method outlined by Siljak 

[51] based on the Routh criterion follows. 
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Replace w by -jw to form P 2 (w). P 2 (w) has the same 

roots as P 1 (w) except for a rotation of +90 degrees. Form 

the Routh array for P 2 (w). The number of roots of P 2 (w) 
' 

with positive real parts is equal to the number of sign 

changes in the left hand column of the array. This is 
1 equal to 2 the number of complex roots of P 1 (w). (See 

Figure 11.) Require that there be n sign changes--

meaning that there are no real roots of P 1 (w). This 

requirement can in general be satisfied non-uniquely, so 

that possibly a variety of regions in parameter space 

could be found where there is absolute stability. For 

example #3 the Routh array is formed as follows: 

2 4 2 4 6 2 2 
= J.1 1 (36-72w +36w +12lw -22w -w )+(].1 3-w )(6-6w) 

Replace w by -jw to form P 2 (w). 

The Routh array for P 2 (w) is given in Figure 12, where the 

second row is formed by differentiating the first row. 
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Im(w) 

X 

X X 

(a) Roots of P 1 {w) 

Im [w] 

X X 

Re [w] 

X X 

(b) Roots of P 2 (w) 

Figure 11. Rotation of Roots for a Typical P1 (w) 



- ~ 1 

-6~ 1 

1 - -(14~ -~ +6) 
3 1 2 

- - (14~ -~ +6) 3 1 2 

[_[ ___ l-~~-(4_9_~~1_+_11_~_2_-_6_~ _3-_6_) __ +_{ ____ }_~ __ (1_4_~_1-_~_2_+ __ 6)] [ J 36f.ll+6 f.l 3 

Figure 12. Routh array for P2 (w) of Example #3. 
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As can be seen from the Routh array for even this simple 

example, it is not easy to interpret the region(s) defined 

by requiring a certain number of sign changes in the left 

hand column. It is easy however to substitute sets of 

parameter values into the first two rows and form the Routh 

array for particular cases. By trial and errorja region 

can be fairly rapidly and accurately delineated where the 

criterion is satisfied. 

The Popov criterion is satisfied in the Routh array 

for Example #3 if and only if there are three sign changes 

in the left hand column. This can be checked rapidly for 

any set of parameters--more rapidly than a G*(jw) locus 

can be plotted. This kind of check can also be made 

readily for criteria involving general Z(s) multipliers. 

As a check on the Routh array of Figure 12, the 

nominal parameter values of Example #3 are substituted into 

the first two rows, and the rest of the array elements are 

calculated. From Example #3, (~ 1 ,]J2 ,~ 3 ) = (.2,0,0) · 

-.2 8.8 -3.8 7.2 

-1.2 35.2 -7.6 

2.9333 -2.5333 7.2 

34.163 -4.6545 

-2.1337 7.2 

110.63 

7.2 
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There are three sign changes in the left hand column of 

the above Routh array, as required to satisfy the Popov 

inequality for Example #3. Now substitute parameter values 

outside the region R3 defined in Example #3. Let (~1 ,~2 ,~3 ) 

= (.1,0,0). The Routh array is below. 

-.1 7.4 1.1 3.6 

-.6 29.6 2.2 

2.4667 .7333 3.6 

29.778 3.0758 

.4785 3.6 

- 220.96 

3.6 

There are still three sign changes in the Routh array, 

illustrating the conservatism of R3 . If however <~ 1 ,~2 ,~ 3 ) 

= (.01,0,0), then there is only one sign change, as the 

following Routh array shows, so that the Popov criterion 

cannot be satisfied. 

-.01 6.14 5.51 . 36 

-.06 24.14 11.02 

2.1167 3.6733 . 36 

24.244 11.030 

2.71 . 36 

7.81 

. 36 
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These results are consistent with the graphical interpreta-

tion where it is found that for ~ 2 = ~ 3 = 0, ~l = .025 is the 

minimum value of ~ 1 , which will satisfy the Popov criterion. 

B. Curvature of the G(jw) Locus--Aizerman and Kalman 

Conjectures 

If the stability of a class of nonlinear systems corres-

ponds to the stability of a related linear system, then one 

can use the simpler methods of linear analysis to establish 

regions in parameter space where there is absolute stability. 

Verifications of the Aizerman and Kalman conjectures establish 

this correspondence between nonlinear and linear systems. 

It is clear from graphical considerations that if the G(jw) 

locus has monotonically decreasing magnitude and always curves 

in the same direction as w increases, then a straight line can 

be drawn through the most remote (from the origin) intersection 

of the G(jw) locus and the negative real axis without inter-

secting the locus at any other point. The off-axis circle 

criterion then says that for constant monotonic nonlinearities 

the Kalman conjecture holds, i.e., if the constant linear sys­

tem is stable for all gains in the sector [O,K], then so is 

the nonlinear system for all constant nonlinearities satisfying 

0 < df(e) ~ K. 
de 

To establish the constant direction of curvature of 

the G(jw) locus, the formula for the curvature of a two­

dimensional parametric curve is used [52]. 
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where X and Y are the real and imaginary parts, respec-

tively, of G(jw). The numerator polynomial P(w) is formed; 

if the coefficients of all powers of w have the same sign, 

that is a sufficient condition (by Descartes' rule of 

signs) for there to be no positive real roots of P(w). In 

other words the curvature of the locus is never zero. If 

this test fails, then the Routh array may be formed for 

P(-jw), as was done for the polynomial from the Popov 

inequality. 

A check of the curvature using Descartes' rule has 

verified the Kalman conjecture for the trivial cases 

G(s) = 

and 

G(s) = 

and the less trivial cases 

G(s) = 

K 
4 (s+a) 

K 
5 (s+a) 

K 
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and 

G (s) = K 

Verification of the Kalman conjecture for this last case 

is believed to be an entirely new result. It was not 

necessary to invoke the Routh criterion. 

The computations involved in forming P(w) and evaluat­

ing the coefficients increase rapidly as the order of the 

system and the number of distinct poles and zeros increase. 

Even with the aid of FORMAC, an IBM language for non-

numeric machine computation, the analysis becomes imprac-

tical for systems with several distinct poles and zeros. 

The verification for G(s) = 
K required 244K 
3 (s+a1 ) (s+a2 ) 

bytes of core storage and about 60 minutes execution time 

on an IBM 360/50. 

Another rather specialized verification of the Kalman 

conjecture makes use of a distance function in the G(s) 

plane. Consider the transfer function 

G(s) = 
2 2 s -a 

2 2 (s +w 0 ) (s+b) 

along with a nonlinearity, F, which is constant and single-

valued. 

The verification is based on the off-axis circle 

criterion of Cho and Narendra [36] for monotonic non-

linearities. A distance function is formulated and required 

58 



59 

to be always positive in order to satisfy the criterion. 

This inequality defines a region in parameter space for 

which the Kalman conjecture holds. 

In its present form G(s) is a critical case, having 

poles on the imaginary axis. G(s) does have stability-in-

the-limit, so that an arbitrarily small amount, c>O, of linear 

feedback moves the system poles into the left-half plane, and 

puts the system into the form required for the theorems of 

Cho and Narendra. This pole shifting transformation yields 

G1 (s) and F1 • 

If the G1 (jw) locus lies entirely to the right of a 

straight line passing through the point (- i + o,O) I o>O 

small, and if the nonlinearity satisfies the conditions 

then the system is asymptotically stable, according to Cho 

and Narendra. 

The Hurwitz sector for G1 (s) is 

= G(s) = 
l+EG(s) 

( -E 1 - E) 

2 2 s -a 



It will be shown that under certain conditions the G1 (jw) 

locus lies entirely to the right of a line passing through 

the point 

(-

so that the system is asymptotically stable if 

< 

The Hurwitz sector for G(s) is 

( 0 1 

dF 
and the corresponding sector for de is 

( E 1 

= 

The difference between these two sectors is arbitrarily 

small, so that for all practical purposes the Kalman 

conjecture is satisfied. 
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Now for simplicity the G(jw) locus is considered 

instead o£ G1 (jw) locus since by continuity arguments 

they differ by an arbitrarily small amount for any w I w0 . 

G1 (jw0 ) lies far to the right. In order £or the G(jw) locus 

to lie entirely to the right o£ a straight line, the line 

must have a slope equal to the slope o£ the locus asymptote. 

The slope is -w0/b, so that the required line through the 

point 

(-

has for its equation 

where x andy denote horizontal and vertical coordinates, 

respectively. 

The distance in the G(s) plane between a point o£ the 

G(jw) locus and the straight line is given by Sherwood and 

Taylor [52] 

d = 
w~b Re[G(jw)] + w0b 2 Im[G(jw)] - (a2 + o3 ) 

(w6b2 + w~b4) 2 

Requiring d>O for all w~O so that the G(jw) locus lies to 

the right o£ the line leads to 
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(4.18) 

as a sufficient condition for the Kalman conjecture to be 

true. A counterexample [57] to the Aizerman conjecture has 

2 a = .5, b = w0 = l. These parameters do however satisfy 

(4.18), illustrating a case where the Kalman conjecture holds 

when the Aizerman conjecture does not. 

Note that forb= a the inequality (4.18) is trivial 

and may be satisfied for any w0 . This is a consequence of 

the fact that the Kalman conjecture holds for all second 

order systems. 

The preceding results are subsumed by the analytical 

work of Dewey [35], who showed that a transfer function of 

the form 

G (s) = 
2 2 s -a 

2 2 (s +w0 ) (s+b) 

satisfies the Kalman conjecture for all values of a, b, 

2 and w0 . Actually, somewhat stronger results were obtained, 

in that the Aizerman conjecture holds if the nonlinearity 

is constant, single-valued, and monotonic. The present 

verification, however, is a new use of a distance function 

in a graphical interpretation. 

The Aizerman conjecture (and hence the weaker Kalman 

conjecture) is verified in the literature for all first 

and second order transfer functions [9], for third order 
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systems without numerator dynamics [53), and for some other 

special third and fourth order systems [54), [55). Recently 

Fujii and Shoji [56) have verified the Aizerman and Kalman 

conjectures for other third and fourth order transfer 

functions, whose coefficients satisfy certain relationships. 

In general, of course, neither the Aizerman nor Kalman 

conjecture holds, for counterexamples have been found [57), 

[58), and an analytical disproof has been given [59). One 

of Fitts' counterexamples has 

G (s) = 

which is of the form of the transfer function of a two-

stage tuned amplifier [60], demonstrating that practical 

systems need not satisfy the Aizerman conjecture or the 

Kalman conjecture. 

The verification of the Aizerman and Kalman conjec-

tures is desirable because it allows the use of the methods 

of linear analysis, such as the root locus technique and 

the Rough-Hurwitz test, to determine the sector of allowable 

nonlinearities . The verification of the Kalman conjecture 

obtained in the present research adds slightly to the 

class of systems where this conjecture is known to hold. 

It seems likely that an inductive proof might be possible 

to verify the Kalman conjecture £or all transfer functions 

with negative real poles and no numerator dynamics. 
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V. COMPUTER-AIDED DESIGN 

A. Area Measure of the Degree of Failure to Meet the 

Criteria 

Earlier uses of a distance function [37]-[39] seemed 

adequate for the examples considered, but examples can 

be conceived for which the distance function is ill-suited. 

Figure 13(a) illustrates such a problem. The solid locus 

is for the original system parameters. The distance func­

tion, d, is taken as the maximum perpendicular distance 

from points on the locus to the Popov line. Locus fre-

quency w1 corresponds to the distance function d. Suppose 

it is found that perturbation of a particular parameter 

reduces the distance d from the w1 point of the locus to 

the Popov line. On this basis the parameter is adjusted. 

The distance d is reduced, but it is not at all clear that 

the Popov criterion is more nearly satisfied. This adjust-

ment actually makes the criterion more unsatisfied, due to 

the increase in distance to the Popov line from other 

frequencies, w2 for example. It is thus possible to 

improve the situation at one frequency, but worsen it at 

others. 

Use of the area function as the basis for parameter 

adjustment, as shown in Figure 13(b), avoids the preceding 

difficulty. The area measure includes information about 

64 



Original 
Locus 

Popov 
Line 

Area, A 
reduced 
to zero 

Adjusted 
Locus 

wim [G ( j w) ] 

Re [G( 'w)] 

(a) Distance Function, d 

wim [G ( jw)] 

Popov Line 

Re [G(jw)] 

(b) Area Function, A 

Figure l3. Distance and Area Functions 

65 



66 

the locus at all frequencies where it is to the left of the 

Popov line and leads to the best overall parameter adjustment 

for the entire section of the locus. In terms of the number 

of arithmetic operations required, an area can be calculated 

about as fast as a maximum distance can be found. The 

elemental areas summed in the computer programs are shaped 

as thin horizontal trapezoids in the case of the Popov 

criterion and as thin radial trapezoids in the case of the 

circle criterion. 

It should be remembered that neither the distance func­

tion nor the area function corresponds to any physical system 

characteristic. The functions are purely artificial guides 

to direction and amount of parameter adjustment. Fortunately, 

these functions seem to vary rather smoothly with parameter 

changes, based on the author's experience with the inter­

active computer program. In terms of the automatic parameter 

adjustment, it is found that, for almost all examples con­

sidered, the adjustment required is more than what is indi­

cated on the basis of the initial sensitivities. This is as 

expected, since a parameter value is more directly related to 

a linear dimension of the G(jw} locus than to an area within 

the locus, which would be more related to the square of the 

parameter value. 

To exploit these relationships it is proposed to use 

a quadratic curve fitting scheme to estimate parameter 

values which would just reduce the area function to zero. 



After the area function is computed for three parameter 

values, the second degree polynomial A(p) passing through 

these three points is determined, so that the roots of the 

polynomial give an estimate of what value of parameter p 

causes the area A to vanish. Obviously, only real roots 

are meaningful, and the root nearest the three known points 

should be taken. 

Trials of this scheme in several examples have produced 

very closely the parameter value requried to reduce the 

area function to zero whenever the initial points are all 

within a factor of two (2) of the value required. When-

ever the scheme failed, giving complex roots for A(p), one 

or more of the initial points differed from the required 

value by more than a factor of six (6). Example #4 shows, 

however, that the technique is sometimes successful despite 

large adjustment requirements. A(p) is formed by construe-

ting the Lagrange polynomial which interpolates at the 

three known points [61]. 

While this agjustment technique may speed the reduction 

of the are a function to zero, it precludes the adjustment 

of more than one parameter during the adjustment procedure. 

Definition of a multidimentional quadratic polynomial 

. p ) would be the first step in developing 
k 

an analogous procedure for more accurate adjustment esti-

mates when several parameters are variable. A gradient 

method could then be used to find the best combination of 

parameter adjustments. This scheme, of course, hinges on 
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· pk) being a true relationship between the 

area function and the parameters. 

Example #4: 

G ( s) 
(s+p) (s+2) (s+3); p = 1; q unrestricted. 

Applying the Popov criterion with a nonlinearity in 

the sector [0,20] yields a minimum of the area function of 

A . = .01975 at q = 0. It is decided to guarantee absolute m1.n 

stability by adjusting p. Perturbation of p yields the 

data 

A(.9) = .01854 

A(l.O) = .01975 

A(l.l) = .02066. 

Forming the second degree Lagrange polynomial which passes 

through these points, and taking the root nearest p = 1 

gives a parameter estimate of p = .1527 for a bsolute 

stability. It is veri f ied that the adjustment actually 

required for absolute stability in the sector [0,20] is 

p = .12. 

(End o f Examp l e #4.) 
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B. Degree of Stability 

The concept of stability is improved in its usefulness 

by the extension to specify a degree of stability. A 

response y{t) is defined to be asymptotic of degree a if 

and only if 

All the Popov type stability theorems can be used to 

establish stability of degree a if the G(-a+jw) locus is 

used, and if the linear part is output stable of degree 

a [ 10] • 

There is a very close relationship between degree of 

stability and the linear system concept of settling time. 

Results concerning degree of stability thus help to 

characterize the transient response of the nonlinear system. 

The difference between the guaranteed degree of stability 

and the experimental degree of stability can be taken as a 

measure of the conservatism of the Popov criterion in a 

particular problem. 

Example #5: 

G(s) 
4 = (s+.2) (s+b) (s+c) · 
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-5 

Figure 14. Nonlinear Characteristic and Transient 
Response for Example #5 . 
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The nonlinear characteristic is shown in Figure l4(a). 

During analog simulation it is found that b = l.l and 

c = 2.0 is barely sufficient for a stable (degree zero) 

response. Due to the discontinuous nature of the nonlinear 

characteristic, the degree of stability a (or asymptoticity) 

of the response is discontinuous with respect to parameter 

changes at a = 0. As long as the relay switching action 

continues following removal of input, the settling time 

is comparatively long, as determined by looking at the two 

negative peaks in Figure l4(b). After the response has 

decayed to the point where the relay output is always zero, 

the settling time is faster. The degree of stability is 

defined by this later or ultimate settling time. It 

appears that this design has a degree of stability of about 
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a = .2. Illustrating the conservatism of the Popov criterion, 

it is required that b = 6.4, c = 2.0 to guarantee stability 

of degree a = .2 for all passive hysteresis characteristics 

in the sector [0,3.75]. 

(End of Example #5.) 

C. Stronger Results Obtained as the Nonlinearity is 

Restricted 

In the following example the same G(s) is analyzed 

for stability for several successively smaller, more specific, 

classes of nonlinearities. The results illustrate that 



stronger results, i.e., larger sector bounds, can generally 

be obtained as the nonlinearity is more precisely specified. 

Example #6: 

A transfer function considered by Dewey and Jury [62] 

is representative of the frequency response of many compen-

sated feedback servosystems. 

in Figure 15. 

The relevant loci are shown 

G (s) 
40 = s(s+l) (s+.8s+l6) 

For a general time varying nonlinearity it is required that 

q = 0 in the Popov criterion, leading to a Popov sector 

determined by 

min Re[G(jw)] =lim Re[G(jw)] = -2.625 
w w-+0 

So for stability u/es[s,.381], where s >O and arbitrarily 

small. This same Popov sector also applies to constant 

nonlinearities with passive hysteresis, requiring 

For cons t ant s ingle-va lue d nonlinearities or 

constant nonlinearities with active hysteresis, the Popov 

sector is [s ,. 65]. I£ the nonlineari ty is further re-

str icted to single-v a lue d monotonic slope-bounde d charac­

teristics, analysis in the G plane yields superior result s, 

defining a stability sector o£ s~du/de~ l.23. In the G** 
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Figure 15. G,G*, and G** Loci for Example #6. 
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plane the stability sector is s~du/de21.43, which is a 

further improvement over the basic Popov sector. For 

linear characteristics the Hurwitz sector is (0,1.75). 

(End of Example #6.) 

D. Determining Parameter Adjustments 

In determining the parameter adjustments to most 

efficiently reduce the area function, A, or other error 

measure, the sensitivities may be weighted according to 

the normalized "cost" of adjusting the respective param-

eters. The desirability, L., of adjustment of parameter 
1. 

p 1 can thus be expressed by 

L. = 
1. 

aE 
ap. 

1. 

where c. is the relative cost of adjusting parameter p. 
1. 1. 

and E is the error measure. The partial derivative is 
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estimated numerically by examining the effect of parameter 

perturbations, usually 1%, on A. The final design is 

optimal in the sense that the parameter most "cost effi-

cient" in reducing A is adjusted at each step. This is 

no guarantee however that the design obtained has the 

lowest possible total cost. 

There may be hard constraints on the values that may 

be taken by the adjustable parameters. When a parameter 

value reaches its constraint as a result of the adjustment 
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procedure, the parameter effectively becomes fixed, and 

its adjustment is no longer considered in the automatic 

adjustment routine. 

The computer program thus determines the desirability, 

Li, of adjusting each variable parameter and selects for 

adjustment the parameter with the greatest L .. 
1. 

The amount 

of adjustment per step is determined by the user, who 

specifies that the error function shall be reduced by a 

certain fraction, 1/N, of its original value with each 

step of the adjustment. To meet this specification the 

routine uses the parameter sensitivity to determine the 

amount of adjustment required. Before each step the L. 
1. 

are recomputed. Any parameters which reach hard con-

straints are exempted from further adjustment in subsequent 

steps. 



VI. SHORT STEPS BEYOND CONTROL AND OUTPUT ASYMPTOTICITY 

The purpose of this chapter is to indicate the scope of 

the results that can be obtained with the aid of the inter-

active program. By themselves the Popov-type criteria can 

establish control and output asymptoticity. With a few 

further restrictions, additional results often follow, e.g., 

global asymptotic stability, BIBO stability, and process 

stability. 

A. Popov Theorems 
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Control and output asymptoticity refers to the asympotic 

behavior of the input and output respectively of G(s). A 

system is output asymptotic of degree a if for every set of 

initial conditions 
00 

I 
at 2 [e y(t)] dt < oo . 

0 

A similar definition holds for control asymptoticity. If a 

system of the standard form of Figure 1 is control asymptotic 

of degree a and the linear part is output stable of degree a 

then 

lim eaty(t) = 0. 
t +oo 

A linear part G(s) is s a id to b e output s table of d e g ree a i f 

for every set of initial conditions the impulse response g(t) 

and the initial condition response y 0 (t) satisfy the relations 

[10] 



J oo [eatg(t)] 2dt < oo, 

0 
Joo at I e g(t) dt < oo 

0 
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A system may be control and output asymptotic and yet 

fail to be asymptotically stable if, for example, there 

are unstable dynamic modes within the linear part which are 

unobservable. For systems of the form of (1.1), a necessary 

and sufficient condition for complete observability is that 

there be no pole-zero cancellation in c(si-A)-1, and hence 

none in G(s) = -c(si-A)-lB. Ogata [63] gives a detailed 

treatment of observability and the related "dual" concept 

of controllability. 

A sufficient condition for global asymptotic stability 

is satisfaction of a Popov type criterion for O<K<oo and 

O~q <oo , plus Re[Ai] <O for all the eigenvalues Ai of the system 

rna tr i x A [ 1 0 ] • The Popov criterion requirement that G(s) 

be output stable means that all eigenvalues corresponding 

to observable states must have negative real parts. Beyond 

the Popov criterion, the only restriction here on the eigen-

values is that those corresponding to unobservable states 

have negative real parts. Thus for a completely observable 

G(s}, satisfaction of the Popov criterion with O<K<oo and 

O~q<oo is sufficient for global asymptotic stability. 



If G(s) is rational and the nonlinearity is constant, 

single-valued, and piece-wise continuous, then the restric­

tion O~q<oo may be dropped from the requirements for global 

asymptotic stability. Any real finite q is allowed in such 

cases [9]. 

B. BIBO Stability 

A system is said to possess bounded input bounded output 
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(BIBO) stability if, for all bounded inputs, the corresponding 

outputs are also bounded. BIBO stability can be established 

if a system satisfies a Popov type theorem for control and 

output asymptoticity of degree E>O, and G(s) is output stable 

of degree E. For systems which by the Popov criterion are 

control and output asymptotic of degree zero, having G(s) 

which are analytic functions of s along the jw axis, control 

and output asymptoticity of degree E is established as 

follows. 

It is known that G(s) is output stable of degree 

zero. This implies that the eigenvalues Ai all have nega-

tive real parts. So for finite dimensional systems and 

infinite dimensional systems with Re[Ai] bounded away 

from zero, there exists some sufficiently small E1 >o such 

that 



Re[A.] <-E <0 for all i. 
1 1 

So G(s) is output stable of degree E1 >o. The other re-

quirement is that the G*(-E+jw) locus lie entirely to 

the right of the Popov line. Given the G*(jw) locus 

lies entirely to the right without intersecting the 

Popov line, analyticity of the G*(s) function implies 

that there exists a sufficiently small E2 >o such that 

the G*(-£ 2+jw) locus also lies entirely to the right 

of the Popov line. Take E = min(£ 1 ,E 2), and the system 

is control and output asymptotic of degree E>O. 

A sufficient condition for a composite system to be 

BIBO stable is that it be an additive interconnection 

of subsystems each of which is BIBO stable and that the 

interconnection be such that all loops pass through a 

nonlinear characteristic with hard saturation. 

For example, consider the composite system of 

Figure 16. Suppose that inputs r 1 and r 2 are bounded 

and that subsystems s 1 , s 2 , and s 3 are BIBO stable. 

The output of s is bounded even for unbounded in-
2 

put, cr 2 , due to the hard saturation characteristic. 

The input to s 1 , cr 1 , being the sum of two bounded sig­

nals, is bounded. The output of s 1 is also bounded, 

due to the BIBO stability of s 1 . Since the input to s 3 
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is bounded, so is the output of s 3 . Thus the outputs of the 
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Figure l6. BIBO Stability of a Composite Sys tem 
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composite system are bounded for bounded inputs. The 

reasoning is easily generalized for other configurations. 

It may be much easier to establish BIBO stability 

for the individual subsystems by the Popov-type methods 

than to establish BIBO stability directly for the 

composite system. Pole shifting might be useful to estab-

lish the hard saturation characteristics where needed. 

C. Process Stability 

The same parameter adjustment procedure used to 

stabilize a system with no input can also be used to 

establish the stability of the forced solution (process 

stability) [10]. With process stability the actual 

forced solution y(t) approaches the nominal forced 

solution y (t) as t+oo, despite bounded input dis-
n + 

turbances 6r(t) £L 2 . 

6r( t ) £L 2 i f a nd only i f r 0 
1 6r < t > 1 

2 d t < oo 



For process stability the derivative of the nonlinearity, 

du/de, is bounded in a sector, [k1 ,k2], generally a larger 

sector than that bounding the nonlinearity itself. The 

critical circle is centered on the real axis of the G plane 

and passes through the -l/k1 and -l/k2 points. Pole shift-

ing can transform the critical circle to a vertical line. 

Process stability is a more stringent requirement than 

global asymptotic stability of the unforced system. 

Example #7: 

G(s) = 
50 

(s-1) (s+3) (s+4) 

The nonlinear characteristic is shown in Figure 17(a). 

Pole shifting by an amount .171 puts the nonlinearity into 

the sector [0,.662]. The Popov criterion is satisfied for 

stability when the parameters of the linear part are adjusted 

until the original G(s) is 

G(s) = 50 
(s-. 71) (s+3) (s+4) 

The slope of the pole shifted nonlinearity is contain ed in 

the sector [0,2.05]. Satisfaction of the Popov criterion 

for this sector with q = 0 guarantees process stability. 

To meet this condition parameters are further adj usted 

until the original G(s) is 
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Figure 17. Nonlinear Characteristic and Transient Response 
for Example #7 With Process Stability 
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50 G (s) = 
(s .154) (s+6. 36) (s+S. 36) 

Transient responses for this design are shown in Figure 

17{b). 

(End of Example #7.) 

D. Instability Theory--Oscillators 

Analogous to the Popov and circle criteria for 

stability, Brockett and Lee [64] developed geometric 

conditions involving the G(jw) locus sufficient for in-

stability. One of these instability theorems is applied 

in the following oscillator design problem. 

Example #8: 

The system is in the standard form of Figure 1 with 

u 
E (1.176,2.222] i e G (s) = 2 

(s+l) (s 2+. 707s+.25) 

Stability cannot be established by the frequency domain 

methods, but one cannot conclude from this that the system 

is unstable. However, applying one of the instability 

theorems of Brockett and Lee [64] establishes definitely 

that the system is unstable. 

In Figure 18, the G(jw) locus encircles without touch­

ing (in the CCW direction) the circle centered on the real 
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-1 
1.176 

-1 
2.222 

(not to scale) 

Im[G(jw)] 

Re [G(jw)] 

Figure 18. Instability for Example #8 
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axis passing through -1/1.176 and -1/2.222 fewer times (-1) 

than the number of poles of G(s) in the right half plane 

(O). It follows from the instability theorem that there 

exists some set of initial conditions for which the unforced 

response is unbounded. Note that the nonlinearity is un­

specified except for its sector. The system is unstable 

for any characteristic in that sector, so that we have an 

absolute instability analogous to absolute stability. 

(End of Example #8.) 
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VII. REPRESENTATIVE EXAMPLES AND COMPARATIVE RESULTS 

The capability of the interactive computer program is 

further demonstrated in some of the examples of this chapter. 

Discussion of the results gives an indication of the conserva-

tism of the stability criteria under various circumstances. 

A. Conservatism of the Criteria 

1. Time-Stationary Systems 

The Popov-type stability criteria give sufficient con-

ditions for absolute stability of classes of nonlinearities. 

The examples studied indicate that the conservatism of a 

criterion is inversely related to the degree that the class 

is specified. Criteria for constant single-valued monotonic 

nonlinearities, for example, yield results such that it is 

difficult to find systems not satisfying the criteria which 

are nevertheless stable. 

Example #9: 

G (s) = K 

The nonlinearity is a saturation characteristic shown 

in Figure 19(a). As shown in Figure 19(b), there is very 

close agreement between parameter sets barely satisfying the 

Popov criterion and sets found during analog simulation 



u 

(a) 

Parameters of G (s) 

K a 1; w n 

1.35 1 .707 . 5 

Experimentally 2 1.41 .707 . 5 
stable sets 2 1 .960 . 5 

2 1 .707 . 7 

1.32 1 .707 . 5 

Sets satisfyin 2 1.51 .707 . 5 
Popov criteria 2 1 1.116 . 5 

2 1 .707 .697 

(b) 

Figure 19. Nonlinear Characteristic and Stable Paramete r 
Sets for Example #9 
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to produce barely stable responses. 

(End of Example #9.) 

On the other hand the criterion for an asymmetric 

nonlinear characteristic with hysteresis yields very con­

servative results. 

Example #10: 

G(s) = K 

4 = (s+.2) (s+.5) (s+2) 

As shown in Figure 20(a), the nonlinear characteristic 

has passive hysteresis, so q is restricted by -oo<q20. With 

this restriction the Popov criterion yields a maximum value 

of K for absolute stability of Kmax = .35 (total "gain" = 

.35 X 4.5/1.2 = 1.31). For a linear characteristic of gain 

4.5/1.2 = 3.75 in place of the nonlinearity, the maximum 

-K for stability is Kmax = 1.027. A positive q, if allowed, 

would yield ~ax= 1.027. Zero shifting, to eliminate the 

hysteresis and permit positive q's, is not possible because 

the characteristic is not odd. For comparison purposes, 

zero shifting is applied as outlined in Chapter III, D to 

the similar odd characteristic of Figure 20(b), and Kmax = 

1.02 is obtained. 

During analog simulation it is found that K~l.72 stabilizes 

the system. Other sets of experimentally obtained stable 
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Experimentally 
stable sets 

Sets satisfying 
Popov criterion 

u 

4.5 

-5.2 -1.2 

1.6 

-4.5 

(a) 

u 
4.5 

-4.3 -1.6 

11. 6 

-4.5 

(b) 

Parameters of 

K pl 

1.72 . 2 

4 .68 

4 . 2 

4 . 2 

.35 . 2 

4 2.6 

4 . 2 

4 . 2 

(c) 

e 
4.3 

e 
4.3 

G(s) 
p2 p3 

. 5 2 

. 5 2 

1.1 2 

. 5 3.6 

. 5 2 

. 5 2 

3.5 2 

. 5 20 

Figure 20. Nonlinear Characteristics and Stable Parameter 
Sets for Example #10 
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parameters are listed in Figure 20(c). During simulation 

much smaller parameter adjustments stabilize the system 

than are called for by the Popov criterion. There is no 

proof for the stability of these apparently stable designs, 

but simulation with a variety of large initial conditions, 

both on the analog computer and using the digital IBM Con­

tinuous System Modelling Program (CSMP), gives responses 

which all approach the origin asymptotically. 

(End of Example #10.) 

Very recently Rootenberg and Walk [65] discussed 

the question of system behavior when the constant, odd, 

monotonic, differentiable, memoryless nonlinearity lies 

between the Popov and Hurwitz sectors. They obtained 

results offering a tradeoff between the "amount" by which 

the Popov criterion may be violated and the guarantee that, 

if a limit cycle exists, it must be at a fundamental fre­

quency below a certain value. 

2. Time-Varying Systems 

The restriction of q = 0 1n the Popov criterion for 

time-varying systems tends to increase the conservatism of 

the criterion for most nonlinearities, as Example #11 will 
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show. The criterion must hold for the "worst" nonlinearities 

of the class, i.e., those characteristics for which the con­

servatism of the criterion is minimal. 

General time-varying nonlinearities, being the 

largest class, will in general include characteristics 



which are "worst", while the smaller, more precisely defined 

classes of characteristics exclude some of the "worst" 

characteristics. 

Suppose, for example, that the nonlinear characteristic 

is a time-varying gain, K(t). G(s) is such that a periodic 

K(t) of frequency w0 tends to excite oscillation, while 
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for any other type of characteristic the system is absolutely 

stable. The Popov criterion with q = 0 must accommodate K(t) 

of frequency w0 , and thus yield conservative results for 

other characteristics. 

With the nonlinearity restricted to constant single-

valued characteristics, the singular "worst" case is elimi-

nated from consideration. There is no other special 

characteristic to be accommodated by the criteria for this 

smaller class. This leads to much less conservatism for 

typical characteristics of the smaller class. Consider the 

following parametric amplifier. 

Example #11: 

The parametric amplifier circuit of Figure 2l(a) 1s 

described by the equation 

i(t) = Jt y(t-T) V(T) dT + d~ [C (t) V(t)] 
0 1 

where y(t) is the impulse response of Y(s). The circuit 

is represented in block diagram form in Figure 2l(b). In 

the absence of any input the circuit can be put into the 



i (t) 
s 

i (t) 
s 

i =o s 

r-

tt 

+ --

+ ---

G 

Y(s) 

(a) 

~~ 

-

(b) 

4~ -

(c) 

--. + 
0 :v (t) 

--1 

1 
Y (s' 

s c1 (t) 

G(s) 

cl (t) 
s 

r--- Y (s) 

c1 (t)=C(cos w t+l) 
p 

-- v (t) 

- v (t) 

wim[G(jw)] 

(not to scale) 

Re [G ( jw) ] 

-1 

.16xl0- 12 

(d) 

Figure 21. Parametric Amplifier of Example #11 
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standard form for application of the Popov criterion, as 

shown in Figure 2l(c). The linear part is 

G(s) = s = 
Y (s) 

s + 

and has a G*(jw) locus shown qualitatively in Figure 2l(d), 

for c 0 = 3 pf, G = 10-4 mho, and L = .25 ~h. 

Since the capacitor C (t) is time-varying the Popov 
1 

line must be vertical, giving a Popov sector of [0,.16] p f 

for c 1 (t). A time-invariant c1 , however, could be nonlinear 

and arbitrarily large and still the circuit would be absolutely 

stable by the Popov criterion with q f 0. 

Desoer and Kuh [66] give an equation for the current 

gain IG(s)/Is(s) whose denominator vanishes for certain 

component values, pump frequency wp, and signal frequency. 

This means that under certain conditions an ouput current 

can exist in the absence of an input current is, which is 

just the sort of instability the Popov criterion cannot rule 

out. 

(End of Example #11.) 

3. Whe n the Popov and Hurwitz Sectors Are the Same 

The Popov criterion is not a t a ll c o nserv ativ e if t h e 

Popov sector is the same as the Hurwitz sector. In this 
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case the Aizerman conjecture holds, and the absolute 

stability of the nonlinear system corresponds exactly to 

the stability of the autonomous linear system with gain at 

the upper bound of the sector. The stability criteria for 

such linear systems are perfectly sharp, i.e., the system 

can be proven either absolutely stable or unstable, with no 

uncertainty or conservatism. Thus the absolute stability 

of the nonlinear system can also be definitely established 

one way or the other, without conservatism. 

4. Stability of Degree a 

Though no examples have been found, it is conceivable 

that under certain circumstances the conservatism of a 

stability criterion applied to a particular problem can be 

demonstrated analytically. Suppose it is desired only to 

establish stability of degree zero, and the Popov criterion 

yields a Popov sector smaller than the Hurwitz sector. 

From the definition of stability of degree a, it is clear 

that a system stable of degree a>O must also be stable of 

degree zero. So the Popov criterion is overly conservative 

if it yields a Popov sector for stability of degree zero 

equal to or smaller than the Popov sector for stability of 

degree a >O. 

Several transfer functions having loci such that the 

Popov sector is smaller than the Hurwitz sector have been 

examined for stability of degree a >O. Among those con-

sidered were 

95 



G (s) = 
2 

s -.s 

G(s) = 40 

s (s+l) (s 2+. 8s+l6) 

G (s) = s+2 
2 s (s+. 5) (s +3. 2s+64) 

In each case the Popov sector is smaller for stability 

of degree a>O than for stability of degree zero. 

For the G*(jw) locus for an output stable G(s) the 

G*(-a+jw) locus (a>O) will intersect the real axis farther 

to the left, as shown in Figure 22. This follows from 

consideration of the Nyquist criterion for linear systems. 

The line segment from the intersection of the G(-a+jw) locus 

with the real axis to the origin corresponds to the range 

of gains for which the linear system is not stable of 

degree a. The degree of stability a increases from zero 

as the gain K decreases slightly from the value where a=O. 

The G(-a+jw) locus must intersect the real axis farther to 

the left than the G(jw) locus. Also then, the G*(-a+jw) 

locus must intersect the real axis farther to the left 

than the G*(jw) locus. 

The Popov line, however, may be determined by points 

on the locus other than the intersection with the real 

axis. To the author's knowledge the possibility of the 

situation shown in Figure 22 is not excluded, where the 
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Popov line for stability 
of degree a=O 

wim [G (s) ] 
Popov line for 
stability of degree 

a>O 

Figure 22. Stability of Degree a 

97 



Popov sector for stability of degree a>O is greater than 

the Popov sector for stability of degree a=O. In such 

cases the Popov criterion for stability of degree zero is 

clearly overly conservative. 

B. Criteria With General Z(s) Multipliers 

There are basically two systematic approaches for the 

application of stability criteria involving general Z(s) 

multipliers. 

expression 

Both are means of establishing that the 

Z(s)±l [G(s) + 1/K] 

is positive real. The graphical approach, by the procedures 

of [4l]-(44], relies heavily on the user's skill and intui­

tion in working with the classical graphical techniques of 

linear systems analysis, such as the Bode plot and the 

Nichols chart. The other approach is entirely analytical, 

making use of a Routh array as discussed in Chapter IV, and 

involves trial and error calculations, which can be quite 

extensive. The graphical approach may be preferred by 

experienced control engineers working with simpler forms 

of Z(s) multipliers, while the analytical approach is 

easily automated and capable of handling more complicated 

Z(s) multipliers with little extra user effort. 
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The graphical approach developed by Murphy [42] con-

sists of the following steps. Complications arising when 

there are poles of G(s) on the imaginary axis have been 

omitted here. 

1) Plot the Bode diagram for [KG(s)]-1 . 

2) Transfer the data from the Bode diagram to a 

Nichols chart. 

3) Read from the Nichols chart the data for plotting 

a Bode phase curve for [KG(s)]-1/{l+[KG(s)]-l} = 

H(s) and plot that curve. 

4) Search for a Z(s) of the required form such 

that graphical addition of the Bode phase curve 

for this function to the Bode phase curve plotted 

in step 3 results in a phase curve that is 

excluded from the range -3n/2, -n/2 of phase 

values. 

These steps can be short cut by shading the region of 

the Nichols chart where 

- 31r < 
-2- arg H(s) .$ -TI 

2 

and requiring that the locus obtained by graphical addition 

in the curvilinear coordinates of [KG(jw)]-l and Z(jw) 

remain outside of the shaded area. 

In the analytical approach one forms the polynomial 

P1 (w) for the numerator of 
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Re{Z (jw) [G(jw) + l)} 
K 

where the denominator is the · sum of two squares and then 

replaces w with - j w, fo~ming P 2 (w), keeping the free 

coefficients, c . , of Z(s) in literal form. 
1. 

Routh arrays 

are then systematically generated for sets of the c. 
1. 

100 

within the allowed coefficient space. The search terminates 

successfully when a Routh array is found having the proper 

number of sign changes in the left hand column. If the 

allowable coefficient space is sampled with a fine grid 

and exhausted without generating a successful Routh array, 

then it is concluded with fair certainty that stability 

cannot be established with the given criterion. 

Unfortunatel~ the coefficient space of the c. 
1. 

is 

generally unbounded, so that a truly exhaustive sampling is 

impossible. Practical terminations of the search along one 

coefficient direction would be when the coefficient becomes 

either dominant or insignificant over the other coefficients, 

both fixed and free, in each term of P 2 (w) where it appears. 

Specifying a suitable fineness for the sampling grid is 

also a problem. Fortunately, the Routh array is easily 

programmed and requires little machine time per array. 

In the following example both approaches to applying 

criteria with Z(s) multipliers are demonstrated. 
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Example #12: 

G(s) 5 s 2 
= (s+l) (s+2) (s+3) · 

This is the same G(s) considered in Example #3. 

By the Popov criterion it is found that, with a constant 

single-valued nonlinearity, the system is absolutely stable 

in the sector [0,8]. If the nonlinearity is monotonic 

with slope bounded by K, a Z(s) multiplier of a form given 

by Brockett and Willems [26] can be used to establish a 

larger sector of stability, [O,K]. One of the simplest 

forms of Z(s) permitted is 

Z (s) = l+As 
B+Cs 

where A, B, and C are real and non-negative. The require-

ment is that 

z ( s) [G{s) + 1 1 K 

be positive real, or equivalently that 

Re { Z { j w ) [ G ( j w) + ~] } > 0 for all w > 0. 

Applying the graphical method of Murphy [42], the 

[KG(jw) ]-1 locus is plotted on the Nichols chart of Figure 

23 where K has been taken to be 100. In order to shift 



Gain 
in 
db 

20 

10 

0 
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Phase (degrees) 

-330 

90 

Phase 

Figure 23. Nichols Chart £or Example #12 
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the locus out of the shaded forbidden region, Z(s) must have 

a maximum phase lag of about 60° at w = .14, and a phase 

lag of 30° at w = .62. Therefore the pole of Z(s) is 

chosen to be well below w = .14, and the zero is chosen 

above w = .62. At the same time the zero must not be at 

such a high frequency that the lower left end of the locus 

(not shown) is shifted into a forbidden region. (Note that 

the pattern of curvilinear coordinates is periodic to the 

left and right, with cyclical forbidden regions.) To meet 

these requirements let 

Z(s) l+s = .Ol+s · 

Since only the phase of Z(s) is relevant, its magnitude 

is ignored, i.e., taken to be identically one. The addition 

of the phase of Z(s) in the curvilinear coordinates yields 

the locus completely outside the forbidden region. 

This choice for Z(s) is also verified by substituting 

A= 1, B = .01, c = 1, and K = 100 into P1 (w) and generating 

the appropriate Routh array. 

The Routh array for P 2 (w) = P1 (-jw) is 
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100 

800 

-63,877.5 

-255,507 252,414 

1,009,656 

-486.75 

-649 36 

-1,531,449.3 

-84,094.197 

1,001,771.2 

416.23227 

-88,596.508 

36 

-1,533,042 

126,207.5 

1,009,649.9 

432.62809 

-1,953.1491 

36 

-1,298 

36 

-1,297.5491 

36 

The four sign changes verify that the system is absolutely 

stable in the sector [0,100]. 

Alternatively a systematic trial-and-error search 

could have been made in the ABC-space to find values such 

that the corresponding Routh array has the four required 

sign changes. The FORTRAN program listed below determined 

that A= .1778, B = .01, and C = .1778 yields a Routh 

array with four sign changes. These values correspond to 

a pole at .0562 and a zero at 5.62. Note that the level 

of nesting of the DO loops equals the number of arbitrary 

parameters, making the handling of more complicated forms 

of Z(s) quite time consuming. The total search time in-

creases as n2Pn, where Dis the degree of the polynomial 

P1 (w), pis the number of sample points for each parameter, 

and n is the number of parameters. In this example A, B, 

and c ranged from .01 to 10, with four points per decade. 



DIMENSION P(9,5) 
READ(1,10)AS,AF,BS,BF,CS,CF 

10 FORMAT(6F10.4) 
DO 20 I=1,9 
DO 20 J=1,5 

20 P(I,J)=O . 
DO 100 I=1,13 
A=AS*EXP(ALOG(AF/AS)*(I-1)/12.) 
DO 100 J=1,13 
B=BS*EXP(ALOG(BF/BS)*(J-1)/12.) 
DO 100 K=1,13 
C=CS*EXP(ALOG(CF/CS)*(K-1)/12.) 

Listing 

P(1,1)=100.*A*C 
P(1,2)=-100.*C*(-5 . *100.-6.-11.*A)-A*(-6.*B*100.-11.*100.*C) 

1-(-5.*A*100.-6.-6.*A-1.)*(-6.*C*100.-100.*B) 
P(1,3)=6.*B*100.*A+5.*100.*C+(-5.*100.-6.-11.*A)*(-6.*B*100. 

1-11.*100.*C)+(-5.*A*100.-6.*A-1.)*(6.*C*100.+11.*100.*B) 
1+(-6.*C*100.-100.*B)*(6.*A+11.) 

P(1 ,4 )=-6.*(-6.*B*100.-11.*100.*C)-6.*B*100.* (-5.*100 . -6.-11.*A) 
1-(6.*A+11.)*(6.*C*100 . +11.*100.*B) 
P(1,5)=36.*B*100. 
P ( 2 , 1) = 8 • *P ( 1 , 1) 
P(2,2) =6.*P(1,2) 
P(2,3)=4.*P(1,3) 
P(2,4)=2.*P(1,4) 
KOUNT=O 
DO 60 L=3 , 9 
.MEND=S- L/2 
DO 50 M=1,MEND 
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50 P(L,M)=(P(L-1,1)*P(L-2,M+1)-P(L-2,1)*P(L-1,M+1))/P(L-1,1) 
IF(P(L,1)*P(L-1,1) .GT. O.)GO TO 60 
KOUNT=KOUNT+1 

60 CONTINUE 
IF(KOUNT .EQ. 4)GO TO 110 

100 CONTINUE 
110 WRITE(3,120)A,B,C 

wRITE ( 3 ' 12 0 ) ( p ( 1 ' I ) I I= 1, 5 ) 
WRITE(3,120) (P(3,I) ,I=1,4) 
WRITE ( 3 , 12 0) ( P ( 4 , I) , I= 1, 3) 
W RI TE ( 3 , 12 0 ) ( P ( 5 , I ) , I= 1 , 3 ) 
WRITE (3,120) (P (6 ,I) ,I=l,2) 
W RI TE ( 3 , 12 0 ) ( P ( 7 , I ) , I= 1 , 2 ) 
WRITE(3,120)P(8,1) 
WRITE(3,120)P(9,1) 

120 FORHAT (/ /5El6. 4) 
STOP 
END 

(End of Example #12.) 
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The preceding example points the way to engineering 

applications of criteria involving general Z(s) multipliers. 

If in a practical problem the standard Popov criterion does 

not yield a Popov sector corresponding to the Hurwitz 

sector, chances are good that a less conservative sector 

can be obtained by use of the appropriate Z(s) multiplier. 

The authors mentioned in Chapter II ([26]-[31]) have 

given forms of Z(s) suitable for nonlinearities which are 

slope-restricted, odd, power law, with restricted asymmetry, 

etc. The present research, being primarilly directed toward 

criteria with graphical interpretations in the complex 

planes, leaves further investigation along the lines of 

Example #12 to future research. 
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VIII. CONCLUSION 

The original Popov criterion, enhanced by several 

theoretical extensions and system transformations, can be 

applied to a large class of feedback systems. Several 

of these criteria have straightforward graphical inter­

pretations, and are the basis of an interactive computer 

program for stable system design. The frequency domain 

criteria not only provide sufficient conditions for 

absolute stability, but also yield information regarding 

degree of stability and transient response, BIBO stability, 

process stability, and absolute instability. The degree 

of conservatism of the Popov criterion is explored for 

various types of systems by means of examples with com­

parisons to simulation results. 

The most important result of this research is the 

development of a versatile interactive computer program 

making it possible for the control engineer to use the f r e ­

quency domain criteria with a great deal of convenience, 

speed and flexibility. Other original results of this 

research are the use of the G** plot, zero shifting so that 

the Popov crite rion can b e applied to some o t h e rwise i nad­

missible nonlinear characteristics, a new verification of the 

Kalman conjecture, BIBO stability for composite systems, a nd 

t h e use o f t h e Routh arr a y with criteria h a ving g e n e r a l Z(s) 

multipliers. 
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Beyond the results of this dissertation, further re­

search seems worthwhile on several fronts. The mathemati­

cally inclined researcher might extend the present results 

to sampled data systems or pursue other verifications of 

the Aizerman and Kalman conjectures utilizing locus curva­

ture. The criteria involving the general Z(s) multipliers, 

only touched on here, might be further reduced to engineering 

practice and adapted to interactive system design. With the 

computational tools developed here, the experimentally 

inclined worker can easily analyze and/or design a wide 

variety of nonlinear feedback systems, and compare to 

simulation results or actual system performance. 

The researcher with a computer science orientation 

would surely find many improvements begging to be imple­

mented in the interactive program listed in Appendix A. 

The most obvious are a complete receding in assembly 

language to avoid the time consuming overlays of the present 

programs, and the utilization of a graphics unit to display 

Nyquist-type loci and Popov lines. 
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APPENDIX A 

Interactive Program for Nonlinear System Design 



1. Scope 

This program utilizes the Popov criterion and two 

of its extensions for analysis and design of stable non-

linear systems of the form of Figure 1. The extensions 

are the off-axis circle criterion [36] and the Dewey 

criterion [35], both applicable to systems with constant 

single-valued monotonic nonlinearities. The linear part 

is input either in factored form 

G(s) 

-Ts -TDSTRIS • e e 

or in unfactored form 

G (s) = 
m-1 . + p s m 

(s+ Z. ) 
1 

(s+PL.) 
J 

(A. 1) 

e -Ts d-TDSTR/5. 

(A. 2) 
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The user specifies the degree of stability, a(s= -a+jw)' 

1 . negat1've feedback, A, around G(s). and the amount of 1near 

· pole sh1'fting so that the criteria This last option perm1ts 

can be applied to a wider class of systems. 

phase data of G(s) is printed for the user's 

Magnitude and 

choice of the 



119 

G, G*, or G** locus. Areas between the locus and the Popov 

line are printed for the allowable range of angle of the 

Popov line (at 10° increments). 

At this point the use~ has the options of jumping back 

to various points in the stages just completed so that he 

can change his input, or of jumping into an automatic 

parameter aqjustment routine. In the automatic routine 

the user specifies which parameters are adjustable, their 

weights (relative adjustment costs of the normalized 

parameters), and constraints, as well as the approximate 

number of adjustments to be made in reducing the area to 

zero. After each adjustment the new parameter value and 

area are printed, and the user has the opportunity to jump 

out of the automatic routine. 

2. System Configuration 

The program is written in FORTRAN for use with the 

Data General Corporation NOVA 800 computer with 16K words 

of core storage and the DOS disc operating system. 

ASR-33 teletype is used for I/0. 

An 
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3. Program Organization 

The program consists of eight (8} modules which are 

overlaid one on the other as required during execution. 

The module hierarchy is indicated in Figure A .... l. The 

modules are stored on disc and called, i.e., overlaid, by 

the names beginning AJR __ The alternative names in 

parentheses in Figure A~l are somewhat descriptive of module 

function and are used in the flowchart. The basic module 

functions are summarized as follows. 

MAST coordinates the other modules and accepts some 

user input specifications 

MULT multiplies all numerator factors together, and 

all denominator factors together, yielding the linear part 

in the form of (A.2}. 

PREP makes the substitution of -a+jw, for s, yielding 

the linear part in the form 

G(s}= 
F 1+F2 w2 + ... +j [G1 w+G2w3+ •.. ] 

u 1+u2 w2+ ... +j [V1 w+V2 w3+ . . . ] 

-Ts 
e 

-TDSTRIS. 
e 

(A. 3} 

NYQPRT prints Nyquist type data according to user 

specifications. 

AREAP calculates the areas between a locus and various 

Popov lines, according to user specifications. 



I 
AJRPUN2 

(MULT) 

I 
AJRPUN3 

(PREP) 

AJRPUN 1 (MAST) 
master calling 

program 

AJRPUN4 

(NYQPRT, 

I 
AJRPUNS 

(AREAP) 

AJRPUN7 

(ARCOMP) 

Figure A-1. Module Hierarchy 
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AJRPUN6 
& 

AJRSPEC 
aiDTOMAT~ 

l 
AJRPUN8 

(ADJUST) 



AUTOMATE coordinates the automatic parameter adjust­

ment, handling user input, parameter perturbation, and 

selection of parameter to be adjusted. 

ARCOMP calculates the areas between a locus and various 

Popov lines, similar to the function of AREAP. 

ADJUST calculates the parameter adjustments. 

Data is transferred from one module to another by means 

of WRITE BINARY and READ BINARY instructions coming just 

before and just after the overlays. For simplicity these 

transfers are omitted from the flow chart. 

The initial programming was done for IBM 360/ 50 CPS 

operation, an approach which had to be abandoned because 

of excessive terminal time and storage requirements. 

Subsequent programming for the NOVA also included approaches 

which had to be abandoned or modified. The resultant 

programming inefficiencies and vestigial variables and 

coding have not all been removed. 

4. Partial List of Variables 

P( I ), Q(I), K,T,TDSTR--as defined in e q uation (A.2). 

F (I) ,G(I), U( I ), V(I)- - as define d in equation (A.3). 

A(I), B(I), Z(I), C(I), D(I), PL(I)--as defined in (A.l). 

NQF- - number of numerator quadratic factors in G(s), 

ma x i mum o f 10 . 

NSF--number of numerator simple factors in G(s), maximum 

of 10. 
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DQF--number of denominator quadratic factors in G(s), 

maximum of 10. 

DSF--number of denominator simple factors in G(s), maximum 

of 10. 

ALPHA--degree of stability (-1 times real part of s). 

AA(typed A)--linear negative feedback around G(s). 

SML- -smallest value of area function for all admissible 

Popov lines. 

CODE--1, 2, or 3 for G, G*, or G**, respectively. 

w--w (radian frequency). 

WS--starting frequency. 

WF--finishing frequency. 

NPTS--number of points in locus, maximu~ of 201. 

KP--upper bound on sector. 

= <o >o <o IQ(typed QSGN)--1, 2, 3, or 4 for q 0, q_ , q_ , q~ , 

respectively. 

IND- - return index, may be an integer 1 through 8 . See 

Figure A-2. 

TA, TB, TC--used in the calculation of the binomial 
k k! TA 

coefficients, e.g., (m) = m! (k-m)! = TBxTC · 

OW--starting frequency in NYQPRT. 

N--number of decades in NYQPRT. 

GC--value of G(s) (complex) in NYQPRT. 

GC(I)- - value of G(s) at a particular frequency in AREAP, 

ARCOMP. 

PHI--angle of Popov line, in degrees. 
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FF--point on Popov line. 

FPRV--previous point on Popov line. 

THETA--angle of Popov line (in degrees). 
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IPAR(J)--1 if parameter is adjustable 0 if not; where J is 

the parameter number. 

JPAR(J)--code indicating type of parameter, e.g., z. 

KPAR(J)--subscript of parameter, e.g., Z(2). 

NSTEP (or ANSTP)--approximate number of parameter adjust-

ments to be used in reducing area to zero. 

KMAX--maximum on NSTEP; NSTEP<KMAX. 

PWT(J)--relative cost of adjusting normalized parameter. 

PMIN(J)--minimurn constraint on parameter. 

PMAX(J)--maximum constraint on parameter. 

M--nurnber of parameter to be adjusted. 

AORG--original area. 

AO--area after last adjustment. 

5. User's Instructions 

The main power switch, the CPU, the disc pack, and 

the teletype should all be turned on and the machines 

allowed a minute or two to warm up. Assuming that DOS and 

the interactive program modules are stored on the disc, 

invoke DOS by first checking that locations 376 8 and 377 8 

contain 60133 8 and 377 8 respectively. Then with the switches 

set to 376 8 , press reset and start. The teletype should 

respond "OOS REV OS". Press continue and the teletype 
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responds "R". Type "AJRPUNl" followed by a carriage return 

to begin execution of the interactive program. 

In response to program questions requiring a yes or no 

answer, the user types 1 for yes and 0 for no. When inputting 

data, the decimal point is optional. 

The following sample of input and output illustrates 

the use of the program. The characters typed by the user 

have been underlined. 



DO::. kEV d~ . 

H 

~ 
FACTOKED?.l 
-·t.t 
NSF•?,i 
DQF•?,i 
DSr•t} 
~·?~ 
T•?,ajl1. 
TOSTRa?.t.ii, 
PLCU•J~ 
1'\.CIJ•?,i 
1'\.C I )•?.:i.. 
THE I'S ARll 

THE QS AR£1 
~9.9999 

46.9999 
11.999 9 

0o 9999 
M..PHA3 1jt 
THE FS AREI 

THE GS AREI 
THE US ARll 

59.9999 
·11·9999 

THE VS ARll 
46.9999 
• 0 .9999 

Aat.t 
COOE•?i, 
11111•1·1 
Naljl-

0o0999 
8tl999 
0o2999 
e. 3999 
e. ~999 
e. 5999 
0 · 69 99 
0o7999 
9e 8999 
0 o9999 
1.9999 
2·999 9 
3o9999 
~.9999 

5o9999 
&.9999 
1·9999 
8 .9999 
9o9999 

19.9999 
29.9999 
39.9999 
.9 o9 999 
59 .9999 
69 . 9998 
19.9998 
8 9.9998 
99.9998 

MAGCGU 

8·8257£ .. . 
(h8 1JSE -t 
0o?962E •1 
0 o7755£ •1 
a.7S~JE •I 
0 o73>5£ •I 
0.122~E -· 0·1119£ ·1 
0.12~1 E -1 
0t7099 E -1 
•·11 2 6£ 0 
0·1063£ " 0t6807 E -1 
0•32 15 £ -I 
0o128 8E •1 
0·1~71£ -1 
0 o2117E ·I 
0·2367£ ... 
9·2~09 £ •I 
0 el 09 4E •1 
e. 4807 E -2 
0 ·2337£ • 2 
0 oll68 £ · 2 
0 e5::»H1E • J 
0 e 2H~<4E ·J 
0.9 ~59£ -:, 
0ol 228£ •3 
0 el88 6 £ • 3 

• 0 e ..S69 
-1.9289 
-~.J.n7 

-7.7762 
•l 2 o2 337 
•l7o6931 
-2~. 9426 
-31 .ess7 
•38 . 4 1 .. 5 
· 48 · 2 3 13 
•87.7 ~39 

•99.9 16 .. 
·1 08 . 3500 
•1 2 3e BS7 0 
-172.83~0 
12~.6370 

10 6·9249 
188e3590 
97.d511 
9 8 .3690 
89-~509 
89 . 0 -49 1 
88 .66?9 
tHJ-0780 
8 6 . 40 72 

- 2~. 0 1 63 

- s 1 . 2ase 
-~!3 .8 1 64 

QJ0£•?,2. 
QSGN•?,£ 
W:>• ?.a,l 
WF"•?,a 
NJo'T.S•lW 
KP•tlllil 
AREA< l> • 0 • 2 1SSE •3 
AREA< 2 >• 9 .1897£ •3 
AREA< 3)• 0 •1767£ • 3 
AREA< 4>• Y•l609E •J 
AREA( 5)• 0 • 1493£ •3 
AREA( 6>• 0 • 1271£ •3 
AREA< 7>• 9.9796£ •4 
AREA< 8)• 8ei694E •3 
AREA< 9>• 8 ei828E •2 
AREA< UU• 0 •2162£ • 2 
AREA( II >• 8•3122E •2 
AREA( 12>• ih 3899E •2 
AREA( 13>• e.4S64E •2 
AREA( 14> • e . 5162£ •2 
AREA<I5>• 0 •5737£ •2 
AREA< 16)• 0 •6296£ •2 
IHSUr. R• o r w. 
PHI•l69.9 
AREA<ttiN>• 1•9796£ •4 THETA• 69.9 
IN-Oa?.J. 
f'L(i) AD.Io?J. 
WT.•lW, 
MIN••l.&, 
HAXo•?,i 
PLCU AOJo?J. 
WTo•?li 
ttiN.•?~ 
KAX.•l& 
PI.C I) ADJ• ?J. 
wr.•?l. 
MINo•?.} 
MAX·•1A 
K ADJ•71 
T AOJo ?.II 
TOST~ ADJo?,i 
NSTEP.?J. 
KHAX•?Jl 
lNSU'• R• 0' w,. PHI • l69 • 9 
INSUr. R. or w,. PHI•I69e9 
INSUFo Ro OF W, PHI•I69o9 
PLC 3>• e.~937E I 
INSUF. R• Or w,. PKI•I611·9 
AREAC I>• 9t9196E -~ 
INTERVENE? .II 
INSUI'. R· OF' w,. PHI•169·9 
INsur. R· or w,. PHI• t69·9 
PL< 2>• e.~SSE 1 
IHSUr. R• O' w,. PKI•l69•IJ 
AREA< 2 >• 8.6S51JE ·• 
INTtRYENElll. 
INSUI'• R. 0, W,. PHI•161Je9 
INSU'• R· or w,. PHI•1 69e 9 
fl.( 2>• S••S46E I 
INSUF• R• Or w,. PHI•161J e9 
AREA< 3>• e •• IS5E •4 
I NTERVENE?.II 
INSUr. R· OF w,. PHI•169·9 
lNSUr. R· Of w,. t'HI•1611· 9 
PLC 2>• 0 . 4135£ I 
I NSUF. R· Of w,. PHI•169• 9 
AREA< •>• 0 ·18 67£ ·• 
I NTERVENE? .II. 
PL< 2 >• 8•~66£ 1 
AREA( 5 >• 8 •1308£ •5 
INTERVENE?JI. 
PERTUHBATlON GI VES C£RO AREAJ J • 2 
1N0•7.1. 
FACTORED?! 
NQr• 1.2, 
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6. Flow Chart 

Notes referenced in flow chart Figures A-2 through 

A-9: 

F. 
1 

(1) The F's (and the U's in a similar manner) are 

calculated from 

m 
= I 

j=l 

(2i- 3+j) 
(-l)i+j P 2i- 2 ~j-l m DEGN+3-21. 2i-2+j ~ i = 

using 

K! 
L! (K-L)! = TA 

TBxTC 

which arises from consideration of the binomial 

expansion for (-a+jw)j 

Re ( -a+ j w) j = ( - 1 ) j [ ( ~ ) a j - ( ~ ) a j - 2 w 2 + ( ~ ) a j - 4 w 4 + . . . ( 3 ) w j ] , 

j even 

or . . 
j j-1 • + ( . 1 ) aw ] 
J-

j odd. 

(2) The G's (and the V's in a similar manner) are 

G. = 
1 

m 
I 

j=l 

calculated from 

(2i-2+j) 
(-l)i+j 2i-l 

p2i-l+j 
J·-1 a ; m = DEGN+2-2i. 
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(3) GC is obtained by first calculating the rational 

part of G(s), then multiplying by exp(-Ts-TDSTRIS). 



This result is modified by GC=GC/(l+A x GC) to 

take into account linear feedback, A. 
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START 
1 

Call MULT 

3 
Call PREP 

Call NYQPRT 

6 
Call AREAP 

STOP 

Figure A- 2 . MAS.T 

NO 

8 

Input 
DEGN , 
DEGD 

Input 

Ca ll AUTOMATE 

129 



Mult. num. 

quad. factors 
together 

NO 

Mult. by num. 

simple factors 

Mult. all P' 

by K 

Figure A-3. MULT 

Mult. denorn. 

quad. factors 
together 

NO 

Mult. by denorn. 

simple factors 
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- i,...1 F.-P2 . 1 (-1) 
1 1-

Print 

F's 

i-1 .=P2 .(-l) 
1 1 

Print 

G's 

i-1 
.=Q2. 1(-l) 1 1-

Print 

U's 

YES 

Calc. F's 

Print 

F's 

Calc. G's 

Print 

G's 

Calc. U's 

Print 

U's 

i-1 
. =Q2 . (-1) Calc. V' s 

1 ·1 

Print Print 

V's V's 

Figure A-4. PREP 
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--a 

--G 

--a 

---8 
Input 
local 

fdbk. ,AA 

Back to 
MAST 



Calc. next 

freq. 

---~3te Calc. GC ~ 

Mult Im[GC] Divide Im[GC] 

by w by w 

Figure A-5. NYQPRT 
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NO 

Select range 
of Popov line 

angles 

Calc. next 

freq. 

---~3te ale. GC(I) ~ 

Mult. Im[GC(I)] Div. Im[GC(I)] 

by w by w 

Figure A-6. AREAP 
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both 

Calc. 6.A(trap.) 
between locus 
and Popov line 

Consider next 

pt. of locus 

SML = 
I AREA(I) I 

Consider Popov 

line at 

next angle 

Calc.6.A (tri.) 
at corner 

Add to 
Total Area 

Figure A-6. AREAP (continued) 
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Consider 

next pararn. 

Perturb 
adjustable 

par am. 

Call ARCOMP 

to calc . area 

Figure A- 7. AUTOMATE 
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Print 
"Pert. 
ives zer 

area" 

Unperturb 
par am. 

Call ADJUST 

o adj. param. 

Remove param. 
from considera 
tion if it = 

YES Set this par. 
as the one to 
be adjusted 

Consider 
next adj. 
par am. 

Figure A-7. AUTOMATE (continued) 

Back to 
MAST 
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NO 

Calc. next 

freq. 

---~3te Calc. GC (I) \..:.__) 

Mul t. Im [ GC (I) ] Di v. Im [ GC (I) ] 

by w by w 

Figure A- 8 . ARCOMP 

137 



both 

Calc. L'.A(trap.) 
between locus & 

Popov line 

Add to 

total area 

Cons i de r 
n e xt pt. of 

locus 

Consider Popov 
line at 

next angle 

Calc. L'.A (tri.) 
at corner 

Take abs. 
val. o£ area 

SML = AREA ( I ) 

Figure A- 8. ARCOMP (continued) 

Print 
"Insuf. R. 
of w." 

NO 
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Adjust pararn. 

YES 

Call ARCOMP 

to calc. area 

Figure A-9. ADJUST 

Set pararn. to 
nearest con­
straint 
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C -1- -MJN CALl. JNO PROOIIAII 
IIPL.K,KP 
JN'T£0ER !MF. DSf' , FPC , DEONJ, DEODJ, DEON12. 0EOD12. OEON. DEDD 

J,COIJE 
DIIIENSIDN 1'131 1. 0< 31 I. Fc 16 I. Ot 16 I. Ut 161. 111161 
t. At 10 J, ~ 10 l, zc 10 l. cc tO J, tK 10 J, ~C 10 l 

10 MXU'1 "FPCTOA£0? ", FPC 
IFC 'PC IC. I 100 TO 40 
MX:EPT • MQF•? •, NCF, •NSF•?'", H5F, '"DQF'•?'" , OQF, '"DSF•?", DSF -2-­II&DNI-wolt+l 
-2-+DSI' 
11&0111•11&00+1 
CALL JIELVI:t ' "'-"C'COI2' I 
CALL ,OPDIC 4 , ' "'-"C'COI2' I 

IMift 11-14 - ·-· IMF• DSf', MDNI• OEODI 
CALL f'CLOit 4 I 

JO CALL CM.VC '~. II/' ,01 
CALL f'OPDIC 4 , ' "'-"'C'C!ZI ' I 
- 11-VC 4 *· T, TDITII.t 1'1 I 1. 1•1• 31 I. c 1M I I. 1•1• 31 I 

IotA& I ),Jat , IOl.C8C I lol•t . IO), ( lC l ), J•loiOJ. 
J(CII I.I•I·IOI.COC I I.I•I. IOI.tl'\.1 I ), J•J , IOI 
CALL ,CL.Oit 4 I 
OII'IOSO 

40 M:aPT "II&CJMo?" . -· "II&OOo?" . DEOO 
-1-CJMol 
-1-00+1 

43 DO 41 I•J, DEDNI 
41 M:aPT "1'11 .. ?" . 1'111 

DO 42 I•J, DEOIII 
42 M:aPT "lit I ,_?. , 1M I I 
10 -IZ.C OEDNI+I 1/2 

DI0012-C DEOOl+l l/ 2 
M:aPT ·~?· • ALPHA 

60 CALL OEI.Iftc ' AJACOP113 ' I 
CALL 'OPDIC 4 • ' "'-"C'COI3 ' I 
IMift Il-l 4 IOEON. DEONI. OEOO. OEOOJ , 

J( 1'1 I ), 1•1 . 31 1. c lit I 1. J•J, 31 1. ALPHA. 1 , 105111 
CALL f'CL.Oit 4 I 
CALL 1M. VI ' "-'"'UN3 Ill ' • 0 I 
CALL f'OPDIC 4 , ' "'-"C'CO34 ' I 
M111D IINMtYC 4 K" 1 ), I•J, 16 J, C 0< I), 1•1 , ' ' ) , C UC I), J•J , 16 ), 

UYC I ), Jet , U~l. M 

CALL 'CL.Oit 4 1 
10 CALL 1M. YC ' "-'PUN4 SY' , 0 I 

CM.L JIELVI:C ' "'-"C'COi' ' I 
CALL f'OPDIC 4 , ' "'-"C'COi ' ' I 
1M 1ft 11-1 41DEONU. OE001 2. T, TDSTII , ALPHA, T, TDSTII 
CALl. 'CLOit 4 I 

90 CALl. CM.YI , ,....._ SY'. O I 
CALL f'OPDIC 4 , '~Ole I ' I 
- Il-l 4 ,_, COllE. W$ . WF. NPTS,I(I', JQ, JQS, JQf' 
CALl. ,CL.OI< 4 I 

110 M:aPT "1-? ", INO 
011 TOC JO, JO, 60. 10. 10. 90, 140. ISO 1. INO 

ISO I'' 'PC IQ I 100 TO 1.0 
TVN "M/To-ADJJI1 ALLOWED ONLY ,011 FAC'IOIIID ()( S I 
00 TO 43 

160 CALl. DELift< '~01016 ' I 
CALl. ,01'1 .... . IIVlCOP!l6 ' ) 
•IIUT'I IJHMYC 4 .c. T, TDSTPI: , C AC I l. 1•1 , 10 l, C ec I J, 1•1 • 10 ), 

UIC 1 ), l•t . I OJ,CCC I J, J•t.IOl. CCM I ), l•l .tOhC t-\.C I J, 
JJ•J , 101, M.PHA. M , COOl. W$ . WF . NP1$ . Kl', JQ, - · NV. DQf' , 

·-· JQS, JQf', M. 
CALl. f'CLOSC 4 I 
CALl. 1M. YC ' .___ SY' , 0 I 
00 TO 110 

140 I TOI' 
INO 

C P1JL T 
REAL K 
JNT£0ER DQf', DSf', OEONJ, MOt. I . DSf'l , DEONI2. OEOOJ2 
DJ-ION PIC 31 1, QIC 31 1, AI 10 I, 8C 10 I. Cc 10 I, DC 10 ), ZC 10 ), I'\.( 10 I 

lo P< 31 ), "' 31 ) 
CALL FOP£NC 4 , '~12' I 
READ 81-Y 14-.NSf'.DQF,DSf',JlEONJ , OEOOI 
CALL FCL.OSC 4 I 
AC:C:EPT '"K•?'" , k, '"T•?•, T, '"TOSTftw?'", TDSnt 
JFC- 199'1, 20. 10 

10 DO II 1•1. NCF 
II MXU'T "AI I ,_? . , Ill I ), "81 I ,_?• • 8C I I 
20 IF< NSF 199'1, JO, 21 
21 DO 22 I• I•-
22 M:aPT •zc I ,_?•, Zl I I 
JO 1Ft 18' ,..., 40, 31 
31 DO 32 1•1, DCF 
32 MXU'T •cc I ,_?., Cl I 1, "DC I ,_?., DC I I 
40 1Ft -,..., JOO, 41 
41 DO 42 t•t, DIP' 
42 M:aPT "I'Ll I ,_?.,I'\.( I I 
100 Jf't-1 . Ill. 111'11,_1. 

IF< DEDNI . N1. 2 100 '10 110 
1'12 .. 1. 

110 IF< -I IC. 2100 '10 120 
lltZ,.I. 

120 lf'C- . Ill 0100 '10 170 
I'ICI-11 
I'II-II 
1'112-1 1 
1'12-11 
I'IC3,_1 . 
1'13 ,. • . 
DO 131 Joo4, -1 

131 P'IC 1-. 
DO JS2 .J-2. -
1'11-111-.JI 
I'I:Z-IC 2 _.J_IC 1-.J I 
L.Z-1 
DO 151 1-J, L 

151 I'll- I- .J -IC l,-1-.J -~~ 1-2 I 
DO ISZ I•J , L 

JS2 1'111-1 1 
.,,_ . ... 0100 '10 190 

170 lf'C- . Ill 0100 '10 ZJO 
I'JC .,.z, 1 • 
I'II,_Zc I I 
1'112 .. 1. 

-~-·· DO Ill 1-J. -1 
Ill I'ICJ-
190 IF<- Ill 0100 TO 2JO 

liT• I 
1"- Nl. o 100 '10 1n 
lf'C - . Ill I 100 '10 2JO 
IIT.Z 

Jn DO 221 .-J, -
1'1 1-IC I ,.ZI.JI 
L.Z--1 
DO 21 1 1•2 . L 

211 1'11-IC I ,.Zc.J-IC 1-1 I 
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DO 221 I•J,L 
Z21 l'lt ,_II 
230 ... IT£< 10. 23!5 1 

23!5 FIRIAT< ' THE P " S - · ' I 
DO 231 I•J , DEONI 
l'tl--11 

231 ... IT£< 10. 232 ll't I I 
232 F!R!AT< 1'20. 4 I 

IF<IIEOOI £Q. I ICit I ,_I. 
IF< _, £11. 0. 100 TO 290 

Ql< I JaDl I I 
11<1-11 
Ql< 2 JooCt I I 
11<2>-Cll) 
Ql< 3 Jal . 
II< 3Jal. 
DO 251 1•4, DEOOI 

2:11 Ql< I JaO. 
DO 281 _,.2, _, 

II< ·-It ll*IK..Il 
II< 2 -It 2 )400( J l+GI< I ..Ct J I 
L•2-.J+I 
DO 271 1•3.L 

271 II< I -It ll*IK J l+GI< 1-1 ..C< J l+GI< 1-2 l 
DO 281 I•J,L 

281 Ill< 1-1) 
IF<_, . NE. 0 100 TO 310 

290 IFI - . £Q 0 100 TO 350 
Ql< 1-_1 I l 
11<1--lll 
Ill< 2 )al. 
DIFI-DIF+l 
DO 301 1•3. DSFI 

301 Qlt IJaO. 
310 IFI DSF . Ell. 0 100 TO 350 

NT• I 
IFI _, . NE. 0 100 TO 312 
IFI - . £Q. I 100 TO 350 

NT-2 
Jl2 110 341 ~.DSF 

11<1-1< 1,.,....1..11 
L•Z•DCF+J+l 

110 331 1•2. L 
131 II< I -~~ I ,.,.._, J !+Gil 1-1 I 

110 341 I• I, L 
Ml 11111-ll 
3110 ..,IT£< 10. 3!115 1 
3!115 -TI ' THE Q' 'S _ , ' I 

DO 351 I•I.IIEOOI 
351 ... ITI:I 10. 232 ICit I I 

CAL IIELET£ I ' A.JIICOial ' l 
CAL I'QPBII 4 , 'A.JIICOIQI ' l 
IIIIITI: •1~1 4 Jl(, To TDIITlt. I l'tl ),1•1• 311.111< I l.l• 

11.31 1, I AI I 1. I• I• 101. I .. I 1. 1•1, 101. I Zl I 1. 1•1.10 1. 
II Ct I l. 1•1• 10 l, I 0( I 1, 1•1. 10 I.C PLI I l. 1•1• 10 I 
CAL FCLOI< 4 l 
011 TO 400 

...... IT£110,.,.1 

.,. -TI ' PNl!l.' l 
eoo CAL_,., 

STOP 
Oil 

c I'IIEP 
INT£0£11 IJEQN, IJEQNI , 0£011, 0£001. T,.,., TB. TA, _,, DSF, 0£0NI2. 

10£01112 
Dl....SIC»t ft1 31 J, Q( 31 J,FC 16 J, OC 16 J, lJ( 16 J, VC 16 1 
CAL OIIEliFLOW< U . U I 
CAL FOI'ENI 4 , ' A..fiCQOII3' I 
- 81~1 4JIIEQN, OEONI. 0£00. 0£001. 

lCP< J ), 1•1 . 31 J,(Q( I J, 1•1 . 31 J. AL.PHA.T. TDSTR 
CAL FQ.OSI 4 I 

DEONI2-< OEONI+I 1/2 
IIE0012-< 0£001+1 l/2 
DO 5 1•1. 0£0NI2 

FC ll-0. 
OIIJaO. 
DO 1 1•1, DE0012 
UIIJaO. 

7 IIIIJaO. 
IF<~ . EQ. 0. 100 TO 130 
DO 10 _,.I, DEONI 

10 Fll,.,..ll ........... ~,. .. J-1) 
IIIIIT£110. 121 

12 FONIIIITI ' THE F " S _ , ' I 
... IT£1 10. II IFI I I 

II FONIIIITI 1'20. 4 I 
T-1 

TBal 
L •r.GN/2+1 
DO 30 1•2, L , .. ,.tl( 2•1-2 )tt( 2•1-3, 
Til-T"" 
T8aTI•< 2•1-2 )tt( 2•1-3 1 
TC•I 
Fll-2•1-1)40(-1-1-1 I 
~IIEON+3-2•1 
DO 20 _,.2," 
TA-TA41C 2•1-3+.J I 
TC•TC.C ..J-1 J 

20 1'1 I,_,.., I 1+1'1 2•1-2+..1 )40( -I- 1+..1 )40TA/I TaoTC ~ J-1 I 
]() IIIII TEI 10. II 1Ft I I 

DO 40 _,.I, !lEON 
40 Oil )aOII 1+1'1 ..1+1)40(~-..1-1 )40..1 

.. IUTEC JO, 41 I 
41 FONIIIITI ' THE 0 " 8 _ , ' I 

... IT£1 10. II 101 I I 
T-1 
TB-1 
L -< OEON-1 1/2+ I 
DO 60 1•2, L 
T_T,.,. .. 2•1-2 )40( 2•1-1 I 
TII-TN' 
TB-Ta.c 2•1-1 )40( 2•1-2 I 
TCal 
Oll-2ol)40(-l-l-1 I 
~DEON+2-2•1 

110 so _,.2, " 
TA-TA*< 2•1-2+J I 
TC•TC•C J-1 I 

~ OC I )-c)( I )+fJ'C 2•1-l+.J )tt( -I )tHt( l+.J )4tfA/C TD•TC ~ .J-1 J 
60 WRIT£< 10, II 101 I I 

110 70 _,.I, OEODI 
70 Ul I )aUI I 1+11< J )40( -ALPHA "'*' ..1-1 I 

WRIT£< 10. 71 I 
7t -TI' THE U" S - :· 'I 

WRIT£< 10, II lUI I I 
TAP• I 
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eo 
90 

TB-1 
L•DEG0 /2+1 
00 90 1•2 . L 
TAP-TAPtti 2•1-2 ).-( 2•1-J l 
TA-TAP 
TB-TB~ 2•1-2 )*( 2 •1-3 l 
TC•l 
UC I »-GC 2•1-1 >-t -1 >-•< 1-1 > 
,._DEOD+3-2• I 
DO 80 .,..2, " 
TA-T~ 2•1-3 +..1 l 
TC•TCtti J-1 l 
UC 1 1-U 1 )+QC 2•t-2+.J )*( -1 )-.-.( I+J )4fA/C TB•TC l+ALPHA•tti ..J--1 l 
WUTEC 10. It )U( 1 l 
00 I 00 J- I. DEOD 

.00 Y< I ,..y( 1 )+QC J+ l ,.... -M..P'ttA ._ .. J-1 )it.J 
WltiTEC 10, 101 I 

101 FORPIAT< ' THE V"' " S AR£·' l 
WltiTEC 10. I I IYC I I 
T-1 
TB-1 
L-< DEOD-1 l/ 2+1 
DO 120 1•2, L 
T,._TAPtti 2•1-1 )4t( 2•1-2 l 
T~TN' 

Ta-TB*< 2•1-1 )eo( 2•1-2 l 
TC•I 
Y( l >-0<2•1 >-<-t >-~I-t) 
,._DEOD+2-2•t 
DO 110 J-2," 
TA-TA*< 2•1-2+..J l 
TC•TC-< J-t l 

110 YC I ..v< I >+OC 2•1-I+..J >-<-I >••< I+..J >•TA/ C TB•TC ,..,_P'HA4fl.J-Il 
120 WltiTEC 10. II IYC I I 

00 TO 200 
130 WltiTEC 10, 12 I 

DO 140 l•t . DEON12 
F< I >-PC 2•1-t )it{ -t >•-< J-1 > 

140 WRITE< tO. 11 )f"( I ) 
WRITE< tO, 41 l 
L-DEONI/2 
IFC L . EQ. 0100 TO lSI 
DO ISO 1•1. L 
OC I >-PC: 2•1 l*< -I ~.C J-1 l 

150 WRITE< tO. It JO( I l 
lSI Wlt!TEC 10. 71 I 

DO 160 I•I,IJEODI2 
UC: I >-QC 2•1-t >-<-I ~.C 1-I l 

160 WltiTEC 10, II IUC I I 
lMITE< 10. 101 l 
L•DEOOI/2 
IFC L EQ. 0 )Q() TO 200 

DO 170 l•t.L 
YC I >-QC 2•11*< -t >••< J-1 l 

170 WltiTEC 10, II IVC I I 
200 ACCEPT •A-?•, AA 

CALL DELETEC ' IUICOI134 ' I 
CM....L FOPENC 4 , ~ A...ftCO"'34 ~ l 
WRITE BINARY< 4 )C FC I J, 1•1 . 16 J, C 0< I), l•t. 16. J, < UC: I J, 

11•1.16J.CVC I), l•l.lO>.AA.OEGNt2.0E0012. ALPHA.T,TDSTR 
CALL FCLOS< 4 I 
CALL OVERFLOW< t2tO. •220 l 

210 TYPE "01/ER/ l.tfDERFLOW IN PREP " 
220 CALL BACI< 

STOP 
END 

NY~f 

COI1Pl.El S . OC , ARG. EARG. S l . S2. SJ, S4 
REAL HI . N2 . Nl.f't , J'tAG, I GSTR. I GSS . tWJSTR. rtAOSS. 10 
INTEGER DEGN1 2 . DEGDt 2 . CODE. 00. z. DOF . OSF . OEGHt . DE GOt 
DIP1ENSION Ft l b>.G< I OJ, l)( l bl, \li I Ol 
CALL OVERFLCJW( t 2 . • 2 l 
CALL FOI'£NI 4 , ' IUICOfl34 ' I 
READ BJNARVl 4 N F C I ), l•l.lO l.t G< t l . I • I . I O l .C IJ( I J, 

11•1 · 10 J, C V'( I J, l• t. 10 ), AA, DEGN t 2 . OEOOJ2 , ALPHA. T. TDSTR 
CALL FCLOSC 4 l 

10 
II 

20 
21 

~ 
31 
40 

w-o. 
ACCEPT "CODE•?" . CODE 
ACCEPT " ON-? " . ow. ·~?" , N 
00 T()( 10. 20 . 30 I, CODE 
WRJTEt 10. 11 l 
FOIIMTC / ' 
00 TO 40 
WltiTEC 10, 21 I 
FIJRMT( / ~ 

00 TO 40 
WRITE< JO, 31 l 
FORPIATC / ' 
DO 170 QQ-1. N 
Z•9 

IFC QQ . EQ. 1 >Z•lO 
DO ISO ,._1 , Z 
_.DW 
NI-F"C I J 

w 

w 

w 

IFC DEONI2 . EQ. I 100 TO !50 
DO 41 1•2, OEON12 

41 Nt-Nt+FC I ..... .C2•1-2> 
!50 N2-<l. 

DO Sl 1•1 , OEONt2 
5t N2afrf2+()( I ,..,..C 2•1-t l 

Dl-ul I I 
IFC DEODI2 . EQ. 1100 TO 70 
DO 60 1•2, DEODI2 

~0 OI•Ot+LH I > ..... •< 2•1-2 > 
70 D2-<l. 

DO 90 1•1 · DEGD12 
JO 02•02+VC I l..,_..C 2•1-1 l 

.._...SQRT< Nt••2 +N2**2) 
DEN-SCIRT< 01•*2+02••2 > 
IFC Nl . EQ. 0 . JNI•. IE· 20 
-TAN2C N2, Nl I 
IFC 01 EQ. 0 . JDI• IE-20 

AD-ATAN2C 02. Dl I 
f'IAOaN.M/ DEN 
~E-AN-AD 
Io-ttAG*SINC ANll.E l 
~CANGLE I 
S-< 0 . , 1. ,..,_, 1. , 0 >-ALPHA 
St•-< t . , 0 . .. T 
S2•-< t . , 0 . >•TDSTR 
RS-ALCSI 
IFC RS EQ. 0 . IRS•. IE-20 
S-< I . , 0 . J*RS+C 0 . , I . ,.AII'IAO( S l 
S3-S2oCSQRTC S I 
EARG-CEXP{ St•S+S3 l 

IWl< G I 

OC-< ct. , 0 . J*RG+( 0 . , t . >•IG >*EARn 
ROC-AL< OC loAA 
AIOC-AIIWJ< OC I<>AA 
MO-< 1. , 0 . l+C 1. , 0 . >•ROC+( 0 . , 1. l*AIOC 
OC-ot/ ARG 
I o-A lf'VW)( OC > 
00 T()( 140. 120 . 130 I, CODE 

120 to-ta-w 
00 TO 140 

t30 10•10/W 
t40 RO-REALC OC J 

I'IAO•SQRT< RG••2+ I G••2 > 
IFC RG . EQ. 0 . JRO•. 1£-20 
AN)LE-ATAN2C I G, RO >•~7. 290 

I~ WRITE< 10. 160 >W. f'tAG, AHOL.E 
160 FDIRP'AT< F l5. 4 , E15 4 , F 15. 4 l 
t7o ow-w 

CALL OVERFLOW< t 2 1 O, t 220 l 
210 TYPE "OVER/ UNDERFLOW IN NYQPRT. 
2 20 CALL BACK 

S TOP 
END 

ARC)( 0 l ' I l 

AROC G*• )-' I ) 
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C ARE~ 
COM'LEX S. GC 
AEAL KP, 10. Nl . N2 
INTEGER DEGNI 2 . DEGD1 2 . CODE. OQF, OSF. DEGNI. DEG01 
DUENSJON AREA< 17 ), RG< 201 ), I~ 201 ), F< 16 ), G< 16 ), lK 16 ), \/( 16 l 

J,OC( 201 > 
CALL FOPEN< 4, ' AJRCOII1 ~' l 
AEAD BINARY< 4 >DEGN12. DE0012. T, TOSTR, ALPHA, T. TOSTR 
CALL FCLOSC 4 > 
CAL..L FOPENl 4, ' A...IRCOt134 "' l 
READ BINARY( 4 M F< 1 ), 1•1 , 16 ), ( G< 1 ), 1•1. 10 ), < tJ( I), 

11•1 . 16 ), t \X I >, t•J, 16 ), AA 
CALL FCLOS< 4 l 
Sft..•. 9£13 
ACCEPT " CODE•? ", CODE. '"QSON•?" • IQ 
ACCEPT " WS•?" . ws. "WF•? " I WF ' ''NPTS•?" ' NPTS. " I(P.?" ' KP 
00 TO< 2. 4. b . 8 J, JQ 

2 IQS•~ 
IQF~ 

00 TO~ 
4 IQS~ 

IQF•I7 
GO TO 9 

I> IQS•1 
IQF~ 

00 TO~ 
8 IQS•I 

IQF•17 
'9 00 '54 1•1. NPTS 

w-w5e£X~ ALOO< WF / WS >•< I -1 l / ( NPTS -1 l l 
IF< ALPHA EO. 0 . >ALPHA• IE-20 
s--t 1 .• 0. >•ALPHA+< 0. I 1. >•W 
Nl-F't 1 l 
IFl DEONI 2 . EO. 1 >GO TO 11 
DO 10 J-2, DEGN12 

to Nt•u +F< ..J >-w••c 2 • .J-2 > 
1 N2-o. 

DO 20 J-1 , DEONI2 
20 N2-N2+0« J )*W••< 2•..J-l ) 

01-t.Jt 1 ) 
IF< DEOOI 2 EO. I >GO TO 3 1 
DO :)() J-2, OEODI2 

30 DI•Dl +Ut ..J >.W••< 2•.J-2 > 
11 02-o. 

DO 40 J-1, DEODI2 
.0 D2•D2+vt ,J ~*< 2•.J-l ) 

DPtAO-Dt•DI+D2•02 
ROC I)-( Nt•Dt+N2•02 l/Df'IAO 
J()( J >-< N2•01-Nl•D2 l/ Ot1AO 
OCt I >-< RO( J )+( 0 . , 1 >•IG< I l >•CE XP< -T•S -TOSTA.CSORT 

llSll 
OCt I )-OCt J l/ ( I . +AA•OC< 1 l > 
IGli-I~ GCl l ll 
00 TO <54, ~2. 53), CODE 

i2 IOC I .- tO< I >•W 
00 TO 54 

5 3 I G< I l•IG< I l/ W 
5 4 RG< I JsRE.AL< GC< I l > 

DO 300 I • IQS. I QF 
AREA< I l•O 
CTN•COS< 1• 3 . 141~9/ 18 l/S I N< 1•3 141~9/ 1 9. l 
DO 200 J• l , NPTS 
FF•-1. /KP +IO( J >• CTN 
IF< J . LT. NPTS >GO TO 11 0 
IF< RG<J l . LT. FF>OO TO 120 

GO TO I~ 
110 IF(RG(Jl GE. FF)QO TO 13!S 

IF( J GT. 1 lGO TO 130 
120 PHI•I • t O. 

WRITE( 10 , 122 l 
122 FORIIAT< ' I NSUF. R. OF W. ' l 

WRITE( 10 . 12 1 >PHI 
121 FORIIAT< ' PHI • ', F~. I l 

00 TO 300 
130 FPRV--1 . /KP+I O< J -1 >.CTN 

IF< ROC J -1 J-FPRV )139, 132 . 132 
132 B-FF-ROI J l 

H-( IG< J >- 10< J -1 l >•Bt< B+FPRV-ROC J - l l l 
AREA< I >-AREAC I l+. 5 • B•H 
00 TO 200 

I~ IF< J . EO. I lOO TO 200 
FPRV--1 . / KP+IO( J- 1 >• CTN 
IF( RGIJ-1 >-FPRV >137. 200. 200 

137 8-FPRV-R()( J-1 l 
H-< JG< J J- I G< J-1 l >•Bit B+RO< J J-FF > 
AREA< I >-AREA« I ... ~B•H 
00 TO 200 

139 ARE.AC I >-AREAC I l+. 5 *< 10< J l - 10< J- 1 l )*( FF-RO< ,J l+FPRV-ROC J-1 l > 
200 CONTINUE 

MEAC I JaA8S( AREAC I > > 
WRITE< 10. 201 >1 . AREA< I > 

l0 1 Ft:RtAT( ' AR£AC "" , I2. "" )a ' , E12. 4 > 
IF( AREA< I l . DE SfL )()() TO 300 
SPL.aMEAC I l 
TlETA-I•10. 

300 CONTINUE 
WRITE< 10, 301 >Sfl.. , THETA 

301 FCIM'IAT< ' MEA< I"IIN ,_ .. , E1 2 . 4 ,.. nt:TA- .. , F5. 1 l 
CALL DELETE< 'AJRC~I ' > 

CALL FOPEN< 4 , ' AJRCote I ' l 
WRITE 81-Yl 4 >Sfl.., CODE, ws. WF , NPTS. KP, IQ, I QS, IQF 

CALL F CLOSI 4 l 
CALL 8AC1< 
STOP 

END 
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C AUTOftATE 
REAL k. KP 
INTEGER OOF . OSF , CODE 
Olf'£NSION I PARt 3 1 ), JPAR< 3 1 I, A< 10 ), Bt 10 >. Zt 10 I. CC 10 >. 
10< 10 l . PLt 10 >. ARt 3 1 l 

Ca91JN P1 , IPARt1 , .JPARt1 , KPAFm. KPARt 3 1 ), PWTt 3 1 ), 
l~IN( 31 >, PMXC 3 1 l 
CALL FOPEN< 4 . ' A.JRCOP11 0 ' > 
READ BINARY< 4 )f(, T, TOSTR, t A< I l , 1• 1. 10 l. C B< l l , J• t. 10 ), 

UZt J ), I • t . t Ol,t Ct I l, J•t . t O >,( D< I l . I•t . t Ol. tPLC I ), 1• 1.10 ), 
I ALPHA. AA. CODE, WS. \oF , NPTS . KP , JQ, NQF , NS F , OQF, DSF. JQS, JQF , Sf'L 

CALL FCLOS< 4 l 
.J-0 
AOAG• Sit.. 
ITOT•2--< NQF+DCIF l+NSF+DSF+ 3 
00 19 l • t . NQF 
.J-.1+1 
ACCEPT " A( I l ADJ. ? " , I PAR< J) 

IF( IPAR< .J l EQ. 0 )()() TO 19 
..PAR< J >-1 
CALL SPEC< 1 , J l 

19 CONTINUE 
DOn t•t.NQF 
.J-.1+ l 
ACCEPT " 9< I l AD..J ? .. , I PARt .J > 
IF< IPAR< .J l EO. 0 )()() TO 29 
.)PAR( "' )•2 
CALL SPEC< I , .J l 

29 CONTINUE 
00 39 I•t. N'SF 
.J-.1+1 
ACCEPT "ZC I l ADJ . ?", JPARC J l 
IF< IPAR< .J l EQ 0 )()() TO 39 
.)PAR("' )• 3 
CALL SPEC! I. .J l 

39 CONTINUE 
DO 4 9 l •t. DQF 
.J-.1+1 
ACCEPT "Ct I l ADJ. ?". I PAR< J l 
IFC I PARt .J l EQ. 0 >00 TO 4 9 
....FAR< J >•4 
CALL SPECC I , .J l 

49 CONTINUE 
DO :59 1•1. OOF 
.J-.1+1 
ACCEPT " 0( I l AO.J. ? .. , IPARC .J l 
1Ft I PARt .J > EQ. 0 lGO TO '9 
.)PAR("' >-:5 
CALL SPEC< 1 , .J > 

S9 CONTINUE 
DO 09 1• 1. OSF 
.J-.1+1 
ACCEPT " PU I l ADJ. ? " , I PARt .J l 
IF( IPAR( .J l EQ 0 lGO TO 69 
..FMC ..J l-0 
CALL SPEC! I , .J l 

09 CONTINUE 
J-J+J 
ACCEPT "K AO..J. ?", IPARC ..J l 
IF< I PAR< .J l EQ 0 )()() TO 79 
..PAR< ..J l-7 
10Ut1-7 

CALL SPEC< I Ol.Jt't , J > 
7q J • J+l 

ACCEPT "T AO.J_ ?", I PARt J > 
IF< !PARt J) EQ. 0 >GO TO 89 
JPAR< J ~8 
CALL SPEC< 1 0Uf'1 , J > 

89 J-J+l 
ACCEPT .. TDSTR AOJ ?" , IPAR< J > 
IF( I PAR< .J l EQ 0 lGO TO 99 
..JPAR< .J )e'9 
CALL SPEC( 10Ut1, .J l 

99 ACCEPT "NSTEP•?", ANSTP, "Kf1AX •?", Kt'tAX 
AO• Sit.. 
DO bOO KClJNT•t . KMX 
810•0 . 
DO 399 J-1. ITOT 
IF< I PAR< J > EQ. 0 >CoO TO 3 99 
JPARJ-JPAR< J > 
GO TO< 110, 120,130.140 , 1~. tbO, J70, J80. 190), ..JPMJ 

110 AI KPAR< .J l >-I . 01- KPAR! .J l l 
GO TO 2 00 

120 84 KPAR< J) >•1 . 0 1•8< KPARC J)) 

GO TO 200 
130 Zt KPAR< J > >•1 . Ot•Z< KPAR< J > > 

GO TO 200 
140 C< KPAR< J > >•1 . OlfC< KPARC J) > 

00 TO 200 
ISO [)( KPAR< J > >•1 . Ot•DI KPAf« J > > 

00 TO 200 
160 PL! KPAR< .J l >-I . OI>PL< KPAR< .J l l 

00 TO 200 
170 K•l . Ol*f< 

00 TO 200 
180 ' T•J . Ot•T 

GO TO 2 00 
190 TDSTR•l . OI•TDSTR 
2GO IBAR•I 

CALL DELETE< ' IVICOII67 ' l 
CALL FOPEI« 4 , '~7' l 
WRITE BINARY< 4 M( , T, TDSTR, <A< I) , I • J , 10 ), <1M J ), I•J. 10 ), 

l< Z< I >, 1•1 , 10 >. < C< I }, I•J , 10 ), < 0< I >. 1• 1· 10 }, < PLC I ), 
11•1 , 10 ), ALPHA, AA , CODE. WS , WF , NPTS . KP, IQ, ,_, NSF , [g' , DSF, 
IIQS, IQF, IBAR 
CALL FCLOS< 4 > 
CALL OVL Y( ' A.JRPUN7. SV ' , 0 } 
CALL FOf'EN( 4 , ' A.JRCOII76 ' l 
READ BINARY( 4 >AI 
CALL FCLOSC 4 > 
AR<.J-1 
IF( At NE. 0 . )GO TO 210 
WRITE( 10, 208 ).J 

208 FORPtATC ' PERTI..ItBATICJN OJ YES ZERO AREA; ..J- ' . 12) 
00 TO 601 

210 IFC A8SC AR< .J .-AO )/PWTt .J) . LT. 810) 00 TO 241 
B l()oABS( AR< .J l-AO l/PWT( .J l ...... 

241 00 TO ( 310. 3 2 0 , 330, 340, ~. 360, 370, 380, 390 ), .JPIIIII..J 
310 A( KPAR< .J) )-A( KPAR< .J ) l/ 1. 01 

GO TO 39'> 
320 9( KPAR< .J J >-81: k PAR< .J ) )1 1. 0 1 

GO TO 39'> 
330 ZC k PARf .J l )-lt KPAR< .J l l/ 1 0 1 

GO TO 39'> 
340 C( KPAR< .J l >-t'( KPAR< .J l l/ 1. 0 1 

00 TO 39'> 
~ [)( KPAR< .J l >-[)( KPAR< ,J ) l/ 1. 0 1 

00 TO ~ 
360 Pl.t KPAR( J l >-PLt KPAR< .J l l/ 1 0 1 

00 TO ~ 
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370 

380 

~10 

bOO 
601 

K•K/ 1. 0 1 
GO TO 399 
T• T/ 1 01 
GO TO 399 
TOSTR:aTOSTR/1 0 1 
CONTINUE 
CALL DELETE< ~ AJRC01'188 ~ I 
CALL FOPENC 4 . " A~OI"t88" I 
WRITE BINARY< 4 >f't , IPAR< M ), JPAR< M ), KPAR< 1'1 I 
CALL FCLOS< 4 I 
CALL DELETE< ' AJRCOH68 ' I 
CALL FOPENC 4 , " AJRCOf'lb8" I 
WRITE BINARY< 4 >t<, T, TDSTR. (A< I ), I•t. 10 ), < B< I I. 1•1. 10 ), 

HZ< I), I •t.lOI.<C< 1 ), I•t,lOI,< O< t I. 1•1.101. 
H PLI I), 1•1. 10 >• ALPHA. AA. CODE. WS. Wf" , NPTS. 
lKP. JQ, NQF, NSF. OQF , DSF, J QS, JQF, JBAR, f'l, PMX< 11 ), 
tAO. ARt M ), ANSTP, P?IJN< 1'1 ), AORG 
CALL FCLOSI 4 l 
CALL OVL Y< "AJRPUNS. SV" , 0 I 
CALL FOPEN< 4. ' A.JRCCJttab ' I 
READ BINARY< 4 liPARt1, <A< 1 I. 1• 1. 10 I,< B< I I, 1•1. 10 ), 

HZ< 1 ), I•t.lOI.tC< I I. I•J, 101,(0< I I. 1•1 . 101. 
l<PU I), 1•1, lQI,K,T, TDSTR 

CALL FCLOS< 4 l 
CALL FOPEN< 4, ' AJRCOII76 ' l 
READ BINARY< 4 >MNEW 
CALL FCLOS< 4 I 
WRITE( JO, ,10 )KOIJNT, ARNEW 
FORf1ATt " AREA< " , J2, .. I• ' , Ell. 4 I 
!PAR(" l•IPARI1 
AO•ARNEW 
IF< MNEW EQ. 0 . >00 TO bOI 
ACCEPT "INTERVENE? '" , IVN 
IF< IVN NE. 0 >00 TO bO I 
CONTINUE 
CALL BACK 
STOP 
END 

SUBROUT I NE SPEC I I • .J I 
COfW'tON P1 , IPARf1, Jf'ARf1, KPARtt. KPARI 3 1 ), PWTC 3 1 ), 

lPt'IINC 3 1 >. PftAlll 3 1 I 
KPARI .J )aJ 
ACCEPT "WT •?" , PWTC ,J ), "P1IN. • ? " , PM INC ..J ) , " M X. a ? .. , PftAXC .J) 

RET ..... 
END 

C ARCOt1P--AREA CALC. USING COf'IPLEX ARJTH 
INTEGER CODE, DQF, DSF 
REAL K, KP 
COIIPLEX G. S 
DJrENSION G< 201 >.A« 10 ), 8{ 10 I, Zl 10 ), CC 10 ), D< 10 >. PU 10 >, 

1AREA« 17 I 
CALL FOPENC 4 , ~ AJRCOI"'b7 " > 
READ BINARYI4H<.T, TDSTR,IA« I ), 1•1.10),(9( I ), J:a1 , 101. 

lC ZC I), I •LlOI. I CC I ), I•1.10I. COI I 1, 1•1.101, 
1C PU J ), 1•1 , 10 ), ALPHA, AA, CODE. W$, WF, NPTS, KP, IQ, NQF, NSF, 
IDQF, DSF. IQS, IQF , I BAR 

CALL FCLOSC 4 > 
DO 170 1•1. P.PTS 
...WS*EXP< ALOO< WF /WS I*< I -1 )/ ( NPTS-1 > > 
IF< ALPHA EQ. 0 . >ALPHA-. IE-20 
S•-< 1. , 0 . >•ALPHA+< 0 . , 1. l*W 
0<1-
DO 110 ..J-1. NQF 

110 0< I )eO( J I*< S•S+A< ..J )*$+81: ..J ) ) 
DO 120 .J-!. NSF 

120 OC I >-0< I )<t( S+Z< ~ ll 
DO 130 J-1, DQF 

130 0< I )a()( I )/( S•S+CI ..J )•S+DC .J)) 

DO 140 .J-1, DSF 
140 OC I >-0< I l/ < S+PL< ~ ll 

OC I>-< (I. , 0 . l<tfiEAL< OC I l )+( 0 . , I . -~~ 
1C OC I I> MC£XP< -T•S-TDSTR*CSQftT( S > > 

OC I >-0< I l/( I. +AA*OCI ll 
00 TO < 170, 150, 160 l, CODE 

150 WI-IMG< OC I l l 
0< J )a( 1. , 0 . >•REALI 0< I))+( 0 . , 1. >*WI" 
00 TO 170 

160 Wl~AIMG< OC I l l/W 
OC I >-< I . , 0 . l*REAL< OC I l )+( 0 . , I . -I" 

170 CONTINJE 
Sfl..-'1. El2 
DO bOO I•IQS, IQF 
AREA< I >-0. 
CTN-COS< 1•3. 141~'9/18. 1/ SH« 1•3. 141~9/18. > 
DO 5SO .J-1 , NPTS 
F•-1. /KP+AIMO( OC .J) >*CTN 
IF< J-NPTS >4'10. 450, 450 

4!10 IF< REAL< OC ~ l >-F >!ItO, ~.~ 
4'10 IF< REAL< OC ~ l >-F )!l()O, ~. ~ 
SO() JFC ..J-1 ~10, ~10, ~30 

SlO . HI•I•tO. 
WRITE< 10. ~20 lf'HI 

S20 FORftAT« ' INSUF. R. OF W, PHI•"' , ~- I ) 
00 TO bOO 

S30 Fl'RY--1. IKP+AIMG< OC J-1 l l*CTN 
IF< REAL< OC J-1 l >-FI'RI/>!1~. 533. ~33 

~33 88-F-REALC 0< .J I) 
H-C AIPWI< OC ~ l l-AIMG< OC J-1 l l l<t881< BB+f'PRV-fiEAL< OC J-1 l l l 
AREA< I >-AREA< I )+. 5*88*H 
00 TO ~50 

540 IF< ,J . EQ. 1 )0() TO SS0 
FPRV--1 . /KP+AIPWl< OC J-1 I >*CTN 
IF< REALI OC ~-I l >-FI'RI/>!14 I. 5S(), ~50 

541 BB-I'PI!V-REAL< OC J-1 ll 
H-1 AIP'IAOI 01 ,J) >-AI MOl 01 ..J-1 >I >•88/ C BB+REALC CM .J I 1-tr > 
MEAt I )aAR£AC I )+ ~•BB*H 
00 TO 5SO 

~~ MEA< I >-AREA< I l+. ~0( AIPIAO< OC ~ l >-AIIIAOC OC J-1 l l l<t 
H F-REAU 01 ,J I )+FPftV-REALC 01 .J-1 ) ) I 

5SO CONTINUE 
AREA< J )aABS( AREA( I I I 
IF< AREAC I )-Sf'L ~90. bOO. bOO 

~'10 Sfi..-AAEA< I l 
THETA-1•10 

bOO CONTINUE 
CALL DELETE! "A..RCOI17 b ' > 
CALL FOPENC 4 . "' AJRCOf'l7b"' > 
WRITE BINARY! 4 t'3tl.. 
CALL FCLOSI 4 > 
CALL BACK 
S TOP 
END 
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C ADJUST 
REAL K. KP 
1 NTEOER OOF, 0SF , CODE 
OU1ENSION A< 10 ), B< 10 l. Z< 10 >. C< 10 >. D< 10 ), PU 10 >. 

tARt 31 ), Pt'UN< 3 1 ), PMAX< 3 1 ), IPAR< 3 1 > 
CALL FOPEN< 4 , ' AJRCOI188 ' > 

READ BINARY< 4 )11 , I PARtt. JPARM. KPARH 
CALL FCLOS< 4 l 
CALL FOPEN< 4, ' AJRCOI'168 ' l 
READ BI.-Y< 4 >K, T, TDSTR.< A< I ), 1•1· 10 ), < B< I ), 

11• 1 , 10), ( zc I ),1•1 · JOJ.ICII ), I •J, J OJ, ([)( I J, I•t.tOJ, 

1( PU 1 ), I • J , 10 ), ALPHA, AA, CODE. WS, WF . NPTS. 
tKP. JQ, NQF, NSF. OQF, DSF. JQS, JQF, IBAR· f'l, PMX< P1 ), 
tAO. ARt 1'1 ), ANSTP, Pt11N< P1 ), AORG 
CALL FCLOS< 4 > 
GO TOC: 410 . 420. 430, 440, 4~. 460. 470, 480, 490 ) , ..JPARf't 

410 A( KPARf'l )•AI'UNH ~X< P1 ), A< KPARt1 l+AORG*A< kPARf'l) 
1/( tAO-ARC P't l >•ANSTP ... I OO. > > 
A< KPARf'l >•AMAXl< PM IN< t1 ), A< KPARI'I > > 

WRITE< 1 O, 411 >KPARf1, A< KPARtt > 
411 FORI'IAT< ' A< ' ,J2,' >• ' ,£12. 4l 

IF<A<KPARf'tl LT. Pf'IAX<,..>>OO TO 412 
I PAR<" l-0 
GO TO~ 

412 IF< A< KP- > OT. ~IN<" l >GO TO :100 
IPAf«P1l•O 
00 TO :100 

420 8< KPAR!'t )aMJNl< PMX< 1'1 l. Bt KPARf1 )+AORG•B< KPARt1 l 
1/t < AO-AR< P1 l >•ANSTP* l OO. l l 

B< KPARt1 l•At1AX1t P?IIN< P'l ), Bt KPARI1 > l 
~ITEt to. 421 >KPARf1, B< KPARP1 > 

421 FORf\AT< "' B< "' , J2,"' l• ' .E12. 4l 
JF( 8< KPARt't l l T. Pf1AX( P1 I >GO TO 422 

lf'ARC"' >-O 
00 TO :100 

422 IF< AC. KPARf'l l GT. PP,IN< t1 l >GO TO 500 
I PAR<" l•O 
00 TO :100 

430 Z< KPARf'l l•Af"' INH f>t'IAXt f'1 ), Z< KPARf't HAORO•Z< KP~ l 
1/( < AO--AR< t1 l >•ANSTP•lOO. l l 

Z< KPARf'l l•Af1AX1C PP,JN< t1 ), l< KPARP1 l l 
WRITE< JO, 431 >t<PARM, l< KPARM > 

431 F~TC "' l( ', J2, "' l• ' , E1 2 4> 
IF< Z< KPARt1 l LT. Pt'IAXC t1) >00 TO 432 
I PARt M >-O 
00 TO :100 

432 JFC Z< KPARf'l l OT. PI'! IN< 1'1 l >00 TO 500 
JPAR< M )•0 

00 TO 500 
440 Ct KPARf'l >-MINH P11AX< 1'1 ), CC KPARf'l }+A(JR()*CC KPARI'I) 

1 / ( C AO-AR< P1 l >•ANSTP•lOO. l l 
C< KPARt1 )•MAX H P?tlN<" ), Z< KPARf'l) l 
WRITE< 10. 441 >KPARt1. C< I<:PARf'l l 

441 FORI'IAT< "' Ct ' , 12, "' l•"' ,EJ2. 41 
JFt Ct KPAfU1 l L T Pt1AXt"' l >GO TO 442 
I PARt t1 >-O 
00 TO :100 

442 IF< Ct KPAR11 l GT. PM IN< t1 l >GO TO 500 
JPAR< t1 >•0 
00 TO :100 

4~ [)( KPARt1 l•Af1IN1C Pf1AX< t1 I , [)( r..PARt1 l+AORO+D< KPARf'l I 
1 / C C AO-AR< t1 l >•ANSTP•IOO l l 
0< KPARf'l l• AMAX H PMJN< M ) , [)( I<PARM l l 
WRITE< 10. 4!il >t<PARf'l, Dt KPARM l 

4~1 FORt'IAT< ' CC "' , I 2 . ' l• "' , E l 2 4 1 
lFI [)( KPARM ) L T PHAXI r1 l )(.0 TO 4!i2 
IPAR< r1 l•O 

GO TO 500 
452 IF< IX KPARr1 l GT. PM IN< r1 l >GO TO 500 

IPARtr1 l•O 
GO TO '500 

400 PU KPARt1 l=-AMINH PMAXt t1 ) , PU KPARM HAORO•PU KPARf'l l 
1 / C t AO-AR< P1 l >•ANSTP•lOO. l l 

PU KPARt1 l•AHAX1C PM I N< M ), PL< KPARM l l 
WRITE< 10. 461 >KPARf'l, PU KPARM l 

401 FORf1ATC ,. PL< ' , 12."' l• "' ,£12. 4 l 
IF< PU KPARM l LT. PMAXC t1 l lGO TO 462 
IPAR< r1 l•O 
00 TO :100 

%2 JFC PU I<:PARM I OT. P11IN< M l lOO TO 5 00 
I PAR< f'1 l•O 
00 TO :100 

J70 KaA11 lNl t Pf1AX( 1'1 ), K+AORG•KI C t AO-ARC P1) >•ANSTP• 100. l l 
K•MAX 1C PriiN< f'1 ), K ) 
WRITE< 10, 471 lK 

17 1 FORMT< "' K• ' , E12. 4 l 
IF"< K l T. Pf1AXC P1 l )(;() TO 472 
I PAR<f'fl•O 
GO TO 500 

·12 IF< K GT. ~IN<") >00 TO :100 
IPAR<r1 l•O 
00 TO :100 

480 T-MINH Pf1AXC P1 ), T+AORO•T f( C AO-AR< M l l.-ANSTP•lOO. ) ) 
T•AI1AX1C P?tiN<" ), T l 
WRtTEC 10. 481 lT 

481 FORf'tAT< "' T•"', £12. 4 l 
IF< T LT. Pf1AXC ") 100 TO 482 
I PAR<" >-0 
00 TO !500 

182 IF< T OT. ~IN<" l >00 TO :100 
I PAR< f1 >-o 
00 TO :100 

4~ TOSTR-Af11N1< Pf'IAJ<C t1 ), TOSTR+AORO•TOSTR/C C AO-AR< f1 I,.......,. 
1*100. ) ) 
TDSTR-Af"'AX 1C Pf11N( P1 ), TOSTR > 
~JTEC 10 • • 91 >TOSTR 

491 FCR'tATC "' TOSTR• "' , £12. 4 J 
IF< TDSTR L T PftAX(") )()() TO 492 

I PAR<" >-0 
00 TO :100 

492 IF< TDSTR GT. ~IN<" l >00 TO :100 
I PAR< f1 ,_0 

500 IBR-<> 
JP_,..IPAR< t1 l 
CALL DELETE< '~' l 
CALL FCPEN< 4 , ~ A...ItCOPI86 "' J 
.-JTE BINARY< 4 HPARtt, <A< I J, 1•1, 10 ), C 1M I J. 1•1• 10 J, 

1< Z< I), 1•1. 10 J. CCC I), 1•1, 10 J, CD< I J, 1•1· 10 ), 
1< PL< I ), 1•1 · 10 ), K, T, TDSTR 
CALL FCLOS< 4 J 
CALL DELETE< ' AJRCOI067 ' l 
CALL FOPEN< 4 , "' A...ItCO'I67 "' ) 
~IT£ BINARYC 4 )f(, T, TDSTR. C AC. I), 1•1 . 10 ), C 1M I), I•J , 10 ), 

IC Z< I J, t•t. 10 ), <CC I), 1•1 , 10 ), CDC I ), 1•1 , 10 ), 
HPL< I >. 1•1.10 >. ALPHA. AA.COOE. WS. WF. NPTS, KP,JQ,-.-· 
1DQF, DSF , JQS, IQF. I BAR 
CALL FCLQS4: 4 J 
CALL 01/L Y( ' IUIP\Hl. SV' , 0 l 
CALL JIACI( 

STOP 
END 

147 



148 

APPENDIX B. 

FORMAC Program for Locus Curvature 



INPUT TO FORMAC PREPROCESSOR 
RUSH: PROCEDURE OPTIONS(MAIN); 
DCL DENFMC3 ENTRY 
(BIN FIXED(31) ,BIN FIXED (31)); 
FORMAC OPTIONS; 
OPTSET (PRINT) ; 
OPTSET (EXPND) ; 

N=l; 
LET ( 
NS=K; 
DS=(S+Pl)**3*(S+P2); 
N=EVAL(NS,S,#I*W); 
D=EVAL(DS,S#I*W); 
IN=COEFF (N, #I) ; 
RN=N-#I*IN; 
ID=COEFF(D,#I); 
RD=D- #I *ID; 
MAG2=RD*RD+ID*ID; 
) ; 

OPTSET(NOEXPNb); 
LET ( 
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RG=CODEM((RN*RD+IN*ID)/MAG2); 
IG=CODEM((IN*RD-RN*ID) /MAG2); 
DRGDW=(EXPAND(DENOM(RG))*DERIV(EXPAND(NUM(RG)) ,W)­
EXPAND(NUM(RG))*DERIV(EXPAND(DENOM(RG)),W))/ 
DENOM(RG)**2; 
DRGDW=EXPAND(NUM(DRGDW))/DENOM(DRGOW); 
DIGDW=(EXPAND(DENOM(IG))*DERIV(EXPAND(NUM(IG)) ,W)­
EXPAND(NUM(IG)) *DERIV(EXPAND(DENOM(IG)) ,W) )/ 
DENOM ( IG) **2; 
DIGDl'l=EXPAND (NUM (DIGDW)) /DENOM (DIGDW); 
) ; 
ATOMIZE(NS;DS;N;D;IN;RN;ID;RD;MAG2;RG;IG); 
LET ( 
D2RGDW2=(EXPAND(DENOM(DRGDW))*DERIV(EXPAND(NUM 
(DRGDW)) , W) EXPAND (NUH (DRGDW)) *DERIV (EXPAND 

OENOM(DRGDW)),W)); 
D2IGDW2=(EXPAND(DENOM(DIGDW))*DERIV(EXPAND(NUM 
{DIGDW)) , W) EXPAND (NUM (DIGDW)) *DERIV (EXPAND (DENOM 
{DIGDW)) ,W)); 
POLl=NUM(DRGDW)*D2IGDW2; 
) ; 
ATOMIZE(DRGDW;D2IGDW2); 
LET( 
POL2=NUM (DIGDW) *D2RGDW2; 
) i 
ATOMIZE(DIGDW;D2RGDW2); 
LET( 
CPOLYP=EXPAND(POL1-POL2); 
M=HIGHPOW(CPOLYP,W); 
) ; 
ATOMIZE(POLl;POL2); 
M=ARITH (M) ; 



LOOPS: DO 1=1 TO M+1 
OPSET (NOPRINT) ; 

LET( 
I="I"; 
) ; 
LOOP9 ·: DO J=1 TO M/2+1; 
LET( 
J="J"; 
A(I,J)=O; 
) ; 

OPTSET (PRINT) ; 

END 

END LOOP9; 
END LOOPS; 
LOOP1: DO 1=1 TO M/2; 
LET ( 
I="I"; 
A(1,I)=COEFF(CPOLYP,W**(M+2*(1-I)))*(-1)** 
(M/2+1-I); 
) ; 
END LOOPl; 
LET( 
A(1,M/2+1)=COEFF(EXPAND(CPOLYP*W) ,W); 
) i 
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